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1 Predictive uncertainty underlies auditory boundary perception 

2

3 Abstract

4 Anticipating the future is essential for efficient perception and action planning. Yet, the role of 

5 anticipation in event segmentation is understudied because empirical research has focused on 

6 retrospective cues such as surprise. We address this question in the context of musical phrase-

7 boundary perception. A computational model of cognitive sequence processing was used to control 

8 the information-dynamic properties of tone sequences. In an implicit, self-paced listening task (n=38), 

9 undergraduates dwelled longer on tones generating high entropy (i.e., low high uncertainty) than 

10 those generating low entropy (i.e., high low uncertainty). Similarly, sequences that ended on tones 

11 generating high entropy were rated as sounding more complete (n=31). These entropy effects were 

12 independent of both the surprise (i.e., information content) and phrase position of target tones in the 

13 original musical stimuli. Our results indicate that events generating high entropy prospectively 

14 contribute to prospective segmentation processes in auditory sequence perception, independent of the 

15 properties of the subsequent event.
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16 Statement of relevance

17 A significant challenge for the human perceptual system is to promote time-sensitive, context-

18 appropriate responses by predictively processing continuous streams of complex sensory information. 

19 A large body of research shows that expectations gleaned from a lifetime of experience guide such 

20 processes, which are critical in high-risk environments like traffic or manual labor. Because most 

21 studies have focused on the degree of surprise evoked by events, there is little evidence for the role 

22 of prospective expectations in perceptual organization. Here, we control entropy in musical tone 

23 sequences by using an information-theoretic model that has been shown to reflect listeners’ 

24 prospective predictive uncertainty. Tones that afforded relatively high uncertainty were found to draw 

25 implicit attention and influence explicit ratings of sequence completeness. Focusing attention on 

26 instances where upcoming events are statistically unconstrained could contribute to an adaptive 

27 mechanism facilitating stream segmentation that leads to efficient learning and information 

28 processing in a complex, dynamic world.

Page 2 of 48Manuscript under review for Psychological Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

3

29 Acknowledgments

30 Our thanks to Dave Thompson, Carla Abawag, and Nicole D’Cunha for their assistance.

Page 3 of 48 Manuscript under review for Psychological Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

4

31 Introduction

32 Humans make sense of a complex, dynamic world by segmenting sequences of events into 

33 manageable units (Zacks & Swallow, 2007; Kurby & Zacks, 2008; Richmond & Zacks, 2017). Past 

34 work on segmentation has focused on retrospective cues for boundary identification, often 

35 conceptualizing group boundaries as coinciding with instances of increased relative change in 

36 stimulus features or low transition probabilities (e.g., speech: Saffran & Kirkham, 2018; action 

37 sequences: Hard et al., 2011; music: Hartmann et al., 2017; Pearce et al. 2010). However, the 

38 sophisticated prediction capabilities of the human mind (Hutchinson & Barrett, 2019) suggest that 

39 event boundaries are also anticipated prospectively. For example, in natural conversation, turn-taking 

40 happens so rapidly that speakers likely anticipate the end of their conversation partner’s sentence 

41 (Levinson, 2016). Here we investigate the role of entropy, or degree of prospective uncertainty about 

42 an upcoming event, in determining the perception of group boundaries in auditory sequences. We 

43 define prediction as the psychological processes of generating an expectation about a future event, in 

44 terms of how likely the various possible outcomes are. We define uncertainty as the imprecision (or 

45 extent of equi-probability) of such a prediction.

46 Though most previous work has focused on retrospective boundary identification of 

47 boundaries, anticipatory processing has some preliminary support. Previous work has observed that 

48 wWhen self-pacing through sequential images of action sequences, participants tend to “dwell” (or 

49 pause) on perceived boundary images (Hard et al., 2011; Hard et al., 2019; Kosie & Baldwin, 2019a, 

50 2019b). Kosie and Baldwin (2019b) proposed that this “dwell time effect” resulted from selective 

51 attention to moments of uncertainty afforded by perceiving a goal completion event. No cognitive 

52 model was devised to test this theory, however, potentially due to the challenges in modeling 

53 expectancy in event processing of action sequences. Indeed, one methodological drawback of this 

54 methodology was demonstrated by the finding that participants’ dwellinged on boundary slides even 
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55 when those slides were out of order, suggesting that they were responding to conceptual salience 

56 rather than to underlying expectancy dynamics (Hard et al., 2011). Cohen et al. (2007) have proposed 

57 an entropy-based segmentation model for language, but because it computes statistics from the corpus 

58 it is segmenting—including parts it has not yet seen—it does not fully capture segmentation 

59 processing in real time (Christiansen & Chater, 2016).

60 Because music is not only hierarchically structured (Lerdahl & Jackendoff, 1983), but also 

61 statistically well-defined, it is an ideal domain for testing psychological theories of probabilistic 

62 perception (Koelsch, Vuust, & Friston, 2019). As with non-musical sequences (Zacks et al., 2001), 

63 there is generally high inter-participant agreement regarding the location of musical phrase 

64 boundaries (Deliège, 1987; but see Pearce et al., 2010), and as with action sequences, listeners self-

65 pacing through musical chords “dwell” on boundary chords (Kragness & Trainor, 2016, 2018). Since, 

66 however, entropy correlates strongly with phrase boundaries in music (Hansen et al., 2017), previous 

67 studies were not optimized to separate prospective effects of expectancy dynamics vs.from effects of 

68 canonical boundary features on perceptual grouping. The Information Dynamics of Music Model 

69 (IDyOM) (Pearce, 2005) is a computational model of auditory expectation which provides a means 

70 of enables modelling boundary perception quantitatively using the information-theoretic concepts of 

71 entropy and information content, computed in reference to pre-existing long-term knowledge (Hansen 

72 & Pearce, 2014; Hansen et al., 2016). Entropy enables facilitates a test of prospective uncertainty as 

73 a prospective mechanism for boundary perception which can be pitted directly against information 

74 content (a measure of surprise) as a retrospective cue. For example, an individual may form a highly 

75 certain prospective prediction for about the next note in a melody but then be surprised when a 

76 different note actually follows. Another advantage of using melodic sequences is that, unlike images 

77 of actions,  any given note has little intrinsic meaning in isolation from its preceding musical context, 

78 ensuring that any observed effects on perception reflect the statistical structure of the sequence and 
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79 not inherent features of the boundary stimulus itself. However, because uncertainty processing is not 

80 always available for explicit introspection (Hansen et al., 2016), implicit measures are paramount for 

81 investigating the cognitive mechanisms underlying boundary perception. 

82 The present study used the IDyOM model to control the information-dynamic properties of 

83 melodic sequences in two experiments that assessinged the role of prospective predictive uncertainty 

84 in sequence processing. We measured participants’ dwell times (Experiment 1) and explicit ratings 

85 of phrase completeness (Experiment 2) for tones that afforded high/low entropy and were phrase- 

86 beginning/phrase-ending in the melodies from which they were drawn. We predicted that tones that 

87 generated generating high levels of prospective uncertainty would lead to longer dwell times 

88 (Experiment 1) and higher explicit ratings of phrase completeness, regardless of original phrase 

89 status,  (Experiment 2) and that this effect would be independent from that of retrospective surprise.

90

91 Experiment 1: Implicit Self-Pacing Task

92 Methods

93 Participants. Thirty-eight McMaster University undergraduates received psychology course 

94 credits for participating in the study (Mage = 19.3 years, 1 person declined to report their age, SDage = 

95 3.78, 8 men, 30 women). None of the participants were professional musicians (for more information 

96 about musical training levels, see Table S1 in SOM-R2). This sample size exceeds or corresponds to 

97 those of previous studies using this methodology to assess comparable effects (e.g., Hard et al., 2011; 

98 Kragness & Trainor, 2016, 2018). All participants were fluent in English.

99 Stimuli. Fifty-six monophonic stimulus sequences were selected from the soprano (i.e., 

100 highest) part in 370 four-part chorale harmonizations by Johann Sebastian Bach (Dörffel, 1875) (see 

101 SOM-R1 for details of the stimulus selection procedure). These chorale melodies are not generally 

102 known by present-day listeners in Canada. Unfamiliarity was, moreover, made more likely through 
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103 complete removal of rhythmic information by granting participants control over tone durations in the 

104 self-paced dwell-time paradigm (Experiment 1) or by presenting stimuli with isochronized tone 

105 durations (Experiment 2). All chords, interference tones, and self-pacing tones were generated in 

106 MaxMSP’s grand piano timbre. 

107 Each stimulus context contained a full phrase (musical group) of seven to 17 pitches followed 

108 by the initial tone of the subsequent phrase in the original chorale melody. Tones associated with 

109 phrase beginnings and endings were unambiguously identified from notations in the musical score. 

110 This practice seems at least as objective as the reliance on trained “expert coders” to determine event 

111 boundaries in research using visual action sequences (e.g., Hard et al., 2019; Kosie & Baldwin, 2019a, 

112 2019b). We included both phrase endings and phrase beginnings as target tones to provide a strong 

113 test of entropy’s role in segmentation, controlling for compositional cues in the melodies that might 

114 signal melodic phrase endings in other ways.

115 Fourteen stimulus contexts were selected for each of the four experimental conditions, 

116 comprising phrase beginnings with high (“BegHi”) or low entropy (“BegLo”) and phrase endings 

117 with high (“EndHi”) or low entropy (“EndLo”). Entropy, in this regard, quantifies the level of 

118 uncertainty governing a listener’s expectations about what the pitch of the next tone following the 

119 relevant phrase beginning or phrase ending would be. Thus, Western-enculturated listeners are 

120 expected to be relatively sure about which pitch will follow the target tone in “BegLo” and “EndLo” 

121 contexts, but relatively unsure in “BegHi” and “EndHi” contexts. “Target tone”, in this respect, refers 

122 to the final tone in “BegLo” and “BegHi” contexts and the penultimate tone in “EndLo” and “EndHi” 

123 contexts. 

124 The entropy level generated by each tone in the corpus was estimated by the Information 

125 Dynamics of Music Model (IDyOM, version 1.3) (Pearce, 2005). This variable-order n-gram model 

126 uses unsupervised statistical learning to generate probability distributions governing a relevant 
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127 feature of each tone in a monophonic melody. IDyOM was trained on a large dataset of 5,332 German 

128 folk songs (Schaffrath, 1995), 152 Nova Scotian songs and ballads (Creighton, 1966), and 120 

129 English hymns (Nicholson et al., 1950)1. For each tone in the chorale melody, IDyOM generated a 

130 probability distribution (summing to 1) over the 44 pitch values occurring in the training corpus (i.e., 

131 MIDI pitches 45-89 corresponding to A2-F6) by combining n-gram models of varying order. Entropy 

132 then quantifies the shape of these probability distributions with high entropy for “flat” (relatively 

133 uniform) distributions, where there is high uncertainty about the next event, and low entropy for 

134 “spiky” (relatively nonuniform) distributions, where one or a small number of continuations are 

135 highly probable. 

136 The set of 56 stimulus contexts was selected in a way that prioritized extreme high or low 

137 entropy values while ensuring that three conditions were met: First, as shown by a non-parametric 

138 Kruskal-Wallis test, all four conditions, including EndHi (Median = 2.45, IQR = 1.76), BegHi 

139 (Median = 2.69, IQR = 1.78), EndLo (Median = 2.31, IQR = 2.70), and BegLo (Median = 3.37, IQR 

140 = 1.83), were matched on information content (i.e., inverse log-probability) for the event of interest, 𝜒

141 2(3) = 4.55, p = .208; second, as shown by Mann-Whitney U-tests, EndHi (Median = 2.97, IQR = 

142 0.08) and BegHi (Median = 3.00, IQR = 0.12) stimuli, U = 78, p = .376, as well as EndLo (Median = 

143 1.07, IQR = 0.30) and BegLo (Median = 0.97, IQR = 0.35) stimuli, U = 90, p = .734, were matched 

144 on entropy governing the next event in the sequence. The experimenter selecting these stimuli paid 

145 no attention to any other musical features.

146 For the secondary analysis of all tones in the stimulus set, IC and entropy were re-estimated 

147 by re-running IDyOM with the same configuration on the final stimulus contexts. This was done 

148 because IC and entropy estimates for the initial tones in each stimulus context sometimes relied on 

149 tones from the preceding phrase in the original chorales, which was excluded from the stimuli used. 

1 For more information about the IDyOM implementation and parameters, please see SOM-R.
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150 While unproblematic for stimulus selection based on target tones, this presented a problem for tone-

151 level analysis. Note that due to their late position in the tone sequences, target tone entropy and IC 

152 values were identical for the two models (one used in stimulus generation and analyses of target tones, 

153 the other used in the analysis of all tones).

154 Procedure. The experimental procedures (for Experiment 1 and 2) received prior approval 

155 from the McMaster University Research Ethics Board and was carried out in accordance with the 

156 provisions of the World Medical Association Declaration of Helsinki. Participants were seated facing 

157 a computer screen in a sound-attenuated room. They were instructed to press the spacebar on a 

158 computer keyboard with the pointer finger of their dominant hand to elicit the onset of each 

159 subsequent tone in the sequence. Tones decayed naturally, but were not terminated until the spacebar 

160 was pressed again to initiate the next tone. Participants were instructed to progress as quickly or 

161 slowly as they liked while listening carefully, and could not repeat previously heard tones. They were 

162 led to falsely believe that their memory for the sequences would be tested afterwards to motivate them 

163 to attend to the task (Kragness & Trainor, 2016). No other instructions regarding timing, pacing, 

164 rhythmicity, or expressivity were given. If a participant asked for further information, they were told 

165 to play through the piece in a way that would maximize their performance in the subsequent memory 

166 task.

167 Prior to each trial, participants saw three flashes of a fixation cross, then heard 40 50-ms tones 

168 (for a total of 2000 ms) chosen randomly on each trial from range E2 to A5 to minimize carryover 

169 from the context of the previous sequence, followed by three context-establishing chords with 

170 durations of 800, 800, and 1600 ms (Figure 1). The context-establishing chords were played in the 

171 key of the relevant melody. Throughout each trial, a circle on the screen indicated when to begin self-

172 pacing through the melody (light green) and when to stop (dark green).

173
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174

175 Figure 1. Depiction of a trial from Experiment 1. In each trial, participants saw a fixation cross, followed by 

176 interference tones, then three context-establishing chords and a signal (white circle) to begin self-pacing. They then 

177 self-paced through the tone sequence until the occurrence of a stop signal (black circle). The box depicts examples of 

178 tone sequences from each condition containing target tones (boxed) generating relatively uncertain (high entropy) or 

179 relatively certain (low entropy) expectations about the pitch of the next tone, matched on IC of the current tone. The 

180 double slash indicates whether target tones were phrase beginnings (after double slash) or phrase endings (prior to 

181 double slash) in the original notation.

182

183 Data processing and statistical analysis. Despite systematic efforts to avoid duplicate 

184 stimulus contexts (e.g., multiple occurrences of a repeated phrase from a single melody or identical 
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185 phrases across melodies), it was discovered after data collection that one melodic context occurred 

186 both amongst the “BegHi” and “EndHi” stimulus sets (with different target tones). Given that results 

187 did not differ substantially when excluding dwell times for these stimuli, we report statistical analyses 

188 including the full dataset here, which included 56 total tone sequences (i.e., 14 per condition).

189 To mitigate effects of extreme data points, a minimum dwell-time threshold of 100 ms was 

190 adopted for inclusion. Dwell times greater than 3 standard deviations above a participant’s own 

191 average (across all target and non-target dwell times) were also omitted (Kosie & Baldwin, 2019a, 

192 2019b). These exclusion criteria eliminated an average of 1.31% of all tones and 1.70% of target 

193 tones per participant (ranging from 0-4 target tones). 

194 For the main analysis of target tones, target dwell times were averaged by condition resulting 

195 in four condition-wise means per participant. A 2x2 repeated-measures ANOVA (including within-

196 subjects factors boundary status and entropy) was run on target tone dwell times. 

197 For the secondary analysis of all tones, dwell times were first log-transformed to minimize 

198 the positive skew inherent to timing data (cf. Kragness & Trainor, 2018). Subsequently, using the 

199 lmer() function from the lme4 package in R (R Core Team, 2019), linear mixed-effects models were 

200 fitted with Restricted Maximum Likelihood estimates (REML). Because previous experiments have 

201 found that dwell times change systematically throughout trials (Kragness & Trainor, 2016), tone 

202 index in the sequence was always included as a predictor. Thus, whereas the null model only included 

203 tone index as a fixed effect, two further increasingly complex models added, first, the retrospective 

204 cue IC, and, second, the prospective cue entropy. Thereby, we could determine whether prospective 

205 predictive processing explained unique variance not already accounted for by retrospective surprise. 

206 Random intercepts and slopes of tone number were included for each participant. For all models, this 

207 random-effects structure produced the lowest BIC values while avoiding singular fits.

208
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209 Results

210 Target tones. To examine the effects of boundary status (phrase-ending, phrase-beginning) 

211 and entropy (high, low), a 2x2 repeated-measures ANOVA was run on target tone dwell times. 

212 Whereas no significant interaction (F(1,37) < 0.01, p = .986, 2
p < .001) or main effect of boundary 𝜂

213 status (F(1,37) < 0.01, p = .973, 2
p < .001) was found, there was a significant main effect of entropy 𝜂

214 (F(1,37) = 7.24, p = .011, 2
p = .164). Thus, as hypothesized, high-entropy target tones were generally 𝜂

215 dwelled on longer than low-entropy target tones, regardless of phrase position in the original chorale 

216 melody (Figure 2). 

217 We conducted post-hoc correlational analyses to examine whether participants’ musical 

218 sophistication was associated with the magnitude of their dwell time effect. No significant 

219 associations were observed (see SOM-R2 for more details).

220
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221

222 Figure 2. Dwell times (ms) for each type of target tone (BegHi, BegLo, EndHi, EndLo) in Experiment 1. The dashed 

223 line represents the average dwell time (683 ms) for non-target tones. Error bars represent within-subject 95% 

224 confidence intervals (Cousineau, 2005). High-entropy target tones had longer dwell times than low-entropy target tones, 

225 and it made no significant difference whether target tones originated from phrase endings or phrase beginnings in the 

226 original chorale melody corpus. 

227

228 All tones. If prospective uncertainty provides a cognitive cue for phrase segmentation, its 

229 effect on dwell times should generalize beyond the target tones occupying the extreme ranges of 

230 entropy values. Analyzing dwell times for all tones also allowed us to directly compare the effects of 

231 prospective entropy vs. retrospective information content (IC). Recall that IC was matched across 

232 target tones in the previous analysis.
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233 Model comparisons on models refitted with Maximum Likelihood estimates found that the IC 

234 model predicted dwell times significantly better than the null model, χ2(1) = 31.77, p < .001. Adding 

235 entropy improved the fit significantly, χ2(1) = 16.64, p < .001. In the full model, log-transformed 

236 dwell times increased significantly with IC, F(1, 19711.3) = 35.26, p < .001, entropy, F(1, 19711.2) 

237 = 16.64, p < .001, and marginally non-significantly with tone index in the phrase, F(1, 37.5) = 3.30, 

238 p = .077.

239

240 Experiment 2: Explicit completeness ratings

241 In Experiment 1, participants dwelled longer on tones affording high-entropy continuations than on 

242 tones affording low-entropy continuations, regardless of whether they were originally phrase 

243 beginnings or endings. This suggests that when rhythmic and metrical cues are removed from the 

244 musical surface, entropic peaks in prospective pitch expectancy elicit implicit segmentation. Previous 

245 dwell-time studies have demonstrated that longer dwell times coincide with perceived boundaries 

246 (e.g., Hard et al., 2011), but Experiment 1 did not provide concrete evidenceguarantee that 

247 participants were segmenting the stimuli. Therefore, Experiment 2 was designed to provide 

248 converging evidence for effects of prospective prediction on segmentation using an explicit self-

249 report measure of phrase completeness (Palmer & Krumhansl, 1987).

250

251 Methods

252 Participants. Thirty-one McMaster University students (not participants in Experiment 1) 

253 took part in Experiment 2. Again, none were professional musicians (see SOM-R2 for more 

254 information). This sample size exceeds those from previous studies using this methodology to assess 

255 a comparable contrast (e.g., Palmer & Krumhansl, 1987). One participant declined to report their 

256 gender and age, but among the remaining participants, the average age was 18.93 years (SDage = 2.51 
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257 years), with 7 men and 23 women. Of the 31 participants, responses from five individuals were 

258 omitted due to uninterpretable response sheets (i.e., multiple answers for each sequence, lacking 

259 answers for certain sequences). 

260 Stimuli. Melodic stimulus sequences were identical to those for Experiment 1, except 

261 that all notes were played with a constant duration of 400 ms. Unlike in Experiment 1, the target tone 

262 was always the final tone in the sequence.

263 Procedure. As in Experiment 1, the procedure took place in a sound-attenuating room. 

264 Rather than self-pacing through the sequences as in Experiment 1, participants listened to all 56 

265 sequences in randomized order. After each sequence, participants rated how complete the sequence 

266 sounded (ranging from 1: “totally incomplete” to 7: “totally complete”). If the end of the melody was 

267 completely satisfactory, that would constitute a score of 7, but if the melody ended in a way that was 

268 implausible and unsatisfactory, that would constitute a score of 1. Participants were encouraged to 

269 use the full range of the scale. 

270

271 Results

272 A 2x2 repeated-measures ANOVA with factors boundary status (phrase-ending, phrase-

273 beginning) and entropy (high, low) was run on mean condition-wise ratings. Results were fully 

274 consistent with those for Experiment 1. Specifically, no significant interaction (F(1,25) = 1.80, p = 

275 .192, 2
p = .067) nor main effect of boundary status (F(1,25) = 0.82, p = .373, 2

p = .032) was found, 𝜂 𝜂

276 whereas there was a significant main effect of entropy (F(1, 25) = 44.11, p < .001, 2
p = .638). High-𝜂

277 entropy target tones were rated as constituting more complete phrase endings than low-entropy target 

278 tones, regardless of phrase position in the original chorale melody (Figure 3).

279 Again, no significant associations with musical sophistication were observed (see SOM-R2 

280 for more details).
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281

282

283 Figure 3. Completeness ratings for each type of excerpt (BegHi, BegLo, EndHi, and EndLo) in Experiment 2. Error 

284 bars represent within-subject 95% confidence intervals (Cousineau, 2005). Stimulus sequences with final tones 

285 generating high entropy were generally deemed more complete than those generating low entropy. It made no 

286 significant difference whether tones originated from phrase beginnings or phrase endings in the original chorale 

287 melodies.

288

289 General Discussion

290 Although prediction is a fundamental component in influential theories of perceptual organization 

291 (Hutchinson & Barrett, 2019), evidence for the role of prospective uncertainty (a prospective measure 

292 of prediction) remains weak due to the empirical focus on retrospective measures of surprise (Hansen 
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293 & Pearce, 2014). Here we tested the hypothesis that uncertainty relates to boundary perception in 

294 auditory sequences, using stimuli from Western tonal music in whichwith well-defined phrase 

295 boundaries are well-defined. Sequences that ended ending on tones generating high-entropy 

296 expectations were perceived as more complete than those ending on tones generating low-entropy 

297 expectations (Experiment 2). This was also indicated by longer dwell times on high-entropy target 

298 tones generating high entropy ; and, indeed, across all tones in the stimulus sequences, entropy 

299 explained unique variance in dwell times not already accounted for by event probability (Experiment 

300 1). 

301 Our work raises the key question why segmentation follows peaks of statistical uncertainty. 

302 Christiansen and Chater’s (2016) Now-or-Never Bottleneck posits that information currently in 

303 working memory needs to be processed here and now or be forever lost. This constraint necessitates 

304 “chunk-and-pass” processing whereby fleeting input—such as the content of music, speech, or action 

305 sequences—is quickly segmented and encoded as higher-level representational units. Following from 

306 Christiansen and Chater’s (2016)this theory, it is possible that events that afford high-entropy 

307 predictions may require more bits to encode and thus may require higher working memory 

308 deployment. The likelihood of exceeding memory capacity is higher after high-uncertainty events 

309 than after low-uncertainty events, leading to acausing higher probability of “chunking” and 

310 perceiving a segment boundary. 

311 This framework may also explain the previously demonstrated “dwell time” effects observed 

312 in previous studies (Hard et al., 2011, 2019; Kosie & Baldwin, 2019a, 2019b; Kragness & Trainor, 

313 2016, 2018), since there is a time delay associated with segmentation and reintegration into previous 

314 knowledge. This reintegration process, however, may have a cost. Specifically, taking in new 

315 information is harder while reintegration takes place. Because the human mind aims to be one step 

316 ahead, it will attempt to balance this cost optimally. Therefore, pauses in the stimulus stream may 
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317 induce a chunk to be processed even if it ends on low uncertainty (without fully exceeding working 

318 memory capacity). This may constitute one of the potential mechanisms explaining why Gestalt-like 

319 principles of temporal proximity generally seem to apply to auditory sequence processing (Lerdahl 

320 & Jackendoff, 1983). 

321 The relatively high working memory capacity required at phrase boundaries may explain 

322 previously observed phrase-final lengthening. Specifically, across a variety ofvarious languages, 

323 musical instruments, and performance contexts, speakers and performers tend to slow down at phrase 

324 endings (speech: Wightman et al., 1992; music: Palmer, 1989; Repp, 1992). While originally 

325 interpreted as a communicative gesture in music (Palmer, 1989), piano performers exhibit phrase-

326 final lengthening even when attempting to play without expression (Penel & Drake, 1998). Combined 

327 with the observation that listeners are less prone to detect lengthening on boundary tones than within-

328 phrase tones (Repp, 1992), this led Penel and Drake (1998) to hypothesized that perceptual biases 

329 contribute to group-final lengthening, although the source of this bias remained unspecified. We 

330 propose that Oone such source could be processing constraints due to predictive uncertainty, which 

331 likely apply across multiple domains of sequential perception and production. 

332 Here we specifically focused on modelling the uncertainty of a single feature, pitch, as a cue 

333 for phrase closure. Of course, the probabilistic characteristics of many other features (for instance, 

334 temporal, spectral, syntactic, etc.) might affect the perception of completeness perception. In music, 

335 these might include duration, intensity, inter-onset intervals, and performer gestures (Lerdahl & 

336 Jackendoff, 1983). Whether predictive uncertainty in temporal features influences musical phrase 

337 grouping remains to be tested. However, given that sensory systems prioritize anticipatory processing 

338 over reactive processing (Christiansen & Chater, 2016; Hutchinson & Barrett, 2019), it seems 

339 plausible that our findings should extend to the temporal domain. On the other hand, non-probabilistic 

340 and non-pitch-related features may also constrain the statistical learning giving rise to the entropy 
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341 effects found here, as observed in speech segmentation (Yang, 2004). Incorporating metrical 

342 structure, previously heard motives, and limiting the number of accented tones per phrase would, for 

343 example, most likely improve the predictive power of our entropy-based model. Future work should 

344 more directly contrast the effect of anticipatory vs. adaptive cues and of probabilistic (top-down) vs. 

345 Gestalt-related (bottom-up) cues to establish their relative contribution and investigate how this may 

346 vary under different experimental conditions. 

347 Another concern is whether IDyOM accurately reflects listener expectations. Morgan et al. 

348 (2019) found that IDyOM predictions entailed higher entropy than that computed across several 

349 participants who providinged single-tone sung continuations to melodic contexts. Task constraints 

350 likely explain this discrepancy as expectations for multiple continuations were not assessed. 

351 Furthermore, by manipulating entropy of upcoming events rather than simply analyzing the entropy 

352 of instantiated continuations, the present study differs crucially from Morgan et al. (2019). Moreover, 

353 whereas they recruited self-identified musicians, who make melodic predictions with demonstrably 

354 lower average entropy than non-musicians (Hansen & Pearce, 2014; Hansen, Vuust, & Pearce, 2016), 

355 IDyOM was configured to model expectations of the general population. At the same time, Morgan 

356 et al. (2019) made an important contribution by demonstrating a greater contribution of statistical 

357 learning than of Gestalt-based principles in predicting listener expectations. This supports IDyOM’s 

358 suitability in predicting auditory boundary perception.

359 The finding that predictive uncertainty influences phrase boundary perception suggests a 

360 pertinent role for training effects. Expertise effects may be particularly prominent in the musical 

361 domain where skills and experiences differ substantially between individuals. Although some 

362 previous studies suggest limited effects of musical expertise on melodic segmentation processes 

363 (Palmer & Krumhansl, 1987, but see Hartmann et al., 2017), expertise levels have not always been 

364 widely sampled or manipulated systematically. The same limitation applies to the current study where 
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365 no significant effects of expertise were seen (see Tables S2 and S3 in SOM-R2 for details). Yet, recent 

366 research shows that stylistic specialization results in expectations about melodic continuations that 

367 are generally lower in entropy whenever greater confidence is warranted (Hansen & Pearce, 2014; 

368 Hansen et al., 2016). The transformation of high-entropy predictions into low-entropy predictions 

369 with domain-relevant training or implicit exposure should allow musicians to perceive phrasal 

370 coherence across longer timespans. This would be consistent with observations that experts have 

371 access to more abstract and deeper levels of hierarchical structure (Chaffin & Imreh, 2002; Chi & 

372 Feltovich, 1981) which, in turn, may be associated with larger working memory capacity (Meinz & 

373 Hambrick, 2010). While awaiting sampling across more diverse expertise levels in future research, 

374 our results relating chunk size to underlying expectancy dynamics enables a novel interpretation of 

375 classical findings pertaining to expertise and working memory. 

376 By offering an empirical challenge to the view that segmentation primarily relies on 

377 retrospective processes, the present work contributes to the emergence of an increasingly coherent 

378 model of the human mind as an eager predictive processor of sensory input. Embedded in the constant 

379 flux of time, the mind is continually forced to evaluate and recombine retrospective and prospective 

380 cues according to their immediate usefulness, and we hypothesize that sequential input in such varied 

381 domains as language, music, and visual action sequences are all subject to the constraints arising from 

382 this mental machinery.
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1 Predictive uncertainty underlies auditory boundary perception 

2

3 Abstract

4 Anticipating the future is essential for efficient perception and action planning. Yet, the role of 

5 anticipation in event segmentation is understudied because empirical research has focused on 

6 retrospective cues such as surprise. We address this question in the context of musical phrase-

7 boundary perception. A computational model of cognitive sequence processing was used to control 

8 the information-dynamic properties of tone sequences. In an implicit, self-paced listening task (n=38), 

9 undergraduates dwelled longer on tones generating high entropy (i.e., high uncertainty) than those 

10 generating low entropy (i.e., low uncertainty). Similarly, sequences that ended on tones generating 

11 high entropy were rated as sounding more complete (n=31). These entropy effects were independent 

12 of both the surprise (i.e., information content) and phrase position of target tones in the original 

13 musical stimuli. Our results indicate that events generating high entropy prospectively contribute to 

14 segmentation processes in auditory sequence perception, independent of the properties of the 

15 subsequent event.
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16 Statement of relevance

17 A significant challenge for the human perceptual system is to promote time-sensitive, context-

18 appropriate responses by predictively processing continuous streams of complex sensory information. 

19 A large body of research shows that expectations gleaned from a lifetime of experience guide such 

20 processes, which are critical in high-risk environments like traffic or manual labor. Because most 

21 studies have focused on the degree of surprise evoked by events, there is little evidence for the role 

22 of prospective expectations in perceptual organization. Here, we control entropy in musical tone 

23 sequences by using an information-theoretic model that has been shown to reflect listeners’ predictive 

24 uncertainty. Tones that afforded relatively high uncertainty were found to draw implicit attention and 

25 influence explicit ratings of sequence completeness. Focusing attention on instances where upcoming 

26 events are statistically unconstrained could contribute to an adaptive mechanism facilitating stream 

27 segmentation that leads to efficient learning and information processing in a complex, dynamic world.
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30 Introduction

31 Humans make sense of a complex, dynamic world by segmenting sequences of events into 

32 manageable units (Zacks & Swallow, 2007; Kurby & Zacks, 2008; Richmond & Zacks, 2017). Past 

33 work on segmentation has focused on retrospective cues for boundary identification, often 

34 conceptualizing group boundaries as coinciding with instances of increased relative change in 

35 stimulus features or low transition probabilities (e.g., speech: Saffran & Kirkham, 2018; action 

36 sequences: Hard et al., 2011; music: Hartmann et al., 2017; Pearce et al. 2010). However, the 

37 sophisticated prediction capabilities of the human mind (Hutchinson & Barrett, 2019) suggest that 

38 event boundaries are also anticipated. For example, in natural conversation, turn-taking happens so 

39 rapidly that speakers likely anticipate the end of their conversation partner’s sentence (Levinson, 

40 2016). Here we investigate the role of entropy, or degree of uncertainty about an upcoming event, in 

41 determining the perception of group boundaries in auditory sequences. We define prediction as the 

42 psychological processes of generating an expectation about a future event in terms of how likely 

43 various possible outcomes are. We define uncertainty as the imprecision (or extent of equi-probability) 

44 of such a prediction.

45 Though most previous work has focused on retrospective boundary identification, 

46 anticipatory processing has some preliminary support. When self-pacing through sequential images 

47 of action sequences, participants tend to “dwell” (or pause) on perceived boundary images (Hard et 

48 al., 2011; Hard et al., 2019; Kosie & Baldwin, 2019a, 2019b). Kosie and Baldwin (2019b) proposed 

49 that this “dwell time effect” resulted from selective attention to moments of uncertainty afforded by 

50 perceiving a goal completion event. No cognitive model was devised to test this theory, however, 

51 potentially due to challenges in modeling expectancy in event processing of action sequences. Indeed, 

52 one methodological drawback was demonstrated by participants’ dwelling on boundary slides even 

53 when those slides were out of order, suggesting that they were responding to conceptual salience 
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54 rather than to underlying expectancy dynamics (Hard et al., 2011). Cohen et al. (2007) have proposed 

55 an entropy-based segmentation model for language, but because it computes statistics from the corpus 

56 it is segmenting—including parts it has not yet seen—it does not fully capture segmentation 

57 processing in real time (Christiansen & Chater, 2016).

58 Because music is not only hierarchically structured (Lerdahl & Jackendoff, 1983), but also 

59 statistically well-defined, it is an ideal domain for testing psychological theories of probabilistic 

60 perception (Koelsch, Vuust, & Friston, 2019). As with non-musical sequences (Zacks et al., 2001), 

61 there is generally high inter-participant agreement regarding the location of musical phrase 

62 boundaries (Deliège, 1987; but see Pearce et al., 2010), and as with action sequences, listeners self-

63 pacing through musical chords “dwell” on boundary chords (Kragness & Trainor, 2016, 2018). Since, 

64 however, entropy correlates strongly with phrase boundaries in music (Hansen et al., 2017), previous 

65 studies were not optimized to separate prospective effects of expectancy dynamics from effects of 

66 canonical boundary features on perceptual grouping. Information Dynamics of Music (IDyOM) 

67 (Pearce, 2005) is a computational model of auditory expectation which enables modelling boundary 

68 perception quantitatively using the information-theoretic concepts of entropy and information 

69 content, computed in reference to pre-existing long-term knowledge (Hansen & Pearce, 2014; Hansen 

70 et al., 2016). Entropy facilitates a test of uncertainty as a prospective mechanism for boundary 

71 perception which can be pitted directly against information content (a measure of surprise) as a 

72 retrospective cue. For example, an individual may form a highly certain prediction about the next 

73 note in a melody but then be surprised when a different note follows. Another advantage of melodic 

74 sequences is that  any given note has little intrinsic meaning in isolation from its preceding musical 

75 context, ensuring that observed effects on perception reflect the statistical structure of the sequence 

76 and not inherent features of the boundary stimulus itself. However, because uncertainty is not always 
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77 available for explicit introspection (Hansen et al., 2016), implicit measures are paramount for 

78 investigating the cognitive mechanisms underlying boundary perception. 

79 The present study used IDyOM to control the information-dynamic properties of melodic 

80 sequences in two experiments assessing the role of uncertainty in sequence processing. We measured 

81 participants’ dwell times (Experiment 1) and explicit ratings of phrase completeness (Experiment 2) 

82 for tones that afforded high/low entropy and were phrase- beginning/phrase-ending in the melodies 

83 from which they were drawn. We predicted that tones generating high uncertainty would lead to 

84 longer dwell times and higher ratings of phrase completeness, regardless of original phrase status, 

85 and that this effect would be independent from retrospective surprise.

86

87 Experiment 1: Implicit Self-Pacing Task

88 Methods

89 Participants. Thirty-eight McMaster University undergraduates received psychology course 

90 credits for participating in the study (Mage = 19.3 years, 1 person declined to report their age, SDage = 

91 3.78, 8 men, 30 women). None of the participants were professional musicians (for more information 

92 about musical training levels, see Table S1 in SOM-R2). This sample size exceeds or corresponds to 

93 those of previous studies using this methodology to assess comparable effects (e.g., Hard et al., 2011; 

94 Kragness & Trainor, 2016, 2018). All participants were fluent in English.

95 Stimuli. Fifty-six monophonic stimulus sequences were selected from the soprano (i.e., 

96 highest) part in 370 four-part chorale harmonizations by Johann Sebastian Bach (Dörffel, 1875) (see 

97 SOM-R1 for details of the stimulus selection procedure). These chorale melodies are not generally 

98 known by present-day listeners in Canada. Unfamiliarity was, moreover, made more likely through 

99 complete removal of rhythmic information by granting participants control over tone durations in the 

100 self-paced dwell-time paradigm (Experiment 1) or by presenting stimuli with isochronized tone 
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101 durations (Experiment 2). All chords, interference tones, and self-pacing tones were generated in 

102 MaxMSP’s grand piano timbre. 

103 Each stimulus context contained a full phrase (musical group) of seven to 17 pitches followed 

104 by the initial tone of the subsequent phrase in the original chorale melody. Tones associated with 

105 phrase beginnings and endings were unambiguously identified from notations in the musical score. 

106 This practice seems at least as objective as the reliance on trained “expert coders” to determine event 

107 boundaries in research using visual action sequences (e.g., Hard et al., 2019; Kosie & Baldwin, 2019a, 

108 2019b). We included both phrase endings and phrase beginnings as target tones to provide a strong 

109 test of entropy’s role in segmentation, controlling for compositional cues in the melodies that might 

110 signal melodic phrase endings in other ways.

111 Fourteen stimulus contexts were selected for each of the four experimental conditions, 

112 comprising phrase beginnings with high (“BegHi”) or low entropy (“BegLo”) and phrase endings 

113 with high (“EndHi”) or low entropy (“EndLo”). Entropy, in this regard, quantifies the level of 

114 uncertainty governing a listener’s expectations about what the pitch of the next tone following the 

115 relevant phrase beginning or phrase ending would be. Thus, Western-enculturated listeners are 

116 expected to be relatively sure about which pitch will follow the target tone in “BegLo” and “EndLo” 

117 contexts, but relatively unsure in “BegHi” and “EndHi” contexts. “Target tone”, in this respect, refers 

118 to the final tone in “BegLo” and “BegHi” contexts and the penultimate tone in “EndLo” and “EndHi” 

119 contexts. 

120 The entropy level generated by each tone in the corpus was estimated by the Information 

121 Dynamics of Music Model (IDyOM, version 1.3) (Pearce, 2005). This variable-order n-gram model 

122 uses unsupervised statistical learning to generate probability distributions governing a relevant 

123 feature of each tone in a monophonic melody. IDyOM was trained on a large dataset of 5,332 German 

124 folk songs (Schaffrath, 1995), 152 Nova Scotian songs and ballads (Creighton, 1966), and 120 
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125 English hymns (Nicholson et al., 1950)1. For each tone in the chorale melody, IDyOM generated a 

126 probability distribution (summing to 1) over the 44 pitch values occurring in the training corpus (i.e., 

127 MIDI pitches 45-89 corresponding to A2-F6) by combining n-gram models of varying order. Entropy 

128 then quantifies the shape of these probability distributions with high entropy for “flat” (relatively 

129 uniform) distributions, where there is high uncertainty about the next event, and low entropy for 

130 “spiky” (relatively nonuniform) distributions, where one or a small number of continuations are 

131 highly probable. 

132 The set of 56 stimulus contexts was selected in a way that prioritized extreme high or low 

133 entropy values while ensuring that three conditions were met: First, as shown by a non-parametric 

134 Kruskal-Wallis test, all four conditions, including EndHi (Median = 2.45, IQR = 1.76), BegHi 

135 (Median = 2.69, IQR = 1.78), EndLo (Median = 2.31, IQR = 2.70), and BegLo (Median = 3.37, IQR 

136 = 1.83), were matched on information content (i.e., inverse log-probability) for the event of interest, 𝜒

137 2(3) = 4.55, p = .208; second, as shown by Mann-Whitney U-tests, EndHi (Median = 2.97, IQR = 

138 0.08) and BegHi (Median = 3.00, IQR = 0.12) stimuli, U = 78, p = .376, as well as EndLo (Median = 

139 1.07, IQR = 0.30) and BegLo (Median = 0.97, IQR = 0.35) stimuli, U = 90, p = .734, were matched 

140 on entropy governing the next event in the sequence. The experimenter selecting these stimuli paid 

141 no attention to any other musical features.

142 For the secondary analysis of all tones in the stimulus set, IC and entropy were re-estimated 

143 by re-running IDyOM with the same configuration on the final stimulus contexts. This was done 

144 because IC and entropy estimates for the initial tones in each stimulus context sometimes relied on 

145 tones from the preceding phrase in the original chorales, which was excluded from the stimuli used. 

146 While unproblematic for stimulus selection based on target tones, this presented a problem for tone-

147 level analysis. Note that due to their late position in the tone sequences, target tone entropy and IC 

1 For more information about the IDyOM implementation and parameters, please see SOM-R.
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148 values were identical for the two models (one used in stimulus generation and analyses of target tones, 

149 the other used in the analysis of all tones).

150 Procedure. The experimental procedures (for Experiment 1 and 2) received prior approval 

151 from the McMaster University Research Ethics Board and was carried out in accordance with the 

152 provisions of the World Medical Association Declaration of Helsinki. Participants were seated facing 

153 a computer screen in a sound-attenuated room. They were instructed to press the spacebar on a 

154 computer keyboard with the pointer finger of their dominant hand to elicit the onset of each 

155 subsequent tone in the sequence. Tones decayed naturally, but were not terminated until the spacebar 

156 was pressed again to initiate the next tone. Participants were instructed to progress as quickly or 

157 slowly as they liked while listening carefully, and could not repeat previously heard tones. They were 

158 led to falsely believe that their memory for the sequences would be tested afterwards to motivate them 

159 to attend to the task (Kragness & Trainor, 2016). No other instructions regarding timing, pacing, 

160 rhythmicity, or expressivity were given. If a participant asked for further information, they were told 

161 to play through the piece in a way that would maximize their performance in the subsequent memory 

162 task.

163 Prior to each trial, participants saw three flashes of a fixation cross, then heard 40 50-ms tones 

164 (for a total of 2000 ms) chosen randomly on each trial from range E2 to A5 to minimize carryover 

165 from the context of the previous sequence, followed by three context-establishing chords with 

166 durations of 800, 800, and 1600 ms (Figure 1). The context-establishing chords were played in the 

167 key of the relevant melody. Throughout each trial, a circle on the screen indicated when to begin self-

168 pacing through the melody (light green) and when to stop (dark green).

169
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170

171 Figure 1. Depiction of a trial from Experiment 1. In each trial, participants saw a fixation cross, followed by 

172 interference tones, then three context-establishing chords and a signal (white circle) to begin self-pacing. They then 

173 self-paced through the tone sequence until the occurrence of a stop signal (black circle). The box depicts examples of 

174 tone sequences from each condition containing target tones (boxed) generating relatively uncertain (high entropy) or 

175 relatively certain (low entropy) expectations about the pitch of the next tone, matched on IC of the current tone. The 

176 double slash indicates whether target tones were phrase beginnings (after double slash) or phrase endings (prior to 

177 double slash) in the original notation.

178

179 Data processing and statistical analysis. Despite systematic efforts to avoid duplicate 

180 stimulus contexts (e.g., multiple occurrences of a repeated phrase from a single melody or identical 
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181 phrases across melodies), it was discovered after data collection that one melodic context occurred 

182 both amongst the “BegHi” and “EndHi” stimulus sets (with different target tones). Given that results 

183 did not differ substantially when excluding dwell times for these stimuli, we report statistical analyses 

184 including the full dataset here, which included 56 total tone sequences (i.e., 14 per condition).

185 To mitigate effects of extreme data points, a minimum dwell-time threshold of 100 ms was 

186 adopted for inclusion. Dwell times greater than 3 standard deviations above a participant’s own 

187 average (across all target and non-target dwell times) were also omitted (Kosie & Baldwin, 2019a, 

188 2019b). These exclusion criteria eliminated an average of 1.31% of all tones and 1.70% of target 

189 tones per participant (ranging from 0-4 target tones). 

190 For the main analysis of target tones, target dwell times were averaged by condition resulting 

191 in four condition-wise means per participant. A 2x2 repeated-measures ANOVA (including within-

192 subjects factors boundary status and entropy) was run on target tone dwell times. 

193 For the secondary analysis of all tones, dwell times were first log-transformed to minimize 

194 the positive skew inherent to timing data (cf. Kragness & Trainor, 2018). Subsequently, using the 

195 lmer() function from the lme4 package in R (R Core Team, 2019), linear mixed-effects models were 

196 fitted with Restricted Maximum Likelihood estimates (REML). Because previous experiments have 

197 found that dwell times change systematically throughout trials (Kragness & Trainor, 2016), tone 

198 index in the sequence was always included as a predictor. Thus, whereas the null model only included 

199 tone index as a fixed effect, two further increasingly complex models added, first, the retrospective 

200 cue IC, and, second, the prospective cue entropy. Thereby, we could determine whether prospective 

201 predictive processing explained unique variance not already accounted for by retrospective surprise. 

202 Random intercepts and slopes of tone number were included for each participant. For all models, this 

203 random-effects structure produced the lowest BIC values while avoiding singular fits.

204
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205 Results

206 Target tones. To examine the effects of boundary status (phrase-ending, phrase-beginning) 

207 and entropy (high, low), a 2x2 repeated-measures ANOVA was run on target tone dwell times. 

208 Whereas no significant interaction (F(1,37) < 0.01, p = .986, 2
p < .001) or main effect of boundary 𝜂

209 status (F(1,37) < 0.01, p = .973, 2
p < .001) was found, there was a significant main effect of entropy 𝜂

210 (F(1,37) = 7.24, p = .011, 2
p = .164). Thus, as hypothesized, high-entropy target tones were generally 𝜂

211 dwelled on longer than low-entropy target tones, regardless of phrase position in the original chorale 

212 melody (Figure 2). 

213 We conducted post-hoc correlational analyses to examine whether participants’ musical 

214 sophistication was associated with the magnitude of their dwell time effect. No significant 

215 associations were observed (see SOM-R2 for more details).

216
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217

218 Figure 2. Dwell times (ms) for each type of target tone (BegHi, BegLo, EndHi, EndLo) in Experiment 1. The dashed 

219 line represents the average dwell time (683 ms) for non-target tones. Error bars represent within-subject 95% 

220 confidence intervals (Cousineau, 2005). High-entropy target tones had longer dwell times than low-entropy target tones, 

221 and it made no significant difference whether target tones originated from phrase endings or phrase beginnings in the 

222 original chorale melody corpus. 

223

224 All tones. If uncertainty provides a cognitive cue for phrase segmentation, its effect on 

225 dwell times should generalize beyond the target tones occupying the extreme ranges of entropy 

226 values. Analyzing dwell times for all tones also allowed us to directly compare the effects of 

227 prospective entropy vs. retrospective information content (IC). Recall that IC was matched across 

228 target tones in the previous analysis.
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229 Model comparisons on models refitted with Maximum Likelihood estimates found that the IC 

230 model predicted dwell times significantly better than the null model, χ2(1) = 31.77, p < .001. Adding 

231 entropy improved the fit significantly, χ2(1) = 16.64, p < .001. In the full model, log-transformed 

232 dwell times increased significantly with IC, F(1, 19711.3) = 35.26, p < .001, entropy, F(1, 19711.2) 

233 = 16.64, p < .001, and marginally non-significantly with tone index in the phrase, F(1, 37.5) = 3.30, 

234 p = .077.

235

236 Experiment 2: Explicit completeness ratings

237 In Experiment 1, participants dwelled longer on tones affording high-entropy continuations than on 

238 tones affording low-entropy continuations, regardless of whether they were originally phrase 

239 beginnings or endings. This suggests that when rhythmic and metrical cues are removed from the 

240 musical surface, entropic peaks in prospective pitch expectancy elicit implicit segmentation. Previous 

241 dwell-time studies have demonstrated that longer dwell times coincide with perceived boundaries 

242 (e.g., Hard et al., 2011), but Experiment 1 did not guarantee that participants were segmenting the 

243 stimuli. Therefore, Experiment 2 was designed to provide converging evidence for effects of 

244 prediction on segmentation using an explicit self-report measure of phrase completeness (Palmer & 

245 Krumhansl, 1987).

246

247 Methods

248 Participants. Thirty-one McMaster University students (not participants in Experiment 1) 

249 took part in Experiment 2. Again, none were professional musicians (see SOM-R2 for more 

250 information). This sample size exceeds those from previous studies using this methodology to assess 

251 a comparable contrast (e.g., Palmer & Krumhansl, 1987). One participant declined to report their 

252 gender and age, but among the remaining participants, the average age was 18.93 years (SDage = 2.51 
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253 years), with 7 men and 23 women. Of the 31 participants, responses from five individuals were 

254 omitted due to uninterpretable response sheets (i.e., multiple answers for each sequence, lacking 

255 answers for certain sequences). 

256 Stimuli. Melodic stimulus sequences were identical to those for Experiment 1, except 

257 that all notes were played with a constant duration of 400 ms. Unlike in Experiment 1, the target tone 

258 was always the final tone in the sequence.

259 Procedure. As in Experiment 1, the procedure took place in a sound-attenuating room. 

260 Rather than self-pacing through the sequences as in Experiment 1, participants listened to all 56 

261 sequences in randomized order. After each sequence, participants rated how complete the sequence 

262 sounded (ranging from 1: “totally incomplete” to 7: “totally complete”). If the end of the melody was 

263 completely satisfactory, that would constitute a score of 7, but if the melody ended in a way that was 

264 implausible and unsatisfactory, that would constitute a score of 1. Participants were encouraged to 

265 use the full range of the scale. 

266

267 Results

268 A 2x2 repeated-measures ANOVA with factors boundary status (phrase-ending, phrase-

269 beginning) and entropy (high, low) was run on mean condition-wise ratings. Results were fully 

270 consistent with those for Experiment 1. Specifically, no significant interaction (F(1,25) = 1.80, p = 

271 .192, 2
p = .067) nor main effect of boundary status (F(1,25) = 0.82, p = .373, 2

p = .032) was found, 𝜂 𝜂

272 whereas there was a significant main effect of entropy (F(1, 25) = 44.11, p < .001, 2
p = .638). High-𝜂

273 entropy target tones were rated as constituting more complete phrase endings than low-entropy target 

274 tones, regardless of phrase position in the original chorale melody (Figure 3).

275 Again, no significant associations with musical sophistication were observed (see SOM-R2 

276 for more details).
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277

278

279 Figure 3. Completeness ratings for each type of excerpt (BegHi, BegLo, EndHi, and EndLo) in Experiment 2. Error 

280 bars represent within-subject 95% confidence intervals (Cousineau, 2005). Stimulus sequences with final tones 

281 generating high entropy were generally deemed more complete than those generating low entropy. It made no 

282 significant difference whether tones originated from phrase beginnings or phrase endings in the original chorale 

283 melodies.

284

285 General Discussion

286 Although prediction is a fundamental component in influential theories of perceptual organization 

287 (Hutchinson & Barrett, 2019), evidence for the role of uncertainty remains weak due to the empirical 

288 focus on retrospective measures of surprise (Hansen & Pearce, 2014). Here we tested the hypothesis 
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289 that uncertainty relates to boundary perception in auditory sequences, using stimuli from Western 

290 tonal music with well-defined phrase boundaries. Sequences ending on tones generating high-entropy 

291 expectations were perceived as more complete than those ending on tones generating low-entropy 

292 expectations (Experiment 2). This was also indicated by longer dwell times on high-entropy target 

293 tones; indeed, across all tones in the stimulus sequences, entropy explained unique variance in dwell 

294 times not accounted for by event probability (Experiment 1). 

295 Our work raises the key question why segmentation follows peaks of uncertainty. Christiansen 

296 and Chater’s (2016) Now-or-Never Bottleneck posits that information in working memory needs to 

297 be processed now or be forever lost. This constraint necessitates “chunk-and-pass” processing 

298 whereby fleeting input—such as the content of music, speech, or action sequences—is quickly 

299 segmented and encoded as higher-level representational units. Following from this theory, events that 

300 afford high-entropy predictions may require more bits to encode and thus may require higher working 

301 memory deployment. The likelihood of exceeding memory capacity is higher after high-uncertainty 

302 events than after low-uncertainty events, causing higher probability of “chunking” and perceiving a 

303 segment boundary. 

304 This framework may also explain previously demonstrated “dwell time” effects (Hard et al., 

305 2011, 2019; Kosie & Baldwin, 2019a, 2019b; Kragness & Trainor, 2016, 2018), since there is a time 

306 delay associated with segmentation and reintegration into previous knowledge. This reintegration 

307 process, however, may have a cost. Specifically, taking in new information is harder while 

308 reintegration takes place. Because the human mind aims to be one step ahead, it will attempt to 

309 balance this cost optimally. Therefore, pauses in the stimulus stream may induce a chunk to be 

310 processed even if it ends on low uncertainty (without fully exceeding working memory capacity). 

311 This may constitute one potential mechanism explaining why Gestalt-like principles of temporal 

312 proximity generally seem to apply to auditory sequence processing (Lerdahl & Jackendoff, 1983). 
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313 The relatively high working memory capacity required at phrase boundaries may explain 

314 previously observed phrase-final lengthening. Specifically, across various languages, musical 

315 instruments, and performance contexts, speakers and performers tend to slow down at phrase endings 

316 (speech: Wightman et al., 1992; music: Palmer, 1989; Repp, 1992). While originally interpreted as a 

317 communicative gesture in music (Palmer, 1989), piano performers exhibit phrase-final lengthening 

318 even when attempting to play without expression (Penel & Drake, 1998). Combined with the 

319 observation that listeners are less prone to detect lengthening on boundary tones than within-phrase 

320 tones (Repp, 1992), Penel and Drake (1998) hypothesized that perceptual biases contribute to group-

321 final lengthening, although the source of this bias remained unspecified. One such source could be 

322 processing constraints due to uncertainty, which likely apply across domains of sequential perception 

323 and production. 

324 Here we specifically focused on modelling the uncertainty of a single feature, pitch, as a cue 

325 for phrase closure. Of course, the probabilistic characteristics of many other features (for instance, 

326 temporal, spectral, syntactic, etc.) might affect completeness perception. In music, these might 

327 include duration, intensity, inter-onset intervals, and performer gestures (Lerdahl & Jackendoff, 

328 1983). Whether uncertainty in temporal features influences musical phrase grouping remains to be 

329 tested. However, given that sensory systems prioritize anticipatory over reactive processing 

330 (Christiansen & Chater, 2016; Hutchinson & Barrett, 2019), it seems plausible that our findings 

331 should extend to the temporal domain. On the other hand, non-probabilistic and non-pitch-related 

332 features may also constrain the statistical learning giving rise to the entropy effects found here, as 

333 observed in speech segmentation (Yang, 2004). Incorporating metrical structure, previously heard 

334 motives, and limiting the number of accented tones per phrase would, for example, most likely 

335 improve the predictive power of our entropy-based model. Future work should more directly contrast 

336 the effect of anticipatory vs. adaptive cues and of probabilistic (top-down) vs. Gestalt-related (bottom-
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337 up) cues to establish their relative contribution and investigate how this may vary under different 

338 experimental conditions. 

339 Another concern is whether IDyOM accurately reflects listener expectations. Morgan et al. 

340 (2019) found that IDyOM predictions entailed higher entropy than that computed across several 

341 participants providing single-tone sung continuations to melodic contexts. Task constraints likely 

342 explain this discrepancy as expectations for multiple continuations were not assessed. Furthermore, 

343 by manipulating entropy of upcoming events rather than simply analyzing the entropy of instantiated 

344 continuations, the present study differs crucially from Morgan et al. (2019). Moreover, whereas they 

345 recruited self-identified musicians, who make melodic predictions with demonstrably lower average 

346 entropy than non-musicians (Hansen & Pearce, 2014; Hansen, Vuust, & Pearce, 2016), IDyOM was 

347 configured to model expectations of the general population. At the same time, Morgan et al. (2019) 

348 made an important contribution by demonstrating a greater contribution of statistical learning than of 

349 Gestalt-based principles in predicting listener expectations. This supports IDyOM’s suitability in 

350 predicting auditory boundary perception.

351 The finding that uncertainty influences phrase boundary perception suggests a pertinent role 

352 for training effects. Expertise effects may be particularly prominent in the musical domain where 

353 skills and experiences differ substantially between individuals. Although some studies suggest limited 

354 effects of musical expertise on melodic segmentation processes (Palmer & Krumhansl, 1987, but see 

355 Hartmann et al., 2017), expertise levels have not always been widely sampled or manipulated 

356 systematically. The same limitation applies to the current study where no significant effects of 

357 expertise were seen (see Tables S2 and S3 in SOM-R2 for details). Yet, recent research shows that 

358 stylistic specialization results in expectations about melodic continuations that are generally lower in 

359 entropy whenever greater confidence is warranted (Hansen & Pearce, 2014; Hansen et al., 2016). The 

360 transformation of high-entropy predictions into low-entropy predictions with domain-relevant 
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361 training or implicit exposure should allow musicians to perceive phrasal coherence across longer 

362 timespans. This would be consistent with observations that experts have access to more abstract and 

363 deeper levels of hierarchical structure (Chaffin & Imreh, 2002; Chi & Feltovich, 1981) which, in turn, 

364 may be associated with larger working memory capacity (Meinz & Hambrick, 2010). While awaiting 

365 sampling across more diverse expertise levels in future research, our results relating chunk size to 

366 underlying expectancy dynamics enables a novel interpretation of classical findings pertaining to 

367 expertise and working memory. 

368 By offering an empirical challenge to the view that segmentation primarily relies on 

369 retrospective processes, the present work contributes to the emergence of an increasingly coherent 

370 model of the human mind as an eager predictive processor of sensory input. Embedded in the constant 

371 flux of time, the mind is continually forced to evaluate and recombine retrospective and prospective 

372 cues according to their immediate usefulness, and we hypothesize that sequential input in such varied 

373 domains as language, music, and visual action sequences are all subject to the constraints arising from 

374 this mental machinery.
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