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Abstract The evolution of the capillary breakup of a liquid jet under large exci-
tation amplitudes in a parameter regime relevant to inkjet printing is analysed using
three-dimensional numerical simulations. The results exhibit a reversal of the breakup
length of the jet occurring when the velocity scales associated with the excitation of
the jet and surface tension are comparable, and an inversion of the breakup from
front-pinching to back-pinching at sufficiently large excitation amplitudes. Both phe-
nomena are shown to be associated with the formation of vortex rings and a local flow
obstruction inside the jet, which modify the evolution of the jet by locally reducing
or even reversing the growth of the capillary instability. Hence, this study provides
a mechanism for the well-known breakup reversal and breakup inversion, which are
both prominent phenomena in inkjet printing. An empirical similarity model for the
reversal breakup length is proposed, which is shown to be valid throughout the con-
sidered range of characteristic parameters. Hence, even though the fluid dynamics
observed in capillary jet breakup with large excitation amplitudes are complex, the
presented findings allow an accurate prediction of the behaviour of jets in many prac-
tically relevant situations, especially continuous inkjet printing.
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1 Introduction

The surface-tension-driven (capillary) breakup of liquid jets has been a very active
topic of research since Savart [1] reported the first systematic experimental observa-
tions of this phenomenon. Years later, Plateau [2] identified surface tension as the
driving mechanism of this instability, and Rayleigh [3] was the first to predict the
growth rate of the instability by means of a linear stability analysis. This linear sta-
bility analysis and its extensions to viscous flows [4,5] have proven to be powerful
tools to describe the capillary breakup of liquid jets. However, this analysis is based
on the assumption that a jet is excited by an instability wave with a small (infinitesi-
mal) amplitude, and does not consider the internal flow field within the jet.

The capillary breakup of a liquid jet in real engineering applications, such as
inkjet printing, spray atomisation or the production of powders is, however, strongly
influenced by nonlinear mechanisms arising from a finite excitation amplitude and
the inertia of the jet. Nonlinear effects lead, for example, to the formation of satellite
droplets [6,7], and increase the short wavelength limit of the capillary instability with
increasing excitation amplitude [8]. Yuen [9] showed that secondary waves, which
develop as the instability grows to a finite amplitude, can lead to the formation of
satellite droplets, even if the excitation is purely sinusoidal. The formation of satellite
drops, which is an impediment to many engineering applications, can be delayed
or completely avoided by applying a large excitation amplitude [10]. The capillary
breakup of liquid jets and filaments is also strongly dependent on the viscosity of
the liquid [11–14]. For liquids with high viscosity the pressure field inside the liquid
filament is dominated by the Laplace pressure resulting from surface tension [11],
while capillary and inertial effects dominate for fluids with low viscosity. Jets with
intermediate viscosity, i.e. with an Ohnesorge number (formally defined in Section 2)
in the range 0.01<Oh< 1, are known to feature complex fluid dynamics [15]. In fact,
this operating range is very relevant to various engineering applications, including
inkjet printing [16,17].

The study of the breakup of harmonically excited jets is currently of great interest
because two phenomena associated with large excitation amplitudes are not com-
pletely understood. For inkjet printing, in which the length of the liquid jet is pre-
ferred to be small and the formation of satellite drops is undesirable, large excitation
amplitudes are routinely used. Based on linear stability analysis [3,4], the breakup
length (defined as the shortest distance from the nozzle to the tip of the continuous
jet) is controlled by the initial amplitude of the instability, predicting a monotonic
decrease of the breakup length with increasing excitation amplitude. In practical ap-
plications and laboratory experiments [18–21], however, it is often observed that the
breakup length eventually stabilises and then increases if the excitation amplitude
is increased further. This phenomenon, often referred to as breakup reversal, stands
in obvious contradiction to the available theory. The second phenomenon which is
still poorly understood, is focused on the shape of the breakup region, as it transi-
tions from front-pinching to back-pinching, i.e. a droplet can either break away from
the jet at its front or back. This transition is often called breakup inversion, and di-
rectly determines with which of its neighbouring drops a satellite drop merges with or
whether a satellite drop remains as an individual drop [22]. Both the reversal and the
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inversion of breakup are regularly controlled in industrial applications to manipulate
and control the breakup length of the jet as well as the formation of satellite droplets.
However, since the majority of theoretical studies have focused on simplified mod-
els that assume small excitation amplitudes, or neglect the complex hydrodynamics
ensuing from large excitation amplitudes, little is known about the origin of these
phenomena.

In 2003, Kalaaji et al. [19] observed an increasing breakup length on jets ex-
cited at large amplitudes, without providing an explanation. Cervone et al. [23] con-
ducted direct numerical simulations (DNS) of jets with large excitation amplitudes,
but their analysis focused on numerical aspects, and on the influence of the wavenum-
ber, rather than studying the excitation amplitude itself. Given the fact that complex
flow structures are often neglected in linear stability analysis, one expects that this
would fail to predict an increasing breakup length at large excitation amplitudes, as a
more detailed knowledge of the velocity field in the jet is essential for understanding
the underpinning physical phenomena. Recently, McIlroy and Harlen [24] presented
a first theoretical and numerical analysis of the breakup reversal and inversion us-
ing a one-dimensional slender-jet model as well as axisymmetric simulations using
an Euler-Lagrange finite-element method. Their results show a clear reversal of the
breakup, whereby the breakup length stagnates or even increases with increasing ex-
citation amplitude, as well as an inversion of the breakup. Their analysis is limited
to a narrow range of excitation amplitudes and fluid properties and the results do not
explain the origin of the breakup reversal and inversion. In addition, there have only
been few attempts to experimentally determine the internal velocity field of liquid
jets away from the nozzle [20,25].

This article analyses the capillary breakup of liquid jets that are subject to large
excitation amplitudes using three-dimensional numerical simulations. The aim of this
analysis is to elucidate the origin of breakup reversal and breakup inversion of liquid
jets subject to large excitation amplitudes in a parameter regime relevant to industrial
applications. To this end, the breakup length and time of the jet, the flow field in-
side the jet, as well as the influence of gravity on the jet breakup are investigated for
periodically excited jets in a parameter regime for which previous studies reported
breakup reversal and inversion to be prominent, especially for Ohnesorge numbers
between 0.01 and 1 [19,24]. Based on the presented results, a similarity model for
the reversal breakup length is devised, which greatly simplifies the comparison and
analysis of capillary jet breakup with large excitation amplitudes, and which facili-
tates the prediction of the behaviour of jets in many practically relevant situations.

2 Parametrisation and scaling

A circular liquid jet with radius r0 and velocity U is considered, as schematically
shown in Fig. 1. The initial instability has a wavelength λ = 2πr0/κ , and a dimen-
sionless wavenumber κ = kr0, where k is the wavenumber. To facilitate the analysis
and discussion of the results presented in Section 4, the capillary breakup of the liq-
uid jet is described by the theoretical (linear) analysis of the dominating instability



4 Fabian Denner et al.

Fig. 1: Schematic illustration of a jet with initial radius r0 and velocity U , subject to
a capillary instability of wavelength λ and amplitude η .

mechanism, i.e. the Rayleigh-Plateau instability, and based on its hydrodynamic en-
ergy balance.

The dispersion relation of the temporal growth of the Rayleigh-Plateau instability
for a cylindrical liquid jet subject to an axisymmetric excitation and viscous stresses
is given by [5]
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where I0 and I1 are the modified Bessel functions of the zeroth and first kind, respec-
tively. The left-hand side of Eq. (1) represents the inviscid contributions, as originally
derived by Rayleigh [3], and the right-hand side represents the viscous contributions,
with ξ 2 = (k2+ωρ/µ)r2

0 = κ2+ωtµ , where ω is the temporal growth rate of the in-
stability, ρ is the liquid density and µ is the liquid viscosity. The governing timescales
are the capillary timescale

tσ =

√
ρr3

0
σ

, (2)

which represents the dispersion time due to surface tension over a distance r0, where
σ is the surface tension coefficient, and the viscous timescale

tµ =
ρ r2

0
µ

, (3)

which represents the time required for momentum to diffuse over a distance r0. Since
I1/I0 is always positive, the instability grows (ω > 0) for 0 < κ < 1, whereas the
dispersion relation becomes purely imaginary, and the instability decays, for κ > 1.
In the context of the present study, it is interesting to note that the linear stability
analysis implies a logarithmically reducing breakup time for increasing excitation
amplitude.

The dispersion relation, Eq. (1), shows that the growth of the instability is gov-
erned by the Ohnesorge number, given as

Oh =
tσ
tµ

=
µ

√
σρr0

, (4)
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which represents the transient balance between dispersive (surface tension) and dissi-
pative (viscous stresses) effects that are relevant to the propagation of short interfacial
waves [26], in this case the Rayleigh-Plateau instability. The Ohnesorge number has
been successfully applied to categorise the capillary breakup of jets into different
characteristic regimes [4,27,28].

The hydrodynamics of a liquid jet are governed by four mechanisms: inertia, vis-
cous stresses, gravity and surface tension. The relative importance of these governing
mechanisms may be quantified by their representative pressure scales (i.e. energy per
unit volume), which are the inertial scale pρ = ρU2, the viscous scale pµ = µU/r0,
the gravity scale pg = gρr0, where g is the gravitational acceleration, and the capillary
scale pσ = σ/r0. Comparing these pressure scales leads to the Weber number

We =
pρ

pσ

=
ρr0U2

σ
, (5)

which represents the relative importance of inertia and surface tension, the Reynolds
number

Re =
pρ

pµ

=
ρr0U

µ
, (6)

which compares inertia and viscous stresses, and the Froude number

Fr =
√

pρ

pg
=

U
√

gr0
, (7)

which compares inertia and gravity. Spatial stability analysis for the capillary breakup
of a semi-infinite jet suggests breakup similarity with respect to the Weber number
[29], which can be reformulated as We = U2/u2

σ , where uσ = r0/tσ is the capillary
velocity at which a liquid sheet or filament retracts due to surface tension [30,31]
(frequently referred to as the Taylor-Culick velocity).

3 Methods

Numerical simulations of the entire three-dimensional two-phase system, including
both bulk phases as well as the fluid interface, are conducted by resolving all relevant
scales in space and time, employing the numerical framework described in Section
3.1 and applying the simulation setup detailed in Section 3.2. The motivation for
conducting three-dimensional simulations rather than axisymmetric two-dimensional
simulations is to capture any azimuthal instabilities that may occur, in particular with
respect to vortex rings, which are known to be susceptible to azimuthal instabilities
[32].

Assuming a Cartesian coordinate system, the incompressible, isothermal flow is
governed by the momentum equations

ρ

(
∂u
∂ t

+∇ · (u⊗u)
)
=−∇p+∇ · τ +ρg+ fσ (8)

and the continuity equation
∇ ·u = 0 , (9)
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where t represents time, u is the velocity, p is the pressure, τ = µ(∇u+∇uT) is the
stress tensor of the considered Newtonian fluids, g is the gravitational acceleration
and fσ is the volumetric force that represents the surface tension acting at the fluid
interface.

The Volume-of-Fluid (VOF) method [33] is adopted to capture the interface be-
tween the immiscible bulk phases. The local volume fraction of both phases in each
mesh cell is represented by the colour function γ , defined as γ = 1 for the liquid jet
and γ = 0 for the surrounding fluid, with the fluid interface located in mesh cells
with 0 < γ < 1. The colour function γ is advected with the underlying flow by the
advection equation

∂γ

∂ t
+u ·∇γ = 0 . (10)

3.1 Numerical framework

The simulations are conducted using a fully-coupled pressure-based algorithm for
interfacial flows [34]. The governing equations (8) and (9) are discretised using a
second-order finite-volume method with collocated variable arrangement [35], whereby
the fluxes though the cell faces are computed using a momentum-weighted interpo-
lation [36]. The advection equation (10) for the colour function is discretised using
a compressive VOF method [37]. Assuming the force due to surface tension can be
represented as a volume force acting in the interface region, the surface force per unit
volume is described by the Continuum Surface Force (CSF) model [38] as

fσ = σ χ ∇γ , (11)

where m̂ = ∇γ/|∇γ| is the normal vector of the fluid interface and χ = −∇ · m̂ is
the curvature of the fluid interface. The surface tension coefficient σ is assumed to
be constant. In order to mitigate the impact of numerical artefacts in the vicinity of
the fluid interface, the artificial viscosity model proposed by Denner et al. [39] is
applied with an interface viscosity of µΣ = min{σ∆ t|∇γ|, 3µ}, where ∆ t denotes
the time-step applied in the simulations, which is sufficiently small as to not affect
the predicted breakup length of the jet, as demonstrated by Denner et al. [39].

The VOF-based method in conjunction with the CSF model used in this work
does not require explicitly defined kinematic or traction boundary conditions at the
gas-liquid interface. These conditions are satisfied implicitly at the discrete level, as
discussed in detail in the seminal work of Brackbill et al. [38]. Furthermore, since we
assume that the surface tension coefficient is constant, the traction at the gas-liquid
interface reduces to a trivial no-slip condition.

3.2 Simulation setup

The jet is simulated in a three-dimensional cylindrical domain with an axial length
of Lz = 60r0− 120r0 (chosen based on the expected breakup length Lb of the jet)
and a radius of Lr = 10r0, shown in Fig. 2. The jet is resolved with 29 cells per
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Fig. 2: Three-dimensional cylindrical computational domain with Lr = 10r0 and Lz =
80r0 as well as the computational mesh in the cross-section of the cylinder. The
colour of the jet represents the normal vector of the fluid interface and is used to
better visualise the liquid jet in this figure.

Table 1: Fluid properties and radius of the considered jets. The viscosity µ is given
by the chosen Oh.

Case ρ [kgm−3] σ [Nm−1] r0 [m]

J1 1196 0.0674 1.145×10−3

J2 900 0.0300 3.500×10−4

J3 3000 0.1000 5.000×10−3

J4 500 0.0700 9.000×10−3

diameter d0 = 2r0 in the radial direction, 52 cells in the azimuthal direction and
104.7− 132.6 cells per wavelength λ in the axial direction, similar to the work of
Delteil et al. [40]. The applied computational time-step ∆ t satisfies a Courant number
of Co = |u|∆ t/∆x≤ 0.25 as well as the dynamic capillary time-step constraint [41].
The density ρ , surface tension coefficient σ , and the initial radius r0 of the simulated
jets for the various cases considered in this study are given in Table 1, and the viscos-
ity µ = Oh

√
σρr0 of the liquid jet follows from the considered Ohnesorge number

Oh. Note that, for Oh = 0.1, case J1 has the properties of an aqueous glycerol solu-
tion with a glycerol concentration of ≈ 76% per weight at room temperature. While
some of these other properties might not represent real fluids, the resulting Oh and
We numbers are within the range of industrial interest, and within the range where
the reversal is known to appear. The density and viscosity ratios to the outer fluid
surrounding the jet are ρ/ρo = 103 and µ/µo = 102, respectively, which is typical
for practical gas-liquid flows.

The axial velocity of the jet at the inlet of the computational domain for radial
position r≤ r0 is uz,in =U [1+δ0 sin(2π f t)], where δ0 is the excitation amplitude and
f = κU/(2πr0) is the excitation frequency. The velocity is zero at the inlet boundary
for r > r0, and the gradient of the velocity normal to the boundary is assumed to be
zero at all other boundaries. The pressure at the circumferential boundary is fixed to
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Fig. 3: Comparison of the breakup length predicted with the applied numerical frame-
work with the DNS results of Moallemi et al. [43] and the linear stability analysis of
the capillary breakup of viscous jets of Chandrasekhar [5] given in Eq. (1).

the ambient pressure, while the pressure is extrapolated from the closest cell centre
to the domain boundaries that are oriented perpendicular to the axial jet direction.

The dimensionless wavenumber is κ = 0.7 in the majority of the presented cases,
which corresponds, approximately, to the fastest growing mode of the Rayleigh-
Plateau instability [3] and for which the temporal and spatial linear stability analyses
are (for practical purposes) equivalent [29]. Thus, the phase velocity of the capillary
instability can be assumed to be equal to the jet velocity [29,42], which simplifies the
analysis of the capillary jet breakup.

Initially, the cylindrical liquid jet extends through the entire domain at a uniform
velocity U , with the surrounding gas being at rest and simulations were run until
the jet breakup attained a periodic behaviour. Breakup is, in general, defined in our
simulations when the computational cell between the continuous jet and the broken-
off droplet is void of liquid.

3.3 Validation

The dimensionless breakup time tb/tσ of a capillary jet subject to a dimensionless
radius perturbation with amplitude η0 is

tb
tσ

=
1

ω tσ
ln
(

1
η0

)
, (12)

from which the dimensionless breakup length, under the assumption Lb = U tb, fol-
lows as

Lb

r0
=

√
We

ω tσ
ln
(

1
η0

)
. (13)
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The breakup length in the simulations is defined as the shortest continuous length
of the jet, when the periodic behaviour of the jet is fully developed. Based on the
mechanical energy of the perturbation, Moallemi et al. [43] proposed a relationship
between a dimensionless radius perturbation η0 and the dimensionless velocity per-
turbation δ0, given as η0 = 3δ0/2.

A water jet (ρ = 997kgm−3, µ = 9× 10−4 Pas) in air (ρo = 1.18kgm−3, µo =
1.85× 10−5 Pas) is considered, with surface tension coefficient σ = 0.073Nm−1,
dimensionless perturbation wavenumber κ = 0.697 and Ohnesorge number Oh =
9.43× 10−3. Applying a dimensionless perturbation amplitude of δ0 = 0.15, a very
good agreement between the results obtained with the applied numerical framework
and the breakup lengths predicted by the linear stability analysis of Chandrasekhar
[5], Eq. (1), is observed in Fig. 3a. This demonstrates that the chosen simulation setup
is able to capture all relevant physical mechanisms governing the capillary breakup.

For a constant Weber number of We = 14.8, the breakup length predicted with
the applied numerical framework for different perturbation amplitudes δ0 is in good
agreement with the results reported by Moallemi et al. [43] and with the result of the
linear stability analysis given in Eq. (1). However, for δ0 & 0.2 an increasing discrep-
ancy between the numerical results and the linear stability analysis can be observed
in Fig. 3b, akin to the breakup reversal discussed in Section 1 and investigated in
detail in Section 4.

4 Results

The presented cases focus on the parameter regime 0.01≤ Oh≤ 0.2 and 20≤We≤
200 where the breakup reversal and inversion are most prominent [24], for which the
flow is laminar, with 22 ≤ Re ≤ 1000, and which is particularly relevant for inkjet
printing applications [16,17]. The excitation velocity ∆u0 = δ0U of the jet, the spa-
tial development of the instability and the local variations in the cross section of the
liquid jet lead to a complex flow field at large excitation amplitudes. First, the breakup
length of jets in different excitation regimes is investigated in Section 4.1. The flow
features that occur as a result of large excitation amplitudes are analysed in Section
4.2, and the influence of gravity is studied in Section 4.3. Finally, an empirical sim-
ilarity model for the reversal breakup length of a given jet is proposed in Section
4.4.

4.1 Breakup length

The dimensionless breakup length Lb/r0, as a function of excitation amplitude δ0,
without the influence of gravity (Fr = ∞), is shown in Fig. 4 for cases with differ-
ent characteristic parameters (We and Oh). Breakup reversal is observed for most
cases shown in Fig. 4, albeit with different “strengths” and at different excitation
amplitudes. To this end, the reversal breakup length, L∗b, at which breakup rever-
sal is observed is indicated in Fig. 4. Comparing jets with different fluid properties,
the dimensionless breakup length Lb/r0, including the observed breakup reversal, is
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Fig. 4: Comparison of the breakup length Lb/r0 as a function of excitation amplitude
δ0 for jets (κ = 0.7, Fr = ∞) with different We and Oh. The breakup reversal is
indicated by the corresponding reversal breakup length, L∗b.

in excellent agreement for a given set of characteristic parameters (We, Oh, κ , δ0)
across the wide range of considered excitation amplitudes δ0, as seen in Figs. 4a, 4b
and 4f. The results presented in Figs. 4 and 5 show that a smaller excitation frequency
f = κ U/(2π r0) = κ

√
Weu2

σ/(2π r0), i.e. smaller κ or smaller We, leads to a large
increase of the breakup length after breakup reversal. Similar observations were re-
ported in the experimental work of Castrejón-Pita et al. [20]. In addition, the breakup
reversal is particularly pronounced at the intermediate Ohnesorge number Oh = 0.1,
which is in good agreement with previous experimental measurements reported by
Kalaaji et al. [19], where the breakup reversal is particularly distinct for Oh = 0.083,
as well as the numerical work of McIlroy and Harlen [24], who focused their analysis
on Oh = 0.122.

The dimensionless breakup time tb/tσ as a function of the excitation Weber num-
ber,

Weδ =

(
∆u0

uσ

)2

= δ
2
0 We, (14)

which relates the kinetic energy introduced by the excitation velocity to surface ten-
sion, is shown Fig. 6. When the excitation velocity is comparable to the capillary
velocity, Weδ ≈ 1, the breakup time is dependent on the viscosity as well as the
velocity of the jet. Breakup reversal is observed only in this regime, see Fig. 6, in-
dicating that the jet speed, the viscosity and surface tension all play a role in the
reversal dynamics. For small excitation Weber numbers, Weδ � 1, surface tension
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Fig. 6: Dimensionless breakup time tb/tσ as a function of the excitation Weber num-
ber Weδ , Eq. (14), for jets with different Ohnesorge number Oh, and with Fr = ∞ and
κ = 0.7.

dominates the breakup of the jet, which is the regime for which the linear stability
analysis of Rayleigh [3] was originally derived, under the assumption of an infinites-
imal excitation amplitude and negligible inertial effects. On the other hand, if the
excitation Weber number is large, Weδ � 1, the kinetic energy introduced by the ex-
citation dominates the breakup of the jet, with surface tension and viscosity having a
marginal influence; the jet ultimately breaks for very large excitation amplitudes.

4.2 Flow features

The observations associated with the breakup discussed in the previous sections indi-
cate that breakup reversal is strongly related to the properties of the jet as well as the
flow field inside the jet.

Large differences in the flow field of the jet can be observed by changing the
amplitude δ0 of the velocity excitation. Figure 7 shows contours of the relative axial
velocity (uz−U)/uσ and the vorticity for the same jet (We = 50, Oh = 0.1, Fr = ∞,
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Fig. 7: Full contours of the dimensionless relative axial velocity (uz−U)/uσ (upper
half) and the vorticity (lower half) in the axisymmetric plane for jets (We = 50, Oh =
0.1, Fr = ∞, κ = 0.7) with different excitation amplitudes δ0, shown at the same time
t. The scale at the bottom is the dimensionless axial distance z/r0 from the nozzle.

κ = 0.7) with different δ0. As the instability grows and the radii of the necks of the
jet reduce, the flow in the necks accelerates and exits the necks into the adjacent drop.
At a relatively small excitation amplitude, e.g. δ0 = 0.1, and hence a small excitation
velocity ∆u0, the flow exiting the upstream neck (with reference to a given drop)
closely follows the interface as it enters the drop, without forming a recirculation. At
large excitation amplitudes, however, the flow exiting the upstream neck of the liquid
jet does not follow the interface, because the diameter of the jet increases rapidly
as the flow enters the drop, which is particularly pronounced for δ0 = 0.3 in Fig. 7.
This can be clearly seen by the streamlines shown in Fig. 8, which form closed paths,
indicating the development of a vortex in a two-dimensional axisymmetric plane,
and a vortex ring in three dimensions. This vortex ring is significantly smaller at
small excitation amplitudes, as seen in Fig. 7. It has previously been shown that the
generation of vorticity by the presence of curved surfaces and the formation of vortex
rings during the thinning of capillary threads slow down the collapse of the neck and
may facilitate an escape from end-pinching [12,14,44]. Moreover, the presence of
surfactants play a crucial role during this escape phenomena, due to the extra action
that Marangoni stresses may offer during the generation of vorticity, particularly for
low Ohnesorge numbers [44]. This is particularly important in real applications, as
real inks and paint formulations will likely contain surfactant that may lead to even
more complex reversal mechanisms.

The flows exiting the upstream and downstream necks into the drop collide with
each other, forming a stagnation point, as observed in Fig. 8. This stagnation point
is present irrespective of the excitation amplitude, but its position inside the drop
changes, moving towards the downstream neck for increasing excitation amplitudes.
Although the flows exiting both the upstream and the downstream necks have approx-
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Fig. 8: Streamlines of the relative axial velocity uz−U and contours of the pressure
field in the axisymmetric plane through a drop (situated at z ≈ 13d0) of the jet with
We = 50, Oh = 0.1, Fr = ∞, κ = 0.7, and δ0 = 0.3. The jet moves from the left to the
right in the figure.
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Fig. 9: Spatial evolution of the neck radius for jets (We = 50, Oh = 0.1, Fr = ∞,
κ = 0.7) with different excitation amplitudes δ0. Pinch-off is indicated by a solid
circle.
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imately the same relative velocity magnitude |uz−U |, as seen in Fig. 7, the upstream
neck has a larger diameter and consequently, the associated flow carries more mo-
mentum than the flow through the downstream neck. As a result, the flow from the
upstream neck penetrates much further into the drop and obstructs the flow exiting the
downstream neck, as seen in Fig. 7. This obstruction of the flow can also be clearly
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observed in Fig. 8, where the flow exiting the downstream neck is deflected radially
outwards by the flow coming from the upstream neck.

Hence, two distinct flow features can be identified for jets with large excitation
amplitudes: (i) the development of a vortex ring and (ii) an obstruction of the flow ex-
iting the downstream neck. These flow features influence the spatial development of
the capillary instability, as evident by the evolution of the neck radii for the case with
We = 50, Oh = 0.1, Fr = ∞ and κ = 0.7 shown in Fig. 9. Since this jet is dominated
by inertia (Oh < 1), for a small excitation the neck radius is initially proportional
to τ2/3 [28], where τ = (tb− t)/tσ is the dimensionless time remaining to pinch-off,
followed by a transition to the inertial-viscous regime with r/r0 = 0.0304τ/Oh [45].
The jet with δ0 = 0.1 is in very good agreement with these theoretical scalings, as
observed in Fig. 10, and, hence, can be considered as a benchmark against which to
compare the results of the larger excitation amplitudes.

4.2.1 Vortex ring

The collapse of the upstream neck, shown in Fig. 9a, proceeds as expected based on
theoretical considerations for the moderate excitation amplitude of δ0 = 0.1. How-
ever, the collapse of the upstream neck is significantly slower for large excitation
amplitudes (δ0 = 0.2 and δ0 = 0.3), where the vortex ring observed in Fig. 7 is more
pronounced than for δ0 = 0.1. The collapse of the upstream neck is slowed down
particularly at 10r0 ≤ z≤ 25r0, as observed in Fig. 9a, which corresponds to the sec-
tion where the vortex ring is most pronounced, see Fig. 7. The radius of the upstream
neck of the jet excited with δ0 = 0.3 is even being “overtaken” by the neck of the jet
with δ0 = 0.2. It is worth recalling, that the breakup length of the jet should be loga-
rithmically reducing with increasing excitation amplitude according to linear theory
[29].

The vortex ring and its observed impact are very similar to the experimental and
computational observations reported by Hoepffner and Paré [14] for a recoiling fila-
ment, which showed that such a vortex ring slows down the collapse of the neck, and
hence, delays or even suppresses the breakup of the filament. Hoepffner and Paré [14]
observed this vortex ring only at intermediate Ohnesorge numbers 0.003 < Oh < 1.
This observation agrees with the particularly distinct breakup reversal for Oh ≈ 0.1,
as noted in Section 4.1. At Oh < 0.01, the viscosity is too small for shear layers and
the ensuing vortex ring to form and outgrow the instability, while for Oh > 1 shear
stresses dissipate most of the kinetic energy introduced by the excitation velocity. In
addition, a shear layer originates from the zero velocity specified at the inlet bound-
ary for r > 0 but, as observed in Fig. 7, it quickly subsides, not having a discernible
influence on the breakup reversal and inversion.

Although vortex rings are susceptible to azimuthal instabilities [32], the flow in
all considered jets remains fully axisymmetric. This is significant for the practical
exploitation of large excitation amplitudes, as the growth of azimuthal instabilities to
finite size can lead to violent breakup of the liquid jet.
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Table 2: Pinching position (Front-pinching •, back-pinching ◦) for jets with Oh = 0.1
and κ = 0.7, based on the excitation amplitude δ0. For We = 20 and δ0 = 0.05 front-
and back-pinching occur almost simultaneously, which does not allow a definite dis-
tinction as to which occurs first based on the simulation results.

δ0
We < 0.025 0.025 0.05 0.075 0.10 > 0.10

5 • • ◦ ◦ ◦ ◦
20 • • •/◦ ◦ ◦ ◦
50 • • • • ◦ ◦

100 • • • ◦ ◦ ◦
200 • • • ◦ ◦ ◦

4.2.2 Flow obstruction

The obstruction of the flow coming from the downstream neck as it enters the drop
leads to a growth rate reduction of the instability. As observed in Fig. 9b, for large
excitation amplitudes the radius of the downstream neck increases as the jet evolves;
the fluid in the downstream neck cannot evacuate the collapsing neck fast enough,
because it is blocked by the flow exiting the upstream neck, as observed clearly in
Fig. 8.

This obstruction of the flow through the downstream neck causes breakup inver-
sion, i.e. a transition from front-pinching (pinching of the downstream neck) to back-
pinching (pinching of the upstream neck), which is observed in all studied cases,
above a threshold excitation amplitude, as seen for instance in Table 2. Pinch-off is
also explicitly indicated in Fig. 9 by a solid circle, illustrating the breakup inversion.
Similar observations were made experimentally by Castrejón-Pita et al. [20]. If the
flow in a given drop on the liquid jet is symmetric with respect to the plane that is
oriented perpendicular to the axial direction of the jet (as in a static filament), the
downstream neck would pinch first, since it has had more time to develop the capil-
lary instability than the upstream neck. This is observed at relatively small excitation
amplitudes, e.g. δ0 = 0.1 in Figs. 7 and 9b, where the flow remains sufficiently sym-
metric for a given filament until close to pinching. This symmetry is quickly lost
when the excitation amplitude increases, since the flow entering the drop through the
upstream neck increases, see Fig. 7, which eventually results in the aforementioned
obstruction of the flow at the downstream neck, and the associated impediment of the
collapse of the downstream neck. Consequently, breakup inversion is observed at suf-
ficiently large excitation amplitudes. In addition to the transition from front-pinching
to back-pinching, McIlroy and Harlen [24] also observed a transition back to front-
pinching at even higher excitation amplitudes. In the parameter regime considered
here, a transition back to front-pinching is not observed.
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Fig. 12: Spatial evolution of the neck radius for jets (We = 50, Oh = 0.1, κ = 0.7,
δ0 = 0.3) of case J1 with different gravitational accelerations g, corresponding to
Fr = {∞,14.81} for g = {0,9.81}ms−2.

4.3 The influence of gravity

The influence of gravity has so far been neglected in the interest of simplicity. As-
suming gravity is oriented in the streamwise direction of the jet, gravity accelerates
the jet, which leads to a spatially varying jet velocity, jet diameter and instability
wavelength.

In practice, the dynamic behaviour of the jet is qualitatively very similar to the
case without gravity discussed in the previous sections. The breakup length as a func-
tion of the excitation amplitude δ0 for the same jet of case J1 (We= 50, Oh= 0.1, κ =
0.7) with different gravitational accelerations, g ∈ {0,9.81}ms−2 (Fr ∈ {∞,14.81}),
is shown in Fig. 11. Note that for the properties of case J1, given in Table 1, the jet
with Oh = 0.1 corresponds to an aqueous glycerol solution with approximately 76%
glycerol concentration per weight. With and without gravity, the breakup length at-
tains a local minimum for 0.20 . δ0 . 0.25, and a local maximum for 0.35 . δ0 .
0.4, as observed in Fig. 11. The corresponding spatial evolution of the radii of the
necks upstream and downstream of each drop shows a similar picture, see Fig. 12;
the instability of both jets develops in a very similar fashion for z . 15r0, while for
z & 15r0 both jets exhibit a comparable qualitative behaviour that is shifted in space
for the jet with g = 9.81ms−2 by the gravitational acceleration.
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As seen in Fig. 13, for a Froude number Fr� 1, i.e. when the kinetic energy of
the jet dominates over the gravity potential energy, the breakup length of the jet is
well approximated by

Lb ≈
1
2

gt2
b +L(g=0)

b , (15)

where L(g=0)
b is the breakup length in the absence of gravity (g = 0). The approxi-

mation defined by Eq. (15) has an error smaller than 3% using the breakup time tb
obtained from the simulation. Because the instability propagates approximately with
velocity U for κ = 0.7 [29,42], the breakup length is Lb 'U tb. With this assumption,
Eq. (15) can be rearranged as

g
2U

t2
b − tb + t(g=0)

b = 0 , (16)

from which the breakup time follows as one of the roots. Thus, the jet is merely
stretched by the continuous acceleration imposed by gravity, but the hydrodynamics
remain largely unchanged.

For jets typically considered in experimental studies and practical applications,
the influence of gravity is small, with Fr� 1 [46,17,16,19,20,47–49]. The accu-
rate parametrisation of the breakup length for Fr� 1 by the correlation proposed in
Eq. (15) suggests that jets of practical relevance are merely stretched by the continu-
ous acceleration as a result of gravity and are described reliably by only considering
the balance of kinetic energy and gravity potential energy.

4.4 Reversal breakup length

Despite the complex flow features inside liquid jets subject to large excitation ampli-
tudes identified in the previous sections, the breakup length, the breakup time, and
the flow field are reliably parametrised for a given set of characteristic parameters.
With a view on practical applications, this raises the question whether it is possible
to find a simple empirical correlation to predict the reversal breakup length based
only on the fluid properties, size and speed of the liquid jet. For instance, the reversal
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Table 3: Parameters of the simulations for the similarity analysis for κ = 0.7.

Oh We Range of δ0
0.01 20 0.03−0.50
0.01 50 0.01−0.30
0.01 100 0.03−0.20
0.05 20 0.03−0.50
0.10 20 0.05−0.70
0.10 50 0.03−0.50
0.10 100 0.03−0.40
0.10 200 0.03−0.25
0.20 20 0.01−0.60
0.20 100 0.05−0.40

 Oh = 0.12  McIlroy & Harlen (2019)

L*
b/
r 0

We

L*b/r0 a We0.59±0.04  

Fig. 14: Dimensionless reversal breakup length L∗b/r0 as a function of the Weber
number We, for κ = 0.7 and constant Ohnesorge number Oh. The reversal breakup
length of the jet studied by McIlroy and Harlen [24] is shown as a reference.

breakup length of an inkjet is of particular interest to continuous inkjet technology,
as it allows to provide an improved and more consistent print quality [50].

Following the discussion in the previous sections, the Ohnesorge number, the We-
ber number and the dimensionless breakup length Lb/r0 are the relevant dimension-
less groups of an excited liquid jet, under the assumption that gravitational effects are
negligible. Similarity analysis stipulates that any dimensional group, defining here
L∗b/r0 as the shortest breakup length prior to reversal (see Fig. 4), can be written as
a function of the remaining groups, i.e. L∗b/r0 = φ(We,Oh). Based on the presented
simulation results, these dimensionless groups are studied parametrically in the do-
main presented in Table 3. At constant Oh, the reversal breakup length L∗b/r0 follows
a scaling of the form

L∗b
r0

∝ We0.59, (17)

as observed in Fig. 14. This correlation also matches the results reported by McIlroy
and Harlen [24]. In contrast, at constant We, shown in Fig. 15, the reversal breakup
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length follows the relationship

L∗b
r0

= 42.3Oh+Ci, (18)

where Ci is a constant dependent on We. Combining the evidence from Eqs. (17) and
(18), the dimensionless reversal breakup length is given as

L∗b
r0

=C1 We0.59 +42.3Oh+C2, (19)

where the constant coefficients C1 and C2 are determined from the axial intercepts of
Fig. 15, leading to

L∗b
r0

= 2.8We0.59 +42.3Oh−2.8. (20)

This empirical correlation describes the reversal breakup length of the liquid jet ob-
tained from the simulations accurately, as observed in Fig. 16, for all considered jets.
In addition, the reversal breakup length of the jet studied by McIlroy and Harlen
[24] is included in Fig. 16, which also shows excellent agreement with the proposed
empirical correlation.

The currently available data does not, unfortunately, allow us to delineate a pre-
cise validity range of our empiric correlation. However, we observed a good agree-
ment in the ranges 0.15≤ δ0 ≤ 0.5, 5≤We ≤ 200 and 0.01≤ Oh ≤ 0.2. The corre-
lation is not valid for the extreme cases of dripping (We� 1) and high viscosity (Oh
→∞). In a dripping faucet there is no direct excitation (δ0 = 0.0), the flow is slow (We
� 1) and, according to Ambravaneswaran et al. [51], the breakup distance is Lb≈ 5r0
and too short for the fastest growing Rayleigh-Plateau wavelength (λ = 9.8r0) to
grow and pinch off the jet. For Oh� 1, the viscous (dissipative) timescale is small
compared to the capillary (dispersive) timescale, effectively slowing down the growth
of Rayleigh-Plateau instabilities. In fact, for Oh→∞ the Rayleigh-Plateau instability
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Fig. 16: Dimensionless reversal breakup length L∗b/r0 obtained from the numerical
simulations compared against the prediction by Eq. (20). All the data from Table 3 is
shown, alongside the reversal breakup length of the jet studied by McIlroy and Harlen
[24].

would not be able to form in finite time, as immediately evident by the linear stability
analysis of Chandrasekhar [5], see Eq. (1).

Nevertheless the results demonstrate that, for practical applications, the reversal
breakup length can be predicted based only on the liquid properties, the jet radius,
and the jet speed.

5 Conclusions

A computational study of the capillary breakup of liquid jets with large excitation am-
plitudes has been presented. Following the experimental and numerical observations
of both a breakup reversal and a breakup inversion for large excitation amplitudes
[19–21,24], the aim of this study has been to elucidate the origin of these phenom-
ena.

A vortex ring formed by the flow that exits the upstream neck of a given drop
on the jet and an (often simultaneously occurring) obstruction of the flow exiting the
downstream neck of the same drop, lead to a complex flow field within the jet, which
has a significant influence on the evolution of the capillary instability at large exci-
tation amplitudes. The vortex ring slows down the collapse of the upstream neck,
whereas the obstruction delays, or even reverses, the collapse of the downstream
neck. The result of this interaction is a breakup reversal and inversion for large exci-
tation amplitudes. The prominence of breakup reversal and inversion for the studied
parameters has been shown to be associated with the influence of the kinetic energy
introduced by the excitation velocity and of viscous stresses; only for jets with an
intermediate Ohnesorge numbers can the observed vortex rings form, which agrees
with previous findings [14]. Furthermore, breakup reversal has been observed only
when the excitation velocity and the capillary velocity scale are of similar magni-
tude, for Weδ ≈ 1. The complex flow, and in particular the vortex ring, observed in
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jets with large excitation amplitudes remains fully axisymmetric and does not de-
velop azimuthal instabilities. The influence of gravity on the capillary instability has
been shown to be very small for jet properties typically encountered in laboratory
experiments and engineering applications, and its impact on the breakup time and
length can be quantified accurately.

Despite the complex fluid dynamics observed in capillary jet breakup with large
excitation amplitudes, an empirical correlation has been proposed for the prediction
of the minimum breakup length of the jet at which breakup reversal occurs, see
Eq. (20), based only on the Weber and Ohnesorge numbers. This empirical corre-
lation predicts the reversal breakup length of the liquid jet very accurately, greatly
simplifying the design of engineering applications that benefit from minimising the
breakup length of liquid jets, e.g. continuous inkjet printing, where large amplitudes
can prevent satellite droplets and minimising the breakup length reduces the ambient
exposure of the inkjet.

Future works on the topic of forced jets could explore the effect of the nozzle
geometry, e.g. aspect ratio, on the breakup behaviour and include a more physical
mechanism for the excitation, e.g. deformable walls as with a piezoelectric actuator
in an inkjet system.
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