

Investigating Remote Pair Programming In Part-Time Distance

Education

Adeola Adeliyi Karen Kear Michel Wermelinger Jon Rosewell
School of Computing and

Communications

The Open University

School of Computing and

Communications

The Open University

School of Computing and

Communications

The Open University

School of Computing and

Communications

The Open University
Adeola.Adeliyi@open.ac.uk Karen.Kear@open.ac.uk Michel.Wermelinger@open.ac.uk Jon.Rosewell@open.ac.uk

ABSTRACT

Pair programming promotes immediate, informal collaboration

over coding activities. The driving developer writes the code and

controls the keyboard and mouse; the navigating developer checks

the code as it is written by the driver; the developers swap their

roles frequently. In agile development, programmers often code in

pairs, in order to detect errors faster, produce higher code quality

and discover better solutions.

There is substantial research providing evidence of enhanced self-

confidence and programming and communication skills if pair

programming is used in teaching. However, the use of pair

programming in higher education is mostly in co-located settings at

campus-based universities. Our overall objective is to investigate

how the benefits of pair programming can be brought to students

learning to program online at a distance.

This paper presents two initial studies looking at remote pair

programming (RPP) also called distributed pair programming, in a

part-time distance education setting, where students typically

follow an unscheduled self-study style, have little interaction with

each other, and have little time for extra activities. We investigated:

whether readily available generic communication tools, instead of

purpose-built academic prototypes, were sufficient for RPP;

whether student pairs ‘jelled’ (learned to function well together)

quickly; whether the ways in which the partners interact, or existing

programming experience, affected jelling; and whether students felt

positive about, and saw benefits in RPP, despite the overhead on

their limited study time.

In the paper, after describing particular challenges encountered, we

present and discuss our findings and make recommendations for

future implementation. The findings support the use of remote pair

programming in teaching, with the majority of students considering

it to be beneficial.

CCS CONCEPTS
•Applied computing ~ Education ~ Collaborative learning •Applied

computing ~ Education ~ Distance learning

KEYWORDS

Remote Pair Programming, Distance Learning, Teaching

Programming

1. Introduction
Pair Programming (PP) is widely used in agile software

development. A developer in the driver role writes the code, and

controls the keyboard and mouse; the other developer, the

navigator, watches for potential defects and assists with design

decisions as the code is being written. These roles are switched

often as the development progresses. Advocates argue that PP leads

to better designed solutions with fewer defects, and reduces silos of

knowledge about the codebase [38].

Using PP in education has been advocated for many years. Some of

the learning advantages seen in the classroom are:

• Improved academic results for students [25, 29-31]

• Improved efficiency in programming in terms of coding

time and quality [11, 12, 27, 32, 35, 42]

• Improved student satisfaction [25, 26, 29, 30, 43]

• Reduced workload for the teachers [30, 33]

• Improved coding productivity for female students [2, 40]

For collaborative coding to be considered PP, both programmers

must work at the same computer and continually talk to each other

and carry out other physical interactions such as pointing to the

screen [38, 41]. These collocation and communication

requirements are straightforward to implement in a programming

lab but become more challenging in distance learning contexts.

The Open University (OU) provides distance programmes to

mainly part-time mature students, who have professional and

family commitments. Our Computing students learn to program

mostly in their own time, without direct supervision. They expect

and prefer unscheduled self-study. In this context, it is not easy to

introduce remote pair programming (RPP), also called distributed

pair programming, in which partners aren’t collocated. We

conducted two studies to explore the potential benefits of RPP for

our students and to identify whether barriers could be overcome.

For most educational research on RPP, the educators/researchers

developed bespoke tools, e.g. IDE plugins. These are often

prototypes, difficult to obtain and install, and restricted to particular

platforms, IDEs, or programming languages. However, time-poor

students need readily available tools that are easy to install and use.

Our first research question is:

1. Can some generic collaborative tools be adopted for

RPP?

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/477971449?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Investigating Remote Pair Programming In Part-Time Distance Education

‘Pair jelling’ happens as both programmers adjust from solitary to

collaborative programming. Part-time students in distance

education often don’t know and don’t interact with each other. That

could lead to longer jelling times, and in turn less engagement with

RPP. We thus want to know how long jelling takes for such

students. Individual students interact with their partners in

characteristic ways that Kaur Kuttal, et al. [20] ascribed to

‘leadership style’ and this affects their collaboration, e.g. in how

they swap roles. To our knowledge, this paper is the first to look at

jelling and leadership styles.

2. How long does it take for a pair to ‘jel’ and is it related

to leadership style?

RPP entails some overhead (learning a tool, scheduling sessions,

etc.) and imposes collaborative work, which many distance learners

dislike [21]. We want to know if students in a self-study context

nevertheless feel positive about RPP.

3. Do students perceive worthwhile benefits of RPP?

For space reasons, the next section presents only some of the related

work on RPP. We then describe the design and results of our two

exploratory studies in Sections 3 and 4 and conclude in Section 5.

2. Related Work
There are several studies of RPP in education [7] but most look at

outcomes such as productivity (lines of code per hour) and grade

improvement: while important, they are not related to our work.

The study by Hughes, et al. [17] is also in a part-time distance

education setting but their main aim was to see the effect of passive,

indirect and direct PP participation on confidence and self-esteem.

They asked students to: watch a video of collocated tutors pair

programming; attend a live demonstration of RPP; do one RPP

session with a student partner. Only 4 students (2 pairs) did the

latter, whereas our studies involve more students, pairing over

multiple sessions.

Some studies considered partner compatibility. Kaur Kuttal, et al.

[20] looked at gender and RPP. They found that same-gender pairs

were democratic but mixed-gender pairs more often had one

authoritative partner and that women did not benefit from the

mixed-gender pairing. Hanks [16] asked volunteering students

about their schedule and skill level to allocate compatible pairs.

However, that study did not investigate whether there was a link

between the student's results and the approach to pairing students.

Lui [24] and Wray, et al. [44] suggested that to achieve the full

educational advantage of RPP, skilled students should be matched

with novices, but Shaw [34] believes this creates an imbalance

between partners where the skilled student ends up doing most of

the work. Wanfeng, et al. [39] considered students’ personality

type, skill, gender and time management in analysing requirements

for compatibility in RPP. Students showed a preference for another

partner with similar or higher technical skills. Students with low

technical skills expressed frustration as their lack of programming

skills limited the progress of their collaboration. Xinogalos, et al.

[45] observed that pairs with collective better performance in a

prior course maintained strong academic results in a following

course supported by RPP, while pairs with poor prior performance

performed far worse.

The success of implementing RPP depends on the tools that support

the workflow [10]. The communication tool failure faced by

students in formal experiments by Canfora, et al. [4], [5] led to the

dismissal phenomenon (where students stopped collaborating),

poor productivity and substandard code quality.

Based on prior research, it is important for RPP tools to support:

1. Synchronous Collaboration – both students should see the

driver’s screen in real-time, following the WYSIWIS

(What You See Is What I See) metaphor [36].

2. Shared and equal access – both students should have

shared and equal access to the same code repository [13].

3. Integrated communications – both students can engage in

discussion without losing focus on the code. Features that

allow the student to make subtle gestures, such as head-

shake or finger-pointing, enhance communication and

improve the pairing experience [10, 15].

Some tools, like DistEdit [22], allow both students to type and

execute code simultaneously, which risks introducing errors if a

strict driver-navigator protocol isn’t followed. A modified version

of the VNC system by Hanks [16] introduced a way for the

navigator to request the cursor. This approach makes students

aware of each other’s roles and activities. FASTDash [3] and

Palantir [1] also provide awareness, using a spatial representation

of the shared codebase that highlights the team members' current

activities. Collece and Collabode are web-based IDEs for Java that

share changes instantly, without the need for version control [9, 14].

These tools need an additional audio-visual communication tool,

whereas Jimbo [13] and CodeBuddy [23] are IDEs with integrated

video and audio calls and text messaging. CodeBuddy also includes

automatic and manual role switching, code quality analysis,

engagement analysis and code commenting.

Tsompanoudi, et al. [37] implemented a scripting mechanism by an

Eclipse IDE plugin that automates role switches between paired

students within set time limits. Students reported the overall

experience as good but they did not like the forced role rotation as

it becomes disruptive to the thinking process of the driving student.

D'Angelo, et al. [6] developed an eye-tracking system to prompt

the driver to a location where the navigator is looking at the screen.

3. Study Design
We started with a search for readily available generic collaborative

tools that could support RPP, even if they don’t provide the

advanced features of bespoke tools (Section 2). Using the chosen

tool(s), students conducted RPP sessions and were afterwards

asked about their experience, including the effectiveness of the tool

and the perceived improvement of programming, communication

and other skills.

Investigating Remote Pair Programming In Part-Time Distance Education

As noted above, collaborative RPP tools must support synchronous

collaboration, equal access, and integrated communications. Doing

a web search on “collaborative tools”, “screen sharing applications”

and “code editors for pair programming”, the results were filtered

down to 8 tools that meet the three requirements: AdobeConnect,

Skype, Stride, GoToAssist, TeamViewer, USETogether (since

renamed to Drovio), Microsoft Teams and Zoom. USETogether is

specifically aimed at RPP; the others are generic communication

tools that can be adopted for RPP.

All these tools allow voice and video calls and sharing desktop

screens. Zoom and TeamViewer are cloud-based applications with

extra features such as whiteboard and annotation tools. This enables

both programmers to make notes, create drawings, and add arrows

on the shared screen. USETogether allows both programmers to see

each other’s cursor moving around on the screen in real-time.

One of the key principles of PP is to swap the driver and navigator

roles. AdobeConnect, TeamViewer, GoToAssist, Zoom, and Stride

require a restart of a session, with the new driver initiating a session

on their computer. Skype, Microsoft Teams and USETogether

allow both partners to use the initial driver’s computer, as in

traditional PP where both partners sit at the same computer. The

current driver can pass control of the computer to the navigator

without having to restart the session.

Table 1 summarizes the tool evaluation. USETogether and

Microsoft Teams were chosen for the pilot study because they

provide all features. This phase of the research was carried out in

June 2019 and thus doesn’t include any improvements made to the

tools since then.

Following the necessary institutional ethical approvals, students on

several modules that include programming were invited, by email,

to participate. Interested students were asked to complete a consent

form, and an initial questionnaire about their programming

experience. Pairs were formed from students on the same module.

They were asked to collaborate on non-assessed programming

activities which they would otherwise have carried out individually

as part of their studies.

An internal project website was developed to inform students about

PP and RPP and this research, to collect consent forms and to

deliver the research instruments. The website also provides

resources on communication software installation and usage, as

well as a forum for students to ask any questions they had about the

research study.

The first session for each pair was an ice-breaking meeting

facilitated by the researcher, which included describing the

principles of pair programming. Students were encouraged to ask

questions about the research and get to know the assigned partner.

From the second session, the pairs self-directed the sessions, i.e.

they decided when to meet, which activity was to be done and who

would drive first. The sessions were recorded for later observation.

The students were asked to complete a reflective journal after each

session, to get an insight into their experience as the study

progressed. We provided the students with prompts to write about:

their feelings before, during and after the sessions, evaluation of the

tools and working with their partner, and an overall reflection. For

example, we asked “What was good/bad?”, “Did you work well

with your partner?”, “Were there any technical issues?”. At the end

of the study, participants were invited to complete another

questionnaire. A voucher was given to those who did, as a token of

appreciation for their time.

These studies did not assess students’ code quality or academic

performance but rather how the students interacted with each other

using the provided collaboration tool, and their overall experience.

We conducted two studies, exploring different aspects, to get an

idea of the variables that may affect RPP. The studies covered

collaborative tools, pairing method, pair jelling, potential benefits

(time management, study habits, programming skills, confidence)

and overall satisfaction.

In study 1, about 300 students were invited from one 1st year and

one 2nd year module, and 16 signed up (low participation rates in

research studies are typical in part-time distance learning contexts,

partly because students have very little free time available). Of

those, 4 dropped out before the study began and 2 could not be

paired as they were studying different modules. The remaining 10

students were paired based on their time availability indicated in

the pre-study questionnaire. This study examined two collaborative

tools (USETogether and Microsoft Teams), students’ experience

and the pair jelling effect.

Tool Audio-Visual

Communication

Whiteboard &

Annotations

Mouse Cursor

Control

Ease of swapping

Roles

AdobeConnect x x

GoToAssist x x x

Stride x

Skype x x

TeamViewer x x x

USETogether x x x x

Zoom x x x

Microsoft Teams x x x x

Table 1: Summary of collaborative tools

Investigating Remote Pair Programming In Part-Time Distance Education

In study 2, 1769 students were invited, of whom 122 signed up and

24 completed the study, i.e. filled in the end survey. Most students

dropped out due to the impact of COVID 19 and the difficulty in

scheduling a convenient time for the sessions. The pairing was

carried out without regard to gender, skills or availability. This

study narrowed its examination to one tool (Microsoft Teams) and

to investigating students’ reported experience.

4. Analysis And Results
We examined qualitative data gathered from the students' reflective

journals, as well as quantitative and qualitative data from the end

survey questions, which were based on a Likert scale varying from

1 (strong disagreement with a given statement) to 5 (strong

agreement). Text boxes allowed students to elaborate their

responses. We used the median to measure the central tendency of

the survey responses and interquartile range (IQR) to assess their

degree of dispersion. In the tables that follow we have highlighted

results that are either negative (median ≤ 2) or positive (median ≥

4) and also suggest consensus (IQR < 2) rather than polarised views

(IQR ≥ 2) about the statement.

4.1 Using Collaboration Tools
To address research question 1, we asked students to rate their

experiences of using the tool. Students in study 1 started using

USETogether and switched to Microsoft Teams towards the end

due to issues with the former. Study 2 participants used Teams only.

As Table 2 shows, most students agreed that USETogether and

Microsoft Teams were easy to install, easy to use with a partner and

have adequate audio-visual quality. Microsoft Teams supports the

recording functionality well (i.e. students can create an audio-visual

recording of their RPP session) while USETogether performed less

well in this regard. There was a mix of experiences (IQR = 2) with

regard to the computer becoming unresponsive or crashing.

USETogether is specifically developed for RPP, whereas Teams

isn’t, and yet responses are similar. While the number of responses

is too small to draw general conclusions, they seem to indicate that

generic collaboration tools can be adopted for RPP.

4.2 Pair jelling period and leadership style
The first author observed the sessions, noted the interactions and

categorised each partner according to the leadership styles used in

the study by Kaur-Kuttall et al. [20]:

i. Democratic style (shares the decisions with the other

partner)

ii. Authoritative style (dominates the interactions)

iii. Laissez-faire style (all decision-making is delegated to

the other partner)

iv. Paternalistic style (instructs the other partner)

The observed style and the self-reported skills level in the pre-study

questionnaire were taken into account to investigate their effects

on pair jelling. The end survey asked the students how long it took

to jel. The last column of Table 3 is the number of sessions they

reported until perceived jelling, which agrees with observations of

the online sessions.

The table suggests that partners with the same style may jel the

fastest. In pair Gamma, the novice student P2 had gone further in

the module activities and thus tended to teach the more advanced

student P1, thus appearing paternalistic.

Beta and Epsilon are the only pairs with equal skill levels. Based

on Melnik, et al. [28] reporting that students prefer to collaborate

with a partner of equal skill and experience, one would have

expected these pairs to jel more quickly. This preference seems to

have been overridden by the pairs’ styles: it took three sessions for

Beta (democratic/authoritative) to jel while Epsilon (both

democratic) jelled in one. Remote teams can feel a "swift" level of

trust but this trust seems very frail and it is critical to collaboration

success or failure [18].

The study seems to indicate that leadership style affects how paired

programmers jel. All partners’ styles remained unchanged until

jelling. Once jelling had taken place, the student pairs were able to

accommodate each other’s style in a more fluid interaction.

Student Experience Statement Study 1 (n = 10) Study 2 (n = 24)

USETogether Microsoft Teams Microsoft Teams

 MED IQR MED IQR MED IQR

It was easy to install 4.5 1 5 0.5 4 1

It was easy to use with my programming partner 4 1 4.5 1 4 1

It has a high impact on my computer systems' resources 2 2 2 1.5 2.5 1

It froze or crashed sometimes 2 2 3 2 2 2

The audio-visual quality is adequate 4 0 4 0.5 4 0.5

We were able to record our sessions 3 0.5 4 1.5 4 1.5

Table 2: Students’ experience of using collaborative tools.

Investigating Remote Pair Programming In Part-Time Distance Education

4.3 Benefits
With a significant amount of research reporting the benefits of PP

on co-located students, we included 4 statements in the end survey

for students to appraise the benefits for their learning (see Table 4).

All students who had completed more than 4 sessions (the

minimum required) were invited to complete the survey, even if

they subsequently dropped out from the study. As Table 4 shows,

most students agreed or strongly agreed that RPP improved their

learning experience. The exception is in Study 2 groups, where the

median opinion on the impact on time management skills was

neutral. While groups in Study 1 were paired based on their

indicated time availability, the groups in Study 2 were paired

randomly, irrespective of time availability. This is reflected in how

students manage their schedules as they struggled to find a suitable

time to accommodate each other. Two study 2 students commented:

“I found it difficult to arrange a mutually convenient time to take

part in sessions with my partner.”

“the peer cancelled session 3 with a five minutes notice and I never

heard from her again. No reason was given and there was no

attempt to reschedule.”

As mentioned in Section 1, we probed student satisfaction in the

face of any issues. In the end survey we asked “What is your overall

feeling about your experience of using RPP in your module?” using

a Likert scale from 1 (very dissatisfied) to 5 (very satisfied). Study

1 responses had median 4 and IQR 2 (n = 10); study 2 responses

had median 4 and IQR 1 (n = 24). We also asked “Would you

recommend RPP to other students and its wider use within

computing modules?” and most replied yes (93% in study 1 and

83% in study 2). Overall, there is a positive attitude towards remote

pair programming, confirming previous research on pair

programming. Looking at the survey’s comments, students who

were satisfied or very satisfied mentioned the following:

• Improved feeling of inclusion and social interaction

• Improved team working experience, e.g. confidence in

communication, motivation, skill for employment

• A positive impact from peer pressure, e.g. keep up with studies

before sessions, time management and discipline.

• Improved coding skills from learning from pair, i.e.

knowledge transfer.

Some comments from the students are:

“During the RPP sessions I have noticed I was more focused and

engaged with the task than I normally would by myself”.

“My coding skills have definitely improved, but also my

understanding of how to code and what you can and shouldn't do.

It was also really nice to have someone else to talk to who is

studying the same module as me. Distant learning can get very

lonely and this has massively helped alleviate this feeling”

“I am very satisfied with the experience because I feel it brought to

light the best part of me in a programming context. I always felt

problem-solving includes creativity and ideas come much easier

when I can bounce them with a partner, our minds are more agile

and personally, I felt empowered to know I am not alone in solving

it.”

Pair
Gender Leadership Style Skills Level Sessions

before

jelling P1 P2 P1 P2 P1 P2

Alpha Male Male Democratic Authoritative Novice Intermediate 2

Beta Male Male Democratic Authoritative Novice Novice 3

Delta Male Male Democratic Democratic Intermediate Novice 1

Epsilon Female Female Democratic Democratic Novice Novice 1

Gamma Male Female Democratic Paternalistic Advanced Novice 2

Table 3: Students’ jelling factors and period for study 1

Student impact Study 1 (n= 10) Study 2 (n = 24)

 MED IQR MED IQR

My coding and debugging skills are better than before I used pair programming 4.5 1 4 1

Participating in RPP has improved my confidence level when communicating my thought

process
5 1 4 1.5

My RPP sessions helped improve my time management skills 4 1 3 2

My study habits were positively affected because of the RPP sessions 4.5 3 3.5 1.5

Table 4: Impact of RPP on students

Investigating Remote Pair Programming In Part-Time Distance Education

Students who were dissatisfied or neutral mentioned the following

factors: the partner didn’t show up for sessions; they felt their

module’s exercises were not suitable for pair programming. It is

worthwhile to note that in the overall assessment of the benefits of

RPP, some students who reported technical challenges in their

journal (inability to record sessions, disconnection from the

internet, computer crashes, etc.) nevertheless have positive feelings

towards RPP for online learning.

In study 1, where students were paired by availability, there were

fewer incidents of a partner not showing up in comparison with

study 2 where the pairing was randomised. Katira, et al. [19] found

that collaboration is successful even when students are paired

randomly, but our studies suggest this is not true for part-time

students. A student noted in their journal that “the whole point of

[the] OU is being able to fit around individuals, so having a pair

[imposed] can make it difficult to schedule time”. Co-located full-

time students have a structured learning process, e.g. with

timetabled laboratory sessions. This contrasts with the flexibility on

which most part-time remote teaching and learning is based [8].

4.4 Limitations And Future Research
The studies reported in this paper represent initial investigations of

RPP in a distance learning context. As such, they are subject to

limitations. The small number of self-selecting students does not

necessarily represent our student population, or distance learners

generally. We do not claim any statistical significance or general

applicability of our results. However, the studies uncover RPP

barriers and benefits perceived by these keener students, and we

assume that these barriers and benefits may be felt even more

acutely by other students.

We didn’t develop bespoke programming exercises for the studies.

Instead, we asked students to work in pairs through their module’s

activities, so as not to impose extra workload on already time-poor

students. The responses suggest this approach isn’t always suitable.

Overall, the reasons indicated for dissatisfaction suggest that better

integration of RPP into the course design process is needed to reap

the potential benefits of RPP.

Questions around the effect of leadership style on the pair jelling

period deserve a more systematic examination. In our study 1, a

definitive conclusion cannot be drawn due to the small sample size

and various variables involved during the investigation. Data from

study 2, which is yet to be analysed, should shed more light on this

issue. Further long-term studies could indicate if pair jelling has an

impact on the effectiveness of RPP. If so, monitoring pair jelling

could help spot conflicts early and drive a methodology for conflict

management to ensure collaboration does not break down.

Future studies using larger samples could shed further light on the

other aspects of pairing we investigated: prior skills level and

gender. We also plan to carry out more quantitative investigations

of the learning effectiveness of RPP, using before-and-after

measures of students’ programming skills, and making

comparisons with individual programming practice.

5. Conclusion
Many studies show evidence that pair programming in Computing

education can have positive effects on technical and soft skills. Pair

programming is relatively easy to embed into scheduled full-time

study. This paper presents exploratory studies into the possible

benefits of, and barriers to, remote pair programming in

unscheduled part-time distance education.

While many RPP studies use specially built tools, these may be

difficult to obtain or install. We asked students to use generic

communication tools to work on their module’s exercises with a

partner in several RPP sessions. We analysed students’ pre-and

post-study questionnaires, recorded sessions and reflective

journals. In the first study, students were paired according to their

declared time availability; in the second, they were randomly

paired. We also carried out the first, as far as we know,

investigation of pair jelling and leadership style.

Students found the tools easy to use and install, and broadly

adequate for RPP, despite occasional technical problems. Students

agreed that RPP improved their coding and debugging skills and

their confidence. Responses as to whether RPP improved their time

management or study habits varied. Almost all students would

recommend RPP for inclusion in distance learning computing

modules. From our limited amount of data, leadership style seemed

to be a more dominant factor for pair jelling than programming

skills level. Students were less satisfied or even stopped sessions if

there were scheduling difficulties with their partner or if they felt

their module’s exercises were not suitable for pair programming.

Our research suggests that RPP can enhance the learning

experience in part-time distance education, provided that potential

barriers are dealt with by: providing guidance on how best to use

existing communication tools instead of developing bespoke ones,

taking time availability and leadership style into account when

pairing students, and choosing appropriate programming activities.

ACKNOWLEDGMENTS
We thank the participants and the funding support of eSTEeM, the

OU’s Centre for STEM pedagogy.

Investigating Remote Pair Programming In Part-Time Distance Education

REFERENCES
1. Al-Ani Ban, Erik Trainer, Roger Ripley, Anita Sarma, André van Der Hoek, and

David Redmiles, 2008. Continuous coordination within the context of cooperative

and human aspects of software engineering. In Proc. Ws on Cooperative and

Human Aspects of Software Engineering. ACM, 1-4.

2. Berenson Sarah, Kelli Slaten, Laurie Williams, and Chih-Wei Ho, 2004. Voices of

women in a software engineering course: reflections on collaboration. Journal on

Educational Resources in Computing (JERIC) 4(1): 3-es.

3. Biehl Jacob, Mary Czerwinski, Greg Smith, and George Robertson, 2007.

FASTDash: A visual dashboard for fostering awareness in software teams. In

Proceedings of the SIGCHI Conference on human factors in computing systems.

ACM. 1313-1322.

4. Canfora Gerardo, Cimitile Aniello and Visaggio Corrado Aaron, 2005. Empirical

Study on the Productivity of the Pair Programming. In Extreme Programming and

Agile Processes in Software Engineering. Berlin, Heidelberg: Springer Berlin

Heidelberg, 92–99. DOI: https://doi.org/10.1007/11499053_11.

5. Canfora Gerardo, Cimitile Aniello and Visaggio Corrado Aaron, 2003. Lessons

learned about distributed pair programming: what are the knowledge needs to

address? In Proceedings Twelfth IEEE International Workshops on Enabling

Technologies: Infrastructure for Collaborative Enterprises. WET ICE, 314–319.

6. D'Angelo Sarah and Andrew Begel, 2017. Improving Communication Between

Pair Programmers Using Shared Gaze Awareness. In Proceedings of the SIGCHI

Conference on human factors in computing systems, ACM, 6245-6290.

7. da Silva Estácio, Bernardo José and Rafael Prikladnicki, 2015. Distributed pair

programming: A systematic literature review. Information and Software

Technology. 63, 1-10

8. Daniel Weinbren, 2015. The Open University: A history. Manchester University

Press, Manchester.

9. Duque Rafael and Bravo Crescencio, 2008. Analyzing Work Productivity and

Program Quality in Collaborative Programming. In Proc Int'l Conf. on Software

Engineering Advances: 270-276. DOI: https://doi.org/10.1109/ICSEA.2008.82

10. Flor Nick, 2006. Globally distributed software development and pair

programming. Communications of the ACM 49(10), 57-58.

11. Gehringer Edward, 2003. A pair-programming experiment in a non-programming

course. Companion of the 18th Annual ACM SIGPLAN Conference on Object-

oriented Programming, Systems, Languages, and Applications. ACM, 187-190.

12. Ghorashi Soroush and Carlos Jensen, 2017. Integrating Collaborative and Live

Coding for Distance Education. Computer (Long Beach, Calif.), 50(5), 27-35.

13. Ghorashi Soroush and Carlos Jensen, 2016. Supporting Learners in Online

Courses Through Pair Programming and Live Coding. IEEE 40th Annual

Computer Software and Applications Conference (COMPSAC). 738-747.

14. Goldman Max, 2011. Role-based interfaces for collaborative software

development. In Proceedings of the 24th annual ACM symposium adjunct on user

interface software and technology. ACM, 23-26.

15. Hanks Brian, 2005. Student performance in CS1 with distributed pair

programming. ACM SIGCSE Bulletin, 37(3), 316-320 DOI:

https://doi.org/10.1145/1067445.1067532.

16. Hanks Brian, 2008. Empirical evaluation of distributed pair programming. In

International Journal of Human-Computer Studies 66(7), 530-544. DOI:

https://doi.org/10.1016/j.ijhcs.2007.10.003

17. Hughes Janet, Ann Walshe, Bobby Law and Brendan Murphy, 2020. Remote pair

programming. In Proc.12th Int’l Conf. on Computer Supported Education, Vol. 2,

SciTePress, 476-483.

18. Jarvenpaa L. Sirkka and Dorothy E. Leidner, 1999. Communication and Trust in

Global Virtual Teams. Organization Science 10(6), 791-815.

19. Katira Neha, Laurie Williams, Eric Wiebe, Carol Miller, Suzanne Balik and Ed

Gehringer,2004. On understanding compatibility of student pair programmers. In

SIGCSE Bulletin (Association for Computing Machinery, Special Interest Group

on Computer Science Education), 36(1), 7–11.

20. Kaur K. Sandeep, Kevin Gerstner and Alexandra Bejarano, 2019. Remote Pair

Programming in Online CS Education: Investigating through a Gender Lens. In

2019 IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC), IEEE, 75-85.

21. Kear Karen and Helen Donelan, 2018. Creating and collaborating: students’ and

tutors’ perceptions of an online group project. In International Review of Research

in Open and Distributed Learning 19(2), 38-54.

22. Knister Michael and Atul Prakas, 1990. DistEdit: A distributed toolkit for

supporting multiple group editors. In Proceedings of the 1990 ACM conference on

computer-supported cooperative work. ACM, 343-355.

23. Leelanupab Teerapong and Tiwipab Meephruek, 2019. CodeBuddy (Collaborative

Software Development Environment): In- and Out-Class Practice for Remote Pair-

Programming with Monitoring Coding Students' Progress. In Technical

Symposium on Computer Science Education, ACM, 1290-1290.

24. Lui K. Man, Barnes K. Atikus and Chan C. Keith, 2010. Pair Programming: Issues

and Challenges. Agile Software Development: Current Research and Future

Directions. Springer, Berlin, Heidelberg, 143-163. https://doi.org/10.1007/978-3-

642-12575-1_7

25. McDowell Charlie, Linda Werner, Heather Bullock and Julian Fernald, 2003. The

impact of pair programming on student performance, perception and persistence.

In Proceedings of 25th International Conference on Software Engineering. IEEE,

602-607.

26. McDowell Charlie, Linda Werner, Heather Bullock and Julian Fernald, 2006. Pair

programming improves student retention, confidence, and program quality. In

Communications of the ACM 49(8), ACM, 90-95.

27. Mehmet Celepkolu and Kristy E. Boyer, 2018. The Importance of Producing

Shared Code Through Pair Programming. In Proceedings of the 49th ACM

Technical Symposium on Computer Science Education. ACM, 765-770. DOI:
https://doi.org/10.1145/3159450.3159516

28. Melnik Grigori and Frank Maurer, 2002. Perceptions of agile practices: A student

survey. In Proc. Conf. on XP and AGile Methods, Springer, LNCS 2418, 241-250.

29. Mendes Emilia, Lubna Al-Fakhri and Andrew Luxton-Reilly, 2005. Investigating

pair-programming in a 2nd-year software development and design computer

science course. In Proceedings of the 10th Annual SIGCSE Conference on

Innovation and Technology in Computer Science Education, ACM, 296-300.

30. Mendes Emilia, Lubna Al-Fakhri and Andrew Luxton-Reilly, 2006. A replicated

experiment of pair-programming in a 2nd-year software development and design

computer science course. In Proceedings of the 11th annual SIGCSE conference

on innovation and technology in computer science education. ACM, 108-112.

31. Nagappan Nachiappan, Laurie Williams, Miriam Ferzli, Eric Wiebe, Kai Yang,

Carol Miller and Suzanne Balik, 2003. Improving the CS1 experience with pair

programming. SIGCSE Bulletin (Association for Computing Machinery, Special

Interest Group on Computer Science Education), 35(1). ACM, 359-362.

32. Nosek John, 1998. The case for collaborative programming. Communications of

the ACM, 41(3). ACM, 105-108.

33. Porter Leo, Mark Guzdial, Charlie McDowell and Beth Simon, 2013. Success in

introductory programming: what works? Communications of the ACM, 56(8).

ACM, 34-36.

34. Shaw C. Alan 2009. Extending the Pair Programming Pedagogy to Support

Remote Collaborations in CS Education. In 2009 Sixth International Conference

on Information Technology: New Generations. IEEE, 1095-1099.

35. Sison Raymund, 2009. Investigating the Effect of Pair Programming and Software

Size on Software Quality and Programmer Productivity. In 2009 16th Asia-Pacific

Software Engineering Conference. IEEE, 187-193.

36. Stefik Mark, Bobrow Daniel, Foster Gregg, Lanning Stan and Tatar Deborah,

1987. WYSIWIS revised: Early experiences with multiuser interfaces. ACM

Transactions on Information Systems (TOIS) 5(2). ACM, 147-167. DOI:
https://doi.org/10.1145/27636.28056

37. Tsompanoudi Despina, Satratzemi Maya and Xinogalos Stelio, 2013. Exploring

the effects of collaboration scripts embedded in a distributed pair programming

system. In Annual Joint Conference Integrating Technology into Computer

Science Education, ACM, 225-230.

38. Vanhanen Jari. and Korpi Harri, 2007. Experiences of Using Pair Programming

in an Agile Project. In 2007 40th Annual Hawaii International Conference on

System Sciences (HICSS'07). IEEE, 274b–274b.

39. Wanfeng Dou. and Wei He, 2010. Compatibility and Requirements Analysis of

Distributed Pair Programming. In 2010 Second International Workshop on

Education Technology and Computer Science, IEEE, 467-470.

40. Werner L. Linda., Hanks Brian and McDowell Charlie, 2004. Pair-programming

helps female computer science students. In Journal on Educational Resources in

Computing 4(1): 4-es. DOI: https://doi.org/10.1145/1060071.1060075

41. Williams A. Laurie and Kessler Robert, 2003. Pair Programming Illuminated.

Addison-Wesley Longman Publishing Co., Inc., USA..

42. Williams A. Laurie and Kessler Robert, 2000. The effects of ‘pair-pressure’ and

‘pair-learning’ on software engineering education. In Thirteenth Conference on

Software Engineering Education and Training, IEEE, 59–65. DOI:

https://doi.org/10.1109/CSEE.2000.827023.

43. Williams A. Laurie, Kessler Robert, Cunningham Ward and Jeffries Ron, 2000.

Strengthening the case for pair programming. IEEE Software, 17(4), IEEE, 19-25.

DOI: https://doi.org/10.1109/52.854064

44. Wray Stuart, 2010. How Pair Programming Really Works. IEEE Software, 27(1).

IEEE, 50-55. DOI: https://doi.org/10.1109/MS.2009.199

45. Xinogalos Stelio, Satratzemi Maya, Chatzigeorgiou Alexander and Tsompanoudi

Despina, 2019. Factors Affecting Students’ Performance in Distributed Pair

Programming. In Journal of educational computing research 57(2), 513-544.

	1. Introduction
	2. Related Work
	3. Study Design
	4. Analysis And Results
	4.1 Using Collaboration Tools
	4.2 Pair jelling period and leadership style
	4.3 Benefits
	4.4 Limitations And Future Research

	5. Conclusion

