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A B S T R A C T   

In this investigation a deep learning terrain classification system, the “Novelty or Anomaly Hunter – HiRISE” 
(NOAH-H), was used to classify High Resolution Imaging Science Experiment (HiRISE) images of Oxia Planum 
and Mawrth Vallis. A set of ontological classes was developed that covered the variety of surface textures and 
aeolian bedforms present at both sites. Labelled type-examples of these classes were used to train a Deep Neural 
Network (DNN) to perform semantic segmentation in order to identify these classes in further HiRISE images. 

This contribution discusses the methods and results of the study from a geomorphologists perspective, 
providing a case study applying machine learning to a landscape classification task. Our aim is to highlight 
considerations about how to compile training datasets, select ontological classes, and understand what such 
systems can and cannot do. We highlight issues that arise when adapting a traditional planetary mapping 
workflow to the production of training data. We discuss both the pixel scale accuracy of the model, and how 
qualitative factors can influence the reliability and usability of the output. 

We conclude that “landscape level” reliability is critical for the use of the output raster by humans. The output 
can often be more useful than pixel scale accuracy statistics would suggest, however the product must be treated 
with caution, and not considered a final arbiter of geological origin. A good understanding of how and why the 
model classifies different landscape features is vital to interpreting it reliably. When used appropriately the 
classified raster provides a good indication of the prevalence and distribution of different terrain types, and 
informs our understanding of the study areas. We thus conclude that it is fit for purpose, and suitable for use in 
further work.   

1. Introduction 

The ExoMars Rosalind Franklin rover and Kazachok surface platform 
(Vago et al., 2017), is expected to land at Oxia Planum in 2023. This 
mission will search for signs of past and present life. This paper describes 
NOAH-H (Novelty or Anomaly Hunter - HiRISE) an ESA funded project 
conducted in 2018 as a collaboration between the Open University, the 
ExoMars Landing Site Selection Working Group (LSSWG), and the SCI-
SYS Autonomy & Robotics Group. 

This consisted of an investigation into automatic terrain classifica-
tion using Deep Learning (DL). The aim was to automatically identify 
metre to decametre-scale terrain types using 25 cm/pixel High Resolu-
tion Imaging Science Experiment (HiRISE) images (McEwen et al., 

2010). The study area consisted of the final two ExoMars candidate 
landing sites: Oxia Planum and Mawrth Vallis (Loizeau et al., 2019). The 
training dataset was tailored to the characteristics of those sites. The task 
of terrain classification was framed as a semantic segmentation problem. 
The aim was for the Deep Neural Network (DNN) to classify each pixel in 
a HiRISE image according to a prescribed ontological class, and so 
produce surface texture terrain maps for the sites. 

This paper provides an overview of the methods of the NOAH-H 
project, and an evaluation of its results. The focus is on the definition 
of the classification scheme and geomorphological analysis of the output 
raster. We examine the machine learning workflow from a geo-
morphologist’s perspective, highlighting issues to consider when 
developing classification schemes and applying them to often complex 
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landscapes. We demonstrate that, when considered at a landscape level, 
the reliability and fitness for purpose of the model must be considered 
qualitatively as well as quantitatively. 

The model output is intended to provide one component of rover 
traversability assessment, when combined with information about the 
topography of the site, and rover engineering parameters. A detailed 
examination of traversability is important for landing site selection, pre- 
mission planning, and ongoing rover operation. Terrains such as large 
bedforms or outcrops of rugged bedrock may complicate rover naviga-
tion or prevent it from reaching its science targets. Regions of uncon-
solidated non-bedrock can cause rovers to become stuck. However, 
because of the large size of the potential landing ellipse, manually 
identifying hazardous areas at HiRISE scale is prohibitively time 
consuming. This necessitates a machine learning approach. The issue of 
traversability is used as an example throughout this paper, however a 
full hazard analysis is not presented as this is beyond the scope of the 
current contribution. 

Section 1 introduces the background to the project, and states the 
case for a machine learning approach. In Sections 2 and 3 the ontological 
classes are introduced, and the process for developing them explained. 
Section 4 describes the acquisition of the training dataset. Section 5 
presents results for pixel-scale accuracy. Section 6 compares these to a 
qualitative evaluation of representative areas of classified terrains. It 
assesses the reliability of the model at a landscape, rather than pixel to 
pixel scale. These results are further examined in sections 7 and 8, where 
considerations and limitations are discussed. 

1.1. Background 

The ever-increasing volume of data being returned by planetary 
remote sensing missions, and its increasingly high spatial resolution, 
presents both a great opportunity for the science of planetary geo-
morphology, and a major challenge. The surfaces of other planetary 
bodies can be studied in unprecedented detail. However, the more high- 
resolution data is acquired, the less amenable to complete study the 
dataset becomes. The time required to survey data products at full res-
olution means that comprehensive studies are becoming impractical for 
all but the largest teams. Machine Learning (ML) presents a powerful 
tool to overcome these challenges by automating certain aspects of 
dataset interrogation. This method is thus valuable, not just for the 
ExoMars mission, but for all future efforts in planetary exploration (e.g. 
Harris and Martin, 2020).The application of ML to planetary remote 
sensing (RS) data is a fast growing field. 

Mars is a popular target for machine learning studies due to the large 
amount of RS data available. Studies using multispectral data such as 
that from the Compact Reconnaissance Imaging Spectrometer for Mars 
(CRISM) have seen success in identifying mineral assemblages which 
would have been challenging to isolate by conventional means. (e.g. 
Dundar and Ehlmann, 2016; Saranathan and Parente, 2021). The scale 
and depth of multispectral data means that the development of auto-
mated systems to analyse the data in a timely fashion has long been of 
high priority (e.g. Allender and Stepinski, 2017; Lin et al., 2018; Parente 
et al., 2011). 

The same is increasingly true for studies focused on geomorphology, 
which generally employ visible band images, topographic data, or some 
combination thereof. The most common objective for ML in planetary 
geomorphology is the detection of craters (e.g. Bandeira et al., 2012; 
Cadogan, 2020; Silburt et al., 2019; Stepinski et al., 2009; Urbach and 
Stepinski, 2009; Wang and Wu, 2019). Calculating crater density re-
mains the primary method for dating planetary surfaces (Hartmann and 
Neukum, 2001). A tool to count craters automatically would thus be 
very useful (e.g. Salamunicar et al., 2012 and references therein). 

There has been a shift in focus in the past 4–5 years (Wilhelm et al., 
2020). Early geomorphology ML studies (e.g. Ghosh et al., 2010; 
Jasiewicz and Stepinski, 2012; Stepinski and Vilalta, 2005) are sparse, 
and primarily employed low resolution topographic data from MOLA 

(Mars Orbiter Laser Altimeter). For example Jasiewicz and Stepinski 
(2012) proposed a comprehensive terrain classification system based on 
a “geomorphometric map”. They used MOLA to identify generic varia-
tions in topography. This served as an input for the automatic detection 
of geomorphological units which exhibit the same topographic signa-
ture, independent of scale. Work using visible band images was less 
common and limited to the Mars Orbiter Camera (MOC) (e.g. Bandeira 
et al., 2013, 2011) even in the years after higher resolution images 
became available. 

However, since 2016 ML studies have become more frequent, and 
many have used the high resolution cameras on Mars Reconnaissance 
Orbiter; HiRISE (e.g. Foroutan and Zimbelman, 2017; Palafox et al., 
2017; Rothrock et al., 2016a; Wang et al., 2017), and the Context 
Camera (CTX) (e.g. Palafox et al., 2017; Wilhelm et al., 2020). Wilhelm 
et al. (2020) note that the shift to high resolution visible images co-
incides with the adoption of Deep Learning (DL) techniques (LeCun 
et al., 2015). The advent of DL likely resulted in an increase in interest in 
applying ML techniques to the ever expanding HiRISE catalogue (Wil-
helm et al., 2020). 

By necessity, the majority of studies only attempt to segment a 
limited suite of features. Most focus on one or two thematic groups and 
develop models to distinguish these from a background. Pina et al. 
(2008) have mapped the distribution of polygons. Foroutan and Zim-
belman (2017) identified bedforms using self-organising maps, while 
Bandeira et al. (2011) focused on dunes. 

More general studies include Palafox et al. (2017) who identified a 
variety of cones and bedforms. Ghosh et al. (2010) and Wilhelm et al. 
(2020) mapped more comprehensive suites of landforms. Rothrock et al. 
(2016) is the closest precursor to the present work. They investigated the 
application of DL techniques to rover traversability in both in situ im-
ages and HiRISE data. Other studies to examine rover traversability 
using in situ data include Harris and Martin (2020); and Karachalios 
et al. (2019). 

1.2. NOAH-H 

NOAH-H is the latest stage in a series of research activities carried 
out by the SCISYS Autonomy & Robotics Group in applying machine 
learning and computer vision techniques to robotic planetary explora-
tion (Schwenzer et al., 2019; Wallace et al., 2017; Wallace and Woods, 
2015; Woods et al., 2015, 2009). 

As DL based approaches to image understanding have advanced in 
recent years (LeCun et al., 2015), we carried out an early investigation of 
their applicability to Mars rover based scene understanding (Karachalios 
et al., 2019). Such algorithms learn relationships based on labelled ex-
amples or training data. To address this challenge, dedicated planetary 
toolsets were developed. Crowd sourced labelling campaigns were un-
dertaken to label large numbers of Mars landscape images acquired 
during rover navigation (Schwenzer et al., 2019; Wallace et al., 2017). 

As the ESA ExoMars mission evolved there was interest in exploring 
whether DL techniques could be extended to classify images from Mars 
orbit, in support of landing site selection. The original NOAH (Novelty or 
Anomaly Hunter) project was therefore extended to classify large vol-
umes of HiRISE images, by applying advanced DL techniques to the 
problem of pixel-level terrain classification in orbital images. 

The purpose of this tool is not to replace the human geomorpholo-
gist, and produce a perfect geomorphological map. Rather it is intended 
to augment a geomorphologist’s workflow, by essentially performing 
“triage” on the vast catalogue of HiRISE data. The model highlights 
regions of interest, and gives the human operator information about the 
distribution and prevalence of different terrains. This can then speed up 
formal geomorphological mapping tasks, and provide a useful compo-
nent in addressing other questions such as rover hazard assessment. 
However, it is not intended to be a sole arbiter of either the geological 
origin of the terrain, or the hazard it might pose to a rover. Rather it adds 
value to the original image, providing the human expert with a new tool 
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to inform their understanding of the terrain. 

2. Methods 

Geomorphic classes were defined by the science team, and manually 
labelled in small “framelets” (128 m by 128 m; 512 pixels by 512 pixels) 
extracted from red-band HiRISE images. These provided representative 
coverage of the study areas. Framelet locations were chosen specifically 
to include multiple terrain types, in various combinations. 

Many prior studies into ML terrain classification have relied upon 
digital elevation data as well as or instead of visible band images (e.g. 
Bandeira et al., 2013, 2011; Jasiewicz and Stepinski, 2012). This has 
various advantages, especially for tasks such as crater detection where 
the change in elevation is characteristic of the target feature. 

However, we decided not to employ elevation data. While there is 
global coverage of low resolution data from MOLA, high resolution 
topographic data remains rare. Digital elevations models (DEM) at a 
comparable scale to HiRISE images are generally produced by 
combining stereo HiRISE images using photogrammetry. Thus only a 
fraction of the HiRISE catalogue can be used to produce DEMs, and they 
have small enough coverage that a machine learning approach to clas-
sification is largely unnecessary. While our site has relatively good ste-
reo coverage, it was not practical to make DEMs for every available 
image pair in the area. Consulting multiple datasets would also have 
complicated the procedure, making the dataset more laborious to label 
reliably, and more complex for the ML algorithm to interpret. 

Instead it was decided to use only the original red-band HiRISE im-
ages. Using colour HiRISE images was considered, however these are 
much narrower than the equivalent red-band image, and even in a well 
imaged landing site there is not full coverage. Creating an algorithm 
which could have used colour data in some places, but coped without it 
in others would also have added additional complexity and so was out of 
scope for the project. Consequently the high coverage red-band images 
were chosen. 

These are important considerations when designing a project of this 
sort. While using additional sources of data could well be advantageous, 
it is important to consider whether they are strictly necessary. The need 
for thousands of training framelets can quickly multiply the work 
required to source and cross reference additional datasets. 

2.1. Defining ontological classes 

We produced a comprehensive classification scheme consisting of 
fourteen classes in five thematic groups as outlined in Section 3. These 
classes must cover every terrain which might be encountered in the 
study area. The list could not be prohibitively long, as this would both 
complicate the training process and slow down the expert labelling work 
required to compile the training dataset. It was also important that 
classes be sufficiently distinct that they could be distinguished by the 
geomorphology team with a high level of confidence with limited 
context information. Previous studies into classification for rover tra-
versability (e.g., Rothrock et al., 2016) informed the definitions. These 
were then tailored to the candidate landing sites. A wide variety of 
terrains are found across the martian surface, however not all are rep-
resented in the study areas. The classification system is thus specific to 
this and similar regions. 

Classes were defined based upon the textural characteristics of the 
surface rather than perceived geological origin or strict geomorpho-
logical unit definitions. They describe the fundamental textures which, 
in various combinations, form those units. This made them general 
enough to be applied to multiple future science questions, giving the 
model maximum utility. This also allowed the classes to be descriptive, 
rather than interpretive. 

Geomorphological interpretation requires substantial contextual and 
situational evidence. This would be lacking for the small snapshots used 
for the labelling exercise. The labelling of examples had to remain as 

consistent as possible. However, in the absence of ground truth, it is 
impossible to be certain that a given interpretation of the landscape is 
correct. This approach ensured that all examples of a given texture 
definitively represent it, even if their final interpretation could be 
debated. It also reduced the subjectivity inherent in classification, and 
thus increased the fidelity and reproducibility of the labelling. This 
approach did not limit the applicability of the model, since the 
descriptive classes could easily be combined into broader “interpretive 
groups”. 

2.2. Traversability considerations 

For each class we suggest a likely level of hazard. This is not intended 
to be definitive. Rover route planning is a complex process, involving 
assessment of slope, hazard avoidance, and modelling of the interaction 
of a specific rover’s wheels and weight with soils of different composi-
tions. This requires the input of a variety of different lines of evidence, in 
particular in situ observations of soil type which cannot be determined 
with certainty from orbit. 

Rather our classification is intended to give a general indication of 
areas where potentially hazardous terrains are more prevalent. The 
model identifies areas with a high proportion of extensive localised 
hazards (e.g. large aeolian ripples, dense boulder fields, and fractured 
bedrock terrain). It also provides an overall assessment of qualitative 
surface roughness, showing regions which have extensive rugged 
terrain, and those where smoother bedrock is found. It identifies areas of 
non-bedrock terrain, but cannot distinguish areas of smooth regolith, 
which might be safe to traverse, from sandy areas which might not. This 
discrimination would require further analysis by a human geomor-
phologist, using the classified raster as a starting point and considering 
various lines of situational or contextual evidence such as the prevalence 
of aeolian bedforms coterminous with areas of smooth non bedrock 
terrain. Our classes can indicate which landing sites have the highest 
proportion of potentially hazardous terrains, and provide a useful 
starting point for more in depth route planning operations. 

2.3. Descriptive parameters for terrain classes 

A set of descriptive parameters was developed (see Table 1), which 
can be combined to comprehensively characterise any terrain. These 
consist of a series of fundamental textures, which can then be classified 
based on various parameters: scale, slope, pattern, distribution, and 
apparent substrate. Thus, while the final set of classes must be tailored 
specifically to a certain region of Mars, with only limited transferability 
to other sites, this scheme provides a robust tool for creating compatible 
classification schemes for future work. 

These parameters can be combined into thousands of possible per-
mutations, however not all are present at the sites, or in fact physically 
possible. Invalid combinations were ignored, and further surveying was 
conducted to determine which combinations were useful. The pattern 
and distribution parameters are only applicable to non-surface textures. 
In principle they could be applied to ripples, dunes, and clastic patterns. 
However, in practice, only ripple-forms were examined: dune-forms 
were not found in the two study areas, and boulder fields were all 
essentially randomly distributed, and so could be described by a single 
class. 

It was decided that slope should not be considered as a parameter, 
since it could not be reliably determined, based solely on the informa-
tion within a framelet, It was decided that it was more efficient to 
compare the classified raster to a digital elevation model downstream, 
than to try to train the AI to estimate slope from geomorphological in-
dicators or include DEMs in the training dataset. Scale was only applied 
to the Aeolian features, since it was not applicable to surface textures, 
which can cover an area of any size. 

The result was 14 ontological classes which cover the full variety of 
terrains at the landing sites, while being manageable for use in the 
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labelling exercise. These are organised into a hierarchical classification 
scheme. The entire scheme is split into Surfaces, and types of “cover”. 
The 14 descriptive classes are arranged into five “interpretive groups” 
consisting of bedrock and non bedrock surfaces, aeolian cover on two 
distinct scales, and a single class for clastic cover. 

This division is informed by surface roughness, and whether the class 
comprises a surface texture or a type of cover. For surfaces this requires 
distinguishing between bedrock and non-bedrock. This is a basic inter-
pretation, which human planetary geologists make as a fundamental 
step in classifying a surface, using clues such as the presence or absence 
of subtle fracturing, or hard linear edges to the surface texture. Whether 
a surface comprises bedrock is vital for rover traversability – as bedrock 
always provides “grip” irrespective of whether it is rugged or smooth. 
Conversely, non-bedrock could consist of cloddy regolith, or be 
comprised of sand or dust, which would perhaps be impassable. These 
materials cannot be distinguished from orbit, only in-situ. 

When used in combination the 2nd and 3rd levels of the classification 
scheme allow distinct textures to be labelled with high repeatability 
using the full class list, and broad interpretations of the landscape to be 
achieved using the combined list. Neither ontology, in and of itself, is 
sufficient for traversability assessment, but when combined they can 
provide a lot of information about the character of a site. 

3. Overview of ontological classes 

Surface classes define the seven broad textures found across the site. 
Rough textures with sharp surface morphology can generally be inter-
preted as bedrock, whereas smoother areas are more likely to consist of 
unconsolidated material such as regolith or aeolian deposits (i.e. sand or 
possibly dusty surface). These are collectively referred to as non-bedrock 
surfaces. 

The “dispersed” classes primarily describe a variety of types of 

aeolian bedforms and clastic cover. These are described in terms of 
several parameters: ‘Size’ defined by the distance measured across the 
bedform, perpendicular to the ridge crest, divides all features into either 
“small” (<5 m) or “large” (>5–20 m). These groupings are then sub-
divided according to spatial density (continuous vs. isolated), and 
morphology (simple/sinuous vs. rectilinear). Finally, whether they 
overlie bedrock, or non-bedrock material is relevant for non-continuous 
features, as this will affect traversability (a rover might navigate around 
discontinuous ripple-cover, but not a continuous field).This is the only 
element of interpretation which could not be avoided in the descriptive 
layer of the scheme. These descriptive classes form a large number of 
permutations, however not all are present at the site and not all are 
‘allowed combinations’. Six ripple classes were chosen, as summarised 
below. 

The final dispersed class; Boulder fields, consists of patches of 
discrete blocks distinct from the underlying substrate. 

Each class will have slightly different implications for traversability, 
which are discussed in the full description below. Table two lists which 
are expected to have high, low, or very low traversability, as well as 
classes for which the progress of the rover will be controlled by local 
hazards, and those for which the traversability is uncertain without 
in situ observations. Examples of these features are shown in Figs. 1–3. 
(See Table 2). 

3.1. Non-bedrock surfaces 

These can be interpreted as either regolith or aeolian surfaces, 
depending on specific morphology. 

3.1.1. Class 1: smooth, featureless 
These areas have a smooth surface in HiRISE images, and low relief 

at metre and 5–10 m scale. There is no evidence for bedrock. The tra-
versability of these terrains is uncertain, since their exact composition 
cannot be established from orbital images. As a traversability class they 
should be treated as potentially hazardous. 

3.1.2. Class 2: smooth, lineated 
Slope mantling materials can be distinguished from flat regolith 

surfaces by subtle lineations influenced by the direction of slope. They 
have few surface markings and few rocks visible in HiRISE images. They 
are usually associated with steep slopes such as crater walls. This means 
that traversability will be very poor, since the steep slope, and poten-
tially unconsolidated material would be hazardous for the rover. 

3.1.3. Class 3: textured non-bedrock 
This class is similar to “Smooth, Featureless” but with some minor 

texture, smooth at the 5–10 m scale. There is no evidence for bedrock. 
Since the material is unconsolidated it could pose a hazard, but this 
could only really be determined in situ. Caution should thus be taken 
when making an assessment from remote sensing data. 

3.2. Bedrock surfaces 

These classes comprise generally rougher terrains indicative of 
exposed bedrock. This in turn implies competent surface rock, so tra-
versability will mainly depend upon the metre-scale relief. 

3.2.1. Class 4: smooth, “bedrock” 
This class consists of patches of smooth, flat-lying bedrock. They are 

often bright when compared to mantling materials. They have enough 
texture to distinguish them from the smoother non-bedrock terrains, but 
are not rough enough to be classified as textured or rugged bedrock. 
Smooth bedrock would likely have good traversability. Bedrock pro-
vides grip for the rover, and the smooth surfaces present relatively few 
large localised hazards. 

Table 1 
Descriptive parameters.  

Basic Categories 

Fundamental 
textures 

Interpretation 

Smooth Smooth regolith, or flat-lying aeolian materials 
Textured Bedrock or rougher regolith surface 
Rough Rugged bedrock & outcrops 
Bedform Transverse Aeolian Ridges (TARs; e.g. Balme et al., 2008) or 

smaller aeolian ripple-like forms. 
Duneform Dunes 
Fractured Probably occurring in bedrock 
Clastic Blockfields and boulder patterns  

Intrinsic Properties 
Scale  

Large (100 m) Fills the 128 × 128 m framelet 
Medium (10 m) Substantial size in framelet, easily digitised 
Small (m) Small or subtle features. Often too small to digitise 

individually 
Slope  

Flat Expanse of level terrain 
Slope Slope clearly evident from morphology/shadow (e.g. crater 

wall) 
Crest Ridges and crater rims  

Descriptive Classes for Discontinuous Textures 
Pattern Interpretation 

Irregular No discernible pattern 
Linear Parallel features 
Polygonal Polygonal and rectilinear patterns 

Distribution Interpretation 
Continuous Total cover by a certain texture (e.g., aeolian bedforms) 
Dense Covers most of the surface area 
Sparse Covers less than half of the surface area 
Isolated Single features, separated from others 

Substrate Interpretation 
Bedrock Solid surface 
Non- Bedrock Surface consisting of regolith or aeolian drift.  
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Fig. 1. Surface texture class examples. 
Three examples of each class are shown, demonstrating the variety of forms 
included. Each image is 128–128 m, the size of a training framelet. The scale 
bar is 50 m, and north is up. HiRISE image codes can be found at the end of the 
respective captions. All HiRISE products shown or referenced throughout this 
paper are credited to NASA/JPL/University of Arizona. 1. Smooth featureless. 
Coherent, textureless material grades to textured non-bedrock at the edges 
(1a). Smooth featureless material often pools in topographic lows, such as 
small impact craters (1b), or between rugged outcrops (1c). 
(ESP_045457_2025, ESP_042134_1985, ESP_036661_2025). 2. Smooth linea-
ted. Generally found on crater walls (2b&c). Lineations occur paralel to the 
direction of slope. Slopes are generally smooth but with slight streaks. 
Lineated terrains can be pronounced (2a) or subtle (2b&c). 
(ESP_046960_2030, ESP_040288_1980, ESP_045523_1985). 3. Textured non- 
bedrock. Generally smooth patches of non-bedrock material with clear pits 
or undulations on the <5 m scale. Often found in conjunction with featureless 
material, as one type is frequently found to grade into another (3b). Texture in 
3b is less pronounced than in 3a it grades into lineated terrain to the south, 
and possible ripple-like forms to the north. 3c exhibits the most texture, with 
clear bumps and depressions. (ESP_036661_2025, ESP_037703_1980, 
ESP_044204_2020). 4. Smooth bedrock. Often consists of bright material with 
little surface roughness. Small patches of “smooth featureless” terrain can 
form within low points on the lightly textured surface. These are particularly 
evident at the sides of 4a. The small blocks in 4b and 4c have a few pits but are 
not as rough as the textured bedrock also seen in 4c. Only small areas of this 
type are typically found within the study areas, they often occur in close 
proximity to textured bedrock (4c), or grade into it (4a&b). 
(ESP_045114_2025, ESP_046156_1980, ESP_036661_2025). 5. Textured 
bedrock. Consists of areas of rougher textured rock. The ground is often pitted 
by many small craters (5a).Or areas of bedrock can exhibit small undulations, 
furrows, and ridges on a 5-20 m scale (5b).These often form blocks surrounded 
by non-bedrock material (5c). (ESP_033826_2030, ESP_042556_1985, 
ESP_051351_2025). 6. Rugged bedrock. The roughest bedrock surfaces, with 
the most pronounced texture and the highest relief. In 6a bright areas consist 
of patches of rugged bedrock emerging from beneath the darker, smooth 
featureless, mantling material. Small areas of ripples are seen around the 
bedrock outcrop. Bright outcrops of rugged bedrock can be interspersed with 
darker patches of smooth featureless and textured non-bedrock terrain (6b), or 
grade into textured or smooth bedrock (6c). (PSP_007019_1980, 
ESP_037070_1985, ESP_036661_2025). 7. Fractured bedrock. Areas of bright 
bedrock, clearly fractured in a polygonal or rectilinear pattern. In 7a this 
fracturing becomes more pronounced, and darker to the east, where smooth 
material can be seen in the gaps between fractured blocks. In 7b Small net-
works of fractures occupy the centre, incising the textured bedrock which 
covers the rest of the framelet. These fractures are long, sinuous features, with 
only a few polygonal cells. In 7c a much more complex network of fractures 
incises rugged bedrock. This network covers a larger area and has clear 
polygonal and rectilinear cells. Some patches of smooth textured terrain can 
be seen in the darker regions between fractures and blocks. 
(ESP_045747_2030, ESP_042556_1985, ESP_044679_1985).   
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Fig. 2. Aeolian and clastic cover class examples. 8. Simple form large ripples, 
continuous. Continuous fields of decametre scale ripples. All of the material 
between the ridge crests has the same texture as the ripples themselves, so can 
be interpreted to be an aeolian deposit (e.g. 8a). 8b shows variation in size 
within this class with transitional ripples in a small crater. Features to the top 
left are very large but become progressively smaller towards the bottom left, 
before dropping below the 5 m threshold for “large” ripples. Features in 8c 
have the same morphology, but are on the smallest end of the scale. Most are 
only slightly larger than the < 5 m cut-off. (ESP_036661_2025, 
ESP_037070_1985, ESP_011937_1970). 9. Simple form large ripples, isolated. 
Isolated large ripples over any substrate. The ground between the ripples can 
have a smooth featureless texture (9a), textured (9c), or bedrock (9b). The 
surface in 9a could be of the same material which makes up the bedforms, 
however this cannot be definitively determined. The ridge crests are separate, 
and the structures do not merge together, except at the ends of a few ripples. 
(ESP_045523_1985, ESP_046525_2030, ESP_046525_2030). 10. Rectilinear 
form large ripples. A rare class, where perpendicular banks of ripples intersect 
forming a network of rectangular cells. 10a shows the transition between 
rectilinear and simple forms; rectilinear cells can be seen to the left side of the 
image and grade into longer, sinuous ripples with a simple morphology or 
parallel ridge crests. 10b shows medium sized bedforms while 10c shows 
larger ones. All exhibit a clear rectilinear pattern. In these cases cells cover the 
entire area of the framelet. (ESP_036872_2025, ESP_040288_1980, 
ESP_044204_2020). 11. Continuous small ripples. Small ripples < 5 m across, 
which form a continuous blanket, with no intervening material. These are 
often found on the periphery of patches of large continuous ripples (11a), 
however, only those ripples which are entirely below 5 m in width qualify. 
Patches of tiny ripples cover large areas, some are only just above the reso-
lution of the image (11b&c). (ESP_049162_2020, ESP_036925_1985, 
ESP_037070_1985). 12. Non-continuous small ripples, bedrock. Small <5 m 
ripples which are sparsely distributed over bedrock substrates. In 12a dense, 
but non-continuous, bedforms, form patches which overlay textured bedrock. 
In 12b. Very small patches of discontinuous bedforms are found within small 
impact craters. The majority of the image is made up of textured and fractured 
bedrock 12c shows slightly larger bedforms, which are more evenly spread 
over the area of bedrock. (ESP_042556_1985, PSP_002694_1985, 
ESP_040433_1985). 13. Non-continuous small ripples, non-bedrock. Small <5 
m ripples which are sparsely distributed over non-bedrock substrates. 13a 
shows Approximately evenly spaced non-continuous bedforms, trending 
north-south. The material between them has little texture, suggesting that it is 
of a non-bedrock type. 13b&c show larger bedforms, on the upper limit of the 
size class. Some patches of bedrock protrude from the smooth featureless 
mantle, but the majority of ripples occur over non bedrock. 
(ESP_043637_2030, ESP_044204_2020, ESP_044204_2021). 14. Boulder fields. 
Areas with denser boulder cover. In 14a the clastic material over-lies a region 
of textured bedrock, and is surrounded by smooth and textured bedrock. There 
is space between individual clasts. Clast size varies, however the boulder field 
is spread fairly evenly over the area it covers. The boulder field in 14b is much 
less dense, with a small scattering of clasts across almost the entire area of 
textured bedrock, which occupies most of the framelet. Small patches of 
textured non-bedrock can be seen around the edges, and do not include clastic 
material. 14c shows a slightly denser, and more widespread boulder patch, in 
the vicinity of a small impact crater. (ESP_046960_2030, ESP_406103_2030, 
ESP_044811_1985).   
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3.2.2. Class 5: textured “bedrock” 
This class can confidently be interpreted as bedrock due to visible, 

significant small-scale structure and/or relief (even if appearing 
random). Textured terrains are gently scalloped, pitted, or undulating at 
a 5-10 m horizontal scale. This class is challenging to describe generi-
cally, since various textures can produce roughness, including pitting, 
craters, or the general roughness of the exposed surface. Areas with a 
fractured morphology form their own class, although they frequently 
grade into “textured bedrock” in areas where fracture patterns are 
weathered into hummocky ground. The traversability of textured 
bedrock is expected to depend on the prevalence of local hazards and 
relief, but should generally be fairly good. 

3.2.3. Class 6: rugged “bedrock” 
This class can be confidently interpreted as bedrock since it com-

prises areas of rugged, high-relief terrain. The crisper texture shows that 
it is not covered by regolith. This class can include small craters, scarp 
crests, and rugged hillslopes. Crater scarps are often classified as small 
areas of rugged bedrock, within a wider textured surface. Rugged terrain 
can also be found around the edges of some fracture networks, where the 
fracture pattern is too degraded to be recognisable as such. Rugged 
bedrock is expected to have poor traversability, with a large proportion 

of hazards. Progress through such regions is expected to be slow. 

3.2.4. Class 7: fractured “bedrock” 
Fractured terrains are confidently interpreted as bedrock due to 

textures comprising clear linear, polygonal, or rectilinear fracture pat-
terns. Traversability of fractured bedrock is expected to be highly situ-
ational, as fractures could provide a substantial hazard if they are deep 
or wide enough to block the path of the rover. 

3.3. Large ripples (decametre scale) 

3.3.1. Class 8: simple form large ripples, continuous 
A continuous field of aeolian material where bedforms merge into 

one another with no evidence of bedrock or non-aeolian regolith in 
between. These ripples exhibit a clear ridge crest and are of a “simple” or 
“sinuous” morphology (Balme et al., 2008), since all the ripples are 
parallel. The wavelength of the features is of the scale of 5–20 m. Bed-
forms indicate the presence of loose, wind-deposited particles, with 
traversability dependent on thickness and spatial extent of the deposit. 
Large patches of continuous ripples would provide some of the most 
dangerous or time-consuming areas to traverse. The distinction between 
continuous and non-continuous features is thus important for deter-
mining their extent, and thus the hazard they might pose. 

3.3.2. Class 9: simple form large ripples, isolated 
These bedforms are isolated from one another, surrounded by 

bedrock or non-aeolian regolith. They have a clear ripple-like 
morphology with a distinctive ridge crest. Across-bedform distance 
>5 m. Isolated ripples would be expected to provide poor traversability, 
and their large size could make them challenging or time-consuming to 
navigate around. 

3.3.3. Class 10: rectilinear form large ripples 
Rectilinear ripples comprise a continuous field of >5 m scale bed-

forms as with type 8 above. However, the bedform crests are not par-
allel, but instead form a complex rectilinear or polygonal network. This 
class is only found as large ripples. Large rectilinear ripples could be very 
difficult or time-consuming to traverse since the rover could become 
surrounded by impassable sand ridges. Fortunately these features have a 
very small spatial extent, so the chance of landing in the vicinity of them 
is low. 

3.4. Small ripples (metre scale) 

All features at this scale have a simple morphology. 

3.4.1. Class 11: continuous small ripples 
This class comprises a continuous blanket of small ripples <5 m wide 

across the ridge crest. No bedrock or underlying regolith can be seen 
between the ripples. Continuous small ripples would present a sub-
stantial challenge to traversability, and should likely be avoided. 

3.4.2. Class 12: non-continuous small ripples, bedrock 
This class consists of small (<5 m across) ripple-like bedforms that 

dominate the surface but are not continuous. Bedrock can be observed in 
between the bedforms. This class is used when there are too many small 
bedforms to label individually, but cover is not total (>25%; <100% 
coverage by area). Discontinuous ripple patches are likely to be more 
easily traversable than continuous ones. Areas of bedrock between the 
ripples would provide grip for rover wheels, so long as the bedforms can 
be navigated around. The ripples themselves would still pose localised 
hazards, so progress would likely be slow. 

3.4.3. Class 13: non-continuous small ripples, non-bedrock 
This class is similar to type 12, but the underlying substrate is formed 

of non-bedrock material. The same uncertainties that apply to open 

Fig. 3. Variation in the spatial density of discontinuous ripples. The yellow 
square is 128 m across, the size of a training framelet (HiRISE: 
ESP_046103_2030). 

Table 2 
Final ontological classes.  

Surface classes Likely traversability 

Non-bedrock   
1. Smooth, Featureless Uncertain Traversability  
2. Smooth, Lineated Low Traversability  
3. Textured “Non-Bedrock” Uncertain Traversability 
Bedrock   
4. Smooth “Bedrock” High Traversability  
5. Textured “Bedrock” Fair traversability, potential for 

Localised Hazards  
6. Rugged “Bedrock” Very Low Traversability  
7. Fractured “Bedrock” Localised Hazards 
Dispersed Classes  
Large Ripples   
8. Simple form large ripples, Continuous Low Traversability  
9. Simple form large ripples, Isolated Potential Low Traversability  
10. Rectilinear form large ripples Very Low Traversability 
Small Ripples   
11. Continuous small ripples Low Traversability  
12. Non-continuous small ripples, Bedrock 

substrate 
Localised Hazards  

13. Non-continuous small ripples, Non- 
Bedrock substrate 

Low Traversability 

Other Cover   
14. Boulder fields Localised Hazards  
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areas of non-bedrock terrain apply here, with the added complication of 
localised hazards from the maze of small ripples and their associated 
sand deposits. 

3.5. Other cover 

3.5.1. Class 14: boulder fields 
Boulder fields consist of dense accumulations of float-rocks closer 

together than a few meters (on the order of ten rocks per 10 m2). Boulder 
fields will probably be difficult for the Rover to traverse. Some very 
dispersed fields could be navigable, although progress would likely be 
slow. Dense block fields could be impassable. 

4. Data collection 

Fig. 4 shows the workflow for the project, indicating which stages of 
the work were conducted by the computer science team (yellow) and the 
geomorphology team (blue). Selection of framelets is detailed in Section 
4.1, while 4.2 discusses the setup of the NOAH-H Dataset Annotation 
Tool (DAT). Labelling is detailed in 4.3 and the training and evaluation 
of the model in Sections 5.1–2 and 5.3–6 respectively. Section 6 then 
details the geomorphological assessment of the output rasters. 

4.1. Framelet selection 

100 HiRISE images with full 25 cm/pixel resolution were identified. 
At each landing site, the 50 images which provided the best coverage of 
the 1-sigma landing ellipse were selected, starting at the centre and 
working out. Some images were disqualified, either because they had 50 
cm/pixel resolution, or because they formed half of a stereo pair with an 
image which had already been selected, and so covered exactly the same 
features. The choice of which image from each pair to include was 
random. 

Once the best possible coverage of the 1-sigma ellipse was attained, 
outlying images, scattered across the 3-sigma ellipse were added, until 
there were 50 for each site. These were chosen to provide additional 
examples of classes which were underrepresented in the preceding 
images. 

Selection of training data took place in summer of 2018, so the 
landing ellipses used to define the study areas date from that time. The 
position of the Oxia Planum ellipse has subsequently changed due to the 
revised ExoMars mission timeline, while Mawrth Vallis was not ulti-
mately selected. Many more HiRISE images have been acquired for these 
sites in the time since this project began. However, in 2018 the 1-sigma 
landing ellipses at both sites already had almost full coverage of red- 
band HiRISE images. 

A series of 128 m × 128 m framelets were digitised using ArcGIS at 
locations where representative features were found. These were then 
exported to a non-georeferenced GIS shape file, which was used to 
automatically crop out the relevant sections of the HiRISE images, and 
upload them to the NOAH Data Annotation Tool (DAT) (Section 4.2). 

Between ten and twenty framelets were selected for each HiRISE 
image, giving a total of 1504, covering both landing sites as shown in 
Table 3 and Fig. 5. An equal number of images were surveyed from each 
study area, although slightly more framelets were ultimately selected 
from Mawrth Vallis than Oxia Planum. 

Framelets were placed manually so as to ensure that their contents 
provided the maximum number of examples. It was vital that the 
training dataset provided a representative catalogue of all ontological 
classes, and the full variety of intra-class variations present at the sites. 
Random selection and placement would not have yielded sufficient va-
riety. Terrain with large spatial extents would have been dispropor-
tionately represented, while rare features would not have been sampled 
at all. Type examples were selected which demonstrated both “good” 
examples of the various classes, and less distinct morphologies which 
still conformed to a class. The aim was to ensure that every terrain the 

algorithm encountered could be assigned a class. 
Very few framelets were directly adjacent. This was only done in the 

case of very rare morphologies such as rectilinear ripples, where it was 
essential to get as many framelets from a given example as possible. In 
most other cases they were located hundreds of metres apart. Using 
discontinuous framelets allowed examples to be drawn from a much 
wider area than if a single HiRISE image had been labelled in its entirety. 
This ensured that the algorithm had a representative suite of examples to 
learn from and makes the resulting model more transferable between 
different parts of the study area. The use of framelets also made the 
labelling task more manageable since the labeller is shown small sec-
tions of image in turn, rather than having to segment a single large area. 
It also allowed the DAT to be built on top of the existing “Zooniverse” 
platform. This division of data was only used as part of the training and 
validation process. The final model classified entire HiRISE images and 
not just small subsections. 

Labelling was conducted in two batches. An initial set of training 
data was labelled early on in the project. This was later supplemented 
with additional images, both to increase overall support, and to allow 
the balance between the different classes to be improved by targeting 
features which were under represented the first time around. This 
allowed the computer science team to attempt a first run of the model 
with the initial batch, which provided useful information as to which 
classes required more support. Different framelets were reserved for 
validation in each stage of the experiment, to avoid overfitting. The 
images used, and the number of framelets contributed by each image are 
listed in Table 3. 

The training dataset is representative of the variety of textures pre-
sent at the sites, but not their relative proprotions. Some landform types 
are much more common in the study areas than others. Examples of the 
“textured non-bedrock” class occur in almost every framelet acquired, 
and “rugged bedrock” is also extremely common. “Ripples” are common 
in most areas, but vary considerably in scale and distribution. Classes 
such as “lineated non-bedrock”, “smooth bedrock”, “boulder fields”, and 
“rectilinear ripples” are much rarer. Uncommon landforms were delib-
erately targeted, and so occupy a larger proportion of the framelets from 
the images in which they do occur. Even so, there are fewer examples of 
them, so while every effort was made to maximise coverage of these 
features, they inevitably provided a smaller area of labelled pixels 
overall. The number of pixels labelled as each ontology is shown in 
Fig. 8. There is a large difference in support between the more common 
landforms, and those which are rare. Abundance of a class in the training 
dataset is not representative of its abundance across the site as a whole, 
since the surface area of common classes is so much higher than that of 
rare ones that the dataset would not be usable if the actual proportions 
were used. 

4.2. The dataset annotation tool (DAT) 

Features within the framelets were labelled using the NOAH Dataset 
Annotation Tool (DAT) (Wallace et al., 2017), producing a dataset of 
pixel-class pairs. In contrast to the initial NOAH project, labelling was 
carried out by the research team, rather than through a citizen science 
program. The degree of expertise required to distinguish between subtly 
different classes using remote sensing data precluded a crowd sourcing 
approach in this case. 

The DAT originally proposed in Read et al. (2018) was extended to 
enable manual annotation and pixel level labelling of HiRISE images 
based on the defined ontological classes. It was designed on top of the 
Oxford University Zooniverse platform (Simpson and De Roure, 2014). 
Zooniverse provided extensive built-in functionality, but certain fea-
tures needed to be extended in order to ensure high quality annotation 
data, and to support the users during the labelling campaign. 

Newly added features included a contextual ‘zoomed-out’ version of 
the image, and showing metadata in the participant’s view. Image 
number of the original HiRISE data product was provided, and the 
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Fig. 4. Illustration of project workflow, and the roles played by the Computer Science and Geomorphology teams.  
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locations of the top left and bottom right corners of the image were 
shown in both pixel coordinates and latitude and longitude. This 
allowed further analysis of the image to be conducted using GIS software 
in parallel with labelling in the DAT. Fig. 6 shows an example of the 
interface, including the contextual zoom and metadata display. A global 
progress indicator was provided allowing users to visualise overall 
annotation progress by seeing pins on a map of Mars. 

4.3. Labelling procedure 

Each framelet was briefly examined to determine which classes were 
present. Labelling was conducted by segmenting the image using a 
polygon tool, ensuring that each polygon only included terrain of a 
single class. This polygon was then assigned the appropriate label, 
producing a vector dataset indicating which pixels shared a class label. 
The aim was always to ensure that all labelled pixels conformed to the 
chosen class. 

In some cases, an area was segmented in several blocks, so as to more 

effectively define its extent. More complex, or harder to interpret re-
gions were segmented last, carefully building shapes around areas which 
had already been defined. In cases where several small blocks were 
contained within the extent of a larger area, these were segmented first. 
This allowed the user to more effectively draw a larger shape around 
them. Transitional zones were frequently left blank, or classified later, 
when experience drawing the earlier segments resulted in an improved 
understanding of the image. In cases where longer ripples overlaid 
bedrock and non-bedrock material, the boundaries of the surface blocks 
formed the boundaries of the labels. Fig. 7 illustrates the process of 
digitising framelets in the DAT. Before and after images are presented, 
showing how the different terrains are identified. 

Polygons were drawn as tight around the features being digitised as 
possible. In instances where boundaries were not clearly defined only 
the central, definitive block was segmented. In rare cases where an 
overlap occurred, the polygon which was drawn last took precedence. 
Every effort was taken to avoid overlaps. They occasionally occurred 
due to user error but not often enough to be statistically significant. 

Fig. 5. Maps of a. Mawrth Vallis and b. Oxia Planum, showing distribution of framelets and HiRISE images (McEwen et al., 2010, NASA/JPL/UoA) over the MOLA 
global topographic map (Smith et al., 2001). 
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Not all pixels in a given framelet were labelled. It was not always 
possible to assign a unique class to every section of an image. The pro-
cess of neatly drawing polygons around specific features sometimes 
precluded the possibility of making them tessellate exactly. It was often 
pragmatic to leave small areas blank if that made the digitisation of 
larger areas easier. Ensuring that the labelled areas were definitive was 
more important than labelling every possible example in a framelet. 

Every effort was taken to ensure that the labelled areas did not just 
comprise “easy” or “good” examples. Labelling was conducted by a 
trained geomorphologist with years of experience of interpreting the 
martian landscape at HiRISE scale. Extensive work was carried out to 
determine which terrains would be included in each of the classes, and 
type examples were chosen which represented every expression of a 
given class, ranging from very good examples to extremely poor ones. 
Thus the only sections which were not labelled were ones where the 

terrain was truly equivocal, and it was not possible to make a reliable or 
repeatable determination. This included some transitional regions 
where the terrain conformed to the characteristics of multiple classes. 

It was ultimately decided that a single geomorphologist should 
conduct all of the labelling. This reduced the effect of subjectivity, and 
ensured that the images were labelled consistently. We acknowledge 
that this means that our algorithm will only be as good as the geomor-
phologist who trained it. In principle a larger number of labellers could 
have provided an additional check, and given the algorithm a more 
varied perspective. However there is also a chance that additional 
labellers would have introduced additional error and subjectivity into 
the method. It would be interesting to compare the two approaches, but 
doing so was beyond the scope of the present work. The constraints of 
the project and the team’s time meant that it was not possible to employ 
multiple labellers in the time allotted for the project. 

Fig. 6. The Dataset Annotation Tool. (HiRISE image: ESP_040921_1985).  

Fig. 7. a–b. Digitisation of a block of rugged terrain, showing the “buffer zones” of unclassified ground at the transitions between the classes. c–d. Labelling of large 
isolated ripples over fractured bedrock. The ripples and blocks of featureless ground are digitised first; the remaining area can then be labelled as fractured bedrock 
The majority of the unlabelled area of the image was subsequently classified as bedrock. e–f. Process of digitising a varied area (HiRISE: ESP_047237_2025). 
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A total of ~2.36 × 108 pixels were labelled across the 1504 frame-
lets. The labelling work was split into two campaigns, to allow the DNN 
performance to be evaluated before deciding what additional labelling 
was required. 

5. Training the DNN 

5.1. Dataset 

Two labelling activities were conducted as part of the NOAH-H 
Project. The “First Run” included only the initial batch of labelling. 
The “Second Run” included data from both batches, ensuring an overall 
increase in support (i.e. number of pixels classified) for the various 
classes (Table 4). A third dataset known as the “Final Run” balanced the 
overall support for some classes by making small but focused modifi-
cations to the second run. In order to properly evaluate the system, the 
dataset was randomly split into two sets: 90% for Training and 10% for 
Validation. A unique validation set was created for each campaign to 
avoid overfitting. In addition to these unique validation sets, a separate 

“test set” was produced, which was used to compare the results of the 
three runs. 

To evaluate the performance of the NOAH-H system as a broader 
semantic segmentation network, the ontological classes were also 
combined into the five interpretive groups; Bedrock, Non-Bedrock, 
Large Ripples, Small Ripples, and Boulder Patches. Fig. 8 presents a 
full breakdown of the number of labelled pixels and the support for each 
class in the total number of pixels, i.e. the percentage of data of each 
class in the whole dataset (including both training and validation sets). 

The number of MP across all classes almost doubled between the first 
and second runs. The percentage of support increased in the classes with 
low numbers of labelled pixels and became more even for the two 
dominant classes “Non-Bedrock” and “Bedrock”. 

5.2. DNN methodology 

The aim of the NOAH-H project was to address the identification of 
semantically accurate predictions and the definition of segmentation 
maps along object boundaries of novelties/anomalies from HiRISE 

Fig. 8. Distribution and support of labelled pixels for; a&b. All classes and c&d. interpretive groups.  

Fig. 9. Illustration of Atrous convolution, in the Google DeepLab model. Output stride is the ratio of the original image and the output feature map. (Image credit: 
Chen, 2017). 
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images. 
To overcome this challenge, we focused on a technique known as 

semantic segmentation to process small areas of the HiRISE image by 
extracting local features. The principle of semantic segmentation models 
(Badrinarayanan et al., 2017; Chen et al., 2018b; Papandreou et al., 
2015) involves classifying each pixel of an image by analysing the region 
around it, often called the receptive field, and passing it through a deep 
network to compute a class prediction. A common state-of-the-art se-
mantic segmentation approach has been described in Long et al. (2015), 
in which the authors designed an approach to generate segmentation 
maps for images of any size by using a CNN architecture for dense 
predictions without any fully connected layers. 

However, some Deep Learning architectures offer a different 
approach to semantic segmentation by learning multi-scale contextual 
features. One such example is the model designed by Google: DeepLab 
(Chen, 2017; Chen et al., 2018a; Liu et al., 2019) the architecture of 

which is shown in Fig. 9. 
Instead of regular convolutions, DeepLab uses Atrous Convolutions, 

also referred to as dilated convolutions, which can expand the filter’s 
field of view. These specialized convolutions effectively increase the 
receptive field of the filters without increasing the filter size. This 
allowed us to give more context to the network to classify each pixel. It 
offered an efficient mechanism to control the field-of-view and found the 
best trade-off between accurate localisation (small field-of-view) and 
wider range context with more semantic information (large field-of- 
view). 

Atrous convolutions are particularly suited to dense semantic seg-
mentation as they expand the receptive field without losing resolution or 
coverage. There are cases where one wants to balance the pixel level 
accuracy such as detection around the edges of a feature and informa-
tion of a wider context. To solve this problem, multi-scale convolutional 
layers are used at a cost of efficiency. To increase the runtime 

Fig. 10. Comparison of precision (top), recall (middle), and IoU (bottom) across all runs. Descriptive classes (left), and interpretive groups (right).  
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performance atrous convolutional layers are used instead of the multi- 
scale ones as shown in Yu and Koltun (2016). They were thus a good 
choice for this study. 

The training of the model was done on a Linux machine using Python 
and Tensorflow for ease of adaptation and visualisation. Input size was 
the entire framelet padded with an extra pixel at the edges if required. 
The initial run of the model was allowed to train for 30,000 iterations 
with a batch size of 10. Since we did not know how the model was going 
to behave during training this was preferable to having it automatically 
stop. After observing the performance, in order not to overfit, we chose 
to use an early-finished model that was trained to 19,500 iterations. We 
decided to stop any further training when we did not observe any 

increase in accuracy during training, and a drop of accuracy in the 
remaining 10% of the training data. 

5.3. Evaluation measures 

The accuracy of the model was assessed in terms of the agreement 
between the model prediction and the manually labelled validation set. 
This was evaluated using the Precision, Recall and Intersection over 
Union (IoU) metrics. These are some of the most common metrics for 
semantic segmentation and are extremely effective at deciding whether 
a prediction is correct with respect to an object or not. They compare the 
model output to the original labelled framelets reserved for validation. 

Fig. 11. Difference in IoU of the “Second” and the “Final” run.  

Fig. 12. Example of a labelled HiRISE image with colour codes for all classes. This illustrates how labelled framelets appear, and how they are distributed on a 
representative image. (HiRISE image: ESP_019809_2030_RED). 
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The level of support for each class is factored into the calculation of IoU. 
It thus provides a robust means of assessing the reliability of the model. 
A confusion matrix (e.g. Tharwat, 2018) was used to calculate the 
metrics for the individual classes. 

The Precision, Recall, and IoU for each class was measured using the 
following formulae: 

Precision = TP/(TP+FP) (1)  

Recall = TP/(TP+FN) (2)  

IoU = TP/(TP+FP+FN) (3) 

Where:  

• True Positive (TP): Number of pixels correctly classified.  
• False Positive (FP): Number of pixels incorrectly classified.  
• False Negative (FN): Number of pixels incorrectly not classified. 

Precision calculates the percentage of pixels that the AI identified 
with the correct label, out of all the pixels that the AI labelled as that 
specific class. This shows the extent to which the NOAH-H classification 
matched how the terrain was labelled by the expert. Intuitively, this 
means how well the AI did when predicting a pixel label. 

Recall assesses whether the machine learning algorithm is reliably 
identifying all areas which were manually labelled as a specific ontology 

by the science team. It calculates the percentage of labelled pixels from 
the evaluation dataset which were labelled correctly by the model. 
Intuitively, this means how well the AI did in not missing the pixels that 
the experts labelled. 

These metrics allow the results to be considered in two key ways:  

1. When the model has found a class, has it got it right? (precision)  
2. When a class is known to be present, has the model found it? (recall) 

The IoU essentially combines the precision and recall metrics into 
one. It is used to compare multiple runs or models, since only one 
number per class needs to be considered. Precision, Recall and IoU re-
sults are shown in Fig. 10. In order to further compare various models, 
without looking into the individual classes, the mean IoU was calculated 
as an average across all IoUs for all classes. Mean IoU was weighted by 
the prevalence of those classes to provide a fair comparison. This gave us 
a single value of performance for each model, which we could easily 
compare. 

5.4. Variation between runs 

For the First Run the mean IoU across all pixels for the full class list 
was 72.73% while for the combined groups it was 92.5%. Because the 
performance of the model was higher when combining the classes, we 
conclude that more training data are needed for the confused classes. As 

Fig. 13. Example output of the NOAH-H system, showing how the full image is classified. a. Output of the “First Run” model with all the classes of the ontology. b. 
Output of the “Final Run” model with all classes. c. Output of the “First Run” model with all the combined classes. d. Output of the “Final Run” model with combined 
classes. (HiRISE: ESP_019809_2030). 
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shown in Table 5, more data were labelled for the Second Run, for which 
the mean IoU across all pixels was 72.83% (+0.09%) for the full class list 
and 91.91% (− 0.59%) for the groups. 

Despite the big increase in labelled data, the agreement with the test 
set remained almost the same. We increased some of the classes that 
were originally confused; however this caused other classes to drop in 
accuracy, yielding no overall gain in performance. For the “Final Run” 
we decided to include only the new data for the classes with low accu-
racy, the mean IoU across all pixels became 74.15% (+1.33%) for the 
full class list and 92.33% (− 0.17%) for the groups. 

We can see an improvement in the classes to which more training 
data were added, but this still caused a drop in accuracy for other 
classes. Fig. 11 plots the difference in accuracy of the latter two runs 
against the first, to better visualise the changes. This demonstrates that a 
better understanding of the training data is crucial to the accuracy of the 
model, since 11 out of the 14 classes improved in the Final Run and only 
3 out of 14 decreased in accuracy compared to the Second Run. 

For the groups the results were almost identical. By carefully adding 
the correct data to improve the training set distribution, we were able to 

improve specific classes such as the small ripples when a new model was 
trained with the revised data. However, careful investigation is needed 
to not cause any decrease in other classes’ accuracy. These results show 
such a decrease in the combined classes and the individual classes for 
smooth and lineated non bedrock, where there was at least an 11% 
decrease in performance. 

The modification of the training data between the “Second Run” and 
“Final Run” was informed by the results of the previous attempt and 
showed that data balancing techniques needed to be included in future 
models. The total number of images should not have been selected from 
the start of the project but rather by checking the balance of the classes 
and the confusion between specific classes. By improving the balance of 
the training dataset for future versions of the model, we were able to 
improve the results, without overfitting to the specific sites. 

5.5. Variation between classes 

When considering whether the results are fit for purpose, it is 
important to analyse the substantial variation in precision, recall, and 

Fig. 14. Comparison example of the NOAH-H system for a 512 × 512 pixel (128x128m) framelet from the validation set. a. Expert Labelled framelet showing all 
classes. b. Output of the “First Run” model. c. Output of the “Final Run” model. a-b. Difference between expert labelled framelet and first run. a-c. Difference between 
expert labelled framelet and final run. The bottom row shows the effect of combining classes into thematic groups. d. Expert labelled. e. first run. f. final run. (HiRISE 
image: ESP_019809_2030). 
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Fig. 15. Double crater in Mawrth Vallis with large field of 
aeolian ripples. Crater rim correctly classified as rugged 
bedrock (dark-blue), much of the ejecta is also rugged, with 
textured (mid blue) areas. A small patch of fractured 
bedrock (magenta) is correctly identified to the north of the 
image. The dense region of large continuous ripples 
(bright-yellow), with large isolated ripples (orange) at the 
periphery is detected, as are other isolated ripples outside 
the craters. All have been delineated well. The contact 
between the regions of large and small bedforms has been 
correctly identified. A large region of smooth lineated non- 
bedrock (pale-green) is correctly identified on the inner 
crater wall. The edges of the ripples are very clearly iden-
tified, and the transitions between the different bedrock 
and non-bedrock classes are largely accurate. a. NOAH-H 
output raster, b. Original HiRISE image from 
ESP_046459_2025. c. NOAH-H over HiRISE. d. close up of 
fractured ground. e. close up of aeolian bedforms. (For 
interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this 
article.)   
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Fig. 16. Boulder field (purple) between several small 
impact craters interspersed with small ridges of rugged 
bedrock (dark blue). Ground not covered by boulders 
consists of a textured non-bedrock surface (green). The 
classified raster highlights these features very well. In most 
cases the boundary between discontinuous small ripples 
over non-bedrock (turquoise) and continuous ripples (pale 
yellow) has been identified appropriately. However, it 
does cut across some individual bedforms. a. NOAH-H 
output raster, b. Original HiRISE image from 
ESP_046960_2030. c. NOAH-H over HiRISE. d. close up of 
aeolian bedforms. e. close up of boulder field. (For inter-
pretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.)   
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Fig. 17. Rough terrain in Mawrth Vallis, with small 
patches of ripples. A few large isolated ripples (orange) are 
scattered across the site, either as part of larger regions of 
small ripples, or individually. Small patches of fractures 
(magenta) are found reliably within large areas of textured 
and rugged bedrock (mid & dark blue). The edges of ripple 
classes are well defined, and the transitions between 
different types of ripple are largely correct. Small areas of 
interspersed bedrock and non-bedrock are generally iden-
tified correctly; however, the transitions between areas of 
different textures are not always precise, since the margins 
are actually gradational. a. NOAH-H output raster, b. 
Original HiRISE image from ESP_037294_2025. c. NOAH-H 
over HiRISE. d. close up of varied area. e. close up of 
aeolian bedforms. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the 
web version of this article.)   
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Fig. 18. Blanket of meter-scale continuous or near- 
continuous ripples. These are hard to identify unless the 
image is viewed at full-resolution and, as they form a 
relatively thin mantle, they do not obscure the underlying 
relief when viewed at lower image resolution. The ripples 
overlie a variety of rugged, textured, and fractured 
bedrock areas. The borders between the ripple-covered 
areas and the exposed bedrock are clearly delineated, 
although there are a few cases where small ripples extend 
into areas classified as textured non-bedrock. The NOAH-H 
classification very clearly shows the large scale distribu-
tion, even if the accuracy of specific margins can be 
debated. a. NOAH-H output raster, b. Original HiRISE 
image from ESP_019084_1985. c. NOAH-H over HiRISE. d. 
close up of small ripples in varied area. e. close up of 
fractured ground.   
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Fig. 19. Large field of ripples and areas of fractured 
bedrock in Mawrth Vallis. Variations in ripple morphology 
in the northern half of the image are well defined in the 
NOAH-H output, with transitions between large (mainly 
continuous) and small (usually discontinuous) ripples 
being clearly identified. Large isolated ripples (orange) are 
very clearly segmented. The large expanse of fractured 
ground in the south (Magenta) contains various small 
patches classified as other terrain types, mainly from three 
bedrock classes. In most cases these do correspond to non- 
fractured areas on the margin of the fractured domain. 
However, there are a few small areas (generally a few tens 
of pixels across) where subdued fractures are still present, 
but not classified as such. The few areas where discontin-
uous ripples (turquoise) overlie the fractured bedrock are 
generally identified correctly. Many of these border the 
larger, isolated ripples. a. NOAH-H output raster, b. Orig-
inal HiRISE image from ESP_035804_2025. c. NOAH-H 
over HiRISE. d. close up of fracture patterns. e. close up 
of varied area. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the 
web version of this article.)   
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Fig. 20. Ripple filled craters in Oxia Planum. This area 
consists primarily of textured non-bedrock, with a few 
bedrock outcrops. The largest of these are the rims of the 
various 50–300 m diameter impact craters, which are 
clearly identified as rugged bedrock (dark blue). The floors 
of these impact craters are filled with patches of ripples, 
including a correctly identified region of rectilinear ripples 
(red). Areas of isolated and continuous ripples are also very 
well resolved. A few pixels around the edge of the recti-
linear ripple patch are incorrectly identified as fractures, 
however the majority of the margins are well constrained. 
Fractured bedrock (magenta) is also correctly identified 
around the rims of the craters in the north east. a. NOAH-H 
output raster, b. Original HiRISE image from 
ESP_044178_1985. c. NOAH-H over HiRISE. d. close up of 
aeolian rectilinear and simple form ripples. e. close up of 
small crater. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web 
version of this article.)   
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Table 3 
HiRISE images surveyed and number of framelets selected for each study area.  

Mawrth Vallis Labelling Batch Framelets Oxia Planum Labelling Batch Framelets 

ESP_019809_2030_RED 1 10 ESP_011937_1970_RED 1 10 
ESP_026033_2020_RED 1 10 ESP_012214_1970_RED 1 10 
ESP_033826_2030_RED 1 10 ESP_035303_1970_RED 1 10 
ESP_035804_2025_RED 1 10 ESP_035580_1970_RED 1 10 
ESP_036661_2025_RED 1 10 ESP_036714_1975_RED 1 10 
ESP_036872_2025_RED 1 10 ESP_036780_1985_RED 1 10 
ESP_037294_2025_RED 1 10 PSP_007019_1980_RED 1 10 
ESP_037439_2020_RED 1 14 ESP_029264_1970_RED 1 10 
ESP_011383_2030_RED 1 10 ESP_036925_1985_RED 1 10 
ESP_014007_2030_RED 1 10 ESP_037070_1985_RED 1 10 
ESP_028578_2025_RED 1 10 ESP_037347_1985_RED 1 10 
ESP_032125_2025_RED 1 10 ESP_037426_1975_RED 1 10 
ESP_037795_2020_RED 1 10 ESP_037558_1985_RED 1 10 
ESP_038138_2020_RED 1 10 ESP_037703_1980_RED 1 10 
ESP_038349_2020_RED 1 10 ESP_038125_1975_RED 1 10 
ESP_038758_2025_RED 1 10 ESP_039154_1985_RED 1 10 
ESP_039879_2025_RED 1 10 ESP_039299_1985_RED 1 10 
ESP_040301_2025_RED 1 10 ESP_039721_1980_RED 1 10 
ESP_043637_2030_RED 1 10 ESP_039932_1980_RED 1 10 
ESP_043782_2025_RED 1 10 ESP_040288_1980_RED 1 10 
ESP_044204_2020_RED 1 10 ESP_040433_1985_RED 1 10 
ESP_044903_2025_RED 1 10 ESP_040921_1985_RED 1 10 
ESP_045114_2025_RED 1 10 ESP_041066_1985_RED 1 10 
ESP_045457_2025_RED 1 10 ESP_041132_1985_RED 1 10 
ESP_045536_2020_RED 2 20 ESP_041211_1980_RED 1 10 
ESP_045747_2030_RED 2 20 ESP_041422_1985_RED 2 20 
ESP_046103_2030_RED 2 20 ESP_041989_1980_RED 2 20 
ESP_046248_2020_RED 2 20 ESP_042134_1985_RED 2 20 
ESP_046314_2030_RED 2 20 ESP_042556_1985_RED 2 20 
ESP_046459_2025_RED 2 20 ESP_042622_1985_RED 2 20 
ESP_046525_2030_RED 2 20 ESP_042701_1980_RED 2 20 
ESP_046670_2025_RED 2 20 ESP_042846_1985_RED 2 20 
ESP_046960_2030_RED 2 20 ESP_043057_1985_RED 2 20 
ESP_047237_2025_RED 2 20 ESP_043558_1980_RED 2 20 
ESP_047738_2020_RED 2 20 ESP_044178_1985_RED 2 20 
ESP_047883_2025_RED 2 20 ESP_044257_1980_RED 2 10 
ESP_048239_2025_RED 2 20 ESP_044323_1985_RED 2 20 
ESP_049162_2030_RED 2 20 ESP_044679_1985_RED 2 20 
ESP_049307_2020_RED 2 20 ESP_044811_1985_RED 2 20 
ESP_049584_2030_RED 2 20 ESP_044824_1985_RED 2 20 
ESP_050151_2025_RED 2 20 ESP_044890_1980_RED 2 20 
ESP_050217_2030_RED 2 20 ESP_044956_1980_RED 2 20 
ESP_050507_2020_RED 2 20 ESP_045101_1980_RED 2 20 
ESP_050573_2025_RED 2 20 ESP_045378_1980_RED 2 20 
ESP_050652_2020_RED 2 20 ESP_045523_1985_RED 2 20 
ESP_050718_2025_RED 2 20 ESP_045589_1985_RED 2 20 
ESP_050797_2020_RED 2 20 ESP_046156_1980_RED 2 20 
ESP_050863_2030_RED 2 20 ESP_046235_1980_RED 2 20 
ESP_051219_2030_RED 2 20 ESP_046301_1975_RED 2 20 
ESP_051285_2025_RED 2 20 ESP_046367_1990_RED 2 20    

HiRISE Images Framelets  HiRISE Images Framelets 

Batch 1 24 244 Batch 1 25 250 
Batch 2 26 520 Batch 2 25 490 
Total 50 764 Total 50 740  

Table 4 
General dataset statistics: Total number of images for each set and the total 
number of Megapixels (MP). The number of MP are noted, along with an 
approximation of the percentage, of each image that was labelled using the DAT.  

Statistic First Run Second Run Final Run 

Total number of framelet Images 917 1507 1507 
Total number of framelet images for 

training 
824 (~ 
90%) 

1414 (~ 
94%) 

1414 (~ 
94%) 

Total number of framelet images for 
validation 

93 (~ 
10%) 

93 (~ 6%) 93 (~ 6%) 

Total number of pixels 240 MP 395 MP 395 MP 
Total number of labelled pixels 151 MP 259 MP 236 MP 
Percentage labelled of each framelet 

image 
~ 63.1% ~ 65.8% ~ 59.7%  

Table 5 
Confusion matrix showing where misclassifications occurred between the 
various bedrock classes.   

Labelled by Expert 

Prediction  Bedrock 
Smooth 

Bedrock 
Textured 

Bedrock 
Rugged 

Bedrock 
Fractured 

Bedrock 
Smooth 

51,074 8066 6025 4326 

Bedrock 
Textured 

13,135 391,910 262,316 61,240 

Bedrock 
Rugged 

1231 195,737 1,794,826 79,897 

Bedrock 
Fractured 

3296 86,113 98,123 1,173,215  
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IoU between the different classes. Are the terrains which present a very 
high or localised hazard reliably identified, or are they among the 
classes pulling down the overall average? 

Rectilinear ripples exhibit the highest precision, despite the low 
support for this class. This perhaps suggests that the model has learnt 
that it is rare, and so produced few false positives. Fortunately recall is 
also generally high, lagging only behind large simple ripples and frac-
tured and rugged bedrock. Rectilinear ripples are so distinct that they 
are rarely misclassified. This is good, since the large ripple classes pre-
sent major challenges for rover navigation, so the fact that all three are 
easily distinguished provides confidence that the model is fit for 
purpose. 

Other “hazardous” terrains such as boulder fields and fractured 
bedrock are also found with high precision, which may be due to their 
very distinct textures relative to the other classes. Rugged bedrock, the 
class which poses the greatest overall hazard, also shows strong agree-
ment with more than 80% precision in the final run. This is encouraging 
from a traversability perspective. 

The lowest precisions are seen for smooth and textured bedrock, 
while these improved in the final run, they are still not as reliably 
classified as the more distinct surface textures. Smooth bedrock is one of 
the “safest” classes to traverse, so any confusion with this is unfortunate. 
However, textured bedrock does not have high relief and so is generally 
safe. It might pose localised hazards but these would have to be iden-
tified in situ regardless of the model result. We thus do not consider this 
to be a dangerous form of confusion. 

Lower precisions were also found for the small ripple classes. The 
model struggles to identify whether small ripples are continuous, and 
whether they are found over a bedrock or non-bedrock substrate. While 
none of these are the most dangerous classes to confuse, lower agree-
ment here still limits the applicability of the model. Substrate is relevant 
to how much grip the rover might have when crossing a ripple field. 
However, not being able to determine this is not as critical as failing to 
identify a region which would be entirely impassable. Grouping the 
classes reduces variation in precision. Small ripples remain less reliably 
classified, but they are still correct in excess of 70% of cases in the final 
run. Section 6 will show that lower precision for this class at the pixel 
scale did not adversely affect the usability of the data at a landscape 
scale. These lower precisions are thus not ideal, but do not make the 
classified raster unfit for purpose. 

The recall results show a similar pattern, especially when classes are 
grouped. However, there are some minor differences. For many classes 
recall is slightly lower than precision. Just because the model is able to 
accurately label the examples that it has found, does not necessarily 
mean that all possible examples have been detected. This has important 
implications for the traversability assessment. If areas of low hazard are 
incorrectly classified as being dangerous, then this is likely to become 
apparent when a human operator inspects the area in order to decide 
how best to navigate around the hazard. A decision can then be made as 
to whether the model was correct in its classification. However, haz-
ardous terrains which are classified as safe by the model may not be 
inspected with the same care. Several classes; smooth bedrock and large 
continuous ripples have higher recall than precision. Small ripples over 
bedrock exhibit the greatest disparity. This indicates that most true 
examples of this terrain have been identified, but that many other 
landforms are also incorrectly labelled as this class. 

Recall results are high enough that the model remains fit for purpose, 
especially since the results are intended to augment a human workflow 
rather than replace it. However since recall is never perfect, the model 
should not be considered a sole arbiter of hazard, and should always be 
interpreted critically. 

The increase in agreement across all metrics when classes are com-
bined into interpretive groups is also encouraging since this demon-
strates that the majority of confusion is occurring within groups, rather 
than between them. While the model may struggle to distinguish be-
tween different ripple forms, or different surface textures, it is rarely 

confusing a field of ripples with a bedrock surface, or a boulder field 
with ripples. 

Non-Bedrock exhibits the least confusion with other groups, scoring 
a 96% prediction, with negligible amounts of confusion dispersed evenly 
among the other groups. 

Similarly, Bedrock scores well at 94% with the majority of the 
confusion caused by the Non-Bedrock Group. Large Ripples score 92% 
with all of the confusion shared with Small Ripples. However, the 
confusion between Large and Small Ripples is greater when predicting 
Small Ripples with over 20% of the confusion caused by this class. 
Boulder fields score reasonably well with 85% confidence. Bedrock is 
the main source of the confusion in this case. The groups, in and of 
themselves are not sufficient for traversability assessment, since there 
are variations in hazard within each (for example whether ripples 
overlie bedrock or not, the continuity of ripple fields, and the roughness 
of bedrock surfaces.) However they demonstrate that the model does 
well at predicting the thematic character of the site. 

The majority of confusion occurs between classes such as rugged and 
fractured bedrock, which frequently form a continuum. When trying to 
predict Fractured Bedrock the most confusion (7.2%) comes from 
Rugged Bedrock although Textured Bedrock also causes a degree of 
confusion albeit to a lesser extent. When predicting Rugged Bedrock this 
pattern is reversed with the main confusion coming from textured 
bedrock (9.2%). Both rugged and fractured terrains are potentially 
hazardous. Rugged terrain will always limit rover navigation, while the 
extent to which fractured terrain will be navigable might depend on the 
relief of the fractures and the extent to which they are infilled. Both 
would be best to avoid. The classification as potentially hazardous in-
vites manual inspection which can quickly identify which areas might be 
situationally traversable. 

5.6. Output examples 

The images selected for NOAH-H classification were chosen based on 
criteria of low-noise, full resolution (~25 cm/pixel), and central 
coverage of the landing ellipses. In total, 12 images were selected for 
Oxia Planum and 18 for Mawrth Vallis. These images were those which 
provided the most central coverage of the 1-sigma landing ellipses and 
so were most critical for the landing site selection exercise. Post- 
processing of the NOAH-H output included down-sampling to 2 m/ 
pixel and conversion to colour classes for analysis. 

Each of the classes was given a unique combination of RGB values in 
order to create masks with the classification. This allowed the output to 
be displayed conveniently as a different colour for each class in image- 
viewing software, and then to be easily converted into a single band 
product in a GIS. This allowed us to formally manipulate the data and to 
overlay the NOAH-H output onto the original HiRISE images for in-
spection. Figs. 12–14 show a “worked example” of a small, representa-
tive HiRISE image. Fig. 12 shows the colour codes chosen for all classes 
along with an example HiRISE image showing the distribution of 
labelling framelets, and the polygons with which they were labelled. 

The examples in Fig. 13 show the output of the model for an entire 
HiRISE image. This demonstrates how the model is able to learn from a 
small amount of data to segment the whole region with high accuracy, 
producing a result with strong agreement to the manually labelled set. It 
immediately provides a huge amount of classified data, which would 
have been laborious to acquire manually. 

Fig. 14 shows examples from the validation dataset for this image, to 
compare what was manually labelled, and what the system classified for 
the First and Final Runs. In the “Final Run” the system can very accu-
rately predict the labels assigned by the expert geomorphologists. It is 
also able to reliably classify the remaining un-labelled pixels. 

There are some aspects of the campaign presented here which mask 
the underlying performance of the algorithm versus the expert, which is 
not fully captured in the mean IoU. This is because the expert geologists 
have labelled portions of frames individually without labelling the 
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neighbouring frames; this means that the experts had the contextual 
information around the tile, but the DL trained model did not. A like for 
like comparison would require the geologists to label all of the pixels in 
the frames and in addition also label the neighbouring frames. 

6. Reliability and applicability 

6.1. Landscape level reliability 

In order to assess whether the classification is fit for purpose we must 
consider the geomorphological context of the results in Section 5. 
Considering accuracy not just on a pixel by pixel basis, but also on a 
“landscape scale”. The impact which errors will have on the usability of 
the data by a human operator depends greatly on how the misclassified 
pixels are distributed and between which classes the confusion occurs. 

In order for a landform to be observable in a raster image it must 
cover multiple pixels. Thus the spatial-scale at which variations in sur-
face geomorphology can be recognised using HiRISE is >1–2 m or 4–8 
pixels. Misclassified pixels reduce the accuracy of the model as a whole. 
However, their actual impact on the ease with which the output can be 
interpreted is highly situational and depends upon the tasks to which the 
data is put. 

Pixel scale accuracy is important when performing additional geo- 
processing operations or manipulating the output raster using GIS. If 
the classification were to be fed directly into a hazard avoidance system 
then ~74% agreement at the pixel scale might not be sufficient. How-
ever, for other purposes, such as locating terrains of a specific type or 
preparing geomorphological maps, it is more important that the broad 
trends are correct on the 4–8 pixel scale. Since this model is not intended 
to serve as a sole arbiter of hazard or geological origin It is most 
important that the results be easy for a human operator to interpret, so 
that they have the information needed to reliably make those next steps. 
Frequently this does not require the specific pixel-point pairing to be 
correct at every possible point, but rather that it is correct on average 
over the 4–8 pixel scale. 

Fortunately, this is what we see when examining the classified raster. 
Isolated incorrect pixels were often found in areas which were otherwise 
classified correctly. Coherent patches of misclassified terrain were less 
common (though they do occur). Erroneous pixels result from a variety 
of factors such as subtle variations in the surface texture at the metre 
scale, or a small “inclusion” of one terrain type within an area pre-
dominantly classified as another. These factors are discussed in more 
detail in Section 7. 

A large patch of coherently misclassified terrain would present a 
major challenge to interpretation of the raster by a human, whereas an 
equivalent number of inaccurate pixels, scattered randomly throughout 
a large area of otherwise correctly classified terrain would have little 
impact upon a human interpretation of the results. This means that, 
when creating summary products, landscape level accuracy can be 
improved by down-sampling the data using an appropriate averaging 
scheme. This removes isolated misclassified pixels and provides a 
product which is more accurate than the pixel scale IoU would suggest. 
The result is much closer to the sort of summary product produced by a 
human team, which would not attempt to classify every pixel scale 
variation. 

6.2. Qualitative assessment of representative examples 

We identified classes with lower IoU, which were frequently 
confused. By examining areas where such confusion occurred the geo-
morphology team were able to identify landscape characteristics which 
frequently result in misclassification. Consequently, we will be able to 
account for these trends in future work, using this dataset for science 
tasks. 

Figs. 15–20 show ~1 × 1 km square examples of NOAH-H output 
from the two study areas. Each figure consists of 3 images; the classified 

raster produced by the NOAH-H model, the original HiRISE image from 
which it was produced, and a translucent NOAH-H layer, overlain on the 
HiRISE image it classifies. Smaller insets provide a close-up view of key 
features. A slightly different colour scheme has been used for these 
figures, to better highlight the relationships between similar classes and 
to provide better contrast when draped over HiRISE data. The colour 
scheme has been applied consistently across Figs. 15–20. These exam-
ples were chosen because they are representative of the study areas as a 
whole rather than being particularly good or bad cases. Each image 
highlights one or more phenomena which affects the interpretability of 
the classified raster, and which should be taken into consideration when 
using the data. 

NOAH-H was found to be very good at identifying the key features of 
the HiRISE image, even if it did not always digitise them with 100% 
reliability. Large discrete features such as large ripples and the rims of 
craters are generally reliably identified, matching the high IoU for these 
classes. The “landscape level” character of the site is very well expressed 
by the NOAH-H results. However, many of the specific boundaries are 
open to interpretation. Consequently, while the classifier provides a 
valuable tool for further manual investigation, it is not able to produce a 
complete map by itself. 

Ripple forms were segmented most accurately of any of the groups. 
The edges of large ripples are very well defined, and patches are usually 
found reliably. There are, however, some peculiarities in how different 
ripple forms are classified. Fig. 15 shows a case where ends of ripples 
protruding from the main field have been classified as isolated (orange), 
while the rest of the ripple is continuous (yellow). 

A human mapper would be unlikely to assign two parts of the same 
feature different classifications. However, the two ends of these ripples 
do conform to different class descriptions, and the transition between 
the two is well defined. The model lacks the contextual understanding 
that a human would intuitively use to decide what constitutes part of the 
same feature. Splitting of ripples is also seen in Fig. 15, and occurs 
frequently across both study areas. While this is perhaps not how a 
human would digitise this landscape, it is not per se wrong and would 
not adversely affect traversability assessment. It should be noted that 
these peculiarities only occur in the discrimination between different 
ripple classes. When the broader group of ripples are considered as a 
whole, they are distinguished from other terrain types very reliably. 

More subtle variations such as transitions between different surface 
classes are not always as precisely segmented. There are also some ar-
tefacts, where small variations within a terrain were incorrectly classi-
fied as being examples of a different class. In any real landscape there is 
usually a dominant terrain, with small areas of other classes interspersed 
or overlain. In many cases the NOAH-H system was able to outline these 
smaller patches, but the boundaries were not always exact. 

While this limits the reliability of the data, it does reflect reality, 
since the transition from one surface to another is often gradational. The 
model is designed to segment areas exactly, and so has no way to deal 
with “fuzzy” boundaries. For example Figs. 17 and 18 both show cases 
where fracture networks extend beyond the areas classified in magenta, 
but become too subdued to be recognised by the model. 

Fractures grade into hummocky ground which has been classified as 
textured or rugged bedrock (mid & dark blue). A human is likely to give 
this terrain the “benefit of the doubt” since they can see that it adjoins a 
fracture pattern, and recognise the troughs as degraded fractures. 
Without that context, the AI decides where the boundary should lie 
using purely morphometric criteria, excluding areas which could argu-
ably belong to either class. This highlights an inescapable issue that even 
humans struggle with – how to classify an area that has characteristics of 
more than one class (i.e., a fractured, rugged bedrock area). 

In most cases where the exact boundaries could be disputed, the 
majority of the feature’s area is found to be correctly classified, leading 
to the generally high IoU reported in Section 5. The model’s pattern 
recognition is good, but it cannot make an interpretive leap based on the 
context of a feature. This results in what a human would consider an 
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incomplete classification. 
Boulder fields present an interesting challenge for the model, since 

they are discontinuous features, which overlie terrain of other classes; 
there are usually relatively large spaces between the blocks. This seems 
to make it hard for the model to digitise the full extent of the patch. An 
example can be seen in Fig. 15. Small patches of boulders have been 
identified along the rim of the southern crater. However, many areas of 
boulder strewn ground are grouped in with the rugged or textured 
bedrock (light & dark blue) which they overlie. The purple patches give 
an indication of where boulders are found, but do not segment their full 
extent. The classified raster meets the objective of providing a useful 
starting point for a human mapper but falls short of being able to digitise 
the terrain itself. 

Full digitisation of the boulder field is challenging, since there is no 
sharp divide between one class and another. Rather, as boulder spatial 
density decreases beyond a certain threshold, the terrain is no longer 
appropriately classified as being a boulder field, and the designation of 
the underlying terrain type should instead be adopted. A geomorphol-
ogist digitising this landscape would have to decide where this threshold 
lies, and the same is true for the AI. The model was never specifically 
programmed to follow the criterion of 10 blocks per 10 m2 (the ‘rule of 
thumb’ used to define boulder patches during the labelling exercise). 
Rather it learnt what a boulder patch was by example. The same is true 
of small isolated ripples in the 0.5–2 m range. Many areas of these are 
correctly identified, but not all patches can be distinguished from the 
background. 

The extensive boulder field in Fig. 16 provides another example. 
Although most of the areas with the densest boulder coverage are 
identified (purple), there are still dense patches of blocks within the 
areas identified as bedrock (blue), or non-bedrock (green). There appear 
to be more unclassified blocks in the rugged bedrock areas, perhaps 
suggesting that it is harder for the algorithm to distinguish boulders 
from rough terrain than from the generally smoother non-bedrock. 
However it could also indicate that the boulder fields are more contin-
uous over the bedrock surfaces, while the non-bedrock areas have more 
self-contained patches of boulders. 

A more precise delineation could be attained by training a model 
with several different classes of “boulder field”, each reflecting a 
different substrate or spatial density. This would be worthwhile in an 
investigation focused on boulder distributions, but was not feasible in 
this more general case. 

In Fig. 19 there are a few areas where patches of red indicate the 
presence of rectilinear ripples; however no example of this morphology 
is apparent in the HiRISE image. Rather, these areas contain a bedrock 
ridge, running perpendicular to the crests of the small bedforms, which 
gives them their rectilinear appearance. The ridge is more correctly 
identified as rugged bedrock (blue) in other parts of the image, where it 
is not overlain by ripples. To the east side of the image, the ridge feature 
is not very distinct, and is generally classified as textured non-bedrock 
(green). This shows how the system can be “fooled” by unusual super-
positions of unrelated landforms, for which it has not been trained. 

Fig. 20 shows an interesting result of the classification. The extensive 
shadowed region to the north of the largest crater has been classified as 
smooth lineated non-bedrock (pale green), with some areas of textured 
non-bedrock (dark green). The surface features are not apparent to a 
human surveyor, since they are impossible to distinguish with the 
default grey-scale stretch of the HiRISE image. They only show up when 
the stretch is manipulated using post processing. However, the model 
has been able to distinguish these subtle features correctly since the 
lineated pattern becomes distinct when the convolution filter examines 
the image through a small moving window. 

6.3. Impact on traversability 

The most important classes to be distinguished for this test case were 
those which directly impacted landing site selection. This involved 

considerations such as the density of aeolian and clastic cover, and the 
broad distribution of fractured and rugged bedrock terrains. Large rip-
ples present a larger overall hazard than smaller ones. Larger ripples will 
never be traversable, whereas smaller ones might in some cases. This 
would depend on situational factors which would have to be assessed in 
situ. 

Other determinations were less critical. All non-bedrock terrains 
represent fairly uncertain levels of hazard, so while it is important to be 
able to distinguish them from bedrock, identifying the specific sub 
classes is less critical. Lineated non-bedrock was almost always found on 
steep slopes, such as crater walls which would be avoided based on slope 
considerations. In this case the interpretive group, with its higher overall 
IoU, was sufficient for the task of hazard identification, whereas this was 
not the case for other features. 

Table 5 shows the confusion matrix for the bedrock classes. This is an 
important group, since it contains both rugged and fractured bedrock, 
the two surface classes where the impact on traversability is inarguably 
high. Like the non-bedrock classes these surface textures form a broad 
continuum. However in this case it is vital that various members of this 
series be distinguishable. The most confusion occurs between rugged 
and textured bedrocks. However, fractured and rugged bedrock were 
generally very well differentiated from smooth bedrock, the least haz-
ardous terrain within this group. It is only in the case of textured 
bedrock, the most “catch all” of the series that the model confuses a 
significantly large proportion of identifications. These are thus not 
especially “dangerous” mistakes. 

Confusion between rugged and fractured bedrocks could be of 
concern, since fractured terrains could be traversable depending on the 
exact arrangement of troughs and the extent to which they are infilled. 
However, since this is situational, and subject to localised hazard, 
further analysis by the human operator would be needed before such a 
route could be planned and so an error would be noticed at this stage. 

The only”dangerous” mistakes are seen in the cases of small ripples, 
where the model cannot always distinguish between bedrock and non- 
bedrock substrates. Small ripples over bedrock are more frequently 
confused with continuous small ripples, whereas small ripples over non- 
bedrock are correctly detected in a higher proportion of cases. 

These results show that the model is good enough for its intended 
purpose. It cannot provide a definitive answer on whether a terrain will 
be hazardous, since this would require comparison with topographic 
data, and consideration of in situ soil type data, and the engineering 
constraints of the rover. However, the NOAH-H algorithm can indicate 
areas where certain textures are most common, and give a human 
operator a head start in studying those features in more detail. 

Both the individual classes, and the broader interpretive groups serve 
a useful purpose. The groups can indicate the broad character of the site 
with very high precision and recall. The operator can then refer to the 
full class distribution in order to examine the intra-group variability in 
more detail. This allows them to make observations of how and why 
certain areas have been correctly or incorrectly classified, and build a 
more in-depth understanding of the area. In this respect the two tiers of 
the hierarchical classification scheme are complementary. Neither pro-
vides a perfect solution on its own, but when considered together a good 
understanding of a classified site can be attained. 

7. Limitations and considerations 

Several sources of uncertainty were identified during the labelling 
process. Every attempt was made to limit their impact on the study as 
outlined below. Labelling also highlighted several areas in which the 
classification system could be improved upon, most significantly 
combining easily confused classes, in cases where the distinction be-
tween them is not vital for the study. 
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7.1. Variability between and within classes 

Although a set of discrete ontologies were defined, many of the 
textures formed part of a continuum. This is particularly true of the 
surface classes. Some regions had attributes of both rugged and textured 
bedrock, thus forming an intermediate step between the two ontologies. 
Without using a prohibitively large set of classes it was not possible to 
treat every possible variation as a discrete class. Every effort was made 
to remain as consistent as possible when deciding which ontology a 
transitional terrain represented and they were left blank when classi-
fying them proved impossible. Such determinations are inherently 
subjective, so a different geomorphologist might consider the cut-off 
between classes to lie in a slightly different place. In order to reduce 
subjectivity a single member of the science team conducted the label-
ling, and remained as consistent as possible. 

Attempting to classify all possible surfaces into one of fourteen 
classes presented various challenges. It was inevitable that there would 
be variation within each class. This can be seen in the type examples 
presented in Section 3.1, subtle variations in morphology and texture 
are present in almost all classes. Attempting to split continuous varia-
tions into discrete categories will always involve some degree of 
subjectivity. 

7.2. Transitions and inclusions 

Transitions between regions of different classes were often difficult 
to define. In cases where the exact boundary was unclear, the boundary 
region was not digitised. The two ‘blocks’ where the surface type was 
identified with high confidence were labelled, and the area in between 
was left blank. While this approach made the labelling work practical, it 
did have implications for the classification. Since the NOAH-H algorithm 
classifies every part of an image, and does not use a background class, it 
was not able to ignore transition regions which did not conform to a 
clear ontology. Examples of the effect this had on classification are 
illustrated in Section 6.2. 

In some cases, mixed patches occurred, where small regions of one 
terrain type were found in very close proximity to others, or a large area 
of one terrain type contained smaller regions of another. In general, 
these “inclusions” were avoided during labelling. However, in some 
cases the presence of an inclusion was itself a genuine feature. An 
example is textured bedrock. The texture often arises from the fact that 
undulating bedrock has small pockets of non-bedrock material within it. 
In such instances, care was taken during labelling to avoid any area 
which was large enough to be digitised as a separate non-bedrock patch, 
while smaller patches which formed part of the characteristic texture 
were included. This approach was applied consistently, and does seem to 
be reflected in the way the algorithm ultimately classified similar 
terrains. 

Many discontinuous features were too small to be digitised in 
isolation. In the case of boulder fields, it would have been prohibitively 
time consuming to draw around each boulder. Thus, the entire field was 
outlined, including whatever material the boulders overlay. This does 
appear to have affected the model’s classification, in some cases areas 
classified as boulder patches include a “buffer” around the outside of the 
feature, where it overlaps non boulder covered terrain. It seems likely 
that the model has learnt that boulders must be surrounded by a buffer 
of open space. It has then applied this to the edges of the patch, not just 
the area between boulders. 

Sometimes a landform was defined by its surroundings. For example, 
the distinction between the two classes of non-continuous small ripples 
relies on whether they overlie bedrock, or non-bedrock material. In this 
case the surrounding material was included in the patch, rather than 
digitising each small ripple individually, as was done with larger ripples. 
It might have been useful to include a similar distinction for other 
distributed features such as boulders, which can also overlie various 
surface classes. However, this distinction was not as relevant to the 

present study. 
An understanding of the surface type which ripples overlie is 

potentially important for traversability, as a Rover might be able to gain 
traction when several of its wheels are on the bedrock areas surrounding 
a sandy ripple, but not if the ripple was surrounded by looser regolith. In 
contrast, a boulder patch remains a navigational hazard irrespective of 
the underlying terrain. For other studies aimed at determining the spe-
cific geomorphology, as opposed to the traversability, of the surface, 
such considerations will be more relevant. 

7.3. Interactions 

In some cases an interaction between two adjacent textures influ-
enced their classification. For example, when a single large ripple was 
found within a patch of continuous smaller ones there were two possible 
classifications. It could have been defined as an isolated ripple, since it 
was not adjacent to any other large ripples. Conversely, it could have 
been defined as an example of continuous large ripples, since it was 
surrounded by other ripples, albeit of a smaller size. It was decided that 
the second option provided the best description, and this was consis-
tently applied throughout the labelling process. In these cases, the small 
and large ripples were not labelled as a single feature, rather the large 
ripples were digitised separately, as would be the case for an isolated 
ripple. The smaller ripples were then digitised alongside them. 

Other transitions, such as the boundaries between simple and recti-
linear ripples, or between continuous and non-continuous ripples were 
treated in a similar manner, and when in doubt, a buffer of unlabelled 
terrain was left between the two patches. 

In some cases, it was not possible to make a determination as to 
whether a patch of ground consisted of bedrock, or non-bedrock mate-
rial. This determination was harder to make when only the small fra-
melet and its context image were available. Features such as rough or 
fractured ground, which might indicate that the terrain is clearly 
‘bedrock’, can easily fall outside the field of view of a small framelet. 
Were a larger image available, it would have been possible to identify 
indicators of bedrock in other areas, and follow the contact between the 
two terrains into the ambiguous area to make a determination. If that 
contact fell outside the field of view then this was not possible, and other 
indicators such as consistent albedo or similar texture had to be used to 
determine that two blocks of terrain were part of the same class. 

Finally, large patches of continuous ripples were often found to 
extend beyond the edge of the framelet context area. In these cases, if 
labelling only the adjacent framelet, then the ends of the ripples would 
appear to be ‘isolated ripples’, despite the fact that they were actually 
continuous, with other parts of the ripples touching to form a continuous 
patch. However, because this information exists beyond the edge of the 
framelet and its context image, it could not inform the labelling. 

7.4. Scale 

Intra-class variation is particularly important when considering 
scale. A patch of rugged terrain on a metre scale can look very different 
to rugged ground on the decametre scale. The latter often consists of 
rugged scarps and ridges, while smaller scale rugged areas are much 
flatter. When examined independently of scale both have similarities, 
but it is not a given that planetary surfaces have a “fractal” appearance. 
Thus, when seen together within the same framelet, these terrains could 
be considered different textures. 

This is true of many classes where the same feature occurs on mul-
tiple scales, including aeolian bedforms. During the labelling phase it 
became clear that it would have been useful to retain an intermediate 
size category when defining the scale of ripples. Placing the cut off be-
tween large and small at ~5 m across (as measured perpendicular to the 
ridge crest) meant that the “large ripples” categories included a very 
wide range of scales. However, this was intended to represent features 
that were likely impassable to a rover, compared to features that could 
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plausibly be traversed (e.g. Balme et al., 2018). Alternatively, since the 
size of a digitised feature is easy to measure after the fact, the distinction 
between small and large ripples might be unnecessary. 

7.5. Size of the training dataset 

The reliability of the NOAH-H results and their applicability depend 
greatly upon the quality and representativeness of the training data. The 
NOAH-H dataset is very small by machine learning standards with only 
~1500 training framelets. In contrast one of the most popular datasets 
for applications like object detection, segmentation, and captioning, 
COCO (Common Objects in Context; Lin et al., 2014) contains 124 k 
images. The factors that determine the perfect dataset size are mainly: (i) 
the classifier architecture in question - in particular the parameters of 
the model, (ii) the number of features considered, and (iii) the statistical 
characteristics of the data - the variation in the samples for each class. 

The small size of the NOAH-H dataset proved challenging. Since it 
contained only 1504 images for 14 classes, meaning that several classes 
had very few examples in total. DL approaches are often said to require 
enormous amounts of data to work well, but our results indicate that it is 
still possible to obtain good performances with limited data. We 
employed techniques to prevent overfitting such as dropout, weight 
decay, data augmentation, pre-training, and parameter sharing. This 
approach enabled us to train very large models with millions of pa-
rameters on this dataset. However, additional data is still needed in 
order to improve the generalisation of the model and achieve more ac-
curate results. 

Though small by machine learning standards, our dataset is signifi-
cant in the context of planetary geomorphology. The labelled frames are 
representative of the area that they sample, and were digitised with high 
precision. The labelling work carried out in the NOAH-H activity and the 
parent NOAH project represents the largest collection of its kind for an 
application such as this. Labelling images of this type is extremely labour 
intensive, especially in cases where specialist knowledge is needed. The 
number of experts available globally for such a niche task as classifying 
planetary surfaces is extremely small and their time is often over-
subscribed. Consequently, the development of this dataset has been a 
major achievement for this work. In machine learning terms this is of 
course a relatively limited dataset but in the context of space science 
research it is significant and has produced meaningful results. 

8. Discussion 

It is important to note that this was a prototyping activity. More work 
is required to produce a fully mature system. The results are encouraging 
and with additional training the overall accuracy of the system is ex-
pected to improve to an even finer level of granularity. Expert supervi-
sion is still needed to correct any possible misclassification error in the 
short to medium term. 

The key question to consider is whether the automatic classification 
is good enough for the intended purpose. This must be considered both 
in absolute terms, and in comparison to the quality of human mapping 
efforts. Manual mapping would not typically exhibit perfect precision 
and recall on a pixel scale, were it to be compared to ground truth. 
Rather an appropriate mapping scale is chosen for the task, and 
geomorphological units are repeatably identified at this scale, with an 
aim of showing the characteristics of a site. While 100% IoU will always 
be desirable, it is not typically attainable in a manual mapping 
campaign, and is rarely assessed. 

Qualitative study by experts on the geomorphology team has 
confirmed that, on a landscape level, the quality of the classified rasters 
is comparable to what we would expect of a manually classified area (see 
discussion in Section 6). The model is not reliable enough to be used as a 
sole arbiter of hazard, but as discussed above, this was never the 
intention. Rather it forms a useful tool to assist ongoing human efforts. 
In this respect it more than meets the requirements of the study. The 

agreement between the model predictions and the validation data is 
good enough for purpose. We thus conclude that the classified rasters are 
suitable for use in the ongoing characterisation of Oxia Planum, and as 
part of strategic planning as the ExoMars mission advances. 

Summary products showing the abundance of different potentially 
hazardous classes can be produced, and down-sampling can be used to 
reduce pixel level inaccuracies. The HiRISE resolution is high enough 
that this will not have an adverse effect on the usefulness of the data. 
Variations in precision, recall, and IoU should be kept in mind when 
judging the reliability of identifications of specific classes, but none are 
far enough out of bounds to be disregarded in future use cases. 

The ontological classes selected for this work have proven capable of 
identifying areas which would be safe to traverse, and regions domi-
nated by aeolian bedforms, or loose non-bedrock textures (as shown in 
Section 6), which provide significant traversability risks. The results 
closely match the ongoing expert mapping of the sites by the landing site 
selection team. NOAH-H revealed areas where aeolian bedforms were 
more or less common, and was able to discriminate well between the 
most important bedform classes. A higher proportion of bedrock was 
found in Oxia than Mawrth. Areas of fractured bedrock were identified, 
which correlated with clay-bearing units (Quantin-Nataf et al., 2019). 

The results of this study also have applicability beyond the specific 
task of traversability assessment. The ontological classes could easily be 
altered to describe the textural geomorphology of other regions, and 
many classes are already directly transferable to other tasks (e.g., the 
aeolian bedforms and boulder patches). The reliability with which 
aeolian bedforms of different morphologies are detected has great po-
tential to identify these features in other HiRISE images, and potentially 
develop a global catalogue of transverse aeolian ridges. 

We advise that both the full class list, and the interpretive groups be 
considered in parallel when using this data to make determinations. The 
groups provide higher IoU, and summarise the landscape in interpretive 
terms. However, the descriptive classes are required to fully judge the 
traversability of the landscape. 

We conclude that true geomorphological mapping would be chal-
lenging to achieve with this method due to the degree of interpretation 
required. The human ability to link observations of textures and shapes, 
and designate them as “landforms” is based not only upon observations, 
but also knowledge of the processes that created or altered those land-
forms. This is developed through personal experience investigating 
similar examples on Earth. Replicating such expertise using machine 
learning would be an extremely daunting task, although perhaps 
approachable with a sufficient volume and diversity of training data. In 
many ways a descriptive model is more powerful than an interpretive 
one, since the more general surface classes defined herein can be applied 
to a wider variety of tasks than stricter geomorphological class labels. 

The strong agreement exhibited in these results combined with the 
very high processing speed allows a scientist to use the NOAH-H clas-
sified data to assist their interpretation without having to perform time- 
consuming mapping or manual image classification. However, it is 
important that ontological classes are well-defined, and that sufficient 
training data volumes are labelled – which is itself a time consuming 
task. There therefore exists a trade-off: studies with low data volume (a 
few HiRISE images) are perhaps performed more quickly using manual 
digitisation, but if a large data volume is to be analysed, the time in-
vestment in labelling is worthwhile, as the automated method will be 
quicker in the end. 

The initial labelling campaign took approximately 270 h to com-
plete, producing a total of 236 MP of labelled data. The model has since 
been run on ~160 HiRISE images with a combined area on the order of 
~2 × 1011 pixels. A human geomorphologist working round the clock 
would have taken 26 years (2 × 105 hours) to complete the work, 
assuming that the full area could be mapped at the same rate as the 
individual framelets. Using the NOAH-H system, complete images can 
be fully classified at the pixel level in a matter of hours. Even factoring in 
months of model development work in addition to the time taken for 
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labelling and image processing, the Machine Learning approach 
fundamentally changes the scope of what a study of this sort can expect 
to achieve. 

8.1. Further work 

There are various ways in which this work can be built upon. The 
present work has been limited in scope since the focus was to classify the 
candidate ExoMars landing sites. However the same method could be 
applied to other areas of Mars, and other questions both scientific and 
operational. The framework presented in table one can be used to build 
compatible classification systems, tailored to landscapes with a different 
variety of terrains to Arabia Terra. With enough training data it could be 
possible to train a more generic model, which could be applied to any 
region on Mars, however the more practical approach would likely be to 
continue to focus on more limited areas, using a smaller set of ontologies 
tailored to those locations. 

If it were possible to collect and label more training data then the 
overall output of the model could be improved. This would also open up 
the possibility of other lines of investigation such as training a model for 
each study area independently and then testing how well the results 
transfer to the other site. 

One interesting comparison, which was not in scope for the present 
project, would be to compare the results of the machine learning 
approach to other algorithms and classification techniques. More useful 
still would be a direct comparison to manual mapping of the area, 
although by its very nature this would have to be limited to a much 
smaller area than any automated technique. 

It would be interesting to apply this technique to the landing sites of 
past Mars rovers, where ground truth data could be used to interpret the 
descriptive classes identified from RS data. This would allow more 
detailed traversability assessments to be conducted, and answer questions 
about the geological origin of the features which the model has been 
trained to detect. It will of course become possible to address these 
questions at the Oxia Planum study area once the Rosalind Franklin rover 
begins to return in situ data. 

9. Conclusions 

The results of the study are encouraging. The NOAH-H model exhibits 
good agreement with the validation data, and produces reliable results, 
which assist in locating hazardous terrains, and inform our understanding of 
the candidate landing sites. The final run of the model produced a mean IoU 
of 74.15% for the full list of surface-type ontologies and 92.33% when 
considering groups of similar surface-types. The higher accuracy for groups 
of classes demonstrates the need for larger training datasets in future. 

Some classes were more reliably classified than others. Distinct fea-
tures such as large scale aeolian bedforms, rugged and fractured bedrock 
surfaces, and boulder patches were generally identified with high pre-
cision and recall. The model performed less well for small scale ripples, 
non-bedrock, and smoother bedrock classes. Many of these ontologies 
describe a continuous morphological spectrum. Hence, dividing them 
clearly into discrete ontological classes proved challenging, both during 
labelling and for the model. In this respect, the model mirrors the human 
difficulty in classifying a continuum of forms into discrete classes. 

When examined in detail, pixel scale inaccuracies in the classified 
rasters were found to not substantially detract from their usefulness as a 
tool to describe landscape level trends in the distribution and prevalence 
of surface textures. They provide surface texture maps that are repre-
sentative of the site. This provides a useful first step in more detailed 
mapping activities, or for delineating terrains that would be a hazard to 
rover surface operations. We thus conclude that the data is fit for purpose. 
The NOAH-H output is already being used to identify terrains of interest, 
such as areas with aeolian bedforms (Favaro et al., 2021). It will continue 
to prove useful as characterisation of the Oxia Planum landing site 
continues. 
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