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Abstract

Climate change is altering suitable areas of crop species worldwide, with cascading effects

on people reliant upon those crop species as food sources and for income generation. Mac-

adamia is one of Malawi’s most important and profitable crop species; however, climate

change threatens its production. Thus, this study’s objective is to quantitatively examine the

potential impacts of climate change on the climate suitability for macadamia in Malawi. We

utilized an ensemble model approach to predict the current and future (2050s) suitability of

macadamia under two Representative Concentration Pathways (RCPs). We achieved a

good model fit in determining suitability classes for macadamia (AUC = 0.9). The climatic

variables that strongly influence macadamia’s climatic suitability in Malawi are suggested to

be the precipitation of the driest month (29.1%) and isothermality (17.3%). Under current cli-

matic conditions, 57% (53,925 km2) of Malawi is climatically suitable for macadamia. Future

projections suggest that climate change will decrease the suitable areas for macadamia by

18% (17,015 km2) and 21.6% (20,414 km2) based on RCP 4.5 and RCP 8.5, respectively,

with the distribution of suitability shifting northwards in the 2050s. The southern and central

regions of the country will suffer the greatest losses (� 8%), while the northern region will be

the least impacted (4%). We conclude that our study provides critical evidence that climate

change will reduce the suitable areas for macadamia production in Malawi, depending on cli-

mate drivers. Therefore area-specific adaptation strategies are required to build resilience

among producers.
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1. Introduction

Ecosystems, human health, livelihoods, food security, water supply, and economic growth are

all impacted by global climate change [1]. The severity of these effects is predicted to increase

in direct proportion to the degree of global warming. By the 2050s, it is estimated that a 2˚C

increase in warming will increase the number of people exposed to climate-related risks and

poverty by several hundred million [1]. This warming presents significant threats to many

parts of Africa’s current agricultural production systems, particularly among smallholder

farming families with limited adaptive potential [2,3]. Sub-Saharan Africa (SSA) is one of the

most vulnerable regions to climate change due to decreased amount and distribution of pre-

cipitation and increased temperatures [4–6]. Malawi is particularly vulnerable to climate

change because of its high poverty level, limited cash flow and technological infrastructure [7].

Moreover, the country is heavily reliant on the rain-fed agricultural sector for food security

and economic development [8].

Agriculture is the backbone of Malawi’s economy and society [9]. Malawi’s growing food

demand, on the other hand, will make it more difficult to meet in the coming decades, as

already stressed agricultural systems are threatened by population growth and rising incomes

[10]. Therefore, knowledge of how climate change may alter crop production patterns and

their climate suitability (hereinafter "suitability") is critical for effective agricultural adaptation

in Malawi. Multiple studies in the country have already indicated the dire consequences of cli-

mate change on crop production. For example, Bunn et al. [11] and Dougill et al. [6] have pre-

dicted losses in suitable areas for tea production in the low-lying areas of the Thyolo district.

Climate change is expected to reduce maize yields by at least 50% [8,12,13] and tobacco yields

by at least 45% [14]. Tobacco is the mainstay of the rural economy in Malawi, contributing to

almost 40% of the country’s exports earnings [15]. Given the current downturn in tobacco

market trends, macadamia has been identified as a suitable tobacco alternative that may con-

tribute more to Malawi’s economy [22]. Nonetheless, this will be achievable only if suitable

areas for macadamia cultivation are identified and mapped under current and future climate

conditions.

Macadamia is a perennial crop native to Australia [16]. As a result, the crop is vulnerable to

climate influences such as sudden temperature shifts and variations in precipitation which

diverge away from current and historic growing conditions found in its native habitat. Eco-

nomic macadamia production is therefore only possible within certain geographical and cli-

matic ranges [17]. Optimum diurnal and seasonal temperatures for macadamia are within the

ranges (14 oC by night and 30 oC by day), with prolonged periods outside this range having

adverse effects on growth, yield, and quality [18–20]. Regarding precipitation, macadamia

grows healthy and is productive in areas with well-distributed rainfall, totaling an average of

1500mm per year [21]. Water stress during nut maturity has negative impacts on the yield and

quality of macadamia [22]. To stimulate flowering and nut set, macadamias require strong

temperature contrasts and mild water stress for up to four months [22,23]. This demonstrates

how much macadamia production is influenced by climate, while geographical parameters

such as altitude, aspect, and slope are only considered important in terms of affecting tempera-

ture and water requirements [24].

Understanding macadamia’s current and future suitability is essential for developing miti-

gation and adaptation strategies for the projected negative impacts of climate change, espe-

cially among smallholder producers (those with less than one hectare of land) in Malawi. For

these smallholders, the promotion of macadamia agroforestry remains a viable adaptation

option. This is because the farmers may intercrop their macadamia trees with annuals, enhanc-

ing their long-term resilience to climate change. Evidence suggests that climate change is
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already reducing macadamia suitable areas [25], limiting yields (quality and quantity)

[21,26,27], and increasing pests and diseases globally [28]. Though it is assumed that climate

change is likely to reduce suitable areas for macadamia [17,24], integrated spatially quantitative

impact studies are still lacking.

This study aims to fill this gap. We present evidence of the impact of climate change on the

suitability of macadamia in Malawi. We applied an ensemble modelling approach driven by 17

General Circulation Models (GCMs) under two emission scenarios (RCP4.5 and RCP8.5) for

the 2050s. We were particularly interested in examining the potential distribution of macada-

mia areas in Malawi, identifying the key determinants of macadamia, and measuring the

crop’s response to climate change. Such climate risk assessments on the macadamia sector are

essential for generating scientific evidence on the impacts of climate change, particularly

among smallholders with little adaptive capacity. In addition to informing policy and trade,

this assessment is a first step toward identifying and implementing adaptation measures tai-

lored to macadamia within global boundaries. We concentrate on climate projections for the

2050s to align with the United Nations framework of global challenges in agriculture and food

security [29].

2. Methodology

2.1. Study area

We examined the suitability for macadamia in Malawi, a southern African country that falls

within the longitudes 30 and 40 and the latitudes −17 and −10. The country spans over ~118,

484 km2, with 94, 449 km2 (80%) of land area and 24, 035 km2 (20%) of water surfaces. The

country is divided into three main regions; Central, Southern and Northern parts, with 28 dis-

tricts (S1 Fig, S2 Table) with varying elevations. Because of variations in topography (Fig 1),

parental materials (soil), and management, soil nutritional status varies greatly across the

country, particularly among smallholder farmers [30].

Malawi has a subtropical climate with two distinct seasons: the rainy season (November to

April), which accounts for 90–95 percent of the annual precipitation, and the pronounced dry

season (May to October) [15]. The rainy season varies by region; for example, rains begin ear-

lier in the southern region than in the central region, and the north has less pronounced dry

seasons, especially at higher elevations. Furthermore, the geographical distribution of tempera-

ture and precipitation in Malawi is determined by its topography and proximity to the Indian

Ocean and Lake Malawi. Average annual precipitation ranges from 500mm in low-lying mar-

ginal areas to over 3000mm in high plateau areas [31]. Malawi’s mean annual minimum and

maximum temperatures are 12 and 32˚C, respectively, with the lowest temperatures in June

and July and the highest in October or early November [32].

Fig 2 illustrates the spatial pattern of average annual temperatures (a) and annual precipita-

tion (b).

2.2.Occurrence data

Data on macadamia tree species’ occurrence was collected from smallholder macadamia farms

in Malawi during the 2019/20 growing season through a field survey. For our analysis, we only

sampled ten-year-old successfully established macadamia orchards under smallholder rainfed

conditions. We focus on ten-year-old macadamia orchards because the productivity of maca-

damia depends on the age of the orchard (i.e., the yield of the crop increases with age) [25],

and at this age, the crop is at the start of peak production. A total of 120 orchards were sampled

throughout Malawi, but only 84 locations were used for this study. This is because we resam-

pled the occurrence points to a tolerance of 5 km so that no two points could be found in one
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Fig 1. Geographic location and topography of Malawi based on Shuttle Radar Topography Mission digital elevation model data.

https://doi.org/10.1371/journal.pone.0257007.g001
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environmental layer at a resolution of 5 km x 5 km. At each farm, the Global Position System

(GPS) coordinates (in WGS84 datum) were collected using a global position system (Garmin

eTrex Vista1 Cx) together with altitude. Additionally, utilizing the approach described by Bar-

bet-Massin et al. [33], we generated background pseudo-absence points (Fig 3) to cover any

sampling biases in the study.

2.3.Climate data

We used bioclimatic predictors (~1970–2000) from WorldClim data set version 1.4 (http://

www.worldclim.org/) at a spatial resolution of ~ 5 km x 5 km to model the current areas suit-

able for macadamia in Malawi (the data was clipped to the Malawian country boundary). Cal-

culated from monthly temperature and precipitation climatologies, these bioclimatic variables

describe spatial variations in annual means, seasonality, and extreme/limiting conditions (S3

Table). We utilized bioclimatic variables derived from 17 GCMs (to reduce the uncertainty

inherent within individual GCMs) (S4 Table) based on two RCPs (S5 Table) of climate change

for our future predictions [34]. We selected RCP 4.5, which is an intermediate scenario that

considers an intermediate greenhouse gas (GHG) concentration and predicts an average

Fig 2. a) Average annual temperature (oC) and b) Precipitation (mm) of Malawi based on WorldClim-global climate data.

https://doi.org/10.1371/journal.pone.0257007.g002
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Fig 3. Map of Malawi showing macadamia occurrence points and pseudo absent points.

https://doi.org/10.1371/journal.pone.0257007.g003
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increase in temperature by 1.4 oC (0.9–2.0 oC) and RCP 8.5, the most pessimistic scenario,

which considers higher GHG emissions concentration with a 1.4–2.6 oC projected increase in

mean global temperature by the 2050s (period 2040–2060).

For this study, we did not consider scenario 2.6 because it represents the most efficient and

effective mitigation scenario, i.e., keeping the temperature below 2 oC. At present, this scenario

is not feasible with projections of current policies (expected temperature increase of 3.3–3.9
oC) [35]. Furthermore, to achieve this scenario, emissions would need to be 25% lower than in

2018 (GHG emissions rose by 1.5% in 2018) [36]. Emission scenario 6.0 was also not consid-

ered for our analysis because its projections are between the ranges of RCP 4.5 and RCP 8.5

[37]. Further, RCP 6.0 only has 42% of the GCM outputs, meaning that the scenario has fewer

outputs than the rest of the emission scenarios [38].

2.4. Variable selection

In species distribution models, multicollinearity (multiple correlations between variables)

among the bioclimatic predictors may result in overfitting or bias in the resulting suitability

model [39,40]. To avoid these challenges, variable quality evaluation criterion using a multicol-

linearity degree was employed through the variance inflation factor analysis (VIF). The VIF

indicates the degree to which the standard errors have been inflated due to the levels of multi-

collinearity among the independent variables used in running the model [41]. VIF is directly

calculated from a linear regression model with the focal numeric variable as a response, as

shown in Eq (1).

VIF ¼
1

1 � R2
i

ð1Þ

Where R2 is the regression coefficient of determination of the linear model.

In our study, the "ensemble.test" function inherent in the "BiodiversityR" package available

in R [42] was used to eliminate correlated variables. Following the recommendation made by

Ranjitkar et al. [43], we retained variables that had a VIF of less than 10 (Table 1).

2.5. Modelling approach

We modelled macadamia’s current and future distribution in Malawi based on an ensemble

suitability method implemented by the R package "BiodiversityR" [44]. We used an ensemble

modelling technique because it combines predictions from various algorithms and can provide

better accuracy in predictions than relying on individual species distribution models [45]. The

procedure consisted of four steps.

Table 1. Bioclimatic variables used in the final suitability model and their variance inflation factor (VIF).

Variable name Bioclimatic variable Unit VIF Score

Bio 14 Precipitation of driest month mm 2.96

Bio 3 Isothermality (Bio2/Bio7) x 100 - 1.51

Bio 15 Precipitation seasonality (cv x 100) - 3.25

Bio 2 Mean diurnal range oC 6.05

Bio 18 Precipitation of warmest quarter mm 5.23

Bio 13 Precipitation of wettest month mm 2.12

Bio 6 Minimum temperature of the coldest month oC 2.02

Bio 4 Temperature seasonality (Standard deviation x 100) - 1.61

https://doi.org/10.1371/journal.pone.0257007.t001

PLOS ONE Macadamia integrifolia: Climate suitability of Malawi

PLOS ONE | https://doi.org/10.1371/journal.pone.0257007 September 9, 2021 7 / 20

https://doi.org/10.1371/journal.pone.0257007.t001
https://doi.org/10.1371/journal.pone.0257007


We evaluated the predictive accuracy of 18 algorithms of species distribution models

(SDM) using a cross-validation technique in the first stage. The SDM algorithms used in our

analysis were those that can distinguish between suitable and non-suitable areas without need-

ing absence locations [35]. Following work by Brotons et al. [46] and Thuiller et al. [47], we

divided the occurrence data into two distinct sets by randomly assigning 70% of the data as a

training dataset to fit the model, and the remaining 30% were used as test data to evaluate the

model’s predictive accuracy. A five-fold (partition) cross-validation replicate was performed in

each of the model algorithms to evaluate the stability of the prediction accuracy as described

by Rabara et al. [48] and Mudereri et al. [39]. Each SDM algorithm’s performance was evalu-

ated from each partition separately after individual algorithms were assessed with data from

the other four partitions. Cross-validation validates the performance of models and prevents

overfitting, particularly in cases where the amount of data may be limited [39,49].

The area under the curve (AUC) criterion computed by the R package "PresenceAbsence"
[50] was used to evaluate the performance of each algorithm. The AUC value is a specific mea-

sure of model performance that demonstrates the model’s ability to locate a randomly chosen

present observation in a cell with a higher probability than a randomly selected absence obser-

vation [45,48]. Based on the recommendation by Kindt and Cole [42], we used an AUC value

of 0.77 as a threshold to select the best-performing algorithms for this analysis. SDM algo-

rithms that did not meet this criterion were not used to calculate the final ensemble model’s

suitability [51]. AUC values of 0.75 are considered reliable, 0.80 as good, and 0.9 to 1 as having

excellent discriminating ability [52].

We utilized the presence-only approach for our study, and this is because, for agricultural

applications of niche models, it is inappropriate to treat areas without current production as

entirely unsuitable. Further, determining whether a species is absent in a specific location is

difficult and rare, so absence data may not be a true representation of naturally occurring phe-

nomena [53]. As an alternative, we randomly generated 500 background pseudo-absence

points for our analysis. A caveat to this approach is the recommendations of Barbe-Massin

et al. [33] regarding the use of lower pseudoabsences in some algorithms. Then, we combined

these background pseudo-absence points with the 84 occurrence points "presence only" for the

niche modelling of macadamia.

The second step consisted of retaining only the algorithms that contributed at least 5% to

the ensemble suitability (Se) [43]. This procedure generated AUC values for each and the

parameters of the response functions (model training) to estimate the probability values of spe-

cies occurrence based on the climate of each grid cell of the study area. The AUC values for the

selected SDM algorithms are shown in Table 2. The results of all the models were then com-

bined by calculating for each the weighted average (weighted by AUC for each model) of the

probability values from each model to generate the ensemble suitability map. The AUC values

obtained by each algorithm were weighted using the following equation:

Ensemble ðSeÞ ¼
P

iWiSiP
iWi

ð2Þ

Where the ensemble suitability (Se) is obtained as a weighted (w) average of suitabilities pre-

dicted by the contributing algorithm (Si).
The predicted suitable area for the probability of macadamia was calculated using threshold

values, i.e.,� 0.34 for the suitable area, while< 0.34 was regarded as unsuitable [39]. To gener-

ate the probability maps, we used the maximum sensitivity (true positive+) and maximum

specificity (true negative-) approach [54], where we reclassified the probability maps to a

binary raster image (suitable/unsuitable areas). Then, using the Malawi shapefile in R, the
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predicted binary values for each pixel were extracted. Finally, the total number of pixels for each

predicted class was used to estimate the total coverage of the predicted suitable area against the

unsuitable area within Malawi. Following recommendations by Chemura et al. [55], we divided

the two suitability classes (suitable/unsuitable) into five classes (unsuitable, marginal, moderate,

optimal, and highly suitable). The final visualization maps for the suitability classes of macadamia

were developed using Arc GIS Pro software version 2.5 (https://arcgis.pro/).

In the fourth stage, we applied the derived baseline suitability model to each of the 17

downscaled GCMs to predict the future distribution of suitable areas for macadamia by the

2050s. Finally, the results of the 17 GCMs probability layers were integrated into a single layer,

using the criterion of likelihood scale [56,57], which requires at least 66% of agreement among

GCMs to keep the predicted presence or absence in a given grid cell. The final visualization

maps for the future suitability classes of macadamia were developed using Arc GIS Pro soft-

ware version 2.5 (https://arcgis.pro/).

3. Results

3.1. Model performance evaluation

Our results show that the ensemble model performance (AUC = 0.9) was sufficient for our

modelling activity when measured using the AUC. The model’s evaluation revealed that the

modelling of macadamia areas in Malawi was based on model competence rather than chance

(Table 2). Importantly, the high AUC value provides confidence to apply the ensemble model

for examining the areas suitable for macadamia under current and future climatic conditions.

3.2. Contribution of variables to the suitability of macadamia

The importance of climatic factors driving the suitability of macadamia production in Malawi

is shown in Fig 4. Precipitation-related variables are the most important in determining

Table 2. Performance evaluation of the ensemble model.

Algorithm Method AUC

Envelope model BIOCLIM 0.86

Multivariate distance DOMAIN 0.90

Additive models: Generalized additive models GAM 0.89

Regression: Multivariate adaptive regression splines MARS 0.93

Stepwise GAM GAMSTEP 0.85

Mahalanobis distance MAHAL 0.99

Maximum entropy MAXENT -

Boosted regression models: Generalized boosted regression models GBM -

Generalized linear models GLM 0.98

Support vector machines SVM 0.86

Stepwise boosted regression tree models GBMSTEP 0.94

Artificial neural networks NNET 0.96

Random Forest RF 0.94

Multivariate Adaptive Regression Splines EARTH -

Stepwise generalized linear models GLMSTEP 0.82

Mixed GAM Computation Vehicle MGCV 0.85

Support vector machines SVM 0.98

Flexible discriminant analysis FDA -

Ensemble ENSEMBLE 0.90

https://doi.org/10.1371/journal.pone.0257007.t002
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suitability for macadamia in Malawi and contributed 60.2% towards macadamia suitability. Pre-

cipitation of the driest month (May–November) and precipitation seasonality accounted for

more than 40% in determining the suitability for macadamia. Precipitation of the driest month is

the variable with the greatest relative influence (29.1%) on the suitability for macadamia. Temper-

ature variables contribute 39.8% towards macadamia suitability in Malawi. Among the tempera-

ture variables, isothermality (17.3%) (calculated by dividing mean diurnal temperature range by

mean annual temperature range) was the most significant. Our model results found that annual

means do not affect the suitability for macadamia production in Malawi.

3.3.Current suitability for macadamia in Malawi

Results of the present (~1970–2000) suitability analysis reveal that 57% (53,925 km2) of the

surface area in Malawi is suitable for macadamia production, with the largest area (25.8%,

which is 24,327 km2) in the central region of the country (Table 3, Fig 5). Of the 57% that is

suitable, optimal suitability (26%, 24,565 km2) is observed in the highland parts of the country

with elevations ranging from 1000–1400 m.a.s.l. Notably, in some parts of Dowa, Chitipa,

Mulanje, Mwanza, Mzimba, Ntchisi, Nkhatabay, Rumphi, and Thyolo districts (S2 Table).

Moderate suitability (22.4%, 21195 km2) is projected in the mid-hills between 950–1000 m.a.s.

l. in the districts of Blantyre, Chiradzulu, Dedza, Kasungu, Lilongwe, Mchinji, and Zomba.

Marginally suitable areas were found to be in the lower elevated (� 900 m.a.s.l) parts of

Malawi. Because of the topography, the districts of Neno and Ntcheu have both optimal and

marginally suitable areas for macadamia (Fig 5). Furthermore, according to our model

Fig 4. The importance of a variable in explaining macadamia suitability in Malawi. Data is obtained from the

averages of the 18 species distribution model algorithms.

https://doi.org/10.1371/journal.pone.0257007.g004

Table 3. Area and percentage suitable for growing macadamia under current climatic conditions.

Region Area (km2) Percentage (%)

Central 24,327 25.8

Northern 19,341 20.5

Southern 10,257 10.7

Total 53,925 57

https://doi.org/10.1371/journal.pone.0257007.t003
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projections, the existing distribution of climatically suitable areas for macadamia closely

matches the crop’s occurrence areas.

3.4.The impacts of climate change on macadamia in Malawi

The impacts of climate change on macadamia suitability in Malawi are depicted in Table 4, Fig

6. By the 2050s, the extent of suitable areas for macadamia is projected to decrease under both

emission scenarios utilized in this study. Our projections show a net loss of 18% and 21.6%

(Table 4) of suitable areas for macadamia production under RCP 4.5 and RCP 8.5, respectively.

This translates to 17,015 km2 (RCP 4.5) and 20,414 km2 (RCP 8.5) of Malawi’s total cultivat-

able surface area. Lower altitude areas (0–900 m.a.s.l.) will experience the greatest decline in

suitability. These losses will be more pronounced in Malawi’s southern region, estimated to

lose between 81.7% (RCP 4.5) and 85.2% (RCP 8.5) of all its current suitable areas due to pro-

jected drier and hotter conditions in the next coming decades. Due to climate change, the

Thyolo district, which is currently Malawi’s most productive and largest macadamia growing

area, is expected to lose 100% (1228 km2) of its suitable areas for macadamia production. In

addition, the ensemble model predicts that the area suitable for macadamia in the country’s

central region will shrink by at least 7.2% (6,784.1 km2) (RCP 4.5) and 8.4% (7,950.1 km2)

(RCP 8.5). For the northern region of Malawi, the suitability for macadamia is predicted to

decline by 2% (1,850 km2) and 4% (3,730 km2) under RCP 4.5 and RCP 8.5, respectively.

Despite the projected losses in suitable areas for macadamia production due to climate change,

our predictions suggest that 39.1% (36,910 km2) and 35.5% (33,511 km2) of Malawi’s surface area

will remain suitable for the crop under RCP 4.5 and RCP 8.5, respectively (S6 Table). The results

from the intermediate scenario show that 18.6% (17,543 km2), 18.5% (17,491 km2), and 2%

(1,876 km2) of Malawi’s cultivatable areas will remain suitable for macadamia production in the

2050s in the central, northern, and southern regions, respectively (Fig 7, S7 Table). The outcomes

for the pessimistic scenario suggest that approximately 17.3% (16,377 km2), 16.5% (15,611 km2),

and 1.6% (1,523 km2) of Malawi’s land will remain suitable for macadamia in the central, north-

ern, and southern regions, respectively. In addition, based on RCP 4.5 and RCP 8.5, our model

predicts an average gain in suitable areas of +0.22% (207 km2) and +0.5% (476 km2). These newer

areas are expected to occur in Dedza (Mua and Chipansi), Mangochi (Namwera and Chaponda),

Salima (Kasamwala), and Thyolo (Thekerani) districts. However, these only apply to a small por-

tion of the country and cannot compensate for the country’s decreased suitability.

4. Discussion

4.1.Contribution of variables to the suitability of macadamia

Precipitation and temperature have been identified as critical factors influencing crop growth

and yields worldwide [53]. We find that in Malawi, suitability for macadamia is influenced by

Fig 5. Current suitability for macadamia production in Malawi. The model results were exported into Arc GIS Pro Software version 2.5 to

generate the map in this figure.

https://doi.org/10.1371/journal.pone.0257007.g005

Table 4. Simulated impacts of climate change on macadamia suitability in Malawi.

Region RCP 4.5 RCP 8.5

Area (km2) Percentage (%) Area (km2) Percentage (%)

Central 6,784.1 7.2 7,950.1 8.4

Northern 1,850 2.0 3,730 3.9

Southern 8,380.9 8.9 8,733.9 9.2

Total 17,015 18 20,414 21.6

https://doi.org/10.1371/journal.pone.0257007.t004
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precipitation, temperature, and seasonal variations of these two factors rather than the annual

means, confirming a previous report by Evans [58]. However, climatic variables identified in

our study differ from climate indicators for macadamia on a global scale [58]. Conversely, in

Nepal, temperature-based factors were identified primarily as determinants for the suitability

for macadamia [25]. Chemura et al. [40] argue that differences in scale and geography explain

such variations, implying that local and regional factors can influence macadamia potential.

This explains our findings, which show that precipitation-based parameters are more relevant

in predicting macadamia suitability than temperature-based factors, verifying zoning studies

for macadamia production done for the country [59].

According to our results, the precipitation of the driest month (May–November) and pre-

cipitation seasonality are the two most essential precipitation variables that affect the suitability

of macadamia in Malawi, according to our results (Fig 4). Our results reveal that the dry season

in Malawi concurrently coincides with the flowering, nut development, and oil accumulation

stages in macadamia growth. Moisture stress, on the other hand, is detrimental to macadamia

growth and development. Mayer et al. [60] found that moisture stress inhibits and delays

flower development in macadamia, thereby reducing the nut yields and quality. Moreover,

water stress induces premature nut drop in macadamia, which affects the yields negatively

Fig 6. Shifts in macadamia suitability due to climate change by 2050 (a) RCP 4.5 (b) RCP 8.5. The model results were exported into Arc GIS Pro Software

Version 2.5 to generate the map in this figure.

https://doi.org/10.1371/journal.pone.0257007.g006
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[22]. In Australia, Nagao et al. [58] found that water deficits from prolonged drought periods

caused macadamia flower loss and tree mortality. Consequently, projections that climate

change will decrease the number of rainy days and months [61,62], thus reducing moisture

availability to the macadamia trees during the dry season in many parts of Malawi will drive

many areas out of macadamia production. These findings confirm and, more importantly,

extends the work by Dougill et al. [6], who predicted that climate change will decrease the

amount and distribution of precipitation throughout Malawi, particularly the southern region,

altering the suitability of important perennial crops such as tea, coffee, and macadamia in the

country. Farmers are therefore encouraged to adopt moisture conservation measures (mulch-

ing, rainwater harvesting, box ridging, and basins) and possibly develop irrigation infrastruc-

ture to meet the water requirements for macadamia growth, particularly during the drier

months of the year.

Isothermality (17.3%) and the mean diurnal range (13.1%) are two other important fac-

tors influencing macadamia suitability in Malawi (13.1 percent). Our findings suggest that

large fluctuations in day and night temperatures, as well as increased warming (� 30 oC),

are responsible for the marginal suitability for macadamia in Malawi, notably along the

lakeshore and Shire valley, confirming previous research [25,27,63,64]. Such temperature

increases result in increases in evapotranspiration, which raises the crop water require-

ments of macadamia, especially during critical phenological stages. Higher day tempera-

tures of more than 30 oC have already been linked to excessive water loss from the

macadamia plants [58]. Such moisture losses result in a disproportional supply of nutrients

within the macadamia nut, limiting oil buildup and negatively affecting the nut quality

[21]. As a result, predictions that climate change will increase the number of days (30.5

days per year) with temperatures above 30 oC and hot nights (40 days per year) with tem-

peratures above 14 oC [65], will undoubtedly reduce the number of suitable areas for maca-

damia production in Malawi. Subsequently, irrigation will be crucial for long-term

macadamia production, especially during the hotter, drier months (May-November), to

compensate for water lost through evapotranspiration.

Fig 7. Percentage of predicted suitable areas for macadamia production using current and future climate scenarios.

https://doi.org/10.1371/journal.pone.0257007.g007
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4.2. Impact of climate change on macadamia suitability in Malawi

The results of our analysis reveal that extensive areas in Malawi under the current climatic

conditions are suitable for macadamia production (Table 3, Fig 5). Moreover, our outcomes

suggest potentially suitable growing areas for macadamia in Malawi’s south-eastern parts out-

side the current producing zones. The suitability maps depict possible production areas, some

of which have not yet been translated to realized areas [53]. This also suggests the broad adapt-

ability of some macadamia cultivars that allow their production from high potential areas to

marginal and low input areas with several environmental constraints. Nonetheless, because of

their limited buffering capacity, these areas are the most vulnerable to climate change.

Malawian regions are already falling outside the recommended optimal range (14–30 oC) for

macadamia production, which is attributed to the increase in annual mean temperatures (0.9 oC)

and overall drying recorded in the past five decades [56,57]. According to our analysis, climate

change is likely to reduce the suitable areas for macadamia production in the 2050s in Malawi

(Table 4, Fig 6). The lowlands, predominantly those in the southern region, will be the most vul-

nerable to these losses (� 85%), with suitability shifting towards the country’s central and north-

ern regions. The decreases in suitable areas are attributed to the projected increases in the

intensity and frequency of heatwaves, droughts, and temperatures linked to the El Niño Southern

Oscillation [66]. Barrueto et al. [25] predicted losses in suitable areas for macadamia production

in Nepal’s lowlands due to warming conditions caused by climate change, concurrent with the

current study results for Malawi. In Ethiopia, Chemura et al. [40] projected declines in suitable

areas for specialty coffee under climate change scenarios, confirming our results that climate

change may have a negative impact on crop suitability. Bunn et al. [11] predicted losses in suitable

areas for tea production in southern Malawi due to projected increases in warming and frequency

of droughts, which is consistent with the current study in the same region.

Our study shows that suitable areas for macadamia production in the northern region will

face minor losses (�4%). This is because a larger percentage of the region (75%) is located at

higher elevations (Fig 1), making it less vulnerable to temperature changes than the country’s

central and southern regions. Further, we observe losses in suitability in some high elevated

(1400 m.a.s.l.) areas in the northern and central regions. The decrease is due to projected

increases in cloud cover [7], resulting in less light reaching the trees, thereby reducing total net

photosynthesis for tree growth and oil accumulation, subsequently affecting nut yields and

quality. In addition, heavy cloud cover has been reported to cause thick shells (making shelling

difficult and expensive) in macadamia and lowers the overall nut yields and quality [17].

Our findings, therefore, show the sensitivity of macadamia to variations in environmental con-

ditions. Farmers can thus continue planting macadamia trees in areas where no changes in suit-

ability for macadamia are expected. However, both research and field-based evidence from

discussions with farmers show that climate-related changes are already occurring and affecting

the suitability for macadamia production in Malawi. Farmers are, therefore, encouraged to start

implementing adaptation measures such as the use of improved macadamia varieties, agrofor-

estry, intercropping, water conservation, and irrigation for long-term and sustainable macadamia

production. Nevertheless, these suitability changes are predicted to occur over the next 30 years,

so these will mostly impact the next generation of macadamia farmers. Therefore, there is still

time for adaptation. Failure to adapt in time to the risk of decreasing yields and incomes may lead

to migration, food insecurity, and reduced incomes among the producers.

4.3. Applicability and potential limitations of this study

Species distribution modelling is founded on assumptions intrinsic in the models, some of

which cannot be tested [67,68]. Although this study’s findings can be considered robust,
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several issues should be considered in interpreting and applying the results. Though we identi-

fied areas as suitable for macadamia production based on environmental predictors, however

on the ground, this may not directly translate to the size of the arable land. In addition, other

physical (soil physical and chemical factors) and socio-economic factors (including the gender

and age of the smallholder farmers, availability of agricultural advisory services, access to

roads, and market availability) which are used in determining the suitability of an area for

crop production were not considered in our analysis. It is therefore recommended to take

extra caution when using the results of this study. Nonetheless, the results of this analysis are

important for future planning purposes. Therefore, there is a need for a thorough evaluation

of adaptation approaches suggested for smallholder macadamia farmers, as these may be dif-

ferent from those utilized by commercial growers.

5. Conclusions

An ensemble model was used in this study to determine Malawi’s current and future suitability

for macadamia production. The study’s findings lead to three important conclusions. For start-

ers, precipitation is the most important determinant of macadamia suitability in Malawi. Sec-

ond, the current and future macadamia production areas identified exist on agricultural land

currently used to grow other crops. As a result, we propose promoting macadamia intercrops

and agroforestry as a climate change adaptation strategy. Third, the extent of suitable areas for

macadamia production in Malawi is projected to decrease under both emission scenarios uti-

lized in this analysis, and the most vulnerable areas are those in southern Malawi. Thus, we

conclude that the macadamia sector faces production risks from climate change, but there are

opportunities for adaptation strategies to build a resilient sector in Malawi.
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