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Abstract
Neonatal sepsis causes up to an estimated 680,000 deaths annually worldwide, predominantly in low- and middle-income 
countries (LMICs). A significant and growing proportion of bacteria causing neonatal sepsis are resistant to multiple antibiot-
ics, including the World Health Organization-recommended empiric neonatal sepsis regimen of ampicillin/gentamicin. The 
Global Antibiotic Research and Development Partnership is aiming to develop alternative empiric antibiotic regimens that 
fulfil several criteria: (1) affordable in LMIC settings; (2) activity against neonatal bacterial pathogens, including extended-
spectrum β-lactamase producers, gentamicin-resistant Gram-negative bacteria, and methicillin-resistant Staphylococcus 
aureus (MRSA); (3) a licence for neonatal use or extensive experience of use in neonates; and (4) minimal toxicities. In this 
review, we identify five antibiotics that fulfil these criteria: amikacin, tobramycin, fosfomycin, flomoxef, and cefepime. We 
describe the available characteristics of each in terms of mechanism of action, resistance mechanisms, clinical pharmacoki-
netics, pharmacodynamics, and toxicity profile. We also identify some knowledge gaps: (1) the neonatal pharmacokinetics 
of cefepime is reliant on relatively small and limited datasets, and the pharmacokinetics of flomoxef are also reliant on data 
from a limited demographic range and (2) for all reviewed agents, the pharmacodynamic index and target has not been defini-
tively established for both bactericidal effect and emergence of resistance, with many assumed to have an identical index/
target to similar class molecules. These five agents have the potential to be used in novel combination empiric regimens for 
neonatal sepsis. However, the data gaps need addressing by pharmacokinetic trials and pharmacodynamic characterisation.

Key Points 

Amikacin, tobramycin, fosfomycin, flomoxef, and 
cefepime are five safe and off-patent antibiotics with 
experience of use in neonates that can be potentially 
used as empiric treatment of neonatal sepsis in low- and 
middle-income settings where antimicrobial resistance 
complicates current standard-of-care regimens.

The neonatal pharmacokinetics are well characterised 
for most, with cefepime and flomoxef needing some 
additional data.

All agents have data gaps in their pharmacodynamic 
characterisation in terms of bacterial killing and emer-
gence of resistance
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1  Introduction

Over the last few decades, the global neonatal mortality rate 
has improved, with a fall of 37% since 1990 [1]. Despite 
this, neonatal infection continues to contribute to consider-
able mortality, with neonatal sepsis accounting for 15.6% of 
neonatal deaths (an estimated 430,000–680,000 deaths per 
annum), which predominantly occur in low- and middle-
income countries (LMICs) [2–4].

For the past few decades, the World Health Organiza-
tion (WHO) has recommended a relatively narrow-spectrum 
β-lactam (e.g., amoxicillin, benzylpenicillin, or, if at risk of 
staphylococcal infections, cloxacillin) in combination with 
gentamicin as first-line empirical treatment of neonatal sep-
sis, with cefotaxime/ceftriaxone as second line [5, 6]. The 
rationale behind this is to provide regimen options that are 
relatively narrow spectrum, effective against the main caus-
ative bacteria (Streptococcus agalactiae, Staphylococcus 
aureus, and Enterobacterales [7]), have minimal toxicities, 
and are both inexpensive and practical to administer.

However, as with other bacterial infections, antimicrobial 
resistance (AMR) is an increasing concern in the treatment 
of neonatal sepsis [8]. A recent prospective multi-centre 
epidemiological neonatal sepsis study demonstrated 95%, 
80%, and 60% resistance rates to amoxicillin, ceftriax-
one, and gentamicin, respectively, in Gram-negative bac-
teria causing neonatal sepsis, with widespread carriage of 
extended-spectrum β-lactamase (ESBL) genes [9]. Another 
similar observational neonatal sepsis study in New Delhi 
[10] presented a similar picture, with over 56% of causative 
Gram-negative bacteria resistant to three or more classes of 
broad-spectrum antibiotics (defined in the study as extended-
spectrum cephalosporins, piperacillin–tazobactam, fluoro-
quinolones, aminoglycosides, and carbapenems), and 38% 
of S. aureus infections were methicillin resistant. These 
observed resistance patterns have been replicated in other 
regional retrospective observational studies [11–16]. With 
such high rates of β-lactam and gentamicin resistance, it is 
increasingly clear that the current WHO-recommended regi-
men for neonatal sepsis is no longer optimal in the context 
of neonatal sepsis, and so an alternative first-line empiric 
regimen is needed.

Such a regimen should have activity against the main 
causative bacteria and resistance motifs and be suitable for 
use in an LMIC setting. Although newly developed agents 
may have the required spectrum of activity, they are unlikely 
to be available in the near future because of licensing and 
cost limitations and the well-recognised delay in obtaining a 
paediatric and neonatal licence (which can be up to 10 years 
after the adult licence) [17]. However, a number of older 
off-patent antimicrobials retain the requisite spectrum of 

antimicrobial activity and could be repurposed for use in 
neonatal sepsis.

The identification of new antimicrobial regimens for 
treatment of neonatal sepsis is one of the goals of the 
Global Antibiotic Research and Development Partnership 
(GARDP). In particular, the GARDP aims to develop an 
antimicrobial regimen for use in LMICs for the empiric 
treatment of neonatal sepsis in locations with increasing 
resistance to current WHO-recommended treatments [18].

Criteria were developed for selecting antimicrobial agents 
that fulfilled the needs of such a treatment (Table 1) [18]. 
These criteria were applied to a list of antibiotics extracted 
from Kucers’ [19], supplemented by additional agents 
licensed by the European Medicines Agency/US FDA after 
2017. Five agents fulfilled these criteria and were identified 
as candidates with potential utility (either alone or in combi-
nation) for the treatment of neonatal sepsis in LMIC settings: 
amikacin, tobramycin, fosfomycin, flomoxef, and cefepime. 
This review examines the pharmacological characteristics 
of each, with a focus on neonatal use.

2 � Literature Review Methodology

The literature was reviewed for each component of the 
review by searching MEDLINE (via PubMed) with 
the following general search term strategy: [antibiotic 
name] + [pharmacological characteristic] ± [demographic 
qualifier]. For the term [antibiotic name], individual antibi-
otic names were used, along with development names (e.g., 
6513-S for flomoxef) where known. For the term [phar-
macological characteristic], broad terms were used for the 
domain of interest, with further narrower terms for specific 
components. For example, ‘toxicity’ was used for a broad 
initial search for the toxicity characteristics of each drug, 
with subsequent narrower search terms for specific identified 
toxicities (e.g., ‘nephrotoxicity’ for the aminoglycosides). 
A similar search term strategy (i.e., an initial broad search 

Table 1   Criteria for selection of candidate antibiotics for treatment of 
neonatal sepsis in low- and middle-income countries [18]

Criteria for antimicrobial selection

1. Antimicrobial should be inexpensive to manufacture (i.e., off pat-
ent)

2. Clinically relevant activity against multidrug-resistant bacteria, 
particularly Gram-negative bacteria with gentamicin resistance or 
extended-spectrum β-lactamases and methicillin-resistant Gram-
positive organisms

3. Licensed for use in neonatal infection by a stringent regulatory 
authority (e.g., the European Medicines Agency); or extensive 
experience of use in the neonatal context where no licence

4. Limited toxicity
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term, with subsequent narrower search terms for components 
specific to each domain) was used for each pharmacological 
section (e.g., clinical pharmacokinetics, resistance mecha-
nisms, pharmacodynamics, etc.).

These searches were performed with and without the 
[demographic qualifier] term for relevant pharmacologi-
cal characteristics (i.e., toxicity, clinical pharmacokinetics) 
using the terms ‘neonate’, ‘neonatal’, and ‘infant’ to capture 
and identify published data in the neonatal age group, where 
these were available.

Literature retrieved by the searches was screened for rel-
evance. The primary author extracted data for incorporation 
into the manuscript, and the senior authors provided expert 
critical review and feedback.

3 � Amikacin and Tobramycin

Amikacin and tobramycin are aminoglycosides with in vitro 
activity against gentamicin-resistant bacteria. Aminoglyco-
sides consist of a central dibasic aminocyclitol core (usually 
2-deoxystreptamine) with one or two amino sugar moieties 

connected via glycosidic links [20]. Resistance to first-
generation aminoglycosides (e.g., kanamycin, gentamicin) 
became widespread with their use in clinical practice, with 
resistance largely caused by aminoglycoside-modifying 
enzymes (AMEs) [21]. Later-generation aminoglycosides 
have properties that circumvent some AMEs, increasing 
their clinical usefulness in infections caused by isolates 
resistant to first-generation aminoglycosides.

Amikacin is a semi-synthetic aminoglycoside derived 
from kanamycin by the addition of an l-(−)-γ-amino-α-
hydrobutyryl side chain to the 2-deoxystreptamine compo-
nent of the molecule [22] (Fig. 1). This additional side chain 
interferes with the binding of many AMEs, which otherwise 
inactivate many other aminoglycosides, extending the activ-
ity of amikacin to most gentamicin-resistant bacteria.

Tobramycin is a naturally occurring aminoglycoside 
isolated from Streptomyces tenebrarius and is structurally 
similar to kanamycin and gentamicin C1a [23]. Compared 
with the latter, tobramycin has a 3-amino-3-deoxyglucose 
instead of a 3-deoxy-3-methylamino-4-C-methylxylose 
(Fig. 1). Tobramycin was developed because of its increased 

Fig. 1   Chemical structures of amikacin and tobramycin, with comparator molecules of kanamycin and gentamicin C1a. (A) L-(−)-γ-amino-α-
hydrobutyryl side chain, (B) 3-amino-3-deoxyglucose
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activity against Pseudomonas aeruginosa compared with 
pre-existing aminoglycosides [24].

3.1 � Mechanism of Action

Tobramycin and amikacin inhibit protein synthesis by bind-
ing to the 30S bacterial ribosome subunit, causing mistrans-
lation of bacterial proteins. Specifically, they bind to the 
aminoacyl-transfer RNA recognition site of the 16S riboso-
mal RNA (rRNA) component of the 30S ribosome [20, 25]. 
Entry to the bacterial cell is via the ‘self-promoted uptake 
pathway’. Both agents are polycationic and must initially 
bind to anionic compounds, e.g., lipopolysaccharides in 
Gram-negative bacteria and teichoic acids and phospholip-
ids in Gram-positive bacteria. This binding increases the 
permeability of the outer membrane, allowing penetration 
of the antibiotic into the periplasmic space [26]. Following 
this, an energy-dependent uptake process provides access to 
the cytoplasm [27], where it can engage with the ribosomal 
target. Protein mistranslation caused by ribosomal binding 
further increases membrane permeability, allowing further 
entry of the aminoglycoside into the cytoplasm and leading 
to further bactericidal effect.

As with other aminoglycosides, both agents have a spec-
trum of activity against Gram-negative bacteria, including P. 
aeruginosa [20]. Aminoglycosides also have activity against 
staphylococci but are largely ineffective against other Gram-
positive bacteria as monotherapy. The need to use the active 
electron transport process to enter the bacterial cell means 
anaerobic bacteria are intrinsically resistant [20].

3.2 � Resistance Mechanisms

Resistance to amikacin and tobramycin, like other amino-
glycosides, occurs by one of the five following mechanisms.

3.2.1 � Inactivation by Aminoglycoside‑Modifying Enzymes

AMEs act by modifying specific hydroxyl or amino groups 
on either the 2-deoxystreptamine nucleus or the sugar moie-
ties. There are three main types: acetyltransferases (AACs), 
nucleotidyltransferases (ANTs), and phosphotransferases 
(APHs). Individual AMEs are named as the acronym of 
their type, with the site of enzymatic modification within 
parenthesis, e.g., AAC(2ʹ). Subsequent roman numerals refer 
to the resistance profile they confer, with further lower-case 
letters as individual identifiers [28].

A large number of AMEs have been identified [21], 
encoded on transmissible elements (e.g., plasmids), trans-
posons, and bacterial chromosomes. Aminoglycoside sus-
ceptibility to individual AMEs is linked to the specific con-
figuration of their side chains.

Amikacin is refractory to inactivation by most AMEs 
because of its amino-α-hydrobutyryl side chain. How-
ever, multiple AMEs with activity against amikacin have 
emerged, mostly by acetylation of 6ʹ-N position. These 
AAC(6ʹ) enzymes have activity against amikacin but not 
normally gentamicin [21].

Tobramycin is resistant to the AAC(1), AAD(4ʹ), and 
APH(2ʹʹ) enzymes that inactivate gentamicin. However, sev-
eral enzymes confer cross-resistance to both gentamicin and 
tobramycin (but not amikacin), including AAC(2), AAC(3), 
AAC(2ʹ), AAC(6ʹ), and AAD(2ʹʹ). Additionally AAD(4ʹ) 
deactivates tobramycin but not gentamicin [25].

Although AMEs usually have limited cross-reactivity 
between aminoglycosides, bacteria can accumulate multi-
ple AME genes, conferring pan-aminoglycoside resistance.

3.2.2 � Modification of Target Site by 16S Methylation

Post-transcriptional methylation of the 16S rRNA subunit 
inhibits the binding of aminoglycosides to the ribosome. It 
is commonly observed in aminoglycoside-producing Act-
inobacteria to provide autoprotection against endogenous 
aminoglycoside production [29]. However, nine plasmid-
mediated 16S rRNA methyltransferases have been identi-
fied in non-Actinobacteria species: ArmA, RmtA–H, and 
NpmA [29]. These enzymes give high-level resistance to 
all 4,6-disubstituted 2-deoxystreptamine aminoglycosides 
(which include gentamicin, tobramycin, and amikacin) as 
well as newer aminoglycosides [30]. The spread of plasmid-
mediated 16S rRNA methylases in Gram-negative bacteria is 
of particular concern because they also usually carry genes 
that encode ESBLs and carbapenemases [31].

3.2.3 � Target Site Modification

Chromosomal mutation of the 16S rRNA gene in Myco-
bacterium tuberculosis confers resistance to kanamycin [32] 
and streptomycin [33]. Mutations conferring resistance to 
amikacin have been reported in atypical mycobacteria [34]. 
To date, no chromosomal 16S rRNA gene mutation has been 
reported in non-mycobacterial bacteria.

3.2.4 � Alteration of Uptake Mechanisms

Given the complexity of aminoglycoside uptake into 
Gram-negative bacteria, resistance mediated by changes 
to self-promoted uptake is poorly understood. There is lit-
tle evidence for porin involvement in uptake, and specific 
mutations in porin genes conferring clinically relevant levels 
of resistance have not been described [35]. Disruption of 
uptake into cells is thought to also be a mechanism of resist-
ance in staphylococci [36].
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3.2.5 � Enhanced Drug Efflux

A wide range of bacterial efflux pumps have been charac-
terised [37, 38]. Some pumps export aminoglycosides; for 
example, P. aeruginosa-expressing MexXY pumps have 
been associated with amikacin resistance [39].

3.3 � Clinical Pharmacokinetics

Like other aminoglycosides, amikacin and tobramycin have 
poor oral bioavailability, requiring parenteral administration. 
Peak plasma concentration (Cmax) occurs approximately 30 
min post-infusion for both drugs in adults and neonates 
[40–43].

Both drugs are strongly hydrophilic and distribute primar-
ily into extracellular fluid with a volume of distribution (Vd) 
of 0.5–0.6 L/kg in neonates for both agents [44, 45]. Ami-
noglycosides do not significantly penetrate the cerebrospi-
nal fluid (CSF) in adults [46], even when the meninges are 
inflamed. However, in neonates, a CSF partition coefficient 
of 0.103 for amikacin has been estimated [47], although 
there is limited evidence of drug penetration with tobramy-
cin [48] (for comparison, gentamicin penetrance is negli-
gible [49, 50]). Protein binding is minimal for both drugs 
[51, 52].

Amikacin and tobramycin are renally excreted unmetabo-
lised. The adult elimination half-life is ~2 h for both agents, 
with > 90% of drug recovered from urine within 24 h [51, 
53]. However, the terminal elimination phase after cessation 
of therapy is prolonged, with 100% renal excretion requiring 
10–20 days for both drugs [51, 54]. In neonates, the half-
life can be significantly longer because of renal ontogenesis: 
7.6 ± 4.4 h for amikacin [55] and 2–7.3 h for tobramycin 
[43].

Renal tubular accumulation of aminoglycosides, medi-
ated by several transporters [56], is thought to be the mecha-
nism of nephrotoxicity and the prolonged terminal phase of 
elimination. Identified transporters include Megalin, Cubi-
lin, TRPV1, and TRPV4 [57–60]; all have affinity for most 
aminoglycosides, but the relative affinity varies between 
individual molecules, likely reflecting the variable nephro-
toxicity of different aminoglycosides.

3.4 � Toxicity

There are three main aminoglycoside toxicities. First, ami-
noglycoside use can cause a reversible non-oliguric renal 
impairment due to aminoglycoside accumulation in proxi-
mal tubular epithelial cells, leading to tubular necrosis [61]. 
Once-daily dosing in adults reduces this toxicity compared 
with multiple daily dosing [62], implying a time above 
plasma concentration threshold relationship for nephrotox-
icity (in contrast to a peak concentration relationship for 

bacterial killing). Comparable data are scarce in neonates 
[63, 64], although the relationship to dosing schedule is 
presumed to be consistent between age groups, leading to 
predominant use of once-daily dosing in neonates [65–67].

Aminoglycosides can cause ototoxicity via damage to 
the sensory hair cells of the inner ear, particularly the high-
frequency outer hair cells [68]. This can produce irreversible 
cochlear function impairment. Vestibular impairment can 
also occur, but this is reversible on cessation of the drug. The 
exact mechanism is not understood; the dose–effect relation-
ship seems to be idiosyncratic and possibly associated with 
certain mitochondrial genetic variations [68, 69]. Detailed 
neonatal data are absent, but neonatal amikacin use may be 
associated with a 3% ototoxicity incidence [63]. Tobramycin 
does not appear to be associated with significant ototoxicity 
[70].

Neuro-muscular blockade is a rare but serious toxicity 
associated with aminoglycoside use. However, cases have 
only been reported in adults [71–73]; there have been no 
reported cases in neonates.

3.5 � Pharmacodynamics

Specific pharmacodynamic targets for tobramycin and ami-
kacin have not been established. However, there are consid-
erable published in vitro and in vivo pharmacodynamic data 
for other aminoglycosides.

Multiple aminoglycoside dose fractionation studies in 
neutropenic mouse models [74–77] suggest that the phar-
macodynamic index that best links drug exposure with anti-
microbial activity is Cmax/minimum inhibitory concentration 
(MIC). However, other experimental platforms suggest the 
relevant pharmacodynamic index is area under the concen-
tration–time curve (AUC)/MIC [78, 79].

In multiple adult clinical trials, the Cmax/MIC ratio has 
repeatedly been related to clinical success of aminoglyco-
sides [80–85], with a pharmacodynamic target of Cmax/MIC 
≥ 10 for a > 90% successful clinical outcome where this was 
calculated [80, 84]. Interestingly, where the AUC/MIC was 
also calculated, it was equally related with patient outcomes 
[84, 85].

Because of the limited human dosing schedules of ami-
noglycosides (once daily in most published trials), Cmax and 
AUC are co-linear [86], a likely reason for the inability to 
distinguish Cmax/MIC and AUC/MIC as the relevant phar-
macodynamic index. Therefore, pragmatically, Cmax (rather 
than AUC) is used in therapeutic drug monitoring in clinical 
contexts [84, 86].

3.6 � Potential Utility in Neonatal Sepsis

Both aminoglycosides have potential utility in neonatal 
sepsis given their spectra of activity against Gram-negative 
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bacteria that are gentamicin resistant and staphylococci. 
Given its stability to a wider range of AMEs, amikacin is 
the more promising choice in an AME-prevalent environ-
ment. Both agents would rely on another antibiotic in a 
potential combination regimen to provide activity against 
streptococci.

Both aminoglycosides have a long history of neonatal use, 
with pharmacokinetics and pharmacodynamics well under-
stood. Although toxicities are associated with their use, they 
can be mitigated.

4 � Fosfomycin

Fosfomycin is a phosphoric acid derivative isolated from 
various Streptomyces species [87]. Fosfomycin is a small 
molecule (Fig. 2), with a molecular weight of 138 g/mol [88] 
and three different formulations: a disodium compound, used 
for intravenous administration, and tromethamine and cal-
cium compounds, used for oral administration. The follow-
ing discussion is focused on the disodium formulation given 
the typical requirement for parenteral treatment of neonates.

4.1 � Mechanism of Action

Fosfomycin inhibits the enzyme MurA, which catalyses 
the reaction of UDP-N-acetylglucosamine (UDP-GlcNAc) 
with phosphoenolpyruvate (PEP) to form UDP-GlcNAc-
enolpyruvate plus inorganic phosphate [89]. Specifically, 
fosfomycin acts as a PEP analogue to inhibit the enzyme 
[90]. This reaction is the first step in peptidoglycan synthe-
sis, with inhibition of this process inhibiting bacterial cell 
wall synthesis, leading to cell death.

Uptake of fosfomycin into the bacterium is dependent 
on two bacterial transporters. The first, GlpT, is an anti-
porter that normally transports glycerol-3-phosphate (G3P) 
in exchange for a phosphate molecule [91]. This uptake sys-
tem is found amongst many species of bacteria [90].

Alternatively, the hexose-phosphate uptake system 
(UhpT) can also transport fosfomycin. This mechanism is 
glucose-6-phosphate (G6P) dependent and limited to Entero-
bacterales (with the exception of Proteus species) and S. 
aureus species [92]. This transporter is only induced in the 
presence of G6P, so fosfomycin uptake via this pathway 

usually requires the presence of G6P. As a result, in vitro 
assays involving fosfomycin require G6P supplementation.

Fosfomycin has a broad spectrum of activity, with poten-
tial activity against most Gram-positive and Gram-negative 
bacteria, including Pseudomonas species and anaerobes 
[93], with Acinetobacter and Listeria species being impor-
tant exceptions [89, 94].

4.2 � Resistance Mechanisms

There are three main resistance mechanisms against 
fosfomycin.

4.2.1 � Reduced Permeability to Fosfomycin

Fosfomycin uptake is dependent on the presence of either 
GlpT or UhpT transporters. Mutations in the genes encod-
ing either can confer resistance. Species that lack both 
transporters (e.g., Listeria monocytogenes) are inhibited by 
intrinsically higher fosfomycin MICs [94, 95]. Some species 
intrinsically lack one pathway, with development of resist-
ance requiring only a single gene mutation, e.g., glpT in the 
UhpT-lacking P. aeruginosa.

Both transport systems are cyclic adenosine monophos-
phate (cAMP) dependent. Therefore, mutations that reduce 
cAMP levels (e.g., ptsl or cyaA mutations) will prevent cell 
penetration of fosfomycin [96, 97], albeit at a survival cost 
due to alterations in carbohydrate catabolism. This survival 
cost may explain the discrepancy between the high rate of 
resistance (> 10−2) observed in vitro and the rare occurrence 
of fosfomycin-resistant clinical isolates where fosfomycin 
use is prevalent [98].

4.2.2 � Modification of MurA Target

Mutations of the murA gene encoding the target MurA pro-
tein can occur. In vitro mutagenesis of MurA altering Cys 
115 to Asp confers resistance [99], but this has not been 
seen in clinical isolates. A number of other mutations in 
murA (Asp369Asn, Leu370Ile, Asp3890Ala, Gln59Lys, 
GlU139Lys, Val389Ile) have been identified in fosfomycin-
resistant clinical samples [100–102], but these mutations 
are infrequent compared with other resistance mechanisms. 
Interestingly, in vitro overexpression of murA also increases 
the fosfomycin MIC [103], although this mechanism has not 
been identified in clinical isolates.

4.2.3 � Modification by Fosfomycin‑Modifying Enzymes

Fosfomycin-modifying enzymes are the most frequently 
identified cause of resistance in clinical isolates, with three 
metalloenzymes identified: FosA, FosB, and FosX. All mod-
ify the fosfomycin molecule by opening the oxirane ring of 

Fig. 2   Molecular structure of 
fosfomycin. A oxirane ring
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the fosfomycin molecule (Fig. 2), using different substrates 
to add chemical groups to the molecule:

–	 FosA is a Mn2+- and K+-dependent glutathione-S-trans-
ferase, originally identified on a plasmid in a Serratia 
marcescens strain [104, 105]. FosA-type enzymes have 
been identified in multiple different clinically resistant 
isolates [101] and are often co-expressed with other 
AMR genes (e.g., blaKPC and blaCTX-M) in some geo-
graphic regions [106, 107]. fosA homologues have also 
been identified in the chromosome of many Gram-nega-
tive bacteria strains, including Klebsiella, Enterobacter, 
Serratia, and Pseudomonas species [108, 109].

–	 FosB is a Mg2+-dependent thiol-S-transferase, originally 
identified in Staphylococcus epidermidis [110] but found 
in many other low G+C Gram-positive bacteria (e.g., 
Bacillus species and S. aureus) that do not synthesise 
glutathione. This is the most prevalent fosfomycin-resist-
ance mechanism in S. aureus [111].

–	 FosX is a Mn2+-dependent epoxide hydrolase that uses 
water to hydrolyse the oxirane ring. The fosX gene has 
been identified in the chromosomes of several species, 
including L. monocytogenes [112].

In addition, there are two fosfomycin kinases: FomA and 
FomB. These sequentially add phosphate groups to the phos-
phonate moiety of fosfomycin from adenosine triphosphate 
with Mg2+ as a cofactor [113]. These have only been found 
in fosfomycin-producing Streptomyces species, providing 
autoprotection to these bacteria.

4.3 � Clinical Pharmacokinetics

Given its small molecular weight, fosfomycin distributes 
widely into most tissues, including bone and soft tissue [114, 
115], with an adult Vd of 9–30 L [116], and protein binding 
is negligible [117]. CSF penetration is partial, with a parti-
tion coefficient of ~0.15–0.2 in adults [118] and 0.32 in neo-
nates [119]. Fosfomycin is almost entirely cleared by renal 
excretion, with ~90% of the drug recovered unchanged in the 
urine by 48 h [120, 121] and an adult half-life of 1.9–3.9 h 
[116]. Fosfomycin is not metabolised. Significant levels of 
fosfomycin have been detected in the bile [116, 122], sug-
gesting that biliary excretion accounts for the remaining 
clearance. However, as studies measuring faecal fosfomycin 
levels used incompletely bioavailable oral formulations, this 
has yet to be confirmed.

A recent fosfomycin pharmacokinetic study in neonates 
(n = 61) examining 100 mg/kg bolus doses gave a median 
Cmax of approximately 350 mg/L (with large inter-individual 
variability) with a median β-phase half-life of 5.2 h [119]. 
This is concordant with the limited published pharmacoki-
netic data in neonates, with two small pharmacokinetic 

studies (total n = 22) giving Cmax values of ~96–98 mg/L 
and ~135 mg/L following 50 mg/kg intravenous bolus and 
200 mg/kg infusion (30–120 min), respectively, and a mean 
half-life of ~7 h, with a half-life of 4.9 h in a subset of older 
neonates (3–4 weeks old; n =6 ) [123, 124].

4.4 � Toxicity

Fosfomycin is associated with no common serious adverse 
events and limited common adverse events, most notably 
hypokalaemia [125]. Phlebitis, rash, and gastrointestinal 
upset occur commonly but are no more frequent than with 
comparator antibiotics. There is potential concern about the 
inherent sodium load with intravenous fosfomycin disodium 
administration, with adverse outcomes related to sodium 
overload noted in two recent adult trials, both involving 
cardiac patients at risk of overload and prolonged parental 
treatment [126, 127]. This may be relevant to neonates given 
their risk of fluid overload [128], but such adverse events 
have yet to be demonstrated in this context.

4.5 � Pharmacodynamics

Studies examining the most relevant pharmacodynamic 
index for fosfomycin have yielded conflicting results. Dif-
ferent animal models have identified the relevant pharmaco-
dynamic index as Cmax/MIC [129] or AUC/MIC (with ratios 
of 23 and 83 required for stasis and 1-log kill in Enterobac-
terales, respectively) [130], and an in vitro dynamic one-
compartment experiment assessing P. aeruginosa suggested 
%time>MIC is the relevant index [131] (although the pos-
sibility of AUC/MIC as the index was not assessed). Several 
other non-dynamic in vitro studies have come to different 
conclusions about the index for bacterial kill [118, 132, 
133], but it is difficult to give weight to these conclusions 
over those from dynamic models. With regards to emergence 
of resistance, a single hollow fibre infection model experi-
ment suggested that the AUC/MIC ratio is the relevant phar-
macodynamic index [134].

4.6 � Potential Utility in Neonatal Sepsis

Fosfomycin has been underused since its discovery in the 
1960s, despite its broad spectrum of activity, and it has 
activity against most neonatal sepsis pathogens. Addition-
ally, its unique mechanism of action limits potential cross-
resistance from other antimicrobial classes. These factors 
mean that fosfomycin-resistance rates are low globally and 
make this agent suitable for treatment of neonatal sepsis in 
AMR-prevalent settings [128].

Previous data gaps in neonatal pharmacokinetics have 
largely been answered by the recent large NeoFOSFO phar-
macokinetic study [119]. However, the pharmacodynamic 
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characterisation of fosfomycin is incomplete, with the exact 
pharmacodynamic indices uncertain. Finally, regulatory 
approval for fosfomycin is not universal, with a licence not 
yet available in many LMICs.

5 � Flomoxef

Flomoxef is an oxacephem class β-lactam antibiotic first 
synthesised in Japan in the 1980s [135, 136]. β-lactams are 
amongst the most widely used class of antibiotic globally 
[137, 138], characterised molecularly by a common β-lactam 
ring [137]. The predominant mechanism of β-lactam resist-
ance is degradation by β-lactamases, with increasing preva-
lent ESBLs being a significant cause of β-lactam resistance 
globally [139].

Oxacephems are derivatives of cephalosporins, originally 
isolated from Streptomyces species [135]. The molecular 
configuration of oxacephem sidechains confer particular 
activity against Gram-negative bacteria and stability against 
degradation by β-lactamases [140], albeit normally at the 
expense of activity against Gram-positive bacteria [141].

However, flomoxef has an additional 7-β-difluoromethyl-
thioacetamido side chain substitution that enables high levels 
of activity against both Gram-positive and Gram-negative 
bacteria (including anaerobes) and a reduced toxicity profile 
[142, 143] (Fig. 3). Additionally, the N-methyltetrazolethiol 
(NMTT) group attached to the 3ʹ-position of the oxacephem 
nucleus (thought to be responsible for the disulfiram- and 
coumarin-like side effects seen in NMTT-containing oxa-
cephems, e.g., latamoxef) is substituted with a methylthi-
adiazolethiol (MTDT) group [144, 145].

Despite the benefits of this molecule over other β-lactams 
and its widespread use in Japan [136], flomoxef is currently 
licensed and used only in East Asia.

5.1 � Mechanism of Action

Like other β-lactams, flomoxef acts by binding to penicillin-
binding proteins (PBPs) (specific flomoxef affinities to PBP 
types are unknown), inhibiting cell wall synthesis and lead-
ing to bacterial cell death.

Unlike many other cephalosporins, flomoxef demon-
strates high activity against staphylococci (including methi-
cillin-resistant strains), most Enterobacterales and almost all 
anaerobes [142, 146, 147]. Important gaps in the spectrum 
of activity include enterococci, Pseudomonas, and Acineto-
bacter species [142, 143, 147].

5.2 � Resistance Mechanisms

As a β-lactam, flomoxef resistance is predominantly via one 
of four mechanisms.

5.2.1 � Hydrolysis by β‑Lactamase Enzymes

The predominant resistance mechanism for β-lactams 
is hydrolysis of the active β-lactam ring by bacterial 
β-lactamase enzymes. Oxacephems, including flomoxef, 
are stable to many β-lactamases, including ESBLs such as 
the CTX-M enzymes [143, 148–150], an attractive feature 
in the context of the rising incidence of ESBL-mediated 
AMR. However, flomoxef is susceptible to AmpC-like (i.e., 
Ambler class C) β-lactamases and carbapenems [150, 151]. 
This is potentially of concern because of the emergence of 
Klebsiella strains producing plasmid-mediated AmpC-like 
β-lactamases, which confer high flomoxef MICs [152].

Epidemiological studies have demonstrated that, because 
of flomoxef’s overall stability to ESBLs, flomoxef suscep-
tibility rates in bacteria are comparable to those of carbap-
enems, even in geographical regions where it is used widely 
(e.g., China) [148, 149, 153–157]. Retrospective studies 
have suggested that treatment of bloodstream infections 
caused by ESBL-producing bacteria is equally successful 
with either flomoxef or carbapenems [158–160], highlight-
ing the potential use of flomoxef as a carbapenem-sparing 
agent.

Fig. 3   Molecular structures of flomoxef and latamoxef. A 
7-β-difluoromethyl-thioacetamido side chain, B methylthiadiazo-
lethiol group, C N-methyltetrazolethiol group
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5.2.2 � Modifications of Penicillin‑Binding Proteins (PBPs)

Modification of target PBPs is another important resist-
ance mechanism to β-lactams, e.g., PBP2a confers β-lactam 
resistance in methicillin-resistant S. aureus (MRSA). Flo-
moxef retains activity against MRSA [142] and appears to 
induce production of PBP2a to a lesser extent than other 
β-lactams [161]. Streptococcus pneumoniae also develops 
β-lactam resistance by a variety of PBP gene mutations, 
although many penicillin non-susceptible pneumococcal 
strains remain susceptible to flomoxef [149].

5.2.3 � Mutations in Porin Genes

Mutations in porin genes can affect the antimicrobial pen-
etration of β-lactams, although these have not been char-
acterised in the context of flomoxef. However, some porin 
mutations (e.g., ompF) seem to produce small changes in the 
flomoxef MIC [150].

5.2.4 � Efflux

As discussed in Sect. 3.2, many efflux mechanisms have 
been identified [37, 38], several of which affect β-lactams 
and may affect flomoxef, although no particular associations 
with flomoxef have been described.

5.3 � Clinical Pharmacokinetics

Flomoxef is only formulated as an intravenous injection, 
with Cmax occurring about 1 h post administration [136]. 
Protein binding is minimal at < 10% [162]. CSF penetra-
tion is limited, with a partition coefficient of ~0.05 in active 
meningitis in children [163].

Flomoxef is predominantly cleared by renal excretion, 
with 85% of the compound excreted unchanged within 6 h 
[136]. Involvement of active excretion via an organic anion 
transporter, possibly OAT1, is implied by competitive 
inhibition of renal clearance by co-administered probene-
cid [164, 165], although specific transporter associations 
have not been identified. However, there is some metabolic 
clearance, although the enzymatic mechanisms are poorly 
characterised. Flomoxef oxide is an active metabolite with 
approximately 25% of the activity of flomoxef [166]. How-
ever, clearance via this route only accounts for ~ 0.1% of the 
total [167]. Metabolism to the inactive metabolite hydroxy-
ethyl-tetrazolethinol accounts for approximately 10–15% of 
total clearance [167].

The adult β-phase half-life of flomoxef is approximately 
50 min [136]. No single large pharmacokinetic study involv-
ing neonates has been conducted. However, many small 
neonatal studies involving flomoxef have estimated phar-
macokinetic parameters for each dataset [168–177]. The 

parameters from these studies vary widely because of the 
high degree of inter-subject variability in age, weight, and 
gestation, with a median half-life of 2.21 h (range 0.68–6.6). 
However, all pharmacokinetic studies (adult and neonatal) 
were performed in a Japanese population, and validation of 
pharmacokinetic characteristics in non-Japanese populations 
is ideally required.

5.4 � Toxicity

Other NMTT-containing oxacephems (e.g., latamoxef) 
exhibit coagulopathic side effects due to inhibition of vita-
min K12,3-epoxide reductase. Flomoxef inhibits this enzyme 
at a lower affinity than other oxacephems, with coagulo-
pathic toxicity not manifesting in clinical use [144, 145]. 
Additionally, many oxacephems induce a disulfiram-like 
reaction with co-administration of alcohol due to inhibition 
of aldehyde dehydrogenase [178, 179], but this does not 
appear to occur with flomoxef, because of its MTDT side 
chain substitution.

Flomoxef has only mild common side effects, with fre-
quent gastrointestinal disturbance (possibly due to the effects 
on anaerobes in the gut), rash, eosinophilia, neutropenia, and 
drug fever [145, 180]. Although most toxicity data have been 
determined from studies in adults, the limited toxicity data 
from neonatal pharmacokinetic studies [168–177] suggest a 
similar toxicity profile in neonates.

Rare side effects such as pneumonitis have been reported, 
although only in adults [181].

5.5 � Pharmacodynamics

Previously, an assumption was made that the pharmacody-
namics of flomoxef were similar to those of cephalospor-
ins, with assumed pharmacodynamic targets of 40% (bac-
teriostatic) or 70% (bactericidal) time > MIC [182–184]. 
However, a recent mouse thigh model determined targets of 
40% and 25% time > MIC for 1-log bacterial kill and stasis, 
respectively [185]. No pharmacodynamic target for preven-
tion of emergence of resistance has been identified.

5.6 � Potential Utility in Neonatal Sepsis

Flomoxef is an attractive option for neonatal sepsis in AMR-
prevalent settings. It has a broad spectrum of activity and 
intrinsic stability to non-AmpC-type ESBLs, with low resist-
ance rates epidemiologically. Significant neonatal pharma-
cokinetic data are also available (albeit only in Japanese 
populations), and it has a safe toxicity profile. The pharma-
codynamics of bactericidal killing have also recently been 
described, although pharmacodynamic characterisation for 
emergence of resistance is still lacking. The main barrier to 



474	 C. A. Darlow et al.

the use of flomoxef is the lack of regulatory approval outside 
of East Asia.

6 � Cefepime

Cefepime is a β-lactam and fourth-generation cephalosporin. 
Cephalosporins are β-lactam antibiotics derived from the 
prototypical molecule cephalosporin C, isolated from a 
Cephalosporium (now referred to as Acremonium) spe-
cies of fungi in the 1950s [186]. Subsequently, dozens of 
derivatives of this molecule have been created [138]. These 
are broadly categorised into generations, with successive 
generations generally having broader spectra of activity and 
greater activity in the presence of resistance mechanisms 
than earlier generations.

Cefepime is an aminothiazolyl methoxyimino cephalo-
sporin that is structurally similar to third-generation cepha-
losporins such as ceftriaxone and cefotaxime (Fig. 4). It has 
an N-methyl-pyrrolidine moiety at the 3ʹ position that con-
fers zwitterionic properties [187]. This feature allows the 
drug to penetrate the Gram-negative bacterial outer mem-
brane more rapidly than other β-lactams [188, 189].

6.1 � Mechanism of Action

Like other β-lactams, cefepime inhibits cell wall synthesis 
by binding to PBPs (with particular affinities demonstrated 
for PBPs 2 and 3 in Escherichia coli [190]), inhibiting the 
peptidoglycan synthesis pathway and leading to cell lysis 
and death. Cefepime has a broad spectrum of activity affect-
ing both Gram-positive and Gram-negative bacteria, includ-
ing pseudomonads [191]. However, like other cephalospor-
ins, it lacks activity against anaerobic bacteria [192].

6.2 � Resistance Mechanisms

Like other β-lactams, resistance to cefepime occurs by one 
of four main mechanisms.

6.2.1 � Hydrolysis by β‑Lactamase Enzymes

As discussed in Sect. 5.2, the most common resistance 
mechanism to β-lactams is hydrolysis by β-lactamases. Com-
pared with other β-lactams, cefepime is significantly more 
stable to β-lactamases [193]. Compared with other cepha-
losporins, such as cefotaxime and ceftazidime, AmpC-like 
ESBLs have a lower affinity and hydrolysis rate to cefepime 
[194, 195], albeit with an associated inoculum effect [196, 
197]. However, cefepime has affinity and lability to non-
AmpC ESBLs [193, 195, 198]. Although cefepime MICs 
for ESBL-producing bacteria may fall below the European 
Committee on Antimicrobial Susceptibility Testing/Clinical 
Laboratory Standards Institute (CLSI) breakpoints for this 
drug [199], the use of cefepime against these bacteria has 
been associated with clinical failure [199, 200].

6.2.2 � Modification of Target PBPs

Modification of the target PBP is a common resistance 
mechanism in Gram-positive bacteria. As with most other 
β-lactams, production of PBP2a in MRSA confers resistance 
to cefepime [201].

6.2.3 � Mutations in Porin Genes

Many β-lactams, including cefepime, require porins to enter 
the bacterial cell [202]. E. coli and Klebsiella strains with 
loss or downregulation of genes encoding the porins OmpA, 
OmpC, and/or OmpF exhibit a two- to fourfold increase in 
the cefepime MIC [203]. Additionally, loss of the porin 

Fig. 4   Molecular structures of cefepime and ceftriaxone. A N-methyl-pyrrolidine moiety
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Omp36 in Klebsiella aerogenes (homologous to OmpC in 
E. coli and OmpK36 in Klebsiella pneumoniae) has been 
associated with a fourfold increase in cefepime MIC [204].

6.2.4 � Efflux

As discussed in Sect.  3.2, many bacteria efflux pumps 
have been characterised [37, 38], several of which affect 
β-lactams. No comprehensive cataloguing of the efflux 
pumps that affect cefepime has been performed. However, 
P. aeruginosa strains overexpressing Mex-AB-OprM, Mex-
XY-OprM, and/or Mex-CA-OprJ have been associated with 
an increased cefepime MIC [205, 206].

6.3 � Clinical Pharmacokinetics

The half-life of cefepime in adults is approximately 2 h, 
with a Cmax increasing linearly with the administered dose 
[207, 208]. There is some protein binding, with binding 
rates of 16.2–19% to human serum proteins [191, 209]. 
Two cefepime neonatal pharmacokinetic trials have been 
performed with doses of 30 and 50 mg/kg [210, 211]. The 
calculated half-lives were 4.9 ± 2.1 and 4.32 ± 1.8 h with 
Cmax values of 89 ± 27 and 120.9 ± 38.5 mg/L, respectively.

Cefepime distributes readily into the soft tissue, with 
rapid penetration into inflammatory fluid, with close match-
ing to plasma concentrations [212, 213]. Mean adult Vd is 
~ 18–21 L [212, 214]; neonatal Vd is ~ 0.4 L/kg, although 
this increases with decreasing gestation below 30 weeks 
[211].

Adult CSF penetrance is variable, with partition coef-
ficients of 0.05–0.34 [215]. A small neonatal study (n = 9) 
suggested similarly variable CSF penetrance, with a median 
partition coefficient of 0.077 (range 0.030–0.876) [216].

Cefepime is primarily renally excreted, with ~ 80% of 
administered drug recovered unchanged in the urine [208]. 
Approximately 10–12% of administered cefepime is metabo-
lised. Approximately 7% is metabolised first to N-methyl-
pyrrolidine and then rapidly oxidised to N-methylpyrroli-
dine-N-oxide. Another 3% is metabolised to the 7-epimer of 
cefepime [217]. The overall rate of clearance in neonates is 
variable, ranging from 0.5 to 2.5 mL/min/kg (gestational age 
only marginally accounts for this variability) [211].

No specific transporters have been associated with 
cefepime transport; however, cefepime inhibits (but is not 
transported by) OCTN2 [218]. Unlike some other β-lactams, 
cefepime has no affinity to the intestinal transporter PEPT1, 
which likely explains its poor oral bioavailability [219].

6.4 � Toxicity

Cefepime is a largely safe drug with common side effects 
being usually mild and similar to those affecting other 

β-lactams, e.g., gastrointestinal disturbance, rash, etc. [221, 
222].

Cefepime is associated with rare neurotoxic side effects, 
which are heterogenous (presentations include encepha-
lopathy, myoclonus, seizures, and coma) and usually start 
several days into treatment [223]. The neurotoxicity appears 
to be concentration dependent [223, 224] and associated 
with renal dysfunction and critical illness [223] and is 
thought to be due to concentration-dependent inhibition of 
GABAA-mediated neurotransmission [225]. This toxicity is 
mainly associated with increasing age and renal dysfunction 
[223], the latter of potential concern in neonates.

An initial meta-analysis of cefepime outcome data 
suggested a possible increased mortality associated with 
cefepime use compared with other β-lactams (including in 
paediatric populations) [226, 227]. However, two further 
meta-analyses (with combined adult and paediatric data, 
and with paediatric data alone, respectively) showed no sta-
tistically significant increase in mortality associated with 
cefepime use [228, 229]. Further retrospective studies of 
paediatric and neonatal patients receiving cefepime failed to 
show any statistically significant excess mortality [230–232].

6.5 � Pharmacodynamics

Cefepime is presumed to have the same pharmacodynamic 
index as other cephalosporins, with a pharmacodynamic tar-
get of 60–70% time > MIC producing maximal effect [220]. 
A pharmacokinetic model and Monte Carlo simulation sug-
gested that the widely used dose of 30 mg/kg administered 
12 hourly would achieve a target 50% time > MIC for the 
CLSI-recommended breakpoint concentration for 99% of 
neonatal patients [211].

6.6 � Potential Utility in Neonatal Sepsis

Cefepime has a broad spectrum of activity and, although not 
specifically licensed for neonatal use, experience with it in 
neonatal settings is extensive. Its reduced affinity for ESBLs 
render it potentially useful in AMR-prevalent settings, and 
it has a safe toxicity profile in neonates.

However, although it may be reasonable to assume char-
acteristics similar to those of other cephalosporins, specific 
pharmacodynamic characterisation is lacking and, despite its 
reduced affinity to ESBLs, it remains labile to non-AmpC 
ESBLs in in vitro settings [195, 198] and has a poorer than 
expected clinical record for treatment of ESBL-producing 
bacteria [199, 200]. These characteristics may limit its utility 
in neonatal sepsis in ESBL-prevalent areas.
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7 � Summary

These five antimicrobials all have characteristics that make 
them potential candidates for an empiric antimicrobial 
regimen for neonatal sepsis (Table 2). All demonstrate 
spectra of activity against bacteria that cause neonatal 
sepsis with prevalent mechanisms of resistance that are 
problematic for the current WHO-recommended regimen: 
amikacin and tobramycin offer activity against gentamicin-
resistant Gram-negative bacteria; flomoxef and cefepime 
have enhanced stability to ESBLs compared with other 
β-lactams; and fosfomycin still retains widespread activ-
ity against bacteria with resistance mechanisms to other 
classes. However, although they fulfil the selection criteria, 
both tobramycin and cefepime have a narrower spectrum 
of activity than the alternatives because of their lability to 
cross-reactive AMEs and non-AmpC ESBLs, respectively. 
This makes these agents less attractive than the other three 
agents.

All drugs are also off patent and have potential to be 
produced at an affordable rate for LMICs. Additionally, 
all drugs have favourable toxicity profiles, with toxicities 
being limited and predictable where they occur. All also 
have a licence for, or significant experience in the treatment 
of, neonatal infections (although licensing for fosfomycin 
and flomoxef remains geographically limited, which would 
need addressing via, for example, expediated local regula-
tory approval, should they be selected in an eventual empiric 
regimen).

Nevertheless, there are some key gaps in the pharma-
cological data available for neonates (Table 2). Although 
the clinical pharmacokinetics of all these drugs are well 
described for adults, the data are more limited in neonates. 
Neonatal pharmacokinetic data for fosfomycin are largely 
underpinned by a single large pharmacokinetic study [119]; 
those for cefepime rely on two relevant neonatal pharma-
cokinetic studies [210, 211]; and flomoxef pharmacokinetic 
data are absent in non-Japanese populations. Furthermore, 
knowledge of CSF penetration is limited in some agents. 
Neonatal CSF:plasma coefficients have not been determined 
for tobramycin [233], and the flomoxef coefficient is depend-
ent on a single study [163]. The CSF penetration data avail-
able for the five agents compare well to those of the WHO 
regimen (~0 for gentamicin [49, 50]; 0.05–0.1 for amoxicil-
lin [234]).

The other key knowledge gap is the pharmacodynamic 
characterisation of these drugs. Flomoxef has recently been 
characterised in terms of bactericidal killing, but the charac-
terisation of other agents is more limited. For cefepime and 
the aminoglycosides, the exposure–response relationships 
and pharmacodynamic targets are presumed to be similar 
to those of the other molecules within the same class, but 

these have not been determined independently. For fosfomy-
cin, published evidence has definitively established neither 
the pharmacodynamic index nor the target. Furthermore, 
the exposure–response relationship and pharmacodynamic 
targets for prevention of emergence of resistance have been 
poorly characterised in all agents.

In addition to consideration of each agent’s pharmacolog-
ical characteristics, an eventual regimen selection is depend-
ent on the epidemiology of resistance and manufacturing 
costs. As discussed in Sect. 1, high-quality observational 
studies of neonatal sepsis across multiple geographical loca-
tions are rare. Amongst these studies, reported resistance 
rates for these particular agents are rarer still. The single 
high-quality neonatal sepsis study reporting rates of resist-
ance to these antibiotics indicated 63%, 55%, 25%, and 18% 
of Gram-negative bacteria (including non-Enterobacterales, 
e.g., Acinetobacter species) were resistant for tobramycin, 
cefepime, amikacin, and fosfomycin, respectively [9]. There 
are no data indicating the level of resistance to flomoxef in 
bacteria causing neonatal sepsis. However, as discussed in 
Sect. 5.2, flomoxef resistance is consistently seen in ≤ 10% 
isolates of Enterobacterales causing non-neonatal infec-
tions in geographic regions where flomoxef is currently 
used [149, 153, 155–157]. A further multi-centre neonatal 
sepsis observational cohort study, NeoOBS, is expected to 
report soon with AMR data for flomoxef, fosfomycin, and 
amikacin [235].

The current cost of each agent per vial is detailed in 
Table 3. Although more expensive than current WHO regi-
men antibiotics, the material costs of the five agents are 
potentially affordable in LMIC settings. Reformulation of 
vial size quantities relevant to paediatric or neonatal require-
ments could lower the material costs. Furthermore, many of 
the agents are only produced by a small number of generic 
manufacturers (e.g., intravenous fosfomycin); expansion of 
these could lower the costs further [236].

Table 3   Comparative costs of the World Health Organization regi-
men antibiotics and the five reviewed antibiotics and typical neonatal 
regimen

Costs converted to $US using conversion rates on 15 July 2021
qxh every x h, q8–12h every 8–12 h

Antibiotic Material cost ($US) Typical neonatal regimen

Gentamicin 1.91/80 mg [237] 5 mg/kg q24h
Amoxicillin 0.45/250 mg [237] 30 mg/kg q8h
Amikacin 2.86/100 mg [237] 15 mg/kg q24h
Tobramycin 7.43/80 mg [237] 5 mg/kg q24h
Fosfomycin 20.75/2 g [237] 100 mg/kg q12h
Flomoxef 2.97/1 g [238] 20 mg/kg q8–12h
Cefepime 7.61/1 g [237] 30 mg/kg q8–12h
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An alternate first-line regimen for the empiric treatment 
of neonatal sepsis will likely have to be a combination of two 
of these agents to provide the necessary spectrum coverage 
to treat target pathogens and resistance motifs and protect 
against emergence of resistance to both agents. A positive 
pharmacodynamic interaction (e.g., synergy) is also desir-
able. Selection of an appropriate regimen from these agents 
will therefore be dependent on the AMR epidemiology in 
LMIC settings, characterisation of the pharmacodynamics 
of these agents (alone and in combination), and testing of 
candidate regimens in a clinical trial.
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