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ABSTRACT 
 
It is generally accepted today that there are two different types of preeclampsia: an early-onset or 
placental type and a late-onset or maternal type. in the latent phase, the first one presents with a 
low output/high resistance circulation eventually leading in the late second or early third trimester to 
an intense and acutely aggravating systemic disorder with important impact on maternal and 
neonatal mortality and morbidity; the other type presents initially as a high volume/low resistance 
circulation, gradually evolving to a state of circulatory decompensation usually in the later stages of 
pregnancy, with less severe impact on maternal and neonatal outcome. For both processes, 
numerous dysfunctions of the heart, kidneys, arteries, veins and interconnecting systems are 
reported, most of them presenting earlier and more severe in early- than in late- onset preeclampsia, 
however some very specific dysfunctions exist for either type. Experimental, clinical and 
epidemiologic observations before, during and after pregnancy are consistent with early- onset 
preeclampsia as a gestation induced worsening of subclinical pre-existing chronic cardiovascular 
dysfunction, as such sharing the pathophysiology of cardiorenal syndrome Type II, and with acute 
volume overload decompensation of the maternal circulation in late onset preeclampsia, sharing the 
pathophysiology of cardiorenal syndrome Type 1.  Cardiorenal syndrome type V is consistent with 
the process of preeclampsia superimposed upon clinical cardiovascular and/or renal disease, alone or 
as part of a systemic disorder. This review focusses on the specific differences of hemodynamic 
dysfunctions between the two types of preeclampsia, with special emphasis on the interorgan 
interactions between heart and kidneys, introducing the theoretical concept that the 
pathophysiologic processes of preeclampsia can be regarded as the gestational manifestations of 
cardiorenal syndromes.   
 
INTRODUCTION 
 
Preeclampsia is a gestational hypertensive disorder with an overall incidence of around 3-3.5% of 
pregnancies (Thornton et al. 2013; Shih et al. 2016). It is one of the most important complications 
during pregnancy, with major impact on maternal and neonatal outcome. The burden to health care 
economics is estimated at 40-100 times the costs of term pregnancy depending on gestational age at 
delivery (Shih et al. 2016). Preeclampsia is defined as gestational hypertension associated with signs 
of systemic dysfunction with signs of impaired liver, renal, cardiovascular and haematological 
function - either as a primary disorder or superimposed on pre-existing maternal disease (Thornton 
et al. 2013). 
 
The precise aetiology of preeclampsia remains to be determined, and because of countless 
hypotheses postulated over time, preeclampsia has been labelled “the disease of theories” (Jeffcoate 
1966; Schlembach 2003). Distinct origins of preeclampsia have been discussed (Ness et al. 1996), 
however the epidemiological and genetic associations as well as the inflammatory, vasoactive, 
endocrine and metabolic perturbations all support the key involvement of placenta and 
cardiovascular system in the pathophysiology of preeclampsia (Thilaganathan and Kalafat 2019; Perry 
H et al. 2018). Currently, a vivid debate is ongoing as to whether the initiating process of placental 
dysfunction in preeclampsia is the cause or the consequence of maternal cardiovascular dysfunction 
(Redman 2014; Kalafat et al. 2017; Thilaganathan et al. 2019). The placental origins hypothesis is 
supported by the evidence for role of placentally-mediated vasoactive factors in the pathophysiology 
of preeclampsia (Redman 2014), whereas the hemodynamic model is supported by evidence for 
subclinical maternal cardiovascular dysfunction both preconceptually and post-partum in women 
who developed preeclampsia (Foo et al.2018; Melchiorre et al. 2011). 
 
Irrespective of the outcome of the ongoing debate on the aetiology of preeclampsia, it is generally 
accepted today that the eventual clinical syndrome of preeclampsia is triggered by placental 
dysfunction – predominantly associated with abnormal placentation in early preeclampsia and with 



uteroplacental malperfusion in later disease (Redman 2104 ; Thilaganathan et al. 2019; Perry H et al. 
2018). Despite the lack of experimentally measurable reduced oxygen concentrations in placentas of 
hypertensive pregnancies  (Huppertz B et al. 2014), it has been theorised that placental hypoxemia is 
induced with the subsequent release into the maternal circulation of pro-inflammatory, and anti-
angiogenic factors that lead to generalised endothelial dysfunction and the cluster of signs currently 
recognised as preeclampsia (Hlanudewich et al. 2007). Generalised maternal endothelial dysfunction 
at all sites of the vascular tree results in dysfunction of the heart, kidneys and other organs (Palei et 
al. 2013). The clinical presentation of preeclampsia varies depending on the dominance of placental 
or maternal organ systems involved in the active stage of the disease. The clinical syndrome is 
conventionally divided as early and late based on gestational age at presentation, but only a decade 
ago used to be classified on the basis of severity of signs and symptoms (Redman et al. 2005; 
Steegers et al. 2010; Von Dadelszen et al. 2003). Regardless of a temporal or severity-based 
classification for preeclampsia, it is evident that the cardiovascular and renal systems play a major 
role in disease pathophysiology and presentation. This manuscript presents an overview of the 
cardiorenal interactions with the placenta, introducing the theoretical concept that cardiorenal 
syndrome is an intrinsic part of the pathophysiology of preeclampsia. 
 
 
CARDIOVASCULAR AND RENAL CHARACTERISTICS OF PREECLAMPSIA 
 
Pregnancy-related changes in circulatory volume load 
Hemodynamic changes in early pregnancy start with a primary vasodilation, triggering volume 
retaining mechanisms leading to an increase in intravascular volume and cardiac output (Duvekot et 
al. 1993). This process is already active post-conception, long before placentation is complete, and 
presents with reduced mean arterial pressure and systemic vascular resistance in association with 
increased cardiac output and  glomerular filtration rate - all preceding significant plasma volume 
expansion (Chapman et al. 1998). As such, very early pregnancy can be considered as a state of 
arterial underfilling with relative restriction of arterial blood volume, which is known to activate 
RAAS, the sympathetic nervous system and non-osmotic release of vasopressin (Chapman et al. 
1998). Contrary to other states of arterial underfilling, where systemic vasodilatation presents with 
renal vasoconstriction, pregnancy is a unique condition that combines systemic and renal 
vasodilatation, in association with an escape from sodium-retaining effects of aldosterone (Chapman 
et al. 1998; Bekheirnia et al. 2006). All these mechanisms lead to an increase of total body water by 
5–8L over the course of pregnancy (Widen et al. 2014), with 1L of this being confined to plasma 
volume (de Haas et al. 2017). The latter volume expansion in pregnancy is reflected by a measurable 
increase of intrathoracic fluid from as early as 7 weeks’ gestation (Smeets et al. 2016; Lanssens et al. 
2018). Increased circulating volume is a cardiovascular stressor, and signs of chronic volume overload 
are present in a significant proportion of previously healthy women with apparently normal 
pregnancies at term (Melchiorre et al. 2016). This volume overload related gestational cardiovascular 
dysfunction, may predispose to uteroplacental hypoperfusion and placental stress leading to fetal 
growth restriction and/or preeclampsia depending on the gestation of onset and maternal 
endothelial response (Figure 1; Thilaganathan 2018A; Thilaganathan 2018B). 
 
Cardiovascular function in preeclampsia 
Electrocardiography studies in latent and clinical phase of preeclampsia showed evidence of P-wave 
dispersion and delayed left atrial electromechanical coupling (Inci et al. 2015), together with 
prolonged QT-interval indicative for abnormal ventricular repolarisation (Raffaelli et al. 2014). These 
ECG abnormalities also precede the onset of clinical symptoms of PE (Angeli  et al. 2011; Angeli  et al. 
2015; Kirbas et al. 2016; Baumert et al. 2010). Invasive assessment of cardiovascular function in 
pregnancy is both impractical and inadvisable other than in exceptional clinical circumstances and 
scenarios. There are many non-invasive methods of assessment of cardiac function, but most are 
inaccurate compared to the benchmark of echocardiography (Vinagayam et al. 2017),  and therefore 



require the application of population-and device-specific reference ranges applied under stringent 
standardised conditions (Meah et al. 2018). A recent systematic review, summarizing 19 
echocardiographic studies in pregnancy demonstrated that increased left ventricular mass and total 
vascular resistance were the most consistent findings in preeclampsia (Castleman et al. 2016). The 
finding of diastolic dysfunction and left ventricular remodelling were seen before clinical 
manifestation of preeclampsia, more marked in severe and early-onset disease, and also associated 
with adverse pregnancy outcome. There was disagreement between studies with regard to changes 
in cardiac output, which was attributed by the authors to heterogeneity in timing of 
echocardiography. Others have interpreted differences in maternal cardiac output as representing 
two phenotypes – a low output/high resistance circulation in early preeclampsia and high output/low 
resistance circulation in late preeclampsia (Tay  et al. 2018; Ferrazzi  et al. 2018). These apparent 
cardiovascular phenotypes provide some insight and a potential explanation for the differing clinical 
and pathological differences between early and late preeclampsia – one that is lacking when taking 
the conventional view of preeclampsia as a primary placental disorder. 
 
Cardiovascular phenotypes of early and late preeclampsia 
Early and late preeclampsia present with similar clinical characteristics in nearly all organ systems 
involved, although mostly to a lesser degree in late than in early preeclampsia. From this, it is 
tempting to conclude that early- and late preeclampsia are two phenotypes of one common 
pathophysiologic background process, mainly differing in severity of clinical presentation. Consistent 
with the clinical presentation, echocardiographic findings in preeclampsia are typical of chronic 
volume overload and characterized by left ventricular concentric remodelling and increased relative 
wall thickness (Melchiorre et al. 2016; Borges et al.  2017; Valensise et al. 2008), reduced myocardial 
contractility and with diastolic dysfunction (Melchiorre et al. 2016). These findings occur earlier and 
are more severe in early preeclampsia, where systolic dysfunction is also apparent in a proportion of 
cases. 
 
Paradoxical differences in cardiac output between early and late preeclampsia have led researchers 
to hypothesise the existence of two types of maternal circulation during preeclampsia: a low 
output/high resistance state in early and high output/low resistance state in late preeclampsia. A 
major inconsistency with this hypothesis is that regardless of gestation, preeclampsia is consistently 
associated with reduced stroke volume and higher/normal total vascular resistance (Castleman et al. 
2016). The latter is in keeping with the findings of hypertension and myocardial dysfunction in both 
early and late preeclampsia (Castleman et al. 2016; Melchiorre et al. 2014). This hypothesis is further 
undermined by interpretation of cardiac output indices independent of maternal morphological 
characteristics. Interpretation of maternal cardiac output in the majority of studies has been 
undertaken without taking into consideration maternal haemodynamic demands which vary with 
height, weight, age and gestation (Vinagayam et al. 2018; Perry et al. 2018B; Bijl et al. 2019). To 
correctly interpret whether measured cardiac output is ‘high’ or ‘low’, one needs to consider what 
the appropriate or ‘normal’ cardiac output would be for maternal characteristics and gestational age 

– a process called indexing. Normal, resting cardiac output differs among people of different 

size - the resting cardiac output of someone who weighs 100Kg would be greater than the 

cardiac output found in a person that weighs 60Kg. In the non-pregnant state where body 

weight and surface area does not change dramatically over a short time frame, it is 

appropriate to use non-indexed measurements as they will accurately reflect the change in 

cardiac function between serial assessments. However, in pregnancy as in pediatric 

medicine, where body weight can change significantly over a short time period, measured 

(non-indexed) values for cardiac output do not distinguish change due to increased body 

mass versus those representing pathology. Therefore, cardiac output is indexed against 

body surface area so as to appreciate whether cardiac function is adequate for the 



anticipated demands of increased body mass. The indexing of cardiac output is limited by 

the fact that body surface area may not accurately reflect the metabolic demands of 

increased bod massy, but presently, no other method of indexing is available and such 

indexing remains the best way of understanding whether cardiac output is appropriate for 

maternal body size in pregnancy. Indexing cardiac output may be an approximating process but 
provides a better understanding of the underlying pathophysiology which demonstrates that early 
preeclampsia is characterised by lower maternal cardiac output, whilst late preeclampsia is 
associated with normal or lowered cardiac output compared to normal controls (Buddeberg et al. 
2018A;  Buddeberg et al. 2018A; Gyselaers et al. 2019). 
 
The severity and temporal nature of cardiovascular dysfunction in early and late preeclampsia 
provides important insights into the pathophysiology of the disorder. In recurrent early 
preeclampsia, myocardial dysfunction is evident in the first trimester (Sep et al. 2011) in combination 
with low plasma volume and increased left atrial dimensions (Andrietti et al. 2008). In the second 
trimester, echocardiographic abnormalities are already present (Valensise et al.  2008), but diastolic 
dysfunction is observed in early, but not late preeclampsia (Melchiorre et al. 2016) – suggesting that 
diastolic dysfunction of late preeclampsia develops during the second half of pregnancy as a 
consequence of chronic volume overload (Valensise et al. 2008; Melchiorre et al. 2016). Importantly,  
in both early and late onset preeclampsia, cardiac morphologic changes such as adverse ventricular 
remodelling and increase in left ventricular mass precede the onset of chamber dysfunction (Cong et 
al. 2015), and are not only restricted to the left side but also present in the right ventricle (Caglar et 
al. 2016; Buddeberg et al. 2018A). 
 
The observed longitudinal changes in maternal cardiovascular function in preeclampsia suggest that 
early preeclampsia is associated with poor pre- and/or peri-conceptional cardiovascular reserve, low 
vascular volume and early pregnancy chamber dysfunction. In contrast, late preeclampsia occurs 
secondary to cardiovascular dysfunction as a consequence of chronic volume overload (Figure 2). 
Epidemiological evidence for the existence of two cardiovascular phenotypes of preeclampsia was 
reported by Verlohren et al, supported by different early pregnancy Doppler measurements of 
uterine artery pulsatility index in both groups and a bimodal skewing of birth weight distribution 
(Verlohren et al. 2014). The implications of the cardiovascular phenotypes on elucidating disease 
aetiology are discussed in more detail later in this review. 
 
Renal function 
Glomerular endotheliosis is considered the histologic landmark of preeclampsia, and is characterized 
by endothelial swelling, loss of endothelial fenestrae with disruption of the glomerular filtration 
barrier and “empty” occluded capillary lumens (Stillman et al. 2007). These lesions are thought to 
result from glomerular endothelial dysfunction, probably mediated via placental sFlt-1 inactivation of 
podocyte-VGEF and via sEng-inhibition of TGFβ. Both factors are needed for a normal function of the 
glomerular endothelium (Henao et al. 2010). Disrupted endothelial function triggers further 
impairment of renal function via induction of podocyte dysfunction with subsequent podocyturia 
(Craici et al. 2014) and increased nephrin concentrations in serum and urine (Jung et al. 2017), but 
also via thrombotic micro-angiopathy (Johnson et al. 2016). The latter results from increased arterial 
and venous resistance by inhibition of endothelial NO-mediated gestational vasodilatation, 
sympathetic sensitivity (Van Dongelen et al. 2014) and relaxin (Conrad et al. 2014). 
 
Preeclampsia-related acute kidney injury results from ADAMTS-12/13 associated microangiopathy 
and from activation of the alternative and/or classical complement pathway (Fakhouri et al. 2012; 
Prakash et al. 2017). Compared to normal pregnancy, glomerular filtration rate in preeclampsia is 
reduced despite maintenance of effective renal plasma flow (EFPR) and oncotic pressure (Lafayette 
et al. 1998), which suggests that structural glomerular damage is the main cause of preeclampsia-



related proteinuria (Robson 1976). Preeclampsia is also characterized with reduced proximal tubular 
reabsorption of intraluminal non-albumin proteins (Jeyabalan et al. 2007). As such, the urinary 
content of around 50 different specific proteins is different in preeclampsia than in normal 
pregnancy – the focus of current research using urinary proteomics (Guo et al. 2014) to discriminate 
between types of gestational hypertensive disorders.  
 
Uric acid is an important mediator of endothelium function via inhibition of NO-release, stimulation 
of endothelin-1 production, enhancement of Angiotensin II and smooth muscle contraction, with 
subsequent endovascular inflammation and CRP-release (Borghi et al. 2014). Renal handling of uric 
acid is altered in preeclampsia, with impaired intratubular secretion at the S2 segment of the 
proximal tubule resulting in increased UA serum concentrations (Hayashi et al. 2002).  
 
 
CARDIORENAL SYNDROMES 
 
Cardiorenal syndrome describes a group of disorders where cardiac dysfunction is responsible for the 
deterioration of renal function or vice versa. Five pathological types of cardiorenal interactions are 
thought to be possible (Ronco et al. 2008). Types I and II comprise acute/chronic dysfunction of the 
kidneys arising as a result from acute/chronic cardiac failure. Types III and IV are acute/chronic 
cardiac dysfunction as a result of acute/chronic renal disease. Type V describes the situation of 
combined cardiac and renal dysfunction, usually the end-stage of one of the former types, resulting 
from gradual and progressive worsening of organ function. 
 
Several mechanisms have been reported to contribute to heart-kidney interactions including neuro-
endocrine (RAAS, ADH and natriuretic peptides), endothelium-derived vasoactive substances 
(endothelin or products of oxidative stress), activation of the autonomic nervous system, 
inflammatory/immune dysregulation, as well as various molecular and epigenetic pathways 
(Shamseddin et al. 2009; Garcia-Donaire et al. 2011; Colombo et al. 2012; Bongartz et al. 2005; Virzi 
et al. 2016; Napoli et al. 2011; Muhlberger et al. 2012). Type I and II CRS most represent the 
pregnancy and preeclampsia phenotypes (Shamseddin et al. 2009). 
 
Cardiac systolic dysfunction can be responsible in anterograde direction for renal hypoperfusion, 
whereas diastolic dysfunction in retrograde direction leads to hampered drainage of intrarenal 
venous blood and reduced venous return with subsequent venous congestion. Increased arterial 
stiffness and vascular resistance are important contributors to cardiorenal interactions into 
anterograde direction (Fu et al. 2014), however it is well documented that renal arterial 
hypoperfusion is rarely the single cause of worsening of renal function (Nohria et al. 2008). 
Retrograde interactions via the central veins are considered much more important than the 
anterograde mechanisms, interacting via increase of central venous pressure (Damman et al. 2009; 
Ohuchi et al. 2013), venous congestion (Mullens et al. 2009; Testani et al. 2010) with our without 
increased intra-abdominal pressure (Mullens et al. 2008) and volume load (Ronco et al. 2010). 
 
Direct cardiorenal interactions 
 
There are several potential mechanisms that could contribute to cardiorenal interactions. Support for 
these interactions come from molecular, tissue, biomarker and epidemiological studies. Differences 
in findings between early and late preeclampsia have previously been interpreted according to these 
temporal disease phenotypes but may be more appropriately viewed as a continuum representing 
either pre-existing cardiorenal dysfunction in early preeclampsia or pregnancy-mediated cardiorenal 
dysfunction in late preeclampsia (Figure 1). The cardiovascular and renal systems are interdependent 
and have a number of direct interactions, which are likely to be stronger than indirect interactions.  
 



Arteries 
Peripheral and central blood pressure measurements in the first trimester are higher in pregnancies 
destined to develop preeclampsia as compared to uncomplicated pregnancies  - with the difference 
being more pronounced for early than late PE (Macdonald-Wallis et al. 2012; Vonck et al. 2017; 
Namugowa et al. 2017; Khalil et al. 2014A). Similarly, arterial pulse wave augmentation index was 
observed to increase from the second trimester onward in early onset (Franz et al. 2013, Khalil et al. 
2014B) but not in Late onset PE (Khalil 2014B). Consistent with recent echocardiographic studies (Foo 
et al. 2019), this data suggests that pre-existing cardiac dysfunction predisposes to chronic (Type II) 
cardiorenal dysfunction and early preeclampsia.  
 
Veins 
The observation of secondary hypertension in pregnant ewes after ligation of the uterine vein is very 
interesting because of the important implication that arterial hypertension can occur as a 
consequence of abnormal venous hemodynamic function (Lotgering et al. 1986). In humans, 
preeclampsia related microcirculatory dysfunction has been linked to precapillary flow reduction or 
cessation (Anim Nyame et al. 2003; Anim Nyame et al. 2004). Changes of venous Doppler 
characteristics during uncomplicated pregnancy were reported at the level of maternal liver 
(Roobottom et al. 1995) and kidneys (Karabulut et al. 2003), and noted to be different from the 
patterns observed during preeclampsia (Bateman et al. 2004). More recently, ECG-guided Doppler 
assessment of maternal venous haemodynamics in preeclampsia demonstrated that renal interlobar 
venous impedance index is increased several weeks before the onset of early preeclampsia, is raised 
much higher, has an parallel left-right undulating pattern and is associated with a shorter venous 
pulse transit time compared to late preeclampsia (Gyselaers et al. 2010; Gyselaers et al. 2011; 
Gyselaers et al. 2014; Mesens et al. 2015). These findings are again consistent with chronic (Type II) 
cardiorenal dysfunction and early preeclampsia. Late preeclampsia presented with a more acute 
(Type I) cardiorenal picture with maternal venous Doppler measurements being related to maternal 
cardiac output and proteinuria (Mesens et al. 2014). 
 
Intravascular volume 
During pregnancy, total body water increases due to expansion of all maternal body fluid 
compartments (Davison 1997). Bio-impedance measurements have shown that overall total body 
water increase is more pronounced in preeclampsia than in normal pregnancy and that this effect is 
more pronounced in the third trimester with late compared to early onset PE (Yasuda et al. 2003; 
Levario-Carillo et al. 2006; Gyselaers et al. 2018). In contrast, plasma volume (PV) expansion is known 
to be less pronounced in preeclampsia than in uncomplicated pregnancy (De Haas et al. 2017), but 
increased PV volume has also been reported in late preeclampsia (Friedberg et al. 1963; Schrier et al. 
1991) with or without persistence of high cardiac output (Easterling et al. 1990; Bosio et al. 1999). 
Another way to estimate an individual’s intravascular filling state non-invasively is ultrasound derived 
Inferior Vena Cava collapsibility index (IVCI) (Finnerty et al. 2017). In intensive care patients, IVCI 
correlates well with invasively measured central venous pressure and pulmonary artery pressure 
(Stawicki et al. 2016, Ilyas et al. 2017). In comparison to uncomplicated pregnancies, reduced IVCI 
was observed in late onset but not in early onset PE, suggesting a higher intravascular filling state in 
LPE than in EPE (Stergiotou et al. 2013). Similarly, hormones regulating volume and electrolyte 
homeostasis such as antidiuretic hormone and natriuretic peptides are more elevated in early but 
not late preeclampsia (Tuten et al. 2015; Sandgren et al. 2015; Borges et al. 2018; Álvarez-Fernández 
et al. 2016). Decreased PV expansion in early preeclampsia may result from constitutionally low 
plasma volume before conception, poor expansion due to dysfunctional mechanisms of 
neurohormonal volume retention or extravascular leakage of intravascular fluids (Salas et al. 2006; 
De Haas et al. 2017), and is consistent with pre-existing cardiovascular dysfunction leading to chronic 
(Type II) cardiorenal syndrome. 
 
Indirect cardiorenal interactions 



A number of extra-cardiac and extra-renal biological mechanisms are modulated in pregnancy and 
under stressed conditions may have indirect effects on both cardiovascular and renal function. 
 
Endothelium and vascular inflammation 
The endothelium can be considered as a distinct organ within the cardiovascular system with 
widespread, but very specific functions (Galley et al. 2004). Endothelial dysfunction triggers a chronic 
endovascular inflammatory response via activation of the complement system (Liszewski et al. 2011), 
with increased serum concentration of highly sensitive C-reactive protein being a characteristic 
feature of preeclampsia (Kwiatkowski et al. 2017). Furthermore, in severe end-stage preeclampsia 
regardless of gestation, actived intravascular inflammation stimulates the coagulation cascade with 
formation of intravascular microthrombi and eventually micro-angiopathy (Liszewski et al. 2011). The 
latter is associated with acute kidney injury and consistent with acute (Type I) cardiorenal 
dysfunction. Endothelium dysfunction has been reported as a direct consequence of pre-existing 
cardiac and/or renal dysfunction, clinically illustrated by the generalized endothelial dysfunction in 
congestive heart failure (Bauersachs et al. 2004) and in individuals with  a congenital reduction in the 
number of nephrons (Zoccali et al. 2007; Keller et al. 2003). The normal or abnormal function of the 
maternal endothelium is known to be strongly linked with the process of embryo implantation, 
where numerous hormones, cytokines, immunomodulatory and vaso-active mechanisms are 
involved in the adaptation process of the maternal vasculature (Boeldt et al. 2017; Nejabati et al. 
2017; Burnett et al. 2016; Burton 2009; Lima et al. 2014; Chen et al. 2017; Robertson et al. 2018). 
 
Endocrine and metabolic 
The Renin-Angiotensin-Aldosterone System (RAAS) changes dramatically during pregnancy (Lumbers 
et al. 2014). Early pregnancy cardiovascular changes induce increased release of Renin, resulting in 
conversion/metabolism of angiotensinogen to AngII (Irani et al. 2011). AngII is responsible for 
vasoconstriction, increased sensitivity to sympathetic stimulation and release of Aldosterone via the 
AT type 1 (AT1) receptor - and to a lesser extent vasodilatation, apoptosis and reduced cell growth 
via the AT type 2 receptor. Normotensive pregnant women are refractory to the vasoconstrictive 
effects of AngII due to AT1 inactivation by progesterone, prostacyclin and ROS. In preeclampsia, AngII 
sensitivity increases (Abdalla et al. 2001), despite of decreased circulating RAAS components (Anton 
et al. 2008). Women with preeclampsia also demonstrate increased activity of an auto-antibody 
against the AT1 receptor, resulting in increased hypoxia induced SFlt-1 and Plasminogen Activator 
Inhibitor 1 (PAI-1) (Irani et al. 2008, Xia et al. 2007). Increase of AT1 autoantibodies is more 
pronounced in late than in early preeclampsia (Herse et al. 2009) and conversely, homozygous ACE 
genotypes are more frequent in early compared to late preeclampsia (Uma et al. 2010). 
 
Genetics 
Studies of placental gene expression in preeclampsia have shown dysregulated genes involved in cell 
proliferation/differentiation, lipid metabolism, immunity, inflammation and endothelin-related NO 
pathway, were affected principally in early compared to late preeclampsia (Sitras et al. 2009). 
Although all of these biological systems have anticipated effects on the cardiovascular and renal 
systems, what is not entirely certain is whether such gene dysregulation is cause or effect. Most 
previous studies of maternal genetic polymorphisms have shown that preeclampsia and 
cardiovascular diseases share genetic predispositions. A recent candidate gene association study in a 
Finnish cohort demonstrated that a variant of the sFlt1 gene is protective against preeclampsia - the 
same alleles were also associated with lower risk of heart failure (Lokki et al. 2017). Moreover, the 
largest and most comprehensive genome wide association study also implicated a locus near 
fetal/placental FLT1 region for the development of preeclampsia supporting the hypothesis that a 
placental isoform of sFlt1 is involved in the pathophysiology of the disease (McGinnis R et al. 2017). 
 
Lipid metabolism 



Dyslipidemia of preeclampsia is characterized with increase in cholesterol, LHDL, VLDL, free fatty 
acids and triglycerides, with reduction in APO-1 and HDL (Spracklen et al. 2014; Austdal et al. 2014; 
Jin et al. 2016; Timur et al. 2016; Leon-Reyes et al. 2017; Baumfield et al. 2015, Spracklen et al. 
2015). High cholesterol and triglyceride plasma levels have been demonstrated to be independent 
risk factors for progression of renal disease in humans. Although not clearly delineated, the 
underlying pathophysiologic mechanisms is thought to involve oxidative stress and insulin resistance 
may mediate the lipid-induced renal and cardiovascular damage (Trevisan et al. 2006). Oxidised LDL, 
free fatty acids and triglycerides are higher in early preeclampsia, in support of a chronic (Type II) 
cardiorenal syndrome in early preeclampsia (Tuten et al. 2014, Yan  et al. 2015). 
 
 
COMMON CLINICAL CHARACTERISTICS OF CARDIORENAL SYNDROMES AND PREECLAMPSIA 
 
Cardiorenal syndromes and preeclampsia have similar clinical presentations and in many aspects 
share predisposing risk factors, pathophysiologic background mechanisms, biomarkers and long term 
outcomes. 
 
Predisposing risk factors for preeclampsia, renal and cardiac dysfunction 
Clinical risk factors predisposing to the development of cardiorenal syndromes and preeclampsia are 
shared: pre-existing renal (Vellanki 2013; Piccoli et al. 2018) or cardiac disease (van Hagen et al. 
2017), diabetes and chronic hypertension (Bartsch et al. 2016), hypertriglyceridemia (Gallos et al. 
2013), obesity and  metabolic syndrome (Whaley-Connell et al. 2014), connective tissue disorders 
(Spinillo et al. 2017) or systemic diseases such as lupus erythematodes and antiphospholipid 
syndrome (Fischer-Betz et al. 2017), sarcoidosis (Hadid et al. 2015), amyloidosis (Mordel et al. 1993), 
thrombotic thrombocytopenic purpura (Vesely et al. 2015),  and sickle cell anaemia (Bartsch et al. 
2016). 
 
Pathophysiology of renal and cardiac dysfunction 
Crosstalk between the cardiovascular system and kidneys occurs via organ-specific mechanisms or 
via dysfunction of the interconnective systems as outlined above in cardiorenal interaction. The 
consequences of cardiac dysfunction are reduced systemic arterial blood supply and organ ischemia 
as well as impaired venous return resulting in venous congestion. Renal dysfunction results in water 
retention and volume overload (Figure 1).  
 
Hypoperfusion / ischemia 
Impaired cardiac systolic function is responsible for a reduced effective circulatory volume, which in 
turn leads to renal hypoperfusion with reduced glomerular filtration rate and effective renal plasma 
flow (Stevenson et al. 1989). In acute situations, these changes are reversible after restoring cardiac 
functionality (Hanada et al. 2012). In chronic situations however, renal ischemia may occur with renal  
tubular cell damage and apoptosis (Havasi et al. 2011; Bonventre 2003). Cyanotic nephropathy is a 
clinical example of ischemic renal damage eventually leading to chronic kidney disease in patients 
with cyanogenic congenital heart disease (Perloff 1993). 
 
Volume overload 
Volume overload induces cardiac remodelling with left ventricular hypertrophy and dilation, 
predisposing to diastolic and systolic dysfunction (Harnett et al. 1995).  Generally, volume overload is 
associated with rising serum concentrations of B-type Natriuretic Peptide (BNP) and N-terminal 
proBNP (Maisel et al. 2011). Oliguria is an important feature of renal dysfunction, leading to an 
imbalance of water and electrolyte homeostasis (De Deyn et al. 2003; Scheuer et al. 1973). Sodium 
and water retention result in further volume expansion and overload and raised serum 
concentrations of urea can depress myocyte activity (Kingma et al. 2006).  
 



Venous congestion 
Diastolic dysfunction is predominant in preeclampsia irrespective of gestation at onset and 
predisposes to reduced venous return and venous congestion. Reflex venoconstriction occurs to 
support venous return, resulting in systemic venous hypertension and increased central venous 
pressure (Paulus et al. 2008). Localised renal vein congestion leads to reduced kidney perfusion with 
subsequent renal dysfunction - the severity of which depends on the level of preserved arterial blood 
flow (Mullens et al. 2009). Increase of renal venous pressure activates RAAS (Kishimoto et al. 1973) 
with associated rise of Angiotensin II and aldosterone resulting in increased oncotic pressure in the 
peritubular capillaries and further rise of blood pressure and volume load.  
 
Intra-abdominal hypertension 
Increasing intra-abdominal pressure is associated with gradually deteriorating function and 
eventually failure of abdominal organs.  In intensive care units, the extreme clinical  presentation of 
this phenomenon is known as the intra-abdominal compartment syndrome (Maluso et al. 2016) – as 
a consequence of reduced venous return, congestion and microcirculatory dysfunction (Funk et al. 
2013). The growing pregnant uterus is responsible for a gradual increase of intra-abdominal pressure 
worsening near term, leading researchers to propose preeclampsia as a renal compartment 
syndrome (Chun et al. 2012; Sawchuck et al. 2014; Sugerman 2011; Reuter et al. 2016). Patient-
specific conditions such as obesity and multiple pregnancy which result in higher intra-abdominal 
pressure predispose to this evolution. 
 
Chronic inflammation and reactive oxygen species 
Cardiac and renal failure are associated with a cascade of inflammatory pathway activation (Machnik 
et al. 2009) and increased serum concentrations of pro-inflammatory cytokines such as TNFα and 
interleukins (Elmore 2007; Virzi et al. 2015; Bryant et al. 1998; Blake et al. 1996; Prabhu 2004). At the 
level of the kidney, these inflammatory processes are responsible for renal tubular cell apoptosis 
(Akcay et al. 2009), further deteriorating renal function. Similarly, the heart is subject to further 
myocardial damage (Rauchhaus et al. 2000), myocyte apoptosis (Kelly 2003) and infarction (Bryant et 
al. 1998). 
 
Biomarkers of renal and cardiac dysfunction 
The majority of biomarkers are cardiovascular in origin and shared between cardiorenal syndrome 
and preeclampsia. Biomarkers include clinical patient’s characteristics, biochemical (Lau et al. 2017) 
and biophysical markers of cardiovascular (Monteith et al. 2017; Oben et al. 2014) and renal function 
(Jim et al. 2014; Le Jemtel et al. 2015) and of their interconnecting systems. 
 
Long-term outcome of renal and cardiac dysfunction 
The cardiorenal syndrome is reported as an independent predictor of all-cause mortality in heart 
failure patients with preserved ejection fraction (Lu et al. 2013; Kajimoto et al. 2014). Similarly, 
preeclampsia is considered a strong risk factor for long term cardiovascular and/or renal disease 
(Figure 2). A 4-fold increased risk for heart failure and a 2-fold increased risk for coronary heart 
disease, stroke and cardiovascular death have been reported at 2-3 decades following birth (Wu et 
al. 2017). More recent data has demonstrated that cardiovascular function is more prevalent in the 
immediate postpartum period with a high incidence of new-onset chronic hypertension occurring 
within a few years of birth (Behrens et al. 2017). Postmenopausal focal segmental glomerulosclerosis 
was also only present in those women with a past history of preeclampsia (Suzuki et al. 2008). In 
spite of the debate as to whether cardiovascular and renal dysfunctions predated the pregnancy 
(Mahendru et al. 2013; Foo et al. 2018) or developed during the course of the pregnancy 
complicated by preeclampsia, it is evident that the postpartum maternal risks are clinically significant 
and more immediate than previously presumed  (Matsubara 2018). 
 
Pharmacotherapeutic targets 



Cardiorenal interactions in pregnant and non-pregnant individuals share many important 
pathophysiologic background mechanisms. However, pharmacologic  treatment of these patient 
groups may be very different: drugs such as diuretics and NO-donors are  commonly used in internal 
medicine and intensive care but very rarely in pregnancy despite reported potential benefits.  
Similarly, magnesium sulphate is a drug well known to obstetricians and maternal fetal specialists, 
but not commonly used by physicians and intensivists. 
 
Nitroglycerin and other nitrates are well known endothelium dependent vasodilating agents 
targeting (Silber et al. 1990), successfully applied in the management of preeclampsia, with or 
without pulmonary oedema (Cetin et al. 2004; Cotton et al. 1986). Improvements of abnormal 
Doppler flow measurements in uterine and umbilical arteries during nitroglycerin administration 
have been reported (Grunewald et al. 1995; Cacciatore et al. 1998). More recently, NO-donors have 
come into attention of obstetric researchers again, mainly because of the combination of beneficial 
cardiovascular effects with maternal and fetal safety (Johal et al. 2014). No-donors associated with 
plasma volume expansion have shown to improve diastolic blood flow velocity in the umbilical artery 
in parallel with a reduction of maternal peripheral arterial resistance (Valensise et al. 2008, Vasapollo 
et al. 2012). Despite the use of diuretics as antihypertensive agents outside pregnancy (Veena et al. 
2017), abstinence from application during pregnancy has long been advocated because of the 
observed increase of peripheral resistance in a group of pregnant women with chronic hypertension 
(Carr et al. 2007). The lack of terotogenic or clinical neonatal side effects in pregnancies with 
maintenance of chronic diuretic treatment or with acute cardiac or nephrologic problems (al-Abas et 
al. 2009; von Dadelszen et al. 2007), has stimulated the National High Blood Pressure Education 
Program Working Group on High Blood Pressure in Pregnancy to formulate the statement that the 
concern for the use of diuretics in pregnancy should be considered primarily theoretical 
(NHBPEPWGHBPP 2000; Brown et al. 2014). These arguments, together with the recognition that 
late-onset preeclampsia is predominantly related to a volume overloaded state, has initiated 
research into the value of diuretics in the management of late-onset preeclampsia, with preliminary 
promising effects (Tamas et al. 2017). Magnesium sulphate is widely used for the prevention and 
treatment of maternal eclamptic seizures and for neonatal neuroprotection during preterm birth 
(Pryde et al. 2009). A role for magnesium has been reported in the physiologic control of blood 
pressure and the pathophysiology of hypertension (Touyz 2003). Beneficial effects of magnesium 
sulphate as an adjunct to conventional pharmacotherapy has been reported for arrhythmia in 
congestive heart failure (Gottlieb et al. 1993) or ischemic cardiomyopathy (Ince et al. 2001) and for 
improved myocardial performance after coronary angioplasty  (Nakashima et al. 2004). Reversal of 
vasospasms offers potential to magnesium supplementation as a pharmacologic treatment for 
cerebral or coronary vasoconstriction (Keyrouz et al. 2007; Teragawa et al. 2000). Before the 
introduction of these drugs in other settings or indications than generally used today, more 
experimental, clinical and epidemiological research is required. 
 
 
CARDIORENAL INTERACTIONS IN THE PATHOPHYSIOLOGY OF PREECLAMPSIA 
 
From the evidence outlined above and summarized in Figure 1, there are three main pathways of 
cardiorenal interactions in preeclampsia: (1) pre-existing subclinical cardiovascular dysfunction 
associated with early-onset preeclampsia, impaired placental development with fetal growth 
restriction and Type II (chronic) cardiorenal syndrome, (2) a healthy woman whose gestational 
volume expansion leads to cardiovascular dysfunction and Type I (acute) cardiorenal syndrome and 
(3) preeclampsia superimposed upon pre-existing clinical syndromes of cardiovascular and/or renal 
disease and Type V cardiorenal syndrome (Figure 2). 
 
Preconceptional subclinical cardiovascular dysfunction predisposing to Type II cardiorenal 
syndrome and early-onset preeclampsia 



Abnormal trophoblast invasion in myometrial spiral arteries has been reported in placental biopsies 
of pregnancies complicated with preeclampsia, and for decades this mechanism has been considered 
the main etiologic event triggering a cascade of maternal cardiovascular events eventually leading to 
severe complications as preeclampsia and/or fetal growth restriction (De Wolf et al. 1982; Brosens et 
al. 2002). More recent data has shown that abnormal placentation is neither specific nor sensitive for 
the occurrence of preeclampsia, even though placental lesions are seen more frequently in early 
preeclampsia (Falco et al. 2017). Today, evidence is growing that pre-existing or early pregnancy 
suboptimal cardiac dysfunction may predispose to subsequent placental maldevelopment (Foo et al. 
2018; Thilaganathan et al. 2019; Mahendru et al. 2013) and worsening maternal cardiovascular 
function with the increased volume load of pregnancy (Melchiorre et al. 2016; Buddeberg BS et al. 
2018A; Buddeberg BS et al. 2018B).  It is still to be elucidated whether maternal endothelium 
dysfunction prior to conception is a prerequisite for development of preeclampsia, or whether 
sometimes this complication results from an imbalanced maternal – conceptus communication 
during implantation, a process involving numerous cellular, molecular and biochemical mechanisms 
such as angiogenetic factors (Boeldt et al. 2017; Nejabati et al. 2017), cellular exosomes (Burnett et 
al. 2016), oxygen tension (Burton 2009), leucocytes (Lima et al. 2014), Natural Killer (Chen et al. 
2017) and regulatory T cells (Robertson et al. 2018). Longitudinal studies from preconception to 
postpartum, such as reported by Foo et al. (Foo et al. 2018), are needed to find out whether all 
women with early onset preeclampsia had pregestational cardiovascular dysfunction or whether 
women with normal cardiovascular function can also develop this complication.  
 
Normal early pregnancy placentation is associated with a decrease in maternal uterine artery 
resistance indices as measured using Doppler ultrasound (Lin et al. 1995, Prefumo et al. 2004). This 
phenomenon has always been interpreted as implying that the physiological decrease in uterine 
artery resistance is a consequence of placental invasion into the myometrium (Figure 2). However, 
more recent evidence has demonstrated that uterine artery Doppler waveforms better reflect 
maternal systemic vascular resistance rather than local uterine artery resistance (Kalafat et al. 2018, 
Perry H et al 2018C). The latter data would indicate that maternal uterine perfusion dictates the 
degree of placental invasion rather than the other way round – a hypothesis which is consistent with 
cellular and mechanistic studies of trophobalsat function (Charolidi et al. 2019; James-Allan et al. 
2018; Leslie et al. 2015; Wallace et al. 2015). 
 
Epidemiological evidence supports this hypothesis, as both preeclampsia and cardiovascular disease 
share the same predisposing factors such as age, obesity, diabetes, ethnicity and co-morbidities like 
essential hypertension or chronic renal disease. Furthermore, irrespective of whether dealing with 
early or late preeclampsia, mothers present with cardiovascular signs (hypertension and oedema) 
and chamber dysfunction. Finally, preeclampsia has a significant cardiovascular legacy with up to 
30% of women developing essential hypertension within the first 10 years following birth (Behrens et 
al. 2017). Cardiorenal interactions in early preeclampsia act via different pathways - increased 
cardiac afterload and reduced cardiac output are responsible for reduced renal arterial blood flow 
and oxygenation. Additionally, impaired diastolic dysfunction predisposes to venous congestion and 
venous hypertension. Associated endothelial dysfunction and inflammatory response further disturb 
the normal cardiorenal crosstalk. 
 
Pregnancy-induced cardiovascular dysfunction predisposing to Type I cardiorenal syndrome and 
late-onset preeclampsia 
Volume expansion and increasing volume load is a feature of late pregnancy and is exaggerated by 
fetal macrosomia, prolonged or multiple pregnancy. The latter is associated with subclinical chamber 
diastolic dysfunction in approximately 15% of healthy pregnant women at term. Thus, it is evident 
that even in uncomplicated pregnancies, the maternal cardiovascular system is pushed to its 
maximum functional limits at the edge of decompensation. This is evident when assessing 
cardiovascular condition in obese women, advanced maternal age or multiple gestation, where the 



prevalence and severity of maternal cardiovascular dysfunction at term is significantly increased 
(Budderberg et al 2018B, Ghi et al. 2015). As maternal cardiovascular dysfunction occurs acutely and 
at the end of pregnancy, late preeclampsia is only infrequently associated with fetal growth 
restriction – placental dysfunction is short lived and rarely results in fetal growth restriction 
(Verlohren et al. 2014). Similarly, the acute nature of the cardiovascular insult resulting in 
hypoperfusion of the placenta is short-lived and unlikely to result in histologically evident placental 
damage (Falco et al. 2017). The links between cardiac and renal dysfunction in this process are 
comparable to those involved in early onset preeclampsia, however venous congestion dominates 
over arterial hypoperfusion and reflex hypertonia, due to which the clinical presentation of this type 
of preeclampsia is less fulminant and usually in a later stage of pregnancy. 
 
Preeclampsia superimposed upon pre-existing cardiorenal disease predisposing to type V 
cardiorenal syndrome. 
It is well known that chronic hypertension and renal disease are risk factors for development of 
preeclampsia, and also that pregnancy often induces faster progress of pre-existing cardiac and renal 
disease. Pregnant women with systemic or autoimmune disorders, who are particularly at risk for 
combined cardiorenal dysfunctions, are considered a high risk group requiring highly specialised 
prenatal follow up and management.  As such, this group fulfils all criteria of the cardiorenal 
syndrome type V with simultaneous presentation and worsening of cardiac and renal dysfunction (Di 
Lullo et al. 2017).  
 
 
PATHOPHYSIOLOGICAL AND CLINCIALIMPLICATIONS OF CARDIORENAL DYSFUNCTION 
 
The concept of cardiorenal crosstalk in young pregnant women suffering preeclampsia provides 
several pathophysiological insights and clinical implications. 
 
Pathophysiological insights 

 Preeclampsia shares similar risk factors with cardiovascular and renal disease 

 Pre-existing cardiovascular or renal disease predisposes to  chronic volume overload, 
cardiovascular dysfunction and type II cardiorenal syndrome – recognised as early 
preeclampsia 

 A significant proportion of healthy women develop subclinical diastolic dysfunction at term 
as a consequence of the volume load of pregnancy. In some, it leads to type I cardiorenal 
syndrome and the disease we recognise as late preeclampsia. 

 
Clinical implications 

 Maternal hemodynamic assessment is likely to become a cornerstone of management of 
preeclampsia 

 Specific biochemical markers for cardiorenal syndrome may be of value in the routine 
workup of preeclampsia 

 Management of hypertension may be optimally tailored by assessing haemodynamic effects 
(cardiac output, total vascular resistance) of therapy in addition to monitoring control of 
blood pressure. 

 Regardless of the phenotype of preeclampsia, there is a significant postpartum maternal 
legacy with a high incidence of essential hypertension which is a public health priority 

  



Captions to Figures 

Abstract Figure 

Summary of abnormal characteristics at the level of heart, kidneys, arteries, veins and 

interconnecting systems as reported for early- (EPE) and late-onset preeclampsia (LPE). Arrows ↑ 

and ↓ represent enhanced or hampered functioning relative to uncomplicated pregnancy 

respectively. The features show similarities for early onset preeclampsia and chronic cardiorenal 

syndrome (Type II) as well as late onset preeclampsia and acute cardiorenal syndrome (Type I).   PI: 

pulsatility index ; RI: resistance index ; Abnl: abnormal 

 

Figure 1 

Schematic presentation of the pathophysiologic mechanisms contributing to deterioration of renal 

function from excessive volume load (fetal macrosomia, twin pregnancy, prolonged pregnancy, 

excessive weight gain and placental hydrops) as well as limiting cardiovascular reserve (age, obesity, 

ethnicity, diabetes, chronic hypertension and renal disease). Subsequent changes to circulating 

volume and cardiac contractility will influence maternal cardiac output and peripheral vascular 

resistance thereby impairing placental perfusion – a prerequisite for the development of 

preeclampsia.  

 

Figure 2 

Abnormal cardiorenal interactions during pregnancy predispose to early placental dysfunction 

predominantly from poor cardiovascular reserve and late placental dysfunction from volume 

overload. Placental dysfunction may manifest as preeclampsia and/or fetal growth restriction. 

Women whose pregnancies were complicated by either preeclampsia or fetal growth restriction are 

at increased post-partum risk for cardiovascular, cerebrovascular and renal disease long-term. 
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