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Abstract—Increasing the energy efficiency of an Internet of
Things (IoT) system is a major challenge for its successful
implementation. To reduce the computation and storage burden
and enhance the efficiency of traditional IoT, an energy-efficient
diffusion-based algorithm for state estimation in multi-agent
networks is proposed in this paper. In the proposed algorithm
(referred to as reduced-link diffusion Kalman filter (RL-diffKF))
the nodes (agents) can communicate only with a fraction of their
neighbors and each node runs a local Kalman filter to estimate
the state of a linear dynamic system. This algorithm results
in a significant reduction in communication cost during both
adaptation and aggregation processes albeit at the expense of
possible degradation in the network performance. To justify the
stability and convergence of the RL- diffKF algorithm, an in-
depth analysis of the performance is reported. We also consider
the problem of optimal selection of combination weights and use
the idea of minimum variance estimation to analytically derive
the adaptive combiners. The theoretical findings are verified
through numerical simulations.

Index Terms—Communication cost, diffusion strategy, IoT,
Kalman filtering, reduced-link, state estimation.

I. INTRODUCTION

The IoT refers to a system of interrelated physical devices
and their virtual implementations that are able to receive and
diffuse data over an Internet-like network [1]. Such a frame-
work is based on sensing, communication, networking, and
information processing technologies. The wireless IoT devices
enable these physical objects to see, hear, think, and execute
tasks in a cooperative manner to diffuse information across the
network and to coordinate decisions [2]. There are numerous
applications benefited from IoT such as industrial automation
[3], intelligent agriculture [4], environmental monitoring [5],
and mobile healthcare [6]

Distributed state estimation problem appears in many appli-
cations such as power systems, sensor networks, smart grid,
and networked navigation systems which are parts of an IoT
system. So far, different algorithms have been reported in the
literature for solving this problem. Distributed Kalman filtering
has been extensively used in many IoT applications, including
target localization and tracking [7], [8], privacy protection
for cloud platform in IoT [9], [10], robust estimation for
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asynchronous networks [11], outlier detection [12], [13], and
state estimation for wireless power transfer systems [14]. This
wide range of applications stems from the fact that dynamical
performance of the physical system controlled by IoT can be
implemented mathematically by a state-space model.

In this work, we focus on the diffusion Kalman filtering as it
has been shown that the diffusion-based solutions exhibit supe-
rior tracking and stability performance. A successful diffusion
implementation requires a connected network and a collabo-
ration mechanism in which, only the agents from a predefined
neighborhood are allowed to exchange information with each
other [15]–[20]. In this framework, the information is collected
by all the agents, which use a local adaptive algorithm, and
are scattered through an online sharing mechanism that ripples
through the network frequently. This collaboration mechanism
makes a diffusion based algorithm scalable and increases its
robustness to node and link failures [15]. Diffusion of the pa-
rameter vectors among nodes, however; requires a high amount
of communication resources. Additionally, in a multi-agent
network (e.g. wireless sensor network), the degree of node (i.e.
the number of connections it has to other nodes) also plays
an important role in the overall communications. Therefore, in
order to keep the benefits of diffusion networks, it is necessary
to modify their collaboration mechanism, and develop energy-
efficient diffusion networks with reduced communication cost
[21].

Efforts have been made to reduce the communication burden
in diffusion networks. In [22]–[27], some partial diffusion
strategies have been proposed where a subset of the entries of
intermediate estimate vectors are allowed to share among the
neighbors. In [28], the Krylov subspace projection method has
been used to perform dimensionality reduction. Quantization
is another useful technique to reduce the bandwidth usage
[29]. In this method, the local estimates are quantized before
being shared among the nodes. In [30], the nodes transmit
the sign of innovation (SOI) sequence in the distributed state
estimation framework. In [31], a probability is assigned to
the link between every two agents and then a probabilistic
diffusion adaptation considered when the network topology
is dynamic. Takahashi et al. in [32] proposed an algorithm
to control the link probabilities by minimizing the estimation
error in order to improve the estimation performance [31].
In [33] and [34] every agent is allowed to select a subset
of its neighbors to aggregate the data based on some extra
information that portrays the quality of the nodes. Clearly,
these approaches require extra communication to select the
neighbors for sharing the data. In [35], a novel method is
proposed to reduce the communication overhead, where the
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nodes are allowed to dynamically update their estimates and
diffuse after each update. The given algorithms in [36] and
[37] are able to exploit the sparsity in the observation model
and reduce the communication cost by resorting to a convex
regularization method.

This paper proposes a novel reduced-link diffusion Kalman
filter (RL-diffKF) algorithm to further release the communi-
cation density of diffusion Kalman filtering (diffKF). In this
algorithm, each individual node updates its local estimate and
sends it to only a subset of its neighbors. Moreover, total
amount of inter-node communication is effectively decreased
in the network with less performance degradation compared
to the diffKF algorithm. It is worth mentioning that the
RL-diffKF algorithm has not been previously proposed in
[21]. Indeed, in [21] a reduced-communication diffusion LMS
algorithm has been developed which is obviously different
from our proposed algorithm since the given algorithm in [21]
considers a linear regression model, whereas in this paper we
assume a linear state-space model. The algorithm in [21] uses
the LMS algorithm as the learning rule for the agents; whereas
here the agents use Kalman filter for adaptation and learning.

A reduced-communication based diffKF algorithm has been
reported in [38], this algorithm differs from our proposed
approach in several ways. First, the algorithm in [38] is derived
by using the information form of the Kalman filter, while our
distributed schemes are motivated by time and measurement
frameworks. Our work relies on a modified version of diffKF
where the nodes do not exchange the information matrices
and pseudo-observation vectors with their neighbors in the
incremental step and the algorithm relies on the transmission
of intermediate estimates from selected immediate neighbors.
It is noteworthy to mention that sending and receiving the
information matrices and pseudo-observation vectors involve
a significant amount of communications between individual
nodes. Hence, our main contributions are as follows:
• The RL-diffKF algorithm is developed and its perfor-

mance is verified in terms of different metrics (including
steady-state mean-square deviation (MSD), communica-
tion saving) via numerical simulations.

• Under some simplifying assumptions (that are tradition-
ally adopted in the analysis of diffusion-based algorithms)
the required conditions for stability of the RL-diffKF
algorithm are derived.

• To predict the performance of RL-diffKF algorithm at the
steady-state, a theoretical expression is derived for the
MSD metric. It is demonstrated that the results from the
theoretical analysis (i.e. theoretical MSD values) match
the results obtained by simulations.

• It is verified (theoretically) that the RL-diffKF algorithm
facilitates the usage of network transmission resources
and provides a trade-off between estimation-accuracy and
communication-load.

• In order to improve the estimation performance of RL-
diffKF algorithm, the combination coefficients are used
as design parameters. More specifically, an adaptive
combination rule is proposed in which the combination
coefficients are adjusted (based on the data statistics)
throughout the learning process. It is shown that RL-

diffKF with the proposed adaptive weights outperforms
those with static combiners (providing smaller steady-
state MSD values).

In Section II, the work background is presented. The pro-
posed RL-diffKF algorithm is formulated in Section III. The
performance analyses are examined in Section IV. In Section
VI, the problem of controlling the combination weights is
formulated and an adaptive combination rule is established.
Simulation results are presented in Section VII, and the paper
is concluded in Section VIII.

Notations: Small boldface letters are adopted for vectors
and bold capital letters for matrices. Normal font letters denote
scalars. The transposition operator is denoted by superscript
(·)T . We also use ⊗ for the Kronecker product, vec {·} for a
vector formed by stacking the columns of its matrix argument,
and Tr {·} for the trace of its matrix argument. We further
use Blkcol {·} to denote a column vector formed by stacking
its arguments on top of each other. The Blkdiag {·} denotes
the block-diagonal matrix and � the Hadamard product. The
expected value of a random quantity x is denoted by E [x].
The weighted Euclidean norm of a vector x with a weighting
matrix Σ is defined as ‖x‖Σ =

√
xTΣx.

II. PRELIMINARIES

A. Network Model

Consider a connected multi-agent network1 with K nodes
scattered in a geographical space. Two nodes are neighbors
if they can exchange information with each other, i.e. only
single-hop communications are allowed. The neighborhood of
node k is denoted by Nk (notice that k ∈ Nk, See Fig. 1).
It is common to assume that the inter-node communication
links are symmetric, thus the topology of the network can
be modeled as an undirected graph G = {K, E ,A}, where
K = {1, 2, . . . ,K} is the set of vertices corresponding to the
agents or nodes, E ⊆ K × K is the set of edges representing
available communication links and the symmetric adjacency
matrix A = [alk] ∈ RK×K represents the presence and
absence of connections. For any {k, l} ∈ K, alk = akl
and alk > 0, if and only if l ∈ Nk, i.e. there is an edge
(l, k) ∈ E that nodes k and l can exchange information through
communication link. The graph G is called a connected graph,
in the sense of a topological space, if there exists a path
between every pair of vertices {l, k} ∈ K.

B. System Description

We consider a linear state-space model as:

xt+1 = Ftxt + Gtut, (1a)
yk,t = Hk,txt + vk,t, (1b)

where xt ∈ RM denotes the state of the system at time instants
t = {0, 1, 2, · · · } and yk,t denotes the measurement vector of
the system at node k at time t. Moreover, in (1), Ft ∈ RM×M ,
Gt ∈ RM×M and Hk,t ∈ RP×M denote the model matrix,
the state noise matrix and the local data matrix, respectively.

1The connectivity condition is requited to ensure diffusion of information
through the entire network.
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Fig. 1. A network with K nodes with a neighborhood of node k highlighted
in gray.

The state transition noise vector ut ∈ RM and measurement
noise vk,t ∈ RP are assumed to be the realization of zero-
mean white process with covariance matrices Qt and Rk,t,
respectively,

E

[[
ut

vk,t

] [
us

vk,s

]T]
,

[
Qt 0
0 Rk,t

]
δts (2)

where δts is the Kronecker delta, i.e. δts = 1 when t = s and
δts = 0 when t 6= s. It is assumed that the measurement noise
vectors vk,t are spatially and temporally uncorrelated, i.e.,

E
[
vk,tv

T
l,s

]
= Rk,tδklδts, Rk,t > 0 (3)

Moreover, the initial state x0 is zero-mean with covariance
matrix E

[
x0x

T
0

]
= Ω0 > 0 and uncorrelated with noise

signals vk,t and ut for all t and k. The parameter matrices
{Ft,Gt,Qt,Rk,t,Ω0,Hk,t} are considered known by each
node k.

The objective is to develop a fully distributed algorithm
to estimate the state vectors {xt} in a time-sequential manner
[39], based on sequences of noisy measurements {yk,j}, j ≤ t.

C. Diffusion Kalman Filter

Let x̂k,t|s denote the linear minimum mean-square error
estimate of xt that node k computes at time t using the
available information and measurements up to and including
time s. The covariance matrix of the estimation error x̃t|s ,
xt − x̂k,t|s is denoted by Pk,t|s. The diffKF algorithm in its
time-and-measurement update form begins with x̂k,0|−1 = 0
and Pk,0|−1 = Ω0, where Pk,0|−1 ∈ RM×M . The algorithm
includes two steps, namely the incremental update and diffu-
sion update. In the incremental step, at every time instant t
each node shares local data {yk,t,Hk,t,Rk,t} with its neigh-
bors and computes φφφk,t ← x̂k,t|t−1 and Pk,t ← Pk,t|t−1.
Then, each node calculates the intermediate estimates φφφk,t by

performing the KF algorithm as follows

for l ∈ Nk repeat

Re,t ← R`,t + H`,tPk,tH
T
`,t

φφφk,t ← φφφk,t + Pk,tH
T
`,tR

−1
e,t [y`,t −H`,tφφφk,t]

Pk,t ← Pk,t −Pk,tH
T
`,tR

−1
e,tH`,tPk,t (4)

end
x̂k,t|t ← φφφk,t

Pk,t|t ← Pk,t

x̂k,t+1|t = Ftx̂k,t|t

Pk,t+1|t = FtPk,t|tF
T
t + GtQtG

T
t

The symbol ← denotes a sequential assignment. In the diffu-
sion step, the nodes share φφφk,t with their immediate neighbors
and calculate an updated state vector x̂k,t|t as:

x̂k,t|t =
∑
`∈Nk

c`kφφφ`,t (5)

The scalars {c`k} denote real non-negative convex combina-
tion coefficients where c`k = 0 if ` /∈ Nk and:

K∑
`=1

c`k = 1, 1
TC = 1

T (6)

where 1 denotes K × 1 vector with unit entries. The combi-
nation weight c`k is the (`, k) element of matrix C ∈ RN×N ,
named combination matrix. The property above conveys that
C is a left stochastic matrix, i.e., the magnitude of any of the
eigenvalues of C is bounded by one.

III. PROPOSED ALGORITHM

A. Algorithm Extraction

Although diffKF algorithm exhibits proper estimation per-
formance in a connected network, it requires each node to
share its intermediate state estimates with all of its neighbors
at any iteration. In order to reduce the communication load,
we consider the case in which each node is allowed to diffuse
the update estimate with only a fraction of nodes within its
neighborhood Nk. While this procedure decreases the total
amount of communication burden in the network, it is at the
expense of slight degradation in terms of MSD performance
compared to the diffKF.

Let dk = |Nk| be the degree or valency of node k, where
|·| is the cardinality operator. To achieve this, assume node k
communicates at each time instant t to receive the intermediate
estimate φφφ`,t from 0 < ηk ≤ dk nodes. To-be-selected
neighboring nodes of node k at iteration t are characterized
by a link-selection variable as π`k,t. This variable determines
the status of link, being active or inactive, between node k
and ` at time instant t. The link-selection variable is defined
as follows:

π`k,t =

{
1 if ` ∈ N ′

k,t

0 otherwise
(7)

where N ′

k,t ⊆ Nk consists those nodes of Nk which are
allowed to exchange information.
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Regarding the proposed link selection scheme, the following
remark is made [21]:

Remark 1. The link-selection variable {π`k,t} is mutually
independent of each element of set {ut,vk,t,xt}. Moreover,
let denote by ρk the link-selection probability. It is assumed
that ρk is to be identical for all the neighbors:

ρk = E [π`k,t] =
ηk
dk

In diffKF algorithm, the nodes exchange local data
{yk,t,Hk,t,Rk,t} to achieve the intermediate estimates φφφk,t.
Obviously, considerable communication and computation re-
sources are required to implement this algorithm. In order to
reduce the communication load as much as possible, here
an algorithm, based on a modified version of diffKF is
used where the nodes do not receive {yk,t,Hk,t,Rk,t} from
their neighbors in the incremental phase. So, in the diffKF
algorithm, the incremental step (4) should be replaced by the
following Adaptation Phase:

Re,t ←− Rk,t + Hk,tPk,tH
T
k,t

φφφk,t ←− φφφk,t + Pk,tH
T
k,tR

−1
e,t [yk,t −Hk,tφφφk,t] (8)

Pk,t ←− Pk,t −Pk,tH
T
k,tR

−1
e,tHk,tPk,t

As the intermediate estimates from the selected neighbors are
available at node k, we instead propose a new aggregation
method that uses the node’s own intermediate estimate as a
proxy [35] for the missing data and changes (5) to:

x̂k,t|t = ckkφφφk,t +
∑
`∈N ′

k

c`k[π`k,tφφφ`,t + (1− π`k,t)φφφk,t] (9)

Accordingly, the considered RL-diffKF algorithm utilizes (8)
in the adaptation phase and (9) for aggregation phase. It is
noteworthy to say that (5) and (9) have the same computational
complexity. The method summary can be seen in Algorithm
1.

Remark 2. The only required condition in the network for
using the proposed algorithm is that the network should
be connected. So, as the proposed algorithm is naturally
distributed, in the case of configuration changes (e.g., addi-
tion/removal of agents or sensors), this paves the way to a
plug-and-play (PnP) implementation.

B. A Typical Application

An increasing IoT trend is mobile crowd-sensing (MCS)
where carriers of sensing and computing devices obtain and
diffuse vital information for different types of application [40].
MCS mainly occurs in three phases, i.e., data collection, data
storage, and data upload, involves two categories of users,
i.e., task requesters and mobile participants, and three layers,
i.e., the sensing layer, application layer and cloud platform,
respectively [41]. The overall process of distributed MCS is
shown on Fig. 2. The process is briefly explained as follows:
(1) A task requester submits its requirements to the cloud
server, such as monitoring air quality; (2) These tasks are

Algorithm 1 Reduced-Link Diffusion Kalman Filter
Initialization: x̂k,0|−1 = 0 and Pk,0|−1 = Ω0

For every time instant t, every node k computes

Step1: Adaptation phase
φφφk,t ← x̂k,t|t−1
Pk,t ← Pk,t|t−1

Re,t ← Rk,t + Hk,tPk,tH
T
k,t

φφφk,t ← φφφk,t + Pk,tH
T
k,tR

−1
e,t [yk,t −Hk,tφφφk,t]

Pk,t ← Pk,t −Pk,tH
T
k,tR

−1
e,tHk,tPk,t

Step2: Aggregation Phase

x̂k,t|t = ckkφφφk,t +
∑
`∈N ′

k

c`k
[
π`k,tφφφ`,t +

(
1− π`k,t

)
φφφk,t

]
Pk,t|t ← Pk,t

x̂k,t+1|t = Ftx̂k,t|t

Pk,t+1|t = FtPk,t|tF
T
t + GtQtG

T
t
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Fig. 2. IoT framework for MCS based on diffKF.

transmitted to the users willing to assess a particular task T
in their smart devices; (3) The mobile users can collaborate
as long as their smart devices operate. These devices are
employed to sense the surrounding environment all the times;
(4) A diffusion Kalman filter, diff-KF, strategy is used for data
processing among mobile devices. This process includes two
steps, an incremental update followed by a diffusion update;
(5) Finally, the users diffuse their estimate values to task
providers.

Remark 3. As we mentioned earlier, in many practical appli-
cations, such as distributed power systems, smart grid and sen-
sor networks, diffusion based algorithms have been developed
as promising solutions for distributed state estimation [42]–
[44]. In this paper, we have proposed an IoT based energy-
efficient algorithm to solve the state estimation problems in
a fully distributed manner. This means that with proper data
modeling and conditioning, the proposed algorithm can be
used at the same applications.
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IV. PERFORMANCE ANALYSIS

In this section, different aspects of RL-diffKF algorithm are
examined. Defining the following error signals

x̃k,t|t = xt − x̂k,t|t (10)

φ̃φφk,t|t = xt −φφφk,t|t (11)

and subtracting xt from both sides of the expression for φφφk,t
in (8) yields

φ̃φφk,t = x̃k,t|t−1 −Pk,tH
T
k,tR

−1
e,t (Hk,tx̃k,t|t−1 + vk,t)

= (IM −Pk,tH
T
k,tR

−1
e,tHk,t)x̃k,t|t−1

−Pk,tH
T
k,tR

−1
e,tvk,t (12)

Noting that Pk,tH
T
k,tR

−1
e,t = Pk,tH

T
k,tR

−1
k,t , the above equa-

tion can be rewritten as

φ̃φφk,t = (IM −Pk,tSk,t)x̃k,t|t−1 −Pk,tH
T
k,tR

−1
k,tvk,t (13)

where Sk,t = HT
k,tR

−1
k,tHk,t. Using

x̃k,t|t−1 = Ft−1x̃k,t−1|t−1 + Gt−1ut−1 (14)

the following recursion is obtained:

φ̃φφk,t = (IM −Pk,tSk,t)Ft−1x̃k,t−1|t−1

+ (IM −Pk,tSk,t)Gt−1ut−1 −Pk,tH
T
k,tR

−1
k,tvk,t

(15)

Using the combination step from (9) gives

x̃k,t|t =

(
1−

∑
`∈Nk

π`k,tc`k

)
φ̃φφk,t +

∑
`∈N ′

k

π`k,tc`kφ̃φφ`,t (16)

Now, the following supporting block-diagonal and Kronecker
product matrices are introduced:

Ut−1 , 1K ⊗ ut−1

Vt , Blkcol {v1,t,v2,t, · · · ,vK,t}
Pt , Blkdiag {P1,t,Pt,2, · · · ,PK,t}
Ht , Blkdiag {H1,t,H2,t, · · · ,HK,t}
St , Blkdiag {S1,t,S2,t, · · · ,SK,t}
Rt , Blkdiag {R1,t,R2,t, · · · ,RK,t}
Bt = Bt ⊗ IM

Bt =

 b11,t · · · b1K,t
...

. . .
...

bK1,t · · · bKK,t

 .
where

bpq,t =


1−

∑
`∈Np\{p} π`p,tc`p if p = q

πpq,tcqp if q ∈ Np\ {p}
0 otherwise

Thus, (15) and (16) are expressed in a global form that
captures the evolution of entire network as follows:

X̃ t|t = BtΦ̃t (17)

Φ̃t =
(
IKM −Pt|tSt

)
[(IK ⊗ Ft−1) X̃ t−1|t−1

+ (IK ⊗Gt−1) Ut]−Pt|tHT
t R

−1
t Vt (18)

These relations demonstrate that X̃ t|t evolves over time as:

X̃ t|t = Bt
(
IKM −Pt|tSt

)
(IK ⊗ Ft−1) X̃ t−1|t−1

+ Bt (IK ⊗Gt−1) Ut −BtPt|tHT
t R

−1
t Vt (19)

which can also be rewritten as the following compact form:

X̃ t|t = BtF tX̃ t−1|t−1 + BtGtUt −BtDtVt (20)

where

F t ,
(
IKM −Pt|tSt

)
(IK ⊗ Ft−1)

Gt ,
(
IKM −Pt|tSt

)
(IK ⊗Gt−1)

Dt , Pt|tHT
t R

−1
t

A. Mean Performance

The following proposition guarantees the stability and
asymptotic unbiasedness of the RL-diffKF algorithm.

Proposition 1. (Mean Stability) The RL-diffKF is convergent
in the mean and asymptotically unbiased.

Proof. Applying expectations to both sides of (14) and (16),
the following recursions for the estimate expectations are
obtained:

E
[
x̃k,t|t−1

]
= Ft−1E

[
x̃k,t−1|t−1

]
(21)

E
[
x̃k,t|t

]
= β̄kk(IM −Pk,tSk,t)x̃k,t|t−1

+
∑
`∈N ′

k

β̄`k(IM −P`,tS`,t)E
[
x̃`,t|t−1

]
(22)

where

β̄pq =


1−

∑
`∈Np\{p} ρ`c`p if p = q

ρpcqp if q ∈ Np\ {p}
0 otherwise

Since we assume x̂k,0|−1 = 0 and E [x0] = 0, we have
E
[
x̂k,0|−1

]
= 0 for all k. Then, we obtain

E
[
x̃k,0|0

]
= β̄kk(IM −Pk,0Sk,0)x̃k,0|−1

+
∑
`∈N ′

k

β̄`k(IM −P0,`S0,`)E
[
x̃`,0|−1

]
= 0 (23)

Thus, iterating (21) and (22), it is concluded that the estimates
E
[
x̃k,t|t

]
provided by the RL-diffKF is unbiased for all t ≥

0. �

B. Mean-Square Performance

If PX ,t denotes the covariance matrix of the network error
vectors

PX̃ ,t , E
[
X̃ t|tX̃

T

t|t

]
(24)
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then, it follows from (20) that this matrix satisfies the follow-
ing Lyapunov recursion:

PX̃ ,t = BF tPX̃ ,t−1F
T
t B

T + BGt
(
1K1

T
K ⊗Qt−1

)
GTt B

T

+ BDtRtDT
t B

T (25)

where B = E [Bt]. In order to analyze the stability and perfor-
mance of the RL-diffKF algorithm, the following assumption
is considered.

Assumption 1. The matrices in the linear state-space model
(i.e., the matrices F, G, H, R and Q) are time-invariant.
Furthermore, it is assumed that the pair (F,Hk) is detectable
and the pair

(
F,GQ1/2

)
is stabilizable and

Note that under Assumption 1 and the convergence proper-
ties of the discrete Riccati recursions, each entry Pk,t of Pt

converges to P†k where [39]:

P†k =
(
P−1k + HT

kR−1k Hk

)
= P−1k + Sk (26)

where matrix Pk is the unique stabilizing solution of the
following discrete algebraic Riccati equation (DARE):

Pk = FP†kF
T + GQGT

= FPkF
T + GQGT − Γp,kRe,kΓ

T
p,k (27)

where Γp,k , FPkH
T
kR−1e,k and Re,k , Rk + HkPkH

T
k .

Consequently, the matrices
{
Pt|t,F t,Gt,Dt

}
converge re-

spectively to the following steady-state values:

P† , lim
t→∞

P†t|t (block diagonal)

F , lim
t→∞

F t =
(
IKM −P†S

)
(IK ⊗ F)

G , lim
t→∞

Gt =
(
IKM −P†S

)
(IK ⊗G)

D , lim
t→∞

Dt = P†HTR−1 (28)

Assumptions 1 is sufficient to guarantee the convergence
of the RL-diffKF. It is shown in [18] that matrix F is stable
(the stability condition is discussed in more detail in [18]).
Therefore, the error covariance matrix PX̃ ,t converges to the
unique solution of the Lyapunov equation:

PX̃ = BFPX̃FTBT + BG
(
1K1

T
K ⊗Q

)
GTBT

+ BDRDTBT (29)

Applying vec {·} operator to (29) together with using the
property vec {AΣB} =

(
BT ⊗A

)
vec {Σ}, we can solve for

PX̃ and write

vec {PX̃ } = [IK2M2 −B (F ⊗F)]
−1

×Bvec
{
G
(
1K1

T
K ⊗Q

)
GT + DRDT

}
(30)

where B = B ⊗ B. B in Appendix A is calculated. The
steady-state MSD is defined in terms of state variance

ζk = E
[
‖xt − x̂k,t|t‖2

]
(31)

So, the steady-state MSD at node k is given by:

ζk = lim
t→∞

E [‖x̃k,t‖] = Tr {PX̃Ik} (32)

where Ik is a K ×K block diagonal matrix with blocks of
size M ×M . It contains the identity matrix at block (k, k)
and zero elsewhere. Eventually, the network MSD, defined as
the average steady-state MSDs across the network, is given by

ζnet =
1

K
Tr {PX̃ } (33)

The above allegation is validated by demonstrating the stability
of matrix F , in view of the fact that the Lyapunov recursion
(25) converges to the unique solution of the Lyapunov equation
(29). We summarize our results with the following proposition.

Proposition 2. (Mean-square Stability) Under Assumption 1,
the RL-diffKF algorithm is unbiased and converges, and the
steady-state mean-square deviation for every node is given by
(32).

Proof. The recursion (30) is stable and convergent if and only
if, the matrix B (F ⊗F) is stable. All the entries of B are
real and non-negative. Since,

B1K2M2 = E [B ⊗B]1K2M2

= E [B1K2M2 ⊗B1K2M2 ] = 1K2M2

and all elements of each row of B adds up to one. This means
that the block matrix B is right-stochastic matrix and has
unit spectral radius. In steady-state condition, the RL-diffKF
algorithm is stable in the mean-square sense if, and only if,
F⊗F is stable. Since the eigenvalues of (F ⊗F) are square
of the eigenvalues of F , the stability of (F ⊗F) has the
same conditions as the stability of F . This means that, as F
is stable (the stability condition is discussed in more detail in
[18]) then, the RL-diffKF algorithm is convergent and stable in
mean-square sense, and the steady-state mean-square deviation
follows from the derivation of (32). �

V. COMMUNICATION-PERFORMANCE TRADE-OFF

To achieve a deep and accurate understanding of the per-
formance of RL-diffKF algorithm, we consider its steady-state
network MSD under the following assumptions:

Assumption 2.

(i) The degrees of all agents are identical, i.e., the network
is fully connected.

(ii) At only ηk of each dk consecutive iterations, every agent
k in the network simultaneously receives the intermediate
estimates of all its neighbors in a round-robin fashion.

(iii) The combination matrix C is doubly-stochastic.

In Appendix B it is shown that in view of Assumption 2,
B is given by the following relation

B = (1− ρ) IM2K2 + ρC ⊗ C (34)

where C = C ⊗ IM and ρ is the selection probability that is
identical for all nodes and all node neighbors at each iteration.
To proceed, let ζm denote the average steady-state network
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MSD of the RL-diffKF algorithm with m selected entries.
Thus, (33) can be rewritten as

ζm =
1

K
vecT {Ω}BT

(
IM2K2 −

(
FT ⊗FT

)
BT

)−1
×vec {IMK}

(35)

since the proposed algorithm is mean-square stable, ζm can
be rewritten as

ζm =
1

K
vecT {Ω}BT

∞∑
j=0

[(
FT ⊗FT

)
BT

]j
h (36)

where h = vec {IMK} and Ω = G
(
1K1

T
K ⊗Q

)
GT +

DRDT . Substituting (34) into (36) leads to

ζm =
1

N

∞∑
i=0

(1− ρ)i+1vecT {Ω}
[
(FT )i ⊗ (FT )i

]
h

+
1

K

∞∑
i=0

ρi+1vecT {Ω}

×
[
CT (FTCT )i ⊗ CT (FTCT )i

]
h

=
1

K

∞∑
i=0

(1− ρ)i+1Tr
{

(F)iΩ(FT )i
}

+
1

K

∞∑
i=0

ρi+1Tr
{

(CF)iCΩCT (FTCT )i
}

(37)

It is obvious that

Tr
{

(CF)iCΩCT (FTCT )i
}

=

Tr
{(

CT
)i+1

Ci+1
}
× Tr

{
(F)iΩ(FT )i

}
(38)

where Tr
{(

CT
)i+1

Ci+1
}

=
∑K
k=1 ‖ck,i+1‖2, ∀ i ≥ 0 and

ck,i+1 is the k-th row of Ci+1. As C is doubly-stochastic Ci+1

is also doubly-stochastic. Moreover, since the network is fully-
connected, each node is coupled with all the network nodes.
This fact leads to ‖ck,i+1‖2 ≤ 1, i ≥ 0, ∀k. Consequently, the
following inequality holds for 0 < ρ < 1

Tr
{

(CF)iCΩCT (FTCT )i
}

< (1− ρ)i+1Tr
{

(F)iΩ(FT )i
}

+ρi+1Tr
{

(CF)iCΩCT (FTCT )i
}

< Tr
{

(F)iΩ(FT )i
}

(39)

In addition, for the non-cooperative (ρ = 0) and full-diffusion
(ρ = 1) cases, we respectively have

ζ0 =
1

N

∞∑
i=0

Tr
{

(F)iΩ(FT )i
}

(40)

ζfull =
1

N

∞∑
i=0

Tr
{

(CTF)iCTΩC(FTC)j
}

(41)

Summing (39) for all j ≥ 0 alongside considering (40) and
(41), we arrive at

ζfull < · · · < ζm < · · · < ζ0 (42)

This inequality shows a communication-performance trade-off
for RL-diffKF algorithm. As expected, using more neighbors
in the aggregation phase gives better steady-state network
MSD values.

VI. ADAPTIVE COMBINERS

The objective of this section is to design the combination
weights {clk} in the aggregation phase of Algorithm 1. An
optimization problem is formulated that its solution leads
to calculation of a set of weights. These weights adapt to
variations in the data statistics. In what follows, the optimal
combiners is approximated by a stochastic gradient type
algorithm. The algorithm runs in real-time, and there is no
need to access the global information for its implementation.

A. Problem Formulation

To begin with, stacking all the intermediate state estimates at
the end of adaptation phase in a row-wise manner and denoting
it by Ψt ∈ RM×K gives

Ψt ,
[
φφφ1,t,φφφ2,t, . . . ,φφφK,t

]
We further introduce

ck , Blkcol {c1k, c2k, . . . , cKk}
πππk,t , Blkcol {π1k,t, π2k,t, . . . , πKk,t}
fk,t , ck � πππk,t = Blkcol {f1k,t, f2k,t, . . . , fKk,t}

where ck represents the kth column of combination matrix C,
πππk,t denotes the kth column of link-selection variable vector
for node k at time instant t, and fk,t represents the combination
coefficient vector for agent k at time t to be optimized. For
each agent k, the objective is to obtain a set of weights
{f`k,t} , ` = 1, · · · ,K that minimizes

∑K
k=1 ‖xt − x̂k,t‖2.

Using (9), we define the following optimization problem:

arg min
bk,t

E
[∥∥xt − ((Ψt −φφφk,t1TK)fk,t)

∥∥2] (43)

subject to f`k,t = 0 if ` /∈ N
′

k,t and 1
T fk,t = 1

The constraint 1T fk,t = 1 states that the coefficients add
up to unity. We now introduce an auxiliary variable Λk to
decrease the dimension of (43) from K to ηk unknowns. This
dimensionality reduction comes from removing the constraint
flk,t = 0 if ` /∈ N ′

k,t. The K × ηk matrix Λk is defined as

Λk , [`− th column of identity matrix IK ]`∈N ′
k,t

Thus, (43) can be rewritten as

min
ak,t

E
[
‖xt −Πk,tak,t‖2

]
(44)

subject to 1
T
ηk

ak,t = 1

where at,k ∈ Rηk contains the non-zero entries of fk,t, i.e.,
fk,t = Λkak,t and Πk,t = ((Ψt −φφφk,t1TK)fk,t)Λk.
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B. Adaptive Solution

We can minimize the cost (44) by constructing a Lagrangian
regularization form as

J (ak,t, λk) = E
[
xTt xt

]
−

2qTk,t + aTk,tΘk,tak,t + 2λk
(
1
T
ηk

ak,t − 1
)

(45)

where qk,t = E
[
ΠT
k,txt

]
and Θk,t = E

[
ΠT
k,tΠk,t

]
. So,

simply differentiating with respect to ak,t and setting the result
to zero gives

−2qTk,t + 2aTk,tΘk,t + 2λk1
T
ηk

= 0

Assuming Θk,t is positive definite, we have

aok,t = Θ−1k,t [qk,t − λok1ηk ] (46)

and employing the constraint 1Tηkak,t = 1, we obtain

λok =
1
T
ηk

Θ−1k,tqk,t − 1

1Tηk
Θ−1k,t1ηk

(47)

In the sequel, a steepest-descent solution to problem (44) is
derived which is then modified to obtain an adaptive solution.
So, let PVk denote the metric projection from Rηk onto Vk ={
x ∈ Rηk : 1Tηkx = 1

}
, which is given by

PVk (ν) =

(
Iηk −

1ηk1
T
ηk

ηk

)
ν +

1ηk

ηk
∀ν ∈ Rηk (48)

and let Vk , Iηk −
1ηk

1
T
ηk

ηk
, then (44) can be rewritten as the

following unconstrained problem:

min
ak,t

E
[
‖xt −Πk,tPVk (ak,t)‖2

]
(49)

Since PVk is affine in ak,t, the cost (49) is quadratic and its
gradient at ak,t can be easily calculated as

∇T (ak,t) = −2Vkqk,t + 2VkΘk,tPVk (ak,t) (50)

Therefore, we suggest minimizing (49) employing a gradient-
descent algorithm as

ak,t+1 = ak,t + µk,tVk

[
qk,t −Θk,tPVk(ak,t)

]
(51)

where µk,t ≥ 0 is a step-size parameter. Since ak,t ∈ Vk is
equivalent to PVk (ak,t) = ak,t, our recursion is simplified as
follows

ak,t+1 = ak,t + µk,tVk [qk,t −Θk,tak,t] (52)

where ak,0 must satisfy 1
T
ηk

ak,0 = 1. Remember that the
desired coefficients can be obtained through fk,t through
fk,t+1 = Λkak,t+1.

In order to derive an adaptive version of recursion (52),
we replace quantity Θk,t and qk,t by their instantaneous
approximation

qk,t = E
[
ΠT
k,txt

]
≈ ΠT

k,t−1x̂k,t−1|t (53)

Θk,t = E
[
ΠT
k,tΠk,t

]
≈ ΠT

k,t−1Πk,t−1 (54)

Substituting these approximations in (52), the adaptive weights
algorithm summarized in Algorithm 2 is obtained.

Algorithm 2 Adaptive weights for RL-diffKF
For every agent k, start with ak,0 ∈ Rηk , such that 1Tηkak,0 = 1.
Then, for every time instant t ≥ 0, repeat{

ak,t+1 = ak,t + µk,tVkΠT
k,t−1

(
x̂k,t−1|t −Πk,t−1ak,t

)
fk,t+1 = Λkak,t+1

(55)

VII. EMPIRICAL EVALUATIONS

In this section, some numerical examples have been pre-
sented to evaluate the proposed algorithm2. We consider a
network with K = 10 nodes, where ∀k ∈ K, min{dk} =
3, max{dk} = 8 and 1

K

∑K
k=1 dk = 5. It is assumed that

xt denotes the 2-dimensional location of an object, where the
time evolution of xt is given by (1a) and (1b) with

F =


1 0 0.1 0
0 1 0 0.1
0 0 1 0
0 0 0 1

 ,Q = 0.001I4,G = I4.

At any time instant t, each node obtains the noisy measure-
ments of an unknown position based on the local data matrix
Hk,t = H1 or H2 where

H1 =

0 1 0 0
0 0 1 0
0 0 0 0

 , H2 =

0 1 0 0
0 0 0 0
0 0 0 1

 .
It should be noted that to guarantee the local Kalman filter
convergence as in Assumption 1 the following condition
should hold:

∀k ∈ K, ∃j, ` ∈ Nk where Hj,t = H1, H`,t = H2

For any agent k, the covariance matrix of measurement noise
is Rk,t = σ2

k,tI3, where each σ2
k,t is randomly selected in the

range [0 0.5]. The observation noise variances for individual
nodes are shown in Fig. 3. The curves are generated by
ensemble averaging over 200 independent runs. In RL-diffKF
algorithm, each node k at any time instant t receives the
intermediate state estimates from ηk = min(L, dk) where
0 < L < dk. For the combination weights {c`k} we use the
relative-degree rule. The initial values for the state vector is
set to zero for all of the nodes.

Fig. 4 illustrates the learning curves of instantaneous net-
work MSD for different values of ηk. In Fig. 5, the exper-
imental and theoretical values of the steady-state network
MSD have been compared for different values of ηk. From
Figs. 4 and 5 it can be easily seen that there is a trade-
off between the performance and the communication cost.
Moreover, the calculated values from theoretical steady-state
MSD have good agreement with the obtained simulation
results. Fig. 6, shows the theoretical and experimental values of
the steady-state network MSD for the proposed algorithm with
different combination rules, including relative-degree, uniform
and metropolis. It can be seen that for the same values for L,
the proposed adaptive combination rule provides better steady-
state estimation performance.

2Useful details or implementation of diffusion strategies with MATLAB R©

can be found at https://asl.epfl.ch/software/
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Fig. 4. Experimental and theoretical network MSD curves of the RL-diffKF
algorithm with different values L.

To show the effectiveness of RL-diffKF in energy savings,
we define a communication saving metric as follows

Csaving = 1−
∑K
k=1 min (L, dk)∑K

k=1 dk
(56)

This quantity indicates the rate of communications saved by
the RL-diffKF algorithm at each time instant t with respect
to the diffKF algorithm, where L = dk. Eventually, the
expected performance degradation of RL-diffKF algorithm
in comparison to diffKF can be described as the following
performance loss metric:

Ploss =
ζL − ζ
ζ0 − ζ

(57)

where ζ, ζL and ζ0 denote respectively the steady-state MSD
provided by diffKF, RL-diffKF, and non-cooperative KF algo-
rithms in decibel scale. In Figs. 7 and 8, the values of Csaving

and Ploss are plotted in terms of the maximum number of
aggregated neighbors at each iteration.

Figs. 7 and 8 demonstrate that receiving intermediate state
estimate only from a single neighbor per iteration results in
significant reduction in the inter-node communication with
respect to the diffKF case. For example, the algorithm gives
79.59% and 40% communication saving (with reference to the
diffKF algorithm) for L = 1 and L = 3, respectively. Note
also that the communication saving is achieved at the expense
of performance loss (57.85% and 40% for L = 1 and L = 3,
respectively.
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Fig. 5. Theoretical, (dash line), and experimental, (solid line), steady-state
MSDs of the RL-diffKF algorithm at each node for different values of L.

1 2 3 4 5 6 7 8 9 10
−24

−23.5

−23

−22.5

−22

−21.5

−21

−20.5

−20

−19.5

node index, k

S
te
a
d
y-
st
a
e
N
et
w
or
k
M
S
D

(d
B
)

 

 
L = 5,Reldeg
L = 5,Uniform
L = 5,Metro
L = 5,Proposed
L = 7,Reldeg

Fig. 6. Theoretical and experimental values of the steady-state network MSD
for the proposed algorithm with different combination rules.

Finally, Table I compares the steady-state performance of
the proposed algorithm with that of a non-cooperative system,
DiffKF, and the algorithms in [24], [27]. As we expected
diffKF exhibits better performance since in diffKF nodes share
all available local information. The proposed algorithm with
adaptive combiner provides better steady-state performance as
compared to static combiner. However, it requires further com-
putations in every node to obtain the optimum combination
rules.

TABLE I
STEADY-STATE MSD VALUES FOR DIFFERENT ALGORITHMS.

Method L MSD (dB)
non-cooperative 0 -13.9
diffKF dk -22.7
[24] 3 -18.8
[27] 3 -21.4

Proposed (static combiner) 3 -18.9
Proposed (adaptive combiner) 3 -21.5

Based on the above results, the following observations can
be made:
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neighbors at each iteration.
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Fig. 8. Performance loss versus the maximum number of aggregated neigh-
bors at each iteration in the experiment of Fig. 3.

• The RL-diffKF algorithm facilitates a convenient trade-
off between communication burden and estimation per-
formance.

• The RL-diffKF algorithm provides an impressive mech-
anism to trade steady-state MSD for decreased power-
consumption and bandwidth necessities;

• The performance deterioration caused by RL-diffKF is
elegant in comparison with the savings attained in trans-
mission.

• The RL-diffKF with the proposed adaptive weights out-
performs those with existing static combiners.

• A good agreement between the experimental and theo-
retical steady-state MSD values is achieved for a wide
range of L .

VIII. CONCLUSION AND FUTURE WORK

Here, a reduced-link diffKF (RL-diffKF) algorithm for
distributed state estimation has been proposed. This algorithm
reduces the communication load by allowing each node to
receive the intermediate estimates from a fraction of its neigh-
bors. We have derived expressions for the network MSD as
well as the mean and mean-square stability analysis. We have
also derived the optimal combination weights which minimize
the steady-state MSD. The simulation results confirmed the

efficiency of the proposed algorithm and verified the precision
of theoretical derivations. As future work, we plan to design
a modified version of diffKF algorithm that is robust against
the impulse-corrupted observed data.

APPENDIX A

Based on the definition for B, we can write

Bt = E [Bt ⊗Bt] (A.1)

Thus, calculation of B adds up to finding A.1 in the expanded
form

E [Bt ⊗ IM ⊗Bt ⊗ IM ] = IM ⊗ E [b11,tBt] · · · IM ⊗ E [b1K,tBt]
...

. . .
...

IM ⊗ E [bK1,tBt] · · · IM ⊗ E [bKK,tBt]

 (A.2)

Using E [bqp,tb`k,t] (see (A.3)) and

E [πqp,tπ`k,t] =


ρp if p = q & q = `

0 if p = q & q 6= ` & dp = 1

ρp
ηp−1
dp−1 if p = q & q 6= ` & dp > 1

ρpρk if p 6= k

APPENDIX B

In view of Assumption 1, we have

E [πqp,tπ`k,t] = ρ ∀ p, q, k, `

Therefore, using the formulations given in Appendix A, we
can show that

E [πqp,tBt] =

(1− ρ) IM + cppcqqρIM if p = q & k = `

c`kcppρIM if p = q & ` ∈ Nk
cqpckkρIM if q ∈ Np & k = `

cqpc`kρIM if q ∈ Np & ` ∈ Nk
OM otherwise

E [πqp,tBt] = (1− ρ) IMK + ρcqpC
T ⊗ IM

E [Bt ⊗Bt] = (1− ρ) IM2K + ρcqpIM ⊗CT ⊗ IM

E [Bt ⊗Bt] = (1− ρ) IM2K2 + ρCT ⊗ IM ⊗CT ⊗ IM

and finally

B = (1− ρ) IM2K2 + ρCT ⊗ IM ⊗CT ⊗ IM .
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