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Abstract

As most software requirements are written in natural language, they are un-
structured and do not adhere to any formalism. Therefore, automatically

processing these requirements in the context of Requirement Engineering (RE)
is often difficult, complex and opaque. The problems fall under the remit of lin-
guistic issues, such as ambiguity and incompleteness. Techniques and resources
from Natural Language Processing (NLP) have been used for exploring natural
language issues in unstructured requirement documents. The research in this hy-
brid area of RE studies has covered various tasks, including analysing, modelling
and organising requirements, which generally referred as NLP for RE (or simply
NLP4RE) research tasks.

An essential linguistic process that is common in most of NLP4RE tasks is
the process of identifying relationships between requirement statements, i.e., de-
tecting semantic relatedness and similarity within a requirement document as a
collection of software descriptions. By detecting such a complex and (mostly)
hidden relationship in the natural description of requirements, we will end with
more accurate and robust NLP4RE tools that could handle the lack of formalism
in unstructured requirement documents. For example, to enable traceability be-
tween an arbitrary set of natural documents by linking their shared or common
semantic relationships i.e. to trace requirements with specific concepts such as
requirements that explain sending/receiving operations, verifying user credential
for security purposes and more.

This PhD thesis explores the potential of and adopts the semantic frames,
embodied in the FrameNet lexicon, to provide unique insights and novel ap-
proaches (accompanied with several methods implemented into systems) for mea-
suring and identifying semantic relationships in software descriptions expressed
through unstructured, natural language. We follow a research methodology con-
sists of collecting evidence of FrameNet’s feasibility in RE, experimenting with
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various FrameNet-based solutions and critically appraising these solutions using
real-world requirement documents. The first approach – the knowledge-based
approach – is implemented based on the knowledge available in the FrameNet
lexicon, through which we experiment with the various semantic similarity met-
rics used with different ontologies and lexica in FrameNet. The second approach –
the corpus-supported approach – adapts FrameNet tagged corpora, one of which
is the result of the earlier research method studying FrameNet’s coverage of re-
quirement documents. The corpus-supported approach utilises corpora features,
such as frame frequencies and co-occurrences, to measure the relatedness be-
tween frames from the RE use context. The third and final approach – the
embedding-based approach – is based on trained word embeddings for the RE
domain. Thus, we propose new resources, i.e., embedding-based representations
of semantic frames in FrameNet.

We obtain motivational results from the corpus-based analysis, which has
been conducted to study FrameNet’s appropriateness for labelling software de-
scriptions. Thus, this research creates the first RE corpus, consisting of 5,348
requirement statements, that is fully annotated with FrameNet frames. After-
wards, the proposed approaches to measure semantic frames’ relatedness are eval-
uated based on their designated task – identifying related semantic frames from
the FrameNet while considering the RE context. The intrinsic evaluation is com-
pared with a human-judgment dataset of frame-to-frame relationships. As a
result, the embedding-based approach achieves more than a satisfactory overall
performance rate in measuring and identifying semantic relationships between
FrameNet frames from an RE perspective. For the extrinsic evaluation, we use
the embedding-based approach in a requirement measurement technique to iden-
tify semantic relationships between natural language requirement statements. A
satisfactory performance rate is obtained compared to lexically-founded base-
line systems and the human-judgment dataset. The encouraging results of the
embedding-based approach prove the adequacy of using encapsulated contextual
information (represented by semantic frames) to trace requirements’ relatedness.

17



Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree
or qualification of this or any other university or other
institute of learning.

18



Copyright

i. The author of this thesis (including any appendices and/or schedules to
this thesis) owns certain copyright or related rights in it (the “Copyright”)
and s/he has given The University of Manchester certain rights to use such
Copyright, including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or
electronic copy, may be made only in accordance with the Copyright, De-
signs and Patents Act 1988 (as amended) and regulations issued under it
or, where appropriate, in accordance with licensing agreements which the
University has from time to time. This page must form part of any such
copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other
intellectual property (the “Intellectual Property”) and any reproductions of
copyright works in the thesis, for example graphs and tables (“Reproduc-
tions”), which may be described in this thesis, may not be owned by the
author and may be owned by third parties. Such Intellectual Property and
Reproductions cannot and must not be made available for use without the
prior written permission of the owner(s) of the relevant Intellectual Property
and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication
and commercialisation of this thesis, the Copyright and any Intellectual
Property and/or Reproductions described in it may take place is available
in the University IP Policy (see http://documents.manchester.ac.uk/
DocuInfo.aspx?DocID=487), in any relevant Thesis restriction declarations
deposited in the University Library, The University Library’s regulations
(see http://www.manchester.ac.uk/library/aboutus/regulations) and
in The University’s policy on presentation of Theses

19

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://www.manchester.ac.uk/library/aboutus/regulations


Dedication

I dedicate this thesis to my late father (Mohammad), my late mother (Norah)
and my late brother (Khalid). May Allah shower his mercy upon them.

20



Acknowledgements

When life teaches me new lessons ...
It shows me how I am lacking knowledge ...
And the more I know ...
The more I realise I know nothing.

In the name of Allah, the most gracious and the most merciful. All praises to
Allah on his blessings, guidance and mercies for the completion of this thesis.
Undertaking this PhD has been a truly life-changing experience for me and it
would not have been possible to accomplish such a journey without the support
and guidance from Allah first then from several people.
First and foremost, I would like to express my sincere gratitude to my supervisor
Dr Liping Zhao. It has been an honour to be her PhD student. She has taught
me, both consciously and unconsciously, how good research is done. Her guidance
and continued support helped me in all the time of research and writing of this
thesis. I could not have imagined having a better supervisor and mentor for my
PhD study.
I would also like to extend my gratitude to my co-supervisor Dr Riza Batista-
Navarro. I appreciate all of her contributions of time and ideas to make my PhD
experience productive and stimulating. The joy and enthusiasm she has for her
research was contagious and motivational for me, even during tough times in the
PhD pursuit.
My heartfelt thanks to my sponsor (Al-Imam Muhammad Ibn Saud Islamic Uni-
versity), and the Saudi Arabian Cultural Bureau (SACB) in London for providing

21



me with the chance to pursue my studies in the UK. I am truly grateful for their
continued support during my postgraduate studies.
I would like to express my gratitude to the annotators who helped to accomplish
this research project with their suggestions and careful annotations, I truly ap-
preciate their efforts and time to accomplish the annotation tasks.
I would like to thank my colleagues in the research group for the stimulating
discussions. I also would thank my friends (too many to list here but you know
who you are!) for providing support and friendship that I needed.
I owe my deepest gratitude towards my beloved family (Abdullah, Abdulrahman,
Abdulaziz, Muneera and Latifah) for their continued support and prayers.

Finally, my mother (Norah) left our world, shortly after my PhD Viva, I am
forever grateful for her guidance, unlimited support and prayers for me. Without
my dearest mother, I would not imagine I could pass this PhD journey. I know
her leaving was hard on me to believe, but deep inside me I know she is watching
me in a better place and still prays for me. May Allah shower his mercies upon
you (Mama).

22



List of Publications

Waad Alhoshan, Riza Batista-Navarro, and Liping Zhao. A FrameNet-based Ap-
proach for Annotating Software Requirements. In Proceedings of the 11th LREC,
Miyazaki, Japan, 2018a. European Language Resources Association (ELRA)

Waad Alhoshan, Riza Batista-Navarro, and Liping Zhao. Towards a Corpus of
Requirements Documents Enriched with Semantic Frame Annotations. In 2018
IEEE 26th International Requirements Engineering Conference (RE), pages 428–
431. IEEE, 2018b

Waad Alhoshan, Riza Batista-Navarro, and Liping Zhao. Using Semantic Frames
to Identify Related Textual Requirements: An Initial Validation. In Proceedings
of the 12th ACM/IEEE ESEM, pages 58:1–58:2, Oulu, Finland, 2018. ACM

Waad Alhoshan, Riza Batista-Navarro, and Liping Zhao. Using Frame Embed-
dings to Identify Semantically Related Software Requirements. In 2nd Workshop
on NLP4RE at REFSQ’19, Essen, Germany, 2019b

Waad Alhoshan, Riza Batista-Navarro, and Liping Zhao. Semantic Frame Em-
beddings for Detecting Relations between Software Requirements. In Proceedings
of the 13th International Conference on Computational Semantics, pages 44–51,
Gothenburg, Sweden, 2019a. Association for Computational Linguistics (ACL)

Liping Zhao, Waad Alhoshan, Ferrari Alessio, Keletso Letsholo, Muideen Ajagbe,
Erol-Valeriu Chioasca, and Riza Batista-Navarro. Natural Language Processing
(NLP) for Requirements Engineering: A Systematic Mapping Study– under re-
view. ACM Computing Surveys, 2020

23



Acronyms

API Application Program Interface. 81, 88, 101, 108, 157, 169, 178, 179, Glos-
sary: API

App Reviews Mobile Applications Reviews. 12, 178–181, 183, 185, 188, 189,
Glossary: APP Reviews

CL Computational Linguistics. 28, 41, 67, 70, Glossary: CL

LCS Least Common Subsumer. 42, 74, 153–157, 167, 243, 280, 281, 285, 286,
Glossary: LCS

NLP Natural Language Processing. 28, 30, 35, 37, 39–41, 44–46, 50, 52–56, 67,
71, 73, 75, 76, 160, 172, 174, 176, 183, 205, 216, 220, 249, 250, 253, 254,
257, 258, 260, 271, 273, 274, 287, 288, 290, 291, 294, 298, Glossary: NLP

NLP4RE Natural Language Processing for Requirements Engineering. 28–32,
35, 54, 56, 67, 257–259, 261, 262, 299, Glossary: NLP4RE

NLR Natural Language Requirements. 28–32, 56, Glossary: NLR

POS Part-of-Speech Tags. 48, 51, 65, 88–90, 101, 106, 120, 121, 131, 132, 178,
182, 184, Glossary: POS

RE Requirements Engineering. 27, 28, 32, 34–37, 39, 40, 51, 54, 56, 58, 62, 68,
70–78, 80, 83, 85, 95, 115, 119, 129, 132–135, 142–146, 158–160, 171, 173,
178, 184, 190–192, 194, 216, 217, 220, 221, 228, 231, 233, 237, 239–244,
246–250, 252, 261, 274–277, 279, 281–288, 290, 295–299, Glossary: RE

SRL Semantic Role Labelling. 107, 118, 119, 121, 123, 142, Glossary: SRL

24



Glossary

API a programming interface operates as a communication protocol between
server and client software, such if the client makes a specific-format request,
it will receive a response from the server side to reply to that request. This
interface is mainly used to utilise software and corpus package. 81

APP Reviews Relatively short description which are usually expressed infor-
mally to express user’s feedback and requirements for a mobile application
. 12

Approach an abstract notion that expresses the process of dealing with a prob-
lem, which we used in the context of this PhD thesis as a term to define
the general procedures to accomplish a goal. 27, 39, 68, 79, 144, 159, 171,
191, 249, 274

CL a multidisciplinary field which involves statistical modelling of natural lan-
guage dataset from a computational side. 28, 54

LCS the most specific common parent concept of two concepts found in a given
knowledge structure or ontology. Semantically, it represents the common-
ality of the pair of concepts. For example, the LCS of Irish Sea and Dublin
in Wikipedia knowledge is Ireland. 42, 168, 281

method a more specific notion, which we used it within this thesis under the
approach as a term, to precisely define the steps for solving a particular
problem based on the assumption defined by its parent approach. 27, 39,
68, 79, 144, 159, 171, 191, 249, 274

NLP a multidisciplinary field which involves computer science, artificial intelli-
gence and linguistics, which concerns about processing language (as a nat-
ural input), particularly this field provides a study on how to execute and

25



design software systems to process and analyse language data. 28, 51, 54

NLP4RE Any system that mainly deals with requirement description expressed
in natural language. The NLP4RE systems utilise techniques from Natu-
ral Language Processing (NLP) and text mining techniques to achieve the
desired goals of the designated RE task. The term is firstly mentioned in
a paper by Ferrari et al. (2017a). Moreover, it has been used in a recent
mapping study that covers all the NLP4RE systems in the RE as a domain
of use (Zhao et al. 2020) . 28, 29, 76, 261, 268, 274, 300

NLR a group of user and system requirements that are expressed naturally using
common language (e.g., general English). 28

POS a grammatical tagging procedure or word-category disambiguation to iden-
tify the word function (or part-of-speech tags) in a phrase or sentence. 48,
188

RE a group of tasks and activities to process software requirements. The pro-
cesses are collecting, analysing, defining, managing and documenting re-
quirement documents. Also, RE involves tasks that are applied to later
phases such as requirement validation and verification after software design
and implementation. 27, 61, 170, 298

SRL Semantic-based systems in Natural Language Processing, which concerns
about assigning labels (as augment-predicate) to word or phrase as a se-
quence of words in the text. 107

system an implementation of a designed method, the implementation is accom-
plished using a software packages to automate the method steps. 27, 39,
68, 79, 144, 159, 171, 191, 249

technique a group of processes to accomplish a specific task. In the context
of this thesis, we used this term to define a process that is based on a
predefined method, which aims to extend the method for a specific purpose
with further processing steps. 27, 39, 68, 79, 144, 159, 171, 191, 249, 274

26



Chapter 1

Introduction

1.1 Research Problem and Motivation

Requirements Engineering (RE) plays a pivotal role in all phases of software and
systems development. The phases are described in a standard definition by the
ISO (2018), which highlights the core tasks of RE as:

an interdisciplinary function that mediates between the domains of the
acquirer and supplier to establish and maintain the requirements to
be met by the system, software or service of interest ... Requirements
engineering is concerned with discovering, eliciting, developing, ana-
lyzing, verifying, validating, communicating, documenting and man-
aging requirements. (p.5)

In a general sense, requirement documents are the main product of the RE
tasks. By the same token, a requirement statement in the context of RE, is com-
monly defined as “a statement that identifies a product or process operational,
functional, or design characteristics is constraints, which is unambiguous, testable
or measurable, necessary for product or process acceptability (by consumers or in-
ternal quality assurance guidelines)” (Dick et al. 2017). In view of this definition,
constructing consistent, correct and complete requirements at an early stage will
ensure a successful RE process that takes place in a timely and effective manner,
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which avoids costs in the later phases of a system development (e.g., later stages
of RE such as requirements verification and validation).

Natural lan-
guage in RE

A common and intuitive representation of requirements is the use of natural
language. More specifically, Natural Language Requirements (NLR) provides an
affordable communication channel among different human participants, includ-
ing: intended users, clients, system programmers and analysts. However, shaping
a standard requirement document, as described in the definition by Dick et al.
(2017), is a challenging task because of many communication issues but most
importantly because of the inherent problems that exist with using natural lan-
guage. Examples of such problems are ambiguity, human typographical errors
and language implications and conflicts. In the context of RE, the main issues
of NLR include multiple interpretations, lost essential information, redundancy
and false implications or facts. For the most part, NLR are of an unstructured
nature, especially in the early phases of RE, which involve capturing, creating
and modelling requirements from different users and stakeholders. Examples of
unstructured NLR are represented in user-generated contents, e.g., mobile ap-
plication reviews and Twitter feeds (Genc-Nayebi and Abran 2017); moreover,
other informal documents result from meeting minutes or users’ correspondence
(Dalpiaz et al. 2018). Berry (2001) summarised the aforementioned issues of
using NLR in RE tasks, and suggested a research direction, namely to provide
more robust and constrained alternatives to NLR by using formal language with
mathematical notations for reasoning and proving the desired requirements. He
argued that despite the consistency and robustness of these mathematically-based
options, the use of natural language is just inevitable, even in the initial phases
of RE.

The emerge
of NLP4RE
research
field

Therefore, addressing NLR issues in RE is considered to be a fruitful research,
as it attracts the attention of industry and other disciplines, for example, Natu-
ral Language Processing (NLP) and Computational Linguistics (CL) (Dalpiaz
et al. 2018; Zhao et al. 2020). NLP tools and resources provide practical and
sensible solutions to the linguistic issues of NLR. The studies that address such
challenges using NLP techniques in the domina of RE are fall under the remit
of a newly sub-domain of RE commonly known as Natural Language Processing
for Requirements Engineering (NLP4RE) . Most tools and approaches under the
umbrella of NLP4RE focus on assisting or supporting users (mostly analysts) in
performing the following activities:
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• Summarising as finding abstractions from a large number of natural lan-
guage description requirements (i.e., NLR), e.g., Goldin and Berry (1994)
and Di Sorbo et al. (2016).

• Generating requirement specifications according to quality models and in-
spection methods, e.g., Berry et al. (2006) and Tjong and Berry (2013).

• Supporting modelling techniques by utilising tools for parsing, analysing or
structuring the textual descriptions for model constructions, e.g., Belkhouche
and Kozma (1993) and Chioasca et al. (2016).

• Detecting linguistic issues, such as ambiguity (Popescu et al. 2007; Fer-
rari et al. 2016) and inconsistency, between requirements (Easterbrook and
Nuseibeh 1996; Finkelstein et al. 1994).

Although this list does not include all existing approaches to NLP4RE, it captures
the main areas investigated by NLP4RE researchers (Zhao et al. 2020). Neverthe-
less, all of these NLP4RE tasks often demand the organisation and management
of requirements in a systematic and coherent manner.

Semantic
relatedness
significance
for NLP4RE
tasks

In addition, one of the common processing activities usually involve in NLP4RE
tasks is the process of detecting similarity and relatedness between the require-
ment statements in a given document. In a recent mapping study conducted
by Zhao et al. (2020), which identified more than 400 NLP4RE primary stud-
ies, has found that the process of measuring similarity and relatedness among
NLR is almost essential with every NLP4RE task, especially with those related
to tracing related requirements. In Figure 1.1, a frequency-of-use for the similar-
ity and relatedness identification process in each NLP4RE task is depicted. As
shown in Figure 1.1, almost all of NLP4RE tasks involved the use of similarity
and relatedness methods which leads to the necessity of using these methods to
deliver the desired objectives of the NLP4RE tasks. For example, for supporting
modelling techniques in NLP4RE tools, identifying similar or related require-
ments (or NLR) is almost essential to draw (or to model) a comprehend visual
representations of the requirements specification document. This is achieved by
clustering or grouping similar requirements as well as detecting semantic rela-
tionships to create links between those closely related requirements (Popescu
et al. 2007; Landhäußer et al. 2014; Chioasca et al. 2016). Another example of
NLP4RE task which commonly uses similarity and relatedness methods is the
task of traceability. Tracing requirements means the creation of linkage dots
between requirement in specification document, which facilities the activities of
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Figure 1.1: The frequency-of-use of the similarity and relatedness identifi-
cation process in NLP4RE studies; as reported by Zhao et al. (2020).

searching and retrieving requirements according to their shared or similar con-
text ,e.g., to make traceability links between requirements that revolved around
security and privacy information (Mahmoud et al. 2012; Alonso-Roŕıs et al. 2016).

Traditional
Approaches
for semantic
relatedness
in NLP4RE
studies

A common approach to address the semantic similarity and relatedness, which
is primarily used in the NLP4RE studies as reported by Zhao et al. (2020), is
the approach that relies on the use of lexically-based resources such as WordNet
(Fellbaum 1998; Pedersen et al. 2004). In Figure 1.2, NLP resources with their
frequency of use within NLP4RE studies are depicted as reported by Zhao et al.
(2020). However, most of these resources are lexically-based (e.g., WordNet (Fell-
baum 1998) or VerbNet (Palmer et al. 2005)) which are built upon the words’
use only, and not to their contextual information. Those lexical resources lack
from understanding the bigger scenes which link between words in a textual doc-
ument. For the sake of a simple comparison, if we have as an example the word
“send”, that word could be semantically linked (in our cognitive understanding
as humans) to other words such as ”reciever”, “sender”, etc. those words together
could generate a semantic concept to describe a scene of sending and receiving
process. Clearly, the most used resources in NLP4RE studies do not cover such
aspects. In Chapter 2, we will explain those limitations of the aforementioned
resources in Section 2.3.3.

Generally, the identification of semantic relationships between NLR is not a
straightforward procedure because of the natural language problems described
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Figure 1.2: The frequency-of-use of NLP resources in NLP4RE studies; as
reported by Zhao et al. (2020).

earlier. Therefore, certain NLP4RE tasks which mostly involve tracing related
A proposal
to address
semantic
relatedness
in NLP4RE
studies

requirements as NLR (e.g., requirements modelling), could profit from automated
analysis if some structure were to be applied to the unstructured NLR within a re-
quirement document. One way we can add structure to an unstructured software
requirements (i.e. NLR) is by attaching machine-readable semantic information
that encapsulates the explicit and implicit meanings represented by these re-
quirements. By addressing this issue with documents from general and scientific
domains, the result often resembles a named entity, e.g., the proper name of per-
son, place, disease or chemical compound. However, software requirements do
not indicate such proper names as often and instead mention generic or abstract
concepts (e.g., account creation, file deletion) and the participants involved (e.g.,
users, systems).

Using
Frame
Semantics
in NLP4RE
studies

As shown in early works by Rolland and Proix (1992) and Belkhouche and
Kozma (1993), capturing meaning contained in requirements can be achieved
by using case frames as coherent structured representations of concepts (Chang
et al. 2002). These representations are based on the Case Grammar and Frame
Semantics theories proposed by Fillmore (1967; 1977). The later theory of Fill-
more (Semantics Frame) formed the basis of FrameNet (Baker et al. 1998; Baker
2017), an online computational lexicon that catalogues detailed information on
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semantic frames. 1 An example of such representation (i.e., using semantic frames
from FrameNet) is shown in Figure 1.3.

Potential
advantages
for using
Frame
Semantics
in NLP4RE
studies

Considering the two requirement statements presented in Figure 1.3, we can
say that both statements are related to file restriction easily by observing the
frames’ titles labelled in both requirements. However, it is a challenging NLP4RE
task to analyse requirements in order to find relationships between them, whether
explicit or implicit, because requirement documents are often very long and in-
consistently written by different stakeholders (Dick et al. 2017). This problem is
due to the semantic ambiguity and incompleteness inherent in natural language
usage (Dalpiaz et al. 2018). By automatically labelling requirement statements
with the FrameNet frames they evoke as well as with their corresponding frame
element, such as semantic parsing, the meaning of these requirement statement
can then be put in to a structured and explicit form. This in turn will support
a number of analytical tasks that are crucial to the NLP4RE domain. Moreover,
manually analysing requirements in a lengthy document (i.e. inspect word by
word in each requirement) is a time-consuming and error-prone procedure (Gotel
and Finkelstein 1994; Mahmoud et al. 2012). Therefore, we believe that using
semantic frames will facilitate the task of identifying relatedness and similarity
which aims to describe the semantics between those words (as lexical triggers of
the semantic frames), and such process (i.e., measuring and detecting semantic
relatedness between NLR) will support further tasks in RE, e.g., requirements
analysis and traceability. In addition, the use of semantic frames will alleviate
the problems associated with the use of unstructured natural requirements as
described by Jha and Mahmoud (2018).

The focus
of this PhD
thesis

The research project described in this PhD thesis focuses on the relationships
(both similarity and relatedness) between requirement statements written in nat-
ural language. That is because finding similar or related requirements within
a document is essential for understanding their linkages, which in return could
lead to a better performance of NLP4RE tools and approaches to achieve their ex-
pected goals (Dick et al. 2017; Zhao et al. 2020). Therefore, we will investigate the
feasibility of using Frames Semantics theory (implemented in FrameNet lexicon)
to describe software requirements, in order to proposed semantic-frame-based
approaches to identify (and measure) semantic relationships in requirements’ de-
scription.

1FrameNet online resource found at: https://framenet.icsi.berkeley.edu/fndrupal/
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Figure 1.3: An example of a requirement that is manually annotated using
semantic frames from the FrameNet lexicon. The words in a bold font are
triggered by the frames (in coloured boxes).

In the following sections of this introduction chapter, we will present our
research methodology and our research questions, aim and objectives. We will
conclude this chapter, by walking through summaries of the remaining chapters
in this thesis.

1.2 Research Methodology

This PhD research project is based on the Evidence-based Software Engineering
(EBSE) methodology (Kitchenham et al. 2004; Dyba et al. 2005). The EBSE
methodology has been encouraged in recent years and it has been primarily
adopted from medical literature. It implements practical solutions based on ap-
praised evidence from other empirical or research studies to ensure the reliability
and acceptability of the proposed approach. As described by Kitchenham et al.
(2004) and Dyba et al. (2005), the basic workflow of the EBSE methodology can
be summarised as follows:

1. Setting answerable questions to interpret the need for information.
2. Tracking best practices and approaches, or evidences to answer the ques-

tions in (1).
3. Critically evaluating the evidence gathered in (2) for validity, impact size,

and applicability to the community and industry.
4. Integrating the evaluation results by providing a new or enhanced solution.
5. Evaluating the solution in (4) and ways to improve the solutions for next

time by providing commentary on lessons learned.
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The guidelines for selecting the evaluation methods in our research are rigor-
ous and vary according to the adopted research methodology. As a result, the
evaluation will be a combination of quantitative and qualitative methods. Our
evaluation is primarily based on Feature Analysis techniques (Kitchenham 1996;
Kitchenham and Jones 1997). The suggested evaluation methods are:

• Quantitative and qualitative screening by conducting a linguistic approach
in order to validate the FrameNet frames coverage to an RE context of use.

• Qualitative user-effect analysis by using a subjective analysis of the quan-
titative effect of the proposed approach based on an RE expert opinion.

1.3 Research Aim, Objectives and Questions

This thesis aims to investigate and propose a corpus-based, and semantic frame
approach to identify semantic relationships between requirements in the context
of RE. In line with this research aim, this thesis has the following four main
objectives:

Obj.1 To investigate how semantic frames of FrameNet can be used practically to
annotate requirement statement.

Obj.2 To create a requirement-specific corpus based on the semantic frames of
FrameNet.

Obj.3 To formulate a measurement method for identifying the semantic related-
ness between frames that is recognised from the requirements’ descriptions.

Obj.4 To develop a semantic-frame method for identifying relationships between
the requirement statements and this is should be achieved by using the
developed measurement method.

In light of the aforementioned aim and objectives, this thesis proposes a
semantic-frame-based approach for the purpose of measuring and identifying
semantic relatedness between requirements’ descriptions in the context of RE.
Consequently, this thesis seeks to answer the following research question:

Main Research Question
Are the semantic frames, as represented in the FrameNet, adequate for
describing software requirements as well as identifying relatedness between
those software descriptions?
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From the main research question, we have formulated five specific questions,
which lead into a thorough investigation of FrameNet’s adequacy for require-
ment documents analysis. The following five specific research questions will be
answered in this thesis:

RQ 1. What are the frames from the FrameNet lexicon that are mostly related to
describing software requirements? How feasible is it to use FrameNet to
describe software requirements?

RQ 2. Is the knowledge provided by the FrameNet lexicon sufficient for tracing
relatedness between frames? How effective are these methods in tracing
relatedness between frames from an RE perspective?

RQ 3. Are the corpus-supported methods efficient for enhancing the process of
tracing relatedness between frames? How effective are these methods for
tracing relatedness between frames from an RE perspective?

RQ 4. Is it possible to generate language models (i.e., embeddings) from FrameNet
frames? How effective are these models for tracing relatedness between
frames from an RE perspective?

RQ 5. Is it useful and effective to use a semantic-frame-based method for measur-
ing and recognising semantic relationships between software requirements?

1.4 Thesis Contributions

This thesis intends to make a contribution to NLP4RE, by comprehensively in-
vestigating NLP methods for measuring semantic similarity, which is the basis of
many RE tasks such as requirements analysis and traceability.

To answer the stated research questions and meet the research aim and ob-
jectives identified earlier, in this PhD thesis we introduce, develop and evaluate
several methods for capturing the semantic relatedness between unstructured re-
quirements by incorporating a semantic-frame approach. The thesis intends to
make the following contributions:

1. Rigorous analysis that follows corpus-based techniques to investigate the
feasibility and coverage of the FrameNet lexicon in order to capture seman-
tics embedded in the requirements description. The analysis will be based
on a list of FrameNet frames that are related to describing documents from
the RE domain.

35



2. A semantic-frame approach (represented by a group of proposed methods)
for measuring and identifying semantic relatedness by using the embodied
knowledge in the FrameNet lexicon, and at the semantic frame level and in
an RE context.

3. A semantic-frame approach (represented by a group of proposed methods)
to measure and identify semantic relatedness, using a FrameNet-labelled
corpus, at the semantic frame level and in an RE context.

4. A semantic-frame approach (represented by a group of proposed methods)
for measuring and identifying semantic relatedness, and by using word em-
beddings that are trained on documents from the RE context, and at the
semantic frame level.

5. A systematic intrinsic evaluation of the proposed semantic-frame approach
at the semantic frame level, which involves human-judgement of the frames’
relatedness from an RE perceptive.

6. A systematic extrinsic evaluation of a semantic-relatedness method which
will be designed and developed from the best-performance semantic-frame
approach, in order to measure and identify semantic relatedness between re-
quirement statement, using a comparison with an expert annotated dataset
and baseline systems.

1.5 Thesis Structure

A summary of the chapters which comprise this PhD thesis are listed below:

• Chapter 2 Background and Related Work: describes foundational
work and related studies that formulate the basis of this thesis. This chapter
discusses the background to using the FrameNet lexicon and related work
in order to identify textual similarities and relatedness.

• Chapter 3 Overview of Key Research Activities: discusses the main
activities required to carry out the PhD research project and provides an
overview of the research methods undertaken in this research project.

• Chapter 4 Corpus-based Analysis: provides a rigorous analysis of the
adequacy and coverage of FrameNet frames usage for annotating require-
ment documents. In this chapter, we present the first corpus of requirement
documents that have been labelled by semantic frames from the FrameNet
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lexicon, namely FN-RE corpus. The corpus results are evaluated and dis-
cussed to study the feasibility of using semantic frames in the RE context.

• Chapters (5 , 6 and 7) Approaches for Measuring Relatedness be-
tween Semantic Frames: present the semantic-frame-based approaches
proposed for measuring and identifying semantic relatedness between frames
in the FrameNet lexicon and in the context of software descriptions. The
proposed approaches are inspired from semantic relatedness studies in the
NLP domain.

• Chapter 8 Semantic Frame Level Evaluation: validates and eval-
uates the effectiveness of the proposed semantic measurement approaches
(presented in Chapter 5). The systematic evaluation is conducted at the
frames level and includes a human-judgement dataset for comparison.

• Chapter 9 Requirement Statement Level Evaluation: presents
integrated methods for identifying relatedness between requirement state-
ment in a document. The proposed methods are developed based on the
semantic-frame approach that has the best performance. In this chapter,
we discuss and evaluate the semantic relatedness methods in comparison to
expert annotations and baseline systems.

• Chapter 10 Conclusions: concludes the thesis by summarising the
contributions and challenges of the research project. In addition, the limi-
tations of the current work are discussed along with suggestions for future
directions.
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Figure 1.4: A suggested reading map of the PhD thesis, organised into
the research project’s main parts, and the referential labels of the research
sub-questions (RQ) and research objectives (Obj).

In Figure 1.4, we illustrate the structure of this thesis, according to the PhD
research questions and objectives.
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Chapter 2

Background and Related Work

The chapter aims to provide the background and fundamental works that
adopt the semantic frames in natural language applications, and to discuss re-
lated work for identifying semantic relatedness and similarity in natural language
documents from an RE perspective.

Section 2.1, introduces the concept of semantic relatedness as addressed in this
thesis. Then, Section 2.2 presents the approaches to measure semantic relatedness
and similarity in textual descriptions, and as reported in NLP work. Following
that, we present Semantic Frames as a theory proposed by Fillmore (1977), and
the FrameNet project as an implementation of that theory as initiated by Baker
et al. (1998). The semantic frame related discussion will be presented in Section
2.3. Thereafter, in Section 2.4, we discuss the related work to this PhD research
project. we begin with a discussion of the many uses of semantic relatedness
approaches in RE related work. Then, we discuss the studies that have utilised
the FrameNet frames in RE tasks and activities. Finally, we list the studies that
have used FrameNet to identify frame relatedness from general domains.

The objectives of this chapter are:

• To introduce the concepts of semantic relatedness and similarity as reported
in NLP literature.

• To discuss the fundamental approaches for measuring and detecting textual
relatedness.

• To introduce Semantics Frame theory proposed by Fillmore (1977).

39



• To provide a detailed description on the FrameNet semantic lexicon as an
implementation of Semantic Frame theory.

• To discuss the uses of Semantic Frame theory, and the FrameNet lexicon,
as reported in RE literature.

• To discuss the studies that addressed the concept of semantic relatedness
using FrameNet lexicon in a general domain.

2.1 Concepts of Semantic Relatedness in Natu-
ral Language

Relatedness in NLP studies can be measured by considering several aspects of
natural language; for example, measuring lexical similarity and relatedness be-
tween tokenised items (i.e., word-level relatedness) as described by Zhang et al.
(2013). Another research aspect is detecting the syntactic similarity and related-
ness (i.e., pieces of texts that share the same grammatical functions and orders)
as described by Pereira and Ziviani (2003). A final alternative aspect to measure
relatedness mainly identifies the semantic similarity and relatedness (i.e., identi-
fying the relatedness based shared concepts or features between textual objects)
as described by Mihalcea et al. (2006), Kolb (2009) and Navigli and Martelli
(2019). The latter language aspect (i.e., semantic similarity and relatedness) is
our research interest in this thesis.

The concept of semantic similarity and relatedness has emerged from the
NLP literature that considers the distinction between what is considered similar
and what is regarded as related (Gomaa and Fahmy 2013; Navigli and Martelli
2019). The difference is drawn from the meaning of these two semantic concepts
in language, for instance, ‘similarity’ is defined as the state of being almost the
same, or a particular way in which something is almost the same. On the other
hand, ‘relatedness’ is defined as the state or fact of being related or connected.

In NLP, semantic relatedness refers to some relationships between two sen-
tences that share some common features (Vijaymeena and Kavitha 2016). The
broader concept of semantic relatedness holds between tokens that are connected
by any type of lexical or semantic association. Moreover, what we consider dis-
similar words can also be semantically related, e.g. via semantic relationships
like part-of (e.g. ‘car’ and ‘wheel’), or when they belong to the same class (e.g.
‘dog’ and ‘bear’) (Turney 2008; Kolb 2009; Vijaymeena and Kavitha 2016).
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To identify semantic similarity and relatedness in language, another distinc-
tion is reported in psycho-linguistic studies (Mirman et al. 2017) in which the
difference stems from identifying the source of semantic relatedness between two
objects. The first source is a taxonomic and ontological relationship which is
reflected from a formal taxonomy or ontology to define object relationships based
on shared features. The other cause is related to the thematic relatedness, which
is related to contiguity relationships based on the co-occurrence in scenarios or
events (e.g., ‘college’ and ‘university’) (Mirman et al. 2017; Landrigan and Mir-
man 2018).

In the followng section (Section 2.2), we will discuss further the approaches for
identifying and measuring semantic similarity and relatedness commonly reported
in the NLP literature.

2.2 Measuring Semantic Relatedness

The topic of semantic similarity and relatedness in NLP are considered to be
fruitful research area Navigli and Martelli (2019). The concept of similarity and
relatedness is required for many downstream tasks in NLP such as answering
questions, text clustering and machine translation.

The first study to explore semantic relatedness from a CL perspective was by
Rubenstein and Goodenough (1965). The authors examined a human’s cognitive
memory to order words according to their semantic correlationships. In later
years, the concept of semantic similarity and relatedness was deliberated in both
NLP and CL literature. For instance, other researchers have replicated the ex-
periment of Rubenstein and Goodenough (1965) by designing similarity metrics
that mimic the human mental model in order to identify which is considered to be
similar or related (Resnik 1995; Charles 2000). All of these studies have provided
a good consistency level between their method results and human agreements,
indicating that the concept of semantic similarity and relatedness is cognitively
clear.

Several surveys were reviewed the methods of semantic similarity and related-
ness; for example as presented by Gomaa and Fahmy (2013), Lofi (2015), Navigli
and Martelli (2019), Farouk et al. (2019) and Taieb et al. (2019). Most of the
surveyed approaches have appeared in NLP and CL as the studies of semantic
similarity and relatedness in natural language have used different information
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sources. For example, the range of research included the use of ontological and
relational structures, the application of information content embodied in large
corpora, or the consideration of distributional semantic (i.e. embeddings) and
language models.

In the following sub-sections, we provide a brief overview and examples of
studies on the aforementioned three broad approaches.

2.2.1 Knowledge and Ontology-based Approach

The use of knowledge-based resources, such as knowledge lexica and ontologies,
is considered to be an early effort to measure and identify semantic similarity
and relatedness between two concepts (e.g., the similarity of two words as target
concepts) Navigli and Martelli (2019). The measurement methods under this
category (i.e., the knowledge-based approach) rely solely on information obtained
by knowledge-based resources; the utilised information could be structural (i.e.,
the semantic relationships that connect concepts in a knowledge graph) or other
information (i.e., the concept’s attached information such as its definition).

Structural information which is usually employed by the knowledge-based
measurement methods is based on: i) the depth of a given concept in a knowl-
edge taxonomy (i.e., the distance from a concept to its root in the taxonomy);
ii) the length of the shortest path between two concepts in a knowledge taxon-
omy (e.g., via is-a relationships between concepts); and iii) the Least Common
Subsumer (LCS) , which represents the nearest shared concept between two con-
cepts in knowledge taxonomy. For example, Rada et al. (1989) have proposed a
Path-based measurement method to quantify the similarity between two words
depending on their shortest path in the structural lexicon. Moreover, Leacock
and Chodorow (1998) have proposed the inclusion of the depth information of
two concepts i.e. the distance of each concept to their common root concept.
Another example of measurement methods is by Wu and Palmer (1994) who
proposed the leveraging of information from the nearest common concept of the
two target concepts (i.e., LCS). These example measurement methods have been
extensively used to measure semantic similarity and relatedness in general and
domain-specific knowledge lexica (e.g., biomedical domain as reported by Peder-
sen et al. (2007)).

Other information (aside form the structural information described earlier)
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revolves around information accompanying the concept in knowledge-based re-
sources. For example, Lesk (1986) proposed a non-structural method to disam-
biguate words, i.e., by computing the overlapped tokens in the words’ definitions
as they appear in a knowledge lexicon. This method is considered to be one of
the early methods to utilise glosses (or definitions) in the lexicon, and was ex-
tended by Banerjee and Pedersen (2003) to include structural information (i.e.,
to include definitions from the concepts in the hierarchical relationships of the
two target concepts).

The previously mentioned measurement methods depend on the knowledge
lexicon and its related ontology to compute the semantic similarity and relat-
edness between target concepts. Therefore, the methods’ performance rates are
subject if the dictionary has enough information about the target concepts, and
the way these concepts are connected to each other, in semantic relationships
(Lofi 2015; Navigli and Martelli 2019).

2.2.2 Corpus-supported Approach

The other approach to address semantic similarity and relatedness between con-
cepts is by using large and representative corpora (Mihalcea et al. 2006; Taieb
et al. 2019). The natural language corpora provide statistical information on the
use- frequency of the term and its co-occurrence, which are the main ingredients
of the corpus-supported approach (Mihalcea et al. 2006) 2. To clarify further,
corpus-supported methods stem from a fundamental assumption, known as “se-
mantic distributional”, which was first introduced by Harris (1954) and Firth
(1957). In a semantic distributional approach, the semantic features of a given
item can be deduced from the contexts surrounding that item. Thus, the seman-
tics of a word is indicated by all of the other words that co-occur with it (Navigli
and Martelli 2019).

One of the first method to utilise information contents in large corpora is
the Sørensen Dice coefficients which were first introduced by Dice (1945) and
Sorenson (1948). The previously mentioned method computes semantic similarity
and relatedness as the total counts of co-occurrence of two target words together
with the overall occurrences of each word independently in the corpora. Similar

2We made a distinction between the “corpus-supported” as an approach for identifying
semantic relatedness, and the “corpus-based” as a technique, which applies an in-depth inves-
tigation based on a specific-domain corpus.
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corpus-supported methods have since been proposed, for example the Jaccard
Index (to compute the overlap between two words in corpora) was proposed by
Grefenstette (1994). Another method, that frequently appears in Information
Retrieval systems (as reported in several survey studies including Farouk et al.
(2019)) is the Point Mutual Information (PMI) which was originally introduced
by Church and Hanks (1990). This method (i.e., PMI) computes the semantic
similarity and relatedness as the probability ratio of two target concepts co-
occuring together and the likelihood of occurrence of each of these two concepts
independently in a given context (Navigli and Martelli 2019). Moreover, some of
the corpus-supported methods also used structural information from a knowledge
lexicon (i.e., hybrid methods), for example the measurement methods proposed
by Resnik (1995), Jiang and Conrath (1997) and Lin (1998).

The corpus-supported approach is interesting for its specific domain of use,
where the word usage changes and adopts quickly, and where frequent new con-
cepts and words are introduced (Lofi 2015). However, the performance of these
methods are subject to the corpus size and content variety against the domain of
use (Taieb et al. 2019; Farouk et al. 2019).

2.2.3 Embedding-based Approach

The third approach that is considered to be one of the recent advances in NLP
is the use of word embedding, which consider the statistical distributions over
sequences of words in order to capture contextual information, which can then be
applied in semantic similarity and relatedness tasks (Li and Yang 2018; Camacho-
Collados and Pilehvar 2018).

According to Mikolov et al. (2013), word embeddings allow words with similar,
or related meanings, to have similar vector representations. The main principal of
these language models also stems from distributional semantics (also a fundamen-
tal principal with the corpus-supported approach discussed earlier) which posits
that words occurring in the same context have similar or related meanings Har-
ris (1954). However, the algorithms applied with the word embedding are more
advanced compared to the heuristic techniques in the corpus-supported approach
T.H et al. (2015); simply because the former approach (i.e., word embedding)
learns the semantic distribution of words in given text corpora by exploiting neu-
ral networks Camacho-Collados and Pilehvar (2018).

Deep learning offers a framework for representing a word context as real-valued
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vectors, that go beyond the count of co-occurrence and to also conisder the word
order (Bengio et al. 2003; Mikolov et al. 2011). To train word embeddings, a large
and representative corpus is needed. There are several algorithms to train word
embedding. This means that word embedding is designed and implemented based
on a set of language models and techniques of NLP feature training, which are
applied within the training corpus, and where each word is mapped to a numeric
vector as a statistical representation of the contextual information of that word
(Camacho-Collados and Pilehvar 2018; Navigli and Martelli 2019).

There is a set of available of word embeddings, for example, one of the early
lexical embedding is the Word2Vec model by Mikolov et al. (2013). The Word2Vec
embedding algorithm is based on two layers of a neural network which are trained
to infer and encode the contextual information of words in the training corpus.
Another word embedding is GloVe which is an unsupervised learning algorithm
developed by Stanford NLP lab (Pennington et al. 2014), that works as a count-
based model by aggregating words co-occurrence from a given corpus (Ghannay
et al. 2016). Furthermore, there is the FastText embedding by Bojanowski et al.
(2016), which is an extension of the Word2Vec model; this model resolved some
issues related to the missing vocabularies in the training corpus. In addition,
there are more types of word embedding, that aim to capture the contextualised
information of text corpora, i.e., instead of using a fixed embedding for each word,
the contextualised embedding model takes into account the entire sentence and
assigns each word an embedding. Examples of these embeddings are Elmo by
Peters et al. (2018) and BERT by Devlin et al. (2019).

There are existing pre-trained, general-domain word embeddings ready for
use; for example, the Word2Vec embeddings trained on 100 billion words from
Google News 3. Moreeover, GloVe is accompanied by several word embeddings
trained on a huge dataset from Wikipedia and Twitter, which in total contain over
27 billion words 4. In addition, there are several pre-trained FastText models,
which were trained on datasets from different sources (e.g., Wikipedia, UMBC
webbase corpus, and Common Crawl), with overall tokens of more than 600 billion
tokens5. The technical details of the aforementioned embedding models will be
discussed in Chapter 7 of this thesis.

In general, word embeddings have helped boost the performance of various
3https://code.google.com/archive/p/word2vec/
4https://nlp.stanford.edu/projects/glove/
5https://fasttext.cc/docs/en/english-vectors.html
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NLP tasks. An example is word analogy, where word embeddings provide the ca-
pability to calculate semantic similarity and relatedness between words (Goldberg
and Levy 2014; Schnabel et al. 2015; Levy et al. 2015; T.H et al. 2015; Ghannay
et al. 2016)

2.3 Overview: Semantics Frame and FrameNet

In this section, we discuss the theory of Semantics Frame as proposed by Fillmore
(1977). This will be followed by an overview of the FrameNet project as an
implementation of Fillmore’s theory that was started by Baker et al. (1998).
Moreover, we briefly discuss the annotation procedures to construct the FrameNet
lexicon and its related corpora. Then, we briefly compare FrameNet as a semantic
lexicon and other available lexica, such as WordNet, alongside the reported uses
of FrameNet frames in NLP. This section is considered to be the core background
of this PhD thesis, as it presents all of the related information of semantic frames
in FrameNet.

2.3.1 From Case Grammar to Semantics Frame

The initiation of Semantics Frame was the result of Fillmore’s work in Case
Grammar theory (Fillmore 1971; 1977; Baker 2006). Case Grammar is a form of
generative grammar in which the structure of a sentence is analysed in terms of
the semantic case relationships between the sentence predicates and arguments,
with a significant emphasis on argument ordering and meaning (Fillmore 1967;
Fillmore et al. 2006). In grammatical notions, the predicate is the main verb
of a sentence and the remaining parts are considered to be arguments (a.k.a
case roles, thematic roles, or theta roles) to support the verb or predicate. In
Case Grammar, Fillmore began with predefined set case roles (e.g., SUBJECT,
AGENT, OBJECT, PLACE, THEME, etc.), which he considered to be an “in-
nate universal concept” of a language. These case roles represent the semantic
relationships of a main predicate in a sentence. However, the main challenge with
the Case Grammar theory is that each word has its own semantic case, and each
word keeps changing increasingly in semantic and syntactic patterns associated
with that predicate (Fillmore 1971; 1977). For example Baker (2017) has given
an example to further explain the issue with Fillmore’s Case Grammar that con-
sider the predicate ‘replace’ in this sentence “Reagan has replaced Carter as a
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President”. It is semantically inaccurate to describe ‘Carter’ as a THEME where
‘Reagan’ is an AGENT. It would be more accurate to describe ‘Carter’ as a new-
entity of the case role AGENT of ‘replace’ as a predicate. Thus, containing all
of the possible cases of a given word is challenging at many levels, for example
as the learning process for human and machine algorithms (Fillmore 1971; 1977;
Fillmore et al. 2006; Baker 2017).

In the late 1970s, Fillmore revisited his Case Grammar theory with addi-
tional refinements (Fillmore 1977). In Fillmore’s Case Grammar theory, each
verb ‘predicate’ has a finite number of cases to complete its intended meaning.
The Frame Semantics theory was extended to go beyond the predicate meaning
and to understand the relationships between words in which each word may evoke
a specific concept structure that relates to other words in a language system, It
then creates what is known as a scene or experimental entity to describe knowl-
edge in a system of concepts (Fillmore 1977; Petruck 1996; Fillmore et al. 2006).
The Semantics Frame concept stems from the gestalt principal of how humans
perceive things in their environment (i.e., a system should be viewed as a whole,
not from a loose collection from its parts) (Baker 2017). Therefore, we might
consider Semantics Frame as a generalisation over a group of words in which
these words describe a similar situation (or scene); moreover, these words could
be linked to a similar set of semantic roles (Fillmore et al. 2006). For example,
the Commercial transaction frame6, is one of the frequent examples in the liter-
ature of Semantics Frame. This frame could be recalled by a number of words
such as ‘buy’, ‘sell’ and ‘money’, and the associated roles to describe that scene
(or semantic frames) could be Buyer, Seller, Goods, Time, Place, etc. The beauty
of semantic frames is their holism in describing background scenes that we (as
humans) perceive in our subconscious.

The linguistic analysis systems (such as Fillmore’s linguistic theories) have
provided users with a systematic understanding of any language as a structural
system to help learning the context and meanings conveyed in that studied lan-
guage. This systematic understanding will support further tasks and activities;
for example teaching language to children or non-native speakers 7, or computer-
supported systems such as text generation or representing requirements (as will

6Any information retrieved from the FrameNet lexicon such as frame titles, definitions,
lexical units, etc., will be typified in sans serif font-type.

7Boas and Dux (2013) proposed the use of Semantics Frame to teach the German language
using a frame-based online dictionary.
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be discussed in the related works, Section 2.4).

2.3.2 FrameNet Lexicon

FrameNet is a computational lexicon, which is implemented according to the
Semantics Frame theory (Baker et al. 1998; Fillmore et al. 2003; Fillmore and
Baker 2010; Ruppenhofer et al. 2016; Baker 2017). The lexicon, accessible via
a web-based interface 8, holds more than 1, 200 semantic frames 9. For every
semantic frame in FrameNet, the following information is given: the frame title,
definition, a list of frame elements (i.e., semantic roles) and lexical units (i.e.,
words that evoke the frame). The lexical units work as signs for their accompanied
frames and are represented as a combination of their lemmatised form and Part-
of-Speech Tags (POS) . For example, the concept of creation that is included in
FrameNet as a semantic frame entitled Creating 10, can be evoked by lexical units
such as ‘create.v’ and ‘generate.v’ (where v stands for verb). Its frame elements
specify the participants involved, namely the Creator, Created entity and Cause,
among many others. The frames elements are classified into the “core” and “non-
core” frame elements; the former are essential to complete the description given by
the semantic frames as a whole scene, while the other provide further information
to explain the scene circumstances (Ruppenhofer et al. 2016; Baker 2017).

The frames in the FrameNet lexicon are mostly connected via semantic rela-
tionships, and these relationships present the logical sequence of frames. In total
FrameNet contains eight types of relationships, which are described in Table 2.1,
and their frequencies are reported by Ruppenhofer et al. (2016) and Baker (2017).

Table 2.1: The total frame-to-frame relationships in a FrameNet semantic
lexicon

Relationship Type Super Frame –> Sub Frame Count Example Frames
Inheritance Parent –> Child 704 Creating –> Intentionally create
Perspective on Neutral –> Perspectivized 107 Commerce money-transfer –> Commerce pay
Using Parent –> Child 548 Creating –> Ingredients
Sub-frame Complex –> Component 123 Process –> Process end
Precedness Earlier –> Later 82 Process continue –> Process end
Causative of Causative –> Inchoative/Stative 55 Change of consistency –> Cause change of consistency
Inchoative of Inchoative –> Stative 16 Change position on a scale –> Position on a scale
See also MainEntry –> ReferringEntry 52 Seeking –> Scrutiny

As shown in Table 2.1, the semantic relationships in the FrameNet lexicon
8https://framenet.icsi.berkeley.edu/fndrupal/
9https://framenet.icsi.berkeley.edu/fndrupal/current_status

10https://framenet2.icsi.berkeley.edu/fnReports/data/frame/Creating.xml
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is provided with the current frequencies in the lexicon; all of these relationships
(except See also) can be used for computational purposes (i.e. they can be used
for automated systems). For the last relationship (See also), it is intended to
help annotators or users understand how frames are differentiated from each
other. Thus, the example given in Table 2.1, namely the frames: Seeking and
Scrutiny, might be considered similar but in the context of the FrameNet lexicon
their difference was explained in the See also non-computational relationship.

According to Ruppenhofer et al. (2016), the greatest dominating semantic
relationship in the FrameNet is the Inheritance semantic relationship, Which cor-
respond to is-a relationships in many knowledge graphs and ontologies. Following
this is the Using semantic relationship, which makes a general reference in an ab-
stract way to the structure of another frame. For example, the frame Ingredients
which describes components (or materials) are used to generate a created entity
(or product), as it is involved with the frame Creating. The latter describes the
former frame in a more general sense.

Baker (2017) explained the procedures and learned lessons from annotating
the FrameNet lexicon from the start of the FrameNet project in 1998 until the
present day. Baker described the annotation process of FrameNet in a similar way
when Fillmore (1971) acknowledged the issues with his Case Grammar theory
and replaced it years later with the Semantics Frame theory in 1977. The idea of
adding FrameNet frames is not bound to the word but describes the background
scenes; therefore, the start of the FrameNet project was based on particular topics
from the most diverse corpora, e.g., the British National Corpus (BNC) 11. The
text selection was based on the idea that it should not be too specialised; but
it should contain a text that most people could read and understand without
difficulty (Baker 2017).

Baker (2017) first identified the human role of creating the frames and an-
notating the related corpora. Since the start of the FrameNet project there has
been a lot of turnover in personnel and duties; most people engaged in the annota-
tion process were undergraduate and postgraduate students at UC Berkeley (the
home of the FrameNet project); where the participants had sufficient knowledge
of linguistic studies.

The first human role, or the preliminary stage before annotation, is called
vanguarding, and the vanguard staff are responsible for adding new frames and

11http://www.natcorp.ox.ac.uk/
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lexical units to the FrameNet lexicon, which is achieved by “a combination of
corpus research and thoughtful judgements based on one’s knowledge as a native
speaker of English” (Baker 2017). Moreover, the vanguards are responsible for
defining new frames and linking newly to existing frames via one or more of the
identified semantic relationships (shown in Table 2.1). The vanguarders have a
strong background and knowledge of the FrameNet structure and organisation;
this knowledge enables them to add the appropriate items to the semantic lexicon.

The second human role is the lexicon “annotation”; which is applied within
two modes: i) the lexicographic annotation, which is working in a lexical unit
in one frame at a time, and the objective is to document all of the possible
patterns of the lemma (or lexical unit) in the given frame; and ii) the full-text
annotation, which means working on a selected piece of text and annotating every
frame evoked by the potential lexical units in the given text. During the full-text
annotation mode, the annotators might apply the rule of the vanguards when
they observe new context or lemma not tackled by the given frame (Baker 2017).

The frames information (i.e., frame definition, frame elements, and lexical
units), and some frames are attached with annotation sets (i.e., excerpts from
public corpora that were annotated using FrameNet frames and their associated
elements). The embodied information in FrameNet can be used in versatile NLP
applications, for example, in textual entailment and paraphrasing (Ellsworth and
Janin 2007; Burchardt and Pennacchiotti 2008; Aharon et al. 2010; Pavlick et al.
2015), and machine and bilingual corpora translation (Boas 2002; Mouton et al.
2010; Peron-Corrêa et al. 2016). Moreover, FrameNet has been utilised for se-
mantic similarity and relatedness tasks, which is the main focus of this thesis.
These works will be discussed further in Section 2.4.3.

FrameNet is originally created using English corpora; however, the FrameNet
project has been linked with other languages, such as Spanish, German and
Japanese (Baker 2017). In addition, FrameNet lexicon is intended as a gen-
eral lexicon so is not domain specific. Nonetheless, several projects were inspired
by frame semantic analysis in the FrameNet lexicon, such as there are domain-
specific FrameNet projects for legal domain FrameNets in Italian language by
Venturi et al. (2009) and Portuguese language by Bertoldi and de Oliveira Chish-
man (2011). These global initiatives have further developed the Semantics Frame
in both practice and theory.

50



2.3.3 FrameNet and Other Lexica

FrameNet is not the only semantic and knowledge lexicon in English, there are
other lexica such as WordNet by Fellbaum (1998), VerbNet by SCHULER (2005)
and PropBank by Kingsbury and Palmer (2002). In the following subsection, we
briefly compare between these resources and FrameNet.

Relationship to WordNet

WordNet is considered to be one of the largest human-curated lexica in the En-
glish language (McCrae et al. 2019), which it has been used with several down-
stream tasks in NLP and RE as reported in our recent mapping study (Zhao et al.
2020). With this expansion in use, WordNet posits a standard English lexicon
against other lexica. However, the structure of WordNet (despite its large size)
is different from FrameNet, and this structural difference makes the comparison
between these two resources incompatible.

In WordNet, the lexical items (i.e., words with different POS) are organ-
ised into sets of cognitive synonyms (or namely “synsets”). Each synset has a
definition (or gloss) that explains the contextual information of its word set. In
addition, these synsets are interlinked via semantic and lexical relationships (e.g.,
hypernymy and hyponymy which are equivalent to the Inheritance is-a relation-
ship). WordNet information stems from these synsets and the interchangeability
in meaning between words in each synset, i.e., the main relationship among words
in WordNet is synonymy.

According to Baker (2017), in the early development of the FrameNet project
in 1998, it was expected that WordNet synsets could be used to generate semantic
frames. However, the attempt was unsuccessful because “it is quite rare for
the lexical unit in a FrameNet frame and the lemmas in a WordNet synset to
correspond exactly” as some synsets are narrower than frames (Baker 2017). For
example, the frame Level of light has lexical units such as “dark.a” and “sunny.a”,
which are considered to be antonyms and fall into separate synsets in WordNet12.

Nevertheless, several attempts were made to align WordNet and FrameNet as
a way to compliment linguistic resources (e.g., Baker and Fellbaum (2009) and
Stoyanova and Leseva (2019)). Therefore, these alignments could be useful for

12The synsets information can be retrieved via http://wordnetweb.princeton.edu/perl/
webwn
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several applications to NLP systems. For example, this could include paraphras-
ing system that could utilise the lexical units in a FrameNet frame as potential
paraphrased tokens. Moreover, it could use WordNet as a plan-B to retrieve the
related synset in WordNet where the words could be set if the source words could
not be found in FrameNet Baker (2017).

Relationship to VerbNet

VerbNet13 is a verb-based lexicon in which particular verbs relate to explicit
information on possible syntactic and semantic patterns. Levin’s verb classes by
Levin (1993) inspire these patterns.

The structure of VerbNet is essential as it is based on group related verbs
and the creation of a meta-verb that describes each group (or class). To further
clarify, each VerbNet class contains an essential verb and its members, and a
description of the syntactic frames, which depict the possible argument structure
associated with each verb in the given class. In addition, each syntactic-frame
in the VerbNet class is linked with the thematic roles allowed by the arguments
described in the given frame (such as the Agent and Instrument). For example,
the ‘create’ VerbNet class is attached to 28 member verbs such as ‘organise’,
‘construct’, ‘organise’, and ‘recreate’. Furthermore, it contains 5 thematic roles:
Agent, Result, Material, Beneficiary and Attribute. Moreover, the ‘create’ Verb-
Net class has four possible syntactic frames such as NP V NP14 as Agent V
Result, and likewise with the other syntactic frames.

In addition, the VerbNet online interface13 retrieves (with VerbNet class) the
possible conversion of that class to other lexica (such as FrameNet). For in-
stance, in the aforementioned ‘create’ VerbNet class, some of the verbs members
are mapped (or correspond in meaning) to one or more frames in FrameNet.
Thus, for example the member ‘create’ can be interpreted within three FrameNet
frames: Cause to start, Creating and Intentionally create. All of these frames con-
tain create.v as a lexical unit.

The structure of the VerbNet is different than the organisation in FrameNet,
which makes the comparison unfair between these two resources, as the former
is more oriented towards the Levin’s syntactic classes (Baker and Ruppenhofer

13https://verbs.colorado.edu/verbnet/
14NP is an abbreviation for a noun phrase.
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2002). Nevertheless, the integration between FrameNet and VerbNet is possi-
ble, especially with the conversion metadata files available with VerbNet. There
have been number of attempts to integrate these resources and to position Verb-
Net as a complementary resource (as discussed earlier with WordNet integration)
for the missing verbs in FrameNet (Shi and Mihalcea 2005; Bauer and Rambow
2011). However, according to Baker (2017) we should consider the alignments
carefully, especially those with little human auditing, because the VerbNet con-
ceptual model is different from the semantics frame adopted in FrameNet. In
addition, this would help to avoid any potential ambiguity from converting Verb-
Net classes to more than one frame in FrameNet.

Relationship to PropBank

PropBank as an abbreviation for the Proposition Bank (Kingsbury and Palmer
2003), is a lexical resource that is considered to be the most similar lexicon to
FrameNet (Baker 2017). PropBank is associated with an annotated corpus (of the
Penn Treebank presented by Marcus et al. (1993)), which represents the semantic
and syntactic relationships of predicate-argument structures (Palmer et al. 2005).
The annotation scheme in PropBank is developed to focus on verbal predicates,
and has expanded to include morphologically related nouns and adjectives. The
arguments in PropBank are labelled by numbers, for example Arg0, Arg1, Arg2,
and so on. The argument numbering relates to the verb valency which is known
by the number of arguments allowed by a verbal predicate.

The underlying aim in creating PropBank as a resource is to enable automatic
NLP-based systems to be trained on a shallow-semantic annotated corpus. How-
ever, the semantic information is not as detailed and fine-grained as FrameNet,
since the conceptual model of the former resource is not based on semantic frames.
Instead, it is more verb-oriented resources with a comprehensive annotated cor-
pus. For example the word “send” as a verb predicate has three basic arguments
which are represented in ProbBank as follows 15:

• Arg0-PAG: sender as an agent.
• Arg1-PPT: sent item.
• Arg2-GOL: sent-to as a destination

The previously mentioned verb “send” corresponds to the Sending frame in
15http://verbs.colorado.edu/propbank/framesets-english-aliases/send.html
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FrameNet and has at least five core frame elements (e.g., Sender, Goal, Recip-
ient, Theme and Transport means) and another 12 non-core frame elements in
FrameNet. This example shows the fine-grained semantic information in com-
parison with basic semantic information provided in PropBank. Yet, the two
linguistic resources have been utilised and complement each other. For instance,
the semantic roles are enriched from the FrameNet side, and the missing verbs
in FrameNet are substituted by the predicates in PropBank, when available (Shi
and Mihalcea 2005; Gedigian et al. 2006; Gruzitis et al. 2018).

2.4 Related Work

In this section, we discuss closely the related work of the PhD thesis from three
angles. Firstly, we discuss the common methods for identifying similarity and
relatedness in NLP4RE research studies as reported by Zhao et al. (2020). Then,
we will spot the light on the uses of Fillmore’s linguistic theories and the FrameNet
lexicon in RE as a domain of use. Finally, we conclude the related works section
with an overview of how semantic relatedness has been tackled in NLP and CL
studies using FrameNet as a semantic lexicon.

2.4.1 Measuring Semantic Relatedness in NLP4RE Stud-
ies

As we explained briefly in the research problem and motivation earlier (cf. Section
1.1), the application of semantic similarity and relatedness is almost essential
in majority of NLP4RE tasks (e.g., requirements traceability and modelling).
According to a recent mapping study by Zhao et al. (2020), most the methods
which used for measuring semantic relationships in the NLP4RE approaches are
relied on lexical resources such as WordNet (e.g., Chioasca et al. (2016)). In Table
2.2, we list some of those NLP4RE studies, with further information on their
objectives, their designated NLP4RE, the type of the similarity approach they
followed (i.e., knowledge-based, corpus-supported or embedding-based approach),
and the name of the NLP resource if they used one.
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In the context of this thesis, detecting semantic relatedness between require-
ments is defined as the process of finding semantically connected events (e.g.,
“The user shall use the software to send files.” and “The user shall receive doc-
uments as well”). In comparison, detecting requirement similarities is defined as
the process of finding requirements that discuss similar events (e.g., “The user
shall use the software to send files” and “The user shall submit files via the sys-
tem”). Both concepts will be treated similarly in this thesis; for instance, the
“sending” and “receiving” actions can be treated as thematic relationships as
these often co-occur in software usage scenarios, whilst actions such as ‘send-
ing’ and ‘submitting’ share similar meanings. Our ultimate goal is to identify
“semantic relationships” that could generate traceability links between textual
requirements through the use of semantic frames in the FrameNet lexicon.

To achieve the above objective, which is to use Semantics Frame to track
semantic relationships between program descriptions, we will investigate (in the
following subsections) how Fillmore’s theories (for example, Semantics Frame)
and FrameNet as a semantic glossary have been used in NLP4RE studies . In
addition, we will discuss the concept of frame correlation as stated in literature
studies NLP. These two angles will give us a better understanding of applying
FrameNet Frames to NLR in order to measure and identify semantic relationships.

2.4.2 Applying Fillmore’s Work to NLP4RE Research

In the late 1980s, Fillmore’s linguistic theories, namely Case Grammar (Fillmore
1967) and Semantics Frame (Fillmore 1977) found their way into the studies of RE
and general software requirements processing. Haas and Metzler (1989) proposed
an investigation into the use of Case Grammar theory to help writing natural
language interfaces (e.g., database queries). According to our best knowledge,
this was the first attempt to apply Fillmore’s Case Grammar theory in ‘a related
domain of the RE research’ 16.

Then, RE as a standalone domain was then introduced by Dubois et al. (1989).
A few years later, the semantic representation of Case Grammar theory was re-
used in a CASE tool that aimed to linguistically analyse and validate natural lan-
guage requirements in order to model these requirements; the tool was designed

16There are several studies, in the mid seventeens, that employed the concept of frames by
Minsky (1975); however, in the context of this PhD thesis we are only interested in Fillmore’s
theory of expressing human’s knowledge as cognitive linguistic frames which they are usually
expressed as “slot-filler representations” Fillmore et al. (2003).
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and implemented by Rolland and Proix (1992). The study presented an attempt
to interpret requirements (or as they called it “problem-statements”) through the
use of a Case Grammar-based approach. Then, the semantically parsed state-
ments (i.e., the semantic case representation of these requirements) were used
to generate models in order to verify the requirement’s overall coherence in the
context of the defined software problem.

Belkhouche and Kozma (1993) proposed a semantic-based tool, also inspired
by Case Grammar theory, to analyse informal requirements (i.e. requirements
that are expressed naturally). The study aimed to support the requirements
analysis process by identifying verbs that relate description of software design.
The tool was designed with a semantic parser that extracts basic arguments from
input requirements such as objects and attributes. Furthermore, these arguments
(with the action-verbs) are used to generate an object-oriented model. The tool
was demonstrated by using examples of requirement statements without involving
human subjects experiments and without comparison to other similar tools.

A similar approach was designed and implemented by Cyre (1997), who also
proposed the use of Case Grammar theory to capture and analyse software re-
quirements foe modelling requirements as conceptual graphs (i.e., semantic net-
works as a knowledge representation). The generated conceptual graph was then
used to validate the consistency and completeness of the modelled requirements.
The essential phase in the proposed approach was the translation of natural lan-
guage requirements into common notations These notions are based on a range of
concepts and relationships, which have been curated by the authors (and based
on the case frames in Fillmore’s theory) for the domain of digital systems. Exam-
ples of the adopted conceptual relationships are Agent, Object, Quantity, Source,
Ordinal and so on. By using few requirement statements, the approach was il-
lustrated for requirement consistency and completeness analysis, as the approach
lacked an associated prototype tool.

Another approach, proposed by Breaux and Antón (2007), utilised seman-
tic roles in the theory to elicit and analyse domain-specific requirements (i.e.,
the legal requirements). Breaux and Antón (2007) presented a Frame-Based
Requirements Analysis Method (FBRAM) in order to systematically elicit re-
quirements from regulations. They organised these collected requirements into
frame instances for manual correction and analysis by the software analyst. The
method has been validated with an example (or a model) requirement document
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to explain the method procedures.

Gelhausen and Tichy (2007) and Gelhausen et al. (2008) proposed a very
similar method based on the thematic roles of Fillmore’s Case Grammar theory.
The method is called Natural language Semantics Encoding (SENSE) which is
mainly designed to apply semantic patterns to textual requirements. The seman-
tic patterns are associated with an annotation language to extract the linguistic
(semantic roles) parts from the requirement documents. After the requirements
were semantically annotated, the transformation rules in SENSE methods are
then applied to automatically generate Unified Modelling Language (UML) mod-
els from these requirements. The method has also been extended with additional
49 thematic roles that are suitable to describe requirements in the RE domain
such as Experior, Favor, Actus, Comparand and so on. The complete list of the
additional thematic roles is shown by Gelhausen and Tichy (2007). The SENSE
method was demonstrated using a prototype tool and human-subject experiments
using 23 requirements from software specification documents.

Tichy and Koerner (2010) suggested a semantic-based approach to support
the requirement analysis for software design. The authors proposed the use of
semantic roles with Case Grammar theory to extract grammatical cases from
the requirements text and to automate the generation of requirement models.
The approach was proposed without implementing any tool, which could help to
demonstrate the approach procedures. However, the authors suggested adopting
a set of evaluation benchmarks that could be used to evaluate the approach.
Moreover, the authors also emphasised the use of quantitative method such as
those used with the Information Retrieval systems (i.e., precision and recall rates).

More recently, Körner et al. (2014) and Landhäußer et al. (2014) presented a
tool called Auto-Annotated (AA) as part of their overall approach to process and
model requirements. The proposed tool was based on the previously discussed
tool by Gelhausen and Tichy (2007) and worked as a proxy between the improved
requirements specification and the automatic modelling tool in the approach. The
authors claimed that use of semantic process would enable computer systems to
understand textual requirements and process these requirements accordingly with
a common sense. The authors provided a working example using a real world
specification from the automatic domain by Körner et al. (2014). Moreover,
they applied a rigorous analysis of their approach with users from industry (i.e.,
two software engineers) who were requested to provide their feedback on each
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part of the proposed approach. The results showed a noticeable improvement
over the manual process of specifying requirements and modelling processes; the
experiment settings and results are reported by Landhäußer et al. (2014).

Chioasca et al. (2016) proposed an approach based on the use of semantic
patterns, called Semantic Object Models (SOMs). The patterns were inspired by
Fillmore’s Case Grammar theory, and the approach has, in total, nine seman-
tic patterns (or SOMs) which were labelled as WordNet verb categories, such
as Change, Creation, Motion, Cognition and so on. The SOMs are attached to
a defined set of thematic elements (or semantic roles) to determine the related
augments of an action verb, where the action verb is the main trigger for the
SOM pattern (e.g., ‘generate’ will trigger the SOM pattern Creation). The ap-
proach was validated and evaluated using a proof-of-concept tool called “Textual
Requirements to Analysis Models” (TRAM). The implemented tool was used to
parse textual requirements (based on the concepts of SOMs patterns), and to
then apply a set of transformation rules to transfer these parsed requirements
into visual models. Human participants evaluated the approach using working
examples to demonstrate its feasibility in generating models from unstructured
textual requirements; the evaluation results were presented by Chioasca (2015).

Nakamura et al. (2015) proposed a case frame-based approach (based on Case
Grammar theory). The approach was proposed to accept use case descriptions as
input; after that, the approach was designed to detect semantic concepts in the
given text and to transform these concepts into case frame instances. Then, the
generated frame instances were verified and checked for their completeness using
a state transition model and model checker. The proposed approach worked as a
proxy between the use case description and the regulations in legal documents,
as it aimed to check if these descriptions aligned with the legal specification, by
verifying the relationships between the case frames. The approach was evalu-
ated using a real-world requirement document, as a benchmark for evaluating
the approach when tackling missing or incomplete requirements. The proposed
method was also used to inspect ambiguity issues in legal requirements (Asano
et al. 2017). The authors utilised the previously proposed approach, which is
presented by Nakamura et al. (2015), to identify incompleteness or inaccurately
described legal requirements. The system proposed by Asano et al. (2017) was
evaluated with expert users in a Japanese-based company, where the test docu-
ments were written in the Japanese language, and translated back into English
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(because the case frames are based on English words). Overall. the frame based-
approaches provided a satisfactory performance by identifying “bed smells” in the
legal requirement documents.

Wang (2015; 2016) proposed the creation of domain-specific frames and de-
signed a basic semantic frame labeller to understand E-commerce systems re-
quirements. The semantic frame lexicon was created by following a description
of Fillmore’s Semantics Frame theory. The study resulted in 10 semantic frames
that are related to descriptions of software requirements, for example, Add, Al-
low, Describe, Display, Send 17. The annotation approach proposed by Wang
(2016) was semi-automatic. The first step of the semantic annotation was to au-
tomatically identify the basic arguments (e.g., Arg0, Arg1, Arg3,etc.). Then, the
second step was to identify the related semantic frame (based on the verb action
in the given requirement statement). The third and final step was achieved by
the analyst who re-labelled these recognised arguments as their corresponding
frame elements according to the identified frames. The annotated requirements
were then used to train a semantic labeller model to automatically parse simi-
lar requirements. Note that, the study also used sentences from the FrameNet
corpus to train their semantic labeller model. Moreover, the structure of their
semantic frames was identical to the structure used in the FrameNet lexicon but
the frames were not generated from FrameNet. The semantic frame labeller was
evaluated according to a manually labelled dataset, and the approach obtained
an overall satisfactory performance by identifying the domain-specific frames and
their elements. The study was one of the first to use Semantics Frame theory
but did not explicitly utilise the FrameNet lexicon, although a similarity exists
between their frames structures and the frames in FrameNet.

Similarly Bhatia and Breaux (2018) and Bhatia et al. (2019) proposed a
semantic frame-based approach (based on Semantics Frame theory) to iden-
tify incompleteness in the requirements of privacy policy documents. The au-
thors proposed four semantic frames: Collection, Retention, Usage and Informa-
tion transfer, which are overall associated with 17 predefined elements (or se-
mantic roles), for example Condition, Target, Subject, duration, comparison and
more. They applied the annotation as a thematic coding task; where the user first
classified the policy requirement by giving it a title from the predefined frames

17The description of frames: Display and Send is identical to their corresponding frames in
the FrameNet lexicon, although the author did not indicate this similarity.
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set, and then annotating the tokens in the annotated requirements by selecting
elements from the 17 semantic roles list. They applied a manual investigation of
frames and their frame elements frequencies over their dataset from which they
selected five publicly available policy requirement documents. The approach was
evaluated with human subjects using factorial vignette surveys to observe the
user perception of risk associated with an incomplete policy requirement.

One of the earliest proposals to utilise FrameNet as a semantic lexicon for the
collection and elicitation of requirements was by Kundi and Chitchyan (2017).
The aim of their proposal was to enhance the completeness and understand-
ability of the textual requirements by using a predefined template to complete the
missing information. FrameNet frames provide this opportunity through the use
of frame elements as slot-fillers. The authors demonstrated an initial approach to
collect use case requirements using FrameNet frames, where each frame (in this
approach) was represented as a template to describe the desired requirement.
The study was illustrated using a single example that explained the requirements
of a system in the agricultural domain (Garden Management System) using the
frames Agriculture, Food Gathering , Weather , Timetable and more.

Jha and Mahmoud (2017; 2018) proposed another novel FrameNet-based tool
to classify and summarise mobile application reviews (i.e., as short and informal
requirements that express user feedback on the application features and issues).
The aim of the study was mainly to reduce the sparsity (and classifier over-fitting
issue) that usually resulted by solely relying on the textual attributes of short
texts. Therefore, they proposed a semantic frame-based approach to detect the
lexical meanings of the text using FrameNet frames (i.e., triggering frames from a
given text using a semantic-frame parser). The approach was designed to gener-
alise raw text (or user reviews) to more abstract contexts (frames). The semantic
frame-based approach was then used to classify user reviews (i.e., to classify if the
review reported an issue/bugs or requested new features). The approach was eval-
uated using a manually labelled dataset; whilst, its performance was compared
with other standard lexically-based classification systems. Overall, the approach
outperformed the other systems and provided a satisfactory performance over the
labelled dataset.

The previously mentioned studies have provided some evidence of the feasi-
bility of adopting the concepts delivered by Fillmore’s theories to the RE tasks
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and activities, especially considering the analysis of unstructured textual require-
ments. Fillmore’s concept of semantic processing was preferred because it mim-
ics the human mental model in understanding natural language as a collection
of meanings and cognitive scenes rather than emphasising the syntax (or the
grammar) of the language itself.

We have summarised these studies in Table 2.3. Considering the timelines of
these studies which used Fillmore’s theories for RE tasks. The approach proposed
by Rolland and Proix (1992) provided the initial seeds for further studies, which
adopted Fillmore’s semantic-based theories for the representation of requirements.
In addition, most of the studies have utilised the semantic and thematic roles
in Case Grammar theory, such as Object, Agent, Theme and Cause18; where
they consider verbs as the main action in any requirement statement and these
semantic roles perform as predicate’s arguments. The main observation was that
most of these studies have tended to used Case Grammar theory mostly for
requirements analysis and modelling.

Case Grammar is limited to a contained set of arguments perform as case roles,
unlike the fine-grained description in Semantics Frame. However, few attempts
have been made to use Semantics Frame theory (e.g., Wang (2015; 2016)) where
studies create their own semantic frames, despite implementations of Semantics
Frame theory by FrameNet lexicon since 1998. Yet, the use of FrameNet frames in
RE is considered to be recent, and the studies that have benefited from FrameNet
as a lexicon (i.e., Kundi and Chitchyan (2017), Jha and Mahmoud (2017; 2018))
presented encouraging results. However, those studies did not properly investigate
the suitability of FrameNet as a comprehensive resource for RE as a domain.
Moreover, the FrameNet as a lexicon has essential information that could be
utilised in several ways to process and manage software requirements.

18In some studies, they referred to the semantic roles by case role or deep cases, e.g. as
mentioned by Asano et al. (2017)
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2.4.3 Using FrameNet Lexicon for Semantic Relatedness

To our knowledge, the first study that introduced the term “frame relatedness”
was by Pennacchiotti and Wirth (2009). The authors aimed to investigate dif-
ferent knowledge-based and corpus-supported measurement methods to identify
the possibility of measuring relatedness between frames in the FrameNet lexicon.
Their proposed measurement methods are based on: i) an overlap operation be-
tween frames’ lexical units; ii) the driving of frames co-occurrence frequencies
driven from a semantic and general corpus; and iii) the measurement of distance
between frames connected in semantic relationships (i.e., Inheritance relationship
only). The results of their experiments demonstrated a good correlation between
some of these methods and a human-judgement dataset of 155 pairs of frames.
However, the dataset is not published or publicly available. Moreover, they used
a WordNet-tagged corpus called SemCor (Miller et al. 1993), to estimate frame
weights (i.e., as a result of computing the frames’ co-occurrence); and this unre-
lated corpus could cascade errors (or ambiguities) if the mapping process from
word (in the WordNet) to frame (in the FrameNet) is not correct.

Following the work by Pennacchiotti and Wirth (2009) , more studies have
investigated different approaches to detect semantic similarities using information
provided by the FrameNet lexicon. For example, Virk et al. (2016) have proposed
a supervised approach to enrich the relationships within semantic frames by find-
ing similarities and relatedness between the frames in FrameNet. The supervised
approach used three different sources: i) information from the FrameNet lexicon
(i.e., semantic relationships and frames’ definitions) ii) mapping information be-
tween the WordNet and the FrameNet lexicon; and iii) corpus features to count
the frames’ co-occurrence. However, the proposed approach suffered from the
frame’s ambiguities as we noted earlier in the approach by Pennacchiotti and
Wirth (2009).

Another study that measured frames relatedness was by Alam et al. (2017).
The authors applied structural measurement methods to tackle frame related-
ness using the hierarchical structure of the FrameNet graphs. Some of these
measurement methods were considered to be profound graph-based techniques
that identified relatedness and similarities (Navigli and Martelli 2019). Moreover,
Pennacchiotti and Wirth (2009) also addressed these methods such as WUP sim-
ilarity method by Wu and Palmer (1994). Alam et al. (2017) also proposed an
approach based on the generation of frame embeddings from the graph vectors
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(i.e., converting a FrameNet graph into sequences of entities and relationships)
following an RDF2Vec approach by Ristoski et al. (2019). Despite the variety of
approaches in the works by Alam et al. (2017), the common factor is still the use
of FrameNet as a knowledge graph. Thus, if the frames are not connected in any
semantic relationship in FrameNet, it is then assumed that they are unrelated. In
addition, not all frames in the FrameNet are connected due to the manual work
needed to accomplish such linkage procedures (Baker 2017).

Wang and Yang (2015) firstly introduced the use of frame embeddings to gen-
erate semantic embeddings in order to classify hate speeches on Twitter. The
authors created frame embeddings by semantically parsing the tweets (i.e., se-
mantically parsing more than 3 million tweets). The generation method was a
straightforward process, according to the description given by Wang and Yang
(2015). They treated the frames as a continued bag-of-frames and trained a
Word2Vec model with the frames identified in these tweets as a dataset. Then
according to the testing dataset, the approach demonstrated a better performance
than the lexical baseline systems for classifying the tweets. However, no further
information was provided on the number of identified frames and the error rates
from parsing the tweets semantically.

More recently, Basile et al. (2018) proposed an approach to address related-
ness between frames instances. The authors proposed a quantitative measure-
ment method that takes into account the frame types (or titles) and the frame
elements. First, they used the weighted PMI to measure relatedness between two
frame instances, as described by Pennacchiotti and Wirth (2009). However, they
applied POS tagger to the SEMCOR corpus to avoid the syntactic ambiguity of
lexical units for each frame. Moreover, they suggested another embedding-based
measurement method using GloVe words embedding by Pennington et al. (2014),
as they simply computed the average of the vector representations for all lexical
units in each frame and then applied Cosine similarity metric 19 to measure the
relatedness between two frame instances. Secondly, they computed the related-
ness between two frames based on their frame elements; again, they computed
the frame elements between two frames as Cosine similarity metric between vec-
tor representations However, this time they used NASARI sense embedding by
Camacho-Collados et al. (2016) to compute the similarity of these frame elements

19Any system or technique, which is used frequently in this thesis, will be typified in different
font types such as typewriter type.
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as two senses. The combination of measuring the results of the frame instance
and frames elements were then combined to estimate the frame relatedness. The
method was evaluated to assess the relatedness of sentences by measuring the
relatedness of their corresponding frame instances, they assessed 500 sentences,
which were obtained from SemEval Semantic Textual Similarity (STS) datasets.

Table 2.4 summarises the previously mentioned studies which indicates that
almost very few of these studies have considered to be a specific domain of use.

Table 2.4: A list of related work for identifying semantic relatedness using
the FrameNet lexicon.

Study Reference
(Year)

Knowledge-based Corpus-
supported

Embedding-based Domain Used Information from
FrameNet

Evaluation Type

Pennacchiotti and
Wirth (2009)

(FE-overlap,
HSO, WUP)

(PMI, CosineVec) N/A General Frame titles, Definitions,
Inheritance relationships,
Frame elements

Intrinsic

Virk et al. (2016) (gloss-overlap) (PMI) N/A General Frame titles, Definitions, lexi-
cal units

Intrinsic

Alam et al. (2017) (Path, LCH,
WUP)

N/A (Frame2Vec-
CBOW)

General Frames titles Intrinsic

Wang and Yang
(2015)

N/A N/A (Frame2Vec-
CBOW)

Social Net-
works

Frames titles Extrinsic (Tweets
Categorisation)

Basile et al.
(2018)

N/A (PMI) (Glove, NASARI) General Frames titles, Frame ele-
ments, lexical units

Extrinsic (Text
Similarity)
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In Chapter 2 we have surveyed the following topics:

• The concept of semantic similarity and relatedness in the context of
the PhD thesis, and explained the holism of semantic relatedness to
the cases of similarity and relatedness.

• The theory of Semantics Frame which developed from Case Grammar
theory by Fillmore (1977). This was followed by a detailed overview
of the FrameNet project as an implementation of that theory (and
the core resource in the current research project).

• The works related to the PhD research project are therefore:

– The way of using semantic similarity and relatedness in the con-
text of NLP4RE research.

– The uses of the FrameNet lexicon in the context of NLP4RE
research.

– The approaches to address semantic similarity and relatedness
using FrameNet as reported in NLP and CL studies.

In the following chapter (Chapter 3), we present the overall re-search
tasks and methods conducted.
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Chapter 3

Overview of Key Research
Activities

In this chapter, we present an overview of the research methods adopted in
light of the Evidence-based Software Engineering (EBSE) methodology to carry
out the research project. An overview is presented in Section 3.1. We start with
the first research method, which is inspired by corpus-based studies to analyse the
uses of natural language with representative documents and resources (Glynn and
Robinson 2014). We applied this research investigation technique to the context
of software documents in order to study coverage of the FrameNet lexicon; details
of the method are presented in Section 3.2. Then, in the following section (3.3),
we introduce different approaches to address the semantic relationships between
semantic frames in FrameNet and from an RE context of use. Finally, in Section
3.4, we discuss a proposed semantic frame technique to measure and identify
relatedness between requirement statements.

In summary, the objectives of this chapter are:

• To present the main research activities and the story we want to tell in this
PhD thesis.

• To present corpus-based analysis to study coverage of the FrameNet lexicon,
and to label and annotate software descriptions.
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• To discuss the planned investigation and implementation of various mea-
surement methods underpinned by semantic frames in the FrameNet lexi-
con.

• To discuss the intrinsic and extrinsic evaluation procedures to evaluate the
proposed methods in order to detect and measure software requirements
relatedness.

3.1 PhD Research Activities

As stated in Chapter 1, the evidence-based research methodology was adopted
according the guidelines presented by Kitchenham et al. (2004) and Dyba et al.
(2005). Details of the methodological application were extensively discussed in
Kitchenham et al. (2015).

The main activities of the adopted research methodology (cf. Section 1.2) are
centered around the following aspects::

• Collecting the evidence: applying an in-depth investigation of the re-
search problem and the context-of-use to suggest novel solutions,

• Conducting experiments: proposing novel solutions to address the issues
identified through an extensive investigation, and

• Critically appraising: evaluating the proposed solutions to seek their
feasibility to meet the research aim and objectives.

We planned the research methods in order to accommodate the main activ-
ities presented above. Figure 3.1 depicts these methods under their designated
research activity. In the following sections, we discuss these main activities in
more detail.

3.2 Collecting Evidence: The Corpus-based In-
vestigation

To collect the evidence, we found that corpus-based analysis is an appropriate
research method to detect frames from the FrameNet lexicon which are applicable
in the context of software descriptions. The techniques under the corpus-based
analysis involve collecting software documents and applying expert annotations,
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Figure 3.1: Main Research Activities of this Thesis

and then evaluating existing related tools to practically examine the usefulness
of the FrameNet resources from an RE perspective.

The corpus-based methodology has been used in several domains, as a col-
lection or research methods to study language affects and phenomena at, for
example, semantic or discourse analysis level (Baker 2006). In a corpus-based
methodology, the corpus (i.e., the collection of representative and natural docu-
ments) serves as an empirical component from which the researcher studies and
extracts quantitative data and detects any linguistic phenomena without prior
assumptions (Tognini-Bonelli 2001).

Using corpus techniques to capture natural language requirements and is-
sues is not a recent method in RE research (Warnier 2015). A study conducted
by Lindmark et al. (2007) used means of corpus-based analysis to examine the
feasibility of building semantic lexica to manage the relationships between termi-
nologies used in software descriptions. The study aimed to build a semi WordNet-
style lexicon (Fellbaum 1998) to understand the frequent use of software terms
and analyse term usage trends and collocations in RE context description. The
study was based on 1932 requirements gathered in a period over 4 years (1996-
2000); they used techniques from CL, such as word frequency and word profiling,
and supported their results by using another corpus, the British National Corpus
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(BNC), to study the relationships between the extracted terms and their rela-
tionships to software as a domain. The study has explicitly identified its research
method as corpus-based.

Sawyer et al. (2005) conducted another study that used the corpus tools to
perform tasks in RE. The study discussed the possibilities of retrieving informa-
tion from long-length requirement documents (e.g., meeting transcripts). The
method was indicated by “shallow knowledge” method that represented the ab-
stract searching and retrieval processes in corpus-based techniques. The approach
was designed as a KWIC 20 corpus tool to study the most common terms in the
selected requirement document and then examine their relationships by analysing
the collocation and concordance analysis results. The authors assumed that the
analyst should be able to draw initial models based on her shallow knowledge
(i.e., abstract understanding) from the common keywords in the document and
their linguistic relationships.

Moreover, NLP techniques and resources help to address prominent issues
in using natural language (e.g. completeness and ambiguity). However, these
techniques and resources are based on general artefacts (i.e., news datasets). As
stated by Dalpiaz et al. (2018), the usefulness and effectiveness of NLP tech-
niques depend on the quality and quantity of the adopted dataset. For example,
the availability of reliable corpora to address linguistic challenges within an RE
context is still missing (Ferrari et al. 2017a). The studies discussed earlier were
the initial seeds for us to generate the first corpus within RE, which were labelled
by semantic frames from the FrameNet lexicon. Moreover, we utilise a labelled
dataset for the corpus-based analysis methods to verify, even initially, the cov-
erage of the available FrameNet frames that describe the software requirements,
and hence, FrameNet’s potential for different RE tasks and activities, such as
analysis and traceability.

In this stage, we apply an initial analysis, similar to lexical investigation
conducted in corpus-based related work Warnier (2015). This will enable the suf-
ficient study of FrameNet frames to label the software descriptions. The analysis
will be based on the most frequent words to describe requirements based on a
publicly available words list. Moreover, the analysis will continue to investigate
the affordability of FrameNet frames that meet the frequent linguistic patterns
to write requirement statements.

20Key Word in Context for concordances analysis.
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Thereafter, we work with an expert requirement engineer to manually anno-
tate a dataset of requirement documents. The manual annotation task will allow
us to investigate FrameNet frames, which will include tracing missing frames or
making suggestions to update existing frames. We anticipated that working in
parallel with a requirement engineer is going to be a long and expensive process;
however, results that will be obtained from the annotation procedures will aid
to produce the first corpus in an RE domain. The target corpus will contain a
collection of software requirements that will be annotated using FrameNet frames
at a coarse-grained and fine-grained level.

Then, the results that will be obtained from annotating the requirement cor-
pus, will be utilised to examine current state-of-the-art tools for parsing semantic
frames in textual descriptions. The tools will be examined for their performance
results in automatically labelling software descriptions using related semantic
frames from the FrameNet lexicon.

The aim of corpus-based analysis and investigation is to obtain the following
findings:

1. A preliminary, and through, semantic analysis at a word and requirement
statement level to investigate the adequacy of the FrameNet lexicon and
thus to generate an annotated corpus of requirement documents.

2. A corpus of software requirements, labelled by frame information in the
FrameNet lexicon, which will be annotated by human experts. The corpus
will utilise documents from a collection of unique and publicly available
requirement documents, which will be pre-processed and encoded using a
predefined document structure.

3. A corpus of annotated software requirements with FrameNet frames. The
annotation will be made by a semantic frame parser, which will be evalu-
ated and then selected based on an adequate performance in semantically
annotating requirement documents. The corpus will utilise requirement
documents, which will also be pre-processed and prepared for the auto-
matic annotation.

4. A comprehensive analysis of the FrameNet frames based on the constructed
corpus results, and a coverage analysis of the FrameNet lexicon to suffi-
ciently label software requirements.

The aforementioned research methods will be conducted and explained in Chapter
4, where we also report the advantages of using the FrameNet frames from an
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RE perspective.

3.3 Experimenting: Semantic Frame Approaches

To conduct the experiments, we propose different approaches which are drawn
from NLP studies. The proposed methods follow the three traditional paths to
tackle semantic similarities and relatedness (Navigli and Martelli 2019). The
approaches are based on the utilisation of lexicon knowledge, corpora or recent
language models; and were discussed in Section 2.2. We utilise these approaches
with FrameNet as a semantic lexicon.

Dalpiaz et al. (2018) emphasised the importance of “Context Adaption” for
NLP techniques to make them useful and applicable for solving versatile issues
within the practical domain of RE. At this stage of the PhD research project,
we experiment different methods to measure and identify semantic relationships
between frames from an RE perspective.

Semantic frames in FrameNet are general, i.e., they are applicable to multiple
domains, not only within technical or scientific documents (Fillmore et al. 2003;
Baker 2017). Therefore, we planned to collect evidence from the investigation
results (on the FrameNet coverage to describe software descriptions), which will
be obtained from the corpus-based analysis as presented earlier in Section 3.2.
These results will be used to design and implement a series of methods for de-
tecting semantic similarities and relatedness by using FrameNet frames that are
related to an RE context of use.

Using semantic frames to detect similarities and relatedness is considered to
be one of the many expected uses of FrameNet as a semantic lexicon (Fillmore
et al. 2003; Baker 2017). Several experimental studies have been conducted to
investigate the potential of the FrameNet lexicon to detect semantic relationships.
These studies applied some existing and fundamental similarities and relatedness
metrics e.g. glosses overlapping (Lesk 1986) and shortest-path method (Rada
et al. 1989). In addition, some of these studies applied more recent techniques
such as word embeddings (Mikolov et al. 2013), for example the approaches pro-
posed by Wang and Yang (2015) and Alam et al. (2017).

Therefore, we re-use some of the measurement methods presented in existing
studies; for example as discussed by Pennacchiotti and Wirth (2009). Moreover,
we investigate further semantic similarity methods that have not been reported in
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the previously mentioned studies. Most importantly, we develop novel solutions
to address semantic relatedness between frames within FrameNet. All of these
semantic measurement methods will be validated and evaluated using a dataset
from the RE context.

In the following, we present a summary of each approach and an overview
of the methods that we are planning to apply within each approach, which are
based on FrameNet as the main source of information.

A. Knowledge-based Measurement Methods
By exploiting the knowledge available in FrameNet (e.g., the frames titles and
definitions, the frame elements and the Inheritance and Using semantic relation-
ships), we can measure the similarity and relatedness distances between frames.

we use common measurement methods that were applied to measure similarity
and relatedness between concepts in a knowledge graph, for example, the semantic
method associated with word lexica, such as WordNet metrics (Pedersen et al.
2004), and semantic metrics applied with different domain knowledge-bases and
anthologies (Mihalcea et al. 2006; Navigli and Martelli 2019).

In addition, some of the knowledge-based methods, discussed earlier, were
reported in previous related work with the FrameNet as a lexicon (e.g., Pen-
nacchiotti and Wirth (2009)). Therefore, we categorised the methods into two
categories:

• Overlap-based measurement methods that estimate the frames’ relatedness
by counting the shared information between frames (e.g., the overlapping
between frames’ definitions, and lexical units).

• Path-based measurement methods to estimate frame relatedness based on
the path length and properties (e.g., LCS frames) using different mathe-
matical formula.

B. Corpus-supported Measurement Methods
These corpus-supported methods are used in Text Mining literature to determine
the relatedness of two entities based on information exclusively derived from a
large and representative corpus (Mihalcea et al. 2006; Navigli and Martelli 2019).
The approach was introduced in Section 2.2 of the background chapter.

The key assumption in these corpus-supported methods is word frequency or
co-occurrence as this often carries more specific information about the frame’s
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context of use. In addition, some of these metrics use path-information in se-
mantic graphs to help trace specific frame relatedness. This is achieved by con-
sidering frames connected by the is-a or Inheritance relationships. Therefore, we
categorised the methods, we utilise, into two categories: i) co-occurrence based
methods; and ii) co-occurrence and path-based methods. As discussed earlier,
the methods under the corpus-supported approach will consider the RE context
as a domain of application.

C. Embedding-based Measurement Methods
One of the recent advances in NLP research is the use of word embeddings as a
method for capturing the context of any given word in a corpus of documents (cf.
Section 2.2). The word embedding can be used for many NLP downstream tasks
such as text similarity and relatedness Camacho-Collados and Pilehvar (2018).

Therefore, we propose a semantic approach that utilises word embedding to
identify frame relatedness. That means rather than mapping each word in the
text, we target a group of words (i.e., lexical units) that will represent a se-
mantic frame, and hence produce a semantic frame embedding. In the current
embedding-based approach, we aim to develop frame embeddings that are suit-
able for capturing the context of RE-related documents. Therefore, the frame
embeddings will be trained on a large and representative dataset from an RE
domain of use. At the end, we expect the following results from all of the above
semantic frame measurements:

1. A semantic frame approach that will utilise embodied knowledge in a FrameNet
lexicon introduced in Chapter 5.

2. A semantic frame approach that will incorporate a FrameNet-based corpus
(e.g., the corpus we generate from the FrameNet coverage investigation)
covered in Chapter 6.

3. A semantic frame approach that will be developed from a trained language
model (i.e., word embedding which will be trained specifically for the RE
domain) presented in Chapter 7.

In addition, we apply in-depth statistical validation and evaluate the methods
in comparison to human annotations. The intrinsic evaluation will be presented
and discussed in Chapter 8. The intrinsic evaluation will be conducted at the
semantic frame level (i.e., the semantic relatedness between two frames in a pair)
where we evaluate all of these methods from an RE perspective.
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3.4 Critically Appraising: Measuring Require-
ments’ Relatedness

To critically appraise the experiments introduced earlier, we conduct an evalua-
tion at two levels. The first level, presented above, is an atomic level (i.e. mea-
suring and identifying semantic relatedness between two frames in a pair only) in
comparison to expert opinion and from an RE domain of use. The second is the
requirement statement level; the best measurement approach from the proposed
methods will be selected at this evaluation level. The requirement statement level
evaluation will critically examine the FrameNet frames to efficiently measure and
identify the semantic relationships between requirement statements based on a
real-world requirement document. The identification of textual relatedness and
similarity at a semantic level is a crucial task for many applications in NLP re-
search (Taieb et al. 2019; Farouk et al. 2019). In particular, the identification
of requirement relatedness is a fruitful research area for many downstream tasks
in NLP4RE studies, such as requirement classification, requirement tractability,
and requirement modelling Zhao et al. (2020). The use of semantic relatedness
in the RE research area has been discussed in detail in Section 2.2 namely the
background chapter of this thesis.

Therefore, we measure and identify semantic relatedness between require-
ments as a further evaluation step for the proposed semantic frame approach.
This means evaluating the effectiveness of the semantic frame approach presented
earlier from an RE perspective. we apply best-performance methods (according
to the results of the frame-level evaluation in Chapter 8) to measure and identify
explicit and implicit semantic relationships in a software requirement document.

In this phase of the PhD research, we use a real-world document that contains
software descriptions and then we apply manual annotation to trace the require-
ments relatedness within that document. The manual annotations will be then
validated and used to evaluate the proposed method. Moreover, the methods’
results will be compared with those of the standard baseline systems in order to
identify semantic relatedness as reported in the NLP literature studies (Navigli
and Martelli 2019).

At the end, we are expecting the following results from this extrinsic evalua-
tion:
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1. An application of the FrameNet based methods (measuring best perfor-
mance relationships at the frame pair level) to recognise and detect semantic
relationships between requirement statements.

2. A detailed extrinsic evaluation of the semantic frames methods and a com-
parison will be conducted with a labelled requirement document and base-
line systems.

3. Drawing final conclusions on the use of semantic frames to trace the relat-
edness of relationships in the context of RE documents.

The requirement-level analysis and final results from the application of a semantic
frame-based approach will be presented in Chapter 9, to discuss the usefulness
and effectiveness of the proposed approach from an RE perspective.
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In Chapter 3 we discussed the following research methods:

• A corpus-based analysis to study FrameNet coverage in order to label
and annotate software descriptions.

• The proposed approaches to address semantic similarities and related-
ness between frames in the FrameNet lexicon from an RE perspective.

• The application and evaluation of a semantic frame-based approach
to identify semantic relationships between requirement statements

In the following chapter (Chapter 4), we investigate the coverage and fea-
sibility of using FrameNet resources to semantically label software descrip-
tions.
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Chapter 4

Corpus-Based Analysis

This chapter presents the followed corpus-based techniques which will be
used to annotate a dataset of requirement documents using FrameNet frames
as described by Baker (2017). The annotation procedures results in generating
a corpus named FN-RE 21 corpus; as an abbreviation for FrameNet frames
for Requirements Engineering. The annotated corpus (FN-RE) aids in investi-
gating and analysing FrameNet frames coverage and limitations in semantically
capturing meanings from the conveyed description in requirements.

Before applying the corpus-based techniques, we apply two different analy-
sis methods at word and statement-level for using FrameNet semantic frames
to describe requirements (presented in Section 4.1). The initial analysis results
will be reported in this chapter, to examine our claim on the initial appropriate-
ness of using semantic frames to annotate various requirement descriptions (e.g.
requirements that express conditions or restriction of use.).

Following that in Section 4.2, the procedure of requirement documents collec-
tion, i.e. REQ dataset, will be detailed and exemplified with requirements from
the dataset. The REQ dataset will be used for constructing our investigation
FN-RE corpus.

Then, the annotation procedures will be discussed, including the corpus vali-
dation and harmonisation, to generate the FN-RE corpus. The annotation will be
made at two main parts that both construct the FN-RE corpus. The first part is

21Read as /fine req/
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designed based on a manual annotation task i.e. labelling requirements with the
aid of an expert annotator, and these procedures will be discussed in Section 4.3.
Then, the second part of FN-RE corpus (presented in Section 4.4) is generated
based on an automatic annotation i.e. labelling requirements by using semantic
frame parser that will be evaluated and selected based on its performance for our
requirement documents.

Next, the corpus results will be reported and discussed in Section 4.5. The re-
sult obtained from the FN-RE corpus assists in identifying cases of missing frames
and suggesting frames in FrameNet from RE perspective. Most importantly, the
FN-RE corpus aids in recognising the most related frames to RE –out of more
than 1200 frames catalogued in FrameNet22.

Finally, we conclude this chapter in Section 4.6, where we discuss the potential
of using FrameNet frames on the light of the obtained investigation results. The
discussion is revolved around two considerations: the coverage of the FrameNet
lexicon to annotate the requirement documents and the feasibility and practi-
cability of using FrameNet frames for RE tasks such as requirements analysis
and traceability. The results report in this chapter (i.e. the list of RE-related
FrameNet frames) will be then used to facilitate the analysis of FrameNet frames
and their semantic relationships from an RE perspective.

The objectives of this chapter are:

• To apply a preliminary analysis to study the coverage of the FrameNet
lexicon to annotate software descriptions.

• To introduce a requirement document dataset (the REQ dataset).
• To provide details on the annotation procedures and results to construct

the FN-RE corpus.
• To discuss the appropriateness and the feasibility of annotating requirement

documents using semantic frames in FrameNet.

4.1 Preliminary Analysis of FrameNet

To initially investigate how FrameNet frames are applicable to annotate software
requirements, we first examined their coverage and feasibility to capture essen-
tial meanings within requirement statements. For this, we used two different
inspection methods:

22https://framenet.icsi.berkeley.edu/fndrupal/current_status
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1. Word-level Analysis: to inspect the coverage of FrameNet lexical units to
cover words, e.g. mostly verbs, that are reported to be used within software
description content and based on a published list of words.

2. Statement-level Analysis: to inspect the appropriateness of FrameNet
frames to capture essential concepts from different descriptions that could
represent any requirement statement. The inspection list is drawn from the
semantic tasks presented by Chioasca et al. (2016) and Chioasca (2015).

The two methods mentioned above assist in analysing the feasibility of using
FrameNet semantic frames as a suitable indicative resource, at least for this initial
level of investigation. In addition, the analysis results will assist in the planned
annotation procedures for the requirement documents using FrameNet semantic
frames as will be discussed later in this chapter. The following sub-sections
(Section 4.1.1 and Section 4.1.2) discuss the analysis methods and their results.

4.1.1 Word Level Analysis

We applied a lexically-based investigation to trace FrameNet frames coverage.
The word-level analysis was designed according to a publicly available list of words
which represents the words that are used in the domain Software Engineering.

First, we retrieved a list from an Experience Application Program Interface
(API) known as23: an e-learning software specification that unifies the used terms
within learning content and systems to interact to each other in a manner that
records and tracks all types of learning experiences. The words list is registered
and publicly available, and it contains 154 words that are commonly used within
software specifications, according the source description 23. The list was then
saved into a structured file (.csv) to compare the words with the available lexical
units in FrameNet.

We investigated whether the FrameNet lexicon covers these words, and to
what extent their coverage in FrameNet (i.e. how many frames are triggered by
these words). We implemented a searching script using FrameNet API in python
by Schneider and Wooters (2017)24 using the latest version of FrameNet–version
1.7–to retrieve the most recent frames. The script applies a trivial searching
process using lexical patterns as regular expressions by applying the Regex (re)

23https://registry.tincanapi.com
24http://www.nltk.org/howto/framenet.html
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package in python 25 of the target word root (or basic form) using NodeBox
package26 ; and then comparing the words’ lexical patterns to the lexical units
in the FrameNet lexicon 24.

The searching results were then saved as: list of target words (i.e. the potential
lexical units to trigger frames from FrameNet) and a list of triggered frame. The
list was saved into a structured table (.csv) containing the words, the number of
frames it triggered and the list of the evoked frames for later manual investigation.

Figure 4.1: The 132 words organised by the number of their recalled frames
as obtained from word level analysis results.

We found that 85% of the words are covered, i.e., FrameNet has covered 132
words from the 154 words list. In addition, each word, in the 132 words, has
evoked one or more frames from FrameNet as shown in Figure 4.1.

25https://docs.python.org/2/library/re.html
26https://www.nodebox.net/code/index.php/Linguistics
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Figure 4.2: The top 20 words from the investigation list clustered by the
number of their associated frames and their titles.

Afterwards, we analysed the definitions of the recalled frames, and we marked
by ‘yes’ and ‘no’; the possibility of using these frames to describe software re-
quirements. The retrieved frames list contains 372 occurrences of frames with a
list of 269 unique frames (i.e. 22% of the available frames in FrameNet 22).

The annotation was performed manually where the annotator (the author of
this PhD thesis) revised each retrieved frame, including definition and related
examples, as listed in the FrameNet lexicon. Then, she decided whether this
frame is most likely to be used to describe software requirements or not. Finally,
she decided that 188 frames, out of the total 269 recalled frames, can be used to
describe requirements.

The initial obtained results of word coverage analysis of the FrameNet could
lead to the possibility of vocabularies richness conveyed in the FrameNet as a
semantic lexicon for the RE domain. We obtained a rough average of 1.22 frames
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Table 4.1: An example list of retrieved and selected frames (from the word-
based level analysis) with their basic information as appeared in FrameNet.

Frame Title Definition Lexical Units Related
Words

Activity pause An Agent pauses in the
course of an Activity.

adjourn.v, freeze.n,
freeze.v, pause.n,
suspend.v, take break.v

suspend,
adjourned.

Activity resume

An Agent resumes par-
ticipation in an Activ-
ity. Progress on the Ac-
tivity is retained from
before the interruption.

renew.v, restart.v, re-
sume.v

resume.

Activity start

An Agent initiates the
beginning of an ongo-
ing Activity in which he
will be continuously in-
volved.

begin.v, beginner.n,
commence.v, enter.v,
get started.v, initiate.v,
launch (into).v, open.v,
start.v, ...etc

open, start,
launched,
enter.

per word in the given investigation words list. For further illustration, an example
list of randomly selected frames, with their related words from the investigation
words list is shown in Table 4.1. In Figure 4.2, we depicted the words with the
most recalled frames and their associated frames titles.

The list of words that did not trigger any frame(s) from FrameNet is shown
in Figure 4.3. The list of missing words in FrameNet was saved in order to
be inspected during the corpus annotation i.e. if these words are occurred in
the requirement documents we collect for the corpus annotation, and then to
investigate their importance as well (will be presented in Section 4.5).

Figure 4.3: The words that are not added in the FrameNet lexicon according
to the results obtained from the word level analysis .

Generally, the encouraging result of FrameNet initial coverage analysis of

84



words pertain to a related domain such as software specification in RE domain is
considered to be the initial seed for further investigation which we conduct later,
for instance, analysing requirement at statement-level as going to be discussed in
the next section.

4.1.2 Statement Level Analysis

To continue our investigation, we applied another analysis method that is based
on common semantic patterns for authoring requirements (Wang et al. 2013). We
followed a fundamental linguistic analysis of how FrameNet could be used prac-
tically to annotate requirement statements with different linguistic and semantic
considerations.

These linguistic considerations (or requirement descriptions) are drawn from
the semantic tasks that construct the norms of Semantic Object Models (SOMs)
approach as described by Chioasca et al. (2016), and illustrated in details in
Chioasca (2015; p. 78-80).

The SOM approach employs the WordNet verb taxonomy i.e. the SOM pat-
terns are designed based on the lexicographer information embodied in the words
relationships in the WordNet lexicon. The WordNet lexicon has 44 categories 27

, and nine of these categories, which are related to verb tokens, are used in the
SOM approach. The SOM patterns titles, which are inspired from the WordNet
lexical names, are: Creation, State, Motion, Communication, Cognition, Contact,
Possession and Change.

As in SOM patterns, in the statement-level investigation, we are mostly inter-
ested in verbs as frames triggers since they represent the main action or theme in
the requirements description (Chioasca et al. 2016). In addition, we considered
more linguistic descriptions from adverbs and prepositions as frame triggers (i.e.
lexical unit). These descriptions are partially derived from the SOM approach,
in particular the semantic tasks associated with the SOM patterns.

To elucidate further, the SOM patterns are associated with syntactic and se-
mantic considerations that govern the labelling and identification of the semantic
roles in SOMs (e.g., Agent, Key, Object, Container, Material, etc), Chioasca
(2015). Since the syntax of sentences is not the main concern in our investigation
because FrameNet is a semantic-based resource (cf. Section 2.3); therefore, we
analysed the SOM semantic tasks instead.

27https://wordnet.princeton.edu/documentation/lexnames5wn
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The SOM approach performs three main tasks: identifying semantic roles
(e.g. Agent) in passive and active voice requirement statements, identifying se-
quence behaviour (i.e. series of events in a requirement statement) and finally
recognising any constraints in a requirement statement. Moreover, the semantic
tasks are associated with selective set of tokens (e.g., ‘if’, ‘where’, ‘after’, etc.)
to facilitate the performance of their designated aforementioned activities. We
used the tokens associated with those tasks to trigger frames from FrameNet.
Then, we investigated the recalled frames in comparison to the semantic task as-
sociated with that token. For example, ‘after’ is associated with semantic task of
sequence behaviour, and in FrameNet ‘after’ as a lexical unit evoked: Time vector
28 and Relative time, and both frames describe a series of events occur in a timely
manner.

In this way of analysis we conducted based on these semantic descriptions:
a set of linguistic considerations which represent the style of authoring require-
ment statements (e.g., writing a requirement statement with positive or negative
conditional form, and writing requirement statement with a sequence of timely
events, etc.)

In a nutshell, we derived a group of requirement descriptions (RD) that ab-
stractly describe the general meaning conveyed in any a requirement statement.
These descriptions (RDs) are obtained from observing and analysing the recalled
frames, and their definitions and lexical units, besides our investigation of the
SOM patterns. We obtained a total of eight requirement descriptions (RDs) and
each description is exemplified with requirement statement examples and related
set of FrameNet frames that are applicable in such a situation of expressing re-
quirements. Moreover, the semantic descriptions (RDs) are grouped according to
the given three main tasks of the SOM approach. The classified requirement de-
scriptions are listed below with their corresponding task from the SOM approach:

• SOM-Task 1: identifying agents, by identifying the actions (or verbs) in a
given requirement statement, and which SOM pattern, the requirement’s
action belongs to. Therefore, we investigated to which extent FrameNet
frames could cover the verbs (that are associated with the nine SOM pat-
terns). This SOM’s task covers a single semantic description from the total
eight requirement descriptions:

28https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=
Time_vector
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– RD-1: A requirement statement with main verb(s) written in active
or passive voice sentences.

• SOM-Task 2: This semantic task concerns with identifying constraints in a
requirement statement, by identifying the selective words (e.g., ‘if’, ‘what
if’, etc.) in a given requirement statement. Therefore, we investigated to
which extent FrameNet frames could cover the selective tokens and possibly
other tokens that are not included in the SOM approach. This task covers
three requirement descriptions:

– RD-2: A requirement statement has a positive conditional form.
– RD-3: A requirement has a negative conditional form.
– RD-4: A requirement statement has a contradictory action.

• SOM-Task 3: This semantic task concerns with identifying sequence or
group of actions in a requirement statement, by identifying the selective
words (e.g., ‘after’, ‘before’, etc) in a given requirement statement. There-
fore, we investigated to which extent FrameNet frames could cover the se-
lective tokens and possibly other tokens that are not included in the SOM
approach. This task covers from the eight requirement descriptions.

– RD-1: A requirement statement has a timely sequence or synchronizes
order of actions.

– RD-6: A requirement statement has an additional actions.
– RD-7: A requirement statement has an inclusion or an exclusion of

actions or items.
– RD-8: A requirement statement conveys a reason or purpose.

RD-1: A requirement statement with main verb(s) written in active
or passive voice sentences.

Description: This case refers to the main verb(s) of each requirement statement,
and regardless if these statements are written in active or passive voice sentences.
It is mainly concerned about the verbs pertain to software requirement description
and if they are existing in FrameNet or not.
Description:The general guideline in our statement-level investigation conveyed
in identifying the requirement structure, basically each requirement statement
must hold one action or more. As we discussed earlier, in semantic SOM approach,
proposed by Chioasca et al. (2016) and Chioasca (2015), the verb tokens are
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essential to recall the related SOM patterns. For example, the ‘create’ as a verb-
based token triggers Creation SOM i.e. any requirement statement involves a
creation process it will recall Creation SOM and that requirement statement shall
contain: Agent to perform the creation, and Key object that is generated because
of this creation action, and the tool or system used in this process as Material
object. The SOM approach is limited to nine essential description patterns that
are coarsely describe general requirement statements based on their verbs only.

However, in the FrameNet lexicon, the frames are curated to reflect on the
situations or the scenes as described in Semantics Frame theory by Fillmore
(1977) not by the semantic category of the verb (cf. Chapter 2). Therefore, the
description of each requirement statement will be based on the conveyed situation
within that requirement. For example, the token create.v could trigger three
frames from FrameNet lexicon: Creating, Cause to start and Intentionally create;
each frame describes a specific situation which involves shared or different frames
elements to describe each frame uniquely (e.g., Creator, Purpose, Time,etc.); and
we discussed these details in Chapter 2.

It is noteworthy that the total number of lexical units in FrameNet is 13,640 ,
and English verbs occupied 38.12% of that total which corresponds to 5,200 lexical
units labelled as (*.v) verbs in the FrameNet22. On the other side, the WordNet
contains 11,531 verbs 29. Therefore, we decided to investigate the coverage of
the WordNet verbs, in the FrameNet lexicon. We were interested in the words
(i.e., verb tokens) that are pertain to the nibe semantic patterns of the SOM
approach, presented earlier in this section. This investigation process aids to
inspect the most recalled frames and the number of frames that roughly could
represent each verb in WordNet. Also, to inspect which pattern has the most
coverage in FrameNet.

To estimate the coverage of each SOM pattern in the FrameNet lexicon, we
performed a verb searching task similar to the word searching method in the word
level analysis (cf. Section 4.1.1). We run a python script using the WordNet API
(Feinerer and Hornik 2017) to retrieve the token with verbs (.v) as their POS tags
from the WordNet lexicon, which is similar to the recalling method in the SOM
approach (Chioasca et al. 2016; Chioasca 2015). Then, we used the FrameNet
API in python to match the retrieved tokens (or verbs) from the WordNet to

29The number of verbs were retrieved by using WordNet API (Fellbaum 1998; Wallace 2007;
Feinerer and Hornik 2017)
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the lexical units in FrameNet (version 1.7) (Schneider and Wooters 2017; Baker
2017), where we formed a search query of the token and its POS tags using Regex
a 30 regular expression package in python. The results are shown in Table 4.2
according to each SOM pattern.

Table 4.2: Descriptive results of matching verb tokens from the WordNet
(WN) lexicon, according to each SOM pattern, to the lexical units (LU) in
FrameNet frames (FN).

SOM Pattern WN verbs missing verbs in FN FN Freq. unique FN unique LUs LUs/FN
Creation 694 83 4,374 735 9,413 12.81
Change 2,383 127 10,212 902 10,148 11.25
Cognition 695 13 4,349 785 9,616 12.25
Communication 1,548 68 8,387 872 9,998 11.47
Contact 2,196 71 11,795 907 10,141 11.18
Stative 756 144 8,709 860 9,948 11.57
Possession 847 59 4,626 779 9,626 12.36
Motion 1,408 219 8,180 805 9,755 12.12
Perception 461 11 2,999 626 8,904 14.22
Total 9,591 a 795 63,631 1,058 b 10,448 c 12.14

aThe overall unique verbs as a a single verb token might trigger more than one SOM pattern
depending on the verb polysemous (Fellbaum 1998).

bThe overall matched and unique frames.
cThe overall unique lexical units from the overall matched and unique frames.

The results presented in Table 4.2 show that the SOM patterns are linked
to an overall of 9,591 unique tokens from the WordNet lexicon (as verbs only),
and almost 91.71% of the SOM verb tokens are matched to one of more of the
lexical units of the 1,058 unique frames in the FrameNet—which occupies 86.43%
of total 1,224 frames in FrameNet—and with an average of 7.23 frames per SOM
verb token (i.e., by considering the total frames of 63,631 frames for the total
SOM verbs of 8,796 available verb tokens in the FrameNet).

In addition, the unique lexical units attached to total recalled frames are
10,488 unique lexical units (including the lexical units with different POS tags,
not verbs only) and an average of 12.14 lexical units per unique frame i.e. each
verb in SOM patterns could be semantically linked to almost 1.09 lexical units in
FrameNet. An example of most recalled FrameNet frames which were triggered
according to verbs list of the SOM approach is depicted as a word cloud in Figure
4.4. In this figure, we visualised the top 100 recalled frames from the FrameNet
lexicon as they were triggered based on comparing between the frames’ lexical

30https://docs.python.org/3/library/re.html
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units and the SOM verbs list from the WordNet lexicon. The font sizes of the
frames titles pertain to the frame frequencies in the evoked frames list (i.e., a
frame might be recalled several times according to the number of matched verbs
with the frame’s lexical units).

Figure 4.4: The top 100 recalled frames from the FrameNet lexicon as they
were triggered based on comparing between the frames’ lexical units and
the SOM verbs list from the WordNet lexicon.

The results obtained from comparing the WordNet lexicon (via the SOM
approach patterns) and the FrameNet lexicon are sufficient, besides the results
obtained from the word analysis (presented in Section 4.1.1) as we analysed a
list of 156 words mostly verbs and we found that 132 tokens from the list have
evoked 188 FrameNet frames.

In addition, regardless of the syntax associated in the requirement state-
ment (e.g., the requirement statement written in passive voice or active voice),
FrameNet frames are independent from the sentence syntactic structure; and it
only refers to the token and its POS. The overall results are encouraging to satisfy
the first case of requirement descriptions in the statement-level analysis.

An example of two requirement statements followed RD-1

R1: The system [Creator] creates [Creating LU] internal files [Cre-
ated entity].
R2: The log files [Created entity] are generated [Creating LU] by the
backup system [Creator].
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RD-2: A requirement statement has a positive conditional form.

Description: Another requirement description case that is more frequent in au-
thoring requirements is the case of conditional pattern i.e. in order to satisfy a
requirement another requirement or request shall be met.
Related frames: We first investigated a group of words (e.g., ‘if something
happened, then another action must be taken’); these words are related to such
conditional patterns. In addition, we used the semantic tasks of identifying con-
straints of a requirement statement in the SOM approach.

Then, we applied a query search for those tokens in the FrameNet lexicon. Ac-
cordingly, we found that the frame of Conditional concurrence frame in FrameNet
can be used to describe such a linguistic consideration. This means the case of
positive condition which describes the co-occurring of two events one is the re-
quest (i.e. Profiled possibility frame element) and the other is the affect of that
request (i.e. Consequence frame element).

The lexical units to evoke the Conditional concurrence frame, which satisfied
(RD-2) description, are: [‘as long as.scon’, ‘assuming.scon’, ‘if.scon’, ‘in case.scon’,
‘in the event.prep’, ‘provided.scon’, ‘supposing.scon’, ‘what if.scon’].

An example of a requirement statement followed RD-2

If [Conditional LU] customer does not have an account [Profiled possibility]
the system prompts the customer to provide information in order to create
a new account [Consequence].

RD-3: A requirement has a negative conditional form.

Description: This requirement description is related to the conditional pat-
tern, as shown in the previous case (RD-2), is the situation where a requirement
statement conveys an opposite action to the main conditional action in that re-
quirement statement.
Related frames: This requirement description was a result from our search for
constraint-related tokens (or lexical units) in the FrameNet lexicon. We found
that many frames could be used to describe constraint-related events in a require-
ment statement, and these frames could be organised into alternative descriptions.
To further explain, the case of (RD-2) is an assertive (i.e. positive) form of condi-
tional requirement and the case of (RD-3) is another requirement description to
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express contradicting (i.e., negative) conditional requirement. In this case (RRD-
3), the most related frame in FrameNet is Negative conditional. The lexical units
used to trigger the Negative conditional frame are: [‘otherwise.adv’, ‘unless.scon’].

An example of a requirement statement followed RD-3

Unless [Negative conditional LU] the user signed out [Profiled possibility],
she is allowed to update her profile content [Anti consequence].

RD-4: A requirement statement has a contradictory action.

Description: The other description of authoring software requirement state-
ments, is the case when a requirement statement includes a specific action and
its contradiction.
Related frames: This requirement description is related to the semantic task
of identifying constraints as discussed previously in (RD-3) and (RD-6). How-
ever, the case of expressing contraction event (RD-4) is not identical to (RD-3)
(i.e., the case of negative conditions in requirements) or (RD-6) (i.e., inclusion
or exclusion requirement cases). The target frame to recall from FrameNet is
Concessive frame. The former frame can be used to describe a requirement
statement as being or implying a contradiction to the main assertion in the
given requirement. The lexical units to trigger the Concessive frame are: [‘al-
though.scon’,‘but.c’, ‘despite.prep’, ‘however.adv’, ‘if.scon’, ‘in spite of.prep’, ‘much
as.scon’, ‘nevertheless.adv’, ‘though.scon’, ‘to be fair.adv’, ‘while.scon’].

An example of requirement statement followed RD-4

In the target platform, Peter decides that this course is relevant
[Main assertion] but [Concessive LU] not handled in the current specification
[Conceded state of affairs].

RD-5: A requirement statement has a timely sequence or synchro-
nizes order of actions.

Description: This a different form of requirement statements which reveals se-
ries of actions (or events) that are requested to occur in a timely order.
Related frames: This requirement description is related to the semantic task
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of sequence behaviour in the SOM approach, and the tokens used in this seman-
tic task are: [‘after’, ‘when’, ‘if’, ‘once’, ‘following’]. If the requirement state-
ments reveals series of actions, then these requirements could be ordered in a
timely manner. We searched for FrameNet frames that could be used to de-
scribe such a case, and we found the following three frames: Time vector frame,
Temporal collocation and Relative time. These frames, generally, express the rel-
ative ordering of two events or times. Examples of the lexical units pertain
to these frames are: [‘after.prep’, ‘afterward.adv’, ‘before.prep’, ‘beforehand.adv’,
‘following.prep’, ‘from.prep’, ‘later.adv’, ‘post.prep’, ‘pre.prep’, ‘previous.a’, ‘then.a’,
‘thereafter.adv’, ‘until.prep’, ‘around.prep’, ‘as of.prep’, ‘as.adv’, ‘at.prep’].

An example of a requirement statement followed RD-5

After [Time vector LU] the funds are transferred [Landmark event], the
transaction must be recorded [Event].

RD-6: A requirement statement has an additional actions.

Description: This requirement description is used to express a requirement
that are associated with another requirement i.e. a requirement statement that
is followed by further action(s) or requests.
Related frames: This requirement description is also related to the semantic
task of sequence behaviour in the SOM approach, and describes the association
of events e.g. to describe consecutive events in a requirement statement. Such
a requirement case is described in FrameNet as Increment frame. The lexical
units to trigger the Increment frame are: [‘additional.a’, ‘another.a’, ‘another.n’,
‘further.a’, ‘more.a’, ‘more.n’, ‘other.a’].

An example of a requirement statement followed RD-6

LMI-ACCESS has a system for processing the CD-ROM applications, an-
other [Increment LU] system for maintaining network access [Added set].

RD-7: A requirement statement has an inclusion or an exclusion of
actions or items.

Description: In similar to what described in the above requirement descriptions
(i.e., RD-4 and RD-5), there is another situation where the requirement statement
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describes an inclusion or an exclusion of certain actions or items.
Related frames: As described in (RD-4) and (RD-5), this case of requirement
description is also related to the semantic task of sequence behaviour in the SOM
approach. The frame Inclusion from FrameNet can be used to describe the case
of including or excluding the requirement statements that describe parts of an
action (e.g., users and tasks or activities). The triggers for the Inclusion frame
are: [‘contain.v’, ‘exclude.v’, ‘excluding.prep’, ‘have.v’, ‘include.v’, ‘including.prep’,
‘inclusive.a’, ‘incorporate.v’, ‘integrated.a’].

An example of a requirement statement followed RD-7

R1: All users [Total] are allowed to register in the system excluding [In-
clsuion LU] users under 18 [Part].

RD-8: A requirement statement conveys a reason or purpose.

Description: This requirement description is used to express a requirement
statement that is accompanied by a reason or justification for the main action
conveyed in that provided requirement statement.
Related frames: This requirement description is not corresponding to any spe-
cific semantic task in the SOM approach. This description is about providing
reasons and purposes of the requests or actions involved in the requirement state-
ments. In FrameNet, the Causation frame is the frame that describes a reason to
perform an action and the examples of lexical units in Causation frame are: [‘be-
cause of.’, ‘because.c’, ‘bring about.v’, ‘bring on.v’, ‘bring.v’, ‘causative.a’, ‘cause.n’,
‘cause.v’, ‘consequence.n’, ‘consequent.a’, ‘consequential.a’]. Additionally, the Pur-
pose frame that explains a purpose or an aim for certain action, examples of
its lexical units are: [ ‘aim.v’, ‘goal.n’, ‘in order.adv’, ‘intend.v’, ‘mean.v’, ‘plan.v’,
‘purpose.n’, ‘target.n’, ‘use.n’]. It is worth mentioning that the case is also can be
described using the frame elements (e.g., Purpose or Cause) that are appeared in
some of FrameNet frames (e.g., Creating frame has Purpose frame element which
identifies the purpose for which the creator intentionally creates a new entity).

An example of a requirement statement followed RD-8

Training manuals are also important [Effect] because [Causation LU] they
describe most your company’s training and development policies [Cause].
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From the above explanations and examples, all of the eight descriptions of au-
thoring requirement statements with various linguistic considerations, which are
manly inspired from the semantic tasks in the SOM approach by Chioasca et al.
(2016) and Chioasca (2015), are covered by at least one frame from FrameNet.
From the initial investigation we made so far, we found that FrameNet is poten-
tially feasible to carry out the annotation tasks.

In total we have retrieved more than 1,000 frames from FrameNet in the
requirement statement-level analysis, and 188 frames from the word level analysis
investigation. Majority of frames are not investigated for their relatedness for RE
domain; especially the frames retrieved from the fist description (RD-1) of the
statement-level analysis which was a the largest in number of recalled frames i.e.
a collection of 1,058 unique frames in FrameNet–which occupies 83.16% of total
1,224 frames in FrameNet–were retrieved in (RD-1) analysis. As can be observed
in the depicted top frames of (RD-1), in Figure 4.4, some of the frames could
be strongly related to software descriptions, for example the Text frame which
describes “an entity that contains linguistic, symbolic information on a Topic,
created by an agent or an author” 31. In addition, some of the recalled frames
in Figure 4.4, could be indirectly related to software description like the most
common frame in the figure Self motion which describes the movement of an agent
which also identifies the path, area and the goal of the movement process. On
the other hand, some of the shown frames, in Figure 4.4, might not be common,
or even used, in software descriptions e.g. Fluidic motion which describes the
movement of fluids from a source to a goal in a an area like water flooding.

To conduct such analysis, i.e. to identify related frames for our domain of
interest (RE), we proposed using techniques from the corpus-based methodology
Steiner (2008). Simply, because all of these analysis results, we obtained so far for
the initial analyses, are encouraged us to carry further investigation using corpus-
based method (Steiner 2008), and generate the first corpus (i.e., FN-RE corpus)
in the RE domain that is annotated using the semantic frames information (i.e.,
titles and frame elements) from FrameNet, and then to identify the most related
frames for the RE domain according to a given set of requirement documents.

31https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=
Text
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4.2 REQ: The Requirement Documents Dataset

This is the initial step we made towards collecting a representative set of re-
quirements. We created a repository of requirement documents called REQ 32

dataset.
We formed a search string containing keywords such as “software description”,

“natural language requirements” and “software requirements specification”, and
then we used Google search to look up for the desired documents. In addition, we
applied a snowball sampling technique to find additional documents from various
sources (e.g. web blogs, public datasets repository, and learning materials).

We created and used a list of instructions to initially evaluate the retrieved
documents and then to classify the accepted documents. The instructions are
explained in Table 4.3 as a group of questions and options to classify accepted
documents.

As a results, we collected a set of 34 requirement documents that form the
basics of REQ dataset, and the types of these documents are varied (e.g., the
requirement document could be use cases, scenarios, system requirement specifi-
cation, etc.,) as shown in Figure 4.5.

Figure 4.5: Distribution of requirement documents Types in REQ Dataset

32Pronounced as /rek/.
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Table 4.3: An inspection list to guide the collection process of requirement
documents

Questions Options Explanation
1: What is the
suggested type of
requirement doc-
ument?

Scenarios description,
Use cases, Software
description, or User
Manuals.

Requirement descriptions are organised
into different types, mostly the require-
ments are revolved around users and soft-
ware requirements (Dick et al. 2017). This
is an important factor to consider dur-
ing the collection process to give us the
space to see the variation of the selected
requirements description. The judgement
was based on our knowledge to the nature
of the document in each category.

2: What is the
source type of the
requirement doc-
ument?

Research pa-
pers,Learning Ma-
terials, Website and
blogs, or Recommended
by a colleague.

During our search for the requirement
documents we referred to different sources
to collect the documents, and this is a list
of the sources we used at the collection
process.

3: Where this
requirement doc-
ument can be
found?

Reference Citation By giving the full reference of each source
that we collected the document from it.

4: What is the
main topic cate-
gory described in
the requirement
document?

Information Technol-
ogy, Environment,
Business and Man-
agement, Educational,
Security, or Health.

The collected requirement documents
were checked manually and by extracting
some keywords to understand what is the
system topic or environment of use. The
decision was made according to our judge-
ment of the document context-of-use.

5: What is the
suggested title of
the requirement
document? If
not, suggest a
title.

Given textual title. By giving each document a title for later
referencing.

Moreover, the documents themes (or the designed system topic such as: ed-
ucational, medical , business and management, etc.) are also varied in REQ
dataset as shown in Figure 4.6, which might provide variety of contextual infor-
mation of the collected documents; as this is preferable to tackle versatile and
various frames from FrameNet during the annotation procedures.

For organising the dataset, the NLTK python package (Schneider and Wooters
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Figure 4.6: Distribution of The Topics Discussed in REQ Dataset

2017)33 is used as a pre-processing component for sentence segmentation, i.e., for
identifying the requirements in each documents. The sentences are then manually
revised and we removed any duplication or unnecessary textual descriptions to
best of our knowledge of what is defined as requirement (i.e., remove introductory
paragraphs in long specification documents and only keep the main functional and
non-functional requirements).

To facilitate the searching and processing of REQ dataset, we encoded the
textual documents with their selected requirements into representative and trans-
ferable format (Pustejovsky and Stubbs 2012). The requirement documents are
semi-automatically encoded in an existing XML based format for presenting raw
requirement documents and similarly following the scheme presented by Ferrari
et al. (2017b).

A collection of 34 requirement documents from REQ dataset is publicly avail-
able 34 as part of a previous publication described by Alhoshan et al. (2018a).
An example of the XML encoded requirement document is shown in Figure 4.7.
In total we collected 80 requirement documents varying in length and topics. In
Figure 4.5 and 4.6 , we demonstrate the distribution of types and thematic topics
of the selected requirement documents respectively. After manually verifying the

33https://www.nltk.org/api/nltk.tokenize.html
34https://data.mendeley.com/datasets/s7gcp54wbv/1
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Figure 4.7: A simple example of REQ Dataset of Requirement Document
(REQ-005) encoded in XML format as similarly adopted from Ferrari et al.
(2017b)

requirement results, a total of 5,438 requirement 35 (corresponding to 300,396
tokens) were obtained.

The collected requirement documents of REQ dataset, are then prepared for
the next phase which is the corpus annotation. We aim to generate the first
corpus of documents that are annotated using semantic frames from FrameNet,
the details of the annotation procedures are going to be discussed in two parts
(i.e., manual and automatic annotations), as shown in the next two sections.

4.3 FN-RE: Human-expert Annotation Proce-
dures

Manually annotating REQ datatset using FrameNet frames is an expensive proce-
dure because it involves deep understanding of the available frames in FrameNet

35requirements are segmented as complete sentences.
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and their target lexemes (i.e. lexical units). We described the annotation proce-
dures and efforts needed to create the FrameNet lexicon and corpus in Section
2.3.2.

In this section, we describe our annotation steps to produce and validate
the first part of FN-RE corpus; a corpus that is manually annotated using
FrameNet frames and their associated frames elements.

To facilitate the discussion, we divided the annotation procedure into four
main steps in order to produce the human-annotated corpus, namely the FN-RE
golden corpus.

Step 1. Use subset documents from REQ dataset for generating FN-RE corpus.
We selected 18 requirement documents to be manually annotated.

Step 2. Prepare and annotate the dataset, from step 1, with frames selection,
i.e. identify the candidate lexical units in the requirement statements
from the selected dataset and assign frames by their titles only to the
evoked tokens. In this step, we recruited annotators to label the legibil-
ity of the triggered frames (i.e., selecting which frames from the recalled
frames are suitable to describe the given requirement statement). We
refer to this step as coarse grained annotation.

Step 3. Use the labelled and selected frames, from step 2, and label their cor-
responding frames elements in the labelled requirement statement. We
refer to this step as fine grained annotation since we attach more detail
to the labelled requirements such as the elements associated with each
selected frame in the given requirement statements.

Step 4. Finally, produce the final dataset of the FN-RE golden corpus. This
part of FN-RE corpus will be used later to evaluate existing semantic
parsers to perform an automatic annotation for the remaining docu-
ments in REQ dataset as will be discussed in Section 4.4.

In the following, we present the details of each step above–including the validation
results of Step 2 and Step 3 to generate the FN-RE golden corpus.

4.3.1 REQ Dataset Preparation for Human Annotation

To prepare the dataset for the manual annotation, we retrieved the 221 require-
ment statements from the selected 18 documents in REQ dataset (presented in
Section 4.2). Then, the NLTK python package (Loper and Bird 2002) were used to
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apply syntactic processing to the given requirement statements, i.e., each require-
ment statement were lemmatised, assigned POS tags, and syntactically parsed
using an NLTK shallow parser.

To make the annotation process more efficient, we implemented a script, in
python, for automatically matching the processed words in the requirements (i.e.,
the word in its basic form aligned with its POS tag) against the lexical units
in FrameNet. Through this process, we were able to evoke candidate semantic
frames that denote the meaning of the requirements in REQ documents dataset.
Therefore, we attempted to match each token (together with its lemma and POS
tag) against lexical units in FrameNet, via the FrameNet API by Schneider and
Wooters (2017) available in NLTK.

Then, we filtered out the evoked frames according to the guidelines we fol-
lowed in statement-level investigation we conducted in Section 4.1.2. To this
end, we only target particular types of FrameNet lexical units were considered by
this matching method, namely: all verbs and any expressions pertaining to time
(e.g., ”beforehand”), condition (e.g., ”in case”, ”otherwise”), additional action
(e.g., ”further), inclusion (e.g., ”inclusive”), exclusion (e.g., ”excluding”), con-
tradiction (e.g., ”nevertheless”), causation (e.g., ”because of”) and purpose (e.g.,
”in order”). The selection of these types was informed by our observations on
the linguistic styles often used in writing requirement statements (as discussed in
Section 4.1.1 and Section 4.1.2) to reduce the noise that could be caused by tar-
geting unnecessary tokens (i.e., words that are not significant to the requirement
description.)

Afterwards, the evoked candidate frames are attached to the requirement
statements for later selection. Basically, the retrieved and processed information
was then organised into tabular sheets for later annotation in Step 2 and Step 3.
An example of these annotation sheets shall contain the identification numbers
of the document and its requirements set and a list of the identified lexical units
with their corresponding candidate frames for each requirement in the set.

4.3.2 Frames Selection: Coarse grained annotation level

After preparing the requirement statements by attaching their candidate seman-
tic frames, the annotation sheets were presented to the annotators for manual
validation, i.e., selecting the frames that best capture the meaning expressed in
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a given requirement statement. Deciding which FrameNet semantic frames cap-
ture the meaning expressed in the given requirements was performed manually in
order to maximise accuracy. This step is called coarse grained annotation since
we only target the frames titles, and label requirement statements with the titles
of their candidate frames only.

Task 1: Coarse Annotation Procedures

For the coarse grained annotation task, we employed two annotators and they
were trained, over a period of four weeks, on the annotation task and retrieving
information of the frames via FrameNet online lexicon 36. The first annotator
(Annotator A) is a requirements engineer with seven years of experience in the
IT industry. The second annotator (Annotator B) is the author of this PhD
thesis. Provided with candidate frames obtained earlier, the annotators were
asked to confirm whether these frames capture the meaning of a given requirement
statement or not. This validation process was carried out in accordance with the
guidelines we developed, presented in Appendix A, which drew inspiration from
the FrameNet annotation scheme discussed by Baker (2017).

Afterwards, the entire corpus of 18 documents–together with the candidate
semantic frames retrieved in the previous step discusses in Section 4.3.1–was
presented to each of Annotators A and B for annotation. We provide Figure 4.8
to show an example of the details that are presented to an annotator and the kind
of judgement that he/she is expected to provide. An annotator is presented with
the automatically matched lexical units, their character offset locations and the
titles of the frames linked with them. He/she then indicates whether the frames
apply to the requirements (rating = 1) or not (rating = 0).

At the top row of the table is a sample requirement. The first column (LU) lists
the lexical units matched by the method described in Section 4.3.1. The second
and third columns (Start and End) indicate the location of the corresponding
lexical unit in terms of character offsets which provides useful information in cases
where a lexical unit appears multiple times within a requirement. The fourth
column (Retrieved Frames) lists the titles of the frames linked with the matched
lexical units and are thus considered to be as candidate frames for annotating the
given description. The annotator indicates in the last column his/her judgement
on whether a candidate frame applies to the requirement (rating = 1) or not

36https://framenet.icsi.berkeley.edu/fndrupal/framenet_search
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Figure 4.8: A sample from the coarse-grained annotation process for a re-
quirement statement from the REQ dataset.

(rating = 0). Both annotators completed this task for all 221 requirements from
the selected 18 documents in REQ dataset in a period of a week with almost four
hours per day (and an average of 7.60 minutes per requirement statement). This
average annotation time includes retrieving frames from the FrameNet lexicon,
reading the frames’ information such as the frames’ definitions and their examples
and most importantly record the rating in the annotation sheet.

Task 2: Validation

In order to assess the consistency of annotations between our two annotators, we
evaluated the inter-annotator agreement (IAA) based on the harmonic mean of
recall and precision, i.e., F-score, as explained in Equation 4.1.

Precision= T P
T P +F P

Recall = T P
T P +F N

F1 = 2∗ P recision∗Recall
P recision+Recall

(4.1)

To calculate the values of precision and recall, we counted the number of true
positives (TPs), false positives (FPs) and false negatives (FNs) obtained by An-
notator A with respect to Annotator B’s annotations, which for the purposes of
F-score calculation were treated as gold standard. TPs are the set of Annotator
B’s annotations that overlap with Annotator A’s annotations, while those which
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were missed correspond to FNs. Meanwhile, FPs are comprised of the annota-
tions from Annotator A which are not in Annotator B’s annotations (and hence
are not in the gold standard).

After determining the number of TPs, FPs and FNs (by treating the an-
notations from Annotator B as gold standard and those from Annotator A as
response) and micro-averaging over all of the labelled 18 documents, we obtained
an F-score of 85.06% at frames selection (i.e. coarse grained annotation method),
which interprets as “a satisfactory level” of agreement.

Moreover, the Cohen’s kappa (κ) is used to evaluate the degree of agreement
between the frames selection made by Annotator A and B. We measured the
score of Cohen’s kappa as described in the guidelines of Landis and Koch (1977),
using the formula shown in Equation 4.2.

κ= Po−Pe
1−Pe

(4.2)

Where Po is the relative observed agreement among our annotators A and B, i.e.,
the sum of agreed scores of frame’s selection matching of A and B divided by the
total number of agreed and disagreed scores of A and B. For Pe, it represents the
hypothetical probability of chance agreement among the two annotators. The
value of Pe is calculated by summing the probabilities of both annotators would
agree and disagree for the frames selection. Eventually, we obtained a “substantial
agreement” of 63.59% as κ score as stipulated by Landis and Koch (1977).

Overall, the obtained results of the calculated F-score and Cohen’s kappa
indicate that there is a more than satisfactory level of consistency between our two
annotators, implying that their annotations can be considered as highly reliable.

However, we investigated the reasons of annotation differences between the
two annotators. We found that these are mostly due to close semantic rela-
tionships between certain semantic frames. FrameNet, for example, contains a
Creating and an Intentionally create frame, both of which would be retrieved by
our automated lexical unit matching method and thus presented to an annota-
tor for a requirement statement containing the word ‘generate’ as a verb. As
these two frames have similar lexical units and are linked by hyponymy (where
Intentionally create has Creating as its parent frame), Annotator A could select
one frame while Annotator B might select the other (or both) In Figure 4.9) we
presented a case where Annotator A’s judgements on which frames apply to the
word ‘generate’ (in the requirement in Figure 4.8), are in disagreement with those
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of Annotator B. This can be attributed to the hyponymic relationship between
the Intentionally create and Creating frames. The last column in the fgure is for
recording the results of harmonisation (H) These differences are then tackled at
the next step pf the current annotation procedures which is the harmonisation
task to produce the final set of selected frames in the FN-RE golden corpus.

Figure 4.9: A case where Annotator A’s judgements on which frames
apply to the word ‘generate’ (in the requirement in Figure 4.8), are in
disagreement with those of Annotator B.

Task 3: Harmonisation

Aiming to produce annotations that are of the highest quality as possible, we
resolved these discrepancies prior to preparing the frames to the next step, i.e.,
the fine grained annotation with frames elements. In order to produce the ini-
tial set of frames selection, we harmonised the judgements provided by our two
annotators, addressing the primary cause of discrepancies explained previously.
From the set of semantic frames for which the annotators were in disagreement,
the following instances were revisited by Annotator B: (1) where the FrameNet
frame that she selected as being most relevant to a description is semantically
related to the one selected by Annotator A; and (2) where multiple presumably
semantically related frames were selected for a word in a requirement statement.
Annotator B reviewed information pertinent to the frames in question, e.g., the
definitions and descriptions provided in FrameNet, examples of annotations in
the FrameNet corpus , as well as the judgements provided by Annotator A. In
cases where she is convinced that Annotator A’s judgements were more correct,
she modified her own annotations; otherwise, she kept her original judgements.
She also ensured that only one frame is assigned to a given word (i.e., the matched
lexical unit), choosing the one that best captures the meaning of a description
(as she understands it), while also reviewing the definitions and examples that
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are available in FrameNet. The outcome of this process formed the initial basis
of the FN-RE golden corpus where the dataset annotated by frames titles only.

After harmonisation of manually provided judgements, we performed fre-
quency analysis over the final set of annotations, the results of which are pre-
sented in Table 4.4. Alongside these results, we also provide the frequency of
annotations resulting from our automated lexical unit matching method, as the
reader might be interested in seeing how much improvement was obtained after
manual validation and harmonisation.
Table 4.4: Frequency analysis over the final set of annotations in the FN-RE
Corpus.

Analysis level Automated matching Manual Annotation
Total number of unique
frames

255 frames 115 frames

Total number of unique lexical
units

205 frames 191 frames

Average number of frames per
requirement

5.6 frames/requirement 1.24 frames/require-
ment

As one can expect, the automated method for matching lexical units intro-
duced a considerable amount of noise. Firstly, the matching of tokens (with their
lemmatised forms and POS tags) against FrameNet lexical units does not have
perfect accuracy as the POS tagger that we utilised was assigning the wrong
POS tag to tokens in a few cases. Secondly, for a given word from a description,
e.g., ‘generate’, our method would have retrieved all frames that are associated
with the generate.v lexical unit regardless of the sense (e.g., Intentionally create,
Giving birth, Creating, Cause to start). This would have resulted in a significant
number of false positives, i.e., frames that are irrelevant to a given software de-
scription. These issues were however revised during manual validation and har-
monisation.

In our final set of annotations, only frames with rating = 1 (after manual
validation and harmonisation) were included. We can observe from Table 4.4 that
out of the 255 semantic frames retrieved through automated lexical unit matching,
140 (54.9%) were eliminated during manual validation and harmonisation, and
thus were not included in the final set of coarse grained annotation results. There
was also a significant drop in terms of the average number of frames assigned to
each requirement (from 5.6 per requirement to only 1.24 frames per requirement).
This is due to the careful selection made during the annotation and harmonisation
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procedures. Finally, the results of the annotations are then refined and used to
the next phase (fine grained annotation); which is presented in Section 4.3.3.

4.3.3 Frames Elements Labelling: Fine grained annota-
tion level

Following the process of frames selection, i.e., applying coarse grained annotation
to the collected dataset, we continued our annotation at the fine grained level.
For that, on top of the semantic frames in FrameNet evoked in each requirement,
associated frame elements were also annotated. We applied this step as a Se-
mantic Role Labelling (SRL) task, i.e., the assignment of roles to words or word
sequences in a requirement statement (Burchardt et al. 2006).

In this task, the arguments of a given predicate (e.g., a verb signifying an
action) are identified and assigned corresponding roles, e.g., Agent, Experiencer,
Instrument. In our case, matched lexical units that evoke frames from the previ-
ous step (described in Section 4.3.2) are treated as predicates.

The goal of this task is to then identify the respective frames elements by
marking up the arguments of these predicates and assigning them roles. More-
over, in this step we had the chance to revise the frames selection made earlier
by considering other parts of FrameNet frames i.e. the frames elements and
relationships between frames.

Task 1: Setting-up the annotation tool

Owing to the complexity of the manual annotation for labelling the frames el-
ements and their text spans, we used an annotation tool specific for SRL task.
Therefore, we made use of SALTO, a Java-based annotation tool specifically
developed for the annotation of semantic frames (Burchardt et al. 2006). Its
graphical interface supports the visualisation as well as drag-and-drop editing of
relationships between predicates and arguments.

To prepare our dataset–resulted from Section 4.3.2–to be annotated using
SALTO tool, we firstly encoded our requirement documents in the format required
by SALTO, i.e., SALSA/TIGER XML as described in the guidelines of (Erk and
Pado 2004). The encoded XML dataset, as shown in Figure 4.10, contains the
following information:
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1. Syntactic pre-processing, i.e., by including information of tokens per-
tain to the requirement statement, lemmas, and phrases from the syntactic
parsing (as result from dataset preparation described in Section 4.3.1), and
apply this process for each requirement in the document.

2. Semantic information pertain to the selected FrameNet frames,
i.e., by adding frames titles which are previously selected from the preceding
step (i.e. matched lexical units and selected FrameNet frames in Section
4.3.2), and then preparing tags for adding information of the annotated
frame elements of the target frames.

Additionally, we created an XML-formatted file containing information on
FrameNet frame elements (obtained via the FrameNet API (Schneider and Woot-
ers 2017)) in python. The XML file is generated as database provided to the tool
as a lookup list for the frames and their frame elements.

Task 2: Fine Annotation Procedures

Working with the same annotators from the previous step (discussed in Section
4.3.2), Annotator A and Annotator B, were carried out the fine grained annota-
tion process. For each requirement statement, the used tool (SALTO) presents
to the annotator: (1) the tokens contained in each requirement statement asso-
ciated with the phrases chunks, (2) matched lexical units and FrameNet frames
they evoke, and (3) the frame elements to choose from according to the FrameNet
lookup list. The interface of SALTO tool is shown in Figure 4.11.

The annotators then revised each evoked frame by carefully reading its defini-
tion and the accompanying annotation examples from FrameNet semantic lexicon.
As shown in the example in Figure 4.11, SALTO is used to select the desired ele-
ments for each frame by attaching a related token (or sequence of tokens) to the
predicate and specifying its semantic role.

Another example is shown in Figure 4.12 which presents an example of a
requirement statement that evokes the Creating 37 frame which has 19 associated
frame elements according to FrameNet. Out of these, the five frame elements
that apply to the requirement were identified with the aid of SALTO. Each of
these elements were then linked to the corresponding token or token sequence,

37https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=
Creating
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Figure 4.10: An example of a requirement statement encoded using SAL-
SA/TIGER XML encoded format as described by Erk and Pado (2004).

e.g., the noun “system” for Creator and the noun phrase (NP) “records of user
activities” for Created entity. The annotations resulting from this step were then
stored by SALTO in the SALSA/TIGER XML format (Erk and Pado 2004).

For the sake of keeping track of any changes during the fine-grained annotation
procedures, i.e., to make sure that progressing from the coarse grained to the
fine grained annotation is systematically planned. We generated a procedural
flowchart, shown in Figure 4.13, to monitor the transition in the annotation
processes. The annotators worked according to the given annotation procedures
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Figure 4.11: An screenshoot of SALTO tool graphical interface (Burchardt
et al. 2006) which shows one of the annotated requirement in document
number (6) from REQ datatset.

Figure 4.12: The SALTO annotation tool showing a requirement annotated
with the Creating frame and its elements (Cause, Creator, Created entity, Fre-
quency and Imposed purpose).

and the annotation instruction (presented in Appendix A). The flowchart shows
four main operations: 1) recording missing frames in FrameNet; 2) suggesting to
add another frames that was not added from the previous annotation step; 3)
suggesting to add a new frame in FrameNet; and finally 4) removing a previously
selected frames which seem unrelated according to the current annotation step.

As our annotators were carrying out this step, we found it necessary to revisit
results of the previous step (presented in Section 4.3.2), i.e., the semantic frames
which were manually selected for each requirement statement. Therefore, they

110



Figure 4.13: Flowchart of the procedures followed in carrying the annotation
procedures from coarse grained annotation to the fine grained annotation
step.

Figure 4.14: An example of the follow-up fine-grained annotation sheet.

used annotation sheets (.csv), to document their comments (e.g. removing se-
lected frame and select another frame from FrameNet, suggesting adding frames
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missing in FrameNet or adding lexical units to existing frames in FrameNet).
The given sheets helped us to thoroughly investigate the application of FrameNet
frames to the requirement descriptions embedded in REQ datatset. An example
of the comments sheet is shown in Figure 4.14. The example of the follow-up
annotation sheet shows information of the 6th requirement in document number
29 from the REQ datatset; the shown information suggests adding a new lexical
unit ‘assign’ to an existing frame in FrameNet (Being obligated), and the other
suggestion is inserting a new frame (Possibility) that was not added from the
coarse grained annotation step.

Both annotators completed this fine grained annotation task for all 221 re-
quirement statements from the selected 18 documents in REQ dataset in a period
of four weeks (i.e., almost three hours per day), and in average annotation time
of 22.81 minutes per requirement statement.

Task 3: Validation and Harmonisation

Inter-annotator agreement (IAA) rate was measured, as described in Equation
4.1, over our 18 requirement documents, and because of the annotation details in
this step, we measured the IAA rates at three different levels. Their results are
shown in Table 4.5:

• Evoked frames: the extent to which both annotators selected the same
frames.

• Frame elements (roles only): for frames that the two annotators agree
on, the extent to which they agree on frame elements considering only roles.

• Frame elements (roles and text spans): for frames and frame element
roles that the two annotators agree on, the extent to which they agree on
frame elements if text spans are considered.

Table 4.5: Inter-annotator agreement scores for each annotation level eval-
uated using the F-score shown in Equation 4.1

Annotation Level IAA (F-score)
Evoked Frames 78.50%
Frame elements (roles only) 76.90%
Frame elements (rolesand text
spans)

72.85%
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From the results shown in Table 4.5, we can observe a slight drop by 6.56%
in F-score rates for frame selection (i.e. in the coarse grained annotation we
obtained an agreement of 85.06% while in the fine grained annotation–and after
revising the frames selection– the agreement was 78.50%).

This is because in some cases, a closer look at candidate frame elements pro-
vided our annotators with a different understanding of the evoked frames that
were selected previously. As a consequence, some frames were selected addition-
ally, some were replaced by other frames, while others were discarded.

In the case of discarded frames, the corresponding lexical units were docu-
mented to allow us to analyse whether any frames or lexical units were currently
missing in FrameNet. To this end, all of the results of inter-annotator agree-
ment calculations obtained (shown in Table 4.5) of the three annotation levels
are considered to be a “satisfactory agreement”. Therefore, we could consider the
annotations in our FN-RE golden corpus as being reliable.

Nevertheless, we analysed the deleted frames and we investigated the reasons
for the changing cases of certain frames. In Figure 4.15, we reported these cases by
numbers from both annotators A and B. For example, the frame Have associated38

which mostly linked with lexical units such as “have” and “has” were removed
frequently during the annotation.

We investigated such elimination cases and we found that, the frame Have associated
is meant to describe objects that have an association of with some entities (e.g.
“The system has several components, each component has several functions”).

However, from our analysis, we found that there are cases where words such
as “have” and “has” are repeated as an essential part of the syntactic structure
of a sentence (e.g., the case of passive voice requirements).

In this case, the frame Have associated is removed from the selection since it
was not applicable for the requirement description (e.g. “A proper training has
to be arranged for using the system”). In addition, we followed cases of missing
frames in FrameNet due to its importance in describing essential meanings in our
requirements dataset. The missing frames were recorded as missing because the
target words are not added as lexical units for an existing frame in FrameNet.
In Table 4.6, we illustrated selective cases of missing frames as recorded by our
annotators. The table presents a list of missing lexical unites in FrameNet and

38https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=
Have_associated
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their corresponding suggested frames in FrameNet as a result of the fine grained
annotation method. The table shows the word which is assumed to be missing
in FrameNet and their top similar words as retrieved by the online FrameNet
lexicon and the list of suggested frames.

Table 4.6: List of missing lexical unites in FrameNet and their corresponding
suggested frames in FrameNet as a result of the fine grained annotation method.

Target Word Synonyms Suggestion
upload.v send.v, transfer.v, post.v,

load.v, export.v
Adding the target word as addi-
tional lexical unit to these frames:
Sending, Transfer and Sent item.

cancel.v end.v, stop.v , terminate.v, in-
terrupt.v, suspend.v

Adding the target word as addi-
tional lexical unit to these frames:
Process stop, Preventing or letting
Activity stop.

display.v show.v, present.v, demon-
strate.v

Adding the target word as ad-
ditional lexical unit to these
frames: Cause to perceive, In-
formation display, Reasoning and
Evidence.

involve.v pertain (to).v , related (to).v,
compose.v, constitute.v,
form.v, make.v

Adding the target word as addi-
tional lexical unit to these frames:
Creating, Intentionally create, Inclu-
sion and Type.

a https://www.merriam-webster.com/

Disagreements between the two annotators were resolved through a procedure
for annotation harmonisation, the same procedures we followed in the coarse
grained annotation results in Section 4.3.2. That is, for every discrepancy at any
of the three levels described above, Annotator B revisited her annotations, this
time taking into consideration Annotator A’s annotations.

In cases where she was convinced that Annotator A’s perspective was more
correct, she modified her annotations; otherwise, she kept her original annota-
tions. Annotations resulting from the harmonisation procedure formed the basis
of our final version FR-RE golden corpus of requirement documents, as will be
described in the following Section 4.3.4.
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Figure 4.15: The frequencies of reported issues during the fine grained
annotation and by following the flowchart procedures depicted in Figure
4.13.

4.3.4 FN-RE Golden Corpus Results

The FN-RE golden corpus comprises 18 frame-annotated requirement documents.
The FrameNet semantic frame annotations were stored separately from the re-
quirement documents. While the documents were stored following an extended
version of the XML schema proposed by Ferrari et al. (2017b), the semantic frame
annotations were converted from the SALSA/TIGER XML (Erk and Pado 2004)
to the FrameNet XML format described by Baker (2017).

Upon performing frequency analysis over the final set of annotations, the
results obtained are presented in Table 4.7. The table presents the top three
FrameNet frames in the FN-RE golden corpus, together with the corresponding
assigned frame elements. Each of the listed frames is followed by an example
from our annotated documents where we underlined the trigger word (i.e. the
lexical unit) in each example that evoked the target frame. In total, we obtained
123 frames as most related to describe documents from the RE domain, and the
123 frames are depicted as a word cloud in Figure 4.16.

As one can observe, in the depicted 123 frames (Figure 4.16), the frames titles
can be related to the software requirements description , e.g., Gizmo 39 which
pertains to functions of software systems, and also, the frame of Activity start40

which indicates the start or progression of a target activity or task.

39https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=
Gizmo

40https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=
Activity_start
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Table 4.7: The top three FrameNet frames in the FN-RE golden corpus,
together with the corresponding assigned frame elements.

Frame F-Freq Frame Elements FE-Freq

1. Sending 41

Theme 13
Sender 8
Recipient 5
Explanation 4
Cotheme 3
Time 2
Transport means 2
Purpose 2
Source 1

Example: “Every month, the customers will be sent a statement by email,
together with a list of special offers.”

2. Conditional occurrence 38 Profiled possibility 20
Consequence 18

Example: “If the user successfully logs into his account, she can update her
profile status.”

3. Inclusion

37 Part 17
Total 17
Explanation 2
Purpose 1

Example: “The system has an option for shoppers to register with the shop.”

These 123 frames were then saved for later analysis; where we analyse their
inner semantic relationships as will be discussed in Section 4.6 to investigate
their applicability in the task of semantic analysis for the software requirement
documents.

The final version of the FN-RE golden corpus is publicly published by Al-
hoshan et al. (2018b) and can be accessed via online permanent repository at
https://doi.org/10.5281/zenodo.1291660. An example, of the FN-RE cor-
pus interface is shown in Figure 4.17. The interface for navigating FN-RE corpus
documents organised the requirement documents by their unique identification
number and stored in three different formats: Pure-XML format as described
by Ferrari et al. (2017b), FrameNet-XML format as described by Baker (2017),
and their annotations results as comma-delimited files (.csv). In Figure 4.18,
we present an example of FrameNet-display style of an annotated requirement
document from the FN-RE golden corpus. The upper section shows the original
requirement statements and their annotated lexical unites (in upper case) and
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Figure 4.16: A word cloud of the total selected FrameNet frames resulted
from the FN-RE golden corpus.

these lexemes are underlined as hypertext which links the target words with their
annotation details. By clicking any of the target word, a new section appears in
the lower part of the page shown the frame elements associated with the selected
requirement statement and its lexical unit.

Figure 4.17: The interface for navigating FN-RE corpus documents.
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Figure 4.18: An example of FrameNet-display style of an annotated re-
quirement document from the FN-RE golden corpus.

4.4 FN-RE: Automatic Annotation Procedures

There are SRL systems 41 that could aid automatic the identification of the
frames and their related elements for a given text document (Baker et al. 2007).
A typical SRL system is described as the system which identifies concepts (i.e.
semantic roles) and their arguments ,i.e., the elements that compile the meaning
of the labelled semantic role (Gildea and Jurafsky 2002).

At a technical level, a frame SRL system is usually performed as a pipeline of
the following tasks:

1. Targeting words (or phrases) that could trigger frames (i.e., identifying
the lexical units), which usually follows rule-based or heuristics-based tech-
niques to easily identify frame targets (Gildea and Jurafsky 2002; Das et al.
2014).

2. Identifying frames that are evoked by each lexical unit which usually is
treated as a classical classification problem (Erk 2005) i.e. a target (lexical
unit) could trigger n frames; and selecting the most suitable frame depend-
ing on the features incorporated in the used classification model (Erk and
Pado 2006; Johansson and Nugues 2007; Das et al. 2014; Swayamdipta et al.
2017).

3. Annotating the frames elements using the role–argument pairings process.
This parts identifies the target frame elements and their text spans in a
given input. The techniques for achieving this task are strongly based

41In the context of this thesis, we used these terms interchangeably to describe the same
system: semantic frames parser, semantic parser, or simply SLR system.
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on processing the syntactic information of a given input. For example,
by pruning out the text spans that do not properly contain any frames
elements or arguments (Gildea and Jurafsky 2002); or by utilising syntax
information to provide features for training an argument identification and
labelling model (Das et al. 2014; Roth and Lapata 2015; 2016).

In this section, we conducted experiments to examine the performance and
feasibility of existing FrameNet-based parsers in the context of RE documents.
To this end, we reviewed a number of FrameNet-based semantic frame parsers,
and then selected two of the state–of–the–art SRL systems to perform our exper-
iments.

The technical details of these systems were discussed in Section 4.4.1. Fol-
lowing that, we explained our followed procedures for generating a the FN-RE
corpus; a corpus that is automatically generated by a SRL system that has sat-
isfactory performance compared the results obtained from the FN-RE golden
corpus discussed in Section 4.3.4.

4.4.1 Overview of Existing Semantic Frames Parsers

To our knowledge, the first and serious attempt to design and implement a seman-
tic frame parser was introduced by Gildea and Jurafsky (2002). They designed a
system based on statistical classifiers trained on 50k sentences from the British
National Corpus (BNC) and manually annotated in the FrameNet project (Baker
et al. 1998; Johnson et al. 2001); the FrameNet annotation details presented in
Section 2.3.2.

Gildea and Jurafsky (2002) applied a syntactic parsing to the training sen-
tences and extract lexical and syntax features which they then combined with the
predicates information (e.g., verb, noun, or adjectives). Their underlying claim
in designing the SRL system was a realisation that the syntactic relationships of
a specific predicate’s arguments are predictable from its semantics.

The SRL system achieved an F1 score of 82% in identifying the semantic roles
(i.e., frames elements) in pre–segmented constituents of the test sentences; and
at the more difficult task of simultaneously identifying frames elements and their
segmented constituents, the system achieved 61% recall and 65% precision.

In Figure 4.19, an example of the early work on identifying semantic frames for
a given sentence is shown, as proposed by Gildea and Jurafsky (2002). However,
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the system was limited to arguments identification only and to assuming that
predicate (i.e., frame) identification wad accurately accomplished.

Figure 4.19: A sample sentence with syntax tree parsing output (above)
and FrameNet Arriving frame annotations corresponding to frame elements
are highlighted (below) from Gildea and Jurafsky (2002).

The former semantic frame parser, developed by Gildea and Jurafsky (2002),
laid the foundations for later semantic parsers. For example, Erk and Pado (2006)
presented a SHALMANESER tool-chain package for shallow semantic parsing
which communicates through a common XML format (Erk and Pado 2004), the
same format we used for encoding the FN-RE golden corpus (cf. Section 4.3.4).
Their shallow parser comprised: 1) pre–processing component, FRPREP, that
applied lemmatisation, POS tagging and syntactic parsing, then stored the results
into an XML encoding; 2) a frame identification component, or as they called it
FRED, which followed a supervised classification techniques presented by Erk
(2005) to assign frames to their target words, in the FRED component a Naive
Bayes classifier was used; and finally 3) ROSY, a component to assign semantic
roles (i.e. frames elements) to the linguistic context for a predicate. However,
their parser was trained on the early version of FrameNet data version 1.2 42

(Baker et al. 1998); and hence it faced certain limitations for identifying unseen
frames and their elements since they used a supervised classification technique
for labelling predicates.

Another frame semantic parser (LTH) presented by Johansson and Nugues
(2007) was introduced as a contribution in the SemEval task on Frame-Semantic

42The latest FrameNet lexicon is version 1.7 as presented by Baker (2017)
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Structure Extraction (Baker et al. 2007). The LTH parser was based entirely
on analysing dependency syntax to extract the frame semantic structure. They
aimed to accurately identify frames by filtering target words using hand-crafted
rules and a Support-vector machine (SVM) classifier to assign a frame follow-
ing the strategy proposed by Erk (2005). However, the reliance on dependency
parsing could cascade more errors to semantic identification of predicates and
their arguments. Recent parsers have tackled the issues of syntax bias in per-
forming semantic-oriented tasks, as we discuss this concept below, in a work by
Swayamdipta et al. (2017).

In the parser developed by Roth and Lapata (2016), or what they called it
the PathLSTM parser, a novel a neural network architecture for performing SRL
was introduced. Their motivation was to tackle the issue of complexity of syn-
tactic structures and related phenomena, such as nominal predicates which could
hinder the accuracy of labelling semantic arguments. They considered lexicalised
paths that decompose into sequences of individual tokens, namely the words and
syntax dependency relationships on a path. Then, they applied long–short term
memory (LSTM) networks (Hochreiter and Schmidhuber 1997) to trace a recur-
rent composition function that can reconstruct a suitable representation of the
full path from its individual tokens.

For example, the dependency path from the word “changing” to “He” in an
input sentence “He had issues changing the system” would be: “changing NMOD−−−−−→
issues OBJ−−−→ had SBJ←−−− He” 43.

For identification and disambiguation of frame prediction, they utilised a lo-
gistic regression classifiers used in previous SRL components as presented by
Björkelund et al. (2010). The used frame-predicate classifier made use of the
available lexico–syntactic features, including the predicate word root form and
its POS tags as well as the dependency relationships to all its syntactic children.

On the other hand, in a parser developed by Swayamdipta et al. (2017),
the Open-Sesame parser, they applied the same techniques were applied in the
SEMAFOR parser, which was developed by Das et al. (2014), for marking frames
targets and identifying frames. However, their main contribution was in reducing
the time needed for identifying frames arguments or elements by ignoring the
step of syntax parsing. They attempted to minimise the cascaded errors resulting
from using syntax parsing, and the time used for completely parsing text inputs in

43This example is inspired from Figure 1 presented by Roth and Lapata (2016)
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order to define frames elements. Their later technique named “syntax scaffolding”
which claims that instead of producing a whole syntax tree and then relying upon
the whole syntax tree, it could be sufficient using a simpler syntactic prediction
(e.g. selective parts of phrase structures)(Swayamdipta et al. 2018).

Basically, in the Open-Sesame parser, a multitask learning settings were used
to locate the entire frame-semantic graph using the corpus provided in FrameNet
annotations (Ruppenhofer et al. 2016), and the parser should learn only the
relevant parts (i.e. constituents) of the syntactic tree from the Penn TreeBank
(Marcus et al. 1993), as a syntactic scaffolding process.

From the parsers we discussed in this section, we observed they shared the
same general techniques for identifying frames (or semantic roles) as they pro-
posed different classification models to tackle this task. However, the differences
laid of how to use the syntactic and semantic information associated with sen-
tences to identify the frames elements (or frames constituents) with their text
span in a given sentence. The parsers, in the frame elements identification varied
between utilising syntactic information as essential features (e.g. Roth and Lap-
ata (2016)), while the others just utilised a shallow parsing or syntax-free features
(e.g. Swayamdipta et al. (2017)).

4.4.2 Experiment and Results

In order to complete the annotation of the remaining documents (i.e. the 62 re-
quirement documents) in the REQ dataset, we perform an automatic annotation
as a bootstrapping process. In this section, details of the experiment procedures
and the obtained results will be elaborated more.

Experiment Procedures

We examined two of the state-of-art semantic frames parsers, discussed earlier in
Section 4.4.1. The first parser to be examined for the requirements annotation was
the PathLSTM parser by Roth and Lapata (2016), and the second parser was the
Open-Sesame parser by Swayamdipta et al. (2017). The selection was due to the
fact that both parsers used different techniques in identifying frames and labelling
their arguments. In addition, their performance results have outperformed the
older parsers as reported in their experiments.
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To be more concise, the PathLSTM parser was compared to general SRL sys-
tems that are syntax-dependent systems and used neural network architecture,
e.g., Björkelund et al. (2010) and Lei et al. (2015), and the PathLSTM parser
has outperformed these parsers and achieved an F1-score of 76.5% on the out-of-
domain test dataset of CoNLL-2009 shared task dataset (Hajič et al. 2009).

At the same time, the Open-Sesame parser was reported to outperform ex-
isting parsers, including the PathLSTM parser (Roth and Lapata 2016) and other
parsers, e.g. (Das et al. 2014) and (Kshirsagar et al. 2015) inter alia, and achieved
an F1-score of 70.9% in the overall tasks of predicating frames and their argu-
ment. The parsing experiment results, of the Open-Sesame parser, are built on
the FrameNet test dataset (Ruppenhofer et al. 2016) which is basically a col-
lection from a generic dataset, such as newswires, and from a large and generic
corpus ( i.e. the BNC), this dataset collection was annotated using FrameNet
frames (the FrameNet annotation details presented in Section 2.3.2).

The experiments were conducted using the 18 requirement documents, the
same documents used in the manual annotation step (presented in Section 4.3).
The parser that has a satisfactory performance in labelling requirements com-
pared to the results obtained from the FN-RE golden corpus, will be used to
annotate the remaining documents .i.e. the 62 requirement documents from the
REQ dataset (introduced in Section 4.2).

Therefore, we ran the two parsers over the 18 plain (un-annotated) require-
ment documents of the REQ requirements dataset (i.e. the set of 221 require-
ment statements) by following the guidelines of running the two parsers (i.e., the
guidelines of running the PathLST parser 44 and the guidelines for running the
Open-Sesame parser 45).

For parsing the 221 requirement statements, the PathLSTM parser completed
the parsing task after 22.87 hours (i.e. an average of 6.21 minutes of parsing time
per requirement statement) and the Open-Sesame parser finished requirements’
parsing after 12.60 hours (i.e. an average of 3.42 minutes of parsing time per
requirement statement).

The computation time for completing the parsing task is also subjected to the
hardware and operating system specification, we ran the experiments on an x64-
bit Centos 7 operating system and a CPU process speed of 3.6 GHz. However,

44https://github.com/microth/PathLSTM
45https://github.com/swabhs/open-sesame
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for the PathLSTM parser, it was reported as one of the downside in using that
parser is the time the parser takes to produce syntactic information (i.e., syntactic
embeddings) for the input document and then the time the parser takes to apply
the semantic parsing (Roth and Lapata 2016), unlike the Open-Sesame parser
which follows the syntactic scaffolding techniques (Swayamdipta et al. 2017), as
presented earlier in this section.

In our comparison, we followed the same annotation protocol on the parser
outputs i.e. we focused only on the verbs and selective cases as we discussed in
Section 4.1.2. Then, we processed the outputs from each parser by converting
them from thier original format (e.g., CONLL) to a simple tabulated sheet (.csv)
that contains the IDs of the requirement statements, their identified frames along
with the triggered lexical units and the frames elements with their text spans
in the given requirement statements. Afterwards, we computed the F1-score as
presented in Equation 4.1, where the comparable dataset was the 221 requirement
statements that are manually annotated by our annotators (presented in Section
4.3.4). The experiments results will be discusses in the next section.

Experiment Results

After, we completed the requirements parsing, we the computed the parsers’ ac-
curacy rates using F1-score and the comparison experiments results are shown in
Table 4.8. In this table, we presented the comparison of results from the PathLSTM
parser (Roth and Lapata 2016) and the Open-Sesame parser (Swayamdipta et al.
2017) with the results obtained from the FN-RE golden corpus presented in Sec-
tion 4.3. The results are shown by recall (R), precision (P) and an overall F1
score (F1). The comparison results for each annotation level (i.e. frame iden-
tification, frame elements and their text spans identification) are separated. As
can be observed from the results shown Table 4.8, the Open-Sesame parser has
outperformed the PathLSTM parser by more than 14% in identifying the seman-
tic concepts (related frames from FrameNet) as the system attained a higher
recall rate of 81.02% and precision rate of 65.09%. At the fine grained level,
i.e., of frames elements selection and attaching related linguistic constituents, the
PathLSTM parser obtained better at the precision rate; therefore, the F1-score was
better; however, for the recall, the Open-Sesame outperformed the other parser
by more than 10%.

We can attribute these differences in the parsers’ performance in Table 4.8,
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Table 4.8: The performance rates for the PathLSTM and Open-Sesame frame-
semantic parsers according to the results of the FN-RE golden corpus.

Frames identification
R P F1

PathLSTM 69.62% 52.35% 59.76%
Open-Sesame 81.02% 65.09% 74.58%

Arguments and constituents identification
R P F1

PathLSTM 24.36% 25.21% 24.40%
Open-Sesame 34.12% 10.67% 16.27%

to the flexibility of the Open-Sesame parser in identifying target frames by using
improved classification models from the SEAMFORE parser (Das et al. 2014;
Kshirsagar et al. 2015) and by not using the complete syntactic parsing trees due
to their claim of Syntax Bias, i.e., complete and accurate syntax relationships are
not important to predict semantic roles. This helped us in speeding up the parsing
time comparing to the PathLSTM parser. On the other hand, the PathLSTM parser
relies on training embeddings of dependency paths, which is why it takes time
and space for parsing, i.e., consuming time for combining lexical and syntactic
dependency relationships to train what they called path embeddings at once from
the target word to another in a given input. This in turn a good identification of
frames constituents (i.e., frame elements and thier text spans).

We were particularly concerned with the identification of the frame (i.e., pred-
icates identification) component of each parser, as going to be discussed further
in Section 4.6 of the current chapter. This part of the parser will support our
evaluation method in measuring semantically related requirements (discussed in
Chapter 9).

4.4.3 FN-RE Silver Corpus Results

According to the performance results from the comparison experiment reported
in Section 4.4.2, we selected the Open-Sesame (Swayamdipta et al. 2017) as a
preferred parser to semantically annotate the remaining 62 documents from the
REQ dataset (comprised 5,127 requirement statements)

The parsed documents were then stored in a simplified format similar to the
output format of the parser, i.e. CoNLL2009 format described by Hajič et al.
(2009). A snippet of the stored requirement document was exemplified using one
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of its requirement statements in Figure 4.20.

Figure 4.20: A snippet from one of the parsed requirement documents from
the REQ dataset (REQ001) using the Open-Sesame parser.

After applying the semantic parsing process, we retrieved a list of 534 frames
from the FrameNet lexicon. Those frames were evoked by automatically labelling
the 62 requirement documents from the REQ dataset. In Figure 4.21, a collection
of the 534 FrameNet frames, of the FN-RE silver corpus, was depicted.

The frequencies of the retrieved frames varied from a single occurrence (e.g.
the Change event duration frame) to more than 700 time of appearances in the FN-
RE silver corpus (e.g. the Information frame, according to FrameNet: Information
frame refers to an agent who knows or comes to know some piece of information
about a certain subject or topic) 46.

Then, the results obtained from the automatic annotation of the requirement
documents were merged with the manual annotated documents, and the merging
procedures and the overall FN-RE corpus implications and limitation will be
discussed in the next section (cf. Section 4.5).

46https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=
Information
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Figure 4.21: A word cloud of the frames used in the FN-RE silver corpus.

4.5 The FN-RE Corpus

The FN-RE corpus results were obtained from both parts: the FN-RE golden
corpus (presented in Section 4.3.4) and the FN-RE silver corpus (presented in
Section 4.4.3). In the FN-RE golden corpus, a total of 123 frames were used
to annotate a collection of 18 requirement documents, and in the FN-RE silver
corpus a list of 534 frames from the FrameNet lexicon were used to automatically
label the remaining 62 documents in the REQ dataset.

We grouped the two parts, and then analysed the overall evoked frames. We
found a group of shared frames used in both corpus’s parts (i.e., the golden
and silver FN-RE parts). These shared frames were analysed by the combined
frequencies obtained from both parts in the FN-RE corpus. In Figure 4.22, a
circular graph of the 99 shared frames and their frequencies are shown.

The results of the FN-RE corpora–from the golden and silver parts–were then
merged to generate an overall corpus. The FN-RE corpus contains a collection
of the 80 requirement documents, from the REQ dataset (previously presented
in Section 4.2), and these requirement documents comprised 5,348 requirement
statements that were fully annotated using the semantic frames in FrameNet.
Meaning that all of the requirement statements are labelled by FrameNet frames
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Figure 4.22: A circular graph of the 99 frames that appeared in both golden
and silver parts of the FN-RE corpus. The frequencies shown are sums of
the frame’s occurrences in both corpora.

and the elements associated with these frames. At the end, we obtained a list of
the 558 FrameNet frames that are regarded as most related from the FrameNet
lexicon. That list (i.e. the 558 frames list) could be used to annotate and de-
scribe different software requirements because the representative documents were
collected from the different domains-of-uses as presented earlier in the topics of
requirement documents (i.e., the REQ dataset) in Figure 4.6.

4.5.1 Comparison to the Initial Analysis Results

In addition, we analysed the total frames in the FN-RE corpus and compared
them to the frames obtained at the word level analysis (presented in Section
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4.1.1). Then, we compared the FN-RE corpus results to those obtained at the
requirement statement-level analysis (presented in Section 4.1.2).

The results obtained from the word level analysis

For the word level analysis results, we found that 78.19 % (i.e., 147 frames) of
the 188 frames were covered in the 558 frames list of the FN-RE corpus.

Nevertheless, we investigated the 147 shared frames between the results ob-
tained from the word level analysis and the FN-RE corpus. For example, the
Difficulty frame which describes an experiencer (or user) with a certain difficultly
in carrying out a specific activity, whilst Text creation frame describes the pro-
cess of producing a text as a written document , and the frame Using resource
describes the situation of an agent with an access to some resources and who uses
them in a way to complete a specific goal or purpose47.

Thereafter, we investigated the excluded frames and whether it was worth
adding them into our later frames analysis. An example of the excluded frames
are: Manipulate into shape which describes the process of transforming materi-
als into different shapes; Getting vehicle underway which describes the process
of driving a vehicle, and Expressing publicly which describes a process of public
communication (e.g., giving public speeches).

The aforementioned frames, and others in the excluded list from the word level
analysis results, are not utilised in the FN-RE corpus. This exclusion can be jus-
tified by of the description conveyed in these frames and their lack of relationships
to labelling software descriptions.

However, not all excluded frames may be used in the domain of RE docu-
ments, so we investigated and found a few frames that could be used. Therefore,
we analysed the excluded frames and their relationship with those in the FN-RE
corpus. The analysis was based on the semantic relationships of the few excluded
frames and those in our corpus (the semantic relationships in the FrameNet lex-
icon were detailed in Chapter 2).

For example, the Tool purpose frame has a Using semantic relationship with
a frequent frame in the FN-RE corpus, namely the Purpose frame. The Cre-
ate representation has also an indirect inheritance semantic relationship with the
Intentionally create frame, which is also a common frame in the FN-RE corpus
and a parent frame for a number of shared frames (e.g., the Text creation frame.

47All of the frames information are available via https://framenet2.icsi.berkeley.edu/
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Another example, is the Scheduling frame, which describes the process of
scheduling and arranging specific tasks and activities. This frame also shares
two semantic relationships with two common frames in the FN-RE corpus: the
Reserving frame with an inheritance relationship, and the Making arrangements
frame with a Using semantic relationship in FrameNet.

It is noteworthy to say that, at the word level analysis, we have selected 188
frames from a total list of 269 frames (i.e., the total frames that are triggered
based on the 154 words list). One annotator (the author of this PhD thesis)
selected these 188 as possible frames for use in describing requirements.

The initial annotations made at the word level analysis were not validated
with another annotator; moreover, the selection was made from just reading the
frame information (e.g., frame definition, examples, frame elements description
and the associated lexical units). The results obtained by excluding these frames
were justifiable considering the nature of contextual information in the given REQ
dataset documents. This is an indicator that the use of corpus-based methods
(Steiner 2008) is appropriate in selecting the related frames according to a given
context not just by frame information in the FrameNet lexicon.

The Results Obtained from the statement-level Analysis

We compared the results obtained from the requirement statement-level analysis
(presented in Section 4.1.2) and the FN-RE corpus results presented earlier in
this section. A comparison was made according to the frames evoked for each
case in the eight cases of the requirement statement level analysis. These cases
(as we recalled from Section 4.1.2) were drawn from the semantic tasks in the
SOM approach described by Chioasca et al. (2016) and Chioasca (2015).

The first case (RD-1) mainly concerns the identification of verbs or actions
pertaining to SOM patterns. From our results in RD-1, we obtained a total
of 1,054 frames that are mapped to almost 91.17% of the verbs pertaining to
the SOM patterns. It was apparently there was an over-evoked frame rate (by
53%) comparing to the 558 frames obtained from the FN-RE corpus results.
Nevertheless, we investigated which frames from the 1,058 existed in the FN-RE
frames list, and then investigated the reason for those missing frames from the
558 frames in the RD-1 analysis results. We found that two frames from the
FN-RE corpus were missing in the frames list retrieved by the RD-1 analysis.

The missing frames were: the History and Goal frames. The History frame
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describes a recordable sequence of events associated with a specific topic and
theme. In the FN-RE corpus this frames mostly related to the requirements with
the log history of a system or a tool’s use. This frame was excluded from the RD-1
results because it had a single lexical unit (‘history.n’ as a noun based token and
not as a verb. Verbs are only the target tokens in the RD-1 analysis procedures to
enable a comparison with the verbs list pertaining to the SOM patterns (discussed
in the details of the RD-1 analysis and results in Section 4.1.2).

The other missing frame from the RD-1 list, is the Goal frame which simply
describes the situation of achieving a specific goal, as discussed above. The reason
for excluding such a frame was because the POS of their two lexical units (i.e.,
‘into.prep’, ‘to.prep’) do not pertain to verb tokens.

For cases related to defining constraints in a requirement statement (i.e.,
RD-2, RD-3 and RD-4), those cases are described using three frames from the
FrameNet lexicon: the Conditional occurrence frame, the Negative conditional frame
and the Concessive frame. The Conditional occurrence frame describes a situ-
ation of a consequence is presented as occurring if an event occurs, the Neg-
ative conditional frame which describes the situation of an anti consequence is
presented as not occurring if an event occurs and the Concessive describes the
situation of implying a contradiction to the main assertion in statement.

The aforementioned frames are frequently used in the FN-RE corpus with 55
overall frequencies of use in labelling the given requirements statement dataset
(i.e., the REQ datatset). At 37 uses, the Conditional occurrence frame has the
highest frequencies among the other frames by 37 times of uses, and an example
of the lexical units of that frame of this frame is: as long as.scon, assuming.scon,
if.scon, in case.scon, etc. Overall, the frames pertain to the identification of con-
straints in the requirement statements, which included in the FN-RE corpus.

We previously discussed the frames evoked by cases related to defining the
sequence of events in a requirement statement (i.e., RD-5, RD-6, RD-7 and RD-
8). In total, seven frames from the FrameNet lexicon were triggered to represent
the aforementioned four cases in the statement-level analysis. The frames evoked
by RD-5 which identifies the time-based sequence of event, are: Relative time
, Time vector and Temporal collocation. All are included in the FN-RE corpus
results with a total of 330 of uses.

For the next cases (RD-6 and RD-7) both cases described the additional ac-
tions provided in a requirement statement, and the related frames are: Increment
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and Inclusion. Both frames are used more than 579 times in labelling documents
in the FN-RE corpus. The final case (RD-8) defines a purpose or goal in achiev-
ing an action, and the related frames are: Causation and Purpose. Both frames
appeared in the frames list of the FN-RE corpus.

However, the Purpose frame for the final case (RD-8) was reported as a missing
frame in RD-1 and we justified the exclusion because of the POS tag of the frame’s
lexical unit. The frame was then included, as it could imply the reliability of the
approach we followed in tracing related RE frames from the FrameNet lexicon.

At the end of the comparison between the statement-level analysis results and
the FN-RE corpus results, we concluded the suitability of the retrieved frames
from the FN-RE corpus. These were confirmed as a reliable set of frames to de-
scribe and annotate software requirements. The appropriateness of these frames
to the domain of RE was attributed to more than sufficient overlap in the results
obtained from the comparison analysis between the initial and corpus results.

4.5.2 Corpus limitation

A number of FN frame-annotated corpora exist; for example, the FrameNet gen-
eral corpus described by Baker et al. (1998) and Baker (2017), a medical related
FrameNet corpus called the Bio FrameNet corpus presented by Dolbey et al.
(2006) and the Fate FrameNet corpus for textual entailment and paraphrasing
evaluation tasks by Burchardt and Pennacchiotti (2008). However, none have so
far focused on the annotation of requirement documents. Our FN-RE corpus was
developed to address this gap, with the specific aim to facilitate the analysis of
related frames to the RE domain. Moreover, the evaluation of semantic based
methods for tracing relationships between the requirement statements (will be
discussed in Chapter 5).

However, the corpus comes with some limitations. Due to its medium size
(i.e., 5,432 requirement statements labelled by 588 unique FrameNet frames), it
cannot support the development of deep learning-based methods for semantic
parsing, since these techniques require a huge dataset (Pouyanfar et al. 2019).

Furthermore, the current annotations do not account for the semantic frames
missing in FrameNet. Some of the words (pertaining to software descriptions) are
considered to be missing lexical units in the FrameNet lexicon ( e.g. ‘log in.v’, ‘log
out.v’, ‘download’ and ‘upload.v’). Nonetheless, our FN-RE corpus is considered
to be valid, since each requirement statement might evoke more than one frame
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which covers the limitations that may be encountered with such missing frames.

4.6 Discussion: FrameNet Coverage for Require-
ments Description

In this section, we discuss the implications and limitations of the results obtained
from the corpus-based approach to investigate sufficient coverage of the FrameNet
lexicon and the feasibility of using its semantic frames in the RE domain.

The use of FrameNet frames appeared in related RE studies, for example, for
mining user reviews of mobile applications as proposed by Jha and Mahmoud
(2018), and to facilitate the selection and gathering of software requirements as
demonstrated by Kundi and Chitchyan (2017); these studies, and among others,
were discussed in Section 2.4.2.

However, none of these studies applied an in-depth analysis of the useful-
ness and applicability of FrameNet frames from a resource coverage perspective.
Therefore, we followed a corpus-based approach (Steiner 2008) to retrieve frames
related to software requirements, and most importantly inspect if they are enough
to label the embodied descriptions within the software requirements.

As a result of the followed corpus approach, we constructed the first corpus
in the RE domain. This comprised 80 requirement documents that were grad-
ually annotated using FrameNet frames (i.e., frames titles and their associated
elements) by applying manual and automatic labelling techniques.

To examine the FN-RE corpus reliability, we validated the annotation results
in two ways. Firstly, we validated the 221 requirement annotations accomplished
by human annotators using accuracy and agreement rates (discussed in Section
4.3.4). Secondly, we experimented and justified the selection of a semantic frame
parser, and compared with the manual annotations results, in order to automati-
cally annotate the remaining 5,127 requirement statements (discussed in Section
4.4.2). From both ways, we obtained a satisfactory performance, particularly
within the frames identification and selection.

The coverage rate of FrameNet frames for describing software requirements
was encouraging, according to the results obtained from the FN-RE corpus (pre-
sented earlier in Section 4.5). The FN-RE corpus comprised a list of frames with
a size of almost 45% of the total frames in the FrameNet lexicon.
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In addition, the related frames from the FN-RE corpus, went through compar-
ison and inspection cycles with other results obtained earlier at the word and the
statement-level analyses. These initial results were presented in Section 4.1. The
comparison results were also satisfied and more than sufficient since the majority
of the frames retrieved from the word and statement-level investigations existed
in the frame results of the FN-RE corpus (as discussed in Section 4.5).

Therefore, and according to the appropriateness coverage of the FrameNet
lexicon from a quantitative perspective, we address the FrameNet lexicon in depth
as a semantic lexicon to cover topics and context–from a qualitative perspective–
for the RE documents. This will be discussed from two angles:

• Firstly, by providing encapsulated descriptions for the software require-
ments (i.e., identifying the implicit and explicit meanings of requirements)
by recognising the frames collection pertain to the requirement documents
description of the RE domain; and

• Secondly, by enabling the semantic labelling of software requirements via
FrameNet frames and the availability of supporting tools to help achieve
such an analytical task.

The implicit and explicit meanings of a requirement statement

Fillmore and Baker (2010) discussed the semantic frame as a form of a cognitive
frame that plays an essential role in how we (as people) perceive, understand,
remember and reason our knowledge and life experiences. Therefore, transferring
the embodied knowledge of human experiences into a machine-readable form, is
a rewarding procedure. This is because such an encapsulated form of knowledge
representation will enable the automation of further analytical tasks Alhoshan
et al. (2019a;b). Moreover, the application of frames will provide a holistic view
of the given document as a collection of mental concepts rather than a group of
independent and linguistic tokens (e.g., words and phrases) Jha and Mahmoud
(2018).

In Chapter 2, we previously discussed the concept of semantic frames and the
FrameNet project as an implementation of Fillmore’s Semantics Frame theory. In
this current chapter, we focus on the usefulness of FrameNet frames for describing
implicit and explicit concepts in a given requirement document.

In language 48, explicit is an adjective which means “fully revealed or expressed
48The words definitions were retrieved from Merriam Webster online dictionary at https:
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without vagueness, implication, or ambiguity: leaving no question as to meaning
or intent”. Meanwhile, implicit is also an adjective which means “capable of being
understood from something else though unexpressed : implied context”.

In the literature of RE studies, to express the context of a requirement state-
ment, its explicit and implicit meanings are considered during the requirements
analysis task (Stone and Sawyer 2006; Gacitua et al. 2009). Explicit refer to
those requirements with direct and clear requests or actions expressed in a writ-
ten form; in comparsion, the implicit requirements are not. These implicit re-
quirements are usually acquired from knowing the software domain-of-use and
by anticipating further actions (or requests) associated with the related explicit
requirements (Ferrari et al. 2016; Emebo et al. 2016).

Tackling this facet of software requirements (i.e., the implicit and explicit
requirements in software descriptions) is considered to be one of the open chal-
lenges in RE when analysing, gathering, and managing requirement documents
(Fernández et al. 2017). Considering this facet, will mitigate ambiguity and un-
certainty in the requirement documents (Stone and Sawyer 2006; Ferrari et al.
2016).

One way to address this issue is to extract the requirements topics and identify
similarities between documents in the early phases in order to trace the evolution
of requirements. Following this, it is possible to trace any missing or implicit
requirements (Stone and Sawyer 2006; Mahmoud et al. 2012; Ferrari et al. 2016).

From our experience in annotating and constructing the FN-RE corpus, espe-
cially from the human side of corpus annotation (cf. Section 4.3.4), we recognised
the FrameNet lexicon as a rich semantic resource to learn more about the soft-
ware requirements. This learning process was acquired by observing the mental
concepts expressed in these requirements by labelling them with frame titles and
their associated elements. In addition, tracing the similarities further developed
the learning process and relatedness between these annotated requirements via
the semantic relationships of their labelled frames.

To be more specific, from the frames list we obtained from different parts of the
FN-RE corpus (cf. Section 4.3.4 and Section 4.4.3), we noticed coherent meanings
in the given list, when describing software requirements. This is notable by tracing
the relatedness between the frame titles and the shared semantic relationships
among these frames, which in return helps to express the implicit requirements

//www.merriam-webster.com/dictionary
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more explicitly.

Figure 4.23: A word cloud of the 558 frames used in the FN-RE final corpus.

In Figure 4.23, we depicted a word cloud of the frames used in the FN-RE
final corpus; the total retrieved frames were 558, and these were represented by
their titles, as appeared in the FrameNet lexicon. The font size of each frame title
pertains to the frequency of frame’s use in the annotation results of the FN-RE
corpus. As shown in Figure 4.23, the most prominent frames could be mentally
grouped to describe situations in a given requirement document. For example, to
expressing requirement statements as requests or actions that need to be taken
to achieve certain goals, the frames: System, Gizmo, Information, Statement, Re-
quired event, Goal and Purpose could be utilised as description. Another example
is associated with the context of sending and receiving records or items; this can
also be semantically described using the following frames: Receiving, Sending,
Using resource, Text and Records.

These situations, mentioned above of, expressing the requirement statement
by just listing the frame titles. From the frame titles provided, we used intuition
to identify what this requirement statement is revolved around. This was also the
case, with the frames elements that could be added to express these requirement
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statements more explicitly.
For instance, the Information frame is associated with the frames elements

that narrowly describe the situation when a user knows or comes to know some
piece of information about a topic; for examples: a Topic to describe the subject
or theme of that information, a Source to describe the origins of that piece of
information, and a Means of gathering to describe the acquisition process of the
information.

In the FN-RE corpus, each frame has at least 10.27 elements to describe in
more details the situation associated with each frame. The number of frames
elements could be sufficient to define the requirements context more explicitly.
Therefore, we ran another investigation into the FN-RE frames list to identify
which elements are the most common, and the results are presented in Table 4.9.

Table 4.9: The most frequent frames elements associated with the frames
in the FN-RE corpus.

Frames Elements Freq. in FN-RE frames Associated Frames (example)
Time 390 (6.80%) Activity resume, Being in control
Place 313 (5.45%) Attaching, Activity start
Manner 303 (5.28%) Creating, Text creation
Means 219 (3.81%) Activity prepare, Intentionally create
Explanation 198 (3.45%) Activity stop, Activity pause
Purpose 198 (3.45%) Alternatives, Cause to start

From Table 4.9, we noticed details that could be brought up by adding these
elements such as : the Purpose in order to know the aim or the goal of taking an
action defined by a designated frame, and the Time and Place to provide spatial
and temporal information on where and when the action or frame took place.
Additionally, the way in which these events or frames are carried out could be
described further with the following elements: Manner, Means, and Explanation.
These and the remaining elements are shown in Table 4.9, and appeared fre-
quently within the frames used in the FN-RE corpus. Generally, the labelling of
frames elements in the software requirements is an advantageous procedure that
guides the completion of missing contexts in given requirements; for example,
similar to the approach proposed by Kundi and Chitchyan (2017).

Moreover, the semantic relationships (e.g., the Using and Precedence semantic
relationship) also promise to express the requirements more explicitly Alhoshan
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et al. (2018a; 2019a). In the FN-RE frames list, 558 frames are connected overall
with more than 1,042 different semantic relationships (i.e., at least each frame
in the list has 1.86 semantic relationships with other frames in the FrameNet
lexicon). The semantic relationships of the frames in the FN-RE corpus are
statistically described in Table 4.10. The notions and definitions of these semantic
relationships were described in Chapter 2 at Section 2.3.

Table 4.10: Description of the semantic relationships in the frames list of
the FN-RE corpus, as presented in Section 4.5.

Semantic relationship No. FN-RE Frames Avg. FN-RE frames No. associated frames Avg. relationship/frame
Inheritance 392 70.25% 763 1.94
Using 358 64.15% 684 1.91
Precedence 41 7.34% 72 1.75
Perspective-on 77 13.8% 80 1.03
Causative-of 56 10.03% 56 1.0
Inchoative-of 22 3.95% 22 1.0
See-also 96 17.20% 127 1.32

As shown in Table 4.10, the most common semantic relationships of the FN-
RE corpus are: Inheritance and Using semantic relationships with an average over-
all occurrence of 67.2% in the FN-RE corpus. The two relationships mentioned
earlier, are reported by Baker (2017) as the most used semantic relationship in
the FrameNet lexicon.

To illustrate the usefulness of semantic relationships in defining context of
software requirements, Figure 4.24, provides an excerpt of an annotated require-
ment document, which are associated with the frames’ semantic relationships.
Thus, we used a group of frames that existed in the FN-RE results to describe
the procedure of “a weather broadcasting system under use”.

The given requirement statement in Figure 4.24 expresses certain semantic
relationships, i.e., Inheritance and Using semantic relationships. The graph se-
mantic relationships are illustrated using a requirement statement that explains
a weather broadcasting system under use, where each triggered word (i.e., the
lexical unit, in bold) is labelled by its corresponding frame (shown in the blue
boxes). For instance, from the labelled frames and their semantic relationships in
the given requirement example, we can identify the broadcasting system’s com-
ponents through the Using relationship.

For instance, the Gizmo frame is evoked by “the broadcasting streaming sys-
tem” that has a “control panel” as a sub-system via the Inheritance relationship.
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Figure 4.24: An example of the frames’ graph connected by Inheritance (red
arrows) and Using (green arrows) relationships as stored in FrameNet.

This sub-system is associated with the Using semantic relationship with the com-
ponents: “switchboard buttons” by the Controller objects frame, “board screen”
by the Information display and “ streaming records” by the Text frame.

The connection between the main parts of the provided example requirement
might resolve the cases related to ambiguous pronouns which can cause confu-
sion for the reader; for example, “it has switchboard buttons” the pronoun ‘it’
is related to the “control panel” rather that the main “weather-life streaming
borad”, although that the latter is the main system. However, these components
are more associated with the “remote control panel” via the recognised semantic
relationships (the Using relationships) between the frames.

Overall, the results obtained from the FN-RE corpus provided greater insight
to the frames’ usefulness to describe implicit and explicit requirements. This is
achieved by using the frame titles to label the elements associated with the frames
and the semantic relationships (e.g, Using and Inheritance) that might connect the
frames.
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Enabling the Automatic Identification of FrameNet Frames and their
Information

As discussed above, the FN-RE corpus results provided greater insight into the
coverage of FrameNet frames and the usefulness of the semantic frames to express
software requirements. However, to gain benefits from using the frame informa-
tion (as stored in the FrameNet lexicon), it is essential to identify the accurate
and related frames, from the 1,224 in the FrameNet lexicon, to describe a given
text document. Without the careful identification and selection of the frames,
a wrong description of the given document may be implied, which will casue
ambiguity or uncertainty in the story of the parsed document.

Therefore, it is possible to trigger the most related frames for a given require-
ment statement by: manual annotation, as we processed the FN-RE golden corpus
(cf. Section 4.3.4), or automatic annotation by utilising the available semantic
frames parsers, as we processed the FN-RE silver corpus with the Open-Sesame
parser by Swayamdipta et al. (2017) (cf. Section 4.4.3).

It is obvious that manual annotation consumes time and requires efforts to
setup an annotation environment that considers the complex annotation proce-
dures using FrameNet frames. Moreover, selecting the most related from a group
of recalled frames, is an intense mental process (e.g., to select between similar
frames like the Creating and Intentionally create).

For instance, to manually annotate the golden part of the FN-RE–which com-
prised 221 requirement statements only– two annotators spent a period of five
weeks (a combined average of 30.41 minuets per requirement statement for the
frame selection and frames elements annotation) to complete the annotation of
the given requirement statements, and then validate and construct the final set
of the corpus annotation. However, considering the time consumed in generating
the FN-RE golden corpus, the accuracy and agreement between the annotators
were more than satisfactory, which implied that the annotations of the FN-RE
golden corpus were reliable.

In comparison, the automatic annotation using the Open-Sesame parser (Swayamdipta
et al. 2017) was obviously faster than manual annotation as we annotated 5,127
requirement statements in a period of 12.60 hours (i.e. an average of 3.42 minutes
of parsing time per requirement statement). This leads to the conclusion that
the automatic semantic parsing (for software requirements) was nine times faster
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Figure 4.25: An example requirement statement which was labelled by first
using the manual annotation (above) and then by automatically using a
semantic parser (below).

than the manual annotation, with an accuracy almost near to human annota-
tion for the frames identification, as the selected parser (i.e., the Open-Sesame
parser (Swayamdipta et al. 2017)) accurately identified the related frames by an
F1-score of 74.58% and a recall rate of 81.02%.

However, the cost of rapid labelling has a negative impact on the accuracy
rates for fine-grained annotation (i.e., with the frame elements annotation). With
an F1-score of 16.27% and recall rate of 34.12% respectively, the selected parser
was poorer in recalling and labelling the frame elements, than the human annota-
tions. This poorer result was justified according to the syntactic scaffold process-
ing; for instance , as discussed by Swayamdipta et al. (2017) and Swayamdipta
et al. (2018), of the selected parser (cf. Section 4.4.3). Nonetheless, to justify
such a result, we investigated the results further. It was notable that the hu-
man annotators tended to label the frames with more elements than the selected
parser. For example, in Figure 4.25, we presented a requirement statement from
the FN-RE corpus as labelled by our annotations and the Open-Sesame parser.

For example, it was shown in Figure 4.25, the Have as requirement frame in
the annotators’ results was attached to three more frame elements, which was
more than the automatically parsed version of that requirement statement.

The recognition of fine-grained information is linked to the similarity case
(discussed earlier in this section) between the semantic and cognitive frame as
illustrated by Fillmore and Baker (2010). As humans, we tend to mentally anal-
yse our experience and knowledge and semantic frames provided the tools and
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resources (i.e., the machine readable lexicon) to help the structure of this analyt-
ical skill. Moreover, the frame elements are represented as data slots to answer
the required information and complete the meaning of a given frame.

For example, as shown in the Have as requirement frame in Figure 4.25, the
annotators were keen to attach as many frame elements as they observed to prop-
erly describe that requirement; for example, the elements Condition, Dependent
and the main request in the given requirement. To avoid implicit requirement
description, annotators added these elements.

Therefore, semantic frame parsing for software requirements is a feasible pro-
cedure at the frame identification level. However, identifying the frame elements
and their constituents is a current limitation not only for parsing software re-
quirements, but also in the SRL systems (He et al. 2017). Nevertheless, the
frame identification could be sufficient for many tasks in the RE domain (Jha
and Mahmoud 2018; Alhoshan et al. 2019b). For example, the frame titles could
be utilised to express the mental concepts or situations embodied in a requirement
document and then potentially enable the detection of relatedness and similarities
between the requirement statements as going to be proposed in the relatedness
measurement methods in the Chapters 5, 6 and 7.
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Chapter 4 Summary:

In Chapter 4, we accomplished the following research tasks and activities:

• A description of the initial work to investigate the coverage of
FrameNet frames to describe the requirement documents by the word
and statement patterns pertaining to software requirements.

• A collection of 80 requirement documents (corresponding to 5,348
requirement statements), that are processed and encoded for later
processing.

• The development and construction of the FR-RE corpus, a corpus of
requirement documents annotated with semantic frame information
from FrameNet using two annotation procedures:

– manual annotation: as presented in the golden part of the FN-
RE corpus which comprised 221 requirement statements.

– automatic annotation: as presented in the FN-RE silver corpus
which comprised 5,127 requirement statements. The annotation
was achieved by selecting the best performance semantic parser
to apply the FrameNet annotations for software descriptions.

• A detailed analysis of the FN-RE corpus in terms of its usefulness
and feasibility, and the frames used (i.e. 558 frames) from FrameNet
lexicon, within the domain of RE and its coverage to describe software
requirements.

The conclusions, including the FN-RE results, obtained in this chapter will
be carried out to the next chapters 5, 6 and 7 to propose and design a
FrameNet based approaches to measure and identify frames’ relatedness
from an RE perspective.
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Chapter 5

The Knowledge-Based Approach

–Measuring Frames’ Relatedness from an RE Perspective–

In this chapter, we propose an approach that is based on the semantic in-
formation available for each frame in FrameNet; such as frame definition, frame
elements, lexical units and most importantly the semantic frame-to-frame rela-
tionships. This approach, thereafter referred to as knowledge-based approach,
is mainly adopted from the similarity and relatedness metrics used with other rich
semantic and knowledge lexica, e.g., WordNet (Pedersen et al. 2004).

We suggest and demonstrate nine methods to investigating novel ways of
identifying and measuring similarities and relatedness using semantic frames from
an RE perspective. Firstly, we present an overview of the methods adopted under
the knowledge-based approach in Section 5.1. Then, in Section 5.2 we present
the first category of the aforementioned approach which is the “overlap-based”
methods. These methods are basically built upon on the shared information
between frames in FrameNet. Following that, we introduce the second category of
the knowledge-based approach which is the “path-based” measurement methods
in Section 5.3. The second category is referred to the methods that mainly aim to
utilise the structural information (i.e., frame-to-frame relationships) in FrameNet.
Finally, in Section 5.4, we briefly discuss the software packages and the tools to
implement the methods under the knowledge-based approach.
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The methods propose in this chapter will be statistically analysed and evalu-
ated against a labelled dataset of human judgements to describe frame relatedness
from an RE perspective. The evaluation procedures and results are discussed in
Chapter 8.

In summary, The objectives of this chapter are:

• To discuss the use of the knowledge–based approach to measure the re-
latedness between frames drawn from their embodied relationships in the
FrameNet lexicon.

• To present the overlap-based methods (as a category from the knowledge-
based methods) to measure relationships between FrameNet frames from
their shared information in the semantic lexicon.

• To present the path-based methods (as a second category in the knowledge-
based methods) to measure relationships between frames from their struc-
tural information (or semantic relationships) as appeared in the FrameNet
lexicon.

5.1 Approach Overview

In this section, we discuss the knowledge-based semantic measurement methods
used to identify similarities and relatedness between pairs of FrameNet frames.
We select nine measurement methods based on their observed performance in text
mining applications, and for their relatively sufficient computational efficiency
in a number of studies e.g. Mihalcea et al. (2006) and Navigli and Martelli
(2019). These metrics use certain features from a knowledge lexicon, in our case
FrameNet, and the features can be for example the semantic relationships (e.g.
Inheritance) or glosses (i.e. the frame’s definition in FrameNet). The overall
measurement methods are classified into two categories:

1. Overlap-based Measurement Methods: the methods are mainly relied on
the counting the shared information between two frames in the FrameNet
lexicon, e.g., common terms in the frames’ definitions in the lexicon, their
common frame elements, and so on. The total number of the measurement
methods under this category are four measurement methods (presented in
Section 5.2).
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2. Path-based Measurement Methods: the methods use the structural informa-
tion in the FrameNet lexicon (e.g., the frame-to-frame semantic relation-
ships of Inheritance and Using), and apply graph-based methods that take
into their account the depth, the path and the common frames between two
frames (presented in Section 5.3).

Figure 5.1: An overview of the measurement methods in the knowledge-
based approach, which are utilised to cover FrameNet frames as semantic
lexicon.

An overview of the processes used within the knowledge-based approach is
depicted in Figure 5.1. Some of these methods were listed in the related work
for measuring semantic relatedness in the FrameNet lexicon (presented in Section
2.4.3); however, we re-implement some theses methods and we consider RE as a
domain of use during the evaluation procedures.

In the following sections, we present the computation details behind these
measurement methods and use examples from the FrameNet lexicon to demon-
strate the performance of these methods in practice.

5.2 Overlap-based Measurement Methods

The overlap-based measurement methods are considered to be a similarity tech-
nique that measures the overlap between two finite sets, where the set is defined
according to mutual features of the two entities to be compared. In our case of
study, FrameNet frames indeed share the same structure (i.e., each frame has a
definition, lexical units, frame elements, and predefined semantic relationships).
We assume that identifying frame relatedness and similarities can be achieved
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by utilising all or some of this listed information, and then by applying different
overlap-based methods. In total we adopted and extended four overlap-based
measurement methods; which are describe in the following subsections.

5.2.1 Gloss Overlap (Lesk)

The Lesk measurement method, based on an algorithm proposed by Lesk (1986),
is defined as the cardinality of the set of shared terms between the corresponding
definitions as provided in a lexicon. It was essentially proposed as a solution for
word sense disambiguation (Lesk 1986). The application of the Lesk similarity
measurement method is independent from any specific semantic relationships
(Mihalcea et al. 2006). The mathematical formula describing Lesk method is
given in Equation 5.1 as follows:

Let Def(Fx) refers to the definition catalogued in the FrameNet lexicon for
frame Fx, and let set(w) denote to the set of words (w) in that definition without
including general stop words (e.g., ‘and’, ‘or’, ‘the’, ‘in’, ‘at’, ‘this’, ‘an’, ‘a’, etc.).
Note that each word (w) is normalised to lowercase letters and represented by its
basic form (i.e., simple tense for verbs and singular form for plural noun)

Mlesk = |Def(FA)∩Def(FB)|Def(x) = set(w),w /∈ set(stop words) (5.1)

Example:
Suppose FA is Activity ongoing and FB is Activity finish. The glosses of the

definitions49 of these two frames, as mentioned in the FrameNet lexicon, are as
follows:

Def(Activity ongoing): “An Agent is performing the portion of an Activity in
which there is dynamic stability.”

Def(Activity finish): “An Agent finishes an Activity, which can no longer log-
ically continue. This frame is a subframe of Activity.”

Then, simply by applying Mlesk as defined in (5.1), we obtain a score of 2 as
shown below:

49The definitions and Semantic Relations of a frame can be searched and retrieved
from FrameNet online lexicon interface at https://framenet.icsi.berkeley.edu/fndrupal/
framenet_search
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Mlesk = |Def(Activity ongoing)∩Def(Activity finish)|
= |’agent’, ’activity’|= 2

(5.2)

Thus, the frames are related by 2 as a relatedness score. Note that in the
implementation of this measurement method we have employed a normalisation
technique, which is necessary to make the score between 0 and 1 and hence
measurable.

5.2.2 Extended Gloss Overlap (EGO)

The measurement method provided by Lesk (1986) has been extended by Banerjee
and Pedersen (2003). This extension insists upon on the importance of consider-
ing more information (i.e., not only the glosses pertaining to certain concepts),
and in particular includes the glosses of other concepts to which they are related
(i.e., all of the possible semantic relationships) according to a given concept hi-
erarchy in a defined lexicon. Moreover, the proposed measurement method, EGO,
matches phrases rather than just words. That is, it matches phrases with the
longest sequence of words. It then gives these matching phrases an enhanced
scoring function of n2, where n is equal to the number of tokens in the shared
phrases. The scoring function between FA and FB (in our case FA and FB are
two frames from FrameNet) is computed as follows.

Scoring(FA,FB) =∑
s∈Dn

2,n= |s|,n≥ 1
D = set(s), s ∈ set(Def(FA)∩Def(FB))

(5.3)

The relationships that are utilised in EGO measurement method are all relation-
ships defined in the FrameNet lexicon, as explained in Chapter 2. The semantic
relationships used could be one or more of the following: Inheritance, Using, Sub-
frame, Precedence, Perceptiveness, Inchoative, Causative and See-also. We generally
refer to these relationships as RELS.

Next, the scoring function is applied to all frames that are related to the target
frame pair FA and FB. Examples of such relationships would include a hypernym
frame, which is the parent frame in a directed relationship, and hyponym frame,
which is the child frame in the same directed relationship. That is, if FA inherits
from (i,e, a descendent of) FrameX and FA is inherited by FrameY , then FrameX

and FrameY are called hypernym ( Hype) and hyponym ( Hypo), respectively.
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In FrameNet, the relationships are not unitary: n-frames relationships are allowed
i.e. a frame can be inherited from more than one parent frame; such as the
Intentionally affect has the frames Intentionally act and Transitive action as parent
frames. The representation of these relationships is as follows.

Considering: R ∈ r|r is an existing relationship for FA in FrameNet
and r =RELS

Hype(R|FA) = FrameX ,

Hypo(R|FA) = FrameY ,

(5.4)

Then, a calculation of the relatedness score is made using the Scoring function,
but only for a relationship R ∈REL that exists for FA and FB in the FrameNet,
and after retrieving their Hype and Hypo frames in Relation R. The calculation
method is illustrated below.

ScoringRel(R|FA,FB) = Scoring(FA,FB)+
Scoring(Hype(R|FA),Hype(R|FB))+
Scoring(Hypo(R|FA),Hypo(R|FB))+
Scoring(Hype(R|FA),FB)+
Scoring(FA,Hype(R|FB))

(5.5)

Thereafter, the relatedness score of the extended Lesk measurement method
EGO, considering all possible relationships, is computed as shown.

MEGO(FA,FB) =∑
r∈RScoringRel(r|FA,FB)

where, R ∈RELS and R = set(possible relationships existed for FA and FB)
(5.6)

In our implementation, as will be discussed later in the validation chapter
(i.e., Chapter 8), the overall relatedness score will be normalised.

Example:
Consider the same example frames given in the section on the Lesk method.

The semantic relationships that are recalled for those frames from FrameNet are
depicted in Figure 5.2. The figure shows the semantic relationships of Activ-
ity ongoing and Activity finish; and the trees show the Hypo and Hype frames.
For example, Activity ongoing in the Inheritance relationship has Process continue
as Hype frame and frame Retaining as Hypo.
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Figure 5.2: The semantic relationships of Activity ongoing and Activity finish
as stored in FrameNet.

To calculate the relatedness score ScoringRel(R|FA,FB) between the given
frames, for example for the relationship R = Inheritance, we simply retrieve the
definitions from FrameNet49 and then apply ScoringRel, as explained in Equation
(5.4), to obtain the following.

ScoringRel(Inheritance|Activity ongoing ,
Activity finish) =
Scoring(Activity ongoing ,Activity finish)+
Scoring(Process continue,Process end)+
Scoring(Process continue, Intentionally act)+
Scoring(Retaining ,Finish game)+
Scoring(Process continue,Activity finish)+
Scoring(Activity ongoing ,Process end)
Scoring(Activity ongoing , Intentionally act)

(5.7)

We obtain a score of 12 mutual words or sequence of words, which shows the
relatedness score for the Inheritance relationship between the example frames Ac-
tivity ongoing and Activity finish. The same steps were followed in all of the shown
relationships in Figure 5.2, and for those with ‘NA’ value we simply assumed the
score to be zero.

Thereafter, after applying EGO’s formula with all stated relationships REL,
this raw score will be normalised, and we obtain the results for the set of frame
pairs rather than for a single pair. The results are presented in Chapter 8.
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5.2.3 Frames Elements Overlapping (OVL FE)

Another frame relatedness measurement method was proposed by Pennacchiotti
and Wirth (2009). It is a method that is based on the overlap between the
elements of two frames. Pennacchiotti and Wirth (2009) simply leverages this
property as the intuition that overlapped elements between two frames can be a
predictor of their relatedness. This method is explained as follows.

MOV L−F E(FA,FB) = |F EFA
∩F EFB

|
max(|F EFA

|,|F EFB
|) (5.8)

The interpretation of the obtained score from MOV L−F E is straightforward,
i.e. the higher the score obtained, the higher semantic relatedness degree between
the investigated frames. The score is normalised by dividing the number of mutual
FE’s in both frames by the highest number of FE’s in one of the frame pair (i.e.,
if FA has n of FE’s and FB has m of FE’s, and n ≥m, then the score will be
divided by n as the highest total of FE’s in the frame pair). Then we take the
normalised score to indicate the semantic relatedness between the two frames.

Example:
Let Creating and Intentionally create be FA and FB, respectively. We apply

OVL FE to obtain MOV L−F E(FA,FB), and we find a score of 12 shared FE’s
between FA and FB, where FA has 19 FE’s and FB has 12 FE’s. Then the
normalised score (and the relatedness score) according to OVL FE measurement
method is 0.6315. If we consider a minimum threshold of 0.5, then the frames FA

and FB are semantically related by 63.15%. The problem of choosing a reasonable
threshold value is examined in detail, as a main step of the intrinsic evaluation
procedures, in Chapter 8.

5.2.4 Frame Knowledge Overlapping (OVL k)

The previously discussed method (OVL FE) by Pennacchiotti and Wirth (2009)
was a simple and natural way to tackle relatedness links between two frames. In
addition, we note that related frames will in general share more features (i.e.,
semantic relationships, frames elements, and/or lexical units), rather than only
frame elements. Accordingly, we propose to apply the same mechanism to mea-
sure overlap for each provided information for frames in FrameNet (e.g., semantic
relationships and lexical units). To be more specific, for semantic relationships
we consider each relationship independently (i.e., for the Using relationship we
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inspect the overlap between two frames according to their uses and Used-by sub-
relationships). On deciding the overlap between relationships, we have an excep-
tion with the Inheritance semantic relationship in FrameNet. That is, when we
compare two frames FA and FB, if there is a direct Inheritance relationship be-
tween the frames such as parent and child frames, then the semantic relationships
of the parent’s frame are considered to be mutual with the child frame following
the inheritance property (i.e., the child classes inherit all of the properties from
their parent classes).

Afterwards, the overall mapping from each knowledge level or provided infor-
mation are added up to measure the frame relatedness. We assume, as mentioned
by Pennacchiotti and Wirth (2009), that a higher score indicates stronger relat-
edness between the two designated frames.

The overall overlap score is then normalised. Note that in OVL FE it is possible
to contain the results by dividing the score by the longest FE’s set between the
two frames but in OVL k the process is slightly complicated, hence using scaling
process will ensure stability in normalising the scores between 0 and 1. The
proposed overlap method is as follows.

MOV L−K(FA,FB) = |KFA
∩KFB

|
max(|KFA

|,|KFB
|)

Where K ∈ set(REL, LU, FE for FA and FB)
(5.9)

If there is no overlap at any knowledge level between the two frames, then we
assume the frames as being unrelated according to the FrameNet lexicon.

Example:

Consider the same example frames given in the section on OVL-FE method.
Let FA be Creating and FB be Intentionally create. After applying MOV L−K we
obtained 20 as a relatedness score. To be more specific, we obtain 12 mutual frame
elements, 5 as mutual lexical units, and 3 mutual semantic relationships because
FA is a parent frame for FB. More explicitly, for the inheritance relationship,
Intentionally create is directly inherited from Creating , so all of the relationships
contained in Creating as parent frame are counted for Intentionally create as child
frame.
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5.3 Path-based Measurement Methods

In order to apply path-based methods we organised the concepts (i.e. frames)
into hierarchical graphs, i.e. a visual and directed graph of connected frames
(as nodes) and the links between those frames to represent their semantic rela-
tionships (e.g, is-a Inheritance relationships. More general frames are near the
root of the frames’ graph and more specific frames near the leaves. Subsequently,
we measure the frames’ similarities according to the path lengths between the
frames.

In the following subsections, we present five similarity metrics that are adopted
to is-a Inheritance relationships in FrameNet. The presented metrics are common
methods for measuring similarity in path-based semantic graphs (Navigli and
Martelli 2019; McInnes et al. 2014). For example, in estimating similarities in
WordNet (Miller 1995), three of these metrics are extensively used by Pedersen
et al. (2004).

5.3.1 Shortest-Path Measurement Method

One of the early works on measuring similarities by a knowledge-based approach
is a measurement method developed by Rada et al. in 1989. The Path semantic
measurement method is straightforward. The shortest length is calculated by
counting the number of nodes in the least common subsumer (LCS) frames, which
is defined to be all frames which are ancestors of the two concepts or frames
being compared. Equivalently, the shortest length is the unweighted length of the
shortest-path between the two frames. Accordingly, the shortest is-a Inheritance
path between FA and FB, is calculated as shown in Equation (5.10):

MPath = 1
shortest path(FA,FB) (5.10)

Example:
Let FA be Intentionally create and FB be Event. The inheritance-based rela-

tionship tree between these two frames is depicted in Figure 5.3; in this figure,
the is-a relationships are labelled by black-arrows between connection nodes.
The visualisation of the inheritance relationship details are explained in the Im-
plementation section. The Event frame is considered to be the root frame of
Intentionally create, and the frame Intentionally act is the single LCS frame in
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the shortest-path between the root frame Event and Intentionally create. Accord-
ingly the relatedness score as calculated by MP ath is 1, which indicates an exact
similarity between FA and FB.

Figure 5.3: A visualisation of the inheritance relationship between frame
Intentionally create and frame Event, as indicated in FrameNet.

5.3.2 WUP

Wu and Palmer (1994) extended the shortest-path (Path) measurement method
discussed by Rada et al. (1989) through incorporating the depth of the LCS.
More specifically, the WUP method determines the depths of the two frames from
the root frame and their LCS frames.

In the WUP measurement method, the similarity is twice the depth of the two
frames’ LCS divided by the sum of the individual frame depths (the depth is de-
termined by the distance between the frame and its root). The WUP measurement
method is calculated as follows.

Mwup(FA,FB) = 2∗D(LCS(FA,FB))
D(FA)+D(FB)

D(x) = shortest path(Root Frame,Framex)
(5.11)
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In the case that the LCS of FA and FB is empty (i.e. there are no common
ancestors) the score will be zero, indicating no relatedness between both frames.

Example:
Consider the Inheritance paths shown in Figure 5.3. We calculate the relat-

edness score between Intentionally create and Objective influence using Mwup, and
obtain a score of 0.80. To be precise, the length of the LCS of the frames in ques-
tion is 2; because the Transitive action is ancestor LCS of the both target frames;
and the depth of Intentionally create is 3, and the depth of Objective influence is
2.

5.3.3 LCH

Another similarity measurement method is proposed by Leacock and Chodorow
(1998) (LCH) which is also an extension of the Path measurement method pre-
sented by Rada et al. (1989). The LCH takes into consideration the depth of the
taxonomy (i.e., the overall is-a relationships between the two frames). The im-
portant quantity is the negative logarithm loge of the shortest-path (i.e., the size
of the LCS) between the two frames divided by twice the longest depth in that
taxonomy. The LCH measurement method is defined as follows.

Mlch(FA,FB) =−loge( Length
2∗Depth)

Length= shortest path(FA,FB)
Depth= longest path(FA,FB)

(5.12)

Again, Length is the length of the shortest-path between the two frames that
are connected in the same taxonomy of frames in FrameNet, and Depth is the
maximum depth of the given tree (i.e., the maximum hierarchy depth). Following
also the procedure explaining in the WUP method, we assume that there is no
relatedness between FA and FB if the two frames are not connected in any is-a
relationship.

Example:
Consider the same Inheritance taxonomy defined in Figure 5.3. Let FA be

Creating and FB be Intentionally act. After applying the equation stated in 5.12,
we obtained a relatedness score of 2.079 for −loge( 1

2∗4). The overall score of
the LCH method will be normalised. And the minimum threshold to determine
semantic relatedness between FA and FA using the LCH method is illustrated in
the intrinsic evaluation; we conducted in Chapter 8.
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5.3.4 NAM

Nguyen and Al-Mubaid (2006) has proposed another similarity measurement
method by considering both the depth and LCS in their NAM measurement method.
In this method, the similarity score is calculated by taking the loge of a static
number 2 added to the length of the shortest-path between the two frames FA and
FB and subtracting by one, and the depth of the taxonomy (Depth) subtracting
from the depth of the frame LCS (Depthlcs). The NAM method is explained in
Equation 5.13 as follows.

Mnam(FA,FB) = log2(([Length−1]∗ [Depth−Depthlcs]) + 2)
Length= shortest path(FA,FB)
Depth= longest path(FA,FB)
Depthlcs = shortest path(Flcs,Froot)

(5.13)

The score obtained from this method depends on the depth of the frames
taxonomy. Furthermore, as explained in the previous path-based methods in this
section, we assume that there is no relatedness between FA and FB if the two
frames are not connected in any is-a relationship.

Example:
Consider the same Inheritance taxonomy defined in Figure 5.3. Let FA be

Objective influence and FB be Intentionally create. Then the LCS are frames:
Creating and Transitive action, and by applying the NAM method stated in 5.13,
we obtained a result of log2([4− 1] ∗ [5− 3] + 2) = 2.58. The minimum semantic
relatedness threshold will be determined through a set of experiments against a
human-labelled dataset in Chapter 8.

5.3.5 BATET

Batet et al. (2011) proposed a similarity measurement method for measuring
similarities in a taxonomy used in the biomedical domain. We have employed
the proposed measurement method within the FrameNet’s taxonomy. The BATET
measurement method considers the shared frames (referred to as shared super-
concepts by Batet et al. (2011)) between the two frames (FA and FB) and the
common LCS frames between those frames, where FA is associated to a set TA

comprising all of the frames found in all of the shortest paths between FA and the
LCS of FA and FB. The BATET method is explained in Equation 5.14 as follows:
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Mbatet(FA,FB) =−log2
|TA∪TB |−|TA∩TB |

|TA∪TB | (5.14)

As stated in the above path-based measurement methods, if the LCS of FA

and FB is empty then we consider that there is no relatedness between the two
frames since the BATET method depends on the commonality between frames.

Example :
Consider the is-a taxonomy depicted in Figure 5.3. Let FA be Intention-

ally create and FB be Transitive action. Then, calculating the relatedness scores
by Equation 5.14, we obtain −log2

4−1
4 = 0.41. As is the case with any other meth-

ods in this section, the minimum semantic relatedness threshold is experimentally
determined for each method independently. The experimental procedures are
provided in Chapter 8.

5.4 Implementation

To implement the methods described in the knowledge-based approach, we have
utilised a number of python packages. In pre-processing the definition in the
FrameNet lexicon, we used NLTK from Schneider and Wooters (2017) to apply
word tokenisation, and also n-gram sequencing detection to find the longest
matched phrases in these definitions. For finding the simple form, w, of the defi-
nition’s words, we applied a stemming process using a linguistic Nodebox package
in python (Bleser et al. 2010).

For semantic graph creation, we utilised the FrameNet API (Baker 2017) to
retrieve all of the information pertaining to the frames, and then we used the
Networkx graph package in python, from Hagberg et al. (2008), to construct
the semantic graphs and find paths between frames as nodes in the graphs. The
results of each measurement method presented in this section were calculated
using the Numpy package (van der Walt et al. 2011) in python.
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Chapter 5 Summary:

In this chapter, we described an approach pertain to use the embodied
knowledge in the FrameNet lexicon, and under this approach we proposed
nine methods to measure semantic relatedness between frame pairs.
The presented methods were classified, according to their computation style
in measuring relatedness between frame pair, into two categories.
The first category was the overlap-based methods and the second category
was the path-based methods.
The presented methods will be carried into the intrinsic evaluation chap-
ter (Chapter 8) to evaluate their performance and efficacy in measuring
and identifying semantic relatedness at frames level according to a human-
judgement dataset from an RE perspective.
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Chapter 6

The Corpus-Supported Approach

–Measuring Frames’ Relatedness from an RE Perspective–

In this chapter, we discuss the potential uses of FrameNet frames information,
such as that information pertaining to semantic relationships between frames as
well as other techniques related to supportive corpora tagged with FrameNet
frames. This enables us to find similarities and relatedness between frames in
the context of RE documents. In Chapter 5, we applied the knowledge-based
approach to measure the relatedness between frames by utilising the available
information in the FrameNet lexicon.

We propose an approach for measuring similarities and relatedness between
semantic frames by considering RE as a domain-of-use, and apply the corpus-
supported approach which uses information from large and related corpora.
In Section 6.1, we present an overview of the proposed approach and its related
methods. In Section 6.2, we present the corpora that we shall adopt in order to
apply the methods under the corpus-supported approach. This means obtaining
frequencies and co-occurrence of frames from the FN-RE corpus as indicated in
Chapter 4 and in the FrameNet general corpus discussed by Ruppenhofer et al.
(2016).

Subsequently, in Section 6.3, we introduce the first category of the methods in
the corpus-supported approach. The methods in this category are co-occurrence
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based and exclusively dependent on the FrameNet-related corpora in order to pro-
vide an estimated weight for each frame as well as the co-occurrence frequencies
between the frame pair.

Following that, in Section 6.4, we present the second category, namely the
co-occurrence and path based methods. This category aims to utilise both the
structural information and the FrameNet-related corpora for the purpose of es-
timating the frame relationships. Finally, in Section 6.5, we provide details of
the software packages and tools used to implement the methods of the corpus-
supported approach.

We shall evaluate the methods proposed in this chapter against a labelled
dataset of human judgements in order to describe frame relatedness from an RE
perspective, and disucss the evaluation procedures and results in Chapter 8.

In summary, the objectives of this chapter are:

• To discuss the extension of the corpus–supported approach for measuring
the relatedness between frames, which are drawn from the FrameNet and
FN-RE corpora.

• To present the FrameNet-related corpora that we intend to use in the pro-
posed approach.

• To introduce the co-occurrence based methods, being the first category of
those under the corpus-supported approach.

• To introduce the second category of the methods, being those based on
co-occurrence and path.

6.1 Approach Overview

In this section, we present other semantic measurement methods based on models
of distributional similarities vectors’ models from large text collections, such as
corpora. We consider seven methods for measuring similarities and relatedness,
to which we refer as corpus-supported methods. These methods are extensively
used in NLP and related Text Mining studies for the purpose of determining the
semantic relatedness of two entities based on the information exclusively derived
from a large and representative corpus (Gomaa and Fahmy 2013; Farouk et al.
2019).

The key assumption in these corpus-supported methods is that low-frequency
words (or in our case, frames) often carry a considerably greater amount of specific
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information than do high-frequency ones. Furthermore, some of these methods
use path-based information in semantic graphs in order to assist for measuring
specific frame relatedness by considering frames connected by the is-a or Inheri-
tance relationships. An overview of the processes involved in the corpus-supported
approach is shown in Figure 6.1.

Figure 6.1: An overview of the methods in the corpus-supported approach,
which are extended to cover FrameNet frames as a semantic lexicon.

6.2 Integrating Corpora

Our FN-RE corpus has covered essential frames in FrameNet in order to describe
requirement statements semantically. However, to apply the corpus-supported
measurement methods, as we shall explain in this section, the FN-RE corpus
requires additional support from another FrameNet-tagged corpus in order to
cover many frames in FrameNet sufficiently. This means covering at least 50% of
the frames in FrameNet; the FN-RE corpus covers 558 frames, which is almost
45% of the FrameNet lexicon.

Consequently, we integrated our FN-RE corpus with a recent corpus by FrameNet
(version 1.7) by Ruppenhofer et al. (2016), which contains a list of 102 manually
annotated documents from news sources. It also contains Wikipedia articles and
other corpora, such as the Brown Corpus, which corresponds to 10,147 sentences
and 176,503 words. Furthermore, our corpus contains 82 requirement documents
which correspond to annotating 5,438 requirements manually, and also an overall
words size of 330,396.
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The integration was a systematic procedure in which we retrieved frames and
their frequencies 50 from both corpora and concatenated the results from each,
thereby resulting in a single source that we shall use for the corpus-supported
methods in the current approach. Following this process, we acquired a list of
853 frames, i.e. we almost covered 70% of the frames in the FrameNet lexicon,
with almost 25% of the additional frames being from the FrameNet corpus. Figure
6.2 presents a FrameNet-graph-based example from the frames’ frequencies in the
integrated corpora.

Figure 6.2: A FrameNet-graph-based example of the frames between Infor-
mation display and Controller object with the frames’ co-occurrence.

In Figure 6.2, we depicted all of the Inheritance relationships and co-occurrence
between the Information display and Controller object frames in solid lines begin-
ning with their root frame , Entity , with the dotted lines representing only the
co-occurrence within the designated frames’ FrameNet-graph. The co-occurrence
in red font indicates the overall frequencies of the frame, and the black font
frequencies indicate each frame individually; furthermore, for co-occurrence fre-
quencies between two frames, the numbers are in green font.

50 The obtained frames frequencies (ff ) treated as we traditionally manage term frequencies
tf.
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6.3 co-occurrence-based Measurement Methods

The co-occurrence-based measurement methods are basically related to the fre-
quencies of words (or frames), and the more frequent frames are considered to be
more significant. In the following sub-sections, we present the adopted methods
and illustrate the means by which they calculate the semantic frames’ relatedness
by using the FrameNet-graph-based example as shown in Figure 6.2.

6.3.1 Sørensen Dice coefficient

An early method of measuring similarities between two words (in our case, frames)
is the Sørensen Dice coefficient, also known as Dice’s coefficient ( Dice). This
measurement method, which is among the earliest methods used for the purpose
of identifying similarities between two entities, was introduced by Dice (1945),
and has been used in text similarity analysis as reported by Navigli and Martelli
(2019).

The method of Dice is formally represented as shown in Equation 6.1 below:

MDice(FA,FB) = 2freq(FA,FB)
freq(FA)+freq(FB) (6.1)

Where freq(Fx) is the frequency of the corresponding frame, and freq(FA,FB)
is the number of co-occurrence of FA and FB in the same context; for example,
documents in the used corpus. The semantic relatedness between frame Informa-
tion display and frame Controller object is calculated as follows:

MDice(Information display ,Controller object) = 2∗126
(94+202) = 0.8514

Therefore, the frame Information display and frame Controller object are related
by 0.8514. In certain cases, the score could be greater than 1, which requires
score-scaling, also known as normalisation.

6.3.2 Jaccard Similarity Coefficient

This measurement method is also known as the Jaccard Index (Jaccard), is
similar to the Dice method that identifies similarities between two entities, as
can be shown in 6.2. We used to detect word and sense similarities in text;
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moreover, it is still considered to be as one of the profound similarity identification
techniques in lexical resources Navigli and Martelli (2019). The formal equation
of Jaccard method is shown in Equation 6.2 below:

MJaccard(FA,FB) = 2freq(FA,FB)
freq(FA)+freq(FB)−freq(FA,FB) (6.2)

As similarly presented in the Dice method earlier, the value of freq(Fx) in-
dicates the frequency of the corresponding frame, with freq(FA,FB) being the
number of co-occurrence of FA and FB in the same context (e.g., documents).
For instance, we calculated the semantic relatedness between frame Artifact and
frame Controller object as follows:

MJaccard(Artifact,Controller object) = 2∗174
94+167−174) = 4

Therefore, the frame Artifact and frame Controller object are related by 4. We also
noted that the relatedness score is greater than 1, thereby requiring score-scaling
as we follow in the previous measurement method.

6.3.3 Positive Point-wise Mutual Information

In certain contexts, the raw frequencies do not provide an optimal measure of
the connection between the two concepts. Accordingly, we adopt another mea-
surement method which determines whether a context concept(A) is particularly
informative of the target concept(B). This measurement method is knwon as
Positive Point-wise Mutual Information, in short form as PPMI. The method is
generally presented as shown in Equation 6.5 below:

PMI(FA,FB) = log2
Pr(FA,FB)

Pr(FA)Pr(FB) (6.3)

In order to calculate the probability of frame occurrences Pr(FA), we use the
integrating corpora (cf. Section 6.2), where CFA

is the set of documents in which
FA occurs. Moreover, CFA,FB

is the set of documents in which FA and FB co-
occur, resulting in the value of Pr(FA,FA). The calculation of P is based on one
of the frame co-occurrence measurement methods mentioned by Pennacchiotti
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and Wirth (2009), and is represented as follows (Equation 6.4):

Pr(FA) = freq(FA)
N

where, freq(FA) =∑
fa∈C count(fa)

and, N = set(freq(F ) ∈ C)|F frequency of any frame in the corpus)
(6.4)

As presented in the used FrameNet-tagged corpora (cf. Section 6.2), the total
number of frame frequencies is 52,126, therefore N = 52,126.

The relatedness score can range from −∞ to +∞, but any negative results
obtained can be problematic. In this case, the results are unreliable because they
are attributed to the corpus size and contextual information. For this reason, we
followed the approach of Positive Point Mutual Information (PPMI), as proposed
by Jurafsky (2000), and replace negative PMI scores by zero. Therefore, the
representation for PPMI is as follows (Equation 6.5):

PPMI(FA,FB) =

PMI(FA,FB), if pmi> 0.

0, otherwise.
(6.5)

For example, the semantic relatedness between frame Information display and
the frame Artifact is calculated as follows:

Pr(Information display) = 202
52,126 = 0.00387

Pr(Artifact) = 167
52,126 = 0.00320

Pr(Information display ,Artifact) = 98
52,126 = 0.00188

PMI(Information display ,Artifact) = log2
0.00188

0.00387∗0.00320 = 7.246

Therefore, the semantic relatedness between the frame Information display and
the frame Artifact is PPMI = 7.246, because the score exceeds zero. However,
we require a score-scaling procedures when we obtain a relatedness score greater
than 1, as shown in the above example.

6.3.4 Context Vector

Patwardhan and Pedersen (2006) developed a semantic relatedness measurement
method that represents the concept as a context vector. This measurement
method uses the co-occurrence matrix representing the contextual information
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of a concept in a given corpus. Furthermore, Patwardhan and Pedersen proposed
the application of the Cosine of the angle between the two vector representations
in order to measure the concepts for semantic relatedness relatedness.

Accordingly, in this situation, we adopted the concept of frame relatedness.
In this way, we claim that the frames are similar, or related, if their frame vectors
are close, meaning that the Cosine scores indicate their similarities. Therefore,
by obtaining the frame vector Fvec of each frame in the pair, we use the alge-
braic notion of CosineVec to measure the distance between the two vectors, as
shown below in (6.6). For FrameNet frames FA and FB, let Mcosine denote the
relatedness between these two frames as follows (Equation 6.6):

Mcosine(FA,FB) = FvecA·FvecB
‖FvecA‖‖FvecB‖ (6.6)

where FvecA and FvecB are the frame vectors for FA and FB, respectively.
The Cosine similarity metric measures the angle between two vectors. There-

fore, if the vectors are close to being parallel (e.g. with Mcosine(A,B) ≈ 1), we
then consider the frames to be similar, whereas if the vectors are orthogonal (i.e.,
with Mcosine(X,Y ) ≈ 0), then we consider the frames as being unrelated. Pro-
viding an example of how to calculate the CosineVec angle between two frame
frequency-based vectors is impossible due to the size of the frame vector. This
means that the vector’s size is equal to the number of the documents in the
integrated corpora in Section 6.2, which is 182.

Figure 6.3: Frame vectors example; the frequencies were obtained from the
integrated corpora presented in Section 6.2

In Figure 6.3, we provide an excerpt from the frame vectors generated from
the integrated corpora. This vector is represented by the numeric columns in
the table, where the designated frame titles are indicated in the column headers.
It is noteworthy to indicate that the score range from the CosineVec method,
which is usually between zero and one. This indicates that it is not necessary to
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apply score-scaling procedures, as presented in the aforementioned measurement
methods.

6.4 Co-occurrence and Path based Measurement
Methods

The measurement methods in this category consider not only the frequencies of
frames, but also the commonalities between them, for comparison with the path
and nodes shared by the frame pair. In the following sub-sections, we present
the adopted methods and illustrate the means by which such methods calculate
the semantic frames’ relatedness by using the FrameNet-graph-based example as
shown in Figure 6.2.

6.4.1 Resnik

Resnik (1995) proposed a measurement method, which combines basic taxonomy
information (i.e. an inheritance is-a relationship) and corpus features in order
estimate the semantic similarity of two concepts in a given large corpus. Hence-
forth, in this method, Resink considers LCS only of the two concepts (i.e., FA

and FB). It is based on the notion of information content (IC), as Equation 6.7
(below) indicates:

MResink(FA,FB) = IC(LCS(FA,FB)) (6.7)

The notion of an IC is a measurement method of the information content of
a specific concept, such as FA. We calculated this as the negative logarithm of
a frame’s probability in the adopted corpus. However, the frame’s probability,
in this case, is different from the Pr presented for the PPMI method. This is
because, in this context, the frame’s probability (P) is obtained by dividing the
frame counts by the overall counts of frames on the path between the target frame
(f ) and its root frame (f.root), as follows:

IC(FA) =−loge P (FA)
where, P = freq(f)

freq(f.root)
(6.8)

In the FrameNet-graph-based example in Figure 6.2, the total number of
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frames’ frequencies beginning from the leaf frame until the root frame (Entity)
is 557. For example, we measured the semantic relatedness between the frame
Information display and the frame Controller object, by calculating the IC score
of their common parent frame, which is Artifact as a LCS frame; therefore, the
score is calculated as follows:

MResink(Information display ,Controller object) = IC(Artifact) =−loge
167
557 = 1.2045

The relatedness score of the frame Information display and the frame Controller object
as calculated by Resink method, is 1.2045. Since this shows a score greater than
1, we shall apply further procedures in order to normalise the final relatedness
scores obtained by this method.

6.4.2 Lin

Another corpus-supported methods is a measurement method introduced by Lin
(1998). This method builds on the Resnik (1995) similarity measurement method,
which adds a normalisation value comprising the IC values of the compared frame
pair.

Mlin(FA,FB) = 2∗IC(LCS(FA,FB))
IC(FA)+IC(FB) (6.9)

For example, by using the same frames example as applied to illustrate Resink
method, the relatedness score of the frame Information display and the frame Con-
troller object are as follows:

IC((Information display) =−loge
202
557 = 1.0142

IC((Controller object) =−loge
94
557 = 1.7792

Mlin(Information display ,Controller object) = 2∗1.2045
1.0142+1.7792 = 0.8623

Therefore, according to the Lin method, the relatedness score is 0.8623. How-
ever, since this method is also frequency based, it may produce a relatedness
score greater than 1, depending on the frames’ frequencies. Therefore, we may
apply a score-scaling procedure in the event of the score being greater than the
desired score’s range.
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6.4.3 JNC

The final measurement method in this section is introduced by Jiang and Conrath
(1997), which is the inverse of Lin measurement method, and is explained by the
following equation (Equation 6.10).

Mjnc(FA,FB) = 1
IC(FA)+IC(FB)−(2∗IC(LCS(FA,FB))) (6.10)

For example, in order to calculate the relatedness score between the frame
Information display and the frame Controller object, as previously presented with
the methods Resink and Lin, the score is obtained as follows:

Mjnc(Information display ,Controller object) = 1
1.0142+1.7792−(2∗1.2045) = 2.6014

Therefore, by using JNC method, we obtain the relatedness score between the
frames Information display and Controller object as 2.6014. We consider this to be
a positive relatedness score since it exceeds zero. Nevertheless, a score scaling
will be applied since the obtained score exceeds one.

6.5 Implementation

In order to implement the corpus-based measurement methods we utilised a num-
ber of python packages. Moreover, in processing corpora, we used NLTK python
package by Schneider and Wooters (2017) to retrieve frame frequencies and the
lxml package51 to extract information from the FrameNet corpus encoded in
XML.

For semantic graph creation we utilised FrameNet API (Baker 2017) to retrieve
information pertaining to the frames; subsequently, we used the Networkx graph
package in python, presented by Hagberg et al. (2008), to construct the semantic
graphs and to find paths between frames as nodes in the graphs. We calculated the
context vectors and measurement method results by using the Numpy package (van
der Walt et al. 2011) in python. For the score-scaling procedure, we implemented
a simple script by using the Numpy package. We shall explain the score-scaling

51https://lxml.de/api/frames.html
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process in the intrinsic evaluation chapter (Chapter 8).

Chapter 6 Summary:

In Chapter 6, we described another approach for measuring the similarity
and relatedness between frames in FrameNet and from an RE as a usage
domain.
We implemented the corpus-supported approach in order to utilise the con-
textual information of the FN-RE corpus as presented earlier in Chapter 4
as well as the recent corpus from the FrameNet project (Ruppenhofer et al.
2016).
In applying this approach, we proposed seven methods of measuring se-
mantic relatedness between frame pairs.
The methods presented in this chapter, will be carried into the next chap-
ter (Chapter 8) in order to evaluate their performance and effectiveness in
measuring and identifying semantic relatedness at a semantic frame level
according to a human-judgement dataset.
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Chapter 7

The Embedding-Based Approach

–Measuring Frames’ Relatedness from an RE Perspective–

In this chapter, we introduce an embedding-based approach that is de-
signed and implemented by applying different word embeddings and their map-
ping to the lexical units pertaining to the frames in FrameNet. In Section 7.1, we
present an overview the embedding-based approach. Following that in Section
7.2, we provide a brief introduction of the word embeddings that shall be used in
the proposed approach. As we discussed previously in Section 2.2.3, word embed-
dings require large dataset to be trained; therefore, we collect a large dataset of
user requirements in Section 7.3, and the details of training word embeddings pre-
sented in Section 7.4. Then, the generation of the frame embeddings is presented
in Section 7.5. Afterward, we present in Section 7.6, the semantic distance met-
rics that shall be used with the frame embeddings. Finally, the implementation
details of the proposed approach is covered in Section 7.7.

We shall evaluate the methods proposed in this chapter against a labelled
dataset of human judgements to describe frame relatedness from an RE perspec-
tive. The evaluation procedures and results are discussed in Chapter 8.

In summary, the objectives of this chapter are:

• To present a novel embedding–based approach to measure the relatedness
between frames from domain-specific and newly trained word embeddings.
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• To discuss the words embedding models, which we employ in the embedding-
based approach.

• To present a large dataset of user reviews which represents a dataset of
informal user requirements.

• To present the main tasks to generate the frame embeddings and the se-
mantic distance metrics that shall be used with these embedding.

7.1 Approach Overview

Word embeddings have helped boost the performance of various NLP tasks. An
example is word analogy, where word embeddings allow us to calculate semantic
similarities between words (Fu et al. 2014; Li and Yang 2018). However, the use
of word embeddings can lead to even better performance if they are trained on
corpora specific to the domain of interest or application (Li and Yang 2018). This
can potentially reduce the problem of out-of-vocabulary (OOV) words (Jozefowicz
et al. 2016), i.e., the lack or sparsity of instances of certain words in the training
corpus, which leads to an inability to capture or map their context in embedding
vectors. The solution in such cases is typically to simply ignore the OOV words,
which is not ideal.

As an alternative, we propose a solution for mitigating text sparsity that is
based on semantic frames. Rather than mapping each word in the text, we target
a group of words which represent a semantic frame, hence producing semantic
frame embeddings.

In this chapter, we describe new frame embedding-based resources, i.e. vector
representations of semantic frames in FrameNet, which were developed to support
the measurement of semantic relationships between frames.

Our frame embeddings, which encapsulate contextual information at the se-
mantic frame level, are generated from different word embeddings that are trained
on the same large corpus of user-generated requirements (a collection of more than
2.8 million user requirements).

The word embeddings are trained using three of the modern techniques (or
language models) in NLP research (Li and Yang 2018). These are Word2Vec
by Mikolov et al. (2013), GloVe by Pennington et al. (2014), and FastText by
Bojanowski et al. (2016). Then, from the trained word embeddings, we generate
frame embeddings by using two techniques: vector addition and vector averaging.
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This generation process is applied according to each model used. Finally, the
semantic relatedness between the generated frame embeddings is quantified using
three distance metrics: the Cosine, Euclidean and Manhattan distance metrics.
This follows the reported work by Jones and Furnas (1987); Amine et al. (2010).

The training methods together with the used similarity metrics are then imple-
mented for later comparison to select the most representative frame embeddings
for the RE domain (as will be discussed in Chapter 8). The implementation
details shall be discussed at the end of this section.

An overview of the embedding-based measurement methods is depicted in
Figure 7.1; which shows the steps involved in the embedding-based approach
to generate the frame embeddings, including the metrics used to measure the
distance between the initiated embeddings to determine the frame embeddings’
semantic relatedness.

Figure 7.1: An overview of the steps involved in the embedding-based ap-
proach.

7.2 The Word Embedding Models

In this section, the three word embeddings which shall be used in the embedding-
based approach are presented in the following sub-sections.

7.2.1 Word2Vec

A Word2Vec model as proposed by Mikolov et al. (2013) is considered to be one of
the earliest and publicly available language models. The main goal of Word2Vec
model, as presented by their authors by Mikolov et al. (2013) is “to introduce
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techniques that can be used for learning high-quality word vectors from huge
datasets”, and to overcome the limitations of the previous statistical architec-
tures on the training limited vocabularies size and small vector dimensions. For
example, in the previous language models discussed by Bengio et al. (2003) the
word vectors range between 50-100 in size.

The Word2Vec model is used in many NLP downstream tasks, e.g., identifying
semantic relatedness between group of words as reported by Li and Yang (2018)
and it has been subsequently analysed and explained by other researchers; for
example, as discussed by Goldberg and Levy (2014).

The Word2Vec algorithm is a two-layer neural network that processes huge
textual dataset ,i.e., the Word2Vec model can be trained in two steps: first, con-
tinues word vectors are learned using simple model, and then enhanced N-gram
model is trained in top of these distributed representation of words. Moreover,
Word2Vec uses unsupervised learning to determine semantic and syntactic mean-
ing from word co-occurrence following the notion of linguistic regularities dis-
cussed by Fu et al. (2014), which is used to construct vector representations for
every word in the vocabulary and to learn their semantic differences. For exam-
ple, the male/female relationship is automatically learned, and with the induced
vector representations, “King - Man + Woman” results in a vector very close to
the word “Queen.” (Fu et al. 2014; Mikolov et al. 2013).

As presented by Mikolov et al. (2013), to learn the distributed semantic rep-
resentations of words, Word2Vec can utilise either of two model architectures to
produce a distributed semantic representation of tokens in the training corpus: 1)
continuous bag-of-words (CBOW); or 2) continuous skip-gram. The two architec-
tures are proposed in order to minimise the computational complexity of learning
word’s semantic distribution in the training dataset. An overview of Word2Vec
model architecture is shown in Figure 7.2.

In the CBOW architecture, the model predicts the current word from a window of
surrounding context words. They called this architecture a bag-of-words model
because the order of context words does not influence prediction (i.e., in bag-
of-words assumption, disregarding grammar and even word order but keeping
multiplicity or the number of times a particular word appears in the dataset).
Furthermore, they used a log-linear 52 classifier with four future words and four

52The motivation of making Word2Vec a log linear model is to speed up the training of deep
neural networks, i.e., hierarchical softmax or negative sampling, during the back-propagation
step (Mikolov et al. 2013). According to the authors, hierarchical softmax works better for
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Figure 7.2: An overview of Word2Vec Model with CBOW and skip-gram
architectures as explained by Mikolov et al. (2013).

history words at the input later, and that is why they denoted this architecture as
CBOW model because it uses a continues distributed representation of the word’s
context unlike the stranded bag-of-words model.

In the other model, the continuous skip-gram architecture, it is similar to
CBOW but in a kind of reverse-manner. In the continuous skip-gram architecture,
the model uses the current word to predict the surrounding window of context
words, i.e., it attempts to maximise the classification of a word based on another
word in the same sentences. As in CBOW, the continuous skip-gram architecture
uses a log-linear classifier at the projection layer with current word as input
to predicted words within a certain range before or after the input word, i.e.,
like history and future words as in CBOW architecture. The size of gram in the
continuous skip-gram architecture is dominated by the nature of dataset size
and context; however, the increasing gram range improves quality of the resulted
word vectors, but also increases the computational complexity (Mikolov et al.
2013). Generally, the continuous skip-gram architecture weighs nearby context
words more strongly than more distant context words.

infrequent words while negative sampling works better for frequent words and better with low
dimensional vectors.
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7.2.2 Glove

Another count-based model for training words embedding is a language model
presented by Pennington et al. (2014), which is referred as GloVe, coined from
Global Vectors. The model leverages the training corpus statistical information
by generating global word-word co-occurrence statistics from the corpus. The
model is provided by Stanford as open source project 53.

According to Pennington et al. (2014), the main goal of designing GloVe as
an unsupervised learning algorithm for obtaining vector representations for words
is “to leverage statistical information by training only on the nonzero elements
in a word-word co-occurrence matrix, rather than on the entire sparse matrix or
individual context windows in a large corpus.”

The GloVe model has been utilised in a number of NLP downstream tasks
such as words analogy tasks and named entity recognition ,e.g., Li and Yang
(2018) and Kenter and de Rijke (2015).

There are two main approaches for learning words vectors: 1) local context
windows as presented in Word2Vec skip-gram model by Mikolov et al. (2013) and
2) a traditional approach based on global matrix factorization of corpus statisti-
cal information, such as latent semantic analysis (LSA) (Deerwester et al. 1990).
GolVe model utilises the strength of global matrix factorization by taking an ad-
vantage of the vast amount of repetition in the training corpus. Such as LSA’s
model in using corpus statistical information but GloVe has an efficient cost at
training only the non-zero elements and avoiding the cost of building the full
co-occurrence matrix. In addition, GloVe does not rely just on global statistics
(word co-occurrence) but incorporates local statistics (local context information
of words) to obtain words vectors by capturing the meaningful linear substruc-
ture that is common in recent log-linear prediction-based models like Word2Vec
skip-gram model.

Pennington et al. (2014) illustrate that in GloVe model the ratio of the co-
occurrence probabilities of two words is pertain to the information that those
two words contain in a certain context rather than their direct co-occurrence
probabilities. Then, to encode this contextual information of the two words as
vector differences.

As discussed by Pennington et al. (2014), the novelty of GloVe is the proposal

53https://nlp.stanford.edu/projects/glove/
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of a new weighted least square regression model with a weighting function that
follows three choices to contain the co-occurrence problems, these properties are:

• f(Xij) = 0, if there is no co-occurrence between word i and j which implies
that the adopted model only counts non-zero elements.

• f(Xij) should not decrease dramatically so that rare co-occurrence are not
over-weighted.

• f(Xij) should be relatively small for large values of Xij , so that high fre-
quent co-occurrence between between word i and j are not over-weighted
as well.

To be more specific, in GloVe model the main argument was that the use of
count-based and prediction-based methods are useful since both methods con-
struct the underlying co-occurrence statistics of the corpus. Unlike Word2Vec
model, there is only one architecture in GloVe model which incorporates the two
methods discussed earlier.

7.2.3 FastText

FastText by Bojanowski et al. (2016) was presented as enhanced model of Word2Vec
model discussed by Mikolov et al. (2013). The main goal of the FastText model
is to “investigate a simple method to learn word representations by taking into ac-
count sub-word information” (Bojanowski et al. 2016). The model was designed
basically for generating words representations (i.e., embeddings) as discussed by
Bojanowski et al. (2016) and sentences classification as presented by Joulin et al.
(2016).

Unlike Word2Vec by learning vectors for words directly (Mikolov et al. 2013),
FastText represents each word as an n-gram of characters. For instance, the word
“software” with n=2, the FastText representation of this word is [s,so,of,ft
rangle, tw,wa,ar,re,e], where the angular brackets indicate the start and end of
that word. The idea of using character n-grams into the embedding model is
dated back to the notion of “word space” as presented by Schütze (1993).

Bojanowski et al. (2016) claimed that FastText model works well with infre-
quent or rare words, i.e., if a word was not listed in the training corpus or was
not observed during the embedding training, it can be broken down into n-grams
to get its embeddings. This is helpful to capture the meaning of short words;
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moreover, it allows to understand the word’s suffixes and prefixes (e.g., the word
‘re-create’ and the word ‘create’).

As presented by Pennington et al. (2014), FastText is an extension of Word2Vec
model, hence, the applied architectures in Word2Vec are also applicable in FastText.
Therefore, to learn the distributed semantic representations of words as n-grams
characters, FastText can utilise either of two model architectures to produce a
distributed semantic representation of tokens in the training corpus: 1) CBOW; or
2) continuous skip-gram. In the continuous CBOW architecture, the model predicts
the current word from window of surrounding context words. In the continuous
skip-gram architecture, the model uses the current word to predict the surround-
ing window of context words, i.e., it attempts to maximise the classification of a
word based on another word in the same sentences.

7.3 Collection and Preparation of the Dataset

To train a proper word embedding for the RE domain, a large and balanced set
of natural requirements is required. Due to the lack of a representative dataset
with the required size, as discussed in Chapter 4, another dataset was created to
train the language models. For this, we searched for different datasets that could
be treated as requirements, and at the same time large enough to train such deep
learning models.

We found that user-generated contents for reviewing applications could be
considered a chance to tackle general user requirements , as reported in many
RE related work (e.g., Pagano and Maalej (2013) and Genc-Nayebi and Abran
(2017)). In addition, studying user-generated data for reviewing App Reviews is
considered a recent topic in RE research (Tavakoli et al. 2018).

The reviews are considered to be an informal way to represent user require-
ments for discussing features and issues with such applications (Genc-Nayebi and
Abran 2017). Most importantly, acquiring such data sources (i.e., App Reviews)
was an affordable means (through public API) to retrieve various user reviews.

In order to process the review dataset to be used for training the word em-
beddings for the RE domain, we first applied preprocessing tasks. The dataset
preparation and preprocessing tasks involve cleaning the dataset by removing un-
wanted characters or tokens, and then applying a syntactic processing to identify
POS tags of each token per review in the dataset. The details of these tasks, as
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well as of the dataset collection task, are explained in steps as follows:

Step 1: Dataset Collection

We used an API called AppFollow 54 to gather user reviews for different App
Reviews and from well-known application stores such as Google Play 55 and Apple
App Store 56, including various categories such as Social Networking, Sports,
Games, Productivity, etc. We managed to gather more than three million mobile
application reviews dated between the years 2012 and 2018. Along with the text
of the App Reviews, we gathered additional data such as review date, application
theme or category, keywords, review title, and more. The overall distribution of
review themes is shown in Figure 7.3.

Figure 7.3: A thematic distribution of the collected App Reviews dataset.
The themes are organised into their common categories as appeared in the
mobile application stores.

We then transferred these textual App Reviews into structured format (i.e.,
JASON format) for later pre-processing. An example of the collected dataset
(i.e., App Reviews) as we structurally stored them is shown in Figure 7.4; in this
figure, we show two records from the App Reviews dataset from the Productivity
category, where the metadata of each review is saved along with the original

54https://appfollow.docs.apiary.io/
55https://play.google.com/store
56https://www.apple.com/uk/ios/app-store/
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reviews’ text. Some information like author names, review link, and application
ID are hidden due to data privacy.

Figure 7.4: An example of the App Reviews dataset.

After removing duplication and noise reviews—i.e., reviews without actual
words or with three words or less—we obtained a collected dataset of more than
2.8 million application reviews (2,818,415 reviews). In total, the size of the
gathered dataset exceeds 990 MB. The app reviews dataset is then stored into
a structured file for later processing.

Step 2: Dataset Normalisation

We retrieved only the main texts of the app reviews from the dataset i.e. review
title, review, and developer’s reply ’if any’ . Following this, we normalised the
retrieved text by removing punctuation and numeric or encoded characters, and
then we converted all capitals into lowercase letters.

We detected misspelled words using a customised dictionary that we made
based on our observations of words in the first 10,000 reviews of the original
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Table 7.1: An example of MWE lexical units of two frames in
FrameNet.

FrameNet Frame MWE Lexical Units
Process enda draw to an end.v, come to an end.v, come to a close.v
Activity prepareb get ready.v , gear up.v
a https://framenet2.icsi.berkeley.edu/fnReports/data/

frameIndex.xml?frame=Process_end.
b https://framenet2.icsi.berkeley.edu/fnReports/data/

frameIndex.xml?frame=Activity_prepare.

dataset. We created a tracking record of the misspelled (or slang words) to
generate a customised dictionary in order to replace those mistaken words with
the corrected words 57.

The word-correction step helped us later in avoiding the loss of data from the
original reviews and in trying to minimise human errors, which is important since
these reviews are the information of expressing requirements . Most importantly,
we needed to identify each token in the text for generating the frame embeddings
(discussed in Section 7.5). Examples of the misspelled words corresponding to the
correction we made are: cant−→cannot, hvnt−→have not, dnt−→do not, plz−→please,
etc.

Step 3: Dataset Tokenisation

Following dataset normalisation, we applied the tokenisation process to identify
words as a list of tokens. We also used a Multi-Word Expression (MWE) tokeniser
to aid in identifying MWE tokens according to the MWE given in our selected
frames list ,i.e., the 558 frames from the FN-RE corpus presented in Section 4.3.4.

After investigating the 558 frames list, we retrieved a list of 636 MWE lexical
units from a total of 9661 frame triggers ,i.e., each frame has at least 1.14 MWE
as lexical units. It is not proper to neglect this number of lexical units, so we
were careful in identifying whether the tokenised items belong to a predefined list
of MWE tokens. Examples of MWE lexical units are shown in Table 7.1 with
their associated FrameNet frames.

Subsequently, after identifying MWE tokens in the App Reviews dataset, we
57There are python packages to auto-correct words such as edit-distance based methods

(SymSpell). However, we consider these methods to be too strict in auto-correction. For the
sake of keeping the dataset more genuine, and we applied a heuristic approach for replacing
what we observed as wrong and could affect the generation of the frame embeddings.
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eliminated stop words from the processed reviews using a predefined stop words
list that we built based on the initial examination we had made earlier. In fact,
stop words are eliminated as they have little semantic discrimination power in
generating the frame embeddings as these tokens (e.g., determiners) are category
independent and not listed as lexical units in FrameNet as indicated by Baker
(2017). This step helped us to reduce dataset sparsity later during the training
of the word embeddings, which was recommended by Kusner et al. (2015).

Step 4: Dataset Syntactic Processing

After the tokenisation process was completed, we performed a syntactic process-
ing using the POS tagger to identify the syntactic position of each token. Taking
into account the POS tag of a word (or lexical unit in FrameNet) makes it possi-
ble to train different vectors for words with the same lemma but different parts of
speech. It is preferable, for example, to train a vector for ‘form’ as a verb (form.v)
that is different from the vector for ‘form’ as a noun (form.n).

After tagging each word using the POS tagger, we applied a syntactic nor-
malisation, namely to return the present or simple form of each verb and retrieve
the singular noun from plural ones. To achieve this, we utilised a public linguistic
dictionary found by Bleser et al. (2010). The dictionary aids in retrieving the
basic form of each token, and this step helped us to trace the potential lexical
units in each review in the dataset without worrying about the form of the words
, since the lexical units, especially the verbs, are stored in their simplest form in
FrameNet (Baker 2017).

Afterwards, we converted the POS tags associated with each token into FrameNet
POS tags; an example of such conversion is shown in Table 7.2.

Table 7.2: A list of examples of labels’ conversions from the used POS tagger
labels into their corresponding positions in FrameNet POS labels.

Syntactic Position The retrieved POS Tags FrameNet POS Tags
Verbs VB, VBD, VBG, VBN, VBP, VBZ , MD. V
Nouns NNS, NN, NNP, NNPS. N
Adverbs RB, RBR, RBS. ADV
Adjectives JJ, JJR, JJS. A
Numbers CC, CD. NUM
Prepositions TO, IN. PREP
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Step 5: Dataset Coverage Estimation

The overall App Reviews dataset contains 319,514 unique words and total word
frequencies of more than 48 million (i.e., an overall count of 48,020,731 word
frequencies corresponding to 2,818,415 reviews, and an average sentence size of
17.03 words per review with a standard deviation of 2.58).

The processed App Reviews dataset results allowed us to automatically check
for the occurrences of lexical units (associated with semantic frames) as cata-
logued in FrameNet, in order to assess the dataset’s coverage of semantic frames.
Based on this, we were able to determine that our dataset covers all of the 558
semantic frames annotated in the FN-RE corpus (presented in Section 4.3.4).

The total number of lexical units for frames used in the FN-RE corpus is
9,470 lexical units. Statistically, each frame in FN-RE frames list has an average
of 16.97 lexical units (with a standard deviation of 23.18), and our dataset has
covered at least 96.24% of the lexical units set for each frame. This estimated
coverage ensures certain stability in generating the frame embeddings, as will be
discussed in more detail in Section 7.5.

Finally, the normalised, prepared and processed App Reviews dataset is stored
in a structured file for training the word embeddings, which shall be discussed in
the following Section 7.4.

7.4 Training Word Embeddings

In order to generate the semantic frame embeddings, we trained the set of word
embeddings by utilising the pre-processed App Reviews dataset—discussed in
Section 7.3–as a training corpus.

Any word embedding model takes as its input a large textual dataset and pro-
duces semantic vector representations, typically of several hundred dimensions,
with each unique token (i.e. word) in the training dataset being assigned to a
corresponding vector in the space (Mikolov et al. 2013). This leads to the vec-
tors being semantically positioned in space such that words that share similar or
related contexts in the used dataset are positioned close to one another in space
(Schütze 1993; Bengio et al. 2003; Mikolov et al. 2013).

Accordingly, we trained word embeddings using three of the most recent lan-
guage models in NLP research, as reported by Li and Yang (2018). Those mod-
els are: Word2Vec (Mikolov et al. 2013), GloVe (Pennington et al. 2014), and
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FastText (Bojanowski et al. 2016). The algorithms behind the chosen models
are explained earlier in Section 7.2.

Basically, a word vector was trained for each lexical unit, which was repre-
sented as a combination of its lemmatised form and POS tag (as discussed in in
regards to syntactic processing in Section 7.3).

The size of each vector was unified across all training techniques used in order
to enable the comparisons between the generated frame embeddings. Therefore,
the embedding size was set to 300, following previously reported work by Sikos
and Padó (2018) and Mikolov et al. (2013). Afterwards, the trained word embed-
dings were compared for their semantic representations in generating the frame
embeddings (as will be discussed in Section 7.5).

Figure 7.5: The settings of the trained word embeddings.

We trained the word embeddings with different language models (i.e. Word2Vec,
GloVe, and FastText) in order to generate suitable and comparable frame embed-
dings to decide on which frame embeddings provide better results in identifying
semantic relatedness between FrameNet frames from an RE perspective. The
settings of the trained word embeddings are illustrated in Figure 7.5, and their
implementation details will be discussed at the end of this section; in this figure,
the pink lines refer to the language model type (i.e., Word2Vec, FastText, and
GloVe), and the green and blue lines refer to the settings of each model being
used during training.

To be more specific, for the Word2Vec and FastText models we applied both
architectures (i.e. the CBOW and skip-gram models) in our embedding-based
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approach to determine which architecture produces better accuracy.
Apart from the choice between skip-gram or CBOW (for Word2Vec and FastText)

for architecture, both models have several parameters, including the size of the
context window (i.e. the number of words in each context window) which affect
the speed and quality of training (T.H et al. 2015).

We therefore selected the number of words in each context window in the
skip-gram model to be between 1 to 3 words, in both the Word2Vec and FastText
models. This selection is guided by the size (i.e number of words) of each review in
the App Reviews dataset (i.e. 17 words per review ), which is relatively moderate.
Accordingly the selected size (from one to three words) is reasonable as window
size for predicting word context in the skip-gram model. It is also in conjunction
with recommendations presented by T.H et al. (2015) and Ghannay et al. (2016).
On the other hand, GloVe has only a single implementation since it has only an
overall count-based architecture, as discussed in Section 7.2.

7.5 Generating Frame Embeddings

The vectors resulting from the word embeddings in the previous step (Section 7.4
were then used to form an embedding-based representation of FrameNet frames,
i.e. frame embeddings. That is, for any given semantic frame Fx, where x is any
frame title in FrameNet, we collected the vectors corresponding to the lexical
units that evoke it.

Let lex be any lexical units pertaining to the lexical units set (LUx) for Fx in
FrameNet) where the size of |LUx| is determined by the number of lexical units
(Nx) for a particular Fx, and Nx > 0.

On the other hand, Wt is any word embedding trained as specified in the
previous step (see Section 7.4), and t ∈ T , where T is any training method used
to train the word embedding W . The size of T refers to the number of training
methods used, which in this case is 9 methods (e.g., Gloveall , Word2V eccbow,
and FastTextSkipgram1, etc.).

To generate the Fx frame embedding, thereafter Fwx, we applied the following
two techniques: taking the sum of all of the words vectors, ∑ ~lex, pertaining to
Fx’s lexical units (LUx), or taking the average of those vectors, as explained in
the following formula.
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For adding vectors of the frame’s lexical units: Fwx =∑
~w∈LUx

~w

For averaging the vectors: Fwx = F wx
Nx

(7.1)

For instance, as 11 lexical units are associated with the Creating frame in
FrameNet, a vector containing the group (either as average or by addition) of the
11 word embedding vectors corresponding to these lexical units was used in this
process.

An overview of the frame embedding generation process is illustrated in Figure
7.6 using the averaging method from the word embedding for each lexical unit
pertaining to that frame.

Figure 7.6: An overview of the process for generating frame embeddings.

7.6 Selecting Similarity Distance Metrics

The generated frame embeddings were employed in computing relatedness be-
tween semantic frames. We used similarity metrics in order to measure the dis-
tance in vector space as illustrated by Jones and Furnas (1987), and used in
Amine et al. (2010).

The metrics employed were: Cosine similarity metric (explained in Equation
7.2), Euclidean distance metric (explained in Equation 7.3), and Manhattan
distance metric (explained in Equation 7.4). Note that for FrameNet frames X
and Y, the notation FR(X,Y) denotes the relatedness between these two frames.

186



FRCosine(X,Y ) = FX ·FY
‖FX‖‖FY‖

(7.2)

FREuclidean(X,Y ) = ‖Fx−Fy‖ (7.3)

FRManhattan(X,Y ) = dM(Fx,Fy) (7.4)

Note that in these equations, ‖Fx−Fy‖ denotes the standard Euclidean
norm of vectors (the square root of the sum of the squares of the components),
while dM(Fx,Fy) denotes the sum of the absolute values of the differences be-
tween the components of Fx and Fy.

In Equation (7.2), the Cosine similarity metric calculates the angle between
two vectors in word space (i.e., frame embeddings). If the vectors are close to
parallel (e.g., with FR(X,Y)≈ 1) then we consider the frames as similar, whereas
if the vectors are orthogonal (i.e., with FR(X,Y)≈ 0), then we consider the frames
as being unrelated, as depicted in Figure 7.7.

Figure 7.7: An illustration of Cosine similarity metric in measuring the
angles between frames as semantic distance, where Frame X is closer to
Frame Y than Frame Z.

Similar to the Cosine similarity metric, the Euclidean and Manhattan met-
rics (explained in Equations (7.3) and (7.4), respectively) measure the distance
between two data points (i.e., distance between the two frame embeddings) to
detect their similarity. In other words, if the data points are close together (with
a shorter distance), this is considered to be high similarity between the designated
frame embeddings to be measured.

The Manhattan distance method calculates the path between any two data
points when placed in a grid-like path, whereas the Euclidean distance metric
computes the distance as a straight-line, as depicted in Figure 7.8.
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Figure 7.8: An illustration of Euclidean and Manhattan metrics in measuring
semantic distance between frames, where Frame X is closer to Frame Y
than Frame Z in both methods.

An issue that is related to the distance scores of both Euclidean and Manhattan
metrics is that the results can be too large (i.e., greater than 1) if the data points
to be compared are sparse. For this reason, we applied scores scaling in order to
normalise obtained from the Euclidean and Manhattan distance metrics.

7.7 Implementation

In order to implement the steps described in the embedding-based measurement
approach we used various python-based packages. The preprocessing pipeline
(including sentence segmentation, word and MWE tokenisation, and the POS
tagger) was implemented using the NLTK python package58 by Schneider and
Wooters (2017), as well as NodeBox 59 by Bleser et al. (2010) as dictionary in-
terface for retrieving the simple form of each tagged word in the App Reviews
dataset.

An overall description of the packages and resources used for implementing
the embedding-based measurement method is shown in Figure 7.9. The imple-
mentations of the language models (i.e., Word2Vec, FastText, and GloVe) are
available in python packages. For Word2Vec, presented by Mikolov et al. (2013),
we utilised the Gensim package60 by Řeh̊uřek and Sojka (2010). This facilitated

58https://www.nltk.org/
59https://www.nodebox.net/code/index.php/Linguistics
60https://radimrehurek.com/gensim/models/word2vec.html
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Figure 7.9: An overall description of the packages and resources used in
implementing the embedding-based measurement method.

the training of Word2Vec word embeddings, where we changed the training meth-
ods to 1) CBOW, and then 2) skip-gram, with 1, 2, and eventuially 3 as sizes of
words in the context window, as explained in Section 7.4. Similarly, for the
FastText model described by Bojanowski et al. (2016), we used the fasttext 61

python implementation.
For GloVe, illustrated by Pennington et al. (2014), we used the original shell

script in Glove demo.sh62, and we converted App Reviews into an unstructured
textual format (.txt), derived from their structure form, to be trained using the
GloVe model. The resulting models were then exported to generate the frame
embeddings . Then, in conjunction with the word embeddings, the numpy pack-
age63 by van der Walt et al. (2011) was used in generating the frame embeddings
and calculating similarity scores using the Cosine, Euclidean and Manhattan
distance metrics. matplotlib 64, presented by Hunter (2007), was used for visu-
alising the frame embeddings relationships.

61https://github.com/facebookresearch/fastText/tree/master/python
62https://github.com/stanfordnlp/GloVe
63http://www.numpy.org/
64https://matplotlib.org/

189

https://github.com/facebookresearch/fastText/tree/master/python
https://github.com/stanfordnlp/GloVe


Chapter 7 Summary:

In this chapter, we proposed a novel approach pertain to word embeddings
for the RE domain, and under this approach we trained 18 word embeddings
based on common language models (i.e., Word2Vec, FastText and GloVe
models), and the proposed methods under this approach are also utilised
to measure semantic relatedness between frame pairs.
The proposed methods, we presented in this chapter, will be carried into the
next chapter, Chapter 8, to evaluate their performances and effectiveness
in measuring and identifying semantic relatedness at frames level according
to a human-judgement dataset.
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Chapter 8

Semantic Frame Level Evaluation

–Intrinsic Evaluation–

In this chapter, we apply an intrinsic evaluation–i.e., an in-depth evaluation
at the semantic frame level only–of the proposed approaches to evaluate their
performance rates in terms of identifying related frames from an RE perspective.

In a broad sense, we apply a series of statistical comparisons between the
systems in each approach, which these systems are considered to be as an im-
plementation of the proposed methods presented in Chapters 5, 6 and 7), as
intra-group analysis. Firstly, we construct an evaluation procedure in Section
8.1. Following that, in Section 8.2, we analyse the score mean variances after
normalising the results to be in a standard range. In the same section, we use an
appropriate coefficient correlation analysis between the systems in each approach
to investigate similar behavioural patterns in their results.

Subsequently, in Section 8.3, we construct a human-judgement dataset of
frame pairs to be used as guidance for selecting the best system in capturing
semantic relatedness between FrameNet frames from an RE perspective.

Finally, we discuss in depth the intrinsic evaluation results, which is listed in
Section 8.4. In the same section, we decide on the approach and the system(s)
with performance that are highly comparable with our golden standard dataset.
The systems with the best-performance rates will be used to evaluate the ad-
equacy of using frames in measuring relatedness at requirement-level, and this
extrinsic evaluation shall be discussed in Chapter 9.
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In summary, the objectives of this chapter are:

• To present a detailed evaluation of all approaches, i.e., the knowledge–based,
corpus–supported and embedding–based approaches.

• To conduct an in-depth statistical analysis of all of the proposed systems
in Chapters: 5, 6 and 7.

• To introduce a human-judgement dataset of frame pairs semantic related-
ness (F2F) from an RE prospective.

• To discuss the performance of the proposed systems for measuring and
detecting relatedness at semantic frame level.

8.1 Intrinsic Evaluation Procedure

A comprehensive statistical procedure was made to evaluate the proposed ap-
proaches with their related systems, i.e., knowledge-based approach, corpus-
supported approach and embedding-based approach. First of all, we drew an
evaluation road-map to test the validity of each approach by setting the evalua-
tion question of these experiments as follows:

Intrinsic Evaluation Question
Which measurement method (as an implemented system), from the pro-
posed approaches in Chapters: 5, 6 and 7, is the most effective and accu-
rate for measuring and identifying semantic relatedness between frames (as
a group of pairs) in FrameNet from an RE perspective?

The two most important considerations in the focus of this evaluation are the
accuracy and efficacy of the selected systems. Accuracy means that the system
is considered to be close enough to the human judgements in finding the scores.
Efficacy, on the other hand, is related to the system’s performance rates in terms
of recalls and precision.

Therefore, for each presented approach, we applied a step-wise analysis and
evaluation for the obtained results by following the steps below:

Step 1. Re-scale the results (i.e., relatedness scores) to be in a measurable range
between 0 and 1.

Step 2. Examine the normality of the data distribution of the normalised and
standardised results in order to select the appropriate statistical tests.
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Step 3. Compare the mean scores collected from different systems in each ap-
proach to investigate whether there is a significant difference in their
performance rates or whether they have the same affects.

Step 4. Study the systems, under each approach, which have similar patterns
in measuring relatedness between frames. This test is mainly to study
the correlations between the systems from each approach.

Step 5. Construct a human-judgement dataset that identifies the relationships
(e.g., as similar relationship, relatedness relationship, or no relation-
ship) between a selective set of frame pairs to be used as a gold stan-
dard dataset in order to judge the proposed approaches’ performance
rates.

Step 6. Investigate the effectiveness of the approaches’ performance rates by:

Step 6.1 Identifying, for each approach, the systems that are accurately and
positively correlated with the means of human judgements;

Step 6.2 Detecting the optimal threshold values of the systems to identify
frame relatedness and similarity; and

Step 6.3 Comparing system performance rates, i.e., which one of these sys-
tems has the best performance in comparison to final human-
judgement dataset using accuracy and agreement tests.

The following sections will elaborate more about the steps above including
the results from the statistical tests that were applied.

8.2 Statistical Analysis

In this section, we provide details and results after applying Step 1, Step 2, and
Step 3 of the evaluation procedure presented previously in Section 8.1.

8.2.1 Results Scaling

After implementing all three approaches, we obtained a total of 70 systems (i.e.,
the total number of systems from each approach) as shown in Figure 8.1; the
figure provides an overview of the three proposed approaches, associated with
their systems. The systems are referred to as systems after their implementa-
tion. The number beside each system represents the number of system(s) imple-
mented for each system. This figure is created to allow an easy referencing to
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systems, mentioned earlier, in the current evaluation procedures. We ran those
systems independently on a dataset comprising 155,403 frame pairs. The se-
lected frame pairs are systematically generated from the 559 FrameNet frames
which are mostly used in the context of RE as discussed in the results of the
FN-RE corpus in Section 4.3.4.

Figure 8.1: An overview of the three proposed approaches, associated with
their systems.

However, some of the obtained results of the systems shown in Figure 8.1 are
not in the range of 0 to 1. For example, in the Overlapped based Measurement
Systems (i.e., Lesk, OVL FE, OVL K), we might obtain a score higher than 1 to
represent the number of shared (or overlapped) tokens in a frame pair.

It is therefore necessary to apply a normalisation process, commonly known in
machine learning studies as feature scaling, as recommended by Raschka (2014).
The main reason to perform the re-scaling process is to ensure that one system
does not dominate the others, i.e., to have fair judgements and evaluation pro-
cedures between all proposed systems. In order to have such control, the results
should be standardised (i.e., the scores should be between 0 and 1).

The scores, which arose from our proposed systems, are normalised according
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to the operation shown in Equation 8.1:

X ′ = Scaling(X) =
∣∣∣∣ X−Xmin

Xmin−Xmax

∣∣∣∣ (8.1)

In Equation 8.1, we simply retrieved the minimum score (Xmin) and maximum
score (Xmax) from the overall results (i.e., the results of 155,403 frame pairs from
each system), and then we followed the calculations as described in the given
equation above. It is worth mentioning that we did not apply the score scaling
procedures on all of the results from all of the systems. We first examined the
results, and if the score range is not as desired (i.e., not between 0 and 1), we
then apply the scaling procedure.

In Table 8.1, we provided descriptive statistics for the obtained results before
and after (labelled by * in the header) the scores scaling procedure; however, the
scaling process has not been used with two of these example systems (labelled by
δ) since their results are in the desirable range of 0 and 1. This table provides
the following information: the maximum and minimum score before and after
results were scaled; the statistical mean (µ) for each system; the global mean for
the entire approach; the standard deviation (σ).

As observed from the statistical means for the selective systems and the global
mean for each approach, approach C has the highest averages of relatedness scores
(with a global µ ≈ 0.33) followed by approach B (with a global µ ≈ 0.1) and
approach A (with a global µ≈ 0.07).

Table 8.1: Example of descriptive statistics for some of the systems under
approaches A, B, and C.

approach System (codes in Figure 8.1) Frame Pairs (#) Min Min* Max Max* µ* Global µ σ* σ2*
approach A OVL FE 155,403 0 0 25 1 0.0863 0.0652 0.0964 0.009
approach A PATH δ 155,403 0 - 1 - 0.0270 0.0652 0.0879 0.008
approach B PPMI 155,403 0 0 11.55 1 0.4181 0.0976 0.2377 0.057
approach B JNC 155,403 -34.24 0 54.28 1 0.0009 0.0976 0.0387 0.002
approach C FastText Skipn2 AVG Cosine δ 155,403 0.3590 - 0.9972 - 0.9168 0.3343 0.0636 0.004
approach C FastText cbow AVG Cosine δ 155,403 0 - 0.9971 - 0.0910 0.3343 0.074 0.006

These differences might indicate that the proposed systems (or implemented
systems) are varied and have different affects on score calculation; however, this
result needs further statistical investigation as suggested by Step 4 in the evalua-
tion procedure (cf. Section 8.1). The significant statistical test will be discussed
in Section 8.2.3. In Appendix B, a complete list of descriptive statistics of all
remaining proposed systems is provided.
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8.2.2 Normality Tests

After scaling the relatedness score, as discussed in Section 8.2.1 above, we exam-
ined the normality of the data distribution of the obtained results. It is worth
mentioning that the process of score scaling does not change the underlying dis-
tribution of our data. It only changes the units of measurement (i.e., to unify
the scale between 0 and 1). Therefore, the normality test is necessary because
the majority of standard statistical tests consider the data to be normally dis-
tributed (Tabachnick et al. 2007). Accordingly, we examined the data normality
by following the two statistical approaches below, which is as recommended by
(Tabachnick et al. 2007):

i) Numerically: Using the Kolmogorov-Smirnov test (KS test) by Smirnov
(1948), with the results reconfirmed by the Anderson-Darling test (AD test)
due to Anderson et al. (1952). The two tests compare the null hypothesis
(H0) that the data (from a system) comes from a standard normal distri-
bution against the alternative hypothesis (H1) that it does not come from
such a distribution.

ii) Visually: Using a quantile-quantile plot, thereafter Q-Q plot, of the stan-
dardized data against the standard normal distribution to check the align-
ment of the data distribution against its standard normal distribution, as
described by of Statistics (2008).

Kolmogorov-Smirnov (KS) Test and Anderson-Darling (AD) Test:

We applied the KS test and then the AD test on the scores obtained from com-
paring 155,403 frame pairs. In a nutshell, we applied both tests independently,
and examined the returned decision on the null hypothesis that the data (from a
system) comes from a standard normal distribution against the alternative that it
does not come from such a distribution; if the result h is 1, then, the test rejects
the null hypothesis (H0) at the 5% significance level; otherwise, the test returns
0. The normality test results for approach A’s systems (from Figure 8.1) are
shown in Table 8.2; the table shows the numeric normality results as obtained by
applying one-sample the Kolmogorov-Smirnov (KS) and Anderson-Darling (AD)
tests. The results indicate the non normality of all results obtained by approach
A’s systems with a significant (sig) Pvalue < 0.05. The results shown in Table
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Table 8.2: Numeric normality results as obtained by applying one-sample
the Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) tests for ap-
proach A.

System KS Statistics KS Sig. AD Statistics AD Pvalue
approach-A (LESK) .202 .000 12790.92 3.7e-24
approach-A (EGO) .242 .000 17241.77 3.7e-24
approach-A (OVL FE) .213 .000 8172.166 3.7e-24
approach-A (OVL K) .210 .000 8078.788 3.7e-24
approach-A (PATH) .521 .000 47511.15 3.7e-24
approach-A (WUP) .528 .000 49595.08 3.7e-24
approach-A (LCH) .530 .000 50106.07 3.7e-24
approach-A (NAM ) .529 .000 49890.84 3.7e-24
approach-A (BETAT) .529 .000 49516.01 3.7e-24

8.2 indicate that D(155,403) from the KS test65 is between 0.202 and 0.530, with
Pvalue < 0.000, meaning that there is a statistically significant (p < 0.000) devia-
tion from normality. And for the AD statistic results, the deviation from normal
distribution (as shown in AD statistics column in the table above) confirms the
non-normality of our data. Therefore, the null hypothesis (H0) is rejected, i.e.,
there is a deviation from normality in relation to the obtained scores from each
system in approach A, concluding that the relatedness scores which are calculated
by each system in approach A are not normally distributed.

For approach B and approach C, we followed the same procedures above, and
the KS and AD test results also indicated the non-normality of the results (i.e., the
results obtained by the systems from approach B and approach C independently
are not normally distributed).

Q-Q plotting test:

Hereafter, we depict the data distribution using the Q-Q plotting test to confirm
the calculated results from the KS tests. To interpret the data distribution plot
(Q-Q plot) we inspect the data points and the normality line in each plot. If the
data are normally distributed, then the data distribution line will be close to the
diagonal line which represents the assumed normal distribution of the data points.

65The Kolmogorov-Smirnov D statistic quantifies a distance between the empirical distri-
bution function (CDF) of the examined sample and the CDF of the reference distribution (its
predicted normal distribution); the closer this number is to 0 the more likely it that our samples
are draw from normal distribution as predicted (Tabachnick et al. 2007)
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(a) Lesk (b) EGO (c) OVL FE

(d) OVL K (e) Path (f) WUP

(g) LCH (h) NAM (i) BATET

Figure 8.2: The results of the graphical normality tests using Q-Q plot-
ting for the knowledge-based approach (approach A) which indicate a non-
normal distribution.

Otherwise, if the data points obviously deviate from the standard normality line,
then the data are not normally distributed.

The Q-Q plotting results for all of the systems in approach A (i.e., the
knowledge-based approach) are shown in Figure 8.2. As shown in that figure, all
of the Q-Q plotting sub-figures indicate non-normality as all of the data points
(i.e., results in blue) clearly deviate from the normal distribution line in red.
This result concludes that all scores obtained from the systems under approach
A follow a non-normal distribution.

It is worth mentioning that the Q-Q plots for the Path, WUP, LCH, NAM and
BATET systems have an over-dispersed distribution, i.e., the distribution is more
variable than expected, because the over-dispersion distribution (as shown in
these systems’ plots) in relation to the relatedness score results are frequently
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zero with occasional high scores (e.g, 0.8 and 1) with relatively less intermediate
relatedness scores (e.g., 0.3 and 0.4). This type of distribution indicates high
sparsity in the data point distribution, which could be justified by considering
such strict systems, as will be discussed in Section 8.4 of the current chapter.

The same procedures as described above are also applied with the results ob-
tained from all of the systems from approach B and approach C, respectively. The
Q-Q plots for the remaining approaches are provided in Appendix B in Section
B.2, which also indicate non-normality of all of the systems under approach B
and approach C.

The obtained results from the visual normality test (using Q-Q plotting) are
aligned with the results obtained from the numeric normality test (using KS and
AD tests). For instance, as shown in Table 8.2, the highest KS and AD statistics
are obtained from the systems PATH, WUPM LCH, NAM and BETAT, with results
ranging from 0.521 to 0.530 for the KS statistics and a range of 47511.15 to
50106.07 in the AD statistics results. This alignment in results indicates that all
normality tests (i.e., numeric and visual tests) confirm the non-normality of the
results obtained from all systems under the three proposed approaches.

8.2.3 Variance Analysis

As shown previously in Table 8.1 we can see that, on average, the fewest number
of relatedness scores are made at approach A (with highest mean at system OVL FE
µ= 0.086 and σ= 0.0652), and the highest at approach C (with µ= 0.917 and σ=
0.0636). We have also a moderate average score by approach B (µ= 0.418 and σ=
0.237). However, these descriptive results shown in Table 8.1 are insufficient to
show whether these observed differences are significant or not; therefore, another
look at the inferential statistics is needed.

We investigated the significance of the results obtained by our proposed sys-
tems shown in Figure 8.1. The statistical significance test (also known as “vari-
ance analysis”) is used to compare the variance of the means within the systems
to assess if the systems have the same effect or not (Tabachnick et al. 2007).

For this statistical test, we used one-way ANOVA with repeated measures as
described by Keselman et al. (2001), and verified the results with another non-
parametric significance test, the Friedman Test, as recommended by Tabachnick
et al. (2007).
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One-Way Repeated Measures ANOVA Test

The statistical significance test of one-way ANOVA with repeated measures (or
shortly “one-way ANOVA”) is conducted to examine the following hypotheses:

The hypotheses of interest in our case in one-way ANOVA are as follows:

• H0 : µ1 = µ2 = µ3...= µk

• H1 : Means (µ) are not all equal.

Here k is the number of independent comparison groups (i.e., the systems
for each approach).

Before applying this test, there are certain assumptions which need to be
examined. These assumptions are:

i) The results are generated independently using different treatments or con-
ditions in an identically distributed environment.

ii) The results approximately follow a normal distribution.
iii) The variances of the differences between all obtained results from the dif-

ferent systems should be almost equal (i.e., the assumption of sphericity).

i) Assessing Results Independence: Our data samples come from different
and independent treatments and in our case the results are obtained from the
70 systems (summarised in Figure 8.1) that are implemented to represent the
systems in each proposed approach. The samples (i.e., the frame pairs) that are
used as input to these systems (to be measured for their relatedness) are identical
and they (i.e., the 155,403 frame pairs) are generated from the 558 frames in the
FN-RE corpus as discussed early in Section 8.2.1. Thus, the first assumption of
one-way ANOVA is met.

ii) Assessing normality: As noticed in the second item from the one-way
ANOVA’s assumptions list, the assumption of the normality of data distribution
is not strict (i.e., approximate normality is preferred) (Blanca et al. 2018). The
one-way ANOVA is a robust statistical test of heterogeneity of variance as long
as the ratio of largest variance to smallest variance in the samples results (i.e.,
the variance ratio) is not more than 5 to 1 (Blanca et al. 2017; 2018). We
stated previously in Section 8.2.2 that the data (i.e., the obtained results from all
of the systems of the three proposed approaches) are not normally distributed,
but their variance ratio is in the desirable range. We presented in Table 8.1

200



some examples of the descriptive statistics for systems’ results; and the overall
descriptive statistics (including the results means and variance) for all of the
implemented systems are presented in Appendix B at Section B.1. So, the second
assumption does not omit the use of one-way ANOVA test in our case, since the
results’ variance ratio is in the recommended range.

iii) Assessing sphericity: The third assumption, which assumes the equal-
ity of variances among the results, can be statistically examined, although from
the descriptive statistics we noticed that the variance rate is not equal among
all of the systems under each approach. However, there are recognised statistical
tests to examine if the variances among the results are equal or not (Tabachnick
et al. 2007). Fortunately, if the test result violates the sphericity assumption (i.e.,
the variances are not equal), then a simple adjusting of the degree of freedom in
the variances is reduced, so the variance can be smaller in order to apply the
one-way ANOVA test (Keselman et al. 2001; Tabachnick et al. 2007).

Therefore, Mauchly’s statistical test is used to test the null hypothesis H0 that
there is no significance change between the variances of differences. If Mauchly’s
test rejects the null hypothesis H0, then the condition of sphericity is not met.
Moreover, depending on the results given by Mauchly’s statistical test, we should
make a decision on the type of correction that should be made to apply the
one-way ANOVA test (Keselman et al. 2001; Tabachnick et al. 2007).

To be more specific, if the sphericity assumption is not met, we should estimate
the sphericity degrees of freedom (or what is known as ε). If the sphericity esti-
mate is less than 0.75 (i.e., ε < 0.75), then we should use the correction made by
a test called Greenhouse-Geisser; otherwise (i.e., ε > 0.75) we should use a correc-
tion made by another test called Huynh-Feldt (Keselman et al. 2001; Tabachnick
et al. 2007).

Following these procedures we computed the Mauchly’s test result on the
scores given by the systems (that are shown in Figure 8.1) of approach A, ap-
proach B, and approach C respectively. The obtained test results are shown in
Table 8.3; the table shows the results from applying Mauchly’s test of sphericity
on the results obtained from approach A, approach B and approach C, respec-
tively in each row. The table shows the degrees of freedom for the estimated
Sphericity (ε), and the significant test results which reject the null hypothesis H0

with Pvalue < .000, which indicates that the variances are not equal in all of the
approaches’ results. Therefore the degrees of freedom were corrected using the
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Table 8.3: Results from applying Mauchly’s test of sphericity on the results
obtained from approach A, B and C, respectively in each row.

Within Subjects Effect Mauchly’s W df Sig. Estimated Sphericity (ε)
approach-A (Systems) .000 35 .000 0.192
approach-B (Systems) .000 20 .000 0.346
approach-C (Systems) .000 1430 .000 0.052

Greenhouse-Geisser estimate of sphericity (ε).
To summarise, the sphericity assumption hypothesis is rejected for all of the

approaches’ systems with Pvalue < 0.05. Thus, we have interpreted the ε value
from the sphericity estimation from each approach in order to select the appreciate
correction test to apply a one-way ANOVA test. As shown in Table 8.3, all of the ε
values indicate the appropriateness of Greenhouse-Geisser’s sphericity correction
in interpreting the significant test results, since the value of ε is less than the
threshold score of 0.75, as recommended by Keselman et al. (2001); Tabachnick
et al. (2007).

Tests Results within-subject affects: After we analysed and examined
the assumptions of the one-way ANOVA test, we applied the statistical test to
the previously stated hypotheses. The one-way ANOVA test results are shown
in Table 8.4; the table shows the Results from applying the One-way ANOVA
test, after applying the Greenhouse-Geisser correction, on the results obtained
from approach A, approach B and approach C, respectively in each row. These
displayed results indicate the rejection of the null hypothesis (H0) as there is a
significant effect between the proposed systems on the obtained relatedness scores
(i.e., the results given by these proposed approaches are significant) with Pvalue

far less than .05.
To further understand the variance affects on the results, we calculated the

partial eta squared measure, denoted by η2, which is a common measure of effect
size (Tabachnick et al. 2007). It is the ratio of the variation among the group
(i.e., systems) means to the average variation between subjects (i.e., frame pairs)
within each group as measured by their standard deviations (Tabachnick et al.
2007). There are estimates of the strength of the effect size as reported by Cohen
(1988): if the effect size (η2) is less than 0.1 it means a small effect; an η2 of
roughly 0.25 is a medium effect, and; an η2 greater than or equal to 0.40 is a
large effect. As shown in Table 8.4, the effect size (η2) shows the strongest effect
at approach B (with η2 < 0.636) and approach C (with η2 < 0.794), and the lowest
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at approach A (with η2 < 0.033). According to the rule of thumb by Cohen (1988;
2013), the variation is high and notable at the results obtained from approach B
and approach C, unlike the knowledge driven approach (approach A), which has
the lowest effect size.

Another quantity obtained from a one-way ANOVA test is the F-ratio. A
large F-ratio means that the variation among group (i.e., systems) means is more
than would be expected to be seen by chance. From the results the highest F-ratio
(or variance) is at approach C (with an F = 599,160.830), followed by approach
B (with an F = 272,038.701). The lowest effect and variance is at approach A
with an F = 5333.911.

Table 8.4: Results from applying the One-way ANOVA test on the results
obtained from approach A, B and C, respectively in each row.

Source # observations Sum of Squares Mean Square df F-ratio Sig. Effect Size (η2)
approach-A (Systems) 1,398,627 541.604 352.030 1.539 5,333.911 .000 0.033
approach-B (Systems) 1,087,821 21,921.237 10,546.648 2.079 272,038.701 .000 0.636
approach-C (Systems) 8,391,762 439,504.338 158,075.944 2.780 599,160.830 .000 0.794

Friedman Significance Test

We confirmed the obtained results from the one-way ANOVA test with a non-
parametric significance test that has a similar use in analysing variances between
more than three groups, Friedman’s test, as recommended by Tabachnick et al.
(2007). Following the same hypotheses as in the one-way ANOVA, we applied
Friedman’s statistical test. The results are reported in Table 8.5.

Table 8.5: Results from applying the Friedman non-parametric significance
test on the results obtained from the systems of approach A, B and C
respectively in each row.

Source Chi-square (X2) df. Pvalue

approach A (9 Systems) 939.07 8 < 2.2e−16
approach B (7 Systems) 644.41 6 < 2.2e−16
approach C (54 Systems) 1140.6 53 < 2.2e−16

As shown in Table 8.5, the null hypothesis H0 is rejected for all of the ap-
proaches. This indicates the significant variances in means of the systems’ results
for each approach, and accordingly they do not have the same affects in measur-
ing the frame relationships. As shown in the table above, the Chi-Square (X2)
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results are like variances over the mean ranks: they are 0 when the mean ranks
are exactly equal (i.e., all of the systems from each approach have the same mean)
and becomes larger as they lie further apart. The Chi-square results are calcu-
lated according to the number of columns (in our case columns are the systems
from each approach) and the ranked median scores. As shown in the table, a
Friedman test was carried out to each approach independently to compare the
total relatedness scores for all systems from the three proposed approaches (A, B,
and C). There was found to be significant differences between the systems from
all of the approaches as following:

• The 9 systems in approach A are significantly varied by X2(8) = 939.07 and
P < 0.05.

• The 7 systems in approach B are significantly varied by X2(6) = 644.41 and
P < 0.05.

• The 54 systems in approach C are significantly varied by X2(53) = 1140.6
and P < 0.05.

It should be noted that the Chi-square results are sensitive to the number of
systems, and their ranked median scores, in each approach. This justifies the fact
that approach A is larger in variance than approach B, unlike the results obtained
from the one-way ANOVA test while approach B has more effect in variance
compared to approach A. The straightforward explanation of this difference is
that the Friedman test is more sensitive in estimating variance affects for large
samples than the one-way ANOVA test (Tabachnick et al. 2007). In our case of
analysis, approach A (with 9 systems) has more systems than approach B (with
7 systems), and the zero scores in systems under approach A are far more than in
any other approach as presented in the mean results in the descriptive statistics
in Table 8.1.

At the end, all of the obtained results (from the Friedman test and the one-
way ANOVA) verified the significant variance among the proposed systems from
each approach.

8.2.4 Correlation Results Between Systems

In this section, we provide details and results after applying Step 4 of the evalua-
tion procedure presented previously in Section 8.1. Here a correlation analysis is
applied to study whether the systems under each approach share similar patterns
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in measuring semantic relationships of the frame pairs. The correlation analysis
helps us to interpret the systems’ behaviour in calculating the relatedness scores
(i.e., relatedness results), and then to investigate the commonalities between the
correlated systems. This sort of analysis is used in NLP particularly in order
to validate systems (Nielsen 2011). For instance, Zhelezniak et al. (2019) ap-
plied Pearson correlation to investigate the systems’ performance in recognising
similarities between words.

To conduct a correlation analysis, we consider the normality distribution of
the obtained results to select an appropriate statistical correlation test (Tabach-
nick et al. 2007; Mertler and Reinhart 2016). As presented in Section 8.2.2,
the obtained results are indicated to be non-normal using three statistical tests
(i.e., numerically using the KS and AD tests and visually using the Q-Q plot-
ting). Therefore, we have selected two statistical systems to study the proposed
systems’ correlations from each approach:

i) Using Intraclass correlation (ICC) to study the correlations between the
overall systems under each approach, and to examine which approach has
significant correlation among its systems.

ii) Using Spearman’s Rank correlation as a post-hoc test to study the correla-
tion as a pair-wise analysis between the systems under each approach, and
to investigate which systems are highly correlated with each other in each
proposed approach.

The two correlation tests are computed according to the guidelines presented by
Tabachnick et al. (2007) and Mertler and Reinhart (2016). The results will be
reported numerically for the ICC test and visually using a correlation coefficient
matrix of Spearman’s Rank correlation results.

The correlation coefficient (r) results range from −1.0 to +1.0, and in order to
interpret the correlation coefficient (r) the sign of the result (i.e., either positive
or negative) must be considered, as well as the absolute value.

A perfect positive correlation has a coefficient of r = +1.0, which implies
that the systems move in tandem-that is, in the same direction. On the other
hand, a perfect negative correlation result has a coefficient of r =−1.0, and this
implies that the systems move in reverse direction (or opposite to each other).
When the correlation coefficient results is r = 0, we reached a result that there
is no association between the systems (i.e., each system is different in the way
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of no correlation in their calculated scores) (Tabachnick et al. 2007; Mertler and
Reinhart 2016).

According to a recent guideline by Koo and Li (2016), the absolute value of a
correlation coefficient (r) is interpreted as follows :

– (|r|< 0.50): indicates a poor correlation
– (0.50≤ |r|< 0.75): indicates a moderate correlation
– (0.75≤ |r|< 0.90): indicates a good correlation
– (|r| ≥ 0.90): indicates a excellent (or optimal) correlation.

The above interpretation will be used to report the similar and dissimilar be-
havioural patterns between the proposed systems from each approach. Our con-
clusions on the association between systems after we interpreted the correlation
coefficients (r) are:

(a) If the given correlation coefficients (r) are reported as excellent or good
positive correlations, that leads to the conclusion that the systems, under
the designated approach, share strongly similar patterns in calculating the
relatedness scores.

(b) If the given correlation coefficients (r) are reported as excellent or good
negative correlations, that leads to a result that the systems, under the
designated approach, share strongly dissimilar patterns in calculating the
relatedness scores.

(c) If the given correlation coefficients (r) are reported as moderate positive
correlations, that leads to a result that the systems, under the designated
approach, share fairly similar patterns in calculating the relatedness scores.

(d) If the given correlation coefficients (r) are reported as moderate negative cor-
relations, that leads to a result that the systems, under the designated ap-
proach, share fairly dissimilar patterns in calculating the relatedness scores.

(e) If the given correlation coefficients (r) is positive or negative poor correla-
tion, that leads to a result that the systems, under the designated approach,
are slightly associated with each other in the designated approach.

(f) If the given correlation coefficients (r) is zero that leads to a result that the
systems, under the designated approach, do not associate at all under the
designated approach.

In the following subsections, we provide more about the details and results of
ICC and pairwise correlation analysis.
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Intraclass Correlation (ICC)

We computed an ICC(3,k)66, where k is the number of systems in each approach
and across the relatedness scores of 155,403 frame pairs. For computing ICC,
we used the two-way mixed system because all of the generated frame pairs are
associated with their scores (i.e., there is no missing score in each system from each
approach and all of the provided frame pairs are computed for their relatedness)
(Tabachnick et al. 2007; Mertler and Reinhart 2016).

The correlation coefficients test is applied to a context where the related-
ness scores from all of the systems of each approach will be averaged for each
frame pair. This will help to identify the behavioural patterns, or the agreement
strengths, among the systems of each approach in calculating the scores. The
chosen parameters above are selected according to the guidelines by Tabachnick
et al. (2007) and Koo and Li (2016).

As with most statistical tests, the ICC test assumes that there is no correlation
between the systems (represented by a null hypothesis H0), and the alternative
of that hypothesis (H1) is that a correlation is identified (negative or positive)
depending on the correlation coefficient (r). The ICC coefficients for approaches
A, B, and C were computed, and their results are shown in Table 8.6. The
presented results, for each approach, provide details on the degree of association
(r) and its confidence level, followed by the ICC significance test results (F ).

Table 8.6: Results from applying Intraclass Correlation test ICC(3,k) on the
results obtained from all systems for approaches A, B, and C, respectively
in each row.

Source ICC coefficient (r) 95% Confidence Interval Fvalue df1 df2 Pvalue

approach-A (Systems) 0.876 0.875< ICC < 0.877 8.042 155402 1243216 .000
approach-B (Systems) 0.656 0.653< ICC < 0.658 2.905 155402 1087814 .000
approach-C (Systems) 0.856 0.855< ICC < 0.857 6.961 155402 8236306 .000

As shown in Table 8.6, it is notable that the systems under approach A
share very similar patterns, with a good correlation coefficient of ICC = 0.876
(F (155402,1243216) = 8.042, and ). This verifies that there is a positive cor-
relation between the 9 systems under approach A with a confidence interval of
0.875< ICC < 0.877.

66Refers to two-way mixed affects, consistency, and multiple measurements
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Following that, approach C has also a strong association, with a good correla-
tion coefficient of ICC = 0.856, among its 54 systems with F (155402,8236306) =
6.961, and Pvalue < .000, and confidence interval of positive correlation as 0.855<
ICC < 0.857.

On the other side, the lowest correlation result is obtained at approach B with
a moderate correlation coefficient of ICC = 0.656, and low association effect with
F (155402,1087814) = 2.905, and Pvalue < 0.05, this indicates that the 7 systems
under approach B share slightly similar patterns in calculating the relatedness
scores.

The association results between the three proposed approaches indicate an
interesting harmonisation between the systems under approach A and approach
C, and a lack of harmonisation between the systems in approach B. The obtained
correlation results have multiple implications which will be discussed further in
Section 8.4 of this chapter.

To understand the behavioural patterns further between those systems, we
apply a post-hoc correlation test between those systems in a pairwise fashion, as
will be discussed in the sub-section below.

Pairwise Spearman’s Rank Correlation

To investigate the correlations results further, we conducted a pair-wise analysis
of the correlation between the systems from each approach. An in-depth analysis
was made towards understanding which systems pairs are similar (or dissimilar)
in calculating the relatedness scores.

We computed the Spearman’s Rank correlation as discussed earlier in this
section. The test was applied to each system pair from each approach to compare
the association between these two systems, and detect which pairs associate more
than the others.

For approaches A and B, we computed the correlation coefficients between all
of their systems. The correlation coefficients of the systems under approaches A
and B are depicted as visualised correlation matrices in Figure 8.3; the visualised
correlation coefficients matrices for the 9 systems under approach A (right side),
and the 7 systems under approach B (left side). The shaded and coloured boxes
refer to the strength of the association between each system pair, as indicated
by the left degree bar beside each matrix; and labelled with the result of the
correlation coefficient (r).
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Figure 8.3: The visualised correlation coefficients matrices for the 9 systems
under approach A (right side), and the 7 systems under approach B (left
side).

As shown in Figure 8.3, the greatest correlation is shown at approach A, as
shown in the large number of blue colored boxes. To be more specific, the associ-
ation degree (i.e., the Spearman’s Rank correlation coefficient r) is significantly
strong (or almost perfect) with the path-based systems in approach A (i.e., PATH,
WUP, LCH, NAM and BATET). Furthermore, the correlation coefficient has a perfect
association of r = 1 between the systems OVL FE and OVL K. This result of pair-
wise correlation analysis confirms the earlier significant ICC correlation results of
approach A of (ICC = 0.876).

On the other side, the lowest association is found between the gloss over-
lapped based systems (i.e., LESK and EGO) with association results of r = −0.02
and r = −0.03 with other systems in approach A. This indicates, according to
the assumptions we stated previously in this section, nearly non-association of
those two systems with other systems under the designated approach A. These
correlation results of the systems in approach A will be justified and discussed
further in Section 8.4.1 of this chapter.

For approach B in the same Figure 8.3, there is an existence of strong asso-
ciation between some of its systems, especially with the co-occurrence and path
based systems (i.e., Resink, Lin and JNC) with an almost perfect correlation
coefficient of r = 0.92. Yet, there is a weak correlation between those systems
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(i.e., Resink, Lin and JNC) and the other co-occurrence only based systems
(i.e., PPMI, Vector Cosine, Dice and Jaccard), with nearly non-association
of r = −0.02 and r = −0.04, and absolute non-association between system JNC
and PPMI with r = 0.

The results of the pairwise correlation analysis between approach B’s systems
confirm the lack of harmonisation between the majority of the systems in approach
B, which is also indicated by a moderate overall correlation ICC = 0.656; these
results will be discussed and investigated further in Section 8.4.2.

However, this style of combining systems and interpreting their overall asso-
ciation at once, as shown above with approaches A and B, is not preferable for
approach C 67 because:

1) the number of systems in approach C is larger (i.e., 54 systems) compared
to the number of systems in approach A (9 systems) and approach C (7
systems);

2) in the previous statistical analyses (presented in Section 8.2.3) approach C
was prominent statistically in comparison to the statistical results obtained
for approaches A and B; and

3) a careful investigation of the systems under approach C is essential in order
to understand the impact of embedding models (i.e., Word2Vec, FastText,
and GloVe), frame embedding generation methods i.e. averaging (AVG) or
addition (ADD); and most importantly the used similarity distance metrics
(i.e., Cosine, Euclidean, and Manhattan).

Therefore, the visualisation of the approach C correlation coefficients is pre-
sented in two ways:

i) Comparing between the embedding models and similarity metrics based on
the used methods for generating the frame embeddings, as presented in Fig-
ure 8.4; the visualised correlation coefficients matrices for the 54 systems in
approach C to compare between the embedding models Word2Vec (W2V),
FastText (FT) and GloVe based on the used similarity metrics Cosine (top
figure), Euclidean (middle figure) and Manhattan (bottom figure). The la-
bels in X and Y bar present the title of each system ordered by the model
type, embedding feature ‘if any’ (cbow, skipn1, etc) and frame generation

67The details of approach C’s systems are presented in Chapter 7 and summarised in Figure
8.1 in this chapter.
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method: addition (ADD) or averaging (AVG). The correlation strength is vi-
sualised in density lines (thinner lines indicate higher coefficients r) with
blue and red denoting positive and negative correlation, respectively.

ii) Comparing between the embedding models based on the used similarity
metrics, as shown in Figure 8.5; The visualised correlation coefficients ma-
trices for the 54 systems in approach C to compare between the embedding
models: Word2Vec (W2V), FastText (FT), and GloVe and the similarity
distance metrics: Cosine, Manhattan and Euclidean based on the used
methods for generating the frame embeddings: (top figure) addition (ADD)
or (bottom figure) averaging (AVG). The labels in X and Y bar present the
title of each system ordered by the model type, embedding feature ‘if any’
(cbow, skipn1, etc) and frame generation method, the used similarity dis-
tance metrics. The correlation strength is visualised in pie shapes (drake
pies indicate higher coefficients r) with blue (positive correlation) and red
(negative correlation) with different shades.

In regards to the similarity distance metrics, it is clearly noticeable that the
Cosine metric, as shown in top sub-figure of Figure 8.4, has a more harmonised
effect (i.e. shown in a majority of blue density lines as positive correlation)
between its proposed embedding-based systems.

The strong and almost perfect association is found between Word2Vec and
FastText based systems, especially between FT Skipn3 Avg cosine and the three
Word2Vec based systems with features skipn1, skipn2 and skipn3. This indi-
cates similar behavioural patterns patterns in measuring the relatedness scores
of the provided frame pairs.

Moreover, it is observable that the systems based on the Word2Vec model,
for example the Word2Vec AVG systems with cbow and skipn3 features and used
Cosine as a semantic distance metric, have almost perfect association with each
other, unlike the systems with the FastText model. The latter have a good
correlation among its system pairs but not perfect as with the Word2Vec models.
With GloVe, it is quite the opposite situation as there is a lack of association
between GloVe based systems and the other systems (i.e., Word2Vec and FastText
based systems).

The other two metrics (i.e., the Euclidean and Manhattan similarity met-
rics), shown in the middle and bottom sub-figures (respectively) in Figure 8.4,
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Figure 8.4: The visualised correlation coefficients matrices (considering the
similarity distance metrics) for the 54 systems in approach C.

have almost identical correlation matrices, with approximately the same corre-
lation results between their systems. For instance, the strongest correlation is
shown between the systems under the Word2Vec model, followed by a nearly
good correlation between the systems under the FastText model. This result
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Figure 8.5: The visualised correlation coefficients matrices (considering the
type of generating the frame embeddings) for the 54 systems in approach
C.

aligns with the result obtained from the systems by the Cosine similarity dis-
tance metric, as discussed above. Similarly, the correlation between GloVe based
models and the other systems is also weak, and the best association is between
Word2Vec and FastText based systems.
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The other side of the approach C correlation analysis is to compare between
the used method for generating the frames embedding: addition (ADD) or av-
eraging (AVG). The resulting correlation matrices are shown in Figure 8.5. The
positive correlations (i.e., the total pie charts in blue colour with different shades)
appear to be more among the systems with averaging-based methods, unlike the
addition-based systems.

In the addition-based systems, the correlation is only stronger between sys-
tems that used the Euclidean and Manhattan similarity metrics. For the systems
that used Cosine metric, the behavioural patterns with the other systems (i.e.,
the systems based on Euclidean and Manhattan similarity metrics) is very dis-
similar in measuring the relatedness scores of the provided frame pairs.

Furthermore, the systems based on Word2Vec model using the averaging
method and ADD method for generating the frame embeddings have the strongest
correlation among their systems, followed by the systems based on the FastText
model. In addition, there is a a slightly stronger correlation between the systems
using the ADD method and based on the Word2Vec model and FastText models,
in comparison with their corresponding systems using the averaging method.

In a nutshell, the two ways of the correlation analysis for approach C give the
following results:

a) The systems with Word2Vec and FastText models share similar patterns in
measuring the relatedness scores, and the lowest correlation was with the
systems based on the GloVe model. This result is mainly attributed to the
fact that the FastText model is an extension for Word2Vec (Bojanowski
et al. 2016; Joulin et al. 2016); therefore, they share a similar mechanism in
generating vectors (i.e., the word embeddings used for generating our frame
embeddings).

b) The GolVe based systems share very dissimilar behaviour in measuring the
relatedness scores in comparison to the Word2Vec and FastText based sys-
tems; this is predictable, simply because the mechanism of generating the
word embeddings in GloVe is different than in the Word2Vec and FastText
models, i.e. GloVe is a frequency-based model and is not sensitive to the
contextual information (e.g., word context) (Pennington et al. 2014).

c) The systems with Euclidean and Manhattan as similarity metrics share
(almost) perfect association in measuring semantic relatedness scores; this
is explained mathematically by the fact that both metrics (i.e., Euclidean
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and Manhattan) calculate distances in path-based graphs, unlike the Cosine
metric which is a geometric-based measure that looks at the angle (θ) be-
tween vectors (Qian et al. 2004).

d) The systems that used an averaging method for generating the frame em-
beddings have an overall positive correlation among their systems, unlike
the systems that used the ADD method; this is attributed to the used sim-
ilarity distance metric and the values of the word vectors. As discussed in
the previous point above, the Cosine measure calculates the distance based
on the angle between two vectors. Taking an average can be the same as
aggregating (or adding) word vectors, because the Cosine similarity met-
ric is aimed at finding close vectors. The more dimensions in the vectors
(i.e., the contextual values in the embeddings), the closer the average dis-
tance between the randomly placed points in those vectors (as it has shown
with the Cosine similarity metric), and the opposite with aggregating the
maximum distance (as it has shown with the results from Euclidean and
Manhattan-based systems) (Qian et al. 2004; Le and Mikolov 2014).

These results will be discussed further in Section 8.4.3 of this chapter. However,
the results of the systems correlation do not guarantee or even indicate that any
system has an accurate or effective performance in measuring and identifying
the semantic relatedness at the semantic frame level. This sort of evaluation is
provided in the next section where we use a human-judgement dataset as a gold
standard to examine which system will perform best at the semantic relatedness
task.

8.3 Performance Analysis

This section aims to present results on the proposed approaches’ performance
represented by their underlying systems. We provide details and results after ap-
plying Steps 5 and 6 of the evaluation procedure, presented previously in Section
8.1
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8.3.1 F2F Dataset

In the beginning, and because of the absence of a standard frame pair set, we have
constructed a frame-to-frame relatedness evaluation dataset, hereafter F2F 68

dataset. The initiated dataset will guide us to estimate what are the relationships
in terms of similarities and relatedness between frames in FrameNet from an RE
perspective using human judgments. In addition, the dataset will be used to
aid in validating the results we obtained from the proposed approaches. Recall
that the distinction between similarity and relatedness, which we followed in this
annotation process, is explained in Section 2.1. In this section, we report on the
annotation procedures and F2F dataset validation and results.

Annotation Procedures

To prepare for F2F dataset annotation, we automatically generated a list of frame
pairs which we retrieved the frames from the FN-RE corpus. The frame selection
was led by the importance of using frames that are commonly used within the
context of the documents in RE domain.

To this end, we recalled the common frames that are used to annotate the FN-
RE corpus (i.e., the mutual frames that are used to label requirements in both
manual and automatic parts of the FN-RE corpus); accordingly we captured
99 frames (presented in Section 4.5). After that, we used a python script to
generate the frame combinations as unique pairs which in total resulted in 4851
frame pairs. The collection of frame pairs facilitates the decision process by our
annotators in deciding which frame pairs are related, similar, or unrelated from
an RE perspective.

Next, we prepared a simple annotation scheme to decide on if the frame pair
are semantically related or similar from RE perspective. We provided few pseudo
examples (not included in the FrameNet lexicon) to demonstrate our concept of
similarity and relatedness between frames in context of software descriptions.

Then, we employed six annotators to perform the annotation process using a
spreadsheet file. Annotator A is the requirement engineer who helped in labelling
the FN-RE corpus in Chapter 4. Annotator B is the author of this PhD thesis,
whose annotations are considered to be the golden set to compare the others’
annotations. Annotator C is an expert in NLP systems, and she conducted

68read as /frame to frame/
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several studies on the topics of textual entailment and similarities. Annotator
D is a PhD candidate whose research is in social linguistics. Finally, Annotator
E and Annotator F are software developers who both have at least 6 years of
experience in the IT industry. All annotators have completed their graduate
studies (MSc or PhD) in the UK and speak English proficiently. In addition,
they have a sufficient idea of textual semantic analysis, and the majority of the
annotators have a comprehensive knowledge of RE as a domain.

Afterwards, the frame pairs list was prepared by selecting 120 frame pairs
from the overall 4851 pairs that were automatically generated from the shared 99
frames in the FN-RE corpus in Chapter 4. The selection process was made by
Annotator B who retrieved varied cases of what she sees as similar, related, and
unrelated of frame pairs overall list. The selected frame pairs are then organised
in a tabulated sheet that contains: Frame A and Frame B (the frame pair to
be annotated for their relatedness) with their FrameNet definitions and their
corresponding lexical units, and; the annotation result, listed as either related or
unrelated frame pair.

To make the selection more systematic, we provided the annotators with two
options for an annotation answer. The annotation options are “R” (listed as 1
in the annotation results) which indicates the frame pair has a similarity case
or relatedness between the two frames, and “NA” (listed as 0 in the annotation
results) which indicates that the frames are not similar or related. An example of
the annotation sheet is shown in Figure 8.6; the annotation table shows the frame
pairs (Frame A and Frame B) with their definitions as listed in the FrameNet
lexicon 49. Then, the decisions of their relatedness are shown in the last column.

Following the preparation, the list was then distributed among our annotators
as tabulated sheets to label the frame pairs relatedness, where we simply asked
them to decide if the frame pair is related or not. An example of the annotation
results as collected from the six annotators is shown in Table 8.7. The annotation
table shows the frame pairs (Frame A and Frame B) followed by the decisions of
their relatedness, which is shown in the last column. “1” identifies relatedness
between the frames and non-relatedness is labelled by “0”. The last column shows
the mean of the annotation results.
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Figure 8.6: An example of the F2F annotation sheet by Annotator B.

Table 8.7: Examples of the F2F annotation results as collected from the six
annotators.

Frame A Frame B Ann A Ann B Ann C Ann D Ann E Ann F Mean
Sending Receiving 1 1 1 1 1 1 1.00
Storing Text 1 1 1 0 1 1 0.83
Conditional occurrence Information 1 1 1 1 0 0 0.67
Inclusion Have as requirement 1 1 1 0 0 0 0.50
Process Conditional occurrence 0 1 1 0 0 0 0.33
Cotheme Purpose 0 0 1 0 0 0 0.17

F2F Dataset Validation and Results

The annotation of the F2F dataset was completed over a period of five weeks.
Because the annotation was a straightforward process, and our annotators already
had a sufficient understanding of semantic frames in FrameNet, from the simple
guidelines (earlier discussed) we presented to them, this helped to speed up the
annotation process.

A. Validation of F2F Annotations:

To validate the F2F annotation results 69, we applied an F1-score evaluation
method–a harmonic mean of precision and recall as presented in Equation 4.1
(from Chapter 4).

69The validation procedures for the F2F dataset is similar to the validation we made in FN-
RE coarse grained annotation presented in Section 4.3.2. However, we presented the equations
and procedures again to avoid confusion between the two annotation tasks.
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In F1-score evaluation, we evaluated the annotation results (i.e., the results
by Annotator A, Annotator C, Annotator D, Annotator E and Annotator F) in
corresponding to Annotator B’s results, who we considered to be the gold stan-
dard in this setting. We calculated the results of each annotator independently,
and then we micro-averaged all of the calculated scores. After determining the
number of TPs, FPs and FNs, we obtained an F-score of 82.2% at identifying
relatedness cases among frame pairs, which is interpreted as a “substantial” re-
sult. The detailed F-score results of each annotator in comparison to Annotator
B are shown in Table 8.8.

Table 8.8: F-Score results of the annotators’ performance rates compared
to the annotations by Annotator B.

Annotator F-score
Annotator A 0.93
Annotator C 0.86
Annotator D 0.78
Annotator E 0.75
Annotator F 0.79

Overall, the obtained F-scores, shown in the table above, indicate that there
is a more than satisfactory level of consistency between our five annotators. This
implies that their annotations can be considered as highly reliable of the other
annotators’ scores in comparison to the gold standard (i.e. Annotator B).

In addition, we used intraclass correlation (ICC) with absolute agreement
ICC(2,k)70, where k, the number of annotators, is 6. This test is used as an-
other agreement method to estimate the rating agreement among our annotators
(without considering any annotator as a gold standard). If all of the six anno-
tators are in complete agreement then ICC = 1. On the other hand, if there is
no agreement at all among the annotators, other than what would be expected
by chance, then ICC ≈ 0. We computed the ICC coefficient, and we obtained a
score of ICC(2,6) = 0.86 which is interpreted as “strong agreement” as described

70In the previous use of ICC in Section 8.2.4, we used the “consistency” method because
we were interested in estimating correlation between systems with the same group of frame
pairs to inspect whether they are correlated in an additive manner. Conversely, in F2F dataset
validation, we selected the “absolute agreement” method because we were concerned whether
different annotators assign the same label to the same frame pair in the provided dataset. These
choices are made according to the guidelines by Koo and Li (2016) and Mertler and Reinhart
(2016).
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in the guidelines of LeBreton and Senter (2008) and it is also considered as “good
agreement” as stated in the guidelines of Koo and Li (2016).

Nevertheless, we revised the annotations from each annotator and we investi-
gated the reasons for any incompatibility in the annotation results. As shown in
Table 8.8, the closest annotations to Annotator B is Annotator A with F1 = 0.93.
This substantial agreement is a result of the depth of understanding that Anno-
tator A has developed of FrameNet frames and their relationships due to his
involvement in generating the FN-RE corpus (presented in Chapter 4). This
also can be attributed to his experience in RE as he related some of the frame
relationships to the requirement documents in his work. For Annotator C, the
NLP expert, her annotations were in good agreement with Annotator B’s results.
However, as she selected most of the frame pairs as related, we investigated fur-
ther with her, and she explained that her judgement was mainly based on the
lexical units set for each frame in the dataset as shown in the annotation sheet.
Moreover, she found these words (or lexical units) could be generally related or
paraphrased in a sentence. On the other hand, Annotator D missed some related
pairs (from Annotator B’s results) and that might be related to the fact that she
is not very familiar with the context of documents in the RE domain. However,
we were interested in her annotations to see whether the cases of frame relat-
edness are also common in fields of study other than RE. In this case, we can
not generalise Annotator D’s results, but her annotation (with F1 = 0.78) can
be considered a good indicator that requirement documents are across domain
products. Finally, Annotator E and Annotator F both have a good agreement
with the results obtained from Annotator B, and we note that Annotator F has
a higher F-score (with F1 = 0.79) than Annotator E, simply due to her familiar-
ity with NLP-based applications and systems. She therefore quickly generated a
good understanding of FrameNet frames and their relationships.

At at the end, these validation results, obtained from F-score and ICC cor-
relation test, indicate a high reliability of the annotations in F2F dataset. The
dataset will be utilised to evaluate the systems performance rates as a correlation
of the answers means in the human-judgement dataset and the scores obtained
from the proposed systems and it is going to be discussed in Section 8.3.2.
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B. Constructing Final F2F Dataset:

Afterwards, we applied a voting technique to generate the final F2F dataset. This
was a straightforward process in which we selected the majority vote for partic-
ular annotations, and in cases of a tie, we applied a harmonisation technique
where Annotator B’s labels were considered to be the gold standard for annota-
tions, while the other annotations were suggestions. If she (Annotator B) finds
that the others’ annotations are more representative than her own (after revising
frame information in FrameNet, and their example requirements from the FN-RE
corpus), then she modified her annotations to the most accurate answer.

After voting and applying the harmonisation techniques, the F2F dataset was
finally constructed–a dataset of frame pairs that are labelled for their relatedness
according to the context of the RE documents.

The F2F dataset will be used in estimating the optimal threshold value for
each system and in evaluating the proposed systems’ performance rates for their
accuracy and effectiveness in measuring and identifying semantic relatedness at
the semantic frame level. This will be discussed in Section 8.3.3.

8.3.2 Correlation Analysis with a F2F Dataset

In this section, we discuss the results obtained by applying Step 6.1 from the
evaluation procedure (cf. Section 8.1), which is about identifying the systems
which are positively correlated with the human judgements in the F2F dataset.

The judgements obtained from the annotation answers, discussed previously
in Section 8.3.1, were collected and computed as an overall average relatedness
score (i.e., by summing the annotation answers (0 or 1) and divided the total
annotation answers by the number of annotators in the F2F dataset). An example
of this computation process was shown in Table 8.7.

Following this, the Spearman’s Rank test was applied as a correlation test.
The reason for using Spearman’s Rank test is that it was reported to be an
effective correlation test for the relatedness and similarity identification tasks; for
example, as presented in the work of Patwardhan and Pedersen (2006) and Basile
et al. (2018). Spearman’s test was suggested because for similarity tasks it can be
more essential to determine how well the ranks of the relatedness score correlate
independently of the underlying distribution of the data points. Meaning that
using a non-parametric correlation test is recommended with a non-normal data
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distribution (Navigli and Martelli 2019), and all of the systems we have proposed
follow a non-normal distribution (cf. Section 8.2.2).

Therefore, the relatedness scores of the selected 120 frame pairs were recalled
(i.e., the same frame pairs used in the F2F dataset annotations). Then, the
Spearman’s correlation test was computed for each system (from each approach)
in comparison with the mean of human judgements (for each frame pair) in the
F2F dataset.

The correlation results of approach A (knowledge-based approach) and ap-
proach B (corpus-supported approach) are shown in Figure 8.7.

Figure 8.7: The correlation results of the systems under approach A (left
figure) and under approach B (right figure) relative to the average of hu-
man annotations in the F2F dataset. The correlation results are shown in
percentage format (%).

As shown in Figure 8.7, the systems of approach B are more correlated with
the human judgements than the systems in approach A. However, the overall
correlation results of approaches A and B are in the range of poor and moderate
correlation according to the correlation interpretation proposed by Koo and Li
(2016) (as presented earlier in Section 8.2.4).

The notable correlation result has appeared in the system of PPMI from ap-
proach B with r = .55 which indicates a moderate correlation between the afore-
mentioned system and the human judgements in the F2F dataset. Followed by the
Cosine Vector system and the Dice system with same correlation coefficient of
an r = .47, which indicates a poor correlation, because the correlation coefficient
results was less than the minimum threshold value for a moderate correlation
(i.e., r ≥ .50). The lowest correlation result, among the systems in approach B,

222



pertained to the results obtained by the JNC system with a correlation coefficient
result of r = .11, and this also indicates a very poor association with the average
of human judgements in the F2F dataset.

Likewise, in approach A, all of the correlation results imply a poor correlation
since the largest correlation coefficient is r = .28 which appeared in the OVL K
system. The lowest correlation result among approach A systems pertained to
the results obtained by the WUP system with a correlation coefficient of r= .084. In
addition, a negative correlation exists in approach A with a correlation coefficient
of r =−.458 between the results obtained from the EGO system and F2F dataset
results, which refers to the existence of an inverse association between the human
judgements and the results of the earlier mentioned system.

On the whole, the majority of the results of the systems under approach B have
a slight and moderate positive correlation coefficient with the human judgements
in the F2F dataset. In contrast, the correlation results of the systems under
approach A were regarded as a poor correlation, which indicated a non-association
between the overall results obtained from the aforementioned approach (A) and
the averages of human answers in the F2F dataset.

However, we do not consider that the obtained results from both approaches
(A and B) are sufficient to constitute a good and positive correlation with the
human annotations. This is due to the fact that the overall average correlations
were less than the minimum threshold for a positive correlation (i.e., r ≥ 50),
since approach A has an overall correlation average of r = .1765 and approach B
has an overall correlation average of r = .288.

For the third approach, approach C, the results of the correlation analysis of
the systems pertaining to Word2Vec and FastText models are presented in Figure
8.8. We merged the results reported from the systems based on the previously
mentioned models because FastText is basically an extension of Word2Vec (Bo-
janowski et al. 2016; Joulin et al. 2016), and hence their underlying algorithms
are very similar to each other. This contrasts with the third model, GloVe, which
we discuss in this context later in this section.

Starting with the systems that pertain to the Word2Vec and FastText models
(cf. Figure 8.8), the overall correlation results of the Word2Vec and FastText
systems under approach C were more encouraging than the correlation results
obtained from the systems of approach A and B (as presented earlier).

Furthermore, it is notable that there is a similarity pattern in their correlation
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Figure 8.8: The correlation results of systems based on the Word2Vec model
(left figure) and the FastText model (right figure) under approach C and in
relation to the average of the human annotations in the F2F dataset.

results from just comparing the colour shades of their overall correlation results,
as shown in the figure above (Figure 8.8). This confirms the association between
the Word2Vec and FastText models (Bojanowski et al. 2016; Joulin et al. 2016).
Nevertheless, the correlation results obtained by the FastText based systems are
slightly more correlated with the annotations of the F2F dataset than the results
of the Word2Vec based systems.

On that observation, if we compare the systems with 1) the embedding fea-
tures of skipn1 and skip3 in both models (i.e., Word2Vec and FastText), 2) the
vectors operations of vector addition (ADD) and vector averaging (AVG), and 3)
Cosine as similarity metric, it is then shown that the results of the FastText
based systems are greater (by 0.01 to 0.02 correlation scores) than their corre-
sponding systems in the Word2Vec model. For example, the FT-skipn3-AVG-cosine
system has a correlation coefficient of r = 0.85 and its peer system with the
Word2Vec model has a correlation coefficient of r = 0.83. The difference between
those previously mentioned systems is not dramatic, since all of the obtained
correlation results are regarded to be a good and positive association with the
human judgements in the F2F dataset.
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However, this increasing rate of correlation results is not applicable for all of
the systems of the previous models. For example, the FastText-skipn2-ADD-Cosine
system and the FastText-skipn2-AVG-Cosine systems have a correlation result
of r = 0.78 and this correlation score is less than the score of their peer systems
in the Word2Vec model (which have the same correlation result of r = 0.83).

In addition, the aforementioned 12 Cosine-based systems (i.e. 6 systems
for the Word2Vec based model and the other 6 systems based on the FastText
model) are considered to be the best systems in terms of having a good and
positive association with the human annotations in the F2F dataset. Because the
correlation scores (of these 12 systems) were greater than the minimum threshold
value (i.e., r ≥ 0.75), they indicate a good correlation coefficient according to the
adopted correlation guidelines (presented in Section 8.2.4).

For example, the correlation coefficient of the (FastText-skipn3-ADD-Cosine)
system and the correlation coefficient of the (FastText-skipn3-AVG-Cosine) sys-
tem have the same correlation score of r= .85, which indicates a strong correlation
between those two systems and the human annotations. The two systems’ cor-
relation results are considered to be the highest association scores among other
systems that used the FastText model. Following that, the systems that used
skipn1 and skipn2 as a learning feature and applied the Cosine as a similarity
metric have also a good correlation with the human annotations.

Similarly, in the systems that used Word2Vec model, the best-correlated sys-
tems with the means of human judgements in F2F dataset have the same cor-
relation score of r = 0.83. Those that use the Word2Vec based systems, which
is regarded as the best systems in this group model, have the learning features
skipn1, skipn2, and skipn3 for training the embeddings, and also used the
two vectors operations ADD and AVG for generating the frame embeddings. Those
Word2Vec based systems, which are considered the best correlation systems, form
a total 6 systems which also used the Cosine as similarity metric.

Furthermore, all of the systems pertaining to the models Word2Vec and FastText
which applied the feature of (cbow) as an embedding learning feature, and which
also used the Cosine as a similarity metric, have a poor association with the
human judgements in the F2F dataset. These systems’ correlation scores are in
range of the poor correlation coefficient (i.e., r < 0.50).

On the other side, as shown in Figure (8.8), all of the systems pertaining to
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Word2Vec and FastText models and using Euclidean and Manhattan as similar-
ity distance metrics are considered to be poor in their association (i.e., r < 50)
or have a negative correlation with the human answers in the F2F dataset.

For the final model (i.e., the GloVe model) in approach C, we present the
correlation results of its systems in Figure 8.9.

Figure 8.9: The correlation results of systems based on the GloVe model
from approach C and in relation to the average of the human annotations
in the F2F dataset.

In the GloVe based systems shown above, the correlation results are compara-
ble to a certain extent with the results obtained from the Word2Vec and FastText
based systems discussed earlier. The main common result between these systems
is that the GloVe based systems that used the Cosine similarity metric have a
positive correlation score, just like the systems with the Word2Vec and FastText
models.

However the only difference is that the correlation of the GloVe based systems
(with the Cosine similarity metric) has a coefficient of r = 0.68, which is consid-
ered to be a moderate correlation. This leads to another result, that the Glove
based systems have a moderate association to the human judgements, compared
to the good association obtained by a majority of systems with the Word2Vec and
FastText models.

Similarly, the GloVe based systems with the Euclidean and the Manhattan
similarity distance metrics have a poor or negative association with the human
annotations in the F2F dataset, which indicates the inadequacy of these two
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similarity distance metrics in comparison to the average of the human answers.
Overall, the correlation results obtained from all of the systems are sum-

marised as following:

• approach A: The overall systems in approach A (in total 9 systems) have
a poor to negative correlation with the average answers in the F2F dataset;
this might be interpreted as meaning that the proposed approach A (i.e., the
knowledge-based approach) is insufficient to estimate semantic relatedness
between frames according to the mean of the human annotations.

• approach B: The only system of approach B (i.e. the corpus-supported
approach) which has a moderate and positive correlation is the PPMI sys-
tem; the remaining systems are regarded to be in a poor association with
the average human answers in the F2F dataset. However, the obtained cor-
relation coefficients of the systems in approach B are greater than for the
systems of approach A, but this does not imply that approach B is the best
in identifying the relatedness between frames.

• approach C: The systems of approach C (i.e. the embedding-based ap-
proach) have more encouraging results than the other two approaches. How-
ever, not all of the systems under approach C have a positive correlation.
The best systems of approach C (i.e., the systems with a good positive
correlation to the F2F dataset annotations) are those systems which used
the Cosine as similarity metric, and used skip-gram as embedding feature
for the system pertaining to the Word2Vec and FastText models. The re-
maining systems (e.g., the systems which used Euclidean or Manhattan as
similarity distance metrics) are considered to be poor in their association
with the human annotations in the F2F dataset.

The results summarised above are not our main conclusions in selecting which
approach is best for identifying semantic relatedness between frames. The re-
ported results are considered preliminary results on the association with the
overall human judgements in the F2F dataset.

Therefore, to select which approaches (or systems) have the best-performance,
the annotations of the F2F dataset for the correlation analysis were revised to
generate a final dataset of the frames’ relatedness (as discussed earlier in this
section). Then the final dataset will be used to evaluate the efficacy of these
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approaches (represented by their systems) in terms of precision and recall rates.
The results will be discussed in the following section.

8.3.3 Accuracy Analysis with F2F Dataset

This analysis will shade the light on the systems’ performance rates in terms of
precision and recall, and selecting the best threshold values to identify similarity
and relatedness between frames in the FrameNet and from an RE perspective. In
this section, we provide details and results after applying Step 6.2 and 6.3 of the
evaluation procedure presented previously in Section 8.1

We computed the performance rates of the proposed systems using F1 score
(cf. Equation 4.1). We used the final constructed F2F dataset (i.e., the F2F
corpus after applying the voting and harmonisation techniques), and treated F2F
corpus as a gold standard in F1-score calculation. Firstly, we generated a round
of threshold values from 0.1 until 0.9, and we computed the F1-score to each
system with the corresponding threshold value in that round. To explain further,
if we consider system x: any system from the proposed approaches, and v is a
threshold value stated in that round of calculation, and we then interpret the
relatedness score s from system x to be (R=1) if s≥ v and (NA=0) if s < v, and
in this way we generated a spectrum of threshold values associated with their F1-
scores from each system.

To present the results from all of the proposed approaches, we chose a heat-
map visualisation as a preferable way to present the F-scores values with different
coded colours depending on the F1 scores (i.e., higher F1-scores will be associated
with intense colours comparing to the lower scores). The used visualisation is
similar as we presented the correlation analysis (Section 8.3.2); however, the
difference here is the use of the multiple values at the X bar (i.e., to present
the threshold values). The sub-sections below will present these figures and the
implications of the results of the F1-scores.

Accuracy performance of approach A:

For approach A, the performance matrix based on the nine rounds of threshold
values is shown in Figure 8.10; the figure shows a heat-map of the F1-score results
obtained from all nine systems in approach A. The systems titles are shown in
the vertical axis (Y) and the threshold values are spread in the horizontal axis
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(X). The numbers inside boxes refer to the F1-score result (%) and darker colours
indicate higher F1-score results. As shown in that figure, the overall F1 scores are
considered to be insufficient to generate reliable measurement methods (systems)
for the frames’ relatedness, and in the following, we explain the reasons for the
conclusion we stated above.

Figure 8.10: A heat-map of the obtained F1-score results from all systems
in approach A.

For comparing the F1-score results at different threshold values (v), we noticed
the highest scores among the systems’ scores in approach A (i.e., F1≥ 45%) are
mostly located at lower threshold values (i.e., v ≤ 0.2), which also implied that
the relatedness values with almost zero scores (i.e., S ≈ 0) are more frequent
among these systems.

For instance, the OVL FE system has the highest F1 score result, among others,
with an F1 of 52.52% at threshold value (v) of 0.1. Followed by the system OVL K
with an F1 score result of 45.57% at v = 0.1. Both systems suffered from major
drops, for example, OVL FE performance dropped by 21.48% after the threshold
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v = 0.2, also the accuracy rate of the other system (i.e. OVL K) dropped dramati-
cally by 24.17% after the threshold v = 0.1, and these two drops in accuracy rates
are considered to be the highest compared to the decreasing accuracy rates in the
other systems.

Moreover, the results of F1-score for the system of OVL FE stopped decreasing
and got a steady performance rate of F1 = 13.97% at threshold of v = 0.6, and
likewise for the OVL K system which stopped decreasing at F1-score of 13.97% at
threshold of v = 0.4.

Therefore, we investigated the F2F dataset results and the results obtained
from the two systems, and we noticed whenever we encountered an F1-score result
of 13.97% at specific threshold (vi), this leads to the fact that the maximum
relatedness score (S) was reached by that system where the relatedness score is
approximately equal to the former value in the threshold values (i.e. S ≈ vi−1).

For example, in the OVL K system reached to its maximum relatedness score
of S = 0.3 with the frame pair: Creating and Intentionally create, and similarly for
the OVL FE system which it reached to its maximum relatedness score (S = 0.5)
with the frame pair: Sending and Removing .

Nevertheless, we noticed the frequent appearance of the same F1-score rate
(i.e. F1 = 13.97%) in all of the nine systems in approach A, with no further
decreasing nor increasing in the performance rates, at these systems, after the
aforementioned F1-score. This is explained as follows: if the F1-score of 13.97%,
thereafter the breaking point of F1-score, appeared at a specific threshold (vi),
the former value (vi−1) in the threshold values will be interpreted as the maximum
relatedness score at that specified system (i.e. S ≈ vi−1).

For example, at the EGO system at the threshold value of v = 0.3, the breaking
point F1-score of 13.97% was obtained, which made the highest relatedness score
is near the value of 0.2, and this was achieved in the EGO system with the frame
pair: Waiting and Identity . It should be mentioned that frame pair is recognised
as non related in the F2F dataset, and this also explained the F1-score result at
v = 0.2 of 13.33% which is slightly lower than the F1 breaking point score (i.e.,
F1 = 13.97%).

Another observation is that at the lower threshold values (i.e., v ≤ 0.2), it
is notable that there is a similarity in the performance rates (i.e. F1 = 29.91)
of the following systems: BATET, LCH, NAM, Path and WUP, where the latter
system (WUP) has almost a stable performance with slight drops in the accuracy
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rates (i.e., F1 decreases by not more than 1.75%), as it has the highest accuracy
rate of an F1 score 19.75% at the 0.9 as a threshold value. Moreover, it is also
notable that both systems LCH and NAM have similar performance rates except at
the threshold values of (v = 0.6) and (v = 0.8), and this similarity is also caught
in the correlation analysis results (presented earlier in Section 8.3.2) where both
systems have the same correlation coefficient results of r = 12.1. Nonetheless,
the obtained results for these two systems (i.e. LCH and NAM) proved the poorer
association between the human judgements in the F2F dataset and the obtained
relatedness scores at these systems.

Overall, the main similarity facet between the correlation analysis results and
the accuracy results presented here, for approach A, is that all of the systems are
considered to be not reliable to measure relatedness between frames, as we stated
earlier in this section. This leads to the conclusion that the embodied knowledge
in the FrameNet lexicon (e.g., frame definition and semantic relationships) are
insufficient to identify related frames in the context of RE documents.

Accuracy performance of approach B:

For approach B, the performance matrix based on the nine rounds of threshold
values is shown in Figure 8.11. In comparison to the performance rates for ap-
proach A (discussed earlier), the accuracy rates for the systems under approach
B is the best. As shown in Figure 8.11, there are satisfactory F1 scores (i.e.,
F1 ≥ 70), and these preferable scores are appeared with more than one system
under approach B.

The highest F1-score is obtained with the PPMI system at a threshold value
of 0.1, and that system continues with a pleasant performance (i.e. F1 ≥ 70)
until 0.4 as a threshold value, and the major drop in the performance rate in that
system (i.e., PPMI) is appeared after v= 0.5 by more than 32% reduction in the F1-
score results. This leads to that the majority of the relatedness scores at the PPMI
system mostly appear between the values of 0.1 and 0.4 (i.e., 0.1≤ S ≤ 0.4). This
result made the PPMI system as the best among other systems under approach
B, so far.

Then, the other system with reasonable performance is the Dice system, with
a high F1-score result of 74.57% obtained at v = 0.1; following that, an F1-score
of 71.01% at 0.2 as a threshold value. The performance rates (after v = 0.2)
in that system continued to decrease with an average drop rate of 6.33% in its
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Figure 8.11: A heat-map of the obtained F1-score results from all systems
in approach B.

overall performance results at different threshold values. This gradual reduction
in the F1-score results made that system (i.e. Dice) more stable in performance
than former system (i.e. PPMI). However, these results do not posit the Dice
system as the best system under approach B, because the obtained F1-score for
Dice is lower than the F1-score result of PPMI by more than 8 percentage points,
and the majority of relatedness scores S (for the frames that are also considered
semantically related in the F2F dataset) are greater in the PPMI system (i.e.
S ≤ 0.4) than the scores in the Dice system (i.e. S ≤ 0.2).

The third, and last system, with a reasonable performance is the Vector cosine
system with an F1-score result of 71.11% obtained at 0.1 as a threshold value.
After that, the system continued to decrease in performance with an average drop
rate of 6.11% in the performance results. However, the overall performance rates
does not posit the Vector cosine system as the best under approach B, and
still the PPMI system is considered to be the best system so far, for the similar
reasons mentioned earlier, because the obtained F1-score for Vector cosine is
lower than the F1-score result of PPMI by more than 11 percentage points, and
the majority of relatedness scores S are greater in the PPMI system than the scores
in the Vector cosine system (i.e. S ≤ 0.1).

On the other side, the remaining systems of approach B: Jaccard, JNC, Lin
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and Resink are not considered among the systems with preferable performance
rates because their overall F1-scores are far less than the desired results of F1-
scores (i.e., F1 < 70%). Moreover, the aforementioned systems have frequent
zero scores in their measurements of the frames’ relatedness, which made these
systems less reliable in identifying semantic frames’ relatedness in the context of
RE domain.

The essential similarity between the correlation analysis results and the ac-
curacy results presented here, for approach B, is that the PPMI system is may be
considered to be reliable to measure relatedness between frames since it obtains a
moderate and positive correlation of r= 55 and a desirable F1-scores (F1> 70%)
with four different threshold values. For the other two systems (i.e., Dice and
Vector cosine) with reasonable F1 performance rate at lower threshold value
of 0.1, their correlation results are not encouraging since both systems had a
correlation coefficient of an r = 47, which made these systems are not reliable as
the PPMI system in identifying relatedness. On the other hand, the remaining
systems with poorer accuracy rates also has a weaker association with the hu-
man judgements, in which proved the unreliability of these systems to measure
relatedness between frames in the context of RE documents. In Section 8.4.2, we
discuss the implications of the resultes discussed earlier.

Accuracy performance of approach C:

For approach C, the performance matrix based on the nine rounds of threshold
values is shown in Figure 8.12. Overall, the performance rates of the proposed sys-
tems in the embedding-based approach (approach C) are more encouraging than
what was proposed previously in approach A and even approach B, since some
of the systems under approach C have an outstanding performance in identifying
related frames that is almost similar to the judgements made by the humans’
annotations in the F2F dataset.

The main observation in the calculated F1 results of approach C is that
there are frequent identical F1-scores at specific systems. For instance, all of the
embedding-based systems with the Cosine as a similarity distance metric and cor-
responding to each embedding type (i.e. Word2Vec, GloVe and FastText) and
have the same embedding training feature (i.e., all, cbow, skipn1, skipn2
and skipn3) have the same F1 scores at each threshold value regardless of the
type of the frames generation methods whether it is vectors addition (ADD) or
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Figure 8.12: A heat-map of the obtained F1-score results from all systems
in approach C.

vectors averaging (AVG).

An example are Word2Vec cbow Cosine ADD and Word2Vec cbow Cosine AVG,
with Word2Vec as embedding type and used cbow as an embedding training fea-
ture, both have the same F1-score results at each threshold as shown in Figure
8.12, and similarly with other systems. This is explained as the use of Cosine
similarity distance metric is not affected by the type of the frames generation
methods (i.e., ADD or AVG).
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Another observation is there are also certain similarities in the F1 score re-
sults between the distance-based systems in approach C (i.e., the systems that
are associated with the Euclidean and Manhattan similarity distance metrics);
however, the similarity facets between these systems are not identical as the dif-
ference in the performance rates between these systems is minor (i.e., not more
than 1.5%); however, they are generally considered similar.

To be more specific, the similarity lies between the Euclidean-based and
Manhattan-based systems which used the same frames generation method (i.e.,
ADD or AVG) and corresponding to each embedding type (i.e. Word2Vec, GloVe
and FastText) and have the same embedding training feature (i.e., all, cbow,
skipn1, skipn2 and skipn3). For example, the two systems with FastText
as embedding type and used skipn2 as an embedding training feature with
Euclidean and Manhattan similarity distance metrics, both systems have a rel-
atively similar F1-score results at each threshold as shown in Figure 8.12, and
similarly with the two systems but with a vector operation of averaging (AVG), i.e.,
FastText skipn2 Euclidean AVG and FastText skipn2 Manhattan AVG), both
also have very similar F1-score results.

It should be mentioned that the performance rates of the distance-based sys-
tems (i.e. the systems with the Euclidean and Manhattan similarity distance
metrics) with an ADD as frames generation method, generally have a better
performance (by an approximate average of 24.63 percentage point) than the
other distance-based systems with the vector averaging (AVG) as frames genera-
tion method.

On the other side, the systems that have a significant performance rates (i.e.,
F1 ≥ 90%) for frames’ relatedness identification, as shown in Figure 8.12, are
those systems with the Cosine as a similarity distance metric because the ma-
jority of their overall performance rates are classified between satisfactory (i.e.,
F1 ≥ 0.70), and an outstanding performance (i.e., F1 ≥ 0.90) that is very close
to the humans’ judgements.

To explain further, the performance rates of the Glove-based systems with
the Cosine as similarity distance metric are the best at a lower thresholds values
(i.e., v ≤ 0.3), where the best performance rates for these Glove-based systems
(i.e., F1 ≈ 90%) are obtained at 0.1 and 0.2 as a threshold values. This is an
indicator that the calculated scores, by these systems, for the related frames
(i.e. true-positive frame pairs in the F2F dataset) are mostly centered between
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the 0.1 and 0.3 as relatedness scores. However, these relatedness scores may be
intuitively interpreted as low scores to detect relatedness, e.g., the frame pair In-
formation and Text have a relatedness of S = 0.28 in both GloVe all Cosine ADD
and GloVe all Cosine AVG , and this calculated relatedness score does not reflect
the strong relationship between such an almost similar frame pair as identified in
the F2F dataset.

In addition, the Word2Vec-based systems which used the Cosine as a similar-
ity distance metric and the cbow as an embedding training feature, have also a
satisfactory performance at the first threshold value (i.e., v = 0.1), where these
systems obtained an F1≈ 78% as a performance rate. Again, this is an indicator
that the majority of related frames are mostly associated with low relatedness
scores, for example, for a very related frame pair in the F2F dataset (i.e. Sys-
tem and Being in operation), both frames have a relatedness score of S = 0.08 in
the systems: Word2Vec cbow Cosine AVG and Word2Vec cbow Cosine AVG, which
also may be interpreted intuitively as a minor relatedness between these related
frames.

Similarly, the count-based systems (i.e., GloVe, and Word2vec and FastText
with the cbow model) with vectors addition (ADD) as a method to generate the
frames embedding and applied Euclidean and Manhattan as similarity distance
metrics; those systems obtained a satisfactory performance at the first threshold
value (i.e., v = 0.1). These systems obtained an F1 score ranges between 74%≤
F1 ≤ 88% as a performance rate. However, as we explained with the previous
similar systems, these results are not considered to be highly reliable since the
majority of the related frames were calculated and were obtained low relatedness
scores.

On the other hand, we noticed the Cosine-based systems that are associ-
ated with the Word2Vec and FastText embeddings and applied different skipn
training features (i.e., skipn1, skipn2 and skipn3), have the best performance
among other systems in approach C. These systems obtained more than a satis-
factory performance at higher threshold values (i.e. 0.2≤ v ≤ 0.9), as depicted in
the red boxes in Figure 8.12, with an F1 score ranges between 71%≤ F1≤ 97%
as a performance rate.

The highest F1-score result, among the systems’ performance rates under ap-
proach C, is 96% which is considered to be a highly significant performance result;
this F1-score was obtained at the following systems (FastText skipn1 Cosine)
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with ADD and AVG operations) at 0.8 threshold value, and also at the systems:
Word2Vec and FastText with skipn1,2 and ADD and AVG as operations and ap-
plied Cosine as similarity distance metric (at 0.5 threshold value). Followed
by another significant performance of an F1 ≈ 94%, for example, at the sys-
tems: (FastText skipn1 Cosine ADD and FastText skipn1 Cosine AVG) at 0.7
threshold value; and also with the Word2Vec-based systems with the three skipn
features at 0.4 as a threshold value.

Nevertheless, the remaining F1 results in these systems are also significant and
satisfactory which caused a blurry image on which systems are actually the best
in identifying related frames from an RE perspective. Therefore, we generated an
average performance rate, combining all of the F1 scores at each threshold, and
for each Cosine-based systems in the approach C to make a final decision on these
systems performance. The average results are shown below in Table 8.9, and to
make the discussion more narrowed we have only focused on the Cosine-based
systems with different embedding types which utilised only the skipn training
features, and regardless of the used frames generation methods (ADD or AVG)
since they have the same effect in the Cosine-based systems as explained earlier.
Therefore, we avoided the inclusion of the other systems in the given table below
(i.e. the count-based systems such as GloVe), because their performance rates
are insufficient as the previously mentioned systems (i.e. systems with skipn
training features).

Table 8.9: The average rates for the F1-scores from the nine threshold values
(cf. Figure 8.12) for the Cosine-based systems in approach C that.

Cosine-based Systems Avg. F1-score
Word2Vec skipn3 Cosine (AVG or ADD) 62.48
Word2Vec skipn2 Cosine (AVG or ADD) 63.31
Word2Vec skipn1 Cosine (AVG or ADD) 62.66
FastText skipn3 Cosine (AVG or ADD) 63.43
FastText skipn2 Cosine (AVG or ADD) 67.94
FastText skipn1 Cosine (AVG or ADD) 71.81*

As shown in Table 8.9, the averages of the F1 scores (i.e. F1) of the presented
Cosine-based systems are varied. However, the overall performance, as we stated
earlier, is generally satisfactory, except with the GloVe-based systems due to
the reason that the only satisfactory F1 score results are obtained at 0.1 as
a threshold value and the remaining F1 scores are insufficient to make these
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GloVe-based systems reliable. Nevertheless, the best average F1 rates (F1) are
revolved around certain systems which also have the highest F1 score results,
as we discussed earlier in Figure 8.12. These systems are: FastTtext-based
systems with skipn1 as a training features, as they have an average performance
rate of 71.81 (i.e., F1 =≈ 72%) percentage points. Followed by FastTtext-based
systems, but with skipn2 as a training features which they obtained an average
F1 score of 68% which is approximately lower than the previous systems by less
than 4 percentage points.

Overall, the FastText-based systems have an almost better performance rate
than their corresponding systems (i.e. the Word2Vec-based system), and the aver-
age difference between these systems are 5 percentage points ,e.g., the FastText
with skipn1 Cosine system is performed better by 9% than the corresponding
FastText system (whether they applied ADD or AVG operations). Moreover, the
FastText-based systems with skipn features also provided higher relatedness
scores (S) for the related frame pairs (as identified in the F2F dataset), some
examples of these frame pairs with their relatedness scores as calculated by the
systems (presented in Table 8.9) are shown in Table 8.10.

Table 8.10: Example of frame pairs (shown in the headers) as calculated by
the embedding-based systems

System System & Being in operation Record & Storing Information & Statement
FastText skipn1 Cosine (ADD or AVG) 0.85 0.85 0.94
FastText skipn2 Cosine (ADD or AVG) 0.92 0.93 0.97
FastText skipn3 Cosine (ADD or AVG) 0.74 0.69 0.80
Word2Vec skipn1 Cosine (ADD or AVG) 0.61 0.63 0.76
Word2Vec skipn2 Cosine (ADD or AVG) 0.6 0.63 0.77
Word2Vec skipn3 Cosine (ADD or AVG) 0.59 0.63 0.76

In the end, as discussed earlier, the systems that used the Cosine similarity
distance metric, which are pertained to FastText embedding with the training
features: skipn1 and skipn2, shall be considered as the systems with the most
satisfactory performance rates, among the other systems in approach C.

8.4 Discussion

This discusses the findings obtained from the statistical analysis (presented in
Section 8.2 and Section 8.3).
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8.4.1 The Sufficiency of the FrameNet Lexicon

The knowledge-based approach (approach A) contains a total of nine systems,
which were implemented within semantic measurement systems. The systems
are then evaluated (in this chapter) at frame pair level, and we investigated if the
information contained in FrameNet as a semantic lexicon is sufficient to identify
relatedness between frames from an RE perspective.

First of all, the systems in approach A were categorised according to their
mechanism for computing semantic similarity and relatedness between the frames.
The first category was the overlap-based systems, whilst the second was the path-
based systems; more detail on these categories was provided in Chapter 5. The
systems under each category in approach A positively correlated with each other
(i.e., they have similar behaviour in measuring frame relatedness, but were not
identical in the actual frame relatedness results, as shown in the descriptive statis-
tics of all systems in Appendix B). This harmony in measuring semantic related-
ness, between the knowledge-based systems has been interpreted in Section 8.2.4
as the knowledge in FrameNet frames (i.e., definitions, semantic relationships,
etc.) shared among some of the frames, which originally have frame-to-frame
relationships in FrameNet. However, the other frames, which should be linked
to each other from an RE viewpoint, lack shared knowledge. For example, the
frames Creating and Intentionally create attained positive relatedness scores (R) in
all of the proposed systems under approach A. This is because the frame pair has
a semantic link in the FrameNet lexicon via the Inheritance relationship (where
Creating is the parent frame of Intentionally create frame). In addition, this frame
pair shares some of the frame elements (e.g. Creator) and lexical units (e.g. ‘gen-
erate.v’). On the other hand, the frames Sending and Receiving , have not been
identified as semantically related in any system under approach A, because these
frames do not share any semantic relationship (e.g., Inheritance or Using). More-
over, they only shared some frame elements, such as Recipient, Theme, Depective,
Place and Time; this frame pair is considered to be semantically related in the
context of RE documents. For instance, these frames could be used to describe
the sending and receiving processes in a particular system. In Table 8.11, we pro-
vide examples from the approach A results in measuring the relatedness between
frame pairs, which were identified as semantically related frame pairs from an RE
domain-of-use.

The performance results of the overall systems in approach A indicated a poor
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Table 8.11: An example of the (semantically related) paired frame results
obtained by the systems under the knowledge-based approach (after score
scaling)

Frame-A Frame-B Lesk EGO OVL-FE OVL-K Path WUP LCH NAM BATET
Creating Intentionally create 0.48 0.395 0.416 0.6 1 0.571 0.693 0.634 0.861
Sending Receiving 0.094 0.073 0.28 0.16 0 0 0 0 0
Text Recording 0.064 0.055 0.08 0.061 0 0 0 0 0
Information Statement 0.059 0.027 0 0 0 0 0 0 0
Gizmo System 0.044 0.021 0.04 0.046 0 0 0 0 0
Capability Usefulness 0.039 0.021 0.12 0.093 0.33 0.67 0.624 0.543 0.528

performance in identifying frame pair semantic similarly and relatedness accord-
ing to the F2F dataset (presented in Section 8.3.1) and from an RE perspective.
Yet, some of these systems have been reported as appropriate similarity met-
rics for the FrameNet lexicon (in a general-use domain). For example, the WUP
system has been reported by Pennacchiotti and Wirth (2009) as a preferred mea-
sure to identify frame relatedness. However, in our case, the lowest correlation
rate (r = 0.084) pertained to the WUP system; moreover, the system also obtained
poor F1 scores (i.e. F1 < 29%). This is implied that the existing knowledge in
FrameNet was insufficient to trace frame relatedness in the RE documents as a
domain of interest.

To investigate this issue further, we revised the frames which were identified as
being relevant to software descriptions. As shown previously in Table 4.10 in Sec-
tion 4.6, the Inheritance semantic relationship appeared in 392 frames (70.25% of
total 558 frames related to software descriptions) at an average of 1.94 Inheritance
relationships per frame. This result, among others, that was obtained during the
evidence collection phase (cf. Chapter 4), was the motivation to experiment for
the possibility of utilising only knowledge available in FrameNet to trace related
RE frames. However, the reality was not as expected, i.e. not every semantic
relationship between frames (or shared knowledge) in FrameNet is considered to
be essential to describe RE documents.

We ran another investigation to estimate the shared information between
frames in the 558 frames list obtained from the FN-RE corpus, and we revised
the results obtained from the overlap-based systems (i.e., OVL-FE and OVL-K).
We found that 65.24% of the frame pairs (i.e., the generated frame pairs from
the 558 frames list, which is equal to 155, 403 frame pairs) share information
in FrameNet. The shared information could be common frame elements, lexical
units or semantic relationships between the two frames. For example the frame
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Information and Statement have Topic as a frame element and the frame Communi-
cation is in the Using relationship. Similarly, the frame Information and the frame
System do not share any knowledge in FrameNet, although this frame pair should
be considered related in the context of software descriptions. Most importantly,
the knowledge-based systems depend only on the quantity of shared information
(i.e., less information entails poor semantic similarity and relatedness). For ex-
ample, the previously mentioned frames (Information,Statement) have only one
shared frame element and one frame in common in the Using relationship; thus,
according to the Path-based knowledge systems, the relatedness between these
two frames is zero, since these systems only rely on the Inheritance relationship.
In comparison, within the overlap-based systems such as OVL-FE, this is equal to
1 (and after score scaling, the obtained score is 0.04), which could explained the
poor performance results in these systems.

It is worth mentioning that Baker (2017) has identified these issues between
frames in FrameNet which is mainly attributed to FrameNet’s size (e.g.„ in terms
of the lexical units coverage). He suggested that this is due to the fact that
FrameNet is meant to be a general-domain lexicon. Moreover, some of these
issues (which we regarded as limitations) are intentional “due to decisions made
by the FrameNet team as to what is to be covered and what is left to others to
work on” (Baker 2017; p. 794).

In the end, according to the performance results we obtained for all knowledge-
based systems, we concluded that using only the available knowledge in FrameNet
is insufficient approach to semantically trace frames from RE perspective.

8.4.2 The Feasibility of Using a FrameNet Tagged Corpus

The second approach to tackle the semantic similarity and relatedness of FrameNet
frames and in the context of an RE document, is the corpus-supported approach
(approach B). The approach has been presented with a total of seven systems,
which were implemented within semantic measurement systems. The systems
were then evaluated to investigate whether the utilisation of FrameNet-tagged
corpora is generally feasible to identify relatedness between frames from an RE
perspective.

The systems in approach B were categorised according to their mechanism
in computing the semantic similarity and relatedness between frames. The first
category was co-occurrence-based systems, and the second category was path and
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co-occurrence-based systems, more details on these categories were introduced in
Chapter 6.

The systems were then analysed for their inter-correlation rates, and we found
that the systems under each category of approach B have a positive correlation.
Thus, the systems of the co-occurrence category have a similar behaviour in mea-
suring the semantic relatedness between frames, and similarly with the systems
of the Path and co-occurrence category.

Moreover, the overall performance rates (i.e., the correlation rates to the
human-judgement means cf. Section 8.3.2 and F1 results cf. Section 8.3.3) were
better than the results obtained previously in approach A. However, this slight
improvement in measuring frames’ relatedness does not consider that the corpus-
supported approach (with its systems) is better when identifying frames’ semantic
relatedness from an RE perspective.

Furthermore, the systems of the co-occurrence category have a successful at-
tempt in identified frame relatedness from an RE perspective; whereas the other
systems under the path and co-occurrence category obtained poor performance
rates in identifying frames’ relatedness. Examples of the semantic relatedness
results of the FN-RE frame pairs are shown in Table 8.12.

Table 8.12: An example of the (semantically related) paired frame results
obtained by the systems under the corpus-supported approach (after score
scaling)

Frame-A Frame-B Dice Jaccard PPMI CV Resink Lin JNC
Creating Intentionally create 0.606 0.154 0.898 0.543 0.253 0.271 0.248
Sending Receiving 0.517 0.107 0.509 0.384 0 0 0
Text Recording 0.552 0.0.124 0.469 0.397 0 0 0
Information Statement 0.767 0.330 0.385 0.460 0 0 0
Gizmo System 0.814 0.441 0.440 0.752 0 0 0
Capability Usefulness 0.436 0.077 0.493 0.238 0 0 0

The results shown in Table 8.12 provide a brief overview of approach B’s
performance, and as stated earlier, the Path and Co-occurrence systems (i.e.,
Resink, Lin and JNC) have a weak performance in tracing related FrameNet
frames from RE perspective. This is because they relied on the graph paths in
the FrameNet lexicon (i.e., the Inheritance semantic relationships between frames
in the semantic lexicon).

In addition, these systems are also used the frames’ frequencies in the adopted
FrameNet-tagged corpora. Therefore, if the frame pair does not have a common
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frame (or LCS frame), then the relatedness score (S) is zero as obtained, for
example, with the frame pair (Text, Recording). Moreover, if the frame pair has
a common frame via the Inheritance relationships, but the frequencies of their
root (or RE) are zero in the FrameNet tagged corpus, then the relatedness score
(S) is also zero. For example, this is shown in the frame pair (Capability and
Usefulness), in Table 8.12.

Among the systems in approach, the PPMI system had the best performance
rates (as shown previously in Figure 8.11). The observed performance of the PPMI
system was also acknowledged in other related works, for example as reported by
Pennacchiotti and Wirth (2009) and Basile et al. (2018). The main claim of
the PPMI system was to observe the effect of two frames’ co-occurrence over the
total frequencies of their individual appearances; this effect was measured using
a logarithmic equation (cf. Chapter 6).

In addition, the Dice was also reasonable in identifying frame relatedness,
which relied on the raw frequencies of the frame pair (i.e., the frequencies if the
frame pair co-occurs together, and the frequency of each frame in the pair).

Moreover, the VecCosine was also relatively successful in identifying the re-
lated frames from RE. The system used Cosine as similarity distance metric to
measure the angle between two frame vectors. The frame vector is generated from
the frame occurrence in the documents of the adopted FrameNet-tagged corpora;
which generates the possibility of utilising similarity distance metric (i.e., Cosine
metric). This was applied in approach C, which we discuss in the next section.

Although, the PPMI system has more encouraging performance rates, the re-
sults obtained by the Path and Co-occurrence systems affirmed that using the
structural information in the FrameNet lexicon is insufficient to trace related
frame pairs from RE context of use.

The most important consideration we made with the corpus-supported ap-
proach was avoiding the issue of frame polysemous (i.e., interpreting a word into
more than one frame). This is because the corpus used in other related works
(e.g., Pennacchiotti and Wirth (2009)) applied a semantic corpus that was not
tagged with FrameNet frames (e.g. SemCor 71) and used mapping files to con-
vert these generic corpus into FrameNet-version (e.g., using SemLink 72). In our
approach (cf. Section 6.2), we used two FrameNet-tagged corpora: the first is

71https://www.sketchengine.eu/semcor-annotated-corpus/
72https://verbs.colorado.edu/semlink/
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the general FrameNet corpus by Ruppenhofer et al. (2016), and the second is our
FN-RE corpus presented in Chapter 4.

Finally, the performance results obtained from approach B led to the con-
clusion that co-occurrence based systems (i.e., PPMI, Dice and VecCosine),
which involve statistical prediction (e.g., frequencies and frame occurrence prob-
abilities) drawn from related RE and FrameNet corpora (e.g. as in the PPMI),
could be sufficient to identify semantic relatedness between the frames from an
RE perspective. However, the corpus size affects the performance of these systems
(Taieb et al. 2019; Navigli and Martelli 2019), because all systems under approach
B are data-driven (Mihalcea et al. 2006; Gomaa and Fahmy 2013; Farouk et al.
2019).

8.4.3 The Value of Applying Frame Embeddings

The slight improvement in identifying frame relatedness from an RE perspective
as obtained from the corpus-supported systems was our the motivation to consider
frame frequencies from a different angle i.e. to go beyond frame counting to
incorporate contextual information when a frame appears. Thus, the use of frame
embedding was our way to achieve such a goal. The embedding-based approach
(approach C) was presented with a total of 54 systems. These were implemented
into semantic measurement systems with the use of different word embeddings.
The systems were then evaluated (in this chapter) at the frame pair level, and
we investigated whether the use of domain-specific word embeddings is a useful
technique to identify relatedness between frames from an RE perspective.

The systems in approach C were categorised according to the type of the
word embedding used (i.e., Word2Vec, FastText and GloVe), the operation for
generating the frame embedding (i.e. adding or averaging the word vectors to
generate the frame embedding) and the metrics of calculating semantic distances
between frame vectors (i.e., Cosine, Euclidean and Manhattan). More detail on
these categories was provided in Chapter 7. Approach C’s systems were inten-
sively analysed and evaluated for their performance in measuring and identifying
frames’ relatedness from an RE perspective. The analysis and evaluation results
were given in Sections 8.2 and 8.3. The analysis of the evaluation results of
approach C were considered from different angles, for example from the word
embedding type and the semantic distance metrics.

Systems with Word2Vec and FastText embeddings have generally performed
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very well compared with count-based embedding (GloVe) systems. As mentioned
in Section 7.2, the FastText model is an extension of the Word2Vec model (Bo-
janowski et al. 2016; Joulin et al. 2016). Word2Vec and FastText are considered
to be prediction-based models that not only take into account the co-occurrence
of an item, but also predict the contexts of that token (Mikolov et al. 2013; Bo-
janowski et al. 2016). This prediction process makes the use of these embeddings a
rewarding process for our approach. This contrasts with the GloVe model, which
is a count-based model that considers global statistics (word co-occurrence) and
incorporates local statistics (the local contextual information of a token) to ob-
tain vectors (Pennington et al. 2014). Moreover, it was reported that a small to
medium size dataset encourages the use of prediction-based models rather than
the count-based models (T.H et al. 2015; Ghannay et al. 2016; Mikolov et al.
2018).

In addition, Skip-gram as a training model provided a significant improve-
ment in terms of the F1 scores (as shown previously in Figure 8.10), which
means that CBOW was ineffective as the Skip-gram feature. The reason for this
improvement is due to way in which these two models operate to find contextual
information (cf. Section 7.2).

The CBOW model simply maximises the probability of a target word by in-
specting the surrounding context (i.e., predicating the best word to appear in a
specific context). On the other hand, the Skip-gram model predicts the context
for a given word ( i.e., by predicating the possible contextual information for a
given word). Thus, the Skip-gram-based system with Word2Vec and FastText
embeddings obtained better performance rates.

We have experimented with different size of Skip-gram models (i.e., skipn1,
skipn2 and skipn3). The sizes were selected (cf. Section 7.4) by considering the
size of the documents in the dataset (i.e. the mobile application reviews) used
for training the word embeddings. The significant performance of the Skip-gram
embedding systems is not surprising, since most reported studies have identified
the usefulness for such models, especially for less frequent tokens, and medium
size dataset (e.g., Bojanowski et al. (2016), Joulin et al. (2016), and Jang et al.
(2019)).

The use of semantic metrics to measure the semantic relatedness between
frame vectors (or embeddings) also affects the overall systems performance rates.
It was observed that the systems that used Euclidean and Manhattan metrics

245



have a similar behaviour in measuring frames’ relatedness; this is due to the fact
that both metrics are path-based metrics i.e. they measure frame embeddings as
a grid-based path of real-numbers for frame vectors (cf. Section 7.6).

However, the systems that used Euclidean and Manhattan similarity distance
metrics attained moderate-to-poor performance rates, whilst Cosine embedding-
based systems obtained a significant performance rate. This is because Cosine
similarity distance metric is based on the angle of two vectors (Gomaa and Fahmy
2013), and not the vectors distance (i.e., the actual values of the vectors). This
also explained the identical performance rates we obtained for the systems with
different generation methods (i.e., adding or averaging the word vectors to gen-
erate the frame embedding).

Table 8.13: An example of the (semantically related) paired frame results
obtained by the systems under the embedding-based approach (after score
scaling)

Frame-A Frame-B W2V-skipn1 W2V-skipn2 W2V-skipn3 FT-skipn1 FT-skipn2 FT-skipn3
Creating Intentionally create 0.923 0.927 0.925 0.948 0.983 0.941
Sending Receiving 0.753 0.768 0.757 0.919 0.94 0.809
Text Recording 0.728 0.734 0.729 0.911 0.931 0.794
Information Statement 0.763 0.773 0.764 0.939 0.969 0.801
Gizmo System 0.733 0.728 0.736 0.933 0.965 0.832
Capability Usefulness 0.738 0.747 0.739 0.956 0.967 0.841

In addition, the embeddings, as real-value vectors, are generated with spars
and complex computations, where the values represent the contextual informa-
tion of the target frame. Therefore, measuring the angle of frame embeddings
will obtain more stable frame relatedness scores compared with distance-based
metrics (i.e., Euclidean and Manhattan similarity distance metric). Thus, the
use of Cosine was reported as a similarity distance metric with different word em-
beddings; for example, as discussed in the works by Qian et al. (2004), Schnabel
et al. (2015), Levy et al. (2015) and Camacho-Collados and Pilehvar (2018).

Table 8.13 shows an example of the relatedness results (S) for some of the
frame pairs, which are related from an RE viewpoint. The results were com-
peted with the best systems in approach C, i.e. systems that obtained significant
performance rates using the correlation rates and F1 scores, (cf. Section 8.3).
The frame pairs shown in Table 8.13, are the same pairs presented earlier with
the knowledge-based and the corpus-supported approaches in Tables 8.11 and
8.12, respectively. The results presented evidence of the practicality and useful-
ness in using specific-trained frame embeddings to measure and identify related
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FrameNet frames from an RE perspective.
The intrinsic evaluation results concluded that the best systems to mea-

sure and identify related frames from an RE perspective are the skip-gram
embedding-based systems with the Word2Vec and FastText models, which used
Cosine as a similarity distance metric. The selected systems will be then evalu-
ated further but at the requirement statement level (i.e., to measure and identify
semantic relatedness between paired requirement statements). The next chapter
(Chapter 9), will introduce and discuss the extrinsic evaluation results.
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In Chapter 8 we accomplished the following research tasks and activities:

• We described an intrinsic evaluation procedure to evaluate each sys-
tem in the three proposed approaches (i.e., the knowledge-based ap-
proach (cf. Chapter 5), the corpus-supported approach (cf. Chapter
6) and the embedding-based approach (cf. Chapter 7).

• We applied normalisation and scaling techniques to most results ob-
tained by the proposed systems from all of the three approaches.

• We examined the normality of the data distribution of the normalised
and standardised results, and found that all of the results obtained
followed a non-normal distribution.

• We applied a variance analysis test, and found that all systems were
statistically significant. Then, we applied inter-class correlation tests
to investigate the system’s behavioural patterns in calculating the
relatedness scores, and we found harmony (i.e. positive correlation)
between most of the systems in each approach (especially the systems
from the same category).

• We constructed an evaluation dataset of frame-to-frame semantic re-
latedness from an RE perspective (namely F2F dataset), which was
used to examine the systems’ performance rates.

• Finally, we investigated the systems ’ performance using: 1) the cor-
relation test with the means of human-judgement in a F2F dataset;
and 2) the accuracy test (i.e., F1 as a harmonic mean of the precision
and recall rates).

• We reported the results of the comparison between the proposed sys-
tems and the F2F dataset, and found that the embedding-based ap-
proach significantly outperformed other approaches.

• We concluded our intrinsic evaluation by considering the usefulness of
embedding-based systems i.e., skip-gram embedding-based systems
with the Word2Vec and FastText model, which used Cosine as a
similarity distance metric. These performed better in identifying and
measuring semantic relatedness between FrameNet frames in RE as
a domain of use.
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Chapter 9

Requirement Statement Level
Evaluation

–Extrinsic Evaluation–

The chapter describes the application of an extrinsic evaluation of the systems
with a particular focus on the embedding-based approach (cf. Section 8.4.3).
Then, we inspect their performance rates in measuring semantic relatedness at the
requirement statement level, i.e. quantifying the relationships of a requirement
statement pair by a relatedness score.

Accordingly, we design a measurement technique based on the nominated
systems. The technique is presented in Section 9.1, which is inspired from related
works in NLP literature, for example by Navigli and Martelli (2019) inter alia, for
measuring words and sentences relatedness and similarity using word embeddings.

Then , we offer an extrinsic evaluation procedure, detailed in Section 9.2,
to determine the performance of the selected embedding systems for measuring
requirement relatedness, i.e. to decide if the proposed systems are also effective
for the identification of semantic relatedness between the requirement statements.
In Section 9.3, we report on the subsequent evaluation procedures, which are
followed by the evaluation results in Section 9.4. Finally, we conclude the chapter
in Section 9.4.3 by discussing the use of semantic frames from FrameNet by tracing
related requirement statements in the context of an RE domain.

In summary, the objectives of this chapter are:
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• To introduce a requirement measurement technique, which is implemented
based on the measurement systems that were optimally performed in tracing
relatedness at the frame pair level, to recognise requirements’ relatedness;
the methods are detailed in Chapter 7 and the evaluation of the systems in
Chapter 8.

• To present a detailed extrinsic evaluation of the semantic frames method to
measure and identify relatedness at the requirement statement level; com-
parison will be conducted with a manually labelled requirement document
and baseline systems.

• To draw final conclusions on utilising semantic frames to trace the semantic
relationships in the context of RE documents.

9.1 Measuring Requirements Relatedness: A New
Technique

A requirement statement may evoke one or more frames from the FrameNet
lexicon, as illustrated in the corpus-based analysis results (cf. Chapter 4). To
measure the semantic relatedness between any two requirement statements (e.g.
requirement statements A and B as a pair), we proposed a technique called
Macro-Cosine, which is implemented based on the related work from NLP liter-
ature that utilise vector representations to find similarities between sentences as
typified in these studies Vijaymeena and Kavitha (2016) Camacho-Collados and
Pilehvar (2018) and Navigli and Martelli (2019).

The proposed technique uses a frame embedding-based approach, particularly
on systems with the best performance in identifying frame relatedness from an RE
perspective. The selected systems were associated with FastText and Word2Vec
as embedding types and applied skip-gram as a training feature (i.e., skipn1,
skipn2 and skipn3), by using Cosine as a similarity metric. These systems
were implemented in Chapter 7 and evaluated with the Cosine similarity metric
for their performance in identifying frame relatedness (in Chapter 8 cf. Section
8.4.3).

The proposed measurement technique uses frame embedding as obtained from
the embedding-based approach. The technique is designed to apply a macro
averaging method without adding further features or weight to the recalled frame
embedding. This technique generally follows NLP related work in dealing with

250



the use of pre-trained word embeddings in sentence similarity tasks (e.g., Kenter
et al. (2016), Banerjee et al. (2017) and Pagliardini et al. (2018); inter alia).

The measurement technique (Macro-Cosine) computes the relatedness inde-
pendently for each frame pair and then take the average of the overall frame
pairs of a requirement statement pair (hence treating all frame pairs equally).
The Macro-Cosine technique applies a method to generate a Frame-to-Frame
similarity matrix (i.e., F2F-sim matrix). This matrix holds the frames evoked by
each statement and is filled with the computed relatedness scores between the
frame pair to a given requirement statement pair. The relatedness score is calcu-
lated by using the Cosine as the best similarity metric from the embedding-based
approach (cf. Section 8.4.3).

Considering the two requirement statements A and B, each statement has a
frames list (i.e. Ra and Rb for A and B, respectively), where Ra has n frames
(Fa), and Rb has m frames (Fb), as follows:

Ra= (Fa1,Fa2, ...,Fan),Rb= (Fb1,F b2, ...,F bm) (9.1)

Thereafter, the n-by-m F2F-sim matrix (M) is generated to represent the frame-
to-frame relatedness scores (as calculated by any one of the previously mentioned
embedding-based systems: Word2Vec-Skipgram or FastText-Skipgram for later
comparison) as F2FRel(Fai,F bj) for i = 1 until n , and j = 1 until m, as shown
below:

M = [Ra,Rb] =

∣∣∣∣∣∣∣∣∣
F2FRel(Fa1,F b1) ... F2FRel(Fan,F b1)

: ... :
F2FRel(Fa1,F bm) ... F2FRel(Fan,F bm)

∣∣∣∣∣∣∣∣∣ (9.2)

The rows of this matrix correspond to the frames evoked in statement A
while its columns correspond to the frames evoked in statement B (cf. Equation
9.2). The total relatedness scores of the frame pairs are then overall averaged (as
shown in Equation 9.3) according to the horizontal and vertical vectors of the
F2F-sim matrix M , and the result obtained from the Macro-Cosine technique,
which represents the relatedness score of the requirement statement pair.

Macro−Cosine(Ra,Rb) =M (9.3)

It can be observed that the main element in this technique is the score obtained
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from the proposed embedding-based approach (i.e. F2FRel) of the frame pair.
The frame embedding contains the vectors of 558 frames from the FrameNet
that describe the document in a RE context (cf. Section 4.5). Therefore, if
any evoked frames are not in the list of 558 frames, we simply consider this an
out-of-vocabulary case and ignore the pair that contains these frames.

For implementing Macro-Cosine, we retrieve the frames from the FrameNet
lexicon, the Macro-Cosine uses the same semantic frame parser i.e. an Open-Sesame
semantic parser by Swayamdipta et al. (2017), to retrieve the related frames from
the FrameNet (cf. Section 4.8 for the parser performance results on identifying
the related frames in the requirement documents). The evoked frames for each
requirement statement are saved into a structured file (i.e., a comma-separated
values (.csv) file) for later processing.

For implementing the Macro-Cosine technique, we use the best systems re-
sulted from the frame embedding-based approach. In Chapter 8, we computed
the systems performance rates (in terms of correlation analysis and accuracy
rates) using a human-judgment datatset of frames pairs, the systems are driven
from the proposed approaches: the knowledge-based, corpus-supported and frame
embedding-based approach. Then, after a detailed statistical analysis and a com-
parison to human-judgment dataset of related frame pairs, the best results are
clearly observed in the frame embedding-based approach. In Table 9.1, we re-
ported a summary of the top systems in each approach, where we referred to
Spearman’s correlation test results ((r) and the performance rates (i.e. F1 scores)
with the optimal threshold value (t)s to determine semantic relatedness between
any frame pair, and that was accomplished in comparison to the F2F manually-
labelled dataset of frame pairs (cf. Section 8.3).

As previously mentioned, the Macro-Cosine is adopted to the two frame
embedding: FastText-skipgram and Word2Vec-skipgram, where each is used at
a time for later evaluation. Therefore, we recalled the following embedding-based
systems from Chapter 8:

• Word2Vec-skipn1-Cosine
• Word2Vec-skipn2-Cosine
• Word2Vec-skipn3-Cosine
• FastText-skipn1-Cosine
• FastText-skipn2-Cosine
• FastText-skipn3-Cosine
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Table 9.1: Summary of the top systems from the knowledge-based, corpus-
supported and frame embedding-based approach as reported previously in
Chapter 8, in Section 8.3.

Approach System r F1 t

Knowledge-based approach (A) OVL-K 0.28 52.2% 0.1
OVL-E 0.27 45.6% 0.1

Corpus-supported approach (B) PPMI 0.55 83.08% 0.1
Dice 0.47 74.6% 0.1

Frame embedding-based approach (C)

Word2Vec-Skipn1-Cosine 0.83 97% 0.5
Word2Vec-Skipn2-Cosine 0.83 97% 0.5
Word2Vec-Skipn3-Cosine 0.83 95% 0.5
FastText-Skipn1-Cosine 0.84 96.9% 0.8
FastText-Skipn2-Cosine 0,78 95% 0.8
FastText-Skipn3-Cosine 0.85 95% 0.5

To implement the standard technique, we used the python Numpy package by
van der Walt et al. (2011) to calculate the vector dot product operations and
compute the Cosine similarities and their overall average.

9.2 Extrinsic Evaluation Procedure

The goal of the extrinsic evaluation is to investigate the feasibility of using the
proposed measurement technique, presented in Section 4.1.2, to estimate the
semantic relatedness between the software requirements (i.e., at a requirement
statement level rather than a semantic frame level, as presented in the previous
chapter). The extrinsic evaluation steps are:

Step. 1 Create an evaluation dataset from a publicly available requirement doc-
ument, not used in our previous corpus (i.e., FN-RE corpus; cf. Section
4.5); and annotate the relatedness between its requirements–with the
help of an expert annotator–as a straightforward traceability task.

Step. 2 Implement baseline systems based to tackle semantic relatedness; the
baseline systems are selected from previously published NLP related
studies.

Step. 3 Analyse the accuracy and performance rates, i.e. counting the corrected
answers, based on the results obtained from the systems in Step (1) and
use the evaluation dataset from Step (3), then compare the system’s
performance to the baseline systems from Step (2).
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The extrinsic evaluation procedure (mentioned above) is reported in similar
NLP studies to examine the quality of a similarity system in an application of
use (e.g., as reported by Navigli and Martelli (2019)). Moreover, the perfor-
mance measurement (Step 3) will be applied to inspect the performance of the
requirement measurement technique (Macro-Cosine) in comparison to manual
annotations and baseline systems. Therefore, the main focus of this evaluation
chapter is to address the following question:

Extrinsic Evaluation Question
Can the requirement measurement technique, with the FrameNet
embedding-based approach, be effective for identifying semantic related-
ness among a set of requirement statements that compare to human-based
annotations and baseline systems’ performance rates?

The main consideration of this evaluation question is the effectiveness in terms
of tracing related requirement statements. The following sections will elaborate
more the details on the reported steps, including the evaluation results.

9.3 Evaluation Procedures

In this section, we present the detail of the evaluation steps given in Section 9.2,
where each subsection represents a step from the evaluation procedure. We begin
with the external dataset used for the systems’ evaluation, and the manually-
labelled dataset annotation procedures and results. This is followed by a dis-
cussion of the baseline systems that will be used for later comparisons. Finally,
the procedures for applying performance analysis as accuracy rates (i.e., ACC)
is explained.

9.3.1 Creating Dataset

Our goal is to evaluate the efficacy of the frame embedding-based technique (cf.
Section 9.1) in tracing the relatedness between requirement statements. There-
fore, we construct an evaluation dataset and, in this subsection, we present the
process carried out in order to construct a corpus of documents containing sen-
tences of requirements and subsequently annotate them according to their related
statements.
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Dataset Collection and Preparation

We constructed a new dataset in which the requirement statements have been
manually assigned labels indicating the semantic relatedness with their peer state-
ments in the same document. We aimed to use an external and publicly available
requirement document that was not used in our FN-RE corpus (cf. Section 4.5)
or for training the word vectors in the embedding-based approach (cf. Section
7.1).

Therefore, we formed a Google search query containing keywords such as:
“requirement document”, “software system specification”, “scenarios”, and “user
manual”. This query was based on document types in the FN-RE corpus (cf. Fig-
ure 4.5). Then, we retrieved several documents; the majority are not classified as
a technical document (i.e., mostly the recalled requirement materials are used for
educational purposes). For that, we filtered out the results, and then, selected a
requirement document drawn from a user manual for using a commercial camera.
The user manuals are considered to be one of the requirement sources which aid
in understanding the software and system environment in use. Also, the manual
user document is regarded as “an excellent software requirements specification”
Berry et al. (2004).

The document is publicly available 73 as a natural language document stored
in a PDF format, which consists of 196 pages. We processed the document by
exporting the requirements into a structured and machine-readable format, i.e., a
comma-separated values (.csv) file. The document conversion process was accom-
plished using a python package called PyPDF2 74 from which we only extracted the
related texts without the illustration figures in the selected user manual. After
that, we obtained a list of 5,179 sentences (corresponding to 38,607 tokens).

Requirements Selection and Annotation

This step concerns with the selection of requirements from the processed docu-
ment given previously. A manual annotation is then applied for the requirement
relatedness task.

Since it is a time and effort consuming process to manually annotate all of
the extracted statements (i.e., 5,179) for their relatedness, we sought to select
the sentences, which could be regarded as requirement statements. Therefore, we

73shorturl.at/uOSWX accessed in January 2020
74https://pypi.org/project/PyPDF2/
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retrieved a list of 31 statements that we regarded as requirement statements in
which each requirement contains sufficient data to describe the situation-of-use
or system restriction.

The requirement selection process that we followed is informed from the results
of the FN-RE corpus and the semantic patterns for expressing requirements (as
discussed in Section 4.1.2). Therefore, we created a structured follow-up sheet
that contains the page number where the sentence (or requirement statement)
is appeared. The requirements list is shown in Appendix C. Afterwards, we
randomly generated a collection of 140 pairs (of requirement statements) from
the selected requirements list, which some of them will be annotated for their
relatedness as a next step.

For the manual annotation task, we devised a simple scheme to annotate
the requirement relatedness, whereby each requirement statement pair is labelled
by “yes” or “no” (cf. Appendix C for the annotation instructions). We asked an
expert Annotator A: (a requirement engineer who also annotated several datasets
in this thesis e.g. the FN-RE golden corpus (cf. Section 4.3.4) and the F2F dataset
(cf. Section 8.3.1); and Annotator B (the author of this PhD thesis) to annotate
the evaluation dataset. Working independently, Annotator A and Annotator B
carried out the annotation task over a period of four days (at average of 1.15 hour
per day).

Validation and Dataset Results

In order to assess the consistency of the annotations between our annotators,
the inter-annotator agreement (IAA) was calculated based on the F-score (as
presented previously in Equation 4.1), i.e., the harmonic mean of precision (P)
and recall (R). In this case, the F-score was computed for Annotator A, whilst
Annotator B’s annotations were treated as the ‘gold standard’.

Here, the true positives (TP) are the annotations of Annotator A that overlap
with those of B, while false negatives (FN) are those that were missed. Meanwhile,
the false positives (FP) comprise annotations from Annotator A which are not
in B’s annotations (i.e., Annotator A disagreed with B that the requirement
statement pair is not semantically related). Then, we obtained an F-score of
79.07% for Annotator A in comparison to Annotator B’s results. This result,
indicates that there is a more than satisfactory level of consistency between the
annotators.
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In addition, we applied the Cohen Kappa test, to examine the agreements
between Annotator A and B. The same test was applied to validate the frame
selection in the FN-RE golden corpus (cf. Section 4.3.2). We obtained κ of 0.77,
which is interpreted as a “substantial agreement” (Landis and Koch 1977).

These overall results implied that the annotations can be considered reliable.
In producing the final set of annotations, we applied a harmonisation technique.
Therefore, Annotator B revisited every discrepancy, e.g., a requirement statement
pair for which Annotator A has a different opinion from her annotation. She
(Annotator B) revised those missing pairs with Annotator A, to finally decide on
whether these pairs were semantically related or not. Accordingly, she modified
the labels (i.e., relatedness result).

Annotations resulting from this harmonisation procedure formed the basis of
the final evaluation dataset. An example of the obtained evaluation dataset is
shown in Figure 9.1, which shows five requirement statement pairs annotated
with “yes” to indicate their semantic relatedness or “no” to indicate their unre-
latedness.

Figure 9.1: An example of the obtained evaluation dataset of semantically
related requirements.

9.3.2 Developing Baseline Systems

To further evaluate the FrameNet-based technique (Macro-Cosine), we imple-
mented three baseline systems that are used to detect words and sentence simi-
larities and relatedness, as reported in related NLP surveys and NLP4RE studies
for example, Zhang et al. (2013); Gomaa and Fahmy (2013); Li et al. (2015); Al-
abdulkareem et al. (2015) and Navigli and Martelli (2019). The selected baseline
systems are essentially used to evaluate the requirement measurement technique
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on identifying the relatedness between the requirement statements. Most im-
portantly, a comparison is made to determine whether words (or exact phrases
of requirement statements) are useful to tackle the relatedness of these require-
ments, or the use of semantic frames (as triggered by these requirements from the
FrameNet lexicon), which are represented by the technique introduced in Section
9.1.

In the following sub-section, we provide a description of these standard base-
line systems.

Jaccard Similarity

The first baseline system (Jaccard similarity), is a lexical based method to
inspect the overlap between the two documents of text in terms of their shared
tokens (i.e., main words). In this baseline systems, we assumed the require-
ment statements are pre-processed using an NLTK python package by Loper and
Bird (2002),i.e., the words are uncased and unnecessary tokens (e.g., stop words,
numbers, etc.) are removed. Then, we apply a counting-based script to count
the shared tokens after processing the documents. The results from all the re-
quirement statements are then normalised according to the maximum score using
feature-scaling method (cf. Equation 8.1). This baseline system is similar to
the proposed methods with the overlap-based methods in the knowledge-based
approach (cf. Chapter 5).

TF-IDF with Cosine

The second baseline system is a vector space model (VSM) with a TF-IDF cosine
method. It is an information retrieval method that combines: the term frequency
(TF) and an inverse document frequency (IDF). It applies Cosine as a similar-
ity metric and is reported in a number of NLP related work, e.g., Ramos et al.
(2003), Qaiser and Ali (2018) and Navigli and Martelli (2019). It is notewor-
thy that TF-IDF cosine is considered one of the common similarity methods in
NLP4RE studies. According to Zhao et al. (2020), almost 41 studies (i.e., 43%
of the NLP4RE studies that applied similairty detection methods) have used
TF-IDF cosine to trace similarity between requirements. For example, Li et al.
(2015) proposed an approach to recover traceability links in natural language
requirement document using TF-IDF similarity metric.
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To implement the current baseline system, we first pre-processed the entire
requirement document (i.e., 5,179 sentences) using an NLTK python package, from
which we removed stop words and numbers. We used a Gensim python package by
Řeh̊uřek and Sojka (2010), where we utilised the models.tfidfmodel to calculate
the TF-IDF scores for the entire processed tokens. After that, we applied Cosine
to calculate the similarity of the selected requirement statements using the Numpy
package.

Sentence Embedding with Cosine

The third, and final, baseline system is a standard word embedding-based system.
Using word embedding is a considered to be a recent approach in NLP4RE studies
to identfy semantic relationships in textual document. According to Zhao et al.
(2020), the first NLP4RE study to apply word embedding is by Winkler and
Vogelsang (2016), where the authors used the word vectors to train a neural-
network classifier to categorise software descriptions as either pure requirements
or casual information. Another example study is by Ferrari et al. (2018), where
the authors used language models (i.e. word embeddings) to rank ambiguous
words in cross-domain documents.

The adopted baseline system is underpinned by two different pre-trained word
embeddings. Firstly, the Word2Vec model 75 was presented by Mikolov et al.
(2013) and trained on approximately 100 billion words from a corpus of Google
News articles; secondly, the FastText model 76 was presented by Mikolov et al.
(2018); and trained on approximately 16 billion tokens from a UMBC webbase
corpus and statmt.org news dataset, and resulted in one million words vectors. We
used these embeddings in the alignment with the types of the frame embedding
in the measurement technique, i.e., we compare the Google Word2Vec model
to the Word2Vec-based frame embeddings, and with the FastText-based frame
embedding, we compare it to the pre-trained FastText model.

Given a pair of requirement statements (i.e. A and B), the text of each
statement was first prepossessed through tokenisation, stemming and stop-word
removal. The pre-trained vector for each token in a statement is then retrieved,
resulting in n vectors (corresponding to n unique tokens in a statement). We
note that we simply ignored the out-of-vocabulary (OOV) words, i.e., tokens for

75https://code.google.com/archive/p/word2vec/
76https://fasttext.cc/docs/en/english-vectors.html
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which the word embedding vectors do not exist in the used pre-trained model.
The vectors retrieved for each requirement statement are then averaged, re-

sulting in a vector representation of the statement (i.e., a sentence embedding).
Then, the Cosine similarity metric is applied to measure the similarities between
two sentence embeddings (in our case the requirement statement pair).

To implement the current baseline system, we used an NLTK python package
to pre-processes the selected requirements group (Loper and Bird 2002). Then,
we utilised the Gensim python package by Řeh̊uřek and Sojka (2010) to retrieve
the word vector corresponding to each token in the requirement. We then com-
puted the average of the word vectors of each requirement, and the Numpy python
package (van der Walt et al. 2011) to calculate the Cosine similarities between
the sentence embedding.

9.3.3 Calculating the Performance Rates

We compared the requirement measurement technique (Macro-Cosine) with all
of the baseline systems by applying each of them to the same 140 pairs of require-
ment statements extracted from evaluation dataset. From the result obtained, a
score S is noted from each system, , where 0 ≤ S ≤ 1, corresponds to the esti-
mated semantic relatedness from the proposed technique and baseline systems,
between the requirement statements in a pair.

In the final results of the evaluation dataset (cf. Section 9.3.1), we had 95 pairs
which were labelled “yes” when the pairs represent semantic relatedness between
their requirements. We also obtained a negative score (i.e., the semantic relat-
edness was not achieved) among 45 requirement statement pairs. As a priority
to examine the performance rates, we were interested in calculating the systems’
performance rates in term of the correct identification (i.e., label = “yes”) of the
semantic relatedness between a requirement statement pair. Then, the other situ-
ation (i.e., label = “no”) related to not finding any semantic relatedness between
those requirements.

Therefore, we used an accuracy metric , presented in Equation ACC in 9.4,
to determine the systems’ error rates, as Paroubek et al. (2007) recommended
to the evaluation of NLP systems that mostly deal with unstructured text.The
accuracy metric is measure the proportional of the correct (or matched) answers to
the gold dataset (i.e., human-judgement dataset) we used for comparing between
the systems’ performance for identifying semantic relationships.
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ACC = TP +TN

TP +TN +FP +FN
(9.4)

We computed the accuracy rates according to the following obtained scores if
they were regarded as:

• true positive (TP) semantically related pairs of requirement statements
which are also retrieved by the system,

• false positives (FP) the requirement statement pairs which are retrieved as
related, and not labelled as related,

• false negatives (FN) semantically related pairs of requirement statements
which are not retrieved by the system,

• true negatives (TN) requirement statement pairs, which are not retrieved
by the system and not labelled as a related pair.

The reason for using accuracy rate is to identify the preciseness of systems
in measuring and detecting semantic relationships as crucial tasks for many
NLP4RE tools and approaches (Zhao et al. 2020).

To help us determine the values of S that can be considered an indicative of
semantic relatedness, we experimented with different values of a minimum score
or threshold t, whereby we say that the two statements in a pair are semantically
related if S ≥ t, and are not otherwise semantically related. For each t value
that was explored, ranging from 0.1 to 0.9 in increments of 0.05, a round of
performance comparison was conducted based on the ACC scores. This was
obtained by each of the Macro-Cosine measurement and the baseline systems
against the manual labels in the evaluation dataset.

Moreover, to determine the performance of an NLP4RE tool, which mainly
deals with natural language requirements, the recall (R) rate is considered to be
an essential measure to estimate the tool’s usefulness for the designated RE task
(Berry 2017b). The reason for favouring the recall rate over other rates (e.g.,
precision rate) is that the majority of NLP4RE tools and systems suffer from
multiple issues, which are inherited from the unstructured use of language (cf.
the research problem discussed in Chapter 1). Therefore, the precision rate might
not consider a target to evaluate NLP4RE tools in most cases (Berry 2017b), be-
cause the main aim of these tools is to assist system analysts to accomplish their
designated analytical NLP4RE tasks, rather than automatically perform these

261



tasks (Ferrari et al. 2017a; Dalpiaz et al. 2018; Berry 2017a;b). The consider-
ation of NLP4RE tools has been reported in several experiments, for example,
an experiment by Gemkow et al. (2018) to extract relevant glossary terms from
large-scale specifications by, and another by Dalpiaz et al. (2019) to detect word
ambiguities in user stories (as types of requirement documents).

Therefore, we obtained the recall rates (R) (cf. Equation 4.1) computed for
each system. In addition, we computed the false discovery rates to estimate the
error rates in recalling the pairs that are semantically related in the evaluation
dataset. The measure of false discovery rates considers the total false positive
(i.e. FP, the requirement statement pairs which are retrieved as related, but they
were not labelled as related), and divided the total by the sum of false and true
positives (i.e. FP and TP, namely all of the pairs are identified as positive by the
system).

In the following section, we discuss the results from the computed performance
analysis method presented earlier.

9.4 Results and Discussion

In this section, we present and discuss the results acquired from the comparison
made between the requirement measurement technique (i.e., the systems which
used Word2Vec-Skipgram and FastText-Skipgram frame embeddings), and the
baseline systems, as this evaluation was planned in Section 9.2. In addition, we
present the discovery rates of false positives in the retrieved pairs.

The performance rates will be analysed from two angles. Firstly, from the
accuracy performance in terms of identifying truly related requirements and by
isolating the non-related requirement statements, as indicated by the ACC scores
obtained for each system at different threshold values, presented in Section 9.4.1.
Secondly, from the recall rates (R), as presented in Section 9.4.2, which describes
the fraction of the related requirement statement pairs that were successfully
retrieved by those systems, as emphasised in the evaluation guidelines for the
NLP4RE tools by Berry (2017b).
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9.4.1 Results: Effectiveness of Tracing Related Require-
ments

To estimate the efficacy of a measurement system to trace related requirement
statements, we investigated how the system accurately identified all or most of
requirement statement pairs as identified in the manual evaluation dataset (cf.
Section 9.3.1).

Before discussing the results, we estimated the ACC scores for the worst-case
scenarios of any system’s performance based on the results obtained from the
manual labelled dataset (cf. Section 9.3.1). The first case is when each pair, of
the evaluation dataset, is not identified as related; including the 95 pairs manually
labelled as similar or related in the evaluation dataset. The extreme case, when all
pairs are retrieved as unrelated (i.e., TP = 0, FP =0 , TN = 45 and FN = 95), will
result in an estimated ACC score of 32 percentage points. The other case, which
is the reverse scenario, is when all pairs are retrieved and identified as semantically
related, i.e. every pair (of the 140 pairs) in the evaluation dataset is recalled the
requirement statements in the pair are identified as related statements. Retrieving
all pairs as related (i.e., TP = 95, FP = 45, TN = 0 and FN = 0) will result in an
estimated ACC score of 67 percentage points. Therefore, we identify any system
with a performance rate higher than the estimated ACC scores shown above
(i.e., ACC > 67%> 32%) at given threshold value of t as an accepted system to
detect semantic relatedness between the requirement statements. However, this
is does not mean those systems with such higher ACC rates more than 67% as
the best system for measuring semantic relationships in software descriptions, as
this conclusion requires further comparisons with the baseline systems.

In Figure 9.2, the ACC score results of the embedding-based system (with
Word2Vec as a model) are shown as a line-graph figure. The figure shows the
performance rates (ACC) for each of the three baseline systems and the pro-
posed systems, at different threshold values (ranging from 0.1 until 0.95). The
figure shows performance rates based on the accuracy rates obtained by the base-
line systems and requirement measurement systems with Word2Vec embedding,
relative to the manually labelled dataset, depending on the minimum Cosine
similarity score (on the x-axis) that determines whether requirements in a pair
are considered to be semantically related or not.

As shown in Figure 9.2, the performance rates of all of the proposed systems
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Figure 9.2: The accuracy rates obtained by the baseline systems and re-
quirement measurement systems with Word2Vec.

have outperformed all three baseline systems between the threshold values of t
= 0.1 and t = 0.75. For example, all Word2Vec-Skipgram based systems outper-
formed the Baseline-Word2Vec system at t = 0.35 by more than 9%. The other
two baseline systems (i.e., Baseline-TFIDF Cosine and Baseline-Jaccard) have
the lowest performance rates in comparison with the Word2Vec-Skipgram based
systems (between t=0.1 and t=.75) by a minimum difference of almost 5% at t
= 0.1 and a maximum difference of almost 53% at t = 0.45 as a threshold value.

The best performance rates of the Word2Vec-Skipgram based systems were
obtained between t = 0.4 and t = 0.5 with an ACC ≈ 83%−85%. This means that
the best score to identify semantic relatedness between requirement statements
in a pair when using these systems is when the relatedness score is equal to or
higher than the values in that range (i.e. S ≥ 0.4)

In addition, the Word2Vec-Skipgram based systems have similar performance
rates at different threshold values, with only a slight change of less than 1.5% in
the obtained ACC scores at some threshold values. For example, at a thresh-
old value of (t = 0.55), System-W2V-SK2 has an F1 = 73.54%, and the other
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Figure 9.3: The false discovery rates (FDR) for all of the Word2Vec-Skipgram
systems.

corresponding systems (i.e., System-W2V-SK1 and system-W2V-SK3) also have a
relevant score of an ACC = 74.98% at the same threshold value.

Similarities in the performance rates in the Word2Vec-Skipgram systems were
also observed in the results obtained from the comparison made at the frame
pair level (cf. Chapter 8, Section 8.3). Therefore, these results confirmed that
the differences between the semantic relatedness scores (S) calculated by these
systems are not significant.

This observation was also confirmed by the results of the false discovery rates
(FDR) which are computed for all of the Word2Vec-Skipgram systems, as shown
in Figure 9.3, as the rates are almost identical (or very close to each other) along
the threshold values bar. In addition, in Figure 9.3, the worst case scenario, that
none of the pairs are identified as semantically related by the Word2Vec-Skipgram
systems appeared after the threshold of t =0.75. This undesirable performance
case was also reflected in the ACC rates after that threshold (i.e., ACC = 32.23%
when t≥ 0.75) as shown in Figure 9.2.

For the other embedding-based systems, FastText-Skipgram based systems,
we computed their performance rates in comparison with the three baseline, and
the results are depicted in Figure 9.4. The figure shows the performance rates
based on the accuracy rates obtained by the baseline systems and requirement
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Figure 9.4: The accuracy rates obtained by the baseline systems and re-
quirement measurement systems with FastText embedding.

measurement systems with FastText embedding, relative to the manually la-
belled dataset, depending on the minimum Cosine similarity score (on the x-axis)
that determines whether requirements in a pair are considered to be semantically
related or not.

As shown in Figure 9.4, the performance results of all of the FastText-Skipgram
based systems show more variable in rates than for the similarity behaviour iden-
tified in the previous results on the Word2Vec systems.

Furthermore, the proposed FastText systems have also outperformed all
of the baseline systems at the majority of the threshold values. For exam-
ple, at a threshold value of t = 0.7, the System-FT-SK2 has outperformed the
Baseline-FastText system by more than 8 percentage points. The only po-
sition, when the baseline system slightly outperformed the proposed systems is
when the Baseline-FastText has an F1 score of 72.15% at t = 0.75, with a dif-
ference of less than 2% in the performance rates of the other FastText-Skipgram
based systems.

The best performance rate was observed at t = 0.5 of an ACC = 87.54% for
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Figure 9.5: The false discovery rates (FDR) for all of the FastText-Skipgram
systems

the System-FT-SK2, whereas the other two proposed systems have also obtained
a relatively similar result of an F1≈ 86% at the same threshold value. Therefore,
the minimum threshold values to identify semantic relatedness (S) as calculated
by these systems, are between the values of 0.4 and 0.5 for System-FT-SK3 and
between 0.5 and 0.7 for System-FT-SK1 and System-FT-SK2. The optimal thresh-
old values range for the FastText-Skipgram systems are also confirmed in the
results of the false discovery rates, and presented in Figure 9.5. As shown in
Figure 9.5, the lowest false discovery rates are attained between t= 0.4 and t =
0.7, with the best rate at FDR ≈ 5.8 at t = 0.5. Therefore, the minimum score
to identify semantic relatedness using the previously mentioned systems should
be equal to or higher than the indicated threshold (i.e., S ≥ 0.5).

From the overall results discussed above, we have identified the Word2Vec-Skipgram
systems (presented in Figure 9.2) and the FastText-Skipgram systems (pre-
sented in Figure 9.4) as the best systems to measure and detect semantic re-
latedness according to results from the manually labelled dataset. However, by
comparing the best performance rates of the previously mentioned system, we
found that the FastText-Skipgram systems have slightly better performance
than Word2Vec-Skipgram systems by a difference rate of less than 2 percentage

267



Table 9.2: An aggregated list of the best performance rates and threshold
values according to the obtained accuracy rate for each baseline system.
The bold font refers to the best baseline systems.

Rates Baseline Systems
Jaccard TFIDF W2V Sent-embedding FT Sent-embedding

Accuracy rate 47.05% 45.66% 68.55% 72.15%
threshold (t) 0.1 0.1 0.3 0.75

Table 9.3: An aggregated list of the best performance rates and threshold
values according to the obtained accuracy rate for each semantic frames
embedding system. The bold font refers to the best systems.

Rates Semantic Frames embedding systems
W2V-SK1 W2V-SK2 W2V-SK3 FT-SK1 FT-SK2 FT-SK3

Accuracy rate 85.71% 85.71% 85.71% 86.24% 87.14% 84.99%
threshold (t) 0.4 0.4 0.4 0.5 0.5 0.5

points. Moreover, the proposed systems with the FastText-Skipgram are per-
formed better in the majority of the threshold values compared with the other
proposed Word2Vec-Skipgram systems.

To summarise, the optimal threshold values (t) according to the performance
rates and false discovery rates discussed above were aggregated in Table 9.2 for
each baseline system and in Table 9.3 for each semantic frames embedding system
(the proposed systems).

Nevertheless, the Word2Vec-Skipgram systems still demonstrate an overall
good performance. To investigate which system is the best to measure and iden-
tify semantic relatedness between paired requirement statements, we analyse each
system’s recall rate which is considered to be the preferable option for NLP4RE
tools and systems, as we discussed earlier in Section 9.3.3. The recall analysis
results will be discussed in the following section.

9.4.2 Results: Recalling Related Requirements

In the performance evaluation conducted earlier, we analysed the systems’ results
by the means of accuracy rates, as a measure of error rates in each system. In this
section, we analyse the recall rates of these systems in more detail. Therefore, we
computed the macro average of the overall recall rates for each system, presented
in Figure 9.6. Thus, we computed the mean of the recall rates at all of the
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threshold values for the proposed and the baseline systems.
As shown in Figure 9.6, the systems with FastText as a model (i.e., Baseline

FastText, System-FT-SK1, System-FT-SK2 and System-FT-SK3), accomplished
a satisfactory performance in recalling pairs as semantically related compared
with the other systems with an R greater than 62% when measuring and identi-
fying semantic relatedness between paired requirement statements.

Figure 9.6: The macro Recall rates (R) for each of the baseline systems and
the proposed requirement measurement systems (x-axis).

In contrast, the baseline systems, that used the words overlapping and terms
frequency methods (i.e., Baseline-Jaccard and Baseline-TFIDF Cosine), at-
tained the lowest recall rates of an R ≈ 32%− 33%. However, the sentence em-
bedding systems (i.e. Baseline-Word2Vec and Baseline-FastText) achieved
an enhanced performance compared to the previously mentioned baseline sys-
tems (i.e. Baseline-Jaccard and Baseline-TFIDF Cosine) with a recall rate
almost greater than 50% when identifying semantic relatedness in a given evalua-
tion dataset. As shown in Figure 9.6, System-FT-SK2 has an overall satisfactory
recall rate of R = 70.24%, which indicates that system as a very good system
to measure and recall relevant requirement statements pairs that are labelled as
semantically related.

In Table 9.4, we provide examples from the evaluation dataset (we used the
same examples shown in Figures 9.1 within Section 9.3.1) and their relatedness
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Table 9.4: An example of the obtained evaluation dataset with the computed
semantic relatedness scores (S) as obtained by all systems. The underlined
scores indicate a mismatch with the expert annotations.

Req. Pair ANN Baseline Systems Semantic Frames Embedding Systems
Req-A Req-B Jaccard TFIDF Word2Vec FastText W2V-SK1 W2V-SK2 W2V-SK3 FT-SK1 FT-SK2 FT-SK3
R28 R30 Yes 0.143 0.158 0.627 0.831 0.689 0.687 0.687 0.906 0.940 0.778
R20 R21 Yes 0.001 0.230 0.379 0.675 0.593 0.584 0.584 0.872 0.881 0.738
R20 R23 Yes 0.083 0.152 0.616 0.841 0.626 0.619 0.619 0.886 0.902 0.743
R2 R14 No 0.056 0.059 0.497 0.781 0.221 0.221 0.221 0.294 0.323 0.227
R22 R31 No 0.040 0.018 0.309 0.645 0.150 0.150 0.150 0.184 0.192 0.162

scores (S) as obtained by the systems discussed earlier.
From the scores shown in Table 9.4, and from the recall rates shown in Figure

9.6, it can be deduced that the use of language models is preferable for measur-
ing semantic relationships. all of the embedding-based systems performed better
in identifying semantic relatedness at the requirement statement level compared
with the other standard similarity approaches (e.g., TF-IDF). Moreover, the re-
sults indicated that the use of language models to represent frame relationships
was a useful approach to measure and identify semantic relationships between
requirements, as shown in the performance of the proposed embedding-based
systems as previously presented.

9.4.3 Discussion

These results have several implications of demonstrating the potential advan-
tages for utilising natural language semantics in tracing similarity and relatedness
among software descriptions. Moreover, the role of language models to encapsu-
late contextual information and efficiently identify potential semantic relatedness
at the requirement statement level.

The inappropriateness of the count-based baseline systems (i.e., Jaccard and
TF-IDF Cosine) has also been reported in other experiments. For example, an
experiment conducted by Achananuparp et al. (2008) evaluated existing similar-
ity techniques on a dataset of 800 pairs of sentences which were manually labelled
for their similarity and relatedness Dagan et al. (2005). The experiment reported
that the use of frequency-based and words overlap techniques is not efficient to
identify semantic relatedness, since the information provided within these sen-
tences (as short descriptions) is insufficient to apply methods that strongly rely
on word frequencies and co-occurrence (Achananuparp et al. 2008). Therefore,
the experiment’s authors encouraged the use of a linguistic-based approach i.e.
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semantic-based approach that utilises knowledge lexica such as WordNet Fell-
baum (1998).

The recommendation to utilise semantic knowledge was also mentioned in
another experiment by (Mahmoud and Niu 2015) that reported the importance of
semantics methods to generate probability links between requirements expressed
in natural language. Mahmoud and Niu (2015) emphasised the importance of
exploiting the semantic knowledge contained in textual requirements to alleviate
the problems of associated with word mismatch and the requirement of sparsity in
length; since these problems are considered to be a major barrier to the standard
lexical frequency techniques.

The reported experiments, and the evaluation conducted in this chapter, sug-
gested that by using words as independent lexemes (i.e., without considering the
words’ meanings or contextual information) does not offer an ideal method to
accurately identify relatedness between textual software descriptions. Therefore,
recent advancements in NLP studies have introduced language models (i.e., word
embeddings) as a potential solution to incorporate words (or phrases) contextual
information (Navigli and Martelli 2019). This goes beyond co-occurrence and
word frequencies, and to consider the surrounding context. This level of data
encapsulation has boosted several downstream tasks in NLP as a domain (Li
and Yang 2018) (Camacho-Collados and Pilehvar 2018). The utilisation of word
embedding has been reported in a number of studies in order to learn semantic
similarity. For example, De Boom et al. (2015) have reported the usefulness of
word embeddings when tracing text similarities on social media. Another ex-
ample of the word embeddings application in semantic relatedness is presented
by De Boom et al. (2016) to detect similar events between short texts on social
platforms. As reported in our evaluation, the embedding-based systems have
outperformed the standard lexically-based methods in identifying semantic relat-
edness between various requirement statements in the dataset.

From the evaluation we conducted in this chapter, we found that FastText
embeddings achieved a better performance than the Word2Vec embeddings. This
is due to the fact that FastText model is an extension of Word2Vec model which
treats tokens as a composition of n-gram characters (Bojanowski et al. 2016)
(Joulin et al. 2016). Above all, the frame embeddings with FastText as a model
have outperformed the other systems. This kind of semantic representation helps
to create a variety of contextual vectors, instead of considering each token as
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atomic unit such as in Word2Vec model (Mikolov et al. 2013). More details on the
semantic frames systems performance at the semantic frame level was discussed
in Section 8.4.3 of the previous chapter. In this chapter, we proposed to combine
the potential of semantic frames and language models (i.e., frame embeddings)
to measure and identify semantic relationships between requirements. We found
that the combination attained encouraging results at the requirement statement
level.
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In Chapter 9 we accomplished the following research tasks and activities:

• We proposed a semantic-frame based technique to measure and iden-
tify semantic relatedness at the requirement statement level. The
design of the techniques was based on the frame embedding systems
with the best performance rates in detecting semantic relationships at
the semantic frame level (cf. Chapter 8 for the systems evaluation).
Therefore, we selected the following systems: Word2Vec-Skipgram
frame embeddings and FastText-Skipgram frame embeddings.

• We described an extrinsic evaluation procedure that include the fol-
lowing tasks:

– Creating an evaluation dataset of a publicly available require-
ment document, and annotating the relatedness between its re-
quirements with the help of two annotators as a straightforward
traceability task.

– Implementing three standards baseline systems; the baseline sys-
tems were selected from previously published NLP related work.

– Analysing the accuracy and performance rates, i.e. using pre-
cision and recall rates, based on the results obtained from the
baseline and proposed systems.

• We reported the results of the comparison between the proposed sys-
tems and the baseline systems in accordance to the created evaluation
dataset.

• We concluded our evaluation by considering the usefulness of
embedding-based systems to trace requirement relatedness, unlike the
standard lexical and frequency-based techniques. Moreover, we re-
garded the usefulness and efficiency of encapsulating the contextual
information of requirements in semantic frames rather than word-
based embedding.
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Chapter 10

Conclusions

This chapter summarises the key findings and contributions of the thesis by an-
swering the research questions, presented in Section 10.1. Subsequently, in Section
10.2, we discuss the research limitations and future work. We conclude the chap-
ter in Section 10.3 with closing final remarks regarding the feasibility of FrameNet
frames to RE documents.

10.1 Summary of Research Contributions

This PhD thesis intends to make a contribution to NLP4RE research domain as
an intersection between RE and NLP research fields. In this section, we revise
the five research questions as shown in Chapter 1, together with their answers
based on the work presented in this thesis. Furthermore, we summarise the key
contributions made in the PhD project.

RQ1: What are the frames from the FrameNet lexicon that are mostly
related to describing software requirements? How feasible is it to use
FrameNet to describe software requirements?

We considered RQ1 to be the starting point of the investigation and utilisation
of the FrameNet frames to the RE domain; therefore, we applied a corpus-based
analysis in order to collect evidence on the feasibility of using semantic frames in
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FrameNet for the purpose of describing software requirements. In Chapter 4, we
presented and discussed a corpus-based analysis techniques in order to retrieve
and identify the frames from the FrameNet lexicon, which are mainly used to
describe requirement documents from an RE perspective.

The techniques applied in the corpus-based analysis involved a preliminary
analysis of the FrameNet lexicon coverage to enable us to tag software require-
ments with semantic frames. We conducted the preliminary analysis at two levels:
1) the word-level analysis, and 2) the statement-level analysis.

In the word-level analysis, we inspected the coverage of the lexical units
(mostly verbs) in comparison with a publicly available list of the most frequently
used words in the RE domain. This list comprises 154 words, of which 132 have
triggered more than 296 frames; moreover, we inspected this frames’ list manually
as how it relates to describe requirement documents. The results were encourag-
ing to conduct further analysis of the lexicon coverage since we found that 86%
of the words in the list exist in the FrameNet lexicon.

Following the encouraging initial results obtained from the word-level analysis,
we applied another analysis which we conducted at the requirement statement-
level. We applied the statement-level analysis based on common semantic pat-
terns for enabling authoring requirements to inspect how FrameNet could be
used practically to annotate requirement statements with different linguistic and
semantic considerations. We drew these linguistic considerations (or require-
ment descriptions) from the semantic tasks that construct the norms of Semantic
Object Models (SOMs) approach as described by Chioasca et al. (2016). This
analysis involved comparison with the WordNet verbs in specific categories re-
lated to RE as presented in the SOM approach. The analysis resulted in eight
linguistic description to author software requirements, with all descriptions being
sufficiently covered in the FrameNet lexicon; for example, a requirement descrip-
tion to express timely events, or a requirement description to indicate conditional
negative or positive events.

Moreover, in the corpus-based analysis, we were able to collect 80 requirement
documents (5,348 requirement statements) which formed the basis of the evalua-
tion of the FrameNet feasibility in order to describe software requirements. The
document dataset (REQ) contains various topics; for example, business, techni-
cal, and educational methods. Subsequently, the REQ dataset is processed and
encoded by using a predefined XML scheme proposed by Ferrari et al. (2017b) in
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order to structure requirement documents for further automatic tasks.

Following this, we applied expert and automatic annotations to describe the
REQ dataset together with information from the FrameNet lexicon where the re-
quirement statements were labelled by FrameNet frames and their corresponding
elements. The expert (or manual) annotations were achieved in two parts: 1)
the coarse-grained annotation part: to recall and select the most relevant frames
from FrameNet to each requirement statement; and 2) the fine-grained annotation
part: to attach frame elements for the previously labelled requirement statements
according to their selected frames from the coarse-grained annotation, and also
by using a specific FrameNet annotation tool. We accomplished the manual an-
notation with the help of two annotators, one of them is a RE expert. The
corpus which resulted from the expert annotation namely FN-RE golden corpus
comprises 221 requirement statements fully annotated with information from 123
unique frames in the FrameNet lexicon.

Subsequently, we applied the results from annotation of the requirement cor-
pus to examine the current highly-developed tools for parsing semantic frames in
textual descriptions ,i.e., PathLSTM by Roth and Lapata (2016) and Open-Sesame
by Swayamdipta et al. (2017). We examined the semantic parsers in order to ob-
tain their performance results by automatically labelling software descriptions
using related semantic frames from the FrameNet lexicon. The results identified
the Open-Sesame semantic parser as being suitable parser to annotate software
description with FrameNet frames by an F1 = 74.58% on the frame identification
task. Subsequently, we applied the Open-Sesame parser to annotate the remain-
ing 5,127 requirement statements in the REQ dataset. The automatic annotation
resulted in the FN-RE silver corpus; which was annotated by 534 unique frames
from the FrameNet lexicon.

In order to examine the FN-RE corpus reliability, we validated the annotation
results in two ways. Firstly, we validated the 221 requirement annotations accom-
plished by human annotators using accuracy and agreement rates. Secondly, we
experimented and justified the selection of a semantic frame parser. We compared
the automation parsing results with the manual annotations results, in order to
annotate the remaining 5,127 requirement statements automatically. We achieved
a satisfactory performance from both of these methods, particularly within the
frames’ identification and selection.

Afterwards, the results of the FN-RE corpora—from the golden and silver
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parts—were merged in order to generate an overall corpus, namely the FN-RE
corpus, which contains a collection of the 80 requirement documents from the
REQ dataset. We then obtained a list of the 558 FrameNet frames that are
regarded as most related to RE from the FrameNet lexicon. That list (i.e. the 558
frames list) could be used to annotate and describe different software requirements
because the representative documents had been collected from different domains-
of-uses as presented in the topics of requirement documents (the REQ dataset).
The FN-RE corpus comprised a list of frames whose size is almost 45% of the
total number of frames in the FrameNet lexicon; consequently, the FrameNet
frames’ coverage rate for describing software requirements was encouraging.

Furthermore, we compared the word-level and statement-level analysis results
with the FN-RE corpus results, and concluded the suitability of the retrieved
frames from the FN-RE corpus. We confirmed that these were a reliable set of
frames for describing and annotate software requirements. The relevance of these
frames to the domain of RE was attributed to a more than sufficient overlap in
the results obtained of the comparison analysis between the initial and corpus
results.

The aforementioned results, have addressed the relevance coverage of the
FrameNet lexicon from a quantitative perspective; moreover, these obtained re-
sults enabled us to investigate the FrameNet lexicon comprehensively as a seman-
tic lexicon to cover topics and context, from a qualitative perspective, for the RE
documents which was achieved by:

• Firstly, by providing encapsulated descriptions of the software requirements.
This means identifying the implicit and explicit meanings of the require-
ments by accepting that the frames collection pertain to the requirement
description from the RE domain.

• Secondly, by enabling the semantic labelling of software requirements through
the FrameNet frames and the availability of supporting tools to help achieve
this analytical task.

The most frequent frames in the 558 frames list could be mentally grouped
in order to describe situations in a given requirement document; for example, to
express requirement statements as requests or actions which we need to apply
in order to obtain certain goals. We could utilise the frames: method, Gizmo,
Information, Statement, Required event, Goal and Purpose as a description. We
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may associated another example with the context of sending and receiving records
or items which may also be described semantically by using the following frames:
Receiving, Sending, Using resource, Text and Records.

The aforementioned situations, indicate the requirement statement by simply
listing the frame titles. From the frame titles provided, we applied intuition for
the purpose of identifying the overall meaning (or description) of a requirement
statement. Moreover, this applied to the frames elements which could be added
in order to indicate these requirement statements more specifically. Furthermore,
the semantic relationships between frames in the list, for example Process end,
Process continue and Process start are linked to the parent frame Process. This
parent frame is used with another frame, Progression in order to indicate that “an
entity changes from a prior state to a post state” 77.

The results from the FN-RE corpus provided a greater insight into the frames’
usefulness in describing implicit and explicit requirements, which we attained by
applying the frame titles to label the elements associated with the frames and the
semantic relationships (e.g. Using and Inheritance) which could link the frames.
We listed the contributions in answering RQ1 as follows:

1. A preliminary and comprehensive semantic analysis at a word and require-
ment statement level to investigate the adequacy of the FrameNet lexicon
and consequently, to generate an annotated corpus of the requirement doc-
uments.

2. A collection of 80 unique and publicly available requirement documents
(REQ dataset), which we pre-processed and encoded by applying a prede-
fined document structure using the XML schema presented by Ferrari et al.
(2017b).

3. A corpus of software requirements (FN-RE corpus), labelled by frame infor-
mation in the FrameNet lexicon, which was annotated by human experts.
This corpus was constructed by using 18 documents from the REQ dataset.

4. A corpus of annotated software requirements with FrameNet frames, we
conducted the annotation process by using the Open-Sesame parser by
Swayamdipta et al. (2017) which we evaluated for semantically annotat-
ing requirement documents. The corpus used 62 requirement documents
from the REQ dataset, which we pre-processed and prepared for automatic
annotation.

77The definition was retrieved from the FrameNet lexicon.
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5. A comprehensive quantitative and qualitative analysis of the FrameNet
frames based on the results from the created FN-RE corpus, and a coverage
analysis of the FrameNet lexicon to label software requirements sufficiently.

We then used the retrieved 558 frames to evaluate the approaches proposed
to trace the semantic relatedness between frames from an RE perspective, and
the evaluation results will be discussed in the answers of RQ2, RQ3 and RQ4.

RQ2: Is the knowledge provided by the FrameNet lexicon sufficient
for tracing relatedness between frames, and how effective are these
methods in tracing relatedness between frames from an RE perspec-
tive?

From the results obtained by the corpus-based analysis, we sought to use
the existing knowledge in the FrameNet lexicon to measure and identify frames’
relatedness from an RE perspective. Therefore, in Chapter 5, we proposed a
knowledge-based approach, with objective of calculating the semantic related-
ness between frames involving basic and structural information, such as frames’
definitions, elements, lexical units and various semantic relationships; for example
Inheritance. We tested nine methods of the knowledge-based approaches which we
placed into two categories according to how they calculate the semantic similarity
and relatedness between frames; the first of which is Overlap-based methods, and
the second is Path-based methods.

The methods in the Overlap-based category exclusively depend on counting
the shared information between two frames in the FrameNet lexicon; for example,
common terms in the frames’ definitions in the lexicon, common frame elements,
and so on. The four measurement methods in this category are as follows::

• Lesk: is a gloss overlapping method based on the Lesk’s algorithm which
counts identical tokens of two frames’ definitions.

• EGO: is an extended-gloss overlap method which is an extension of Lesk’s
algorithm, which stresses the importance of considering more information,
and not only the glosses pertaining to certain frames. This particularly
includes the glosses of other related frames obtained from all of the possible
semantic relationships between the designated frames, and according to a
given frame hierarchy in the FrameNet lexicon. Moreover, the proposed
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method, EGO, matches phrases rather than only words; for example, the
phrases with the longest sequence of words.

• OVL-FE: is a method based on the overlap between the elements of two
frames. This involves counting the similar frame elements between paired
frames; the higher the score, the more likely the frame pairs are to be
semantically related.

• OVL-K: is a proposed method which is an extension of the OVL-FE method,
which includes all of the available information on the frame pairs in FrameNet.
This means semantic relationships, lexical units and frame elements. More
specifically, for semantic relationships, we consider each of these indepen-
dently. This means that, for the Using relationship we inspect the overlap
between two frames according to their uses and Used-by sub-relationship)m
moreover, we consider the overlap between the frame pairs’ frame elements
and lexical units.

The methods of the Path-based category principally apply the structural in-
formation in the FrameNet lexicon; for example, the frame-to-frame semantic
relationship such as Inheritance and Using, as well as the used graph-based meth-
ods which consider the depth, path and common frames between two frames
(i.e. LCS frames). In this category, we adopted the following five measurement
methods:

• Path: is a straightforward method based on the shortest length which uses
the Inheritance relationships, calculated by counting the number of nodes
in LCS frames. This is defined as all frames which are ancestors of the two
frames being compared. This method, which was proposed by Rada et al.
(1989), has been used in several ontologies and lexica as reported in survey
studies by Navigli and Martelli (2019) and Zhang et al. (2013).

• WUP: is an extension method of Path method, which involves the depth
of the LCS frames, and specifically, this method determines the depths of
the two frames from the root frame and their LCS frames. The method
was proposed by Wu and Palmer (1994), and has been used with various
lexica such as WordNet. It has also been used to identify frame relatedness
FrameNet in the general domain as reported by Pennacchiotti and Wirth
(2009) and Basile et al. (2018).

• LCH: this methods is also an extension of the original Path method, which
considers the depth of the taxonomy, meaning the overall is-a relationship
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between the two frames. The important quantity is the negative logarithm
loge of the shortest-path (the size of the LCS) between the two frames
divided by twice the longest depth in that taxonomy. This method, which
was proposed by Leacock and Chodorow (1998), has been used with various
lexica such as WordNet Pedersen et al. (2007).

• NAM: this method, which has been used with bio-ontology proposed by
Nguyen and Al-Mubaid (2006), considers both the depth and the LCS
frames. We proposed the use of this relatively recent method with the
FrameNet lexicon. In this method, we calculate the similarity score (S) by
taking the loge of a static number 2 added to the length of the shortest-
path between the two frames, and subtracting number 1 from the obtained
result. Moreover, we subtract the depth of the taxonomy from the depth
of the LCS frames.

• BATET: Another recent method we proposed for experimenting in measur-
ing frame relatedness in FrameNet which is that by Batet et al. (2011).
BATET is a method for measuring similarities in a taxonomy used in the
biomedical domain. The BATET measurement method considers the shared
frames (shared super-concepts) between the two frames and the common
LCS frames between them.

The performance results of the overall methods in the knowledge-based ap-
proach indicated a poor performance in identifying frame pair semantic similarly,
and relatedness according to the F2F dataset (Section 8.3.1), as well as from an
RE perspective. However, some of these methods have been reported as appro-
priate similarity metrics for the FrameNet lexicon (in a general-use domain). For
example, Pennacchiotti and Wirth (2009) reported the WUP method as a preferred
measurement method for the purpose of identifying frames’ relatedness. Never-
theless, in our case, the lowest correlation rate pertained to the WUP method;
moreover, the method produced poor F1 scores (i.e. F1 < 29%), implying that
the existing knowledge in FrameNet was insufficient to trace frame relatedness in
the RE documents as a domain of interest.

In order to investigate this issue further, we revised the frames that were
identified as being relevant to software descriptions. As previously shown in Table
4.10 in Section 4.6, the Inheritance semantic relationship appeared in 392 frames
(70.25% of a total of 558 frames related to software descriptions) at an average
of 1.94 Inheritance relationship per frame. This result, and others, which were
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obtained during the evidence collection phase (cf. Chapter 4), were the motivation
to experiment with the possibility of utilising only the knowledge available in
FrameNet for the purpose of identifying related RE frames. However, the reality
was not as expected because not every semantic relationship between frames (or
shared knowledge) in FrameNet was considered to be essential information to
describe RE documents.

Therefore, we conducted another investigation in order to estimate the shared
information between frames within the 558 frames list obtained from the FN-RE
corpus. Thus, we revised the results obtained from the overlap-based methods
(i.e., OVL-FE and OVL-K), and found that 65.24% of the 155, 403 frame pairs,
which were the generated frame pairs from the 558 frames list, share information
in FrameNet, which could be common frame elements, lexical units or semantic
relationships between the two frames. For example, the frame Information and
Statement have Topic as a frame element, with the frame Communication being
in the Using relationship.

Similarly, the frame Information and the frame method do not share any knowl-
edge in FrameNet, although this frame pair should be considered to be related
in the context of software descriptions. It is particularly important that the
knowledge-based methods depend only on the quantity of shared information,
meaning that less information entails poor semantic similarity and relatedness
scores. For instance, the aforementioned frames (Information,Statement) have
only one shared frame element and one frame in common in the Using relation-
ship. Therefore, according to the Path-based knowledge methods, the relatedness
between the two frames is zero, since the methods rely only on the Inheritance re-
lationship. In comparison with the overlap-based methods such as OVL-FE, which
is equal to 1 (after score scaling, the score obtained is 0.04), which could explain
the poor performance results of these methods.

It is noteworthy that Baker (2017) identified these issues between frames in
FrameNet which is principally attributed to FrameNet’s size; for example, re-
garding the coverage of the lexical units. He suggested that because FrameNet
is intended to be a general-domain lexicon. Furthermore, some of these issue,
which we considered to be limitation are intentional “due to decisions made by
the FrameNet team as to what is to be covered and what is left to others to work
on” (Baker 2017; p. 794).

Finally, according to the performance results for all knowledge-based methods,
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we concluded that using only the available knowledge in FrameNet is insufficient
approach to semantically trace frames from RE perspective.

RQ3: Are the corpus-supported measurement methods efficient for
enhancing the process of tracing relatedness between frames? How ef-
fective are these methods for tracing relatedness between frames from
an RE perspective?

The results from the knowledge-based approach were informed us of the
FrameNet as a standalone lexicon. However, the provided information in FrameNet
alone was insufficient to trace frames’ relatedness from an RE perspective. There-
fore, we sought the requirement to apply the FrameNet-tagged corpora to help
in detecting frames’ semantic relatedness. In Chapter 6, we proposed a corpus-
supported approach with a total of seven methods, each of which has utilised
corpora features, such as frequencies and co-occurrence of frames in order to
measure the semantic relationships between paired frames. Firstly, we proposed
the use of the general FrameNet corpus by Ruppenhofer et al. (2016) and our FN-
RE corpus (which we discussed in Chapter 4). Moreover, we used the corpora to
estimate the frames’ weights and co-occurrence probability, to be used with the
methods in the corpus-supported approach.

Although our FN-RE corpus has covered essential frames in FrameNet in
order to semantically describe requirements, if we apply the corpus-supported
measurement methods, the FN-RE corpus requires additional support from an-
other FrameNet-tagged corpus for the purpose of covering many FrameNet frames
sufficiently. This means covering at least 50% of the frames; whereas the FN-RE
corpus covers 558 frames, which is almost 45% of the FrameNet lexicon. Conse-
quently, we integrated our FN-RE corpus with the recent corpus by the FrameNet
1.7 corpus. The FrameNet 1.7 corpus contains a list of 102 manually annotated
documents from news sources, Wikipedia articles and other corpora; for exam-
ple, the Brown Corpus, which corresponds to 10,147 sentences and 176,503 words.
Furthermore, our corpus contains 80 requirement documents (corresponding to
annotating 5,438 requirements, and an overall words size of 330,396).

The integration was a basic procedure by which we retrieved frames and their
frequencies from both corpora, and concatenated the results from each. This
resulted in a single source to be used for the corpus-supported measurement
methods in this section. Subsequent to the integration process, we obtained a
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list of 853 frames, being 70% of the frames in FrameNet, and almost 25% of the
additional frames in our list from the FN-RE corpus.

We categorised these methods according to their mechanism of how they com-
puted the semantic similarity and relatedness scores between the frames. The first
category was co-occurrence-based methods, with the second being the s path and
co-occurrence-based methods. The methods in the co-occurrence category are
basically related to the frequencies of items (or frames), and the more frequent
frames are considered to be more significant. The four measurement methods in
this category are as follows:

• Dice: is one of the earliest methods of measuring the semantic relatedness
in corpus. This method measures utilised information from the corpus such
as the frames’ co-occurrence in pairs, and the frequency of each frame in
the corpus. This method, which was introduced by Dice (1945), has been
used in text similarity analysis as reported by Navigli and Martelli (2019).

• Jaccard: this method is similar to that of Dice in identifying similari-
ties between two entities. This method was used to detect word and sense
similarities in text, and continues to be used as a profound similarity iden-
tification method in lexical resources Navigli and Martelli (2019). This
method was proposed by Grefenstette (1994), and we intended to use it
in the corpus-supported approach because it has recent survey studies as
Vijaymeena and Kavitha (2016), Navigli and Martelli (2019) and Farouk
et al. (2019) have reported that it has been used.

• PPMI: in some contexts, the raw frequencies do not provide an optimal mea-
surement method of association between two frames. Therefore, an alter-
native measure was adopted in order to determine whether a frame is par-
ticularly informative about another target frame. Pennacchiotti and Wirth
(2009) proposed to use this method with the FrameNet lexicon; therefore,
we re-used the method, but from an RE perspective.

• CosineVec: this method measures the semantic relatedness between frames
using a representation of each frame as a context vector, and by applying
the co-occurrence matrix which represents the contextual information of a
frame in the given FrameNet-tagged corpora. This method was proposed by
Patwardhan and Pedersen (2006), and we intended to use it to experiment
with the FrameNet lexicon.

The second category is the path and co-occurrence, whose methods consider
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not only the frequencies of frames, but also the commonalities between the frames
to be compared through the path and nodes shared by the frame pair. This
category contains the following three measurement methods:

• Resink: this method, which was proposed by Resnik (1995), combines basic
taxonomy information, which is the Inheritance information in FrameNet,
with the features obtained from the FrameNet-tagged corpora in order to
estimate the semantic similarity of two frames. This method, which is
based on the notion of information content; of the two frames, this considers
only the LCS frames. In this method we calculated the frames’ relatedness
score as the negative logarithm of a frame’s probability in the adopted
corpus. Several studies reported that this method is regarded as corpus-
drievn method as indicated by Taieb et al. (2019) and Vijaymeena and
Kavitha (2016). We intended to experiment with this method with the
FrameNet lexicon and corpora.

• Lin: this method, which was ntroduced by Lin (1998), builds on the Resnik
(1995) similarity measurement method, which adds a normalisation value
comprising the information content values of the compared frame pair. This
method has been reported as corpus-based method in several studies as re-
ported by Taieb et al. (2019) and Vijaymeena and Kavitha (2016). We
proposed to experiment this method with the FrameNet lexicon and cor-
pora.

• JNC: this final method , which was introduced by Jiang and Conrath (1997),
is the inverse of Lin method. Several studies have reported it as being cor-
pus based, as indicated by Taieb et al. (2019) and Vijaymeena and Kavitha
(2016). We intended to experiment with this method with the FrameNet
lexicon and corpora.

Then, in Chapter 8, the methods were evaluated for their performances in
measuring and identifying semantic relatedness between frames from an RE per-
spective. The overall performance rates (i.e., the correlation rates to the human-
judgement means and the F1 results) produced improved results from those ob-
tained previously in the knowledge-based approach. However, this slight im-
provement in measuring frames’ relatedness does not consider the fact that the
corpus-supported approach (with its methods) is better when identifying frames’
semantic relatedness from an RE perspective. Furthermore, the co-occurrence
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category’s methods have successfully attempted to identify frames’ relatedness
from an RE perspective. On the other hand, the other methods in the path and
co-occurrence category produced poor performance rates in identifying frames’
relatedness.

The Path and Co-occurrence methods (i.e., Resink, Lin and JNC) have a
weak performance in tracing related FrameNet frames from an RE perspective
because they depend on the graph paths in the FrameNet lexicon, which are
the Inheritance semantic relationships between frames in the semantic lexicon).
Furthermore, these methods are applied the frames’ frequencies in the adopted
FrameNet-tagged corpora. Consequently, if the frame pair has no common frame
(or LCS frame), then the relatedness score (S) is zero. Moreover, if the frame pair
has a common frame through the Inheritance relationships, but the frequencies of
their root (or RE) are zero in the FrameNet tagged corpora, then the relatedness
score (S) is also zero.

The PPMI method gave the best performance rates of all of the approach’s
methods. Moreover, the observed performance of the PPMI method was acknowl-
edged in other related works, such as that reported by Pennacchiotti and Wirth
(2009) and Basile et al. (2018). The PPMI method’s principal claim was to observe
the impact of two frames’ co-occurrence over the total frequencies of their individ-
ual appearances; which was measured by a logarithmic equation. Furthermore,
the Dice was reasonable in that it identified frame relatedness, which relied on the
raw frequencies of the frame pair, meaning the frequencies if the frame pair co-
occurs, and the frequency of each frame in the pair. Moreover, the CosineVec was
relatively successful in identifying the related frames from RE. The method used
Cosine to measure the angle between two frame vectors, each vector being gener-
ated from the frame occurrence in the documents of the adopted FrameNet-tagged
corpora; which generates the possibility of utilising semantic distance measure-
ment methods. Although, the PPMI method has more encouraging performance
rates, the results obtained from the Path and Co-occurrence methods affirmed
that using the structural information in the FrameNet lexicon is insufficient to
trace related frame pairs from RE context of use.

Finally, the performance results from the corpus-supported approach led to
the conclusion that co-occurrence-based methods (i.e., PPMI, Dice and CosineVec),
which involve statistical prediction, such as frequencies and frame occurrence
probabilities drawn from related RE and FrameNet corpora as we used in the
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PPMI, could be sufficient to identify semantic relatedness between the frames from
an RE perspective. However, the corpus size affects the performance because all
methods in the corpus-supported approach are data-driven (Mihalcea et al. 2006;
Gomaa and Fahmy 2013; Farouk et al. 2019).

RQ4: Is it possible to generate language models (i.e., embeddings)
from FrameNet frames? How effective are these models for tracing
relatedness between frames from an RE perspective?

The slight improvement in identifying frame relatedness from an RE perspec-
tive as obtained from the corpus-supported methods, provided our motivation
to consider frame frequencies from a different perspective i.e. to proceed be-
yond frame counting to incorporate contextual information when a frame ap-
pears. Therefore, the use of frame embedding was means to achieve this aim.
The embedding-based approach was presented with a total of 54 methods, that
were implemented into semantic measurement systems by using of different word
embeddings. These Word embeddings helped to boost the performance of vari-
ous NLP tasks; for example, word analogy, where word embeddings enable us to
calculate semantic similarities between words (Fu et al. 2014; Li and Yang 2018).

However, the use of word embeddings can lead to even better performance,
if provided that they are trained on corpora specific to the domain of interest
or application (Li and Yang 2018). This can potentially reduce the problem of
out-of-vocabulary (OOV) words (Jozefowicz et al. 2016), i.e., the lack or sparsity
of instances of certain words in the training corpus, leading to an inability to
capture or map their context in embedding vectors. In such cases. the typical
solution is simply to ignore the OOV words, which is not as ideal solution because
with that we might loss important information (Camacho-Collados and Pilehvar
2018).

As an alternative, we propose a solution for mitigating text sparsity that is
based on semantic frames. Rather than mapping each word in the text, we target
a group of words which represent a semantic frame, thereby producing semantic
frame embeddings. We implemented new frame embedding-based resources, i.e.
vector representations of semantic frames in FrameNet, which were developed in
order to support the measurement of semantic relationships between frames.

Our frame embeddings, which encapsulate contextual information at the se-
mantic frame level, are generated from different word embeddings trained on the
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same large corpus of user-generated requirements (a collection of over 2.8 million
user requirements). The word embeddings are trained by using three of the mod-
ern techniques (or language models) in NLP research (Li and Yang 2018). These
are Word2Vec by Mikolov et al. (2013), GloVe by Pennington et al. (2014) and
FastText by Bojanowski et al. (2016).

Subsequently, from the trained word embeddings, we generated frame em-
beddings by using two generation methods, namely vector addition and vector
averaging, and we applied this generation process according to each model used.
Finally, the semantic relatedness between the generated frame embeddings is
quantified by using three distance metrics, namely the Cosine, Euclidean and
Manhattan distances.

The methods in the embedding-based approach were categorised according to
the type the word embeddings used (i.e., Word2Vec, FastText and GloVe); the
operation for generating the frame embedding, such as adding or averaging the
word vectors to generate the frame embedding, and the method of calculating
the semantic distance between frame vectors, meaning if the semantic distance
method is Cosine, Euclidean or Manhattan.

We applied an intensive analysis of the methods under the embedding-based
approach and evaluated their performance in measuring and identifying the frames’
relatedness from an RE perspective, the results of which were given in Chapter
8. We considered the analysis of the evaluation results of the embedding-based
approach from different angles; for example from the word embedding type and
the semantic distance metrics.

Systems with Word2Vec and FastText embeddings have generally performed
particularly well in comparison with the count-based embedding (GloVe) meth-
ods. As mentioned in Section 7.2, the FastText model is an extension of the
Word2Vec model (Bojanowski et al. 2016; Joulin et al. 2016). Word2Vec and
FastText are considered to be prediction-based models that not only take into
account the co-occurrence of an item, but also predict the contexts of that token
(Mikolov et al. 2013; Bojanowski et al. 2016).

The operation of Skip-gram contrasts with the GloVe model, which is a count-
based model that considers global statistics (word co-occurrence) and incorpo-
rates local statistics (the local contextual information of a token) in order to
obtain vectors (Pennington et al. 2014). Moreover, a small to medium sized
dataset was reported as encouraging the use of prediction-based models rather
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than the count-based models (T.H et al. 2015; Ghannay et al. 2016; Mikolov et al.
2018).

Furthermore, Skip-gram, as a training model, provided a significant improve-
ment in terms of the F1 scores, which means that CBOW was ineffective as the
Skip-gram feature. This improvement is because of the means by which these
two models operate in order to find contextual information (cf. Section 7.2).

The CBOW model simply maximises the probability of a target word by in-
specting the surrounding context (i.e., predicating the best word to appear in a
specific context). From another perspective, the Skip-gram model predict s the
context for a given word, such as by predicating the possible contextual informa-
tion for such word. Therefore, the Skip-gram-based method with Word2Vec and
FastText embeddings produced improved performance rates.

We have experimented with various sizes of Skip-gram models, such as skipn1,
skipn2 and skipn3. We selected these sizes by considering the sizes of the docu-
ments in the dataset i.e. the mobile application reviews used for training the word
embeddings. The significant performance of the Skip-gram embedding methods
is not surprising, since most reported studies have identified the usefulness of
such models, particularly for less frequent tokens, and medium sized datasets; for
example, as reported by Bojanowski et al. (2016), Joulin et al. (2016), and Jang
et al. (2019).

Moreover, the application of semantic distance methods to measure the se-
mantic relatedness between frame vectors (or embeddings) has an impact on the
overall methods performance rates. We observed that the system which used
Euclidean and Manhattan metrics displayed a similar behaviour in measuring
the frames’ relatedness. This is because both metrics are distance-based meth-
ods, meaning that they measure frame embeddings as a path-based grid of real-
numbers for frame vectors (cf. Section 7.6).

However, the systems that used Euclidean and Manhattan metrics attained
moderate-to-poor performance rates, whereas Cosine embedding-based methods
obtained a significant performance rate. This is because Cosine similarity metrics
are based on the angle of two vectors (Gomaa and Fahmy 2013), rather than the
vectors distance (i.e., the actual values of the vectors). Moreover, we can explain
the identical performance rates obtained for the systems with different generation
methods, which means adding or averaging the word vectors in order to generate
the frame embedding.
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Furthermore, the embeddings, as real-value vectors, are generated with sparse
and complex computations, where the values represent the contextual information
of the target frame. Consequently, measuring the angle of frame embeddings
obtained more stable frame relatedness scores in comparison with the distance-
based metrics (i.e., Euclidean and Manhattan metrics). Thus, the use of Cosine
was reported as a semantic metric with different word embeddings; for example,
as discussed in the works by Qian et al. (2004), Schnabel et al. (2015), Levy et al.
(2015) and Camacho-Collados and Pilehvar (2018).

Finally, the intrinsic evaluation results, presented in Chapter 8, concluded
that the best systems for measuring and identifying related frames from an RE
perspective are the Skipgram embedding-based methods with the Word2Vec and
FastText models, which used Cosine as a semantic metric.

RQ5: Is it useful and effective to use a semantic-frame-based method
for measuring and recognising semantic relationships between software
requirements?

A requirement statement may evoke one or more frames from the FrameNet
lexicon, as illustrated in the corpus-based analysis results (cf. Chapter 4). To
measure the semantic relatedness between any two requirement statements (e.g.
requirement statements A and B as a pair), we proposed a technique designed
on related work from NLP literature which utilised vector representations to find
similarities between sentences as typified in these studies Vijaymeena and Kavitha
(2016) Camacho-Collados and Pilehvar (2018) and Navigli and Martelli (2019).

From the embedding-based approach, the best methods of measuring and
identifying related frames from an RE perspective were then evaluated further
but at the requirement statement level (i.e. to measure and identify semantic re-
latedness between paired requirement statements). In Chapter 9, we proposed a
requirement measurement technique (Macro-Cosine) which was designed and im-
plemented on a frame embedding-based approach, particularly on methods with
the best performance in identifying frame relatedness from an RE perspective.
The selected methods were associated with FastText and Word2Vec as embedding
types; we also applied skipgram as a training feature (i.e., skipn1, skipn2 and
skipn3), by using Cosine as a similarity measurement method. The proposed
measurement technique uses frame embedding as obtained from the embedding-
based approach. The technique was implemented by applying a macro averaging
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method without any additional features or weight to the recalled frame embed-
ding. This technique generally follows NLP related work in managing the appli-
cation of pre-trained word embedding in sentence similarity tasks (e.g., Kenter
et al. (2016), Banerjee et al. (2017) and Pagliardini et al. (2018); inter alia).

In order to give a more comprehensive explanation of, the measurement tech-
nique, Macro-Cosine calculated the relatedness for each frame pair indepen-
dently; and subsequently, the average of the overall frame pairs of a requirement
pair (hence treating all frame pairs equally). The first step in the Macro-Cosine
technique, was the application of generation process to construct a Frame-to-
Frame similarity matrix (i.e., F2F-sim matrix), which held the frames evoked by
each statement and was filled with the computed relatedness scores between the
frame pair to a given requirement pair. The method calculated the relatedness
score by using the Cosine because it was recognised as the optimal similarity
distance method from the embedding-based approach (cf. Chapter 8).

The extrinsic evaluation’s objective was to investigate the feasibility of using
the proposed Macro-Cosine measurement technique, as previously discussed, and
to estimate the semantic relatedness between the software requirements (i.e.,
at a requirement statement level rather than at a semantic frame level). The
evaluation plan comprised three main steps:

Step. 1 Created an evaluation dataset from a publicly available requirement
document, which had not been used in our previous corpus (e.g., FN-RE
corpus); and we annotated the relatedness between its requirements–
with the help of an expert annotator–as a straightforward traceability
task.

Step. 2 Implemented three baseline systems in order to tackle semantic relat-
edness, with these baseline systems being selected from previously pub-
lished NLP related work.

Step. 3 Analysed the accuracy and performance rates by using precision and
recall rates according to the results from the methods in Step (1) and
used the evaluation dataset from Step (3), then compared the method’s
performance to the baseline systems from Step (2).

We constructed a new dataset to which the requirement statements had been
assigned labels manually, thereby indicating the semantic relatedness with their
peer statements in the same document. Our goal was to use an external and
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publicly available requirement document that had neither been used in our FN-
RE corpus, nor for training the word vectors in the embedding-based approach.
We selected a requirement document from a user manual which explained the
instructions for using a commercial camera. Such manuals are considered to be
one of the requirement sources and to help the requirement engineer to understand
the software and method environment in use. Furthermore, the manual user
document is regarded as being “an excellent software requirements specification”
Berry et al. (2004). The document is publicly available as a 196-page natural
language document stored in a PDF format. We processed the document by
exporting the requirements into a structured and machine-readable format, i.e.,
a comma-separated values (.csv) file. We regarded as requirement statements.
Therefore, we retrieved a list of statements (cf. Appendix C) that we regarded
as requirement statements in where each of which contains sufficient data to
describe the situation-of-use or method restriction. Subsequently, two annotators
have annotated this dataset of which comprised 140 requirement pairs. Following
this, the dataset was used to evaluate the proposed requirement measurement
technique.

We then implemented three baseline systems that were used to detect words
and sentence similarities and relatedness, as reported in related survey studies
for example, Zhang et al. (2013); Gomaa and Fahmy (2013) and Navigli and
Martelli (2019). The selected baseline systems were essentially used to evaluate
the requirement measurement technique by identifying the relatedness between
the requirement statements (Navigli and Martelli 2019). It was particularly im-
portant that we made a comparison in order to determine whether words (or exact
phrases of requirement statements) were useful to tackle the relatedness of such
requirements, or the use of semantic frames (as triggered by these requirements
from the FrameNet lexicon). The baseline systems are as follows:

• Jaccard-Sentence-Similarity: the first baseline system is a lexically-
based method of inspecting the overlap between the two text documents in
terms of their shared tokens, which means the tokenised words.

• TF-IDF Cosine: the second baseline system is a vector space model (VSM)
with a TF-IDF cosine method, which is an information retrieval method
that combines: the term frequency (TF) and an inverse document frequency
(IDF), which applies Cosine as a similarity distance method.

• Sentence Embedding: the third, and final, baseline system is a standard
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word embedding method, which is underpinned by two different pre-trained
word embeddings i.e. the general-domain Word2Vec and FastText models.
We used these embeddings in the alignment together with the types of the
frame embedding in the measurement technique, meaning that we compared
the Google Word2Vec model with the Word2Vec-based frame embeddings,
and that we also compared the FastText-based frame embedding and the
pre-trained FastText model.

We obtained the semantic relatedness scores of the chosen 140 requirement
pairs (collected from the evaluation datatset) by applying Macro-Cosine tech-
nique, and then by applying the baseline systems. From the result obtained, a
score S is noted from each system, , where 0 ≤ S ≤ 1, corresponds to the esti-
mated semantic relatedness from the proposed technique and baseline systems,
between the requirement statements in a pair.

We concluded from the evaluation results that the use of frame embeddings
was the preferable option for measuring semantic relationships. All of the embedding-
based methods performed better in identifying semantic relatedness at the re-
quirement statement level in comparison with the other standard similarity ap-
proaches (e.g., TF-IDF). However, the results indicated that the use of language
models to represent frame relationships was a useful approach to measure and
identify semantic relationships between requirements.

These results have several implications of demonstrating the potential ad-
vantages for utilising natural language semantics in tracing similarity and relat-
edness among software descriptions. Furthermore, the role of language models
to encapsulate contextual information and efficiently identify potential semantic
relatedness at the requirement statement level.

Moreover, other experiments have reported the unsuitability of the count-
based baseline systems (i.e., Jaccard and TF-IDF Cosine). For example, Achananu-
parp et al. (2008) conducted an experiment which evaluated existing similarity
techniques on a dataset of 800 pairs of sentences which were manually labelled
for their similarity and relatedness Dagan et al. (2005). The experiment reported
that the use of frequency-based and words-overlap techniques cannot identify
semantic relatedness efficiently, since the information provided within these sen-
tences (as short descriptions) is insufficient to apply methods that strongly rely
on word frequencies and co-occurrence (Achananuparp et al. 2008). Therefore,
the experiment’s authors encouraged the use of a linguistically-based approach
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, which is semantically-based approach that utilises knowledge lexica such as
WordNet Fellbaum (1998)).

Moreover, the recommendation to utilise semantic knowledge was mentioned
in another experiment by (Mahmoud and Niu 2015) who reported the impor-
tance of semantics methods to generate probability links between requirements
expressed in natural language. Furthermore, Mahmoud and Niu (2015) empha-
sised the importance of exploiting the semantic knowledge contained in textual
requirements to alleviate the problems of associated with word mismatch and the
requirement of sparsity in length. This is because these problems are considered
to be a major barrier to the standard lexical frequency techniques.

Chapter 9 mentioned the reported experiments and suggested that using words
as independent lexemes, without considering their meanings or contextual infor-
mation, does not offer an ideal method of identifying relatedness between tex-
tual software descriptions accurately. Consequently, recent advancements in NLP
studies have introduced language models (e.g., word embeddings) as a potential
solution to incorporate words (or phrases) contextual information (Navigli and
Martelli 2019). This extends beyond co-occurrence and word frequencies, and
considers the surrounding context. This level of data encapsulation has boosted
several downstream tasks in NLP as a domain (Li and Yang 2018) (Camacho-
Collados and Pilehvar 2018). The utilisation of word embedding has been re-
ported in a number of studies in order to learn semantic similarity. For example,
De Boom et al. (2015) have reported the usefulness of word embedding when trac-
ing text similarities on social media. Another example of the word embedding use
in semantic relatedness is presented by De Boom et al. (2016) to detect similar
events between short texts on social platforms. As reported in our evaluation, the
embedding-based methods have outperformed the standard lexically-based meth-
ods in identifying semantic relatedness between various requirement statements
in the dataset.

From this extrinsic evaluation, we found that FastText embeddings achieved a
better performance than the Word2Vec embeddings. This is because the FastText
model is an extension of the Word2Vec model which treats tokens as a composition
of n-gram characters (Bojanowski et al. 2016) (Joulin et al. 2016). The frame
embeddings with FastText as a model have, most importantly, outperformed
the other systems. This kind of semantic representation helps to create various
contextual vectors, rather than considering each token as atomic unit such as
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in Word2Vec model (Mikolov et al. 2013). We discussed further details of the
semantic frames methods performance at the semantic frame level was discussed
in Section 8.4.3 of Chapter 8. Subsequently, in Chapter 9, we proposed to combine
the potential of semantic frames and language models (i.e., frame embeddings)
to measure and identify semantic relationships between requirements. We found
that this combination attained encouraging results at the requirement statement
level.

10.2 Research Limitations and Future Work

Although this PhD research involved rigorous evaluation procedures, we needed
to make explicit the limitations of the works undertaken in this PhD thesis.
This could be addressed in future work with available time and resources. The
limitations are summarised as follows:

• Requirement datasets were an essential component in the research that we
conducted; for example, these datasets were used for constructing the FN-
RE corpus and for evaluating the proposed measurement approaches (i.e.,
the F2F dataset in the intrinsic evaluation, and the user-manual document
used for the extrinsic evaluation). However, the datasets, with their current
sizes, cannot support the development of supervised machine learning-based
and deep-learning methods for semantic parsing because such methods are
regarded as being data-driven, thereby requiring large datasets (e.g., as we
used a large mobile application reviews dataset to train the word embed-
dings). However, datasets are still scarce in RE (Ferrari et al. 2017a) since
acquiring the requirement documents is not always affordable. Moreover,
FrameNet current full-text and fully annotated corpus appears in only 103
document, thereby representing ongoing efforts in making a reliable frame-
tagged dataset (Ruppenhofer et al. 2016).

• The current FrameNet annotations available with the corpora, which are
presented within this thesis (e.g., the FN-RE corpus), do not consider se-
mantic frames missing from FrameNet; however they are valid. Never-
theless, we have addressed the missing frames and lexical units collected
during the annotation procedures, as we presented in the expert annota-
tions of the FN-RE corpus in the corpus-based analysis (cf. Chapter 4).
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However, extending FrameNet frames with additional frames is no trivial
task, as discussed by Baker (2017), since it requires further linguistic con-
sideration such as linking with existing frames, an action usually performed
by the vanguards in the FrameNet project. Baker (2017) acknowledged the
size limitation of FrameNet lexicon, and suggested that with the sufficient
human and financial support, it would be possible to extend FrameNet in
order to cover more domains of use.

• In experimenting with different measurement methods (i.e., based on knowl-
edge contained in FrameNet or Corpus-supported), we replicated a large set
of methods that have been used with other lexica or ontology as reported in
several studies (Gomaa and Fahmy 2013; Navigli and Martelli 2019; Farouk
et al. 2019). We used the semantic metrics in accordance with FrameNet’s
knowledge lexicon and frame-tagged corpus. However, other methods ex-
ist which are lexicon-specific; for example, Hirst et al. (1998) stated that
they could deliver more investigation if they are modified to cope-up with
FrameNet semantic relationships. In comparison with the low scores ob-
tained from the knowledge-based approach, we found experimenting with
such measurement method will not deliver the expected performance.

• The evaluation results presented in the thesis, such as the intrinsic eval-
uation of the measurement methods at the frame semantic level and the
extrinsic evaluation of the measurement technique at the requirement, have
supported our claim on the usefulness and feasibility of using FrameNet
frames in identifying semantic relationships in software descriptions. How-
ever, this claim still needs to be verified and tested in an industrial setting;
for example, by implementing the measurement techniques with an RE tool
and applying case studies in order to study the effects of using semantic
frames on the RE processing tasks on the long run. Although we evaluated
the feasibility of the FrameNet frames on the task of semantic relatedness
at requirement statement-level this task, if given sufficient time, could be
extended with RE modelling and analysis tasks. Moreover, addressing re-
quirement analysis and modelling is another research scope.

From another perspective, many possible research directions exist for using our
proposed FrameNet measurement methods and for utilising the results obtained
from investigating FrameNet as an appropriate lexicon in order to label software
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requirements.

One research direction is associated with the user-based experiments and with
generating cognitive patterns from the FrameNet lexicon because RE is recog-
nised as a human-intensive activity that strongly depends on human decisions
throughout its activities and tasks, it would be interesting to involve such side of
investigating semantic frames as a means of encapsulating human understanding
of scenes in interpreting these emotions. Moreover, ethnographic-based evalua-
tion techniques could be used, involving method analysts and users, in order to
observe how FrameNet frames would be used to accelerate and organise the RE
tasks such as requirements elicitation and analysis. This research direction is
aligned with early studies in RE that supported the usefulness of Case Grammar
theory to organise and model requirement documents (e.g. Rolland and Proix
(1992) and Belkhouche and Kozma (1993)).

Managing and organising requirement documents on large-scale is considered
to be a challenging task (Fernández et al. 2017). From the encouraging results
acquired by tracing semantic relationships between requirement statements using
FrameNet frames, we anticipated the usefulness of incorporating frames as a se-
mantic layer to organise the requirements lightly, and hence to facilitate further
RE tasks such as requirement retrieval and reuse. In the extrinsic evaluation con-
ducted in Chapter 9, we found that the use of frames to trace relatedness between
requirement gives sufficient improvement and is also quicker than relay on the lex-
ical variations (i.e. words-based comparisons) between requirement statements.
In addition, the use of Latent-Semantic Analysis (LSA) could be of assistance in
organising and managing requirements for generating relatedness between topics
at the requirement document level as well as by considering tagged-frames exclu-
sively. This is could be achieved by tracing similar or related requirements from
a frame semantic perspective.

Another research direction is associated with developing FrameNet semantic
parsing tools to support the parsing and semantic analysis of software descrip-
tions. The automatic parsing of a document is an effective procedure in both
time and effort (e.g., as we discussed in the FN-RE silver corpus in Chapter 4).
We evaluated an existing semantic parsing tool, and we found that Open-Sesame
parser by Swayamdipta et al. (2017) was relatively good in retrieving related
frames from FrameNet to label software description with an F1 score of 74.58%.
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However, both of the semantic parsers we evaluated performed poorly on anno-
tation of the elements of the recalled frames. The issue of frame elements (or
predict -argument labelling) is one of the open-challenge in NLP. Recent tech-
niques from unsupervised and deep learning would provide a solution to this
problem, although such techniques require massive and representative datasets.
From the investigation that we conducted in Chapter 4, we retrieved the most
related FrameNet frames in order to describe software requirement. We could use
these frames could be used as a guidance to construct the requirement documents
to train such semantic parser.

A final research direction is related to the implementation of artificial intel-
ligence methods such as those based on reasoning-based systems. FrameNet has
been used with few reasoning-based systems such as those presented by Ovchin-
nikova et al. (2010) and Hasegawa et al. (2011). We proposed three main ap-
proaches to measure and identify semantic relationships in software description,
and the embedding-based approach was the most useful one to accomplish such a
goal. Extending the embedding-based approach with reasoning-based methods,
for example to deduce implicit requirements and requirements paraphrasing and
extraction, could be a rewarding procedure.

10.3 Final Remarks

The Semantics Frame theory, as proposed by Fillmore (1977), suggested the im-
portance of capturing abstract scenes, as contextual situations in order to under-
stand a language. Originally, The linguistic theory was extended from Fillmore’s
Case Grammar theory (Fillmore 1967) to proceed beyond the word’s specific
meaning because Semantics Frame tends to understand the relationships between
words in which these words may evoke a specific concept that related to other
concepts in a language system.

The use of Semantics Frame and Case Grammar is not recent in RE, and
several attempts have utilised Fillmore’s theories to apply a linguistic layer to
the activities of RE research. These studies attempted to generate their own
small-sized lexica, mostly confined to a group of semantic cases (cf. Section 2.4).
However, the Semantics Frame theory had a semantic lexicon (FrameNet) which
was approved by Fillmore himself (Baker et al. 1998). The lexicon contains
rich information of semantic frames, as an instance of FrameNet lexicon. and
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these frames describe various and general situations created by using corpus-
based techniques (Baker 2017).

Since its beginning and until the present, the lexicon has had a limited use in
RE. Furthermore, the related work which used FrameNet for specific RE tasks;
for example, requirement classification by Jha and Mahmoud (2017), have not
provided sufficient evidence on the FrameNet’s potentials regrading RE essential
tasks. Moreover, with the proper techniques and methods, the information as-
sociated with FrameNet considered to be rich for tracing semantic relationships
between requirement statements, which is an essential activity in many RE tasks
such as requirements analysis and modelling.

In this research project, we applied a series of corpus-based analyses to ex-
amine the FrameNet lexicon to annotate software description. Subsequently, we
utilised the results to design and implement semantic frames measurement ap-
proaches for the purpose of identifying the relationships between the FrameNet
frames from an RE perspective. As a final phase, we used the semantic-frame
approach to measure and identify semantic relationships at the frame and require-
ment statement level and most importantly in the context of RE documents.

The utilisation of frames in FrameNet to attach semantic metadata to soft-
ware descriptions could potentially facilitate the (partial) automation of certain
NLP4RE tasks. For instance, similarities between requirement statements writ-
ten in natural language can be automatically detected or measured on the basis of
the semantic frames assigned to each of them. This in turn can enable traceability,
i.e., establishing relationships or groupings between requirements and effectively,
the software systems they pertain to (Zogaan et al. 2017). Additionally, attaching
semantic metadata derived from FrameNet to requirement statement makes them
machine-readable and hence more searchable. A software engineer developing re-
quirements for a new system can thus find existing requirements of relevance in
a more efficient and systematic manner. In this way, the re-usability of exist-
ing requirements can be enhanced, thereby avoiding unnecessary duplication of
efforts (Alonso-Roŕıs et al. 2016). Examples include enhanced search and reuse
of requirement statements through similarity detection based on the frames (and
frame elements) with which were automatically labelled ,e.g., as explained in the
semantic selection approach proposed by Bano et al. (2015).

At the end, we provided sufficient evidence based on several experiments,
and we proposed approaches and methods of using semantic frames in FrameNet
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to measure and identify semantic relationships in software description. Finally,
FrameNet frames are rich and available resources with the potentials of addressing
prominent issues of NLP4RE challenges (Zhao et al. 2020), one of which we have
addressed in this thesis.
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Appendix A

FN-RE Corpus Annotation
Guidelines

Annotation Instructions on Annotating Natural Language
Requirements Documents Using Semantic Frames in

FrameNet

This document presents a FrameNet based annotation framework for annotat-
ing natural language requirements statements. The document describes in detail
the annotation task and the SALTO tool in the annotation framework.

A.1 Introduction

This section defines the key terms used for the annotation instruction.

A.1.1 Semantic Frames

The theory of semantic frames is proposed by Fillmore in 1970s. In this document,
semantic frames are used to represent the semantics of requirements statements.
A semantic frame is a semantic description of a word in relation to the scene in
which the word is used. The idea is that people cannot understand the meaning
of a word without knowing how the word is used and what relationships the word
has with its associated words (Paturak, 2004).

For example, the semantic frame for the process ‘Cooking’ will involve basic
elements to describe such a scene. These elements usually are the food being
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cooked, the container used during the cooking process, and perhaps the person
involved in the process. Another versatile example is ‘Commercial’ frame as a
transaction process between the ‘buyer’ and ‘seller’ which usually negotiate over
certain items known as ‘goods’.

Deciding on the elements of a given semantic frame is ongoing research area in
the fields of applied linguistic and computational linguistic as well, since these re-
search efforts will sustain practices in the domain of automated natural language
understanding (Agarwal et al., 2014) . One of the primary sources of semantic
frames is FrameNet semantic lexicon provided by Berkeley since 1997 (Ruppen-
hofer et al., 2006). In Section A.1.2, we will discuss the structure and features of
FrameNet.

A.1.2 FrameNet

FrameNet is an online lexical database (https://framenet.icsi.berkeley.
edu/fndrupal/about) documenting a wide variety of semantic frames and syn-
tactic information for the English lexicon. FrameNet contain more than 1200 se-
mantic frames linked with set of annotated sentences (Ruppenhofer et al., 2006)
. The frames are stored in both human and machine-readable format, and can
be viewed and searched online via Frame Index page https://framenet.icsi.
berkeley.edu/fndrupal/frameIndex or using FrameNet API using NLTK li-
brary (http://www.nltk.org/howto/framenet.html).

Among other components of any semantic frame in FrameNet, the most im-
portant components are:

• Frame elements (FEs): important elements which are used as basic units
to complete the semantic description of a given requirement based on the
assigned semantic frame.

• Lexical Units (LUs): selective set of words with different part-of-speech tags
e.g. verb, adverb, adjective, etc. which are used to trigger, or evoke, the
target frames.

Other details of FrameNet frame structure are shown in Figure A.1.
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Figure A.1: An excerpt example of FrameNet frames to describe frame
information structure

A.1.3 Requirements Documents

In Requirements Engineering (RE), a requirements document contains the de-
scriptions of the requirements for a software system. Most of the descriptions are
in natural language (NL) (Hull et al., 2005):

• Functional i.e. to describe measurable features and functions to be designed
and included to the particular software; or

• Non-functional requirement i.e. to describe non-measurable requirements
that define criteria or soft condition to be met in the particular software.

The description usually comes in a written form that is understandable by
all parties involved in the software and system design e.g. software analysts, de-
velopers, stakeholders, and general users. Such a description requires a low-level
tone of technical description in order to make the documents readable (Som-
merville, 2009) . This feature makes the requirements document treatable by
other general-purpose lexicons and dictionaries.

A.2 Annotation Framework

The annotation described in this document is aimed to label a requirement state-
ment using the semantic frames in FrameNet. This section illustrates the steps
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of the annotation procedures. The annotation method is shown in Figure A.2.

Figure A.2: The FrameNet-based Annotation Framework

A.2.1 Preparing Requirements Documents

A requirement document usually comes in editable textual format (e.g.,.doc, .pdf,
.odb,..etc.), which then converted into human and machine-readable format using
XML. Such a format will enable to parse the requirement statements and their
orders in a requirements document and then to be annotated. The description of
the text representation is schema is adopted from prior work by Ferrari’s et al.
(2017). An example of the document preparation is shown in Figure A.3.

Figure A.3: An example of a simple requirements description represented
by the used XML scheme.

After presenting the requirements document using XML representation, the
requirements statements are parsed to be initially mapped to the matching se-
mantic frames in FrameNet as going to be described in the following section.
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A.2.2 Automatic Matching with FrameNet Frames

The frames in FrameNet is governed by a set of lexical units (LUs), described in
Section A.1.2, The lexical units work as triggers to evoke their target semantic
frames, for example with a Creating frame: a frame to describe “ a Cause leads
to the formation of a Created entity”, the example of words which used to evoke
such a frames are: ‘generated.v’ , ‘create.v’, and ‘assemble.v’, among other words
with different part-of-speech (e.g., nouns, adverbs) . In our annotation framework,
we used a script to evoke related frames from FrameNet based on lexical units
matching. The process of automatic frames matching to requirements statements
are explained in the following steps:

1. Each requirement document (.xml) is parsed to collect requirements state-
ments to be annotated.

2. The requirement statements are tokenised into words and the words are
labelled to their corresponding part-of-speech tags.

3. The words are then filtered to select the main actions (i.e. main verbs
mentioned in the statement). Then, the verbs are lemmatised to their
original roots.

4. The verbs roots are inserted into a search query using regular expression.
The query string is used with FrameNet API6 in python to traverse the
frames that are evoked by the target verbs.

5. Each requirements statement is attached with the titles of the evoked FrameNet
frames.

6. Another checking round is to performed to attach ‘essential frames’ to the
requirements statement, i.e. frames that are not triggered by verbs only but
selection of nouns and adverbs. A description of these frames are discussed
in Section A.2.5.

The results of the automatic frames matching is a structured document (.csv)
that contains records of the requirements statements and their related frames.
The automatic FrameNet frames matching files are organised to hold the following
information:

• requirement statement ID,
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• the requirement statement,

• the target word as it is in the requirement statement (Lexical Unit),

• the word characters start-end positions of the word to locate the word in
the statement, and

• the frame(s) retrieved for that particular word.

This labelled document is used during the manual validation process described
in Section A.2.3.

A.2.3 Manual Validation (Frames Selection)

The annotator shall inspect the automatic labelling for the target words in each
requirement statement. The inspection of the results file (.csv), described in
Section A.2.2, shall perform manually, and the annotator is advised to follow the
steps below:

1. The annotator shall observe semantically and syntactically the word posi-
tion in the requirement statement.

2. The annotator shall select the most appropriate frame(s) or none from the
retrieved frames set according to her observation in (1).

(A) If the frame is related, the annotator shall insert ‘1’ as yes to the record
with that particular frame; otherwise

(B) The annotator shall insert ‘0’ as rejection to the frames suitability to
the requirement statement.

3. The file should be saved in .csv format with the annotator’s given ID for
later processing.

The annotated results are then gathered from each annotator to calculate
the Inter-rater agreement between the annotators (as described in Alhoshan et
al., 2018). Then, the annotated results are revised to issue the final corpus of
manually annotated requirement statements.
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A.2.4 Annotating Frame Elements (Frames Annotation)

After we selected frames for requirement statements in each requirement docu-
ment, we utilised an interactive annotation tool called SALTO ( Burchardt et al.,
2006) . The tool is used to annotate the requirement statement with their selected
frames. The annotation, in this step, is considered a fine-grained annotation level
since we are associating between the Frame elements and their frames method.
To applied processes in this step are depicted in Figure A.4.

Figure A.4: The Fine-grained annotation method using SALTO tool.

Preparing SALTO for Requirement Document Annotation

In practice, using semantic frames for annotating requirement documents requires
a robust annotation tool that can cope with more FrameNet frame sizes. For this
reason, we used SALTO, an versatile annotation tool designed to annotate text
using FN (Burchardt et al., 2006). The tool is built using Java and requires the
document to be converted into a structured format, known as SALSA/Tiger rep-
resentation (Erk et al., 2004), to enable the annotation process in SALTO. The
tool allows inclusion of syntactic and semantic properties to the requirement doc-
uments. In addition, SALTO enables visualization of the annotated text through
graph diagrams (i.e., using nodes and arcs to define the syntactic relations and
semantic roles assigned to a labelled text). For preparing the syntactic proper-
ties of the input requirement document, we used Stanford dependency parser7 to
extract part-of-speech tags and the grammatical relations (e.g., noun and verb
phrases). The parser is run for each requirement document and the output (i.e.,
the syntax trees for each requirement description in the documents) is added to
the requirement documents prior to the annotation process in SALTO. The re-
sults of the annotation are initially stored into SALTO’s representation as shown
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in Figure A.5.

Figure A.5: Example of SALSA/Tiger representation scheme used with
SALTO tool to annotate the requirement statement using FrameNet frame
and their associated elements.

Frame Elements Annotation

After adding the syntactic and semantic properties, the requirement document is
ready to be annotated using the selected frames, from Step 2, and their elements.
To do so, each annotator follows the procedures below:

1. The annotator opens the structured requirement document using SALTO
tool. Each requirement statement is displayed independently from the oth-
ers where the frames are attached to their corresponding LUs in the re-
quirement statement.

2. Then, the annotator revises each frame by carefully reading the frame defi-
nition, and the accompanied annotation examples. Then, according to the
meaning conveyed in the requirement statements the annotators select the
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desired elements for each frame (where these elements are previously stored
in SALTO).

3. Finally, the annotators attach text parts (i.e., a word or a phrase) from a
given requirement statement to a selected frame element.

An example of using SALTO is shown in Figure A.6.

Figure A.6: Example of SALTO graphical user interface. The example also
shows a requirement statement labelled using Supply frame.

Tracing Changes after Frames Selection and Annotation

During the frame elements, annotation process. The annotation is allowed to
change the associate of previously selected frames or even added more frames
(depending on the requirement statement context). The tracing information are
stored in a file (.csv) where each annotator has his/her own annotation for later
comparison. The overall procedures of tracing any changes during the annotation
process are depicted in Figure A.7.

A.2.5 Annotation Cases of Requirements Statements

This section is aimed to discuss the set as a list of nine cases, as example how to
annotate requirement statement with FrameNet frames. The cases are supported
by fully annotated examples and brief explanation.
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Figure A.7: A flowchart to track any change between (Frames Selection)
and (Frames Elements Annotation).

Case-1: Easy annotation case with a single action as semantic frame
trigger.

Un-annotated Example:
Req-1: Max power value has to be checked against the cooling system tests.
Explanation:
The main action, i.e. verb, in Req-1 is ‘checked’ and according to FrameNet
8 the lexical unit ‘check’, which is the lemmatised form of the verb ‘checked’,
can be matched with the following frames: Preventing or letting, Scrutiny and
Inspecting . Therefore, by revising the definition of each frame in the retrieved set,
the frame Scrutiny is most suitable frame to describe the action mentioned in Req-
1. Scrutiny frame is about“a Cognizer (a person or other intelligent being) paying
close attention to something, the Ground , in order to discover and note its salient
characteristics. The Cognizer may be interested in a particular characteristic or
entity, the Phenomenon , that belongs to the Ground or is contained in the
Ground (or to ensure that such a property of entity is not present)” In Req-1, the
agent, the Cognizer in the frame elements set is not visible since the requirement
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statement is expressed in a passive voice. However, other core frame elements
such as Ground and Degree [Degr] , i.e. to identify “the Degree to which the
Cognizer scrutinizes the Ground”, are shown in the statement. Below is a manual
annotation of Req-1 according to Scrutiny frame description:
Annotated Example:

Req-1: max power value [Ground] has to be checked [Inspecting LU] against
cooling system tests [Degree].

Frame Trigger: For this particular case the trigger is any valid English verb
that has a matching lexical unit in any semantic frames of FrameNet.

Case-2: Requirement has a positive conditional form.

Un-annotated Example:
Req-2: If customer does not have an account, the system prompts the customer
to provide information in order to create a new account.
Explanation:
Another example more frequent in natural language requirement statements, is
shown in Req-2, is the conditional pattern that means in order to satisfy an
action another action or request must be met in the requirement statement.
The semantic frame in FrameNet that explains such a pattern is called Con-
ditional occurrence. In Req-2, the trigger was ‘if’ as lexical unit in Condi-
tional occurrence frame.

Annotated Example:
Req-2: If [Conditional LU] customer does not have an account [Profiled possibility]
the system prompts the customer to provide information in order to create a new
account [Consequence].

Frame Trigger: The lexical units to trigger the Conditional-occurrence frame
are: [‘long as’, ‘assuming’, ‘if’, ‘in-case’, ‘in the event’, ‘provided’, ‘supposing’,
‘what if’].
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Case-3: Requirement has a negative conditional form

Un-annotated Example:
Req-3: Unless the user did not sign out, she is allowed to update her profile con-
tent.
Explanation:
Another example related to the conditional pattern, where requirement conveys
an opposite action to the conditional action in the requirement statement. In this
case the most related frame in FrameNet is Negative conditional , example Req-3:

Annotated Example:
Req-3: Unless [Negative conditional LU] the user did not sign out [Profiled possibility]
, she is allowed to update her profile content [Anti consequence] .

Frame Trigger: The possible lexical units to trigger the Negative conditional
frame are: [‘otherwise’, ‘unless’].

Case-4: The requirement statement has a timely sequence or syn-
chronizes

Un-annotated Example:
Req-4: After the funds are transferred, the transaction must be recorded.
Explanation:
If the requirement statement reveals series of actions in a timely order, the target
frame should be evoked is called Time vector frame.

Annotated Example:
Req-4: After [Time vecto LU] the funds are transferred [Landmark event], the
transaction must be recorded [Event] .

Frame Trigger: The possible triggers are: [‘after’, ‘afterward’, ‘afterwards’,
‘before’, ‘beforehand’, ‘eventually’, ‘finally’, ‘following’, ‘formerly’, ‘from’, ‘hence’,
‘later’, ‘post’, ‘pre’, ‘previous’, ‘previously’, ‘right away’, ‘prior’, ‘since’, ‘soon’,
‘sooner rather’, ‘than later’ , ‘then’, ‘thereafter’, ‘through’, ‘until’, ‘yet’]
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Case-5: The requirement has additional action

Un-annotated Example:
Req-5 LMI-ACCESS contains a system for processing the CD-ROM applications,
another system for maintaining network access.
Explanation:
Often requirements require description of additional action(s) such a case is de-
scribed in FrameNet as Increment frame. As shown in Req-5:

Annotated Example:
Req-5 LMI-ACCESS [Class] has a system for processing the CD-ROM applica-
tions, another [Increment LU] system for maintaining network access [Added set]
.

Frame Trigger: The possible lexical units to trigger Increment frame are: [‘ad-
ditional’, ‘another’, ‘further’, ‘more’, ‘other’].

Case-6:The requirement has inclusion or exclusion condition

Un-annotated Example:
Req-6: All users are allowed to register in the system excluding users under 18.
Explanation:
In similar to what describe above, case no. 5, there is another situation where
requirement statement includes or excludes further action(s), and such a case is
described with the Inclusion frame from FrameNet.

Annotated Example:
Req-6: All users [Total] are allowed to register in the system excluding [Inclu-
sion LU] users under 18 [Par].

Frame Trigger: Possible triggers for Inclusion frame are: [‘contain’, ‘exclude’,
‘excluding’, ‘have’, ‘include’, ‘including’, ‘inclusive’, ‘incorporate’, ‘integrated’].
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Case-7: The requirement has a contradiction action

Un-annotated Example:
Req-7: Peter decides that this course is relevant but not handled in the current
specification.
Explanation:
There is a situation when a requirement statement includes a specific action and
its contradiction; the target frame to recall from FrameNet is the Concessive
frame. Example is shown in Req-7:

Annotated Example:
Req-7: Peter decides that this course is relevant [Main assertion] but [Conces-
sive LU] not handled in the current specification [Conceded state of affairs] .

Frame Trigger: There are possible triggers to evoke the Concessive frame:
[‘although’, ‘but’, ‘despite’, ‘however’, ‘in spite of’, ‘much as’, ‘nevertheless’,
‘though’, ‘while’]

Case-8: The requirement conveys a reason or cause

Un-annotated Example:
Req-8: training manuals are also important because they describe most your
company’s training and development policies
Explanation:
Requirements Statement might contain a reason or cause of the action embedded
on their description, and in FrameNet the Causation frame is the frame that de-
scribes such a case.

Annotated Example:
Req-8: training manuals are also important [Effect] because [Causation LU] they
describe most your company’s training and development policies [Cause] .

Frame Trigger: The possible triggers of Causation frame are: [‘because of’, ‘be-
cause’, ‘bring on’, ‘cause’, ‘consequence’, ‘consequent’, ‘due to’, ‘for’, ‘induce, lead
(to)’, ‘mean’, ‘motivate’, ‘precipitate’, ‘reason’, ‘result (in)’, ‘result’, ‘resulting’].
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Case-9: The requirement statement explain a purpose as another
action

Un-annotated Example:
Req-9: The user is able to view the internal log files in order to inspect her recent
activities in the website.
Explanation:
Similarly to the requirement with cause, there are requirement statements that
explain a purpose or aim of the main action. The target frame to be recalled
is the Purpose16 frame. This form of requirements is more frequent in natural
language requirements description. Example is shown in Req-9.

Annotated Example:
Req-9: The user [Agent] is able to view internal log files in order to [Pur-
pose LU] inspect her recent activities in the website [Goal] .

Frame Trigger: Triggers are limited to two lexical units: [‘in order’, ‘to’]
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Appendix B

Semantic Frame Level
Evaluation: Data and Results

B.1 Overall Descriptive Statistics

In Table B.1, we provide an overall descriptive statistical information of the se-
mantic frames relatedness scores resulted from the human-judgment dataset (i.e.,
F2F dataset presented in Section 8.3.1), and the 24 methods under the three
proposed approaches in Chapter 6; where min. value and max. value represent
the minimum and maximum scores, respectively. Followed by the arithmetic
mean (µ) and the standard deviation (σ) for each method’s results. The methods
types (Types) and number of analysed frames pairs (no. Frames Pairs) are also
provided.

B.2 Results from The Normality Tests
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(a) Dice (b) Jaccard (c) PPMI

(d) CV (e) Resink (f) Lin

(g) JNC

Figure B.1: The results of the graphical normality tests using Q-Q plotting
for the corpus-supported approach, which indicate a non-normality distri-
butions.
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(a) Word2Vec
(CBOW)

(b) Word2Vec (Skip-
gram n1)

(c) Word2Vec (Skip-
gram n2)

(d) Word2Vec (Skip-
gram n3) (e) FastText (CBOW)

(f) FastText (Skip-
gramn1)

(g) FastText (Skip-
gramn2)

(h) FastText (Skip-
gram n3) (i) GloVe

Figure B.2: The results of the graphical normality tests using Q-Q plotting
for the embedding-based approach (Frame Vectors Averaging and Cosine
measure) which indicate a non-normality distributions.
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(a) Word2Vec
(CBOW)

(b) Word2Vec (Skip-
gram n1)

(c) Word2Vec (Skip-
gram n2)

(d) Word2Vec (Skip-
gram n3) (e) FastText (CBOW)

(f) FastText (Skip-
gram n1)

(g) FastText (Skip-
gram n2)

(h) FastText (Skip-
gram n3) (i) GloVe

Figure B.3: The results of the graphical normality tests using Q-Q plotting
for the embedding-based approach (Frame Vectors Averaging and Euclidean
measure) which indicate a non-normality distributions.
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(a) Word2Vec
(CBOW)

(b) Word2Vec (Skip-
gram n1)

(c) Word2Vec (Skip-
gram n2)

(d) Word2Vec (Skip-
gram n3) (e) FastText (CBOW)

(f) FastText (Skip-
gram n1)

(g) FastText (Skip-
gram n2)

(h) FastText (Skip-
gram n3) (i) GloVe

Figure B.4: The results of the graphical normality tests using Q-Q plotting
for the embedding-based approach (Frame Vectors Averaging and Manhat-
tan measure) which indicate a non-normality distributions.
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(a) Word2Vec
(CBOW)

(b) Word2Vec (Skip-
gram n1)

(c) Word2Vec (Skip-
gram n2)

(d) Word2Vec (Skip-
gram n3) (e) FastText (CBOW)

(f) FastText (Skip-
gram n1)

(g) FastText (Skip-
gram n2)

(h) FastText (Skip-
gram n3) (i) GloVe

Figure B.5: The results of the graphical normality tests using Q-Q plotting
for the embedding-based approach (Frame Vectors Addition and Cosine
measure) which indicate a non-normality distribution.
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(a) Word2Vec
(CBOW)

(b) Word2Vec (Skip-
gram n1)

(c) Word2Vec (Skip-
gram n2)

(d) Word2Vec (Skip-
gram n3) (e) FastText (CBOW)

(f) FastText (Skip-
gram n1)

(g) FastText (Skip-
gram n2)

(h) FastText (Skip-
gram n3) (i) GloVe

Figure B.6: The results of the graphical normality tests using Q-Q plotting
for the embedding-based approach (Frame Vectors Addition and Euclidean
measure) which indicate a non-normality distributions.
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(a) Word2Vec
(CBOW)

(b) Word2Vec (Skip-
gram n1)

(c) Word2Vec (Skip-
gram n2)

(d) Word2Vec (Skip-
gram n3) (e) FastText (CBOW)

(f) FastText (Skip-
gram n1)

(g) FastText (Skip-
gram n2)

(h) FastText (Skip-
gram n3) (i) GloVe

Figure B.7: The results of the graphical normality tests using Q-Q plotting
for the embedding-based approach (Frame Vectors Addition and Manhattan
measure) which indicate a non-normality distributions.
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Table B.1: An overall descriptive statistics information of the semantic
frames relatedness scores of the remaining methods of the proposed ap-
proaches.

Approach System (codes in Figure 8.1) Frames Pairs (#) Min Min* Max Max* µ* Global µ σ* σ2*
Approach A Lesk 155,403 1 0 203 1 0.0847 0.0652 0.08 0.007
Approach A EGO 155,403 1 0 628 1 0.0763 0.0652 0.0953 0.009
Approach A OVL-FE 155,403 0 0 25 1 0.0863 0.0652 0.0964 0.009
Approach A OVL-K 155,403 0 0 43 1 0.0509 0.0652 0.0572 0.003
Approach A Path 155,403 0 0 1 1 0.027 0.0652 0.0879 0.008
Approach A WUP 155,403 0 0 1 1 0.0828 0.0652 0.2528 0.064
Approach A LCH 155,403 0 0 2.08 1 0.0682 0.0652 0.206 0.042
Approach A NAM 155,403 0 0 4.04 1 0.0689 0.0652 0.2109 0.045
Approach A BATET 155,403 0 0 20.8 1 0.042 0.0652 0.1295 0.017
Approach B Dice 155,403 0 0 1.456 1 0.1732 0.0976 0.1728 0.03
Approach B Jaccard 155,403 0 0 5.363 1 0.0108 0.0976 0.0171 0
Approach B PPMI 155,403 0 0 6.594 1 0.4181 0.0976 0.2377 0.057
Approach B CV 155,403 0 0 0.697 1 0.1435 0.0976 0.1607 0.026
Approach B Resink 155,403 0 0 5.524 1 0.1458 0.0976 0.0723 0.005
Approach B Lin 155,403 0 0 3.858 1 0.0091 0.0976 0.0387 0.002
Approach B JNC 155,403 -34.242 0 34.27 1 0.0009 0.0976 0.0078 0
Appraoch C wv.cbow.avg.Cosine 155,403 0 0 0.9958 0.9958 0.1633 0.3343 0.1223 0.015
Appraoch C wv.sk1.avg.Cosine 155,403 0.1437 0.1437 0.9736 0.9736 0.6124 0.3343 0.1184 0.014
Appraoch C wv.sk2.avg.Cosine 155,403 0.1475 0.1475 0.9726 0.9726 0.6122 0.3343 0.1187 0.014
Appraoch C wv.sk3.avg.Cosine 155,403 0.1362 0.1362 0.9733 0.9733 0.6124 0.3343 0.1185 0.014
Appraoch C ft.cbow.avg.Cosine 155,403 0 0 0.9971 0.9971 0.09102 0.3343 0.0747 0.006
Appraoch C ft.sk1.avg.Cosine 155,403 0.2058 0.2058 0.9925 0.9925 0.8465 0.3343 0.944 0.009
Appraoch C ft.sk2.avg.Cosine 155,403 0.395 0.395 0.9972 0.9972 0.9168 0.3343 0.0639 0.004
Appraoch C ft.sk3.avg.Cosine 155,403 0.2296 0.2296 0.98409 0.98409 0.6858 0.3343 0.1031 0.011
Appraoch C glove.avg.Cosine 155,403 0 0 1 1 0.2176 0.3343 0.1488 0.022
Appraoch C wv.cbow.avg.Euc 155,403 0.6127 0 33.55 1 0.2667 0.3343 0.1396 0.019
Appraoch C wv.sk1.avg.Euc 155,403 0.3402 0 5.44 1 0.369 0.3343 0.1404 0.02
Appraoch C wv.sk2.avg.Euc 155,403 0.3479 0 5.42 1 0.3694 0.3343 0.1412 0.02
Appraoch C wv.sk3.avg.Euc 155,403 0.3414 0 5.48 1 0.3663 0.3343 0.1397 0.02
Appraoch C ft.cbow.avg.Euc 155,403 0.0185 0 0.8687 1 0.2005 0.3343 0.1061 0.011
Appraoch C ft.sk1.avg.Euc 155,403 0.149 0 2.058 1 0.2467 0.3343 0.1074 0.012
Appraoch C ft.sk2.avg.Euc 155,403 0.092 0 1.157 1 0.2765 0.3343 0.1237 0.015
Appraoch C ft.sk3.avg.Euc 155,403 0.0506 0 4.3907 1 0.4168 0.3343 0.1303 0.017
Appraoch C glove.avg.Euc 155,403 0 0 9.1944 1 0.4012 0.3343 0.1441 0.021
Appraoch C wv.cbow.avg.Manh 155,403 8.3995 0 472.15 1 0.2623 0.3343 0.1376 0.019
Appraoch C wv.sk1.avg.Manh 155,403 4.735 0 75.44 1 0.368 0.3343 0.1403 0.02
Appraoch C wv.sk2.avg.Manh 155,403 4.871 0 74.94 1 0.3698 0.3343 0.1417 0.02
Appraoch C wv.sk3.avg.Manh 155,403 4.9602 0 76.77 1 0.3619 0.3343 0.1381 0.019
Appraoch C ft.cbow.avg.Manh 155,403 0.2498 0 12.01 1 0.2009 0.3343 0.10604 0.011
Appraoch C ft.sk1.avg.Manh 155,403 2.0321 0 28.73 1 0.2444 0.3343 0.1054 0.011
Appraoch C ft.sk2.avg.Manh 155,403 1.0751 0 15.97 1 0.2762 0.3343 0.1233 0.015
Appraoch C ft.sk3.avg.Manh 155,403 6.8618 0 61.58 1 0.4117 0.3343 0.1279 0.016
Appraoch C glove.avg.Manh 155,403 0 0 129.32 1 0.3925 0.3343 0.14023 0.02
Appraoch C wv.cbow.add.Cosine 155,403 0 0 0.99958 0.99958 0.1519 0.3343 0.13622 0.019
Appraoch C wv.sk1.add.Cosine 155,403 0.1437 0 0.9736 0.9736 0.6124 0.3343 0.1184 0.014
Appraoch C wv.sk2.add.Cosine 155,403 0.1475 0 0.9726 0.9726 0.6122 0.3343 0.1187 0.014
Appraoch C wv.sk3.add.Cosine 155,403 0.1362 0 0.9733 0.9733 0.6124 0.3343 0.1185 0.014
Appraoch C ft.cbow.add.Cosine 155,403 0 0 0.9971 0.9971 0.0117 0.3343 0.1171 0.014
Appraoch C ft.sk1.add.Cosine 155,403 0.2058 0 0.9925 0.9925 0.8465 0.3343 0.0944 0.009
Appraoch C ft.sk2.add.Cosine 155,403 0.3951 0 0.9972 0.9972 0.9168 0.3343 0.0639 0.004
Appraoch C ft.sk3.add.Cosine 155,403 0.2296 0 0.9841 0.9841 0.6858 0.3343 0.1031 0.011
Appraoch C glove.add.Cosine 155,403 0 0 1 1 0.1964 0.3343 0.1759 0.031
Appraoch C wv.cbow.add.Euc 155,403 2.1002 0 461.68 1 0.1871 0.3343 0.1242 0.15
Appraoch C wv.sk1.add.Euc 155,403 2.178 0 235.44 1 0.1407 0.3343 0.1407 0.02
Appraoch C wv.sk2.add.Euc 155,403 2.136 0 235.82 1 0.1407 0.3343 0.1405 0.02
Appraoch C wv.sk3.add.Euc 155,403 2.168 0 235.25 1 0.1409 0.3343 0.1408 0.02
Appraoch C ft.cbow.add.Euc 155,403 0.067 0 15.631 1 0.2031 0.3343 0.1112 0.12
Appraoch C ft.sk1.add.Euc 155,403 1.1948 0 222.683 1 0.1203 0.3343 0.13001 0.017
Appraoch C ft.sk2.add.Euc 155,403 0.5648 0 183.7 1 0.1173 0.3343 0.1364 0.018
Appraoch C ft.sk3.add.Euc 155,403 3.131 0 502.906 1 0.1367 0.3343 0.1337 0.018
Appraoch C glove.add.Euc 155,403 0 0 193.723 1 0.1813 0.3343 0.1173 0.014
Appraoch C wv.cbow.add.Manh 155,403 28.86 0 6319.027 1 0.1891 0.3343 0.1253 0.016
Appraoch C wv.sk1.add.Manh 155,403 29.98 0 3316.7 1 0.1387 0.3343 0.1389 0.019
Appraoch C wv.sk2.add.Manh 155,403 29.29 0 3308.7 1 0.1392 0.3343 0.1391 0.019
Appraoch C wv.sk3.add.Manh 155,403 30.57 0 3303.36 1 0.1391 0.3343 0.1395 0.019
Appraoch C ft.cbow.add.Manh 155,403 0.9182 0 213.7 1 0.2054 0.3343 0.1126 0.013
Appraoch C ft.sk1.add.Manh 155,403 16.87 0 3116.7 1 0.1186 0.3343 0.1288 0.017
Appraoch C ft.sk2.add.Manh 155,403 7.68 0 2448.08 1 0.1177 0.3343 0.1344 0.018
Appraoch C ft.sk3.add.Manh 155,403 42.904 0 9627.034 1 0.1371 0.3343 0.1342 0.018
Appraoch C glove.add.Manh 155,403 0 0 2659.437 1 0.1811 0.3343 0.1164 0.014

351



Appendix C

Requirements Relatedness
Annotation Scheme

C.1 Annotation Guidelines for Requirements Re-
latedness

The annotation instructions are:

1. Each row – in the worksheet – represents two software requirement state-
ments (A) and (B).

2. Overall, there are 122 requirement statement pairs. Two columns – Requirement-
A and Requirement-B.

3. Your task shall be comparing the relatedness between the two requirements
statements and the answer shall be “Yes” (1) or “No” (0) only from the
drop-list column.

• The main question is: Is Requirement A is semantically related or
similar to Requirement B?

4. We define relatedness between two requirements statements as “a semantic
association between words and context of requirement-A and requirement-
B.” A pseudo example of the annotation-sheet is shown in Table C.1. Please
note that the words in a bold font are just to explain our judgments for why
we considered the two statements are semantically related.
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Table C.1: A pseudo example of the requirement statement pairs in the
annotation-sheet.

Requirement-A Requirement-B Related?
The library has many de-
partments.

The company has many
branches around the coun-
try.

Yes

The user shall update his
profile before making any
order.

The system keeps the lat-
est records of the clients’
order.

Yes

The user account is pro-
tected by a password.

The user shall update his
profile before making any
order.

No

5. There is an additional column (optional) in the annotation sheet to insert
any comments (if you have).

6. After completing each sheet, please make sure your answers are saved.

C.2 Requirement Document

In Table C.2, we introduced the requirement statements we selected from the
camera user manual used for the extrinsic ovulation procedures (cf. Section 9.3.1).

Table C.2: Requirement statements from the camera user manual.

ID Requirement Statement Page
R1 Take some initial test shots and play them back to make

sure the images were recorded correctly.
4

R2 The images recorded with this camera are intended for
personal use.

4

R3 Do not record images that infringe upon copyright laws
without the prior permission of the copyright holder.

4

R4 Please be advised that in certain cases the copying of
images from performances, exhibitions, or commercial
properties by means of a camera or other device may
contravene copyright or other legal rights even if the
image was shot for personal use

4
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. . . continued
ID Requirement Statement Page
R5 This camera’s warranty is only effective in the country

of sale.
4

R6 If there is a problem with the camera while abroad,
please return it to the country of sale before proceeding
with a warranty claim to a Canon Customer Support
Help Desk.

4

R7 For Canon Customer Support contacts, please see the
customer support list supplied with your camera.

4

R8 The LCD monitor is produced with extremely high-
precision manufacturing techniques.

4

R9 The LCD monitor may be covered with a thin plastic
film for protection against scratches during shipment

5

R10 Please take care when operating the camera for an ex-
tended period as the camera body may become warm

5

R11 Icons are used in the text to represent the camera but-
tons and switches.

20

R12 This guide assumes all functions are at their default set-
tings

21

R13 Before using the camera, please ensure that you read the
safety precautions described below.

22

R14 Always ensure that the camera is operated correctly. 22
R15 The safety precautions noted on the following pages are

intended to prevent injuries to yourself and other per-
sons, or damage to the equipment.

22

R16 Be sure to also check the guides included with any sep-
arately sold accessories you use

22

R17 To avoid the risk of injury, do not touch the interior of
the camera if it has been dropped or otherwise damaged.

23

R18 Stop operating the camera immediately if it emits
smoke, a strange smell, or otherwise behaves abnor-
mally.

23
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. . . continued
ID Requirement Statement Page
R19 If liquid or foreign objects come into contact with the

camera interior, immediately turn off the camera power
and remove the battery.

23

R20 Using other power sources could result in fire or electri-
cal shock.

23

R21 Use only the recommended battery. 24
R22 Avoid dropping or subjecting the battery to severe im-

pacts.
24

R23 This may cause explosions or leaks, resulting in fire, in-
jury and damage to the surroundings.

24

R24 Do not use the equipment in a manner that exceeds the
rated capacity of the electrical outlet or wiring acces-
sories.

25

R25 Do not allow dirt or metal objects (such as pins or keys)
to contact the charger terminals or plug.

26

R26 This could result in burns or damage to the flash. 26
R27 Pets biting the battery could cause leakage, overheating

or explosion, resulting in fire or injuries.
27

R28 Insert the memory card as shown until it locks into place
with a click.

34

R29 Be sure the memory card is oriented correctly. 34
R30 Inserting the memory card in the wrong direction could

damage the camera.
34

R31 You can check the number of shots that can be taken
when the camera is in a Shooting mode

37
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