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Abstract 
 

Phylogenetics, the reconstruction of evolutionary relationships between 

species, underpins evolutionary biology. These relationships are most often 

inferred from either or both morphology and molecules, but molecular data 

are often preferred because of the objective atomization and large number 

of characters, the relative neutrality of some genomic regions and the 

sophisticated statistical techniques that these benefits allow. Morphology, 

by contrast, remains relatively neglected. However, morphological data 

remain essential, particularly for the phylogenetic placement of fossil 

species for which no molecular data are available. Morphology nevertheless 

suffers from issues such convergence and non-independence of traits, the 

extent and distribution of which remain largely unknown. 

In this thesis I compare osteological, dental and other partitions of 

morphological data in tetrapods, using molecular trees as a benchmark. I 

assess differences in levels of homoplasy, ages of character transition, tree-

based correlations and internal consistency. To do this, I compute the 

retention index of characters and partitions on molecular trees, perform 

ancestral state reconstructions to estimate character transition ages, apply 

correlated and uncorrelated models of character pair evolution, perform 

cluster analyses, and build trees using subsets of data. 

I find heterogeneity between these partitions, both with and without respect 

to molecular trees. Specifically, I find that osteological characters are more 

homoplasious and transition earlier than either dental or soft characters. 

Further, characters are more correlated within partitions than between 

partitions. These results highlight the importance of partitions, implying 

differences in convergence, evolutionary rates and integration between 

different morphological subsets. As well as shedding light on the nature of 

morphological evolution in tetrapods, these results have important 

implications for phylogenetic inference, and suggest the need for careful 

consideration of the properties of morphological data when reconstructing 

evolutionary history. Specifically, composite coding and partitioning may be 

necessary in model-based approaches. 
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Lay Abstract 
 

Evolutionary trees are built by coding biological data and then using 

mathematical techniques to arrive at an estimate of the relationships 

between species. These trees are most often built from either or both 

organismal form, known as morphology, and DNA sequences, usually called 

molecular data. In the age of genomics, sequence data is often preferred as it 

is objective to code, abundant and can be relatively neutral in comparison to 

morphology, which is both directly affected by natural selection and harder 

to objectively code. However, morphological data remain important in 

evolutionary biology, not least because DNA usually cannot be extracted 

from fossils, meaning that morphological information is the only 

information available for these species. 

Trees built from these different sources of information sometimes conflict, 

which raises the question of which parts of morphology, if any, are best for 

reconstructing evolutionary relationships. Different parts of morphology, 

for example teeth, bones, plumage and scales, evolve differently as a result 

of different evolutionary origins and pressures. This may manifest as faster 

or slower evolution, more or less convergence (where unrelated species 

evolve similar morphologies as a consequence of sharing a similar habitat or 

ecological niche), or different levels of correlated or concerted evolution 

(meaning the evolution of multiple traits together resulting from shared 

function). These properties can all effect the estimation of evolutionary 

relationships. 

Here I compare regions of morphology with molecules, and find that skeletal 

data, that is data from bones, display less convergence and are also older 

than most other forms of morphological data. Bones are also slightly less 

likely to display correlated evolution. In short, bones reconstruct 

evolutionary relationships in a similar way to DNA. These results all imply 

that skeletal data may be the best form of morphological data for building 

reliable evolutionary trees. These results shed light on the evolution of 

different aspects of organismal form, as well as being useful for researchers, 

particularly palaeontologists, building evolutionary trees from morphology. 
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Introduction: Phylogenetic Conflict and Integration of Morphology 

with Molecules 

 

Abstract 

 

The topology and dating of evolutionary trees are both dependent on a 

number of factors such as the quality and quantity of data, phylogenetic 

inference method and model choice. Unsurprisingly, a great source of 

conflict between different hypotheses of evolutionary history lies in the kind 

of data used. The most salient example of this is the disparity between the 

estimates of evolutionary relationships offered by morphological and 

molecular data. This problem has plagued researchers since the advent of 

molecular systematics, and continues to do so today. The differences 

between these sources of data may be the result of differences between 

molecular and morphological evolution, such as the prevalence of 

modularity, integration, correlation and homoplasy in morphological 

characters. These processes pose problems for morphological data, and thus 

the conflict between these data types is often framed as a problem of 

morphology. However, morphology continues to be an indispensible source 

of phylogenetic data, for example when placing fossil species, and as such it 

is important to evaluate how morphology performs in phylogenetic 

inference. One way to do this is to analyse subsets of morphological data, for 

example against existing independent phylogenetic trees, in order to 

estimate the relative prevalence of these processes in these different 

character types. Ultimately, neither morphological nor molecular data is 

without its biases that can potentially mislead phylogenetic analyses. 

Nevertheless, testing and accounting for these processes in morphological 

data, and highlighting areas of consilience between morphology and 

molecules, will help to shed light on sources of conflict in phylogenetic data 

and potentially aid in the creation of more accurate model-building in 

phylogenetic inference. Further, these insights may be of use for researchers 

interested in the trends and dynamics of morphological trait evolution. This 

chapter discusses the sources of conflict and consilience between trees 
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constructed between different data types, examining different trends in 

different subsets of morphological data. 

 

 

1. Introduction 

 

Phylogenetics is the subfield of evolutionary biology concerned with 

reconstructing the evolutionary relationships between species. Phylogenies, 

or evolutionary trees, cannot be known with complete confidence. This is 

because, with the exception of simulated and experimental evolution, we 

cannot directly observe historical lineage splitting. To infer phylogeny, we 

therefore must extract information from species and employ statistical 

methods to produce the most likely estimates of evolutionary history given 

the data. The lack of direct observation means that independent sources of 

information must ideally be used in order to corroborate phylogenetic 

hypotheses (e.g. Beutel et al., 2011; Field et al., 2014). However, there is 

often conflict between phylogenetic datasets, both within and between 

morphology and molecules owing to differences in evolutionary rates and 

dynamics (e.g. Flynn & Nedbal, 1998; Pisani, Benton, & Wilkinson, 2007; 

Bibi, 2013; Sharma et al., 2014; Reddy et al., 2017). 

While it is well established that different datasets belonging to the same 

broad data type produce different tree topologies for the same clades (Flynn 

& Nedbal, 1998; Sharma et al., 2014; Reddy et al., 2017), trees built from 

different data types, i.e. molecular and morphological data, are usually more 

different to each other than to trees built from the same data type both in 

topology  (Pisani et al., 2007) and in the timing of branching events (Benton, 

1999). 

Sometimes molecular and morphological datasets each strongly support 

different hypotheses of evolutionary history, and this disparity is often 

consistent across different studies of particular clades. Salient examples of 

these recurring incongruences between molecular and morphological trees 

include in birds (Torres & van Tuinen, 2013) and squamate reptiles (Reeder 

et al., 2015). For example, morphological analyses have traditionally placed 
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starlings in a group including the crows and ravens, whereas later molecular 

analyses have placed them as the closest relatives of the mockingbirds 

(Sibley, Ahlquist, & Monroe, 1988). Further, sequence data places 

flamingoes and grebes together, contradicting previous morphology-based 

hypotheses (Van Tuinen et al., 2001). These and other important 

discrepancies imply that the morphological data for these birds have 

consistently misled analyses (Torres & van Tuinen, 2013), allowing that the 

molecular data track evolutionary history relatively accurately in these 

cases. 

While these incongruences are well documented, the question of why these 

data types disagree so strongly in their resultant topology is still 

outstanding. One view is that morphological characters are relatively sparse 

and ambiguous compared with the high number of characters produced by 

sequence data (Scotland, Olmstead, & Bennett, 2003) and therefore that 

differences between morphological and molecular phylogenies simply 

reflect the relative inability of morphological data to produce accurate and 

well-supported phylogenies. However, it is also true that individual 

morphological characters often contain higher information content than 

molecular characters. 

These incongruences may be also the result of differences between 

molecular and morphological evolution; i.e. morphological trees are not 

simply incorrect as a result of inadequacy, subjectivity or lack of statistical 

power in morphological datasets, but in fact often capture the signature of 

ecological specialization repeated in unrelated clades. Morphological-

molecular conflicts are often reflective of morphological convergence, where 

shared morphological traits between unrelated clades have misled 

phylogenetic analysis. 

A striking and well-documented case of this is in the Anolis lizards of the 

Caribbean islands, where multiple cases of convergence have resulted in 

equivalent morphotypes arising several times independently (Losos, 1998), 

and cluster analysis of morphological data places these morphotypes 

together. Molecular evidence shows that these morphotypes have often 

arisen independently on each island (Figure 1). 
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Figure. 1 Phylogeny of 17 Anolis lizard species belonging to 6 ecomorphotypes on 3 Caribbean islands. 

Each tip represents a different species. Tip colours indicate ecomorphotypes and tip shapes indicate the 

island on which the species is found. Often, different ecomorphotypes on the same island are more closely 

related to each other than the same ecomorphotypes on different islands, demonstrating multiple 

evolutionary transitions between ecomorphotypes. There is also some movement between islands. The 

phylogeny is adapted from Zheng & Wiens, (2016) squamate phylogeny.  

 

 

Ideally, molecular and morphological datasets should converge on a similar 

topology. This is because if one can get two or more independent datasets to 

agree, it is possible to have greater confidence that the tree is a good 

estimate of evolutionary history (e.g. Beutel et al., 2011; Borsch et al., 2018). 
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The agreement between multiple lines of evidence is known as consilience, 

and is a commonly used criterion for confidence in hypotheses in 

evolutionary biology (Field et al., 2014; McInerney, O’Connell, & Pisani, 

2014). Multiple morphological or multiple molecular phylogenies may 

broadly agree with each other, but these phylogenies may be based on the 

same or similar data, or, even if they are not, may each suffer from the same 

biases and systematic errors as the other. 

Morphology therefore continues to be important in phylogenetics as a point 

of comparison with phylogenies built from molecular data which otherwise 

would have no corroborating evidence. Additionally, combined analyses 

where both molecular and morphological data are permitted to influence 

topology can sometimes produce better-resolved trees than either type of 

data used alone (e.g. Beutel et al., 2011). However, a difficulty with 

combined analyses is the circularity of subsequently attempting to map 

character changes onto the tree in studies of morphological evolution and 

character distribution if these characters were used to build the tree in the 

first instance (de Queiroz, 1996). 

The increase in the use of molecular data in phylogenetics analysis raises 

the question of how to better exploit morphological data to elucidate 

evolutionary history, including past branching events and phenotypic 

change over time. This involves interrogating morphological datasets, and 

may include, for example, partitioning morphological data to identify areas 

of morphology conveying conflicting signal (Sansom, Wills, & Williams, 

2016; Sansom & Wills, 2017), and identifying correlated character pairs 

(Leslie et al., 2015; Sauquet et al., 2017) and cliques (Holland et al., 2010; 

Blanke et al., 2013). 

 

 

2. Phylogenetic Data Types 

 

2.1. Morphological Data 
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Organismal form is a very important area of research in evolutionary 

biology, and without cladistics or morphometric data only limited insight 

into the evolution of organisms is possible. Prior to the advent of modern 

phylogenetics, traditional taxonomic studies based on morphology alone 

placed organisms into hierarchically patterned groups broadly congruent 

with how they are classified today. Taxonomic groupings are typically based 

on real and biologically significant morphological differences that are 

discontinuous and non-randomly distributed. Indeed, discrete and 

independently evolving groups are possible even above the species level, 

possibly the result of broad niche occupation and turnover within clades 

(Barraclough, 2010; Humphreys & Barraclough, 2014). Much of the discrete 

nature of organismal form is driven by modularity, i.e. the association and 

correlation of traits (Goswami et al., 2014; Felice, Randau, & Goswami, 

2018), a consequence of the existence of local optima within morphospace 

(Mitteroecker & Huttegger, 2009; Dumont et al., 2014; Button, Barrett, & 

Rayfield, 2017), which are often convergent (Losos, 1998; Goswami & Polly, 

2010a; Goswami, Milne, & Wroe, 2011; Friedman et al., 2016; Davis & 

Betancur-R, 2017), differ with the environment (Hadfield, 2016), and 

outside of which groups of traits are maladaptive. The discontinuity of 

morphological form is captured by both geometric morphometric and 

cladistic data (Hetherington et al., 2015), and therefore raises questions 

about the validity and use of morphological data in phylogenetics since they 

are affected by the correlated evolution of phenotypic traits. 

The relative utility of morphological data in phylogenetic analysis, 

particularly as more molecular data have become available, has been widely 

discussed in the literature (Hillis, 1987; Scotland et al., 2003; Jenner, 2004; 

Wiens, 2004; Giribet, 2015; Lee & Palci, 2015), with some authors 

suggesting we disregard morphology altogether. However, morphological 

information may always be necessary for phylogenetic reconstruction 

considering that many organisms, such as fossil species and some rare 

species have no molecular information available with which to build 

phylogenies. In fact, there is no molecular information available for the vast 

majority of life that has ever existed. The only phylogenetic information we 
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have for these species, if any, must therefore necessarily be derived from 

morphology. This is especially critical since the correct placement of fossil 

species is necessary for the calibration of time-trees (Springer et al., 2001). 

Secondly, only through morphological information can character state 

changes and the evolution of body plans be mapped over time (Giribet, 

2015). Even aside from these two functions for which morphology is 

obviously necessary in evolutionary biology, it may also be the case that 

even the relatively small number of characters yielded by morphological 

data influence tree topology in combined phylogenetic analysis (Gatesy et 

al., 2003), give stronger statistical support (Lee & Camens, 2009) and result 

in better-resolved trees (Beutel et al., 2011). The addition of fossil taxa in 

particular can affect topology and produce greater congruence with 

independent trees (Asher et al., 2019). Even when morphology does not 

actually improve topological accuracy, good resolution of phylogenetic trees 

is sometimes a goal in its own right, since many analyses such as tree 

distance methods (Robinson & Foulds, 1981) and correlations (Billet & 

Bardin, 2019) require or perform better with bifurcating trees. 

However, morphology in phylogenetic analysis suffers from many pitfalls, 

one of which is the problem of how to objectively identify and codify 

homologous characters. There are several related definitions of homology, 

but in this context it is generally defined as structures belonging to different 

species but sharing common ancestry, and therefore often sharing 

functional or superficial similarities (Wiley & Lieberman, 2011). One of the 

issues here is that to define a character or set of characters is to propose a 

hypothesis of homology, and therefore of common ancestry, and is therefore 

arguably circular when subsequently using this data to reconstruct 

evolutionary history (see Cartmill, 1994 for a critique of homology as a 

concept in morphological phylogenetics). This is not a problem if 

homologous structures are correctly identified, but when characters are 

incorrectly judged to be homologous, potentially as a result of the bias of 

individual researchers, or the historical burden of past taxonomic 

judgments, this misleads phylogenetic analysis. Nevertheless, most 

systematists use operational homology, where there is high similarity 
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between characters thought to be homologous in terms of composition and 

structure (Wiley & Lieberman, 2011).  

This also raises the issue of evolutionary convergence, whereby analogous 

structures arise in different species as a consequence of similar evolutionary 

regimes acting on them in similar environments (Losos, 1998, 2011; 

Schluter, 2000; Moen, Morlon, & Wiens, 2016; Gheerbrant, Filippo, & 

Schmitt, 2016; Mugleston et al., 2018). Distantly related species exploiting 

the same niche will often display phenotypic convergence reflecting their 

shared ecology. When homoplasy as a result of convergence is mistaken for 

homology, relationships between species can spuriously appear closer than 

they really are. 

A related but less-discussed issue is the role of character non-independence 

on phylogenetic reconstruction (Emerson & Hastings, 1998; Sadleir & 

Makovicky, 2008; Goswami & Polly, 2010a; Guillerme & Brazeau, 2018; 

Billet & Bardin, 2019). Simply put, non-independence occurs when change 

in one character is accompanied by change in another (Pagel, 1994; 

Beaulieu, O’Meara, & Donoghue, 2013). Often, whole suites of characters will 

evolve together in semi-autonomous blocks (Holland et al., 2010; Blanke et 

al., 2013). 

Modularity (the association of several traits) has several potential influences 

on morphological evolution, including the prevention of canalisation and 

either the facilitation or restriction of phenotypic divergence – in other 

words, it has implications for the ‘evolvability’ of structures (Wagner & 

Altenberg, 1996; Goswami & Polly, 2010b; Goswami et al., 2014). The 

influence of modularity on morphological evolution has been explored by 

Goswami & Polly, (2010b).  They tested two hypotheses, namely 

‘facilitation’, whereby the presence of modules increases disparity between 

species, and ‘constraint’ whereby the presence of modules limits 

morphological disparity between species, with mixed results but finding 

that strong integration in primate and carnivore skulls generally has either 

no effect on disparity or constrains it.   

One important explanation for modularity is the correlated evolution of 

traits as a response to environmental pressures. Harmon et al., (2005) 
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discuss this idea of multidimensional convergence, and stress the distinction 

between the coordinated response of traits to a single environmental 

variable, and that of traits independently evolving in response to many 

environmental variables. To return to the example of Anolis lizards, Harmon 

et al., (2005) found that the variation between traits within certain sets of 

characters (e.g. cranial and postcranial morphology) in these reptiles is 

independent of other character sets, implying some degree of the latter kind 

of multi-dimensional convergence. Within these structures, however, 

characters are evolving in concert, implying concerted convergence 

(Patterson & Givnish, 2002) in some subsets of characters. 

Importantly, modularity has the potential to influence phylogenetic 

reconstruction. Goswami & Polly, (2010a) used morphometric methods to 

demonstrate that some modules in the cranium of carnivores are not 

correlated with phylogeny. Pairwise Procrustes distances were calculated 

for each module for a number of species, and each resulting distance matrix 

was compared to a molecular phylogenetic distance matrix using a matrix 

correlation analysis to test for correlation between module shape and 

phylogeny. Additional matrices for similarity of integration were generated 

and also compared with the phylogenetic patristic distance matrix to test for 

correlations between integration patterns and phylogeny. In feliforms, only 

the orbit shape was significantly correlated with phylogeny, and overall the 

basicranium and zygomatic-pterygoid modules had the strongest 

phylogenetic signal. Although morphological analyses of Carnivora largely 

rely on the basicranium, this reliance on only a few anatomical regions could 

pose a problem in cases where the characters relied upon are integrated but 

do not reflect evolutionary history. 

 

 

2.2. Molecular Data 

 

Although phylogenetic inference has historically used morphological 

information as its primary source of data, as DNA sequence data and greater 

computational power have become available over the last several decades, 
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the use of morphology in phylogenetics has been largely replaced by 

molecular systematics (see Hillis, 1987 for an early review). Molecular 

phylogenies often corroborate previously accepted relationships based on 

morphology (Springer et al., 2004). This is unsurprising, since we expect 

evolutionary history to produce congruent patterns of morphological and 

molecular similarity. Sometimes, however, molecular data are at odds with 

previous morphological phylogenies, often demonstrating that phylogenies 

based on morphology alone have been mislead by phenotypic convergence 

(Hedges & Sibley, 1994; Van Tuinen et al., 2001; Dunn et al., 2008; Alter, 

Brown, & Stiassny, 2015; Peters et al., 2018; Ran et al., 2018; Mugleston et 

al., 2018). Additionally, molecular data can often resolve relationships for 

which there is conflicting morphological support (Lee & Camens, 2009; 

Torres & van Tuinen, 2013; Dávalos et al., 2014; Cruaud et al., 2019). This 

may happen when some characters or modules appear to reflect one 

evolutionary history while others appear to reflect another. 

There are several properties of molecular data which promote the 

assumption that they are more robust than morphological data for inferring 

evolutionary history. These include a) the high number of characters that 

are made available by DNA sequencing, leading to greater statistical power 

and the opportunity for complex statistical analysis involving a choice of 

models and tree-building methods, b) the relatively objective and 

unambiguous nature of molecular sequence data (i.e. the four nucleotides), 

c) the relative lack of evolutionary pressures acting on certain, neutral parts 

of the genome (Kimura, 1983), and d) the relative independence of 

molecular characters (Huelsenbeck & Nielsen, 1999). Thus, molecular data 

can act as an appropriate, independent benchmark against which to assess 

morphological data. 

However, molecular data also suffer from biases and pitfalls. For example, 

recent work has suggested that genomes can be subject to some 

convergence, as in the cases of marine and echolocating mammals (Parker et 

al., 2013; Foote et al., 2015), squamate reptiles (Castoe et al., 2009) and fish 

(Brown et al., 2019). When undetected, genetic convergence has the 

potential to be a serious issue in the phylogenetic reconstruction of certain 
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groups. A further problem with genetic convergence is that it is likely to be 

accompanied by morphological convergence if the convergence is ecological 

or functional (Castoe et al., 2009; Parker et al., 2013; Foote et al., 2015; 

Brown et al., 2019) and thus it could be difficult to detect the convergence in 

these cases, and to subsequently tease out true signal reflecting the 

evolutionary history in these clades. In the case of squamates, an integrated 

analysis involving both morphology and molecules was able to resolve some 

of these conflicts (Reeder et al., 2015). 

Disagreement between individual genes as a result of, for example, 

incomplete lineage sorting or horizontal gene transfer presents further 

problems for phylogenetic analysis using molecular data. There are often 

disagreements between concatenated and coalescent trees (Lambert, 

Reeder, & Wiens, 2015). 

The difficulties involved in the proper alignment of DNA sequences presents 

a further problem in molecular systematics as a result of insertions and 

deletions (indels) in genetic data, one that is analogous to the problem of 

correctly judging homology in morphological phylogenetics (Kumar & 

Filipski, 2007). The treatment of gaps produced by indels during multiple 

sequence alignment varies among studies, resulting in discordant tree 

topologies. There are also programmes that infer trees with unaligned 

sequences, by aligning the sequences and inferring the tree concurrently 

(Varón, Vinh, & Wheeler, 2010). 

Tree building methods such as Maximum Likelihood (ML) and Bayesian 

inference require both phylogenetic data (i.e. DNA sequence data) and a 

realistic model of molecular evolution. Model misspecification is known to 

mislead tree topology (Rodríguez-Ezpeleta et al., 2007; Naser-Khdour et al., 

2019) and evolutionary rates (Beaulieu et al., 2015; dos Reis, Donoghue, & 

Yang, 2015) in molecular systematics, since correct parametrization is 

required in order for models to accurately reflect the nature of molecular 

evolution. 

Systematic errors amplify with the number of characters, which in 

molecular systematics is usually very high, especially when compared with 

the characters used in morphological phylogenetics. High statistical support 
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even for erroneous results owing to incorrect model choice makes these 

errors difficult to spot (Rodríguez-Ezpeleta et al., 2007). Although the use of 

the Akaike Information Criterion (Akaike, 1973) or some other comparison 

method, can reduce the risk of including too few or too many parameters, 

and can help to choose between models, comparative methods can only 

inform researchers how good a model is relative to other models. Therefore, 

it is very difficult to know whether a model is really ‘correct’ or even ‘good’ 

except in a relative sense. 

Molecular phylogenies often disagree not only with morphological 

phylogenetics, but also with each other. Estimation of topology can differ 

depending on which part of the genome is sequenced, the substitution 

model used and the inference method employed, for example see recent 

disagreements regarding the phylogenetic placement of the comb jellies 

(Pisani et al., 2015; Whelan et al., 2015, 2017; Borowiec et al., 2015; Simion 

et al., 2017). 

These sources of conflict within molecular systematics mean that, although 

molecular data is often considered more reliable than morphological data, 

we cannot trust it implicitly. We must therefore take care when using 

molecular data as a benchmark against which we measure the performance 

of morphology, and furthermore it is prudent, where possible, to use 

multiple independent molecular phylogenies. 

 

 

3. Identifying and Addressing Phylogenetic Conflict 

 

3.1 Molecular Versus Morphological Data 

 

There are many examples of conflict between molecular and morphological 

data when constructing phylogenies, and in such cases the molecular data 

often usurp morphology (Sibley et al., 1988; Van Tuinen et al., 2001; Bibi, 

2013; Torres & van Tuinen, 2013; Peters et al., 2014; Reeder et al., 2015; 

Alter et al., 2015). Major sources of conflict between phylogenies 

reconstructed using morphological versus molecular data arise from the 
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differences in the way that molecules and morphology evolve. For example, 

phenotypes are under direct selection and are therefore prone to 

convergence and divergence, whereas large parts of the genome are thought 

to evolve neutrally (Kimura, 1983). 

The relationship between molecules and morphology is complex (Orgogozo, 

Morizot, & Martin, 2015; Fisch, 2017), for reasons such as phenotypic 

plasticity and genetic dominance. Further, small genetic changes can often 

produce large phenotypic changes, for example, in the complex system of 

genetic switches and hox genes (genes which control the expression of other 

genes during development). This is illustrated by the fact that many 

characters or organs exhibit ‘context insensitivity’ (Musser & Wagner, 

2015), whereby they retain their traits even if ectopically formed on 

different parts of the body (Halder, Callaerts, & Gehring, 1995), resulting in a 

substantial departure from ancestral bauplan with a relatively small genetic 

change. When occurring in nature, significant changes in phenotype arising 

from relatively subtle genetic events will produce the appearance of 

divergence. When used in phylogenetic analysis, this may make species 

appear erroneously unrelated. This is an opposite problem to the one of 

convergence, where distantly related species display similar phenotypes. 

 

 

3.1.1. Convergence 

 

The convergence of morphological traits is one of the most pervasive and 

well-understood problems in phylogenetic analysis, often occuring as a 

result of shared evolutionary regimes acting on traits of ecological or 

functional importance (Schluter, 2000) in response to biotic factors such as 

predation (Moody & Lozano-Vilano, 2018) and abiotic environmental 

factors (Moen & Wiens, 2017). Convergence is known to occur across the 

tree of life, from the molecular to organismal level, and at all taxonomic 

scales, for example at the generic level (Losos, 1998; Moody & Lozano-

Vilano, 2018) up to parallel radiations at superordinal levels (Sibley et al., 

1988; Gheerbrant et al., 2016). Convergence results in conflict between the 
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signal conveyed by traits under selection and the true underlying phylogeny, 

and can erroneously group unrelated taxa together according to phenotype. 

The introduction of molecular data, which are less prone to convergence, 

can reveal instances of convergence in morphological data and overcome 

this problem to some degree (Sibley et al., 1988; Van Tuinen et al., 2001; 

Dunn et al., 2008; Alter et al., 2015; Peters et al., 2018; Ran et al., 2018; 

Mugleston et al., 2018). 

A salient example involves the extraordinary phenotypic convergence 

between the tenrecs, particularly the lesser hedgehog tenrec Echinops 

telfairi, and the Laurasiatherian hedgehogs. These two families were 

formerly placed together in the order Insectivora, owing to shared 

characteristics such as a mobile proboscis and spines. Genomic evidence, 

however, places the tenrecs firmly within the Afrotheria (Stanhope et al., 

1998), closer to elephants and hyraxes. This highlights how misleading 

phenotypic resemblance can be, even when the resemblance is marked. 

Further, that the molecular evidence is in line with the fossil record and 

geographical distribution of tenrecs is a striking example of the importance 

of comparing and reconciling different lines of evidence to reach satisfactory 

phylogenetic conclusions. 

A further example can be found in the relationships among aquatic birds, 

particularly the surprising phylogenetic placement of the diving grebes with 

wading flamingoes in the clade Mirandornithes based on molecular data 

(Van Tuinen et al., 2001; Jarvis et al., 2014). A phenotypically distinct group 

of diving birds, grebes had previously been placed with loons, another group 

of foot-propelled diving birds, based on morphological characteristics such 

as the form of the femur, humerus, tibia, ilium and palate (Cracraft, 1981; 

Livezey & Zusi, 2007). Mounting molecular evidence overturned this 

hypothesis, with later studies finding previously overlooked morphological 

(Mayr, 2004) and new fossil (Grellet-Tinner et al., 2012) evidence 

supporting the monophyly of Mirandornithes. These synapomorphic 

characters uniting grebes and flamingoes, which include vertebral, plumage, 

egg and nest characteristics, highlight the potential role of hidden support in 

uncovering instances of convergence when some characters are congruent 
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with molecular data but not other morphological characters (Gatesy & 

Arctander, 2000; Gatesy et al., 2003). 

Other important examples include the placement of legless lizard family 

Dibamidae as sister to the other squamates (Pyron et al., 2013; Reeder et al., 

2015), as opposed to hypotheses placing them with snakes or other 

squamate groups, and the modern placement of hyraxes, part of the sub-

ungulate clade, within Afrotherian mammals based on molecular data 

(Seiffert, 2007), as opposed to their earlier unstable placement with 

Laurasiatherian ungulates. 

In addition to simply using molecular data to either overturn or corroborate 

relationships based on morphology, convergence can be explicitly tested for 

using measures of homoplasy such as the retention index or excess index on 

cladistic data (Holland et al., 2010; Blanke et al., 2013) or with 

phylogenetically-corrected multivariate methods on morphometric data 

(Moen et al., 2016; Thacker & Gkenas, 2019). For example, phylogenetic 

PCAs have detected convergence in measurements such as head length, toe 

tip size and foot webbing in frogs, variables each strongly correlated with 

microhabitat (Moen et al., 2016). 

 

 

3.1.2. Modularity, Integration and Correlation: Characters as Historical 

Entities Sharing Common Evolutionary Origins 

 

The hierarchical and discontinuous pattern of physical form between 

organisms is widely discussed, and partially forms the basis of phylogenetic 

analysis when using morphology to inform topology. Somewhat less 

discussed in terms of phylogenetic implications is the evolutionary descent 

of characters and cell types within organisms (see Vickaryous & Hall, 2006; 

Arendt et al., 2019 for reveiws on the evolution of cell types). It has been 

noted that morphological characters within organisms are entities which 

share common descent and should be discussed as such (Musser & Wagner, 

2015; Liang et al., 2018; Arendt et al., 2019). This is because morphological 

characters within an organism exhibit a kind of homology that is distinct 
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from between-species homology; that of shared ancestry (i.e. related gene 

regulatory networks) and semi-independent evolution of cell types or 

organs. This produces the kind of hierarchical relationships similar and 

analogous to those observed between species (Figure 2). 

This is important because it explains the ‘species signal’ (Musser & Wagner, 

2015), whereby cell transcription profiles sometimes cluster by species 

rather than by tissue type (Pankey et al., 2014; Lin et al., 2014; Tschopp et 

al., 2014), which we would not expect if cell types evolved wholly 

independently. 

 

 

 

Figure. 2 ‘Phylogeny’ of photoreceptor cell types, from Wagner et al. 2015. This demonstrates how cells 

are similar to each other both by cell type and by taxonomic group. Cell types cluster by species as they 

are often similar because of common genetic networks that affect the development of multiple cells. 

 

Further, this strongly relates to the modularity observed in many 

morphometric studies, since if different characters share common gene 

regulatory networks, then the characters are not independent of each other. 



 30 

Transcriptome studies have also cast doubt on the assessment of homology 

in morphological phylogenetics. For example, Wagner & Gauthier, (1999) 

used transcriptomes to address the conflict between embryology and 

palaeontology regarding the evolution of avian digits, and revealed that the 

digit in position 2 of the avian hand is more closely related to the digit at 

position 1 in the foot. If morphological characters are essentially repeated, 

since their development is controlled by related gene networks, but are 

treated as independent because they are spatially, functionally or 

superficially distinct, this results in a clear disparity between the genetic 

relatedness between species and the similarity as it may appear when 

observing particular morphological characters (Musser & Wagner, 2015). 

This is essentially a case of pseudoreplication, and results in correlated 

characters being treated as independent. In phylogenetic analysis, this can 

result in artificially inflated clade support, or spuriously close relationships 

between species. 

There are a number of ways to test for character correlations in 

phylogenetic data, including the concentrated changes test (Maddison, 

1990), the pairwise comparisons test (Read & Nee, 1995) and the character 

compatibility test (O’Keefe & Wagner, 2001). Briefly, the concentrated 

changes test calculates the probability that changes in one binary character 

are significantly concentrated in branches of the tree where a second 

character is in a given state. This involves calculating the number of ways 

that the number of observed losses and gains in the character can be 

distributed on the tree, summing the number of ways the observed gains 

and losses can be distributed on the branches where the second character is 

in the state of interest, and dividing the second by the first. This yields the 

probability that the character changes are more concentrated in particular 

branches than expected by chance. The pairwise comparisons test instead 

compares sister clades, and calculates the probability that the state of one 

character is seen more frequently in clades where a second character is 

more frequently in a particular state than their sister clades. The character 

compatibility test is a method that does not require a tree. Instead, two 
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characters are compatible, or correlated, if a tree exists onto which they can 

be plotted without homoplasy. 

Recently, maximum likelihood and Bayesian approaches have been 

developed to detect correlated character pairs (Pagel, 1994; Beaulieu et al., 

2013), fitting models of trait evolution to character pairs. Additionally, 

clustering methods can be applied to pairwise metrics of the dissimilarity 

between characters, revealing instances of concerted evolution (Holland et 

al., 2010; Blanke et al., 2013). 

Modularity and integration are necessary aspects of morphological 

evolution, as traits requiring coordinated responses to evolutionary 

pressures (such as parts of the skull or limbs) are often controlled by 

common genetic switches (Goswami & Polly, 2010a), a process known as 

pleiotropy (Cheverud, 1996; Klingenberg, 2008). The evolution of more 

complex body plans may require further fragmentation of parts into smaller 

modules in order to limit morphological constraints (see Figure 3 for an 

overview of integration and fragmentation events in the evolution of 

mammalian limbs and skull (Goswami et al., 2014)). Thus, a hypothetical 

optimum between complete modularity and total independence of 

characters must be reached in order for characters to be able to optimally 

respond to selective pressures, with neither the burden of constraint nor the 

need for each character to evolve independently. 

While some studies suggest that modularity and phylogeny are correlated 

(Goswami, 2006), modularity retains the potential to mislead analysis. A 

striking example of the effect of non-independence on phylogenetic analysis 

is in crocodiles. High levels of homoplasy have been noted in the group, 

particularly with respect to the gharials (Harshman et al., 2003; Lee & Yates, 

2018). Sadleir & Makovicky, (2008) note that this might be partly owing to 

the possibility of convergent modularity making some slender-snouted 

species, namely Gavialis gangeticus and Tomistoma schlegelii difficult to 

place. Paradoxically, however, these species are united by molecular data, 

and are not united by morphological data. A combined analysis (Gatesy et 

al., 2003) groups them together, demonstrating the need for combined 

analyses in these cases in order to resolve paradoxical relationships such as 
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this. Sadleir & Makovicky, (2008) also stress the need to investigate whether 

characters correlating with skull shape mislead phylogenetic analysis in 

such cases. They go on to test for the existence of character correlations 

using all three methods discussed above (Maddison, 1990; Read & Nee, 

1995; O’Keefe & Wagner, 2001) and conclude that transitions between 

crocodilian ecomorphs over the course of evolution affect the cranial 

characters used in morphological phylogenetics. 

 

 

Figure. 3 The development of character correlations, comparing patterns of modularity between 

monotremes, marsupials and placental mammals, from Goswami et al. 2014. Colours indicate separate, 

internally integrated modules. In monotremes, hindlimbs and forelimbs evolve in concert with each other 

(but with three separate modules comprising each limb) in contrast to marsupials, where forelimbs and 

hindlimbs are internally integrated but evolve independently. Placental limbs are highly integrated both 

internally and with each other. Placental and marsupial skulls have a higher number of separately 

evolving modules than monotreme skulls. 

 

Sanger et al., (2012) demonstrated that in Anolis lizards, modules are not 

conserved over evolutionary time, and that patterns of integration, as well 

as skull shape itself, is convergent in these reptiles. Some Anolis skull shapes 

have exhibited the breakdown of modules or the evolution of new modules 

over relatively short timescales, again demonstrating the potential 

complications of character correlations on phylogenetic accuracy. 
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More recently, probabilistic methods have identified modularity in dental 

characters in placental mammals, and discussed its implications for 

phylogenetics (Billet & Bardin, 2019). Models of correlated and uncorrelated 

evolution were fitted to pairwise comparisons between the presence and 

absence of two traits on three successive molars in placental mammals. The 

best model was a correlated model that constrained the number of 

transition paths between pairs of states, thus supporting the use of 

composite coding in these characters in matrix construction for 

phylogenetic analysis. 

Guillerme & Brazeau, (2018) additionally used simulations to assess the 

impact of correlations on tree topology. Character matrices ranging from 25-

1000 characters were simulated, and from these three new groups of 

matrices were created: maximized matrices in which characters in the 

original simulated matrix were retained and duplicated so as to maximize 

differences between characters, minimized matrices in which characters 

were retained and duplicated so as to minimize differences between 

characters, and finally randomized matrices in which characters were 

retained and duplicated at random. Topologies were then inferred, using 

various methods, from these four classes of matrices and compared using 

Robinson-Foulds distances (Robinson & Foulds, 1981). As expected, 

matrices with minimized character differences, (i.e. high correlation) 

performed poorly at reconstructing the topology inferred from the original 

matrices compared with the other matrix classes. This directly 

demonstrates the impact of duplicated and correlated characters on 

topology, revealing the need for identifying and accounting for such 

characters in empirical data. 

 

 

3.1.3. Rates of Evolutionary Change 

 

The relative rates of evolutionary change over time, across lineages and 

between loci may impact the inferred topology of phylogenetic trees. In 

molecular data, fast-evolving characters are prone to homoplasy, while 
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slowly-evolving characters may convey less phylogenetic information, 

implying the existence of an optimal rate of sequence evolution for 

phylogenetic inference (Dornburg, Su, & Townsend, 2019). Sequences that 

have evolved over time to the extent that substitutions have, by chance, 

converged on the same nucleotides (known as long branch attraction or 

LBH) will appear erroneously closely together. The problem of LBH can be 

partly overcome by the addition of taxa to break up the longer branches or 

by excluding faster evolving sites from analysis (Bergsten, 2005). 

Rapid phenotypic and molecular evolution can make it very difficult to 

resolve deep branches in some lineages (Whitfield & Kjer, 2008; Suh, 2016). 

For example in birds, uncertainty and conflict in phylogenetic hypotheses at 

the ordinal level probably reflect the rapid diversification of Neoaves at the 

K-Pg boundary (Suh, 2016). In some cases, fossils may be able to resolve 

these short branches, offering a temporal dimension to phylogenetic 

analysis that is not offered by molecular data or morphological data from 

extant species. That faster rates result in greater homoplasy opens avenues 

for the exploration of the relationship between the two. 

 

 

3.2. Intra-Morphological Conflict 

 

Morphological data are likely to share properties such as correlation and 

homoplasy within subsets, or partitions, which may result in conflicting 

topologies supported by these different data types. For example, dental data 

and osteological data are known to support different trees in mammals 

(Sansom, Wills, & Williams, 2017). Dental and other cranial characters are 

often affected by strong correlation by virtue of the ecological importance of 

mastication (Goswami et al., 2011), developmental constraints arising from 

occlusion (Wolsan et al., 2019), and also because individual teeth represent 

repeated structures, resulting in serial homology (Billet & Bardin, 2019). 

Further, soft and hard characters have different properties (Sansom & Wills, 

2017). For example, plumage characters are evolutionary labile and 
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characterized by convergence (Omland & Lanyon, 2000; Hofmann, Cronin, & 

Omland, 2007). 

It is therefore important to consider how to identify and treat classes of 

morphological characters when constructing matrices, or when applying 

statistical methods to these matrices, in phylogenetic reconstruction. 

Different coding strategies may be employed, for example treating 

correlated or serially homologous traits as single characters, known as 

composite coding (Torres-Montúfar, Borsch, & Ochoterena, 2018). This 

reduces pseudoreplication, but also overlooks information if structures are 

highly variable in some taxa. Alternatively, downweighting correlated 

characters would retain all relevant information while not treating them as 

independent, equal characters. Another possibility includes improving the 

modeling of morphological trait evolution in maximum likelihood and 

Bayesian analyses. The use and modeling of morphological characters in 

probabilistic methods of phylogeny reconstruction has recently been 

discussed in the literature in several contexts such as evolutionary rates 

(Wright, Lloyd, & Hillis, 2016), ontogeny (Bardin, Rouget, & Cecca, 2016) 

and serial homology (Billet & Bardin, 2019), and thus a discussion on the 

phylogenetic properties and treatment of such characters is timely. 

Where there is conflict between morphological characters, subsets of these 

characters may nevertheless contain phylogenetic signal, recoverable as 

hidden support when consilient with molecular data (Lee, 2009; Reeder et 

al., 2015). 

 

 

4. Integration of Data for Better Analysis of Evolutionary History 

 

A key question remains in phylogenetics whether morphological characters 

should be included in phylogenetic inference alongside molecular data 

(known as the ‘total evidence’ approach), or whether data types should be 

analysed separately, and subsequently character states can be mapped onto 

trees built from molecular data. Characters can be mapped onto trees after 
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having been used for inference, but the circularity of this method can limit 

its usefulness in some cases. 

The total evidence approach was originally proposed as the best method for 

phylogenetic inference by Kluge, (1989), who suggests that gaining a 

consensus from all available data in one dataset is superior to the 

independent analysis of data, where a subsequently derived consensus from 

equally-weighted trees could be misleading. Eernisse & Kluge, (1993) 

compare both methods, and find that total evidence better reproduces the 

evolutionary history of amniotes, suggesting that the equal weighting of 

both morphological and molecular data could confound analysis. 

The total evidence approach can be justified on statistical grounds in some 

cases.  The simultaneous use of both fast- and slow evolving genes, for 

example, in a phylogenetic analysis, may help to resolve different parts of 

the tree (Hillis, 1987). The total evidence method has been used successfully 

to reconstruct bat echolocation (Springer et al., 2001), and to resolve 

longstanding disagreements in crocodylian phylogeny (Gatesy et al., 2003) 

and in squamate phylogeny (Reeder et al., 2015). A problem with this 

method is that because molecular datasets usually contain many more 

(often orders of magnitude more) characters than morphological datasets, 

that any signal in the morphological data may simply be swamped by the 

molecular data. However, as was the case in the Gatesy et al., (2003) 

analysis, morphological data can affect the outcome of analysis if its 

phylogenetic signal is strong enough. This is because it may interact with 

congruent signal in the molecular data, affirming one of several conflicting 

signals within the molecular data.  

Miyamoto & Fitch, (1995) argue that instead of combined analysis, separate 

analyses of data into partitions might better resolve evolutionary history, 

since each partition represents an independent estimate of evolutionary 

history, and clades should be well-supported by all or most partitions to be 

considered real. A major problem with this method is determining how data 

should be partitioned. The partitioning of molecular data into fast and slow 

evolving loci, and the partitioning of morphological data into modules, or 
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into subsets based on some other criteria, may be a way to investigate this 

problem. 

Dávalos et al., (2014) used a combination of approaches to integrate 

morphological data with molecular data, demonstrating the existence not 

only of non-independence but also saturation in morphological data derived 

from Phyllostomidae (Mammalia: Chiroptera) fossils and extant species. 

They then extended the molecular scaffold approach used in many studies in 

such a way as to allow morphological data to influence topology only if the 

nodes generated from molecular data are ill supported. This seems to be a 

reasonable way to reconstruct evolutionary history using both molecular 

and morphological data, as the topology is mostly informed by the molecular 

data, unless the molecular signal is weak. The morphological data therefore 

acts as a reserve in the reconstruction of phylogeny where molecular data 

fails. 

 

 

5. Discussion and Conclusion 

 

There are conflicting signals in phylogenetic data. It is unclear what 

proportion of the data used in phylogenetic inference, whether 

morphological or molecular, correlates with phylogeny, what proportion is 

homoplastic or convergent, and what proportion is simply stochastic noise 

(e.g. Flynn and Nedbal 1998). Homoplasy in phylogenetic data has always 

plagued phylogenetic analysis, but the interesting question of what 

proportion of phylogenetic characters converge and why remains. 

Separating noise from phylogenetic or functional convergent signal is 

another problem in phylogenetics. However, we would expect convergent 

signal to at least be congruent with itself (Patterson & Givnish, 2002; 

Holland et al., 2010; Blanke et al., 2013), whereas random noise will on 

average not corroborate any strong existing signal. 

Although it is widely agreed that molecular data provides more accurate 

estimates of phylogeny in general, the extent to and manner in which 

morphological data should be used to elucidate evolutionary history in the 
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age of genomic phylogenetics remains unclear and widely discussed 

(Scotland et al., 2003; Wiens, 2004; Pisani et al., 2007; Giribet, 2015; Lee & 

Palci, 2015; Wanninger, 2015). The use of fossils adds another dimension to 

phylogenetic analysis, as the unique character combinations provided by 

fossils can yield otherwise unobtainable insights (e.g. Seiffert, 2007). 

Although some would decry the assumption of superiority (Livezey, 2011), 

molecules seem to more faithfully track and therefore reproduce the 

evolutionary history of species, such as the timing and order of branching 

events, than do morphological characters. Although tree-building with 

genetic data is not without its important systematic errors, it is ultimately 

more objective, statistically powerful, and neutral than morphological data. 

Morphology, by contrast, is sometimes beset with such problems as 

functional convergence, rapid radiation, character non-independence and 

modularity that make it less reliable in terms of accurately reproducing 

phylogeny. 

However, morphological data continues to be important in evolutionary 

biology as it alone can tell us about character changes over time, past 

character states, and phenotypic evolution. A recent example of the 

integration of phenotypic data into the study of evolutionary history has 

revealed the sequence of evolution of the beaks of Darwin’s finches 

(Lamichhaney et al., 2015), a classic example of phenotypic divergence. The 

authors scanned the genome to reveal genomic regions of increased 

divergence, exploring the relationships between genotype and phenotype. 

Further, the addition of even a small amount of morphological data can 

produce different topologies to trees built with molecular data alone (Gatesy 

et al., 2003; Reeder et al., 2015). These two quite different uses for 

morphology (i.e. to better resolve phylogenetic relationships, and to 

investigate phenotypic change over time) demonstrate the continuing 

importance of morphology in phylogenetics. 

However, morphology is not always used as effectively as it might be; the 

correlated evolution of characters and the evolution of modularity can 

confound analysis if not taken into account during phylogenetic analysis 

(Sadleir & Makovicky, 2008; Goswami & Polly, 2010a; Guillerme & Brazeau, 
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2018; Billet & Bardin, 2019), although statistical power may be lost if groups 

of correlated characters are reduced to one character each. Utilizing more of 

the morphology of an organism may be a practicable way to circumvent this 

loss of power, such as the use of characters which can be gained by the use 

of new imaging techniques (Lee & Palci, 2015), or using continuous 

characters. This expansion of morphological information may make it easier 

to find characters that are phylogenetically useful. 

Although not addressed here, I note that the added complexities of 

hybridisation, introgression and horizontal gene transfer may further 

confound analysis in some particular cases, as species may not be directly 

descended from one ancestor, but instead may contain genetic information 

and morphological traits from multiple, genetically distinct ancestors. This 

will result in discordance between gene trees. For example, attempts to 

resolve the deeper nodes in the ‘tree of life’ (i.e. the phylogeny of all life on 

earth) have probably been confused by gene transfer and gene fusion across 

lineages (Rivera & Lake, 2004). 

Ultimately, the proper evaluation of major evolutionary events requires the 

concerted utilization of morphology (including fossils) and molecules, for 

insights into the evolution of body plans, the genetic changes and 

morphological innovations that thence arise, and ultimately the relationship 

between genotype and phenotype. Evolutionary history includes, of course, 

not only the pattern and timing of historical branching events but also 

genetic changes over time and corresponding changes in morphospace and 

niche occupation of species.  Evolution is a dynamic and complex process of 

many parts, and as such, any examination into evolutionary history cannot 

be complete without the integration of genetic, fossil and morphological 

information. 

 

 

6. Aims and Methods of the Thesis 

 

Given the above context, and the ongoing discussion surrounding the use of 

morphological data, the following thesis aims to answer questions regarding 
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the nature of morphological evolution and patterns, particularly with 

regards to the partitioning of subsets of data. There are a priori reasons to 

suspect that different morphological characters display different cladistic 

patterns, including the existence of different evolutionary pressures acting 

on different aspects of organismal form. These differences arise from 

ecological, functional or genetic relatedness between characters of the same 

type, which are divergent between character types. For example, as 

discussed above, soft and hard characters (Sansom & Wills, 2017), dental 

and osteological characters (Sansom et al., 2017) and cranial and postcranial 

(Mounce, Sansom, & Wills, 2016) all display differing levels of homoplasy 

and imply different trees. Cranial and dental characters tend to be prone to 

modularity and correlation owing to occlusion, trophic convergence and 

serial homology (Goswami, 2007; Sadleir & Makovicky, 2008; Goswami & 

Polly, 2010b; Kelley & Motani, 2015; Billet & Bardin, 2019), while some soft 

characters are more homoplasious (Price, Friedman, & Omland, 2007).  

 

 

6.1. Approach and Methods Overview 

 

The overarching themes of this thesis therefore involve a) evaluating the 

properties of partitions of morphology in tetrapods, and b) comparing these 

data against molecular topologies. Specifically, I test for differences in 

homoplasy, transition ages, tree-dependent correlation and tree-

independent correlation between character types in tetrapod morphological 

datasets. I interrogate differences in these areas between osteological, soft, 

cranial, postcranial and dental characters. I use a variety of computational 

phylogenetic methods including the calculation of consistency of characters 

on molecular trees, character state reconstructions, detection of correlated 

character pairs using probabilistic methods, dataset and tree simulation, 

identification of cliques of internally-consistent characters, cluster analysis 

and phylogenetic comparative methods. 

In all analyses, I aim to use the broadest amount of data possible. To this 

end, I use datasets spanning birds, squamates and mammals. Further, I use 
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entire datasets where possible, as opposed to subsets of the data. In this 

way, I investigate the behavior and properties of morphological data in 

vertebrates. 

I do not discriminate between datasets or remove characters on the basis of 

data quality for 2 reasons: 1. There is no objective way to do this, and I wish 

to keep my analyses as free of bias as possible, and 2. I aim in part to 

evaluate not just the nature of morphology, but to evaluate the behaviour of 

morphological datasets actually published and used for analysis. 

For avian datasets and squamate datasets, I systematically searched the 

literature for morphological matrices (further details on data collection in 

chapter 1). For analyses of mammalian data, I used the datasets collected by 

Sansom et al., (2016). For comparison with molecular data, I primarily used 

the topologies and ages of Jetz et al., (2012) for birds, Zheng & Wiens, 

(2016) for squamates, and the new tree inferred by Upham, Esselstyn, & 

Jetz, (2019) for mammals. I additionally use alternative trees for comparison 

for some analyses. 

 

 

6.2. Format and Content of Results Chapters 

 

This thesis is presented in journal format. I have chosen to present my work 

this way as several of my chapters are suitable for and will be submitted for 

publication, and journal format therefore better reflects the content and 

aims of my work than traditional format. One of the 4 data chapters has 

been submitted for publication, with the remaining 3 chapters ready to 

submit. All chapters are presented in pre-publication, manuscript form. The 

rest of this section deals with the content and author contribution for each 

chapter. Briefly, chapter 1 deals with homoplasy and transition ages of 

character partitions and subpartitions in sauropsids (birds and reptiles), 

using molecular trees as a benchmark. Chapter 2 deals with the correlation 

of pairs of characters within and between osteological and non-osteological 

partitions in sauropsids, again comparing against the molecular data. As this 

approach relies on a reference tree, this may be termed external correlation. 



 42 

Chapter 3 deals with the internal correlation, or consistency, of osteological 

and non-osteological characters in sauropsid datasets, termed cliques, 

independent of an external topology. In chapter 4 I use the methods of the 

previous chapters, this time comparing dental with osteological data in 

mammalian morphological datasets. 

 

 

6.2.1. Osteological Characters Show Greater Congruence with Molecular 

Phylogenies than Soft Characters in Avian and Reptilian Morphological 

Datasets 

 

In this chapter I split 28 avian and squamate morphological datasets into 

osteological and non-osteological data, and further into cranial, postcranial, 

integumentary and myological data. I use phylogenetic methods to establish 

whether a) different partitions of morphological data display different levels 

of congruence with molecular trees, and b) these partitions transition at 

different ages on the molecular trees. I do this by computing the retention 

index for each character on each molecular tree, averaged over 1,000 trees 

from the posterior distribution of the Jetz et al., (2012) avian phylogeny, and 

the single Zheng & Wiens, (2016) squamate topology. I additionally 

computed the ensemble retention indices (i.e., the retention index for a 

group of characters) for partitions and subpartitions. I compared ensemble 

retention indices with a t test, and individual character retention indices 

with both Mann-Whitney U tests within datasets and linear mixed effects 

models including all datasets. I estimate transition ages by performing 

ancestral state reconstructions on molecular trees, and simulating transition 

ages for each character. I calculate average transition ages for each partition 

and compare individual character transition ages using linear mixed effects 

models. I additionally test whether homoplasy or partition has greater 

explanatory power for the transition ages. 

 

I performed all data analysis with advice and guidance from my primary 

supervisor, particularly receiving help for coding in the phylogenetics 
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program TNT (Goloboff, Farris, & Nixon, 2008). I additionally received 

advice on statistical analysis using linear mixed effects models from Dr Chris 

Knight. I produced the text with input from my primary supervisor. I also 

received helpful comments from two anonymous reviewers, who provided 

suggestions on data analysis and helped me to improve the clarity of my 

manuscript. Since I have completed the revisions, I will resubmit this 

chapter for publication. 

 

 

6.2.2. The Prevalence of Correlated Morphological Characters and their Effect 

on Phylogenetic Reconstruction 

 

In this chapter I compare correlated and uncorrelated models of character 

evolution between all pairs of binary morphological characters in 11 avian 

and squamate datasets. I compare models using the AICc and computing the 

AICc weights. I calculate the average AICc weight for character pairs for each 

partition in each dataset, as well as the average between partition and 

within partition character pairs. I additionally calculate the proportion of 

correlated characters, using 0.95 AICc weight as a threshold. I compare AICc 

weights between individual character pairs using linear mixed effects 

models. I additionally perform a sensitivity analysis on simulated data to 

test how robust these methods are to underlying data structure and amount 

of data present in each dataset. 

 

I performed all data analysis with advice and guidance from my primary 

supervisor. I received help in parallelizing my scripts in R and using the 

Computational Shared Facility from Dr Joseph Keating and the IT services 

Support Centre at the University of Manchester, as well as some additional 

advice on the use of the R package corHMM (Beaulieu et al., 2013), used for 

fitting the correlated and uncorrelated models, from Professor Jeremy 

Beaulieu. I wrote the chapter. This chapter has not yet been through peer-

review, but is ready for submission. 
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6.2.3. Cliques of Morphological Characters in Avian and Squamate Datasets 

 

In this chapter I look at the internal consistency of morphological 

characters. For all datasets, I calculate the size of the largest internally 

consistent group of characters, and compare this against a null distribution 

of shuffled datasets. I further infer pairwise dissimilarity matrices for these 

characters for each dataset, and perform cluster analyses on these to create 

trees where characters are clustered by similarity. I perform phylogenetic 

comparative methods to establish whether a) characters cluster by 

osteological and non-osteological partitions, and b) whether characters 

cluster by their fit on molecular trees. 

 

I performed all data analysis with advice and guidance from my primary 

supervisor. I was provided with Python scripts for the calculation of 

pairwise excess indices, the shuffling of matrices and calculation of 

maximum clique size, as well as advice on using Python, from Professor 

Barbara Holland. I received advice on the use of comparative methods using 

Phytools (Revell, 2012) from Professor Liam Revell. I wrote the chapter. 

This chapter has not yet been through peer-review, but is ready for 

submission. 

 

 

6.2.4. Convergence, Correlations and Cliques: An Analysis of the Relative 

Performance of Morphological Character Partitions in Mammals 

 

In this chapter I perform many of the above analyses, including calculating 

consistency on molecular trees, estimating relative transition ages, fitting 

correlated and uncorrelated models of character pair evolution, and cluster 

analyses on mammalian datasets, splitting the data into dental and 

osteological partitions. In addition, I infer trees for one large dataset from 

the dental, osteological, and combined data to directly examine phylogenetic 
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signal contained within these partitions, and compare these with tree-

distance metrics. 

 

I performed all data analysis with advice and guidance from my primary 

supervisor. I wrote the chapter. This chapter has not yet been through peer-

review, but is ready for submission. 
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1. Osteological Characters Show Greater Congruence with Molecular 

Phylogenies than Soft Characters in Avian and Reptilian Morphological 

Datasets 

 

Abstract 

 

Despite increased use of genomic data in phylogenetics, morphological 

information remains vital for resolving evolutionary relationships, 

particularly for fossil taxa. The properties and models of evolution of 

molecular sequence data are well characterized and mature relative to those 

of morphological data.  In particular, heterogeneity, integration and relative 

homoplasy of empirical morphological data could prove problematic for 

phylogenetic reconstruction if unaccounted for. Here we compare 

osteological and non-osteological characters of 28 morphological datasets of 

extant saurians in terms of their homoplasy relative to molecular trees. 

Analysis of individual avian datasets finds osteological characters to be 

significantly more consistent with molecular data than soft characters are. 

No significant differences were observed in 9 squamate datasets. Significant 

differences between morphological partitions were also observed in the age 

at which characters resolved on molecular trees; osteological character 

changes occur relatively earlier in deep branches whilst soft-tissue 

character transitions are more recent in shallow branches. The combined 

results demonstrate differences in evolutionary dynamics between 

morphological partitions. This may reflect evolutionary constraints acting 

on osteological characters, compared with the relative lability of soft 

characters. Furthermore, it provides some support to phylogenetic 

interpretations of fossil data, including dinosaurs, which are predominately 

osteological. Recent advances in amphibian and mammal phylogenetics may 

make these patterns possible to test for all tetrapods. 

 

 

1. Introduction 
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Phylogenetics, the reconstruction of the evolutionary relationships between 

taxa, underpins evolutionary biology. It is necessary for understanding 

morphological and molecular evolution, since well-resolved, topologically 

accurate phylogenies allow us to track evolutionary changes through time. 

In the age of phylogenomics, morphology remains a vital source of 

phylogenetic information (Wiens, 2004; Lee & Palci, 2015; Wanninger, 

2015) despite challenges such as the convergence and non-independence of 

characters. This is principally because morphological information is usually 

the only kind available from fossil taxa, and morphological data are 

therefore essential for their phylogenetic placement. An additional 

consideration is that morphological data provide an independent source of 

information with which to corroborate molecular data, with such 

consilience potentially strengthening hypotheses of evolutionary history, 

although simultaneous analyses of molecular and morphological data make 

the future role of morphology for consilience uncertain. 

Underlying these considerations is the widespread distribution of 

homoplasy in morphological data i.e. convergence of phenotypic characters 

in distantly related species, often owing to the action of similar selective 

regimes. Morphological homoplasy has been demonstrated to confound 

phylogenetic reconstruction (for examples see Torres & van Tuinen, 2013; 

Reeder et al., 2015). In order to best use morphological data, we need to 

understand and estimate the distribution of homoplasy as this could 

potentially aid in the building of more effective models for probabilistic 

inference methods. While convergence has also been observed in molecular 

data (Castoe et al., 2009; Foote et al., 2015; Zou & Zhang, 2016), it is 

nevertheless necessary to address these questions with regard to 

morphological data using molecular sequence data as an independent 

benchmark. 

 

 

1.1. Morphological Partitioning and Congruence 
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While there has been a focus in recent literature on the use of different 

models for morphological phylogenetic data (Wright & Hillis, 2014; O’Reilly 

et al., 2016; Puttick et al., 2017), somewhat less attention has been paid to 

the characters themselves (but see Song & Bucheli, 2010; Mounce et al., 

2016; Sansom et al., 2017). This is an important problem because there are 

several reasons to expect that different partitions of morphological data 

may give rise to different estimates of evolutionary history, such as selective 

regimes giving rise to convergence (e.g. Kivell et al., 2013), evolutionary 

lability leading to rapid and superimposed changes (Omland & Lanyon, 

2000; Wiens, 2009), modularity and mosaicism (Clarke & Middleton, 2008) 

and stochastic noise (e.g. Gaubert et al., 2005). Differences have been shown 

in the phylogenetic signal conveyed by dental and osteological character 

partitions in mammals (Sansom et al., 2017), hard and soft character 

partitions in various animals (Sansom & Wills, 2017) and craniodental and 

postcranial partitions in vertebrates (Mounce et al., 2016). 

The results of these and other studies (e.g. Sadleir & Makovicky, 2008; 

Goswami & Polly, 2010b) demonstrate that different groups of 

morphological characters evolve with different dynamics, rates and trends. 

Some characters evolve under strong confounding selection, while others 

retain phylogenetic signal which is recoverable when compared to a good 

estimate of the true underlying phylogeny. Characters evolving under 

selection can often be convergent (e.g. Sadleir & Makovicky, 2008), leading 

to suites of characters which, while compatible with each other, are 

incompatible with the underlying phylogeny (Holland et al., 2010). In this 

case, genomic data can in theory help reveal which of these characters 

convey signal consistent with underlying evolutionary history, while 

acknowledging that the this is unknowable. This approach, i.e. evaluating 

the performance of subsets of morphological characters, has an important 

role to play in phylogenetics, as it demonstrates that the indiscriminate use 

of morphological characters without regard to convergence may be harmful 

to morphological phylogenetics, as is the same approach to molecular 

phylogenetics (e.g. Reddy et al., 2017). 
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Assessing the consistency of morphological data with independent 

molecular trees and vice versa is useful because it reveals where data types 

are most consilient, and such consilience has the potential to strengthen or 

call into question existing hypotheses of phylogenetic history (Field et al., 

2014; McInerney, O’Connell, & Pisani, 2014; Reddy et al., 2017). It can also 

provide potential insight into the modes of evolution of those characters 

which are not congruent with the molecular trees, for example convergence 

and modularity. Examining consistency and tracing morphological evolution 

on molecular trees provides insight into the basis of evolutionary change 

and allows us to interpret phenotypic traits in the context of evolutionary 

history. Although congruence has been tested for and discussed in previous 

literature, this study builds upon previous research by testing a wider group 

of datasets spanning birds and reptiles. 

 

 

1.2. Rationale and Approach 

 

Here, we use morphological data and molecular trees from birds and 

squamates, the two largest groups within the Sauropsida, to test hypotheses 

of the correspondence of morphological characters with molecular trees. 

Specifically, we test whether osteological characters differ from soft-tissue 

characters in their consistency with molecular phylogenies. Previous studies 

have shown differences in the phylogenetic signal conveyed between hard 

and soft characters (Sansom & Wills, 2017). Within the osteological 

partition, we test whether the postcranial and cranial subpartitions differ, 

and within the soft-tissue partition we test whether plumage and 

integument and myology subpartitions differ. We may expect these 

partitions and subpartitions of morphological data to contain different 

levels of homoplasy, considering differences in the action of sexual selection, 

directional selection, and ecological and developmental constraint on 

different character subsets. Furthermore, characters might be expected to 

be informative at different taxonomic ranks reflecting varying levels of 

evolutionary constraint and lability. There are a priori reasons to expect 
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different amounts of homoplasy in these different morphological regions; 

specifically, we hypothesize that soft characters such as plumage may be 

expected to contain more apparent homoplasy than osteological characters 

owing to higher evolutionary lability and convergence, and their role in 

sexual selection (Omland & Lanyon, 2000; Price, Friedman, & Omland, 

2007). Additionally, different topologies are inferred from cranial and 

postcranial characters (Mounce et al., 2016), and retention of only dental 

data in particular results in loss of phylogenetic signal (Sansom et al., 2017), 

and we therefore hypothesize that there may be greater homoplasy in 

dental data. 

It is particularly important to apply these analyses to osteological data, as 

this is usually the only data available when assessing the phylogenetic 

position of fossil species. We additionally indirectly test whether soft 

characters are more evolutionarily labile and therefore likely to resolve at 

different taxonomic levels by performing a simple, parsimony-based 

ancestral state reconstruction for each character, and then assigning each 

character state change an age based on the node ages of the molecular tree. 

We expect more labile traits to have more recent ages in view of higher 

frequency of change. We additionally directly test the relationship between 

retention index and character transition age, to determine whether any 

difference in transition age between partitions can be primarily explained 

by homoplasy. 

 

 

2. Methods 

 

2.1. Data Collection 

 

Morphological data matrices for extant birds and squamates were compiled 

from three sources; a) Google Scholar, b) Graeme Lloyd’s collection of 

matrices (Lloyd, 2009), specifically the Cenozoic bird collection, and c) the 

reference list of the supertree study of Davis & Page (2014).  
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Matrices were categorized and scored according to their taxonomic 

coverage, taxonomic level of terminals, number of taxa, number of 

characters, types of characters and source of data. We excluded datasets 

with fewer than twenty characters and 10 taxa. Characters were split into 

osteological and non-osteological partitions, and then further split into 

subpartitions (cranial, postcranial, integumentary and myological). Non-

osteological morphological data in these datasets include mainly plumage, 

integument and myological data. It was necessary to exclude datasets for 

which the original data were either unavailable or unreadable. In many 

cases, matrices have been modified by various authors over time (e.g. 

Strauch, 1978), in which case the most recent version (e.g. Chu, 1995) was 

used to minimize pseudoreplication. We also identified non-independence 

between 3 matrices owing to taxonomic overlap, and excluded these from 

analyses accordingly. Additionally, some matrices were removed from 

analyses because of the unavailability of character descriptions or of the 

matrices themselves. A total of 18 avian and 8 squamate matrices were 

ultimately included, in addition to two large datasets with broad taxonomic 

coverage, one avian (Livezey & Zusi, 2007) and one squamate (Reeder et al., 

2015). Analysed datasets are available in the supplementary materials. 

Molecular trees of birds were extracted from Jetz et al.’s (2012) companion 

website (birdtree.org) for comparison with avian morphological data. Trees 

based on either of the two phylogenies used as backbone constraints by Jetz 

et al., (2012) are available to download, with the option to include all 

species of interest, or just those species with sequence data available.  

Of the two separate backbone phylogenies used by Jetz et al., (2012), the one 

using the Hackett et al., (2008) topology as a constraint was used since a 

larger amount of data used to build this phylogeny. It should be noted that 

the Hackett et al., (2008) tree uses β-fibrinogen, a gene which has been 

flagged as potentially problematic in recovering higher-level branching 

patterns (Mayr, 2011; Jetz et al., 2012). However, since our analysis 

primarily uses small datasets (apart from two datasets) with narrow 

taxonomic spread, this should not affect this study. Although overall levels 

of morphological homoplasy will likely differ between molecular trees, it is 
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less clear that relative homoplasy between partitions will differ between 

molecular trees, unless there is agreement between morphological 

partitions and molecular partitions. We additionally performed analyses on 

an alternative Galloanserae supertree (Eo, Bininda-Emonds, & Carroll, 2009) 

for one of our datasets (Livezey, 1991), to test whether these results are 

robust to different estimates of evolutionary history. 

Molecular trees were only extracted with taxa for which sequence data are 

available. The morphological data matrices were modified accordingly, by 

removing any taxa lacking molecular data. Additionally, some avian taxon 

names were altered in the morphological matrices to reflect alternative 

nomenclature used by Jetz et al., (2012). Avibase (Lepage, 2003), a database 

of bird taxonomy, was used to establish synonymy. Invalid taxa of any other 

kind (i.e. extinct taxa or taxa for which no synonymy in Jetz et al., 2012 could 

be established) were also deleted from the final morphological matrices. For 

each avian morphological matrix, 1,000 trees were sampled from the Jetz et 

al., (2012) posterior distribution. 

For squamates, the molecular supermatrix tree of Zheng & Wiens (2016) 

was used. The maximum likelihood tree includes around half of all 

squamates (4162 species) and 52 total mitochondrial and nuclear genes (12 

genes for 4161 species and 44 genes for 161 species). 

Some changes were made to matrices as necessary before analysis. For 

example, as the molecular data of Jetz et al., (2012) includes taxa only at 

species level, any taxa in morphological matrices at the level of subspecies 

were changed to reflect this. For example, character coding for some 

subspecies were combined, some taxa were removed that overlapped 

between datasets to ensure independence, and taxa without corresponding 

molecular data were removed. In all cases, original character ordering and 

outgroup taxa were retained. 

 

 

2.2. Homoplasy and Transition Ages 
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The fit of morphological characters relative to molecular trees was derived 

by calculating the retention indices of individual characters and, in the case 

of birds, averaging them over the 1000 trees for each dataset in TNT 

(Goloboff, Farris, & Nixon, 2008) (Figure 1). As these trees are from the 

posterior distribution it is possible that some may have low posterior 

probability. However, since the results are averaged over many trees and 

the MCMC algorithm spends more time sampling trees of higher posterior 

probability, it is likely that this will not affect results. The retention index of 

a cladistic character is a measure of its homoplasy, and is defined as the 

difference between the maximum number of steps on the tree and the 

number of state changes on that tree, divided by the difference between 

maximum number of steps on the tree and the number of state changes in 

the data. Values range from 0-1, with 1 indicating no homoplasy. 

Additionally, the ensemble retention index, the retention index for a group 

of characters, was calculated for partitions (osteological and non-

osteological data) and subpartitions (cranial and postcranial osteological 

data and integumentary and myological data). 

The difference in homoplasy between partitions was assessed by comparing 

mixed linear effects models in the R package nlme, with character retention 

index as the response variable and dataset treated as a random effect. 

Models compared were a null model, partition as a fixed effect and partition 

+ clade as fixed effects. Heteroskedasticity was first accounted for by fitting 

different models of heteroskdasticity to the data as using the preferred 

model in all further analyses. 

To test whether morphological partitions resolve on a phylogeny at different 

times and are informative at different taxonomic levels, the average ages of 

transition for osteological and non-osteological characters were compared. 

For birds, each informative, binary morphological character was applied to 

100 trees from the posterior distribution of Jetz et al., (2012) to estimate 

unambiguous character transitions in a parsimony framework (ACCTRAN) 

using the ancPropStateMat function in the R package Paleotree (Bapst, 

2012). For squamates, the single maximum likelihood tree was used. This 

gives an estimate of the node or nodes at which a character transitions. To 
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estimate the age of transition, a random age between the age of the node of 

transition and its immediate ancestor was derived 100 times for each tree. 

The average of these ages was then taken as the transition age of a character 

on that tree. For characters transitioning multiple times on a tree, an 

average was taken of the ages for each of the branches along which the 

character transitions. The transition ages for each tree were then averaged 

to obtain the final transition age for each character (R script available in 

supplementary information). This approach pulls transition ages towards 

the middle of branches on which transitions occur, while adding a stochastic 

element. This allows for the comparison of multiple runs, in order to test 

how robust the results are to uncertainty in exact transition age. Note that 

this approach is likely to overestimate transition ages owing to the use of 

ACCTRAN and averaging ages along the branch preceding the transition. 

However, this is unlikely to significantly affect the results since the absolute 

age of transition is less important than the comparison of ages between 

partitions.  The use of ACCTRAN as opposed to another algorithm was 

essentially arbitrary. 

The average age of transition was compared between partitions for all 

datasets using a linear mixed model using the R package nlme, accounting 

for heteroskedasticity. A model treating partition (osteology and non-

osteology) as fixed effect, and a model treating partition and clade (bird and 

reptile) as fixed effects were compared against a null. In all analyses, dataset 

was treated as a random effect. Additionally, to test for the effect of 

homoplasy on apparent transition age, a null model with age as response 

variable was compared with a model treating individual character retention 

indices as a fixed effect and models treating both retention index and 

partition as fixed effects, both with and without interaction terms. 
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Fig 1. Workflow for estimating transition ages of osteological vs non-osteological characters. 

Character state reconstructions were performed on all characters. One thousand random ages 

along branches on which transitions occur were simulated and averaged. For any characters 

transitioning multiple times, these ages were also averaged. These final transition ages for 

each character were then averaged for each partition to obtain relative transition ages for 

osteological and non-osteological data. Linear mixed effects models were also applied to the 

individual character transition ages. 

 

 

3. Results 

 

3.1. Homoplasy 

 

Osteological characters in morphological data are significantly more 

consistent with the molecular trees than soft tissue characters for avian and 

squamate datasets (paired t of ensemble retention indices, n = 28, p = 

0.0004 (Figure 2), linear mixed effect model, likelihood ratio = 98.18, p = 

<.0001, least square mean for osteology = 0.666, non-osteology = 0.555). 

However, no significant difference was found between cranial and 

postcranial partitions (Figure 3), possibly because of the relative paucity of 

adequate data when splitting the osteological partition (paired t, n = 19, p = 

0.5174). The relative homology between myology and integument could not 

States of all characters in all datasets reconstructed using ACCTRAN algorithm 

Branches on which transitions occur identified

Random ages generated and averaged along each branch on which a transition occurs

Ages for characters with multiple transitions averaged to obtain transition age for each 
character

Transition ages averaged for osteological and non-osteological partitions
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be compared between all datasets because there was a small number of 

characters in each subpartition. No significant difference was found between 

myological and integumentary or plumage characters for any individual 

datasets out of the 3 tested (Mann-Whitney U, Table 1). The addition of 

subpartition as a fixed effect did not significantly improve the explanatory 

power of linear models, although postcranial data had the highest least 

square mean retention index (0.682), compared with cranial (0.631), 

integument (0.525) and myology (0.673). 

The single large morphological dataset covering all birds (Livezey & Zusi, 

2007) was analysed separately because of taxonomic overlap and possible 

differences in properties between it and smaller datasets, such as character 

correlations, and found a significantly higher retention indices of soft 

characters with the underlying molecular phylogeny, as well as significantly 

higher consilience of cranial characters versus postcranial characters (Table 

1). For squamates, the single large morphological dataset (Reeder et al., 

2015) shows significantly higher consilience of osteological and cranial 

characters (Table 1, p = 6.82e-05). 

 

 

Table 1 at End of Document 

 

Table 1. Showing number of taxa, number of informative characters per partition, ensemble 

retention indices for partitions for each dataset and results of Mann-Whitney U comparing the 

mean retention index between partitions, where the null hypothesis is that the two sets of 

retention indices are drawn from the same distribution. Because of differences in taxonomic 

level, avian datasets are categorised by superorder or order, while squamate datasets are 

categorised by sub- or infraorder or superfamily. 
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Fig 2. Ensemble retention index between osteological and non-osteological partitions for birds 

and squamates. Osteological data has higher consistency in datasets falling below the x=y line. 

Colour corresponds to clade and dot size is proportional to dataset size (in number of total 

characters). 
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Fig 3. Ensemble retention index between cranial and postcranial partitions for birds and 

squamates. Cranial data has higher consistency in datasets falling below the x=y line. Colour 

corresponds to clade and dot size is proportional to dataset size (in number of total 

osteological characters). 

 

A highly significant correlation (Pearson correlation coefficient, rho = 0.83, n 

= 27, p = 6.541e-08) between the ensemble retention indices between 

osteological versus soft character partitions across all datasets suggests that 

properties of the individual study or taxa are an important determinant of 

how well both sets of characters fit the molecular phylogeny, perhaps 

indicating that the age of datasets, coding practices of particular authors or 

underlying properties of the morphology are important factors determining 

character consistency. 

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Ensemble RI of Cranial Partition

E
n
s
e
m

b
le

 R
I 

o
f 

P
o

s
tc

ra
n

ia
l 
P

a
rt

it
io

n

Chars

●

●
●

500

1000

1500

Clade

●

●

Birds

Squamates

Support Values for Cranial and Postcranial Partitions



 73 

There are more characters in osteological compared with non-osteological 

partitions (paired t test, t = 2.081, df = 26, p = 0.04705).  However, there is 

no correlation between the number of characters and the ensemble 

retention index within either osteological (linear regression, F = 0.2282, df = 

26, p = 0.637) or soft tissue partitions (linear regression, F = 0.3596, df = 26, 

p = 0.5539) suggesting that the marginally significant difference in the 

number of characters between partitions likely does not explain the 

observed relationship between retention index and data type. There is also 

no correlation between number of taxa and the ensemble retention index of 

either the osteological (linear regression, F = 1.555, df = 26, p = 0.224) or 

non-osteological (F = 0.909, df = 26, p = 0.349) partition, suggesting that 

dataset size does not affect the results. 

Additionally, we find similar results on the alternative topology for Livezey, 

(1991), with an ensemble retention index of 0.82 for osteological data and 

0.70 for non-osteological data, suggesting that our overall results are robust 

to different topologies. 

 

 

3.2. Relative Transition Ages 

 

Average character transition ages are significantly older for osteological 

characters relative to non-osteological characters (Figure 4, supplementary 

Figure 2). The best linear mixed effect model was that including both 

partition and clade as fixed effects (one-way anova, Table 2), indicating 

older ages for transitions in osteological data, and older ages for transitions 

in squamate data. Transition age data was highly heteroskedastic, with 

variability around the mean increasing with age. In all analyses, dataset was 

treated as a random effect. 

 

 

 

 

 



 74 

Table 2. Table comparing fit of three different linear mixed effect models to examine the effect 

of partition (osteological or non-osteological) on character transition age. 

Fixed 

Effects 
df AIC 

Log 

Likelihood 

Likelihood 

Ratio 
P value 

None 23 11355.15 -5654.575   

Partition 24 11326.53 -5639.264 30.62207 <.0001 

Partition + 

Clade 
25 

11314.8 -5632.398 13.73356 <.0001 

 

Models compared include a null model, a model including partition as a fixed effect, and a 

model including both partition and clade (birds or reptiles) as fixed effects. Dataset is treated 

as a random effect in all models. AICs, likelihood ratios and p values all prefer the most 

complex model, suggesting that partition and clade both have strong explanatory power. 

Transitions in osteological characters are significantly older, as are transitions in squamate 

characters. 

 

For individual datasets, 5 out of 16 avian datasets and 3 out of 6 squamate 

datasets show significant differences in age of transition between individual 

osteological and non-osteological characters (Mann-Whitney U tests, Table 

3). 

Subpartitions (cranial vs postcranial and myology versus plumage) for all 

datasets were harder to assess statistically owing to paucity of data. There is 

no significant difference in cranial versus postcranial character transition 

ages between datasets for birds and squamates together (paired t, t = -

0.36538, df = 14, p = 0.7203). Out of 15 assessed datasets, only 3 are 

significantly different between cranial and postcranial partitions, and 1 out 

of 2 datasets show a significant difference between myology and integument 

(Mann-Whitney U tests, Table 3). 
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Fig 4. Showing differences in pooled character transition ages in millions of years between 

partitions in all bird and squamate datasets. Dashed lines indicate mean ages of osteological 

(older) and non-osteological (younger) characters. Data is coloured by partition, with 

osteological data in purple and non-osteological data in green. 

 

There is a significant correlation between transition age and retention index 

(linear regression, F = 15.38, df = 955, p = 9.40E-05) in the Livezey and Zusi 

(2006) dataset, showing a direct association between the age of a character 

change and homoplasy. Additionally, there is a negative correlation between 

difference in the ensemble retention index between osteological characters 

and non-osteological characters, and the root age of the dataset in birds 
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(linear regression, F = 6.038, df = 18, p = 0.025, Supplementary Figure 3), 

indicating that osteological characters become relatively less congruent with 

molecular trees compared to soft characters further back in time. Given that 

both retention index and transition age differ between partitions, and 

retention index and transition ages are correlated (supplementary Figure 1), 

further linear mixed effect models were compared in order to further 

examine the relationship between homoplasy, transition age and partition. 

Retention index had significant explanatory power for transition age. 

Explanatory power was further improved with the addition of partition as a 

fixed effect, with an interaction term between retention index and partition, 

indicating that the difference in homoplasy between partitions explains the 

difference in transition ages between partitions (Table 3).  

 

Table 3. Table comparing fit of four different linear mixed effect models to examine the effect 

of homoplasy (as measured by the retention index) on apparent transition ages. 

Fixed Effects df AIC 

Log 

Likelihood 

Likelihood 

Ratio P value 

None 23 11355.15 -5654.575 
  

RI 24 11310.02 -5631.01 47.13005 <.0001 

RI + Partition 25 11315.48 -5632.739 3.45623 0.063 

RI * Partition 26 11297.53 -5622.767 19.94243 <.0001 

 

Models compared include a null model, a model including retention index as a fixed effect, and 

models including both retention index and partition (osteology and non-osteology) as fixed 

effects. Character transition age is the response variable and dataset is treated as a random 

effect in all models. AICs, likelihood ratios and p values all prefer the most complex model, 

suggesting that retention index has strong explanatory power on transition age. Homoplasy is 

significantly stronger in younger characters, explaining the difference in transition age 

between osteological and soft characters. 

 

 

4. Discussion 

 

The results of this analysis of saurian datasets demonstrate that non-

osteological characters exhibit greater levels of homoplasy relative to 



 77 

molecular trees than osteological characters do, and that this homoplasy 

explains a difference in average character transition ages between these 

morphological regions. This is consistent with previous studies showing 

differences in phylogenetic properties between hard and soft morphological 

data (Sansom & Wills, 2017). Interestingly, however, soft characters have a 

higher consistency with molecular data than osteological characters in the 

single, larger (Livezey & Zusi, 2007) dataset. This may be owing to the 

coding style of the individual authors rather than a reflection of the 

properties of the morphological data themselves. Additionally, as this is a 

very large dataset, it may be affected by issues such as the non-

independence of characters to a greater extent than the smaller datasets 

analyzed here. Alternatively, different classes of characters may be 

phylogenetically informative at different taxonomic levels, and this 

discrepancy is therefore explained by the difference in taxonomic breadth 

between the single broad dataset spanning all birds, and the datasets of 

smaller clades. This is supported by the fact that between individual avian 

datasets, the difference in congruence between osteological and soft 

characters decreases and appears to even reverse deeper in time. It is also 

possible that spurious higher-level relationships in the molecular topology 

have affected the results. Future analyses would benefit from comparisons 

between several molecular phylogenies, however this was not possible here 

as currently available molecular phylogenies for birds are limited in 

taxonomic coverage. 

 

 

4.1. Evolutionary Constraint and Selection 

 

In view of evolutionary and developmental constraints on the vertebrate 

body plan (Hu et al., 2017), it seems sensible to suggest that osteological 

characters may tend to evolve more slowly than some soft characters. In 

birds, these constraints may particularly pertain to flight, which requires a 

specific bauplan, largely conserved across flying birds (Sullivan et al., 2017). 

While also extremely important for flight, such constraints may not be 
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shared by some types of plumage characters which, by contrast, are 

considered relatively evolutionarily labile and therefore highly convergent 

owing to sexual selection in many avian taxa (Omland & Lanyon, 2000; Price 

et al., 2007; Hofmann, Cronin, & Omland, 2007). In this case, the relative 

paucity of integumentary characters in the large Livezey & Zusi (2007) 

dataset (98 compared with 237 myological characters) may itself be a 

reflection of the difficulty in finding homologous plumage characters across 

all birds owing to the faster evolutionary rates of these characters. 

It is therefore possible that superimposed changes in some plumage traits 

such as colouration, where characters may change multiple times on a tree, 

could result in saturation and convergence of these characters, while only 

through deep time and across a broad taxonomic range do osteological 

characters become convergent. Labile and ecologically important traits may 

be expected to poorly reflect evolutionary history (Price et al., 2007; 

Kamilar & Muldoon, 2010), possibly because of this overwritten 

phylogenetic signal in characters accruing multiple changes. This cannot 

however explain why the same pattern is not observed in larger squamate 

datasets. Although reproductive success in squamates is often determined 

by physical capability and behaviour (Shine, Langkilde, & Mason, 2004; 

Swierk, Ridgway, & Langkilde, 2012), colouration is also important in many 

species (Chen et al., 2012). 

 

 

4.2. Character Transition Ages  

 

To test whether different classes of characters are informative at different 

taxonomic levels, we compared the ages at which these different character 

types transition. Our results show that soft characters generally change on a 

phylogeny at younger ages than osteological characters for all datasets 

together, and that levels of homoplasy are directly related to age of 

transition for a character. This supports the hypothesis that different 

morphological regions may be phylogenetically informative at different 

taxonomic levels. Evolutionarily labile traits may contain the phylogenetic 
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signal to resolve the relationships between extremely young taxa, but may 

be subsequently overwritten over time, while slower-evolving traits become 

overwritten only in deeper time. For example, Benson & Choiniere (2013) 

suggest that although musculoskeletal evolution during the dinosaur-bird 

transition may have driven early rapid speciation, some of this potentially 

strong phylogenetic signal has been overwritten by subsequent 

diversification. Plumage characters, by contrast, may be phylogenetically 

useful within a genus, but are more likely to be homoplasious at the level of 

family or order. These changes may become saturated over time, a situation 

almost analogous to the long-branch attraction observed in molecular 

systematics. By contrast, traits that evolve slowly may be phylogenetically 

uninformative at lower taxonomic levels but may help to resolve 

relationships where they vary between higher taxa. This idea is supported 

by the fact that soft characters change more recently on phylogenies in both 

birds and squamates. Since ancestral state reconstructions were performed 

under a parsimony framework, which minimises transitions, evolutionary 

rates are not modelled and evolutionary lability and overwritten signal are 

expected to manifest as younger ages on trees. 

The observed higher consistency of osteological characters in birds is 

consistent with previous studies suggesting that plumage contains weak 

phylogenetic signal as a result of homoplasy (Price et al., 2007). However, 

while the non-osteological characters used in the meta-analysis have been 

split into the sub-partitions of myology and plumage or integument, there 

was not enough data from any of these partitions alone to compare with 

osteology. Given more data, splitting the non-osteological characters into 

more subpartitions may help to further resolve the distribution of support 

among character types by reducing the potentially conflicting signal 

between the morphologically disparate characters within the partition. This 

is because the non-osteological data are derived from plumage, myology, 

integument and in some cases other categories such as nervous tissue. As 

these all have different developmental and evolutionary origins, and 

evolutionary pressures, there is potential for conflicting signal between 

these data types.  
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An alternative explanation for the results presented here is that differences 

in the consilience of different morphological partitions with a molecular 

phylogeny may reflect differences in coding strategies in different subsets of 

morphological data rather than any inherent difference in the ability of 

these areas of morphology to elucidate evolutionary history per se. 

However, there is no obvious a priori reason to suspect that plumage or 

other soft-tissue characters are more difficult to accurately code than 

osteological characters. It may be the case that since osteological characters 

are more conserved across vertebrate species they are better understood 

and therefore easier to code, which is consistent with the idea that 

osteological characters contain more phylogenetic signal than other areas of 

morphology. 

 

 

5. Conclusion 

 

Examining the consistency of different classes of morphological characters 

against a molecular phylogeny provides a way of identifying consilience 

between these different data types. Here, we have identified greater 

consistency of osteological characters than soft tissue characters with 

molecular phylogenies, implying that hard characters may be more reliable 

in reconstructing evolutionary history, while relatively more evolutionarily 

labile soft characters such as plumage, which are affected to a greater extent 

by sexual and directional selection, and less affected by evolutionary 

constraint. This is supported by their more recent apparent transitions on 

phylogenetic trees. 

The higher consistency of osteological characters with an underlying 

molecular tree is potentially good news for palaeontologists when placing 

fossil taxa, since osteological data are often the only phylogenetic 

information available when working with fossil species. However, caution 

must still be exercised since as the Livezey & Zusi (2007) data show, this is 

not always the case, and osteological data may become increasingly 

unreliable deeper in time. 
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These findings may have implications for the use of morphological data in 

phylogeny reconstruction. Future analyses, for example those using models 

of morphological evolution in probabilistic frameworks, may benefit from 

incorporating morphological partition schemes that reflect the shared 

evolutionary properties of characters within partitions, which may be 

identified by testing for differences in homoplasy, evolutionary rates or 

transition ages, or correlations. This may involve splitting hard and soft 

characters, or cranial and postcranial characters. 

Whether these patterns apply more broadly across vertebrate species can 

be investigated with recent well-sampled molecular trees. This will be 

especially useful for teasing out any difference between the different types 

of soft tissue characters found in different vertebrates. 
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Supplementary Materials 

 

 

Supplementary Figure 1. Showing the retention index of individual characters on molecular 

trees by transition age in millions of years for each squamate and avian dataset. In most 

datasets, retention index tends to increase with age. Characters are coloured by partition, with 

osteological characters in purple and non-osteological characters in green. 
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Supplementary Figure 2. Showing the density of character transition ages in Millions of 

years on molecular trees individually for each squamate and avian dataset. In most datasets, 

average transition ages (dashed lines) are older for osteological than non-osteological. Plots 

are coloured by partition, with osteolgical data in purple and non-osteological data in green. 
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Supplementary Figure 3. Showing the difference between the ensemble retention indices of 

osteological and non-osteological partitions (osteological RI – non-osteological RI) on 

molecular trees within datasets, by root age of the dataset in millions of years. Regression line 

(p = 0.025) is in blue and standard error is indicated in grey. The difference between 

osteological and non-osteological fit to the molecular trees decreases and reverses in time, 

indicating a relatively poorer fit of osteological data, and relatievely better fit of non-

osteological data, to molecular trees further back in time. 
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Table 1. Dataset dimensions and ensemble retention indices for partitions for each dataset 

        Osteological data Non-Osteological Data 
P 
(Wilcoxon) 

Dataset Superorder/Order Focal Clade Taxa 

Ensemble 
character 
retention 
index 

Informative 
Characters 

Ensemble 
character 
retention 
index 

Informative 
Characters 

  

Birds                 

Chu, 1995 Charadriiformes Various 70 0.84 62 0.76 5 0.1482 

Smith, 2011 Charadriiformes Pan-Alcidae 52 0.67 197 0.64 102 0.2762 

Nesbitt, 
Ksepka, & 
Clarke, 2011 

Cypselomorphae Various 11 0.6 82 0.7 9 0.6089 

Frank-
Hoeflich et 
al., 2007 

Galloanserae Cracidae 65 0.85 149 0.71 43 5.614e-05** 

Livezey, 
1991 

Galloanserae Anatini 49 0.79 28 0.67 115 0.1449 

Livezey, 
1996b 

Galloanserae Anserinae 25 0.85 31 0.71 51 0.0009672** 

Livezey, 
1996a 

Galloanserae Aythyini 12 0.75 7 0.59 38 0.4868 

McCracken et 
al., 1999 

Galloanserae Oxyurinae 11 0.65 25 0.54 28 0.1237 

Livezey, 
1998 

Gruiformes Rallidae 74 0.93 180 0.74 100 1.545e-11** 

Birdsley, 
2002 

Passeriformes Tyrannidae 31 0.58 27 0.46 12 0.9741 
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Irestedt, 
Fjeldså, & 
Ericson, 
2004 

Passeriformes Dendrocolaptinae 38 0.79 9 0.66 21 0.08464 

Maurício et 
al., 2012 

Passeriformes Rhynocryptidae 34 0.76 80 0.7 8 0.6788 

Patten & 
Fugate, 1998 

Passeriformes Emberizidae 27 0.47 6 0.4 24 0.8549 

Prum, 1992 Passeriformes Pipridae 30 0.69 29 0.49 10 0.04598* 

Prum, 1993 Passeriformes 
Eurylaimidae and 
Philepittidae 

12 0.86 16 0.86 11 0.898 

Winker & 
Pruett, 2006 

Passeriformes Catharus 17 0.41 11 0.26 29 0.1931 

Clarke et al., 
2007 

Sphenisciformes Various 30 0.92 96 0.79 81 0.02412* 

Bertelli, 
Chiappe, & 
Mayr, 2014 

Tinamiformes Tinamidae 17 0.72 85 0.88 39 3.86e-05** 

Livezey & 
Zusi, 2007 

Various Various 139 0.6 1528 0.65 436 0.002469** 

Squamates                 

Daza & 
Bauer, 2012 

Gekotta Sphaerodactylidae 12 0.34 227 0.41 17 0.4753 

Hitchmough, 
1997 

Gekotta Diplodactylinae 12 0.83 10 0.84 9 1 

Frost et al., 
2001a 

Iguania Polychrotidae 26 0.77 31 0.56 40 0.1222 
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Frost et al., 
2001b 

Iguania Tropiduridae 28 0.68 32 0.56 46 0.4259 

Vieira, Colli, 
& Bao, 2005 

Iguania Corytophanidae 10 0.38 49 0.21 8 0.1132 

Arnold, 1997 Lacertoidea Takydromus 15 0.52 9 0.46 17 0.7854 

Kearney, 
2003 

Lacertoidea Amphisbaenia 36 0.74 118 0.72 16 0.3713 

Yi & Norell, 
2013 

Lacertoidea Various 25 0.62 209 0.67 25 0.09413 

Reeder et al., 
2015 

Various Various 135 0.74 533 0.61 93 6.82e-05** 

Showing number of taxa, number of informative characters per partition, ensemble retention indices for partitions for each dataset and results of Mann-

Whitney U comparing the mean retention index between partitions, where the null hypothesis is that the two sets of retention indices are drawn from the 

same distribution. Because of the differences in taxonomic level, avian datasets are categorised by superorder or order, while squamate datasets are 

categorised by sub- or infraorder or superfamily. 

 

 

 

  



 95 

 

Table 1 cont. Dataset dimensions and ensemble retention indices for partitions for each dataset 
 

Cranial Postcranial P (Wilcoxon) Plumage   Myology   
P 

(Wilcoxon) 

Ensemble 
character 
retention 
index 

Informative 
Characters 

Ensemble 
character 
retention 
index 

Informative 
Characters 

  

Ensemble 
character 
retention 
index 

Informative 
Characters 

Ensemble 
character 
retention 
index 

Informative 
Characters 

  

                    

0.91 23 0.8 39 0.02452*           

0.63 51 0.68 146 0.5143 0.572505 30 0.675355 72 0.493 

0.64 35 0.59 47 0.5251           

0.84 79 0.86 70 0.173           

0.81 5 0.79 23 0.1494           

  4   27 NA           

  0   7 NA           

  0   25 NA           

0.9 36 0.93 144 0.01465*           
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0.7 7 0.5 20 0.2419           

  9   0 NA           

0.75 39 0.76 41 0.1701           

  5   1 NA           

  0   29 NA           

  0   16 NA           

0.18 5 0.56 6 0.4015           

0.86 37 0.95 59 0.003018**           

0.66 37 0.77 48 0.08348           

0.63 357 0.59 1171 0.0005366** 0.651811 98 0.623933 237 0.09542 

                    

0.33 152 0.36 75 0.7183           

  2   8 NA           
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0.76 17 0.78 14 0.8555           

0.64 21 0.73 11 0.9351           

0.38 37 0.39 12 0.8625           

        NA           

0.75 88 0.7 30 0.6918           

0.62 169 0.65 40 0.2796 0.711538 10 0.608696 11 0.6851 

0.76 411 0.67 122 0.000001994*           

Showing number of taxa, number of informative characters per partition, ensemble retention indices for partitions for each dataset and results of Mann-

Whitney U comparing the mean retention index between partitions, where the null hypothesis is that the two sets of retention indices are drawn from the 

same distribution. Because of the differences in taxonomic level, avian datasets are categorised by superorder or order, while squamate datasets are 

categorised by sub- or infraorder or superfamily. 
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2. The Prevalence of Correlated Morphological Characters and their 

Effect on Phylogenetic Reconstruction 

 

Abstract 

 

The independence of characters is an important principle for phylogenetic 

analysis. The presence of semi-autonomous, correlated pairs or suites of 

morphological characters as a result of selection or functional and 

ontogenetic constraints on body plan has the potential to confound 

phylogenetic reconstruction, but the presence of such traits in 

morphological character matrices is rarely tested or accounted for. It is 

therefore important to assess the prevalence and impact of these characters 

on phylogenetic data. Here, a meta-analysis approach is taken to identify 

correlated character pairs in 12 avian and squamate reptile morphological 

datasets, comparing osteological and soft tissue partitions, under a 

maximum likelihood framework. We find that correlated character pairs are 

present in all datasets. Consideration of the distribution of correlated pairs 

within and between osteological and non-osteological partitions finds that 

levels of correlation differ between partitions within datasets. Additionally, 

characters are more correlated within than between these partitions. 

Furthermore, simulation of datasets and trees finds that methods are 

sensitive to the number of taxa in individual datasets and to tree shape. This 

has implications for phylogenetic analysis, as the presence of correlation 

and modularity is known to mislead tree topology. 

 

 

1. Introduction 

 

Correlation of morphological characters is an increasingly recognized 

problem in phylogenetics (Sadleir & Makovicky, 2008; Goswami & Polly, 

2010; Goswami et al., 2014; Guillerme & Brazeau, 2018; Billet & Bardin, 

2019). Correlation can arise as a result of developmental, functional and 

ecological integration (Cheverud, 1996; Harmon et al., 2005; Klingenberg, 
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2008). Distantly related species may evolve independently to be 

morphologically similar as a result of a combination of common 

evolutionary pressures and functional constraints resulting in a limited 

number of possible evolutionary outcomes (Felice & Goswami, 2018). These 

shared pressures may lead not only to evolutionary convergence, but also to 

the presence of pairs or suites of correlated morphological characters as a 

result of parallel adaptation to multi-dimensional niche space (Harmon et 

al., 2005), a process known as concerted convergence (Patterson & Givnish, 

2002; Holland et al., 2010). These correlations are often associated with 

adaptive peaks suitable for the occupation of this shared niche space. In 

addition, some morphological traits are necessarily correlated as a result of 

shared developmental origins or functional relatedness e.g. dentition 

(Labonne et al., 2014; Billet & Bardin, 2019; Wolsan et al., 2019), limbs 

(Hallgrímsson, Willmore, & Hall, 2002; Fabre et al., 2014) and cranium 

(Goswami, 2006a, 2007). Functional and developmental integration have 

been most often examined within a morphometric context, where 

associations between traits can be found by analyzing the covariation of 

landmarks across several species using shape analysis. 

In a phylogenetic context, morphological information may be coded into 

characters exhibiting correlation owing to ecological similarity and 

convergence, possibly inflating the estimated phylogenetic relatedness 

between these species if common morphological characteristics are 

assumed to be the result of common ancestry. For example, the convergence 

of multiple morphological traits associated with several ecomorphotypes in 

Caribbean Anolis lizards is substantial enough that cluster analysis using 

morphological data places species occupying the same niche on different 

islands together. However, these lizards often are more closely related to 

different ecomorphotypes on the same island than to those occupying the 

same niche space on a neighboring island (Losos, 1998). Additionally, 

integration within the cranium, an area often subject to strong selection 

relating to diet and habitat, has been shown to affect phylogenetic analysis 

in both carnivores (Goswami & Polly, 2010) and crocodilians (Sadleir & 

Makovicky, 2008). 
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These examples in isolated clades serve as a warning of how both 

convergence and concerted evolution of morphological characters in 

distantly related species in response to shared niche space can affect tree 

topology when these processes are ignored. It is therefore essential to 

evaluate the strength and prevalence of correlated evolution of 

morphological traits across larger clades, using partitions of cladistic 

morphological data (Billet & Bardin, 2019), to more closely examine which 

areas of morphology are more subject to selection and which, by contrast, 

may contain greater phylogenetic signal.  

 

 

1.1. Detecting Correlations in Phylogenetic Data 

 

Morphometric and cladistic data may capture broadly similar information 

about organismal form (Hetherington et al., 2015). Indeed, this is 

necessarily true, for example when looking at relative lengths or distances 

between traits (i.e., these can be and are both coded in cladistic characters, 

and captured in multivariate analysis), meaning that such associations, 

though most often explicitly captured by morphometric analyses, are likely 

to feature prominently in cladistic data. 

In phylogenetic analysis using morphological characters, characters are 

usually assumed to be uncorrelated (Felsenstein, 1973; Emerson & Hastings, 

1998). This is essentially a problem of pseudoreplication, where correlated 

suites of characters are treated as independent data points, potentially 

inflating relatedness between morphologically similar species. This leaves 

these analyses open to being misled (Sadleir & Makovicky, 2008; Goswami & 

Polly, 2010; Goswami et al., 2014). 

Over the last few decades, several methods have been developed to detect 

correlations in morphological characters both with (Sadleir & Makovicky, 

2008; Beaulieu, O’Meara, & Donoghue, 2013) and without (O’Keefe & 

Wagner, 2001; Sadleir & Makovicky, 2008; Holland et al., 2010) an 

underlying phylogeny.  Most recently, model-based approaches 

implemented under a Bayesian or likelihood framework have been used to 
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detect pairs of correlated characters along a phylogeny. In these models, a 

pair of characters is correlated if the rate of change of a character on a 

phylogeny is dependent on the state of the second. For example, this is the 

case if the change of a character from state 0 to state 1 occurs more 

frequently when the second character is in state 1. Thus, a model in which 

characters change independently of the state of a second character is an 

uncorrelated model, and models in which transition rates of characters 

differ according the state of the second are correlated models. This 

approach requires two or more morphological characters, and a tree on 

which to map these characters. Model comparison methods can then be 

used to discriminate between correlated and uncorrelated models of 

character pair evolution. This can be implemented in either a maximum 

likelihood or Bayesian framework (Pagel, 1994; Beaulieu et al., 2013). This 

is not often done on large or multiple datasets, however, possibly because it 

is computationally expensive. 

Here, a maximum likelihood approach is taken to identify correlated 

character pairs in 13 avian and squamate datasets, including a large dataset 

spanning crown birds (Livezey and Zusi 2006). Previously, this method has 

been implemented with individual character pairs or small groups of 

characters to test specific hypotheses of converted evolution between 

characters (Leslie et al., 2015; Caruso, Eisen, & Case, 2016; Sauquet et al., 

2017; Billet & Bardin, 2019). We use this method to assess patterns of 

correlation in all pairwise character pairs across entire morphological 

datasets spanning the Sauropsida. This approach gives us an overall view of 

the prevalence and strength of correlation in datasets used for phylogenetic 

analysis across a wide range of vertebrate species, giving insight into what is 

likely to be a significant issue in morphological phylogenetic analysis. 

Additionally, datasets were split into osteological and soft character 

partitions in order to compare levels of correlation within and between 

these data types. 
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2. Materials and Methods 

 

2.1. Datasets 

 

Datasets collected and compiled for previous work (Chapter 1) were used 

for the following analyses. Briefly, the literature was systematically 

searched for avian and squamate morphological character matrices. These 

were chosen on the basis of taxonomy, number of characters and number of 

taxa, with minimal or no taxonomic overlap between datasets. Studies with 

fewer than five characters per partition after character removal, and ten 

total taxa, were excluded from analysis. 

To enable correlation analysis, certain classes of characters needed to be 

removed: 1) multistate characters, as current methods do not allow for the 

assessment of correlation of non-binary characters, and 2) characters with 

missing data. Phylogenetically uninformative characters were also removed. 

Although retaining taxa was prioritized over retaining characters. Several 

datasets were removed from analysis for having too few characters after 

character removal. The final data sample comprised 12 datasets spanning 

Sauropsida, including 8 avian and 4 squamate datasets (Table 1). In 

addition, a much larger dataset spanning Aves (Livezey & Zusi, 2007) was 

separately analysed. This is due to taxonomic overlap and potential 

differences in properties between it and larger datasets. A comparable 

dataset for squamates was rejected on account of missing data. 

As this method requires a dated topology to estimate rates of morphological 

evolution, dated molecular trees for birds and reptiles (Jetz et al., 2012; 

Zheng & Wiens, 2016) were sourced from the literature. A tree from the 

post-burn in posterior distribution of the Hackett et al. (2008) backbone 

from Jetz et al. (2012) was chosen for birds as this tree contains molecular 

information from 6,663 bird species (around two thirds of all bird species), 

making this the largest molecular phylogeny of birds in terms of number of 

species sequenced to date. Similarly, the Zheng and Wiens (2016) squamate 

topology was chosen for taxonomic spread and high species coverage. 



 103 

Note that while this method takes into account phylogeny, it cannot 

distinguish between other kinds of correlated characters. For instance, some 

characters may be correlated due to logical contingency, pseudoreplication 

or because they are ordered. They may also be correlated due to pleiotropy 

or integration of traits that do not fit into these categories. This method 

identifies all such correlations, without implying that all characters 

identified as correlated should be removed from phylogenetic analysis. 

 

 

2.2. Assessing Correlations in Empirical Data 

 

Three models of character pair evolution were fitted to all binary character 

pairs in all datasets using the corDISC function in the package CorHMM 

(Beaulieu et al., 2013) implemented in R (R Core Team, 2018), with default 

settings, namely equal weighting of all states at the root, no ascertainment 

bias correction, and ancestral states were estimated by giving the optimal 

state at each node for the entire tree as opposed to integrating over the tree. 

Note that uncorrected models may overestimate the amount of change along 

branches, however this is unlikely to affect overall results, which focus on 

the differences in correlation between partitions. These models apply either 

1, 2, or 8 rates to the matrix of all possible ways that a character in each pair 

could transition, excluding simultaneous transitions (e.g. 0,0 – 1,1). Of the 3 

models, the Equal Rates model (ER) is an uncorrelated model, in which all 

rates in the rate matrix are equal, indicating that state changes in one 

character are unrelated to the state of the second character. The 

Symmetrical (SYM) model, in which half of the rates (0,0 – 0,1, 0,0 – 1,0, 0,1 

– 1,1 and  1,0-1,1)  in the rate matrix are the different to the other half (0,1 – 

0,0, 1,0 – 0,0, 1,1 – 0,1 and 1,1 – 1,0), and the All Rates Different (ARD) 

model in which all rates are different, were also applied to the datasets. 

These are both correlated models, in which the rate of change in one of the 

characters in the pair is dependent on the state of the other. The exception 

to this was the significantly larger Livezy and Zusi (2007) dataset, for which 
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only the ER and SYM models could be applied because of the computational 

limitations of interrogating a dataset of this size. 

Models were compared using AICc weights. The AICc weights for the two 

correlated models were added to obtain the cumulative AICc weights for 

both correlated models. In case of Livezey and Zusi (2007), the AICc weights 

of only the SYM model was used to assess correlation levels. Character pairs 

were judged to be correlated if the cumulative AICc weight was equal to or 

higher than 0.95 after Sauquet et al., (2017), to reflect common criteria for 

statistical significance. Lowering this threshold will result on more 

correlated character pairs. 

All characters were classified as belonging to either osteological or non-

osteological partitions, and percentages of correlated characters both within 

and between partitions was then calculated for each dataset, and a paired t 

test was performed on these values. Additionally, mean AICc values within 

datasets were calculated and compared using the Kruskall-Wallis test, and 

the between-dataset results were compared using a paired t test. We 

additionally performed Dunn tests on these values to determine significant 

differences between the cumulative AICc weights for correlated models 

between all 3 character pair classes (osteological, non-osteological and 

between partition character pairs). Datasets were then combined in order to 

test linear mixed effects models using AICc weights of all character pairs as 

the response variable. A null model was tested against models treating 

partition and clade as fixed effects, with dataset treated as a random effect 

in all models. Heteroskedasticity was tested for prior to analysis by 

comparing linear mixed effect models accounting for different patterns of 

heteroskedasticity, and the best model used in the final analysis. 

In addition to the above tests, the Colless Index, which calculates the total 

difference in the number of leaves on each branch descended from each 

internal node, was computed to assess tree symmetry (Blum, François, & 

Janson, 2006). Therefore, the higher the Colless Index, the higher the 

asymmetry of the tree. 
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2.3. Sensitivity Analysis 

 

Morphological datasets and trees containing 10, 15, 20 and 30 taxa and each 

containing 10 characters were artifactually constructed. More realistic 

datasets might contain more characters. However, since the number of 

characters does not affect the detection of pairwise correlations, smaller 

datasets were constructed as they are less computationally expensive and 

the results simpler to interpret. Two separate datasets each were manually 

constructed of 20 and 30 taxa for a total of 6 constructed datasets. These 

datasets sizes are roughly in line with the smaller empirical datasets used 

here, and thus reflect minimum realistic dataset sizes. Beginning with 10 

taxa, characters with states 0 and 1 were first constructed that transition 

together 100% of the time (i.e. identical taxa). Characters were then added 

that change together 90%, then 80% of the time. Using the 10-taxon dataset 

as a base, 0s were added to the dataset for the additional taxa in the 15-

taxon dataset and one each of the 20- and 30- taxon datasets (see 

supplementary Tables 2 and 3 for the full 30 taxon dataset). In the second 

20- and 30- taxon datasets characters were added with varying degrees of 

correlation, including alternating characters, unchanging characters, and 

characters transitioning every 3 taxa (see supplementary Table 3 for second 

full 30 taxon dataset). Thus, these data contained binary characters ranging 

from weakly to strongly correlated. This examines the effect of the 

underlying structure of the data on the detection of correlated character 

pairs. 

To test the effect of tree topology, particularly tree symmetry, both highly 

asymmetrical trees were constructed and random trees were simulated for 

all datasets. A 30-taxon random tree was first simulated, with taxa 

successively removed from this same tree to fit the 20-, 15- and 10- taxon 

datasets. This was to ensure consistent trees for all datasets apart from the 

addition or removal of taxa (see supplementary Figure 14 for the full 30-

taxon random tree). Additionally, a single 10 character and 30 taxon dataset 

with binary character states randomly distributed among taxa and 



 106 

characters was simulated, by generating 30 vectors containing 0s and 1s of 

length 10 with replacement. 

All three models of character evolution described above were fitted to this 

constructed and simulated data to investigate how well these models detect 

correlated characters, how sensitive these methods are to the number of 

taxa in a dataset and tree shape, and whether type ii errors are prevalent 

with these methods. 

 

 

3. Results 

 

3.1. Correlations in Empirical Datasets 

 

Correlated character pairs were found in all datasets. The highest degree of 

overall correlation as measured by average AICc weights of correlated 

models was observed in the Chu, (1995) and Smith, (2011) datasets, both 

Charadriiformes (Figure 1, Table 1, supplementary Figures 2 and 11). 

Among the least correlated datasets were the Galloanserae datasets 

(Livezey, 1996a,b, Figure 1, Table 1, supplementary Figures 7 and 8) and 

some of the Passerine datasets (Prum, 1992; Winker & Pruett, 2006, Figure 

1, Table 1, supplementary Figures 10 and 12). Few differences were found 

in the distribution of correlated character pairs within and between 

character partitions. Significant differences were found between the number 

of correlated characters within and between partitions for 2 out of 10 avian 

and 1 out of 3 squamate datasets (Fisher’s exact test, Table 1, Figure 1). A 

significant difference was found between average AICc weights within and 

between partitions for 5 out of 10 avian and 0 out of 3 squamate datasets 

(Mann-Whitney U test, Table 1, Figure 2). A paired t-test of the percentages 

of correlated characters between datasets reveals no significant difference, 

though with slightly higher values for within partitions (n = 12, p = 0.1411), 

while a paired t test of the mean AICc weights reveals no significant 

difference. Mean AICc weights and percentage of correlated characters are 
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higher in non-osteological partitions for most datasets, but this was not 

significant. 

When the character pairs are considered as within osteology, within non-

osteology or between partitions (rather than just within partitions and 

between partitions), 5 of 10 avian and 2 of 3 squamate datasets show a 

significant difference in percentages of correlated characters (Fisher’s exact 

test, Table 1, Figure 2), and 7 avian and 1 squamate datasets show 

significant differences in mean AICc weight (Kruskall-Wallis test, Table 1), 

with 5 of these significant differences being between osteological and non-

osteological character pairs (Dunn tests, supplementary Table 1). Character 

pairs are significantly more correlated within than between partitions in the 

larger Livezey & Zusi (2007) dataset (Table 1, supplementary Figure 13). 

Models of cumulative AICc weights including partition (osteology, non-

osteology and between partition) as a fixed effect had significantly greater 

explanatory power than a null model excluding partition, and models 

including only within and between partition character pairs. Of all linear 

mixed effect models tested, the model including all character pair classes 

(osteology, non-osteology and between), clade (avian versus squamate) and 

their interaction as fixed effects and dataset as random effect had the 

greatest explanatory power as measured by AIC weights. The preferred 

model according to the BIC splits the data only into partitions and excludes 

clade (Table 2). Overall, these results indicate a significant effect of partition 

on explanatory power, but there is ambiguity as to whether clade is 

important. Models splitting the character pairs into just 2 classes (within 

partition and between partition character pairs) also showed significantly 

higher correlation within partitions. This meta-analysis includes only the 

data from the smaller datasets. See supplementary figures 1-13 for 

visualization of the correlations between individual character pairs and 

datasets. 
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Table 1 at End of Document 

Table 1. Showing differences between proportion and strength of correlation between 

character pair classes. Character pairs are considered correlated if their cumulative AICc 

weight for correlated (SYM and ARD) models of character pair evolution are equal to or 

higher than 0.95. Strength of correlation is measured by average cumulative AICc weights of 

correlated models of character pair evolution. Character pair classes include a) within-

osteological data character pairs, b) within-non-osteological data character pairs, and c) 

between-partition character pairs. Characters are generally more correlated (as measured by 

average AICc weights) within than between partitions. Differences in proportion and strength 

of correlation between osteological and non-osteological characters are mixed. 

 

 

Figure 1. Individual dataset boxplots of average cumulative AICc weights for correlated 

models of character pair evolution, showing all three classes of character pairs (within 

osteological, within non-osteological and between partition). Boxplots display number of 

characters. Lower means indicate lower correlation, higher means indicate higher correlation. 
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Figure 2. Individual dataset boxplots of average cumulative AICc weights for correlated 

models of character pair evolution, showing within and between partition character pairs. 

Characters are more correlated within partitions in most datasets. Boxplots display number of 

characters. Lower means indicate lower correlation, higher means indicate higher correlation. 
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Table 2. The fit of five different linear mixed models comparing correlation levels within and 

between partitions 

Fixed Effects df AIC BIC Log L 
Likelihood 
Ratio P 

None 15 6282 6399 -3126   
Character Pair Class 
WB 
(Within Partition Vs Between 
Partition) 16 6046 6171 -3007 238 <.0001 
Character Pair Class All 
(Osteological Vs Non-
Ostelogical Vs Between 
Partition) 17 5973 6105 -2969 76 <.0001 
Character Pair Class All 
+ Clade 18 5975 6115 -2970 0 0.7445 
Character Pair Class All 
* Clade 20 5967 6123 -2964 12 0.0031 

 

Table comparing the fit of five different linear mixed models comparing correlation levels 

within and between partitions. Models compared include a null model, a model including 

within-partition vs between partition character pairs as a fixed effect, a model including all 

three character pair classes as a fixed effect, and two models including all three character pair 

classes and clade as fixed effects. Dataset is included as a random effect in all models. AICs, 

likelihood ratios and P values (but not BIC) all prefer the most complex model, suggesting that 

partition and clade both have strong explanatory power. Models splitting character pairs into 

3 rather than 2 classes have greater explanatory power, suggesting the importance of 

osteological vs non-osteological character pairs. The addition of clade as a fixed effect does 

not improve explanatory power except with an interaction term. 

 

 

3.2. Sensitivity Analysis 

 

In our simulated trees and datasets, artificially correlated morphological 

characters are not detected in either random or asymmetrical trees with as 

few as 10 or 15 taxa using the maximum likelihood method described above, 

and average AICc weights are lower in random trees (Table 3). Highly 

correlated characters are detected in trees with as few as 20 taxa. A higher 

number of correlated characters is detected in asymmetrical trees for the 

10-taxon dataset, however average AICc weights are lower for random 

trees. In the second of the 20-taxon constructed datasets, the number of 

correlated characters is the same for both asymmetrical and random trees, 

while AICc weights are lower for random trees. More weakly correlated 
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characters are detected in trees with 30 taxa for both simulated datasets. 

Again, average AICc weights are lower in random than in asymmetrical 

trees. Overall, more correlated characters are detected in datasets with 

more taxa, and in asymmetrical trees. Characters that were constructed to 

be highly correlated have higher AICc weights (e.g. characters 1 and 2, and 

characters 5 and 6, supplementary Tables 1 and 2, supplementary Figure 

13), while characters that were constructed to be less correlated have lower 

AICc weights (e.g. characters 2 and 4 in 30-taxon dataset 2, supplementary 

Table 2, supplementary Figure 13), indicating a low type i error rate. 

Correlated characters are not detected in the random simulated dataset on 

either tree, and average AICc weights are lower in the random dataset than 

in any of the constructed datasets except the 10- and 15- taxon matrices, 

indicating a low type ii error rate provided sufficient data. 

 

Table 3. number of correlated characters in constructed and simulated datasets 

Taxa Asymmetrical 

tree corr % 

Asymmetrical 

tree average 

weight 

Asymmetrical 

tree sym score 

(Colless Index) 

Random tree 

corr % 

Random tree 

average 

weight 

 

Random 

tree sym 

score 

(Colless 

Index) 

10 0 0.013 36 0 0.006 18 

15 0 0.179 91 0 0.029 42 

20(1) 15.56 0.585 171 22.22 0.474 57 

20(2) 8.89 0.405 171 8.89 0.163 57 

30(1) 66.67 0.822 406 42.22 0.682 88 

30(2) 42.22 0.709 406 24.44 0.549 88 

30(Random) 0 0.103 406 0 0.106 88 

Showing number of correlated characters (0.95 threshold) detected, average AICc weights for 

correlated models for constructed and simulated datasets trees containing 10, 15, 20 and 30 

taxa, and tree symmetry scores. 
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4. Discussion 

 

Overall, correlated character pairs in general are present in all datasets and 

the number of correlated character pairs is higher within than between 

partitions. The number of correlated characters also differs between 

partition (osteology and non-osteology). While there are significant 

differences in the number of correlated character pairs and strength of 

correlation between partitions within datasets, this varies between datasets. 

Thus, although non-osteological characters generally exhibit more within 

partition correlation than osteological characters, it is difficult to draw 

wider conclusions when analyzing individual datasets. Combining datasets 

finds that the distribution of character correlations differs between 

morphological partitions, with more correlation within non-osteological 

characters compared to osteological characters and more correlation within 

than between partition character pairs. 

Previous work has shown that soft characters are more homoplastic than 

osteological characters (Chapter 1). We suggest that correlation and 

homoplasy in morphological characters are possibly related because of the 

concerted evolution of multiple morphological traits in response to 

selection. Concerted evolution occurs frequently in traits related strongly to 

ecology and environmental niche (Losos, 1998; Holland et al., 2010; Leslie et 

al., 2015; Caruso et al., 2016; Billet & Bardin, 2019), and integration as 

detected by morphometric analysis is often strong in areas such as the 

cranium, which is often associated with strong ecological pressures 

resulting form dietary requirements (Goswami, 2006a, 2007; Sadleir & 

Makovicky, 2008). Ecologically important traits are likely to also be 

convergent in distantly related species that occupy a similar niche space 

(Losos, 1998). Indeed, entire body plans are sometimes repeated 

independently in several lineages (Van Valkenburgh, 2007). The results 

presented here and previously together are consistent with the idea that 

characters are correlated as a result of ecological and functional necessity, 

and that the evolutionary history of such characters is likely to reflect this, 

overwriting phylogenetic signal and becoming convergent. 
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While integration is clearly and consistently observed in traits relating to 

vertebrate body plan such as in the limbs and cranium (Hallgrímsson et al., 

2002; Goswami, 2006b; Sadleir & Makovicky, 2008), the results presented 

here suggest that soft tissues are at least equally and possibly more subject 

to concerted evolution. This may be especially true of evolutionarily labile 

characters, such as plumage, which are often subject to pressures such as 

sexual selection (Rubenstein & Lovette, 2009; Dunn, Armenta, & 

Whittingham, 2015) and less affected by constraint. Such characters may be 

more evolutionarily labile, and are therefore able to transition more 

frequently along lineages. Further, pseudoreplication may be an issue for 

plumage, since feathers tend to be structurally similar. There may be 

pleiotropic effects governing the development of feathers and colouration. 

Correlations between characters transitioning more frequently along 

branches may be detected at a higher rate than characters evolving more 

slowly on the same tree, since a greater number of transitions may offer 

greater statistical power. This therefore may alternatively explain the 

stronger apparent correlation between soft character pairs, since previous 

work has shown that soft tissue characters resolve on shallower branches 

on evolutionary trees, possibly implying faster rates (Chapter 1). However, a 

comparison of evolutionary rates between partitions would help to clarify 

this. 

The presence of correlated characters in these datasets presents a problem 

for phylogenetic analysis that has been previously acknowledged but 

usually not accounted for. In particular, the stronger correlations detected in 

soft characters, whether because of inherently higher levels of correlation or 

greater detection owing to higher transition rates, may be prone to 

misleading phylogenetic analysis owing to pseudoreplication in these 

characters amplifying the signal. 

Further to establishing the apparent prevalence and pattern of correlated 

characters in empirical datasets, it was necessary to test the sensitivity of 

the methods used. The results of the sensitivity analysis unsurprisingly 

show that correlations are not detected in trees with few taxa, potentially 

explaining the apparent paucity of correlated character pairs in the smaller 
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datasets analysed here. This is because the method used detects 

correlations by fitting models of character change over an evolutionary tree. 

Specifically, it detects whether a change in one character is dependent on 

the state of the second. The higher the number of taxa, therefore, the greater 

the statistical power and ability to detect significant concerted evolutionary 

change over a tree. This presents a problem for smaller morphological 

datasets, and suggests that a high number of taxa should be prioritized over 

a high number of characters when constructing or editing datasets with the 

view to detect correlated characters. A second factor in detecting 

correlations is tree shape. More correlations are detected in asymmetrical 

than random trees. Since the topology of empirical trees is likely to be closer 

to random trees than highly symmetrical trees, this may present less of a 

challenge when detecting correlations. However, tree shape should 

nevertheless be determined and accounted for in studies detecting 

correlations. 

The methods described above allow us to identify pairs of correlated 

characters. Whilst this is a good way of identifying overall prevalence of 

correlation within datasets, it does not allow for the identification of entire 

suites, or modules, of correlated characters. This is a problem as correlated 

characters do not evolve together in pairs, but rather as entire groups of 

characters united by common function or ecology. 

 

 

5. Conclusion 

 

These results demonstrate that correlated character pairs are present in 

morphological datasets. Although soft characters generally exhibit more 

correlation, this differs between datasets. Correlated character pairs can be 

identified using existing maximum likelihood methods provided that there 

is a reliable independent (molecular) tree and a high enough number of 

taxa. However, even strongly correlated character pairs cannot be reliably 

identified in datasets with fewer than 20 taxa, with fewer correlated 

characters also detected in less symmetrical trees. These results show 
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empirically that correlated evolutionary change is frequently captured in 

morphological phylogenetic data, and thus has the potential to affect 

phylogenetic inference. This is particularly true of soft characters, which 

show a higher overall level of correlation than osteological characters. We 

therefore recommend that correlations are accounted for in models when 

building trees from morphological data using probabilistic methods, when 

molecular trees are available to use as a benchmark. In addition, when 

testing for correlated character pairs, it is advisable to use trees with at least 

20-30 species. 

These results are part of a broader emerging picture of the differences in the 

phylogenetic signal conveyed by different areas of morphology. For 

example, differences in phylogenetic signal have been tested for and found 

between dental and osteological characters (Sansom, Wills, & Williams, 

2017) hard and soft characters (Sansom & Wills, 2017) and cranial and 

postcranial characters (Mounce, Sansom, & Wills, 2016). Differences in 

integration, as well as in levels of homoplasy and evolutionary rates, 

between morphological regions is likely to have an effect on phylogenetic 

inference, and thus be an important consideration in future work when 

developing tree-building methods using morphological data. In particular, 

models splitting morphology into partitions, and allowing these partitions to 

evolve at different rates may improve phylogenetic inference. When 

differences in evolutionary dynamics in pre-defined partitions are included 

in such models, this reduces the need for methods to find partitions, 

reducing computational effort and potentially reducing the risk of model 

overfitting. 

The apparently lower levels of correlations in osteological characters may 

be reassuring to paleontologists when reconstructing evolutionary 

relationships between extinct species using data from fossils. 
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Supplementary Information 
 
1. Empirical Data 
 

Supplementary Table 1. results of Dunn tests of differences in correlation between character 

pair classes 

Dataset Ost-NonOst Ost-Between NonOst-Between 

Birds    

Birdsley, 2002 0.0117* 0.462 0.0048* 

Chu, 1995 0.0447 0.0000* 0.4551 

Irestedt, Fjeldså, & Ericson, 2004 0.0266 0.3765 0.0029* 

Livezey, 1996a 0.0002* 0.0106* 0.0186* 

Livezey, 1996b 0.0741 0.4851 0.0001* 

Maurício et al., 2012 0.0584 0.4788 0.0577 

Prum, 1992 0.3503 0.1792 0.4791 

Smith, 2011 0.0000* 0.0000* 0.0015* 

Winker & Pruett, 2006 0.4403 0.4296 0.4706 

Livezey & Zusi, 2007 0.0000* 0.0000* 0.0000* 

Squamates    

Frost et al., 2001b 0.0707 0.3514 0.0393 

Frost et al., 2001a 0.0000* 0.0214* 0.0028* 

Kearney, 2003 0.0512 0.4454 0.0258 
Showing results of the Dunn tests of differences in the cumulative AICc weights of correlated 

models of character pair evolution between three character pair classes (within-osteological, 

within-non-osteological, and between partition), finding significant differences in correlation 

between osteological and non-osteological partitions in only 5 datasets. 
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Supplementary Figure 1. Heatmap showing the degree of correlation, as measured by AICc 

weight of fitted correlated models (SYM and ARD), between all character pairs tested in the 

Birdsley, (2002) dataset. Lighter cells show weaker correlation, while darker cells show 

stronger correlation. The sidebar delimits the partitions, with osteological characters in 

purple and non-osteological characters in green. 
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Supplementary Figure 2. Heatmap showing the degree of correlation, as measured by AICc 

weight of fitted correlated models (SYM and ARD), between all character pairs tested in the 

Chu, (1995) dataset. Lighter cells show weaker correlation, while darker cells show stronger 

correlation. The sidebar delimits the partitions, with osteological characters in purple and 

non-osteological characters in green. 
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Supplementary Figure 3. Heatmap showing the degree of correlation, as measured by AICc 

weight of fitted correlated models (SYM and ARD), between all character pairs tested in the 

Frost et al., (2001a) dataset. Lighter cells show weaker correlation, while darker cells show 

stronger correlation. The sidebar delimits the partitions, with osteological characters in 

purple and non-osteological characters in green. 
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Supplementary Figure 4. Heatmap showing the degree of correlation, as measured by AICc 

weight of fitted correlated models (SYM and ARD), between all character pairs tested in the 

Frost et al., (2001b) dataset. Lighter cells show weaker correlation, while darker cells show 

stronger correlation. The sidebar delimits the partitions, with osteological characters in 

purple and non-osteological characters in green. 
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Supplementary Figure 5. Heatmap showing the degree of correlation, as measured by AICc 

weight of fitted correlated models (SYM and ARD), between all character pairs tested in the 

Irestedt et al., (2004) dataset. Lighter cells show weaker correlation, while darker cells show 

stronger correlation. The sidebar delimits the partitions, with osteological characters in 

purple and non-osteological characters in green. 

C
h
a

ra
c
te

r 
4

C
h
a

ra
c
te

r 
5

C
h

a
ra

c
te

r 
1

1

C
h

a
ra

c
te

r 
1

2

C
h

a
ra

c
te

r 
1

5

C
h

a
ra

c
te

r 
1

8

C
h

a
ra

c
te

r 
1

9

C
h

a
ra

c
te

r 
2

0

C
h

a
ra

c
te

r 
2

1

C
h

a
ra

c
te

r 
3

1

C
h

a
ra

c
te

r 
3

2

C
h

a
ra

c
te

r 
3

3

C
h

a
ra

c
te

r 
3

4

C
h

a
ra

c
te

r 
3

5

C
h

a
ra

c
te

r 
3

6

Character 4

Character 5

Character 11

Character 12

Character 15

Character 18

Character 19

Character 20

Character 21

Character 31

Character 32

Character 33

Character 34

Character 35

Character 36

Irestedt, Fjeldså, & Ericson, 2004



 127 

 

Supplementary Figure 6. Heatmap showing the degree of correlation, as measured by AICc 

weight of fitted correlated models (SYM and ARD), between all character pairs tested in the 

Kearney, (2003) dataset. Lighter cells show weaker correlation, while darker cells show 

stronger correlation. The sidebar delimits the partitions, with osteological characters in 

purple and non-osteological characters in green. 

 

C
h

a
ra

c
te

r 
3

C
h

a
ra

c
te

r 
4

C
h

a
ra

c
te

r 
5

C
h

a
ra

c
te

r 
6

C
h

a
ra

c
te

r 
7

C
h

a
ra

c
te

r 
8

C
h

a
ra

c
te

r 
9

C
h

a
ra

c
te

r 
1

1

C
h

a
ra

c
te

r 
1

2

C
h

a
ra

c
te

r 
1

3

C
h

a
ra

c
te

r 
1

4

C
h

a
ra

c
te

r 
1

5

C
h

a
ra

c
te

r 
1

8

C
h

a
ra

c
te

r 
1

9

C
h

a
ra

c
te

r 
2

0

C
h

a
ra

c
te

r 
2

6

C
h

a
ra

c
te

r 
5

7

C
h

a
ra

c
te

r 
7

7

C
h

a
ra

c
te

r 
7

8

C
h

a
ra

c
te

r 
8

2

C
h

a
ra

c
te

r 
8

9

C
h

a
ra

c
te

r 
9

6

C
h

a
ra

c
te

r 
1

0
2

C
h

a
ra

c
te

r 
1

0
4

C
h

a
ra

c
te

r 
1

1
0

C
h

a
ra

c
te

r 
1

1
1

C
h

a
ra

c
te

r 
1

1
9

C
h

a
ra

c
te

r 
1

2
1

C
h

a
ra

c
te

r 
1

2
7

C
h

a
ra

c
te

r 
1

3
0

Character 3

Character 4

Character 5

Character 6

Character 7

Character 8

Character 9

Character 11

Character 12

Character 13

Character 14

Character 15

Character 18

Character 19

Character 20

Character 26

Character 57

Character 77

Character 78

Character 82

Character 89

Character 96

Character 102

Character 104

Character 110

Character 111

Character 119

Character 121

Character 127

Character 130

Kearney, 2003



 128 

 

Supplementary Figure 7. Heatmap showing the degree of correlation, as measured by AICc 

weight of fitted correlated models (SYM and ARD), between all character pairs tested in the 

Livezey, (1996a) dataset. Lighter cells show weaker correlation, while darker cells show 

stronger correlation. The sidebar delimits the partitions, with osteological characters in 

purple and non-osteological characters in green. 
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Supplementary Figure 8. Heatmap showing the degree of correlation, as measured by AICc 

weight of fitted correlated models (SYM and ARD), between all character pairs tested in the 

Livezey, (1996b) dataset. Lighter cells show weaker correlation, while darker cells show 

stronger correlation. The sidebar delimits the partitions, with osteological characters in 

purple and non-osteological characters in green. 
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Supplementary Figure 9. Heatmap showing the degree of correlation, as measured by AICc 

weight of fitted correlated models (SYM and ARD), between all character pairs tested in the 

Mauricio et al. (2012) dataset. Lighter cells show weaker correlation, while darker cells show 

stronger correlation. The sidebar delimits the partitions, with osteological characters in 

purple and non-osteological characters in green.
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Supplementary Figure 10. Heatmap showing the degree of correlation, as measured by AICc 

weight of fitted correlated models (SYM and ARD), between all character pairs tested in the 

Prum. (1992) dataset. Lighter cells show weaker correlation, while darker cells show stronger 

correlation. The sidebar delimits the partitions, with osteological characters in purple and 

non-osteological characters in green. 
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Supplementary Figure 11. Heatmap showing the degree of correlation, as measured by AICc 

weight of fitted correlated models (SYM and ARD), between all character pairs tested in the 

Smith, (2011) dataset. Lighter cells show weaker correlation, while darker cells show stronger 

correlation. The sidebar delimits the partitions, with osteological characters in purple and 

non-osteological characters in green.
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Supplementary Figure 12. Heatmap showing the degree of correlation, as measured by AICc 

weight of fitted correlated models (SYM and ARD), between all character pairs tested in the 

Winker & Pruett, (2006) dataset. Lighter cells show weaker correlation, while darker cells 

show stronger correlation. The sidebar delimits the partitions, with osteological characters in 

purple and non-osteological characters in green. 
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Supplementary Figure 13. Heatmap showing the degree of correlation, as measured by AICc 

weight of fitted correlated model (SYM), between all character pairs tested in the largest, 

Livezey & Zusi, (2006), dataset. Lighter cells show weaker correlation, while darker cells show 

stronger correlation. The sidebar delimits the partitions, with osteological characters in 

purple and non-osteological characters in green. 
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2. Constructed and Simulated Data 

 

Taxa Char1 Char2 Char3 Char4 Char5 Char6 Char7 Char8 Char9 Char10 

t1 0 0 0 0 1 1 1 1 1 1 

t2 0 0 1 1 1 1 0 0 1 0 

t3 0 0 0 0 0 0 1 1 1 1 

t4 0 0 0 0 0 0 0 0 1 0 

t5 0 0 0 0 0 0 1 1 1 1 

t6 1 1 1 1 1 1 0 0 0 0 

t7 1 1 1 1 1 1 1 1 0 0 

t8 1 1 1 1 1 1 0 0 0 0 

t9 1 1 1 1 1 1 1 1 0 0 

t10 1 1 1 1 1 1 0 0 0 0 

t11 0 0 0 0 0 0 0 0 0 0 

t12 0 0 0 0 0 0 0 0 0 0 

t13 0 0 0 0 0 0 0 0 0 0 

t14 0 0 0 0 0 0 0 0 0 0 

t15 0 0 0 0 0 0 0 0 0 0 

t16 0 0 0 0 0 0 0 0 0 0 

t17 0 0 0 0 0 0 0 0 0 0 

t18 0 0 0 0 0 0 0 0 0 0 

t19 0 0 0 0 0 0 0 0 0 0 

t20 0 0 0 0 0 0 0 0 0 0 

t21 0 0 0 0 0 0 0 0 0 0 

t22 0 0 0 0 0 0 0 0 0 0 

t23 0 0 0 0 0 0 0 0 0 0 

t24 0 0 0 0 0 0 0 0 0 0 

t25 0 0 0 0 0 0 0 0 0 0 

t26 0 0 0 0 0 0 0 0 0 0 

t27 0 0 0 0 0 0 0 0 0 0 

t28 0 0 0 0 0 0 0 0 0 0 

t29 0 0 0 0 0 0 0 0 0 0 

t30 0 0 0 0 0 0 0 0 0 0 
Supplementary Table 2. Showing the first simulated 30 taxon dataset used for sensitivity 

analysis. 
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Taxa Char1 Char2 Char3 Char4 Char5 Char6 Char7 Char8 Char9 Char10 

t1 0 0 0 0 1 1 1 1 1 1 

t2 0 0 1 1 1 1 0 0 1 0 

t3 0 0 0 0 0 0 1 1 1 1 

t4 0 0 0 0 0 0 0 0 1 0 

t5 0 0 0 0 0 0 1 1 1 1 

t6 1 1 1 1 1 1 0 0 0 0 

t7 1 1 1 1 1 1 1 1 0 0 

t8 1 1 1 1 1 1 0 0 0 0 

t9 1 1 1 1 1 1 1 1 0 0 

t10 1 1 1 1 1 1 0 1 0 0 

t11 0 1 0 1 0 0 0 0 0 1 

t12 0 0 0 0 0 0 0 1 0 0 

t13 0 1 0 0 0 0 0 0 0 1 

t14 0 0 0 1 0 0 0 1 0 0 

t15 0 1 0 0 0 0 0 0 0 1 

t16 0 0 0 0 0 0 0 1 0 0 

t17 0 1 0 1 0 0 0 0 0 1 

t18 0 0 0 0 0 0 0 1 0 0 

t19 0 1 0 0 0 0 0 0 0 1 

t20 0 0 0 1 0 0 0 1 0 0 

t21 0 1 0 0 0 1 0 0 0 1 

t22 0 0 0 0 0 1 0 1 0 0 

t23 0 1 0 1 0 1 0 0 0 1 

t24 0 0 0 0 0 1 0 1 0 0 

t25 0 1 0 0 0 1 0 0 0 1 

t26 0 0 0 1 0 1 0 1 0 0 

t27 0 1 0 0 0 1 0 0 0 1 

t28 0 0 0 0 0 1 0 1 0 0 

t29 0 1 0 1 0 1 0 0 0 1 

t30 0 0 0 0 0 1 0 1 0 0 
 
Supplementary Table 3. Showing the second simulated 30 taxon dataset used for sensitivity 

analysis. 
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Supplementary Figure 13. Heatmap showing the degree of correlation, as measured by 

cumulative AICc weight of fitted correlated models (SYM and ARD), between all character 

pairs tested in the second 30-taxon simulated dataset on a random tree (dataset shown in 

supplementary Table 3 above). Lighter cells show weaker correlation, while darker cells show 

stronger correlation. 
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Supplementary Figure 14. The 30-taxon random tree used for sensitivity analysis.
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Table 1. Differences between proportion and strength of correlation between character pair classes 

 Correlated Character Pairs (n of N) Mean Correlated AICc Weight 

Dataset Taxa 

Within 
Partition 
Character 
Pairs 

Between 
Partition 
Character 
Pairs P Fisher's 

Within 
Partition 
Character 
Pairs 

Between 
Partition 
Character 
Pairs 

P Mann 
Whitney-U  

Birds  

Birdsley, 2002 31 3/111 4/120 1 0.27 0.24 0.1445 

Chu, 1995 173 181/567 30/136 0.02839 0.58 0.87 1.69E-11 

Irestedt et al., 2004 38 2/55 0/50 0.4963 0.32 0.21 0.02332 

Livezey, 1996a 20 20/378 14/325 0.5997 0.24 0.2 0.3381 

Livezey,1996b 12 0/456 0/210 1 0.04 0.02 0.0003271 

Mauricio et al., 2012 34 1/61 2/44 0.5759 0.27 0.26 0.6992 

Prum, 1991 30 0/387 1/243 0.3857 0.17 0.14 0.3899 

Smith, 2011 52 2434/9883 557/2520 0.008413 0.61 0.58 2.39E-05 
Winker & Pruett, 
2006 17 0/225 0/126 1 0.11 0.11 0.9218 
Livezey and Zusi, 
2007 139 53799/274498 23026/138188 2.20E-16 0.19 0.38 2.20E-16 

Squamates  

Frost et al., 2001b 28 3/498 0/448 0.2513 0.19 0.2 0.3273 

Frostet al., 2001a 26 1/156 0/169 0.48 0.19 0.2 0.6458 

Kearney, 2003 35 6/183 0/195 0.01233 0.34 0.32 0.2413 
 

Showing differences between proportion and strength of correlation between character pair classes. Character pairs are considered correlated if their 

cumulative AICc weight for correlated (SYM and ARD) models of character pair evolution are equal to or higher than 0.95. Strength of correlation is 

measured by average cumulative AICc weights of correlated models of character pair evolution. Character pair classes include a) within-osteological data 

character pairs, b) within-non-osteological data character pairs, and c) between-partition character pairs. Characters are generally more correlated (as 

measured by average AICc weights) within than between partitions. Differences in proportion and strength of correlation between osteological and non-

osteological characters are mixed. 
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Table 1 cont. Differences between proportion and strength of correlation between character pair classes 
 

Correlated Character Pairs (n of N)  

Osteological 
Character 
Pairs 

Non-Osteological 
Character Pairs 

Between Partition 
Character Pairs 

Osteological 
% 
Correlated 
Pairs 

Non-
Osteological 
% Correlated 
Pairs 

Between 
Partition % 
Correlated 
Pairs P Fisher's 

 

1/66 2/45 4/120 1.51 4.44 3.33 0.6012 

177/561 4/6 30/136 31.55 66.67 22.06 0.01137 

0/10 2/45 0/50 0 4.44 0 0.3636 

0/78 20/300 14/325 0 6.667 4.31 0.02646 

0/21 0/435 0/210 0 0 0 1 

0/55 1/6 2/44 0 16.67 4.55 0.03831 

0/351 0/36 1/243 0 0 0.41 1 

2409/9730 25/153 557/2520 24.76 16.34 22.1 0.001101 

0/15 0/210 0/126 0 0 0 1 

51264/255970 2535/18528 23026/138188 20.03 13.68 16.66 2.20E-16 

 

0/378 3/120 0/448 0 2.5 0 0.001997 

1/78 0/78 0/169 1.28 0 0 0.48 

2/105 4/78 0/195 1.9 5.13 0 0.006041 
Showing differences between proportion and strength of correlation between character pair classes. Character pairs are considered correlated if their 

cumulative AICc weight for correlated (SYM and ARD) models of character pair evolution are equal to or higher than 0.95. Strength of correlation is 

measured by average cumulative AICc weights of correlated models of character pair evolution. Character pair classes include a) within-osteological data 

character pairs, b) within-non-osteological data character pairs, and c) between-partition character pairs. Characters are generally more correlated (as 

measured by average AICc weights) within than between partitions. Differences in proportion and strength of correlation between osteological and non-

osteological characters are mixed. 
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Table 1 cont. Differences between proportion and strength of correlation between character pair classes 
 

Mean AICc  

Osteological 
Character 
Pairs  

Non-
Osteological 
Character 
Pairs 

Between 
Partition 
Character 
Pairs 

P Kruskal-
Wallis 

Tree Symmetry 
Score 

 

0.23 0.34 0.24 0.03 123 

0.57 0.83 0.87 3.42E-11 835 

0.23 0.35 0.21 0.01171 115 

0.1 0.28 0.2 0.0009701 65 

0.03 0.04 0.02 0.0005528 34 

0.24 0.53 0.26 0.2709 166 

0.17 0.13 0.14 0.64 72 

0.61 0.5 0.58 1.58E-08 232 

0.09 0.11 0.11 0.984 55 

0.4 0.374 0.38 2.20E-16 856 

 

0.18 0.23 0.2 0.2098 162 

0.25 0.14 0.2 2.00E-04 106 

0.3 0.4 0.32 0.1326 188 
 

Showing differences between proportion and strength of correlation between character pair classes. Character pairs are considered correlated if their 

cumulative AICc weight for correlated (SYM and ARD) models of character pair evolution are equal to or higher than 0.95. Strength of correlation is 

measured by average cumulative AICc weights of correlated models of character pair evolution. Character pair classes include a) within-osteological data 

character pairs, b) within-non-osteological data character pairs, and c) between-partition character pairs. Characters are generally more correlated (as 

measured by average AICc weights) within than between partitions. Differences in proportion and strength of correlation between osteological and non-

osteological characters are mixed.



 142 

3. Cliques of Morphological Characters in Avian and Squamate Datasets 

 

Abstract 

 

A key assumption in phylogenetic analysis is that characters are 

independent. Non-independent, correlated characters may impact 

phylogenetic reconstruction, but the general prevalence of internally-

consistent cliques or clusters of characters in morphological datasets is 

unknown. Moreover it is known that different partitions, such as 

osteological and dental characters, support different estimates of 

evolutionary history, but not whether these partitions are more or less 

correlated. Here, we interrogate 19 avian and squamate morphological 

matrices identify the prevalence and size of internally-consistent groups of 

morphological characters. Through conducting UPGMA analysis, a 

hierarchical clustering method, on these datasets and mapping both 

character retention indices and non-osteological versus osteological 

partitions on the resulting UPGMA trees, we find that a) clique sizes are no 

larger then expected by chance in most datasets, b) most datasets contain 

few large cliques and many small cliques, c) that internally-consistent 

cliques are also more likely to be congruent with molecular trees, and d) 

that characters are more likely to be correlated within partitions. This 

demonstrates that subsets of morphology display different properties, 

which should be taken into account in phylogenetic analysis. 

 

 

1. Introduction 

 

Integration, modularity and correlation are central processes in the 

evolution of morphological traits (Goswami et al., 2014), and a recognized 

problem in phylogenetic analysis (Sadleir & Makovicky, 2008; Goswami & 

Polly, 2010; Guillerme & Brazeau, 2018; Billet & Bardin, 2019). It is well 

established that many traits evolve non-independently in modules 

(Klingenberg, 2008) or cliques (Holland et al., 2010; Blanke et al., 2013) of 
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correlated characters, sometimes resulting from functional or 

developmental integration. Many of these correlated traits evolve in 

response to shared selective regimes related to occupying a similar 

ecological niche. Characters evolving in a correlated manner irrespective of 

phylogeny is known as concerted convergence (Patterson & Givnish, 2002), 

and has consequences for phylogenetic analysis as well as being of interest 

to researchers looking at ecological trait evolution. 

While concerted convergence and correlation of characters have been 

observed in isolated clades at the generic and familial level (e.g. Patterson & 

Givnish, 2002; Holland et al., 2010), it is yet to be established how 

widespread these phenomena are across morphological phylogenetic data 

in general. Further, many studies detecting character correlations in general 

have looked at only a subset of all available morphological data for 

tetrapods. For example, model-based methods have been used to detect 

correlated character pairs in floral traits (Sauquet et al., 2017), in pollen 

morphology (Leslie et al., 2015) and in dental morphology (Billet & Bardin, 

2019), and clustering methods have been used to find suites of correlated 

insect head characters (Blanke et al., 2013). Importantly, different subsets of 

characters in morphological datasets are likely to have different 

evolutionary properties and dynamics, meaning that we currently have an 

incomplete picture of the true prevalence of concerted morphological trait 

evolution in general. 

 

 

1.1. Correlated Character Cliques in Phylogenetic Reconstruction 

 

Given these limitations, it is important to interrogate patterns of correlated 

characters in entire morphological datasets spanning wide taxonomic levels. 

This is particularly important since the correlation and integration of 

characters poses a problem for phylogenetic reconstruction when 

morphological characters are used to infer evolutionary history (Sadleir & 

Makovicky, 2008; Goswami & Polly, 2010; Billet & Bardin, 2019). 

Correlation in morphological characters leads to a form of pseudoreplication 
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when these characters are treated as independent, potentially making 

species appear more closely related than they actually are. Where these 

characters display strong phylogenetic signal, support values are likely to be 

artificially inflated. Where these correlated characters do not agree with the 

underlying phylogeny, erroneously close relationships may be inferred 

between species that share a common morphology as a result of common 

selective regimes (for example, arising from occupying a shared ecological 

nice), as opposed to recent common ancestry. Identifying correlated 

character cliques may therefore be beneficial to phylogenetic analysis. In 

addition to improving model-based inference methods using morphological 

characters, identifying such groups of characters could potentially help 

resolve conflicts between molecular and morphological topologies. 

 

 

1.2. Detecting Correlated Character Pairs and Cliques 

 

To detect correlations in morphological data, tree-based approaches have 

been developed to determine whether characters are correlated given an 

underlying phylogeny. These include model-based methods used to detect 

character pairs under both Bayesian and maximum likelihood frameworks, 

and involve fitting correlated and uncorrelated models of state transition to 

pairs of characters on a given phylogeny (Pagel, 1994; Beaulieu, O’Meara, & 

Donoghue, 2013). These methods are useful in cases where there is high 

confidence in both the topology and ages of the trees used in these analyses. 

Molecular trees can be and often are used to offer a good estimate of 

evolutionary history, since molecular data are often considered more 

reliable than morphological data. Molecular phylogenies thus offer a useful 

way to characterize the relationships between morphological characters 

relative to an independent evolutionary framework. 

However, it is nevertheless important to detect groups of correlated 

morphological characters by examining their internal consistency, 

independent of an underlying tree, given that there is no way to establish 

evolutionary history with absolute certainty. Further, finding groups of 
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characters that are internally consistent irrespective of whether they are 

congruent with underlying hypotheses of phylogeny will provide further 

insights into character evolution and phylogenetic reconstruction using 

these characters. Tree-independent methods of detecting correlated 

characters, such as those established by O’Keefe & Wagner, (2001), Sadleir 

& Makovicky, (2008) and more recently Holland et al., (2010) have 

therefore been important to use alongside the tree-based methods 

described above. Furthermore, when the tree-independent correlation of 

characters has been detected, the internal consistency of characters can 

then be compared against the consistency of these characters on molecular 

trees. 

 

 

1.3. Approach and Hypotheses 

 

Here, we explore a number of questions relating to the nature of internally 

consistent cliques of characters in morphological data, firstly by clustering 

characters by similarity, largely following the methods of Holland et al., 

(2010) and Blanke et al., (2013). However, while these studies test specific 

hypotheses of character correlation, we interrogate 19 entire datasets 

spanning birds and squamates in order to determine the existence, 

prevalence, size and nature of cliques in morphological phylogenetic data in 

general. In addition to finding cliques in these datasets, we examine to what 

extent the internal consistency of morphological characters relates to their 

fit on previously published molecular trees, as measured by their retention 

index on these trees. In doing this, we are able to establish which cliques 

have low consistency with molecular trees, and therefore may be candidates 

for concerted convergence (Patterson & Givnish, 2002). 

In general, in morphological datasets with good phylogenetic signal, we 

expect to see large cliques of characters that fit well on the molecular trees, 

and smaller cliques that fit the molecular trees poorly. We may expect that 

characters that are internally consistent will also share a similar consistency 

with molecular trees, since these characters will have similar cladistic 
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patterns regardless of any underlying phylogeny. We therefore also expect 

to find that some cliques of internally consistent characters share a poor fit 

on molecular trees. If we assume that these molecular trees are reliable, 

which is unknowable, we can take this as evidence for concerted 

convergence in these characters. Furthermore, the presence of cliques that 

poorly fit an underlying phylogeny could have potential ramifications for 

phylogenetic analysis if these characters are treated as independent in 

phylogenetic analysis. This is because, in the case that the molecular trees 

are in fact reliable, these characters can be interpreted as exhibiting poor 

phylogenetic signal. 

Finally, we also determine whether characters are more or less internally 

consistent within partitions, namely osteological and soft character 

partitions. We expect that characters belonging to the same partition are 

more likely to be correlated and evolve in concert. This is because we expect 

that characters within these partitions are more likely to share selective 

regimes and developmental origins and/or genetic linkage. Furthermore, 

previous work has demonstrated that these partitions do display different 

properties with regards to convergence, transition times on molecular trees, 

and correlation on molecular trees using model-based likelihood 

approaches (Chapters 1 and 2). 

In order to look for signal in both the fit of characters on molecular trees 

and the partition that these characters belong to, we employ methods 

normally used to detect phylogenetic signal, namely Pagel’s lambda (Pagel, 

1999), Blomberg’s K (Blomberg, Garland, & Ives, 2003) and Fritz and 

Purvis’s D (Fritz & Purvis, 2010). We treat the clustered characters as 

phylogenetic trees, and the retention index and partition of these characters 

as traits. We employ randomization procedures on a subset of the data to 

ensure that the methods we use perform as expected given our novel 

approach. 
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2. Methods 

 

2.1. Datasets 

 

To detect cliques of correlated characters, we took a meta-analysis approach 

using 19 avian and squamate datasets, including a large avian (Livezey & 

Zusi, 2007) and large squamate (Reeder et al., 2015) dataset, spanning the 

entire clades. In brief, these datasets were compiled from Google Scholar, 

Graeme Lloyd’s matrix collection (Lloyd, 2009), and the reference list of the 

supertree study of Davis & Page (2014). Datasets with few than 20 

characters and 10 taxa were excluded from analysis. All uninformative 

characters were removed. Please see previous work (Chapter 1) for a more 

detailed discussion on dataset collection and treatment. In addition to the 

morphological datasets, two molecular trees were used in this analysis (Jetz 

et al., 2012; Zheng & Wiens, 2016) for the calculation of homoplasy (the 

retention index) of characters on these trees. In almost all datasets, the 

number of characters is higher than the number of taxa although in some 

cases the character to taxon ratio is relatively low. It is possible that 

character to taxon ratios have an effect on analysis although this is not 

tested here. 

 

 

2.2. Cluster Analysis 

 

Following the methods of Holland et al., (2010), we used a treeless approach 

to assess the internal consistency of morphological characters in these 

datasets. For each morphological dataset, we computed the pairwise excess 

indices (Holland et al., 2010; Blanke et al., 2013) between all character pairs 

in Python in order to produce character dissimilarity matrices. The excess, 

or dissimilarity, of a pair of characters is defined as the difference between 

its parsimony score on the most parsimonious tree that can be constructed 

with only those two characters, and the minimum possible parsimony 

scores for those characters. 
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To identify and visualise cliques, we then performed a UPGMA analysis on 

the resulting dissimilarity matrices (following Holland et al., 2010) using the 

UPGMA function in the package Phangorn (Schliep, 2011) implemented in R 

(R Core Team 2018), in order to produce trees in which morphological 

characters are clustered according to their phylogenetic similarity. The 

UPGMA is a simple hierarchical clustering method that takes the pairwise 

dissimilarity matrix and constructs rooted tree where the tips, in this case 

morphological characters, are grouped according to their similarity. This 

method quickly constructs groups of characters with no homoplasy. Since 

methods to detect phylogenetic signal require that all branches have non-0 

lengths, we then set negative branch lengths in the resultant UPGMA trees to 

0 and added a small length (0.001) to all branches. UPGMA branch lengths 

indicate distance between cliques. 

 

 

2.3. Clique Size Analysis 

 

In avian datasets, we compared the maximum clique size of each dataset 

with the maximum clique size of shuffled datasets, to determine whether 

clique sizes in the empirical data are larger than expected by chance 

(Holland et al., 2010). First, we calculated the size of the largest clique, i.e. 

the largest group of internally compatible characters (defined as groups of 

characters that can be mapped onto a tree without homoplasy), in each 

dataset. We then used a randomization procedure described in Holland et 

al., (2010), which takes into account phylogenetic signal in the data, to 

create 100 shuffled datasets for each empirical dataset. We shuffled datasets 

on each of 100 trees taken from the posterior distribution of Jetz et al., 

(2012), resulting in a null distribution of 100 shuffled datasets for each 

empirical dataset. Characters were shuffled such that their parsimony score 

on each input tree is the same as that of the empirical data. For each 

character in each dataset, all state changes were identified on a given input 

tree after character state reconstruction using the Fitch algorithm. The 

descendent taxa of each branch with a state change, and the new state, were 
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recorded and stored in an array along with the state at the root. Then a set 

of new characters matching dimensions of the original dataset was created. 

For each character, each taxon was randomly allocated a state from the root 

states array, and a taxon cluster and corresponding state were picked at 

random from the cluster and state arrays. The process of picking clusters 

with replacement was repeated until each character had the same 

parsimony score on the input tree as the original tree. This was repeated for 

each input tree (Holland et al., 2010). 

We then calculated the size of the largest internally consistent clique in each 

of these shuffled datasets. We determined whether there is a significant 

difference in clique size between the empirical and shuffled data by 

calculating the proportion of datasets in the null distribution which have 

maximum clique sizes the same as or smaller than in the unshuffled data, 

and treating this as the probability that the maximum clique size is 

significantly larger than expected by chance, following the procedure of 

Holland et al., (2010). Statistical significance using this procedure indicates 

that the maximum clique size is significantly larger than expected by chance. 

This analysis could not be performed on the large avian dataset spanning all 

birds (Livezey & Zusi, 2007) owing to the size of the dataset. Additionally, 

this analysis could not be performed on squamate datasets, since this 

procedure requires several input trees, and here we use a single squamate 

molecular tree. 

 

 

2.4. Comparison with Molecular Data 

 

To determine whether characters that are internally consistent are also 

consistent with molecular trees, we used two metrics to estimate the 

relationship between clique distribution of characters and the molecular 

homoplasy of characters. Here, we used methods often used to detect 

phylogenetic signal - Pagel’s lambda (Pagel, 1999) and Blomberg’s K 

(Blomberg et al., 2003), using the phylogsig function implemented in 

Phytools (Revell, 2012) in R. These methods test a null model of random 
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distribution of traits among tips against a Brownian motion model of trait 

clustering. We treated the UPGMA trees as phylogenetic trees (with 

morphological characters as tips) and the homoplasy, as measured by the 

retention index, of individual characters on molecular trees as the trait. 

Briefly, the retention index of character on a tree is a measure of fit of that 

character on that tree, with a retention index of 0 indicating an extremely 

poor fit on a tree, and a retention index of 1 indicating a perfect fit. For avian 

datasets, we calculated the homoplasy of each character on each of a set of 

1,000 trees from the posterior distribution of Jetz et al., (2012), and 

averaged these values to obtain a single value for each character. For 

squamate datasets, we calculated the homoplasy of each character on the 

topology of Zheng & Wiens, (2016). 

Pagel’s lambda determines whether the distribution of traits on the tips can 

be best described with a Brownian motion (random walk) model, indicating 

clustering, or a random model. The lambda metric describes to what extent 

the branches of a tree must be transformed in order for Brownian motion to 

best explain the observed data, where a value of 1 describes the original 

tree, and a value of 0 describes a completely unresolved tree. Thus, a value 

of 1 indicates strong phylogenetic signal, with traits evolving under strong 

Brownian motion, while a value of 0 indicates a completely random 

distribution of traits. The significance value indicates whether the 

distribution of traits is significantly different from random, but not whether 

it is significantly different to a Brownian motion model of significant 

clustering of traits. Therefore, to determine whether datasets exhibiting 

significant signal are more consistent with a Brownian motion model or a 

lambda model, where trait distribution is between random and Brownian 

motion, we also compared random, lambda and Brownian motion 

distribution models using AICc weights. For this, we used the fitContinuous 

function in the R package Geiger (Harmon et al., 2008). 

Blomberg’s K compares the variance of Phylogenetically Independent 

Contrasts (PICs) in the observed data with the variance that would be 

expected under a Brownian motion model. A K value of 0 indicates that no 

phylogenetic signal is present in the data, while a K of 1 indicates that the 
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distribution of traits is best explained by Brownian motion. We conducted 

Blomberg’s K with 1000 simulations. 

These methods are not normally used on UPGMA trees. To check that these 

methods work correctly on our data, we shuffled the trait values on five of 

the datasets. We then computed both metrics on these random trait 

distributions, and compared the results against our empirical data. 

To visualize the extent to which characters that are incongruent with the 

molecular tree form internally coherent cliques, the tips of each UPGMA tree 

are coloured on a scale according to their retention index (supplementary 

Figure 1). 

 

 

2.5. Effect of Character Partition on Cliques 

 

To determine whether characters belonging to the same partition 

(osteological versus non-osteological) share phylogenetic similarity in terms 

of clique composition, we use similar methods described above for 

homoplasy, instead treating partition as a trait. We use Fritz and Purvis’s D 

(Fritz & Purvis, 2010) since this method is suitable for binary traits (i.e. 

osteological and non-osteological partitions), using the phylo.d function in 

the R package Caper (Orme et al., 2018). This metric behaves similarly to 

Pagel’s Lambda, fitting models of both random trait distribution (no 

phylogenetic signal) and Brownian motion (strong phylogenetic signal) to 

traits. The metric describes the ‘clumpiness’ of traits on phylogenetic trees, 

with a value of 1 indicating random distribution of traits, a value of 0 

indicating evolution under Brownian motion, and values of less than 1 

indicating more clustering than expected under Brownian motion. 

 

 

3. Results 

 

3.1. Clique Analysis 
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The cluster analysis resulted in highly asymmetrical UPGMA trees in most 

cases (e.g. Figure 1, Supplementary Figures 1, 2), where there are few large 

cliques and more small cliques and singletons. 

In general the size of the largest cliques (in number of characters) was found 

to be within the range of the null distribution from clique sizes in shuffled 

datasets. Cliques were found to be larger than in shuffled data in 5 of 11 

avian datasets, only two of which are significantly larger (Prum, 1992, 1993, 

Table 1, null distribution test). In just over half of cases, clique sizes are 

smaller than in shuffled datasets with the same parsimony score in 6 of 11 

datasets. Overall, these results indicate that large cliques of characters are 

unusual in these datasets, and are often no larger than expected by chance.  

 

Table 1. Clique sizes in avian datasets 

Dataset Taxa Characters 

Largest 
Clique Size 
(no. 
characters) 

Mean 
Largest 
Clique 
Size 
(Shuffled 
Data) 

p (null 
distribution 
test) 

Bertelli, Chiappe, & Mayr, 
2014 

17 124 34 52.51 0.98 

Birdsley, 2002 31 39 12 10.69 0.33 

Clarke et al., 2007 30 174 72 80.49 0.71 

Irestedt, Fjeldså, & Ericson, 
2004 

38 30 7 8.11 0.82 

Livezey, 1996 25 82 30 36.32 0.86 

Maurício et al., 2012 34 88 30 23.62 0.14 

Nesbitt, Ksepka, & Clarke, 
2011 

11 91 32 35.54 0.84 

Patten & Fugate, 1998 27 30 5 4.56 0.44 

Prum, 1993 12 27 23 18.71 0.01 

Prum, 1992 30 39 24 18.03 0.02 

Smith, 2011 52 299 19 36.49 1 

 

Showing the total number of characters, the maximum clique size (size of the largest 

internally consistent clique of characters) in the unshuffled data, and the mean maximum 

clique sizes in 100 shuffled datasets. Values are compared by calculating proportions of 

datasets in the null distribution which have maximum clique sizes larger than or equal to that 

in the unshuffled data (p null distribution test). Clique sizes are significantly larger in 

unshuffled than shuffled data in 2 datasets, indicating that clique sizes are no larger than 

expected given their parsimony score in most datasets. 
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3.2. Phylogenetic Signal and Homoplasy 

 

Characters in cliques shared similar levels of homoplasy relative to 

molecular trees. Treating retention index as a phylogenetic trait in UPGMA 

trees found evidence of signal in the homoplasy of morphological 

characters. For birds, 8 of 12 Pagel’s lambda values and 8 of 12 Blomberg’s K 

values are significantly different from 0, where 0 indicates random 

distribution of traits among tips. Of the 10 datasets displaying signal with at 

least one metric, 7 show significant signal with both. For squamates, 5 of 7 

Pagel’s lambda and 3 of 7 Blomberg’s K values are significantly different 

from 0, with significant signal present in both metrics in 2 of these datasets. 

Overall, of the 14 total datasets in which there is significant phylogenetic 

signal with at least one metric, 9 datasets show significant signal with both, 

indicating reasonably high correspondence between these two methods 

(Table 2). However, many of these values are low, especially when using 

Blomberg’s K, and of all datasets showing significant signal, a lambda model 

describes the trait distribution better than Brownian motion 

(Supplementary Table 1). This indicates that the signal is often weak even in 

cases where it is highly significant. 

 

 

Table 2 at End of Document 

 

Table 2. Showing the dataset dimensions and presence of signal in homoplasy (retention 

index), and partition membership, of morphological characters on UPGMA trees clustering 

morphological characters in several avian and squamate datasets by their phylogenetic 

similarity using three metrics. We use Pagel’s lambda and Blomberg’s K to measure signal in 

homoplasy, and Fritz & Purvis’s D to measure signal in partition membership. Here, UPGMA 

trees are treated as phylogenetic trees and the retention index of characters on molecular 

trees treated at the trait of interest. In both metrics used to measure signal in homoplasy, 

values close to 0 indicate close to random trait distribution, and values close to 1 indicate a 

distribution best explained by Brownian motion, indicating clumpiness of traits. Significant P 

values indicate that metrics are significantly different from 0, indicating the presence of signal 
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in the trait distribution. In Purvis’s D used to measure signal in partition membership, values 

close to 1 indicate close to random trait distribution, and values close to 0 indicate close to a 

distribution best explained by Brownian motion, indicating clumpiness of traits. Significant P 

values (random) indicate that metrics are significantly different from 1, indicating the 

presence of signal in the trait distribution. Significant P values (Brownian) indicate that the 

metrics are significantly different from 0, indicating no Brownian motion. 

 

 

 

Figure 1. Showing the distribution of a) the retention index and b) partition among the tips of 

an example UPGMA tree (Frost et al. 2001b), where tips are morphological characters. The 

trees show  3 characteristic patterns; firstly, the UPGMA trees are quite asymmetrical, 

demonstrating a non-normal distribution of clique sizes (i.e. there is a small number of large 

cliques and a larger number of small cliques). Secondly, the retention index is lower in smaller 

cliques, demonstrated by tips getting darker further down tree a. This suggests that larger 

cliques tend to be more congruent with molecular trees. Thirdly, smaller cliques are less likely 

to be composed of osteological characters, as demonstrated by an increase in ‘greeness’ 
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further down tree b. Additionally, the presence of some medium-sized, darker (on tree a) 

cliques further down the tree suggest some ‘concerted convergence’, as these characters are 

internally consistent and have low retention indices. 

 

When the retention index is randomized among UPGMA tips, both methods 

behave as expected for randomized data, with high p values, often close or 

equal to 1. This strongly suggests that the signal detected in the empirical 

data is likely real and not an artifact of our unusual use of non-phylogenetic 

trees for this analysis. 

Visualisation of the retention indices (on molecular trees) on the tips of the 

UPGMA trees strongly suggests that larger character cliques are usually 

more consistent with molecular trees, with highly incongruent characters 

more likely to exist in smaller cliques or as singletons (Figure 1, 

Supplementary Figure 1). However, in several datasets, large cliques do 

exist in which congruence with molecular trees is low (e.g. Frost et al., 

2001b, Figure 1). These cliques possibly indicate instances of concerted 

convergence in these characters as described and discussed in, for example, 

Patterson & Givnish, (2002); Holland et al., (2010); Blanke et al., (2013). 

 

 

3.3. Partitions 

 

There is non-random distribution of the partitions of characters among 

UPGMA tips, indicating that characters are significantly more likely to 

cluster within partitions than expected by chance. This suggests higher 

correlation within than between partitions. In birds, 9 of 12 datasets show 

significant signal in partition (Table 2, Supplementary Figure 2). Three of 

these have trait distributions that are not significantly different from a 

distribution expected under Brownian motion. In squamates, 6 of 7 datasets 

show significant phylogenetic signal, with two of these not being 

significantly different from Brownian motion. Overall, D values in 15 of 19 

datasets are significantly different from 1, 1 indicating random distribution 

of the binary trait among UPGMA tips. Of these, 4 are not significantly 
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different from 0, suggesting a Brownian motion distribution in these 

datasets. 

Again, when traits are randomized among UPGMA tips, the D statistic is 

close to 1, not significantly different from random and significantly different 

from Brownian motion, suggesting that this method performs as expected 

even when using UPGMA trees. 

 

 

4. Discussion 

 

Morphological characters are more internally consistent within than 

between osteological and non-osteological partitions. This is consistent with 

our previous findings showing that character pairs are more correlated 

given a molecular tree within than between these partitions (Chapter 1). 

This result is strongly suggestive of integration within related 

morphological traits (Klingenberg, 2008), and is consistent with a view that 

traits are more likely to evolve in concert when they share genetic or 

developmental pathways. Further, the largest cliques tend to be composed 

of characters with low homoplasy. This suggests that in general, the bulk of 

characters used for phylogenetic analysis are not only internally consistent, 

but also likely to be more congruent with evolutionary history. Conversely, 

smaller cliques are generally made up of characters with lower retention 

indices, suggesting that homoplasious characters tend to contain signal that 

is disparate from other characters in general. This is consistent with 

stochastic noise in these characters, as opposed to concerted convergence 

(Patterson & Givnish, 2002) of traits. Nevertheless, in some datasets (e.g. 

Frost et al., 2001), larger cliques of characters do exist which demonstrate 

high homoplasy, warranting further investigation into the makeup of these 

cliques, and the ecological, genetic, functional or developmental processes 

that unite their component characters. Additionally, cliques tend to be no 

larger than expected given the overall phylogenetic signal in the dataset. 

This study demonstrates new ways of looking at morphological characters, 
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detecting correlations and comparing character partitions. This potentially 

has wide utility in phylogenetics and studying morphological evolution. 

 

 

4.1 Clique Sizes 

 

Interestingly, maximum clique sizes are no larger than expected by chance 

in just over half of all analysed datasets. Overall, the clique size results imply 

that characters in these datasets do not cluster in internally consistent 

correlated cliques that are any larger or smaller than expected by chance. 

This may be because here we have analysed entire morphological datasets, 

presumably coded with the intent of constructing a phylogeny with as much 

data as possible. Further, the authors of these phylogenetic datasets may 

have avoided the use of characters that were thought to be obviously 

correlated. This contrasts with previous studies of this nature finding 

significantly larger cliques in their dataset than in shuffled data. This may be 

because these studies were using clique analysis to test pre-defined 

hypotheses of correlation, and therefore including only specific taxa or 

character types (Holland et al., 2010; Blanke et al., 2013). 

We also used a randomization procedure that ensures that the shuffled 

datasets have the same level of congruence with molecular trees as the 

unshuffled data, since shuffling the data at random produces datasets that 

are more incongruent with molecular trees (Holland et al., 2010). However, 

if the unshuffled and shuffled data share a parsimony score with respect to 

molecular trees this helps to ensure that any similarity between taxa, and 

ultimately the presence of larger maximum clique sizes in the unshuffled 

data compared with the shuffled data, are the result of convergence as 

opposed to phylogenetic similarity. However, this assumes that the 

underlying trees used for this procedure represent an accurate picture of 

evolutionary history. 
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4.2. Internal Consistency of Morphological Characters Versus Congruence With 

Molecular Data 

 

Unsurprisingly, cliques of correlated characters that cluster together in 

UPGMA analysis are also generally more likely to share a similar level of 

consistency with molecular trees as measured by the retention index. This is 

demonstrated by the use of Pagel’s lambda (Pagel, 1999) and Blomberg’s K 

(Blomberg et al., 2003) to search for signal in the retention index on the 

UPGMA trees, which were treated as phylogenetic trees. Additionally, 

cliques that are more congruent with molecular trees are often larger, 

suggesting that in general, morphological and molecular datasets contain 

broadly congruent signal. Characters in these cliques are likely correlated as 

a result of common ancestry, if we take consilience between morphological 

and molecular data to be suggestive of genuine phylogenetic signal in the 

morphological data. Conversely, cliques of characters that are homoplasious 

relative to molecular trees are internally consistent with each other. This is 

known in the literature as concerted convergence, and arises when taxa are 

evolving under shared ecological conditions (Patterson & Givnish, 2002). 

However, since we cannot distinguish the maximum clique sizes in most 

datasets from chance, we cannot conclude with certainty that these traits 

are evolving under concerted convergence. 

Our use of UPGMA trees in this analysis is unusual, given that these trees are 

not phylogenetic in nature. The use of these clustered rather than 

bifurcating phylogenetic trees may have affected the results, for example the 

extremely low values of K even with very low p values, interpreted here as 

strong evidence of weak signal. Further, since common ancestry among 

UPGMA tips is not implied, concepts such as Brownian motion do not strictly 

apply to these data in a traditional sense. However, we argue that a 

Brownian motion model is relevant here, and in this context refers to the 

clustering of traits among tips owing to character similarity rather than 

common ancestry. This interpretation is strengthened by the fact that when 

we perform these same analyses on randomized trait data, the results are as 

we would expect for trait data randomly dispersed among the tips of 
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phylogenetic trees (i.e. low values of Pagel’s lambda and Blomberg’s K, p 

values close to 1), implying that the signal detected by these methods on our 

data is meaningful.  

 

 

4.3. Internal Consistency of Subsets of Morphological Characters 

 

Characters are significantly more correlated within osteological and non-

osteological partitions, as measured by the significant signal detected when 

partition is treated as a trait on the UPGMA trees. This may reflect the 

different evolutionary trends and developmental origins of these character 

types. It has been shown previously that different partitions of 

morphological data infer different trees and have different phylogenetic 

properties, for example (Mounce, Sansom, & Wills, 2016; Sansom, Wills, & 

Williams, 2017; Sansom & Wills, 2017). Characters in these subsets may be 

more likely to share developmental origins or ecological properties, and 

therefore may be more likely to evolve in concert. It may also reflect the 

coding practices of the authors. For example, the oversplitting of related 

characters is a known phenomenon, and may result in non-independence. 

However, it is possible that these results are affected by data imbalance, in 

osteological data outweigh non-osteological data in most datasets. Purvis’s 

D is affected by relative trait prevalence to some extent in smaller trees 

(Fritz & Purvis, 2010). Nevertheless, here both larger datasets and datasets 

with roughly equal prevalence of characters in either partition have similar 

results as smaller datasets and datasets with significant imbalance. 

Both character partition and retention index on molecular trees display 

significant signal on UPGMA trees where characters are clustered by 

similarity. Osteological characters are also more congruent with molecular 

trees than non-osteological characters (Chapter 1). Therefore it is 

reasonable to speculate that cliques containing osteological characters are 

also cliques in which the characters have on average a higher retention 

index. 
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5. Conclusions 

 

The size of the largest cliques in these datasets is no larger than in shuffled 

datasets in most cases. This suggests that, at least in whole datasets 

intended for phylogenetic reconstruction, morphological characters are no 

more internally correlated than expected by chance. Characters are also 

more internally correlated within osteological and non-osteological 

partitions, corroborating previous analyses suggesting higher levels of 

correlation within partitions when using an underlying molecular tree 

(Chapter 2). Further, these partitions themselves display a different level of 

congruence with molecular trees, with non-osteological characters 

apparently containing more homoplasy. In addition, cliques of characters 

displaying high congruence with molecular trees are often larger, with 

characters that are less congruent with molecular trees exhibiting less 

clustering. This is consistent with stochastic noise in many homoplasious 

characters as opposed to large-scale convergence. Further work exploring 

differences in levels of correlation between taxonomic rank would help to 

further elucidate macroevolutionary patterns of concerted evolution. 

While these findings are reassuring when using morphological data for 

phylogenetic reconstruction, some internally consistent cliques do 

nevertheless exist which exhibit low congruence on molecular trees. These 

sets of characters are larger in some datasets than in others, and it therefore 

cannot be assumed when inferring phylogeny from morphological datasets 

that all characters are independent without explicitly testing for correlation 

a priori. 

Overall, these results and others (Patterson & Givnish, 2002; Holland et al., 

2010; Blanke et al., 2013) paint a picture of some concerted convergence in 

morphological datasets, although this is more apparent in some datasets 

than others. Patterns of convergence also differ between morphological 

subsets. We recommend therefore that correlations are tested for and taken 

into account when inferring phylogeny from morphological data, 

particularly when using probabilistic methods such as maximum likelihood 
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and Bayesian inference methods, paying particular attention to characters 

which may be prone to homoplasy. Correlated characters can be accounted 

for and their impact reduced by being reduced to fewer characters such as 

in composite coding (Billet & Bardin, 2019), or downweighted (Emerson & 

Hastings, 1998) in phylogenetic analysis. 
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Supplementary Information 

 

Supplementary Table 1. AICc weights of 3 models of clustering of UPGMA tips by homoplasy 

Dataset 
   

Birds 

NoSig AICc 

Weight 

Lambda AICc 

Weight 

BM AICc 

Weight 

Bertelli, Chiappe, & Mayr, 

2014 5.11E-08 1.00E+00 2.17E-44 

Birdsley, 2002 7.02E-01 2.98E-01 2.36E-17 

Clarke et al., 2007 9.80E-07 1.00E+00 1.11E-81 

Irestedt, Fjeldså, & Ericson, 

2004 7.75E-01 2.25E-01 6.35E-21 

Livezey, 1996 3.65E-01 6.35E-01 4.59E-25 

Maurício et al., 2012 6.61E-03 9.93E-01 2.22E-29 

Nesbitt, Ksepka, & Clarke, 

2011 4.47E-08 1.00E+00 1.19E-29 

Patten & Fugate, 1998 7.75E-01 2.25E-01 2.96E-23 

Prum, 1993 4.95E-03 9.95E-01 8.56E-07 

Prum, 1992 1.39E-01 8.61E-01 1.53E-08 

Smith, 2011 6.63E-08 1.00E+00 1.09E-187 

Livezey & Zusi, 2007 5.30E-39 1.00E+00 0.00E+00 

Squamates 
   

Daza & Bauer, 2012 1.25E-02 9.87E-01 6.93E-117 

Frost et al., 2001 2.62E-02 9.74E-01 1.21E-26 

Frost et al., 2001a 2.53E-01 7.47E-01 6.85E-41 

Hitchmough, 1997 7.59E-01 2.41E-01 4.71E-06 

Vieira, Colli, & Bao, 2005 6.39E-01 3.61E-01 4.17E-11 

Yi & Norell, 2013 1.30E-05 1.00E+00 1.45E-122 

Reeder et al., 2015 1.51E-09 1.00E+00 0.00E+00 

Showing AICc weights of 3 models of phylogenetic signal, fitted on the character retention 

index on molecular trees as tips on UPGMA trees. Models tested are a) no phylogenetic signal, 

where the retention index is randomly distributed among UPGMA tips, b) Lambda, where the 

retention index is non-randomly distributed but non-Brownian, and c) Brownian motion, 

where the retention index shows distinct clustering among UPGMA tips. The best model for 

each datasets is highlighted in green. Most datasets show a non-random distribution of 

retention index among tips, showing that internally consistent characters are also more likely 

to fit the underlying molecular phylogeny. 
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Supplementary Figure 1. Showing character retention indices, where a high retention index 

indicates a good fit, on molecular trees mapped onto UPGMA trees of individual avian and 

squamate datasets, where characters are clustered by internal consistency. Characters with a 

low retention index are darker, while characters with a high retention index are lighter, 

Generally, characters are more likely to cluster together if they share similar consistency with 

molecular trees. In addition, many trees show a characteristic darkening further down the 

trees, showing that larger cliques are also likely to fir molecular trees better. 
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Supplementary Figure 2. Showing osteological (purple) and non-osteological (green) 

partitions mapped onto UPGMA trees of individual avian and squamate datasets, where 

characters are clustered by internal consistency. Generally, characters are more likely to 

cluster together if they belong to the same partition, demonstrating greater correlation within 

than between partitions.
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Table 2. Signal in homoplasy and partition membership, of morphological characters on UPGMA trees 

    

Distribution of Homoplasy in Character 
Clusters 

Distribution of Partition Membership in 
Character Clusters 

        Pagel's Lambda Blomberg's K Purvis's D   

Dataset Taxa 
Osteological 
Characters 

Non-Osteological 
Characters 

λ P K P D P (Random) P (Brownian) 

Birds                     
Bertelli, Chiappe, & Mayr, 
2014 

17 85 39 0.312 
0.00
* 

0.002 
0.001
* 

0.329 0.00* 0.00* 

Birdsley, 2002 31 27 11 0.192 0.42 0.001 0.193 0.449 0.01* 0.04* 

Clarke et al., 2007 30 96 78 0.373 
0.00
* 

0.001 
0.014
* 

0.368 0.00* 0.00* 

Irestedt, Fjeldså, & 
Ericson, 2004 

38 9 21 0 1 0.000 0.347 0.666 0.08 0.01* 

Livezey, 1996 25 31 51 0.3000 0.07 0.001 
0.043
* 

-0.059 0.00* 0.61 

Maurício et al., 2012 34 80 8 0.414 
0.00
* 

0.001 
0.039
* 

0.879 0.17 0.00* 

Nesbitt, Ksepka, & Clarke, 
2011 

11 82 9 0.509 
0.00
* 

0.002 
0.001
* 

0.439 0.00* 0.04* 

Patten & Fugate, 1998 27 6 24 0 1 0.000 0.493 0.991 0.43 0.00* 

Prum, 1993 12 16 11 0.793 
0.00
* 

0.008 
0.008
* 

0.662 0.00* 0.85 

Prum, 1992 30 29 10 0.294 
0.01
* 

0.003 
0.019
* 

0.032 0.00* 0.43 

Smith, 2011 52 195 104 0.286 
0.00
* 

0.000 0.057 0.534 0.00* 0.00* 

Livezey & Zusi, 2007 139 1528 436 0.345 
0.00
* 

0.000 
0.023
* 

0.405 0.00* 0.00* 

Squamates                     

Daza & Bauer, 2012 12 227 17 0.300 
0.00
* 

0.001 
0.004
* 

0.672 0.00* 0.00* 

Frost et al., 2001b 28 32 46 0.271 
0.00
* 

0.001 0.079 0.102 0.00* 0.27 

Frost et al., 2001a 26 31 40 0.249 
0.04
* 

0.000 0.153 0.291 0.00* 0.05 

Hitchmough, 1997 12 10 9 0.808 0.46 0.003 
0.014
* 

0.381 0.01* 0.11 
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Vieira, Colli, & Bao, 2005 10 49 8 0.269 0.29 0.001 0.06 0.866 0.19 0.00* 

Yi & Norell, 2013 25 209 25 0.352 
0.00
* 

0.001 
0.016
* 

0.783 0.01* 0.00* 

Reeder et al., 2015 135 533 93 0.295 
0.00
* 

0.000 0.103 0.571 0.00* 0.00* 

Showing the dataset dimensions and presence of signal in homoplasy (retention index), and partition membership, of morphological characters on 

UPGMA trees clustering morphological characters in several avian and squamate datasets by their phylogenetic similarity using three metrics. We use 

Pagel’s lambda and Blomberg’s K to measure signal in homoplasy, and Fritz & Purvis’s D to measure signal in partition membership. Here, UPGMA trees 

are treated as phylogenetic trees and the retention index of characters on molecular trees treated at the trait of interest. In both metrics used to measure 

signal in homoplasy, values close to 0 indicate close to random trait distribution, and values close to 1 indicate a distribution best explained by Brownian 

motion, indicating clumpiness of traits. Significant P values indicate that metrics are significantly different from 0, indicating the presence of signal in the 

trait distribution. In Purvis’s D used to measure signal in partition membership, values close to 1 indicate close to random trait distribution, and values 

close to 0 indicate close to a distribution best explained by Brownian motion, indicating clumpiness of traits. Significant P values (random) indicate that 

metrics are significantly different from 1, indicating the presence of signal in the trait distribution. Significant P values (Brownian) indicate that the 

metrics are significantly different from 0, indicating no Brownian motion. 
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4. Convergence, Correlations and Cliques: An Analysis of the Relative 

Performance of Morphological Character Partitions in Mammals 

 

Abstract 

 

Partitions of morphological data evolve under different selective regimes, 

resulting in different levels of homoplasy and integration. These differences 

raise questions about the ability of these data types to reconstruct 

evolutionary relationships. Dental and osteological data, for example, have 

been shown to imply different trees. Dental traits may be particularly prone 

to homoplasy and correlation as a result of trophic convergence and 

functional integration. Here, we take several approaches to compare 

osteological and dental partitions in 38 mammalian morphological datasets, 

testing for differences in homoplasy, transition ages and correlations using a 

newly published molecular tree of mammals as a benchmark. We also 

establish the internal consistency of characters and infer trees from these 

partitions. We find that osteological characters are less homoplastic (p = 

0.001) and transition earlier (p < 0.0001) than dental characters relative to 

molecular trees. We find levels of correlation to be roughly equal between 

partitions, but characters are more correlated within than between 

partitions both with and without reference to the molecular tree. Further, 

we find that dental and osteological data imply different trees, with 

osteological trees being more similar to the molecular tree. These results 

converge on the conclusion that osteological and dental data have different 

properties. These differences should be taken into account when inferring 

evolutionary history using these data types. 

 

1. Introduction 

 

The convergence and non-independence of morphological traits have long 

been acknowledged to affect morphological data, and consequently 

phylogenetic reconstruction inferred from these data (Emerson & Hastings, 

1998; Sadleir & Makovicky, 2008; Goswami & Polly, 2010; Billet & Bardin, 
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2019). These phenomena may arise as a result of selection on morphological 

traits – species occupying similar habitats or with similar diets, for example, 

often exhibit extraordinary morphological similarity despite being unrelated 

(e.g. McCurry et al., 2017), sometimes to the extent of misleading 

phylogenetic analysis, necessitating the use of molecular data to infer 

relationships intractable to morphology alone (e.g. Stanhope et al., 1998; 

Van Tuinen et al., 2001). Selective regimes affecting characters which are 

ecologically, functionally or genetically linked can give rise to concerted 

convergence (Patterson & Givnish, 2002) potentially affecting entire suites 

of traits, leading to the presence of internally correlated cliques (Holland et 

al., 2010; Blanke et al., 2013). Despite their apparent prevalence, the extent 

of these phenomena in morphological datasets spanning wide taxonomic 

groups, as well as the relative prevalence of these issues between 

morphological subsets, remains largely unknown. 

Despite these challenges, and the availability of molecular data (and its 

ability to produce well-resolved, reliable trees), morphology remains an 

indispensable source of biological information in phylogenetic analysis. This 

is  in large part owing to the need to include fossil and rare species, for 

which molecular data are usually unavailable. Even when molecular data are 

available, however, morphological data remain vital since combined 

analyses allow the identification of consilience (Field et al., 2014), provide 

greater statistical support to phylogenetic hypotheses (Lee & Camens, 

2009), and help discriminate between hypotheses owing to the presence of 

hidden support (Gatesy & Arctander, 2000; Wahlberg et al., 2005; Lee, 

2009). However, questions remain about the properties of subsets of 

morphological characters. For example, do different subsets of 

morphological data display more convergence, faster evolutionary rates, or 

stronger internal correlation and integration? 

Previous analyses of sauropsid datasets have demonstrated that there are 

differences in homoplasy, transition age and correlation relative to 

molecular trees (Chapter 1, 2) and internal consistency (Chapter 3) between 

osteological and non-osteological character partitions. Osteological 

characters were shown to be more consistent with molecular trees, and to 
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have older transition ages on average, and characters were more correlated 

within than between these partitions. Previous authors have additionally 

found heterogeneity in the phylogenetic signal conveyed between hard and 

soft characters (Sansom & Wills, 2017) and dental and osteological 

characters (Sansom, Wills, & Williams, 2017) using partition difference 

tests. 

Differences in developmental and evolutionary origins, as well as selection 

acting on traits, may explain observed differences between these character 

subsets. For example, plumage in birds is driven by sexual selection and is 

relatively labile (Price, Friedman, & Omland, 2007). Additionally, cranial and 

dental evolution are driven by diet, which results in divergence, 

convergence and functional integration (Sakamoto & Ruta, 2012; Felice et 

al., 2019; Sakamoto, Ruta, & Venditti, 2019; Godoy, 2019). This results in 

different levels of homoplasy and correlation between subsets of 

morphological data. Alternatively, observed differences may be driven by 

systematic differences in the way character subsets are coded by authors. 

Since these properties have been shown to impact phylogenetic inference 

(Sadleir & Makovicky, 2008; Goswami & Polly, 2010; Billet & Bardin, 2019), 

it is vital for evolutionary biologists to examine how general and widespread 

these phenomena are in subsets of morphological data, and whether they 

affect the tree topology resulting from phylogenetic analyses using these 

data.  

 

 

1.1. Mammals 

 

Mammals are a large and well studied, morphologically and ecologically 

disparate group of vertebrates, characterized by widespread convergence 

and parallelism between distantly related species, for example marine 

species, ungulate-like species and hedgehog-like species (Madsen et al., 

2001; Kelley & Motani, 2015; Gheerbrant, Filippo, & Schmitt, 2016; Mazel et 

al., 2017). 
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As in many other groups, phylogenetic analyses of mammals have yielded 

contradictory results, not least as a result of convergence. Furthermore, the 

resolution of deep branching events has not been trivial (Foley, Springer, & 

Teeling, 2016). Areas of debate include the earliest divergence between the 

three major clades of placental mammals, namely Afrotheria, Xenarthra and 

Boreoeutheria. Each of the three possible branching orders between these 

clades has been supported at various times by molecular data (Scally et al., 

2001; Madsen et al., 2001; Murphy et al., 2001a,b; Delsuc et al., 2002; 

Teeling & Hedges, 2013). 

Recent advances in molecular mammalian phylogenetics (Upham, Esselstyn, 

& Jetz, 2019), as well as an abundance of morphological data, provide an 

opportunity to test some of the above questions on one of the most well 

studied and ecologically diverse vertebrate groups. 

 

 

1.2. Approach and Hypotheses 

 

Here, we use published morphological and molecular data to address 

questions relating to differences in the evolution and phylogenetic 

performance of osteological versus dental partitions in mammals. There are 

a priori reasons to examine the differences between these morphological 

regions, since dental and osteological data produce difference trees (Sansom 

et al., 2017). Dental data are additionally often convergent owing to trophic 

similarity in unrelated animals (McCurry et al., 2017), and correlated 

because of functional and developmental constraint (Billet & Bardin, 2019). 

We use the morphological datasets collected by Sansom et al., (2017) for all 

analyses. As a benchmark, we use a newly published molecular tree (Upham 

et al., 2019) for comparison with morphological data. We address the 

following topics: 

1. The distribution of internal consistency of characters within and between 

partitions. 

2. The distribution of homoplasy of morphological characters relative to 

molecular trees, and relative character transition ages. 
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3. The distribution of character correlations relative to molecular trees 

within and between partitions. 

4. The phylogenetic hypothesis inferred from each partition. 

We first examine the internal consistency of these partitions, using 

dissimilarity matrices to search for cliques of compatible characters 

(Holland et al., 2010; Blanke et al., 2013). As such, we directly test the 

hypothesis that there will be greater internal consistency within than 

between character partitions. We then compare the consistency and ages of 

these partitions on time-calibrated molecular trees using the retention 

index as a measure of homoplasy and using character state reconstructions 

to estimate average transition ages. Since dental data have been shown to 

display poor phylogenetic signal compared with osteological data (Sansom 

et al., 2017), we hypothesize that dental data may exhibit poorer fit than 

osteological data on molecular trees. They may also be more evolutionarily 

labile than osteological characters, which may manifest as younger ages on 

molecular trees. These hypothesese are also consistent with previous work 

showing osteological data to be more consistent with molecular trees than 

soft characters in birds and reptiles (Chapter 1). 

Further, we examine correlations between character pairs, again using 

molecular trees as a benchmark. We take a maximum-likelihood approach 

comparing models of trait evolution (Pagel, 1994). Here, we expect 

characters to exhibit greater correlation within than between partitions. 

Finally, we generate new trees from the dental, osteological and combined 

data from the largest and most taxonomically diverse of our morphological 

datasets (O’Leary et al., 2013) to look directly at the phylogenetic signal 

exhibited by each of the partitions. We chose the O’Leary dataset for this 

additional analysis in order to examine whether osteological and dental data 

support different hypotheses of early branching events in placental 

mammals. Some outstanding questions include the branching order of 

Boreoeutheria, Afrotheria and Xenarthra, and the Laurasiatheria polytomy. 

These questions are contentious, and an area of particular interest to 

mammal phylogeneticists. We expect these different partitions to support 
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different hypotheses of evolutionary history, although these may or may not 

be congruent with previous molecular or morphological analyses. 

 

 

2. Methods 

 

2.1. Data Collection 

 

The morphological data sample comprised 38 published and edited data 

matrices containing osteological and dental character partitions (Sansom et 

al., 2017). In brief, matrices were compiled from Google and Google Scholar, 

with minimum dimensions of 30 characters and 10 taxa, and minimum 

taxonomic overlap. See Sansom et al., (2017) for details of data compilation. 

We retained fossil taxa in our analyses where possible, in order to gain a 

comprehensive look at trait evolution in crown mammals. Our datasets here 

include both a large dataset spanning all of Mammalia (O’Leary et al., 2013), 

and smaller datasets covering narrower taxonomic levels.. 

For the molecular data, we used a new time-calibrated molecular tree of 

mammals (Upham et al., 2019). This tree contains 5911 mammalian species, 

4098 of which have molecular information available. The tree was 

constructed from 31 genes under a Bayesian framework, and dated using 17 

fossil calibrations using node dating methods (Upham et al., 2019). For all 

analyses involving these trees, we deleted any species from the character 

matrix that were lacking in molecular data. We additionally performed some 

of the following analyses (homoplasy and character transition ages) on the 

bat morphological dataset (Fracasso, De Oliveira Salles, & Perini, 2011) 

against an independent tree constructed from cytochrome b (Agnarsson et 

al., 2011) for comparison. This is to test whether these methods are robust 

to different estimates of evolutionary history. 
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2.2. Cluster Analysis 

 

To explore character compatibility in our morphological matrices, we first 

performed cluster analyses on all datasets following the methods of 

(Holland et al., 2010; Blanke et al., 2013) and our earlier work (Chapter 3). 

Since finding internally consistent cliques does not rely on a phylogeny, 

fossil species were retained for this analysis. 

For each of the mammalian datasets, we initially constructed a dissimilarity 

matrix of pairwise excess indices in Python using scripts developed by 

previous authors (Holland et al., 2010; Blanke et al., 2013). Here, the excess 

of a pair of characters is defined as the number of extra steps required on 

the most parsimonious tree that can be constructed with those characters, 

over and above the minimum number of possible steps for those characters, 

where a pairwise parsimony score of 0 indicates perfect compatibility 

between 2 characters. We then constructed UPGMA trees from these 

dissimilarity matrices, using the package Phangorn (Schliep, 2011) in R (R 

Core Team, 2018), whereby characters cluster according to their 

phylogenetic similarity. We compared the size of the largest cliques in each 

dataset with a null distribution, following the procedure described in 

chapter 3 (Holland et al., 2010; Blanke et al., 2013) 

We further used Purvis’s D (Fritz & Purvis, 2010), implemented in the R 

package Caper (Orme et al., 2018), to detect whether osteological and dental 

characters cluster together more than expected by chance on UPGMA trees. 

Purvis’s D is a measure of phylogenetic signal of binary traits. On 

phylogenetic trees, Purvis’s D tests a model of Brownian motion (indicating 

clustering) against a null model of random trait evolution. We randomized 

the trait values among tips on one dataset, to confirm that this method is not 

likely to spuriously detect internal consistency on UPGMA trees. 
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2.3. Homoplasy 

 

For analysis of congruence of morphological partitions on molecular trees, 

we used 100 trees from the post-burn in posterior distribution of the 

phylogenetic analysis of Upham et al., (2019), using the retention index as a 

measure of homoplasy. This approach takes some phylogenetic uncertainty 

into account. We only included species for which there was molecular data 

available, and we only used morphological datasets in which tips were 

species. The exception to this was a bat phylogeny (Fracasso et al., 2011), to 

which we assigned species belonging to the taxa at the tips, in order to 

compare the congruence of this dataset on the Upham et al., (2019) and 

alternative Agnarsson et al., (2011) topologies. This is because this was a 

useful phylogeny to use for comparison because of the availability of 

alternative molecular data and a suitable number of taxa and characters. 

We first calculated the individual retention indices for all informative 

characters in all datasets, and the ensemble retention indices for 

osteological and dental partitions for all datasets, averaging over the 100 

trees, in TNT (Goloboff, Farris, & Nixon, 2008). The retention index (ri) of a 

character on a tree is defined as the difference between its maximum 

number of states changes on a tree (g) and its actual number of changes on 

that tree (s), divided by the maximum number of changes on the tree (g) and 

the minimum possible number of steps (m), so that ri = gs/gm. The 

retention index calculated for a group of characters is the ensemble 

retention index. A retention index of 0 indicates poor congruence with the 

tree, while a retention index of 1 indicates a perfect fit. 

We compared the fit of these characters on the trees by comparing linear 

mixed effect models in the package nlme (Pinheiro et al., 2019) 

implemented in R, accounting for heteroskedascticity and random dataset 

effects. We compared a null model, with no fixed effects, to a model where 

partition is treated as a fixed effect. In both models, the individual character 

retention index is the dependent variable and dataset is treated as a random 

effect. 
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We additionally tested whether there was any relationship between the 

morphological character clusters and the distribution of homoplasy of these 

characters relative to molecular data, i.e. whether characters cluster 

together on the UPGMA trees described above according to their retention 

index on molecular trees more than expected by chance, using Pagel’s 

lambda (Pagel, 1999), implemented in the R package Phytools (Revell, 2012) 

to measure phylogenetic signal. Pagel’s Lambda describes the extent to 

which branches on a tree must be transformed in order for a Brownian 

motion model to explain the trait distribution. 

 

 

2.4. Relative Transition Ages 

 

To compare the relative ages of partitions, we follow methods used 

previously (Chapter 1). We first performed character state reconstructions 

on each of 100 molecular trees for each dataset in R using the package 

Paleotree (Bapst, 2012), which estimates the node or nodes on the tree at 

which each character changes state. These reconstructions were conducted 

under a maximum parsimony framework using the ACCTRAN (accelerated 

transformation) algorithm, which minimizes distance from the root and 

favours secondary loss of traits as opposed to repeated gains. ACCTRAN is 

generally preferred over DELTRAN (delayed tranformation) for this reason. 

In our view, however, our choice of algorithm is arbitrary given we are 

interested in relative, not absolute transition ages. Nevertheless, we 

performed the same analysis using the MPR (most parsimonious 

reconstruction) algorithm on one of our datasets (Fracasso et al., 2011), for 

comparison with our main transition age analysis. 

For each tree, transition ages were then assigned to characters by 

generating and averaging 100 random ages between the nodes at which the 

characters transition and their ancestral node. Averages were also taken 

between the transition ages of characters transitioning multiple times on a 

tree to obtain an overall average transition age for each character. The final 

character transition ages were then compared between osteological and 
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dental partitions using linear mixed effect models accounting for 

heterskedasticity. Again, a null model was compared to a model with 

partition as a fixed effect. To test whether any difference in transition age 

can be explained by homoplasy, a further analysis was conducted with the 

character retention index treated as an additional fixed effect. Dataset was 

treated as a random effect in all analyses. 

 

 

2.5. Correlations 

 

In addition to the internal correlations described above, we derived 

morphological character correlations relative to molecular topologies in a 

maximum likelihood framework following the procedure of previous 

analyses (Chapter 2) using the corHMM package (Beaulieu, O’Meara, & 

Donoghue, 2013) implemented in R. For this analysis, multistate characters 

and characters with missing data were removed. We only included datasets 

for which there were 5 or more characters (=10 pairwise comparisons) in 

each partition after removal of characters. 

We compared 3 models of character evolution on all character pairs in all 

datasets, namely an Equal Rates model (ER), a Symmetrical model (SYM) 

and an All Rates Different (ARD) model. In a rate matrix of a pair of 

characters, equal rates occur if the rate of change of one character in the pair 

is independent of the character state of the other. Rates in the rate matrix 

are symmetrical when the rate of change of one character in the pair 

depends on the state of the second, but not vise versa. When all rates in the 

rate matrix differ, the rate of change of one character in a pair is always 

dependent on the state of the other. Thus, ER is an uncorrelated model, 

while SYM and ARD are both correlated models. We compared these models 

for all character pairs using AICc weights, and summed the weights of the 

SYM and ARD models to obtain the cumulative weights for correlated 

models, as in Sauquet et al., (2017). We used equal weights for ancestral 

states. 
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We then calculated the percentages of correlated character pairs in each 

partition, where character pairs are considered to be correlated if this 

cumulative AICc weight for the pair is more than or equal to 0.95. Since this 

choice of threshold is somewhat arbitrary, we also compared AICc weights 

between partitions by fitting linear mixed effects models similar to those 

described above. Namely, we compared a null model with a model with 

partition as a fixed effect. 

 

 

2.6. Topologies Inferred from Osteological Versus Dental Data 

 

To see whether partitions support different hypotheses of evolutionary 

history, we built new trees from the O’Leary et al., (2013) dataset. The first 

phylogenetic analysis used the combined dental and osteological data, and 

we further analysed the two data types separately to create a total of 3 new 

sets of trees. All analyses were performed in TNT under a maximum 

parsimony framework using the tree bisection and reconnection algorithm 

with 1000 replications. We then compared these trees to each other and to 

the molecular tree using the Robinson-Foulds distance metric (Robinson & 

Foulds, 1981) as implemented in the R package Phangorn (Schliep, 2011).  

 

 

3. Results 

 

3.1. Cluster Analysis 

 

Overall, results indicate that dental and osteological characters in these 

datasets cluster together more than expected by chance. UPGMA analyses of 

character dissimilarity matrices derived from mammalian morphological 

datasets resulted in 38 trees, on whose tips we then mapped the trait data 

(osteological and dental). Out of these 38 UPGMA trees, trait distribution 

was significantly different from random in 36, with strong evidence of 

significant clumping in 9 trees, as measured by Purvis’s D metric for 
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measuring phylogenetic signal (Table 1, Figure 1). Here, significant 

clumping is indicated when trait distribution among UPGMA tips is not 

significantly different from that expected under a Brownian motion model of 

trait distribution. There is significant left-sided skew, i.e. towards lower 

values, in the distribution of Purvis’s D values across datasets (Kolmogorov-

Smirnov comparing left skew against a normal distribution, D = 0.507, p < 

0.0001), as well as its being two-sided (Kolmogorov-Smirnov comparing a 

two-sided distribution against a normal distribution, p < 0.0001). In 

addition, clique sizes are no larger than expected by chance (supplementary 

Table 1). 

 

Table 1. The ‘phylogenetic signal’ of trait distribution among UPGMA tree tips 

 

   

Relationship Between Character 

Clustering and Partition 

Membership 

Dataset 
Taxa 

Osteological 

Characters 

Dental 

Characters 
D 

P 

(random) 

P 

(Brownian) 

Ahrens, (2012) 12 29 37 0.455 0 0 

Asher et al., (2005) 57 143 78 0.404 0 0.001 

Asher et al., (2010) 30 90 25 0.481 0 0.001 

Boessenecker & Churchill, 

(2013) 
17 55 30 0.554 

0 0.001 

Bi et al., (2014) 37 270 132 0.656 0 0 

Billet, (2011) 41 55 63 0.366 0 0 

Boisserie, (2005) 14 24 12 0.223 0 0.264 

Bryant, Russell, & Fitch, 

(1993) 
24 20 16 0.572 

0.014 0.001 

Carleton, (1980) 71 27 15 0.33 0.001 0.038 

Carstens, Lundrigan, & 

Myers, (2002) 
38 19 43 0.423 

0 0.005 

Cerdeño, (1995) 41 46 25 0.679 0.031 0 

Churchill, Boessenecker, & 

Clementz, (2014) 
24 91 19 0.851 

0.152 0 

Domning, (1994) 31 45 14 0.225 0.001 0.163 

Finarelli, (2008) 25 34 41 0.266 0 0.012 

Fracasso et al., (2011) 20 85 45 0.897 0.191 0 

Froelich, (1999) 24 26 84 0.556 0 0 

Gaubert et al., (2005) 37 195 66 0.802 0.006 0 

Gentry, (1992) 27 91 19 0.596 0.001 0 
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Gheerbrant et al., (2005) 12 38 75 0.147 0 0.098 

Giannini & Simmons, 

(2005) 
49 129 36 0.025 

0 0.494 

He et al., (2012) 11 40 33 0.017 0 0.449 

Kielan-Jaworowska & 

Hurum, (2001) 
11 23 28 0.127 

0 0.2 

Ladeveze, Pieter, & Smith, 

(2010) 
12 37 20 0.7 

0.018 0 

LeCompte, Granjon, & 

Denys, (2002) 
15 37 20 0.792 

0.16 0 

O’Leary et al., (2013) 35 1434 765 0.867 0 0 

Olivares & Verzi, (2015) 21 45 14 0.442 0.018 0 

Oliviera et al., (2011) 46 39 41 0.556 0.001 0 

Prideaux & Warburton, 

(2010) 
17 50 31 0.261 

0 0.126 

Sanchez-Villagra, 

Horovitz, & Motokawa, 

(2006) 

14 105 47 0.055 

0 0.24 

Silcox et al., (2010) 21 108 112 0.339 0 0 

Springer, Kirsch, & Chase, 

(1997) 
16 41 42 0.267 

0 0.19 

Steppan, (1993) 31 50 32 0.802 0.138 0 

Strait & Grine, (2004) 14 35 52 0.869 0.104 0 

Thorington, Pitassy, & 

Jansa, (2002) 
20 33 44 0.342 

0 0.005 

Tomiya, (2011) 47 52 35 0.818 0.077 0 

Weksler, (2006) 34 39 29 0.237 0.002 0.167 

Wroe & Musser, (2001) 15 30 40 0.26 0 0.013 

Zrzavý & Řičánková, 

(2004) 

23 
42 35 0.797 

0.063 0 

 

Showing the number of taxa, number of characters in each partition, and the ‘phylogenetic 

signal’ of trait distribution among UPGMA tree tips, where the traits are dental vs osteological 

data, as measured by Purvis’s D for calculating phylogenetic signal in binary trait data.  P 

(random) is the probability that the trait distribution is random, and p (Brownian) is the 

probability that the trait distribution is consistent with Brownian motion, or significant 

clumping. D values rage between 0 and 1, where 1 indicates random distribution and 0 

indicates Brownian motion. 
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Figure 1. Showing the distribution of Purvis’s D values among the UPGMA trees, where 

characters are clustered by their internal consistency, showing the degree of clustering of 

characters by partition (osteological vs dental) in 39 morphological datasets. Colours relate to 

p values as given by Purvis’s D, where pale green indicates a trait distribution consistent with 

a model of Brownian motion, indicating significant clustering of partitions. Dark green 

indicates a random trait distribution, while intermediate green indicates a non-random 

intermediate distribution that is also significantly different from Brownian (“Non-Brownian”). 

D values range between 0-1 and are binned in increments of 0.1, where 0 indicates strong 

clustering and 1 indicates a random trait distribution. Where Brownian motion explains the 

distribution within a dataset, characters cluster significantly by partition. 
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3.2. Homoplasy 

 

There was a significant difference in homoplasy as measured by the 

retention index on molecular trees between osteological and dental 

partitions. Homoplasy was lower in osteological partitions in (ensemble 

retention index in 11 out of 15 datasets), although this was marginally non-

significant (paired t, t = 1.8, df = 14, p = 0.09, mean of differences = 0.068, 

Figure 2). The distribution of homoplasy in the Fracasso et al., (2011) 

morphological dataset was similar relative to both molecular topologies 

(ensemble RI of 0.44 and 0.43 for osteological data, and 0.32 and 0.28 for 

dental data on the large mammal topology and the alternative topology 

respectively), suggesting that overall results are likely to be comparable 

even given different estimates of evolutionary history. Compared to a null 

model, the linear mixed effects model treating character partition as a fixed 

effect had significantly greater explanatory power, as measured by the AIC 

weights and likelihood ratios, taking into account dataset effects (Table 3, 

analysis 1). 

In addition, there is an overall poor correspondence of homoplasy with 

internal consistency of characters. The distribution of character retention 

indices on molecular trees among UPGMA tips is significantly different from 

random in only 5 of 14 datasets as measured by Pagel’s lambda (Table 2). 
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Figure 2. Showing the ensemble retention index of osteological partitions by the ensemble 

retention index of dental partitions for each mammalian dataset. All datasets falling below the 

x=y line exhibit higher consistency of osteological than dental data with molecular trees. 

Datasets are coloured by clade and sized by number of characters. 
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Table 2. The distribution of homoplasy as measured by the character retention index among 

UPGMA tree tips 

 

Relationship Between Character Clustering and 

Homoplasy Relative to Molecular Topology 

Dataset λ LogL LogL0 p 

Ahrens, (2012) 0 -21.293 -21.292 1 

Carstens, Lundrigan, & Myers, (2002) 0 -4.661 -4.661 1 

Fracasso et al., (2011) 0 -39.731 -39.730 1 

Gaubert et al., (2005) 0 -40.357 -40.353 1 

He et al., (2012) 0.458 -26.748 -32.079 0.001* 

LeCompte, Granjon, & Denys, (2002) 0.451 -7.631 -10.999 0.009* 

O’Leary et al., (2013) 0 -71.090 -71.054 1 

Oliviera et al., (2011) 0.524 -2.899 -5.553 0.021* 

Prideaux & Warburton, (2010) 0.278 -7.278 -9.365 0.041* 

Sanchez-Villagra, Horovitz, & Motokawa, 

(2006) 0.290 -35.284 -39.449 0.004* 

Steppan, (1993) 0 5.982 5.983 1 

Weksler, (2006) 0 -4.609 -4.609 1 

Wroe & Musser, (2001) 0 -20.069 -20.068 1 

Zrzavý & Řičánková, (2004) 0.115 -15.094 -14.981 1 

 

Showing the distribution of homoplasy as measured by the character retention index among 

UPGMA tree tips using Pagel’s Lambda, a metric for detecting phylogenetic signal in 

continuous traits. Significant p values indicate that the distribution of the retention index is 

different from random. Values of Lambda range between 0 and 1, where 0 indicates a random 

trait distribution and 1 indicates a trait distribution consistent with Brownian motion. 
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Table 3 at End of Document 

 

Table 3. Showing the results of all linear mixed effects models fitted to the data, testing 

whether osteological and dental partitions explain differences in homopasy, transition ages 

and correlations while taking into account dataset effects. There are 3 dependent variables in 

4 total analyses including the effect of partition on homoplasy as measured by character 

retention indices on molecular trees, the effect of partition on transition ages as measured by 

estimating ages given a character state reconstruction on molecular trees, the effect of 

retention index versus partition on transition ages, and finally the effect of partition on the 

strength of correlation between character pairs. For the final analysis, within- and between-

partition is tested as a fixed effect as well as partition itself. Dataset is treated as a random 

effect in all models, and partition treated as a fixed effect in all models except the null. Each 

model fitted for each analysis is given an AIC weight, where each weight is a value between 0-

1, and the weights of each model add to 1 for each analysis. The highest AIC weight is given to 

the model which best describes the data. The best model in each analysis as measured by AIC 

weights is highlighted in green. 

 

 

 

3.3. Transition Ages 

 

Average ages of osteological character transitions within datasets were 

older than dental characters in 10 out of 14 datasets (paired t, t = 2.244, df = 

13, p = 0.043, mean of differences = 0.09 million years, supplementary 

Figure 2). The significant effect of partition on transition age remained when 

comparing linear mixed effect models (p = 0.0001, Table 3, analysis 2). 

However, when individual character retention indices are treated as a fixed 

effect, this also has greater explanatory power against a null (Table 3, 

analysis 3). Given that homoplasy and partition are related, it is possible 

that the retention index is driving the transition ages. To test this, we 

performed an additional analysis where models treating both the retention 

index and partition as fixed effects were compared against both a null and a 

model treating only the retention index as a fixed effect, and transition age 

as the response variable. In this analysis, adding partition as an additional 

fixed effect did not increase the explanatory power (Table 3, analysis 3), 
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demonstrating that the partition does not have an effect on the transition 

age independent of its correlation with homoplasy. Taken together, these 

results indicate a relationship between transition age and retention index 

(where more homoplasious characters transition later, supplementary 

Figure 3), but no difference in transition ages between partitions beyond 

that expected owing to differences in homoplasy between these partitions. 

Our additional analysis using the MPR algorithm to estimate relative 

transition ages for the Fracasso et al., (2011) dataset yielded similar results 

to our main ACCTRAN analysis, albeit with a smaller age difference between 

partitions (osteological ages estimated by ACCTRAN versus MPR = 23.01 

million years and 19.77 million years respectively, dental ages =  18.95 and 

18.86 million years). This difference may suggest a slight sensitivity of 

transition age estimates to choice of character state reconstruction method, 

although the overall pattern of relative age difference between partitions 

remains the same for this dataset. 

 

 

3.4. Correlations 

 

Overall, characters are more correlated within than between partitions, with 

some datasets showing a difference in correlation between osteological and 

dental data. The latter result, however, differs between datasets. 

Correlated character pairs were identified in 8 out of 12 datasets (Table 3). 

Of these, a significant difference between the proportion of correlated 

between-partition character pairs and within-partition character pairs was 

observed in only 2 datasets, a higher proportion of correlated characters 

observed within partitions in both cases (Fisher’s exact test, Table 3). 

Significant differences in the proportion of character pairs between all three 

character-pair classes (i.e. within osteological character pairs, within dental 

character pairs, and between partition character pairs) were observed in 4 

datasets, with mixed results between dental and osteological data (Table 4). 

Given the high (and arbitrary) threshold, we also took into account the 

cumulative AICc weights of correlated (SYM and ARD) models of character 
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pair evolution. Average AICc weights are consistently (9 out of 12 datasets) 

higher within than between partitions (supplementary Figure 5). These 

differences were not significant within datasets (Mann-Whitney U tests, 

Table 4) but were marginally significant between datasets (paired t, t = 

2.4179, df = 11, p = 0.03413). Kruskal-Wallis and Dunn tests showed 

significant differences in average AICc weights between all 3 character pair 

classes in 6 datasets (Table 3, supplementary Figure 4, supplementary Table 

1). 

We additionally compared linear mixed effects models treating pairwise 

cumulative AICc weights for correlated models as the response variable. A 

model splitting character pairs into all 3 classes was preferred over a null 

model and a model splitting character classes into only within- and 

between-character pairs (Table 3), suggesting an important, if inconsistent 

role of partition on correlation in these datasets. 

 

Table 4 at end of Document 

 

Table 4. Showing differences between proportion and strength of correlation between 

character pair classes. Character pairs are considered correlated if their cumulative AICc 

weight for correlated (SYM and ARD) models of character pair evolution are equal to or 

higher than 0.95. Strength of correlation is measured by average cumulative AICc weights of 

correlated models of character pair evolution. Character pair classes include a) within-

osteological data character pairs, b) within-dental data character pairs, and c) between-

partition character pairs. Characters are generally more correlated (as measured by average 

AICc weights) within than between partitions. Differences in proportion and strength of 

correlation between osteological and dental characters are mixed. 

 

 

3.5. Evolutionary Relationships Inferred from Dental Versus Osteological 

Characters 

 

Osteological and dental data each support different estimates of 

evolutionary relationships between mammals. Both the osteological and 

total morphological data in O’Leary et al., (2013) dataset gave rise to two 
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most parsimonious trees each, while the dental data gave rise to a single 

most parsimonious tree. 

The total morphological data produced trees more similar to the 

osteological data (average Robinson-Foulds distance = 35) than the dental 

data (RF distance = 53). The dental and osteological data produced trees 

more different to each other (RF distance = 60) than to trees produced by 

the combined data. The molecular topology was more similar to the 

topologies produced by the osteological data (RF distances = 40 and 42) and 

combined data (RF distance = 42) than the dental data (RF distance = 48). 

While Robinson-Foulds saturates quickly, since the inferred topologies are 

quite similar this should not affect these results. 
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Figure 3. Showing the trees containing O’Leary et al. (2013) taxa produced by a) Molecular 

data (Upham et al. 2019) b) Dental + Osteological data (consensus), c and d) Osteological data 

alone and e) Dental data alone. The topology produced by osteological characters alone is 

more similar to the molecular topology than either the dental or combined morphological 

data, demonstrating widespread convergence of dental characters in mammals. Both most 

parsimonious trees inferred from osteological data are presented because their consensus is 

highly unresolved owing to topological differences, whereas the two most parsimonious trees 

inferred from the combined morphological data are topologically similar. 

 

 

4. Discussion 

 

The results presented here converge on a robust conclusion that dental and 

osteological characters display different trends and patterns of trait 

evolution with regards to homoplasy and correlation, resulting in different 

phylogenetic signal between these partitions. Osteological characters 

transition earlier and are less homoplastic than dental characters, and 

characters are more correlated within than between these partitions. 

It can be argued that osteological are more consistent with independent 

data sources than dental data. This is because the molecular topology used 

here (Upham et al., 2019) broadly corroborates widely accepted 

relationships between higher mammalian taxa, and the osteological data is 

more congruent with molecular data here as measured both by the 

retention index and Robinson-Foulds distances (Table 1, Figures 1 and 3). 

This result is in agreement with previous studies comparing dental and 

osteological data (Sansom et al., 2017) and comparing osteological data with 

non-osteological data (Chapters 1, 2 3). It can thus be surmised that dental 

data display relatively elevated levels of homplasy, possibly the result of 

trophic convergence (Gingerich & Rose, 1979; Lazzari et al., 2008; Goswami, 

Milne, & Wroe, 2011; Kelley & Motani, 2015). 

In addition to levels of homoplasy, strength of correlation and integration 

differs between dental and osteological data. There is a consistent 

relationship between the internal consistency of morphological characters 

and a priori partitions, showing that characters are more similar within 
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these partitions than between them. This similarity in evolutionary 

dynamics between characters in the same partition, or at least in the way 

they are coded, is consistent across mammal datasets. Many of these 

datasets additionally display a Brownian motion patterning of trait 

distribution on these trees, constituting strong evidence of significant 

clumping, or clustering, of partitions among tree tips. This clustering of 

traits according to partition is indicative of stronger internal correlation 

within dental characters and within osteological characters compared with 

correlation between these partitions. Owing to the large number of datasets 

used here, covering much of Mammalia, and the strong agreement between 

datasets, we can have reasonable confidence in the generality of this result 

across mammals. This result is further supported by the stronger 

correlation of within than between partition character pairs on molecular 

trees as demonstrated by our comparison of models of trait evolution on 

molecular trees. 

There are larger internally-consistent cliques mostly composed of 

osteological characters, which fit the molecular trees, and smaller cliques of 

dental characters which show a poorer fit to the tree in several datasets (e.g. 

Carstens et al., 2002; He et al., 2012, supplementary Figure 1). This is 

consistent with previous work showing that osteological characters are less 

homoplastic relative to molecular data than soft tissue characters (Chapter 

1) and that osteological data show similar differences with dental data 

(Sansom et al., 2017). Some datasets show the opposite pattern, with larger 

cliques of dental characters and smaller cliques of osteological characters, 

for example in thylacine marsupials (Wroe & Musser, 2001) and hominoids 

(Thorington et al., 2002), consistent with widespread concerted 

convergence owing to ecological pressures (Patterson & Givnish, 2002). 

Dental and Osteological data support different estimates of evolutionary 

history, both congruent an incongruent with previously proposed 

relationships. Osteological data correspond more closely than dental data to 

the total morphology data in the O’Leary et al., (2013) dataset, which is 

unsurprising given that there are more osteological characters in this 

dataset. It is impossible to say with confidence which of the three 
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hypotheses of early branching is supported by these data, since there are no 

representatives of Xenarthra in this dataset. Further, neither the dental nor 

osteological data support accepted higher mammalian relationships, but 

instead produce trees inconsistent with molecular hypotheses of 

evolutionary history. For example, both the combined and osteological data 

place the lesser hedgehog tenrec Echinops telfairi, an Afrotherian, as sister 

to the European hedgehog Erinacaes europaeus, a Boreoeutherian. 

Interestingly, despite the general closer correspondence of osteology than 

dental data to molecular trees, only the dental data place the Afrotherian 

species Echinops telfairi and Amblysomus hottentotus together. Since this is 

inconsistent with molecular hypotheses and established relationships, this 

is reflective of convergence of osteological data in these species. 

Relationships supported by the osteological data include the placement of 

the Afrotherian paeungulate clade with the Laurasiatherian even-toed 

ungulates, a well-established case of morphological convergence 

(Gheerbrant et al., 2016) and an intriguing placement of primates with bats, 

a spurious relationship previously proposed by Linneaus and other authors 

based on aspects of morphology (Pettigrew et al., 1989). The results from 

this analysis are consistent with hidden support and convergence in 

morphological data, with different partitions supporting different 

relationships. 

Taken together, all results indicate that dental and osteological data have 

evolved under different evolutionary regimes, and thus display different 

patterns of homoplasy and correlation. These results are consistent with the 

idea of concerted convergence (Patterson & Givnish, 2002) whereby some 

groups of characters displaying internal consistency are incongruent with 

underlying phylogenies owing to the action of evolutionary regimes shared 

by unrelated species. There is no evidence in the results presented here that 

groups of correlated homoplasious characters are larger or smaller than 

groups of correlated characters that support the underlying phylogeny. 

Nevertheless, such pairs or groups of characters can potentially mislead 

phylogenetic analysis when they are not identified a priori. 

 



 194 

 

5. Conclusions 

 

Overall, these results demonstrate the biological reality of dental and 

osteological partitions. They display different levels of homoplasy, external 

and internal correlation, transition ages, and produce different topologies. 

The treatment of these characters in phylogenetic reconstruction is thus an 

important consideration for future analyses involving morphological data, 

and the results presented here may necessitate careful consideration of 

partitioning schemes when using probabilistic methods. Further, there is 

reason to suspect that of these partitions, osteological data contains more 

phylogenetic signal. This is demonstrated by the better correspondence of 

osteological data than dental data with molecular trees and established 

hypotheses of evolutionary history. 

The inconsistency between morphological trees and established 

phylogenetic hypotheses further highlights the danger of using only limited 

morphological data to infer evolution history. Further investigation into 

whether different subsets of morphological data support different 

hypotheses of mammalian evolutionary history may be warranted. 
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Supplementary Information 

 

Supplementary Table 1. Maximum clique sizes in mammalian morphological datasets 

Dataset 

Characters 
Max Clique 
Size Real 
Data 

Mean Max 
Clique Size 
Shuffled 
Data P 

Ahrens, (2012) 66 9 11.91 0.95 

Carstens, Lundrigan, & Myers, (2002) 62 16 17.19 0.74 

Fracasso et al., (2011) 130 4 3.86 0.68 

Gaubert et al., (2005) 261 15 20.2 0.95 

He et al., (2012) 73 31 42.82 0.97 

LeCompte, Granjon, & Denys, (2002) 37 8 8.97 0.76 

O’Leary et al., (2013) 2199 7 6.89 0.59 

Oliviera et al., (2011) 80 8 12.47 1 

Prideaux & Warburton, (2010) 81 47 42.34 0.18 

Sanchez-Villagra, Horovitz, & Motokawa, 
(2006) 

152 
18 27.59 0.99 

Steppan, (1993) 82 8 7.46 0.53 

Weksler, (2006) 68 4 3.83 0.59 

Wroe & Musser, (2001) 70 21 22.97 0.74 

Zrzavý & Řičánková, (2004) 77 11 7.9 0.1 

Showing the total number of characters, the maximum clique size (size of the largest 

internally consistent clique of characters) in the real data, and the mean maximum clique 

sizes in 100 shuffled datasets. Values are compared using by calculating proportions of 

datasets in the null distribution which have maximum clique sizes larger than or the same as 

that in the real data. Clique sizes are no larger than expected given their parsimony score in 

most datasets. 
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Supplementary Figure 1. Showing the distribution of dental and osteological characters 

among tips of UPGMA trees where characters are clustered according to internal consistency. 

Dental characters are in blue while osteological characters are in purple. Almost all datasets 

display trait distribution significantly different from random. Some datasets (e.g. He et al., 

2012, Carstens et al., 2002) show a distinct increase in ‘blueness’ further down the tree, i.e. in 

‘basal’ characters. This is consistent with larger cliques of osteological characters (which are 

more congruent with molecular data), and smaller cliques of dental characters (which are less 

congruent with molecular data). Other datasets (e.g. Wroe & Mussler 2001, Sanchez-Villagra 

et al., 2006) show the opposite pattern, with large cliques of dental characters and smaller 

cliques of osteological characters, consistent with concerted convergence of dental characters 

in these datasets. 

Asher et al. 2005 Asher et al. 2010 Bi et al. 2014 Billet 2011

Bryant et al. 1993 Carleton 1980 Carstens et al. 2002 Churchill et al. 2014

Domning 1994 Finarelli 2008 Fracasso et al. 2011 Froelich 1999

Gaubert et al. 2005 Gentry 1992 Gheerbrant et al. 2005Giannini & Simmons 2005

He et al. 2012 Ladaveze et al. 2010 LeCompte et al 2002 Olivares & Verzi 2014

Oliviera et al. 2011 Prideaux & Warburton 2010Sanchez−Villagra et al. 2006Thorington et al. 2002

Tomiya 2011 Weksler 2006 Wroe & Mussler 2001Zrzavý & ..i..ánková 2004

partition Dent Ost
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Supplementary Figure 2. Showing the difference in density of transition ages between 

osteological (purple) and dental (blue) characters in millions of years for individual 

mammalian datasets. Dashed lines indicate average transition ages for each partition by 

dataset. Osteological characters transition earlier on average in most datasets. 

Wroe and Musser 2001 Zrzavy & Ricankova 2004

Prideaux & Warburton 2010 Sanchez−Villagra et al. 2006 Steppan 1993 Weksler 2006

He et al. 2012 LeCompte et al. 2002 O'Leary et al. 2013 Oliviera et al. 2011

Ahrens 2012 Carstens et al. 2002 Fracasso et al. 2011 Gaubert et al. 2005
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Supplementary Figure 3. Showing the retention index of individual characters on molecular 

trees by transition age in millions of years for each mammalian dataset. In most datasets, 

retention index tends to increase with age. Characters are coloured by partition, with 

osteological characters in purple and dental characters in blue. 
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Supplementary Figure 4. Individual dataset boxplots of average cumulative AICc weights for 

correlated models of character pair evolution, showing all three classes of character pairs 
(within osteological, within dental and between partition) in mammalian morphological 
datasets. Boxplots display number of characters. Lower means indicate lower correlation, 

higher means indicate higher correlation. 
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Supplementary Figure 5. Individual dataset boxplots of average cumulative AICc weights for 

correlated models of character pair evolution, showing within and between partition 

character pairs. Characters are slightly more correlated within partitions in most datasets. 

Boxplots display number of characters. Lower means indicate lower correlation, higher means 

indicate higher correlation. 

Supplementary Table 1. Showing results of the Dunn tests 

Dataset Ost-Dent 
Ost-
Between 

Dent-
Between 

Carstens et al. 2002 0.0023* 0.0341 0.0626 

LeCompte et al. 2002 0.0002* 0.0052* 0.0563 

Oliviera et al. 2011 0.0000* 0.0033* 0.029 

Prideaux & Warburton 2010 0.0000* 0.0004* 0.0004* 

Sanchez-Villagra et al. 2006 0.0000* 0.0000* 0.0000* 

Wroe & Musser 2001 0.0273 0.0069* 0.4169 
Showing results of the Dunn tests of differences in the cumulative AICc weights of correlated 

models of character pair evolution between three character pair classes (within-osteological, 

within-dental, and between partition) in all datasets with significant differences between 

these classes (Kruskal-Wallis tests, Table 4), finding significant differences in correlation 

between osteological and dental partitions in only 5 datasets. 
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Table 3. Results of all linear mixed effects models comparing homoplasy, transition ages and correlations between partitions 

Analysis 
Response 
Variable Fixed Effects df AIC AIC weight BIC Log L 

Likelihood 
ratio P 

1. Homoplasy Retention index None 
1
7 783.255 0.01245992 

880.645
6 

-
374.627

5   

 Retention index Partition 
1
8 

774.509
6 0.98754008 877.629 

-
369.254

8 10.74547 0.001 

2. Transition Ages Transition Age None 
1
7 

13894.9
9 

0.00072038
8 

13992.3
8 

-
6930.49

4   

 Transition Age Partition 
1
8 

13880.5
2 

0.99927961
2 

13983.6
4 -6922.26 16.46917 

<.000
1 

3. Transition Ages with 
Homoplasy Transition Age None 

1
7 

13894.9
9 4.46E-36 

13992.3
8 

-
6930.49

4   

 Transition Age RI 
1
8 

13733.1
3 0.6268304 

13836.2
5 

-
6848.56

4 163.85994 
<.000
1 

 Transition Age RI + Partition 
1
9 

13734.7
7 0.2760759 

13843.6
2 

-
6848.38

4 0.36111 
0.547

9 

 Transition Age RI * Partition 
2
0 

13736.8
6 0.09709365 

13851.4
4 

-
6848.43

2 0.09546 
0.757

3 

4. Correlations AICc Weights None 
1
5 

-
3606.68

6 0.02600639 

-
3497.54

5 
1818.34

3   

 AICc Weights Within/Between 
1
6 

-
3610.34

1 0.16171606 

-
3493.92

4 1821.17 5.655086 
0.017

4 

 AICc Weights 
Partition/Betwe
en 

1
7 

-
3613.56

9 0.81227755 

-
3489.87

6 
1823.78

4 5.227939 
0.022

2 

 
Showing the results of all linear mixed effects models fitted to the data, testing whether osteological and dental partitions explain differences in 

homopasy, transition ages and correlations while taking into account dataset effects. There are 3 dependent variables in 4 total analyses including the 
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effect of partition on homoplasy as measured by character retention indices on molecular trees, the effect of partition on transition ages as measured by 

estimating ages given a character state reconstruction on molecular trees, the effect of retention index versus partition on transition ages, and finally the 

effect of partition on the strength of correlation between character pairs. For the final analysis, within- and between-partition is tested as a fixed effect as 

well as partition itself. Dataset is treated as a random effect in all models, and partition treated as a fixed effect in all  models except the null. Each model 

fitted for each analysis is given an AIC weight, where each weight is a value between 0-1, and the weights of each model add to 1 for each analysis. The 

highest AIC weight is given to the model which best describes the data. The best model in each analysis as measured by AIC weights is highlighted in green. 
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 Correlated Character Pairs (n of N) Mean AICc Weight  Correlated Character Pairs 

Dataset 
Within 
Partition 

Between 
Partitions P Fisher's 

Within 
Partitions 

Between 
Partitions 

P Mann-
Whitney U 

Osteological 
Character Pairs 

Dental 
Character 
Pairs 

Between  Partition 
Character Pairs 

Ahrens et al. 
2012 0/202 0/204 1 

0.012484
02 

0.0129070
9 0.4457 0/66 0/136 0/204 

Carstens et al. 
2002 12/445 10/416 0.8318 

0.242619
4 0.2542231 0.6397 5/120 7/325 10/416 

Gaubert et al. 
2005 11/2062 10/1593 0.8261 

0.165384
4 0.1622268 0.6729 6/1711 5/351 10/1593 

He et al. 2012 66/480 12/186 0.007264* 
0.158388
3 

0.0842370
6 0.246 66/456 0/15 12/186 

LeCompte et al. 
2002 0/127 0/126 1 

0.054970
27 

0.0451172
6 0.8798 0/36 0/91 0/126 

Oliviera et al. 
2011 16/510 11/525 0.3329 

0.142303
1 0.1348383 0.8644 0/210 16/300 11/525 

Prideaux & 
Warburton 
2010 0/182 0/196 1 

0.064170
61 

0.0576123
8 0.9981 0/91 0/91 0/196 

Sanchez-
Villagra et al. 
2006 69/1266 0/1080 

0.000000000
00000022* 

0.122255
7 

0.0956309
4 0.08631 65/990 3/276 0/1080 

Steppan 1993 1/46 0/45 1 
0.221632
4 0.1624838 0.5829 1/36 0/10 0/45 

Weksler 2006 11/171 9/180 0.6479 0.277985 0.2627441 0.7232 1/66 10/105 9/180 
Wroe & Musser 
2001 0/110 0/121 1 

0.029386
78 

0.0376734
6 0.09914 0/55 0/55 0/121 

Zrzavý & 
Řičánková 2004  22/226 8/180 0.05523 

0.241616
8 0.1722683 0.298 0/36 22/190 8/180 

Table 4. Showing differences between proportion and strength of correlation between character pair classes. Character pairs are considered correlated if 

their cumulative AICc weight for correlated (SYM and ARD) models of character pair evolution are equal to or higher than 0.95. Strength of correlation is 

measured by average cumulative AICc weights of correlated models of character pair evolution. Character pair classes include a) within-osteological data 

character pairs, b) within-dental data character pairs, and c) between-partition character pairs. Characters are generally more correlated (as measured 

by average AICc weights) within than between partitions. Differences in proportion and strength of correlation between osteological and dental 

characters are mixed. 
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    Mean AICc Weight    

Osteological % 
Correlated Pairs 

Dental  % 
Correlated Pairs 

Between  % 
Correlated Pairs P Fisher's 

Osteolog
ical  Dental 

Betwee
n 

P kruskal-
Wallis 

Tree 
Symmetry 
Score 

0 0 0 1 
0.009744
281 

0.01381
36 

0.01290
709 0.4736 40 

4.166667 2.153846 2.403846 0.4404 
0.274971
6 

0.23067
39 

0.25422
31 0.01627* 175 

0.3506721 1.424501 0.6277464 0.0537 
0.159950
7 

0.19187
21 

0.16222
68 0.4756 146 

14.19355 0 6.451613 0.005309* 
0.162673
8 

0.02553
78 

0.08423
706 0.3822 12 

0 0 0 1 
0.028096
79 

0.06560
154 

0.04511
726 0.001701* 43 

0 5.333333 2.095238 0.0003564* 
0.153735
4 

0.13430
04 

0.13483
83 0.0003456* 247 

0 0 0 1 
0.074046
24 

0.05429
499 

0.05761
238 

0.0000000776
9* 67 

6.565657 1.086957 0 
0.000000000000
00022* 0.142353 

0.05016
762 

0.09563
094 

0.0000000000
05842* 20 

2.777778 0 0 0.5055 
0.218687
8 

0.23223
28 

0.16248
38 0.4854 126 

1.515152 9.52381 5 0.08257 
0.214338
8 

0.31799
12 

0.26274
41 0.1826 191 

0 0 0 1 
0.014489
72 

0.04428
384 

0.03767
346 0.04044* 39 

0 11.57895 4.444444 0.00688* 
0.212255
6 0.24718 

0.17226
83 0.1002 85 

Table 4 (cont). Showing differences between proportion and strength of correlation between character pair classes. Character pairs are considered 

correlated if their cumulative AICc weight for correlated (SYM and ARD) models of character pair evolution are equal to or higher than 0.95. Strength of 

correlation is measured by average cumulative AICc weights of correlated models of character pair evolution. Character pair classes include a) within-

osteological data character pairs, b) within-dental data character pairs, and c) between-partition character pairs. Characters are generally more 

correlated (as measured by average AICc weights) within than between partitions. Differences in proportion and strength of correlation between 

osteological and dental characters are mixed. 
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General Discussion and Summary 

  

1. Introduction 

  

1.1. Summary of Results and Conclusions of Individual Chapters 

  

The principal methods and findings of each of my results chapters are as 

follows. 

  

  

Chapter 1: Osteological Characters Show Greater Congruence with Molecular 

Phylogenies than Soft Characters in Avian and Reptilian Morphological 

Datasets 

  

Characters in avian and squamate morphological character matrices were 

classified into partitions and subpartitions. Homoplasy was calculated as the 

retention index of characters and ensemble index of partitions on 

independent molecular trees. Transition ages were calculated by performing 

ancestral state reconstructions under a parsimony framework, and 

averaging simulated ages between nodes at which characters transition and 

ancestral nodes. 

Linear mixed effect models finds that osteological characters are more 

consistent than non-osteological (e.g. myological, integumentary) characters 

with molecular trees in avian and squamate datasets. Further, osteological 

characters are older, although their retention index on molecular trees 

explains their apparent age. There were no significant differences between 

smaller subpartitions (cranial, postcranial, integument, myology), partly 

owing to paucity of data. These findings are consistent with the view that 

soft characters are relatively labile. Osteological characters may reconstruct 

evolutionary history more faithfully than non-osteological characters. This 

finding is instructive for morphological phylogenetics, and particularly 

reassuring to palaeontologists working with extinct taxa for which only 

osteological characters are often available. 
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Chapter 2: The Prevalence of Correlated Morphological Characters and their 

Effect on Phylogenetic Reconstruction 

  

Pairwise correlations between characters were tested for by fitting 

correlated and uncorrelated models of character evolution on pairs of 

binary characters in avian and squamate morphological datasets mapped 

onto independent molecular trees. Models were compared using AICc 

weights. Character pairs were split into two (within and between partition) 

and three (within osteological partition, within non-osteological partition, 

and between partition) classes. These models were also fitted to artificially 

constructed correlated data, and to simulated random data, to test for the 

effect of underlying data structure. 

Characters are more correlated within than between osteological and non-

osteological partitions. Patterns of correlation between partitions differ 

between datasets, although there is generally more correlation within non-

osteological data. After rejecting a null model of no difference in correlation 

between character pair classes, linear mixed effect models find that splitting 

pairwise correlations into three character pair classes provides greater 

explanatory power than splitting the data into two classes. This implies the 

importance of partition. Overall, correlated characters are found in all 

datasets, but strength and pattern of correlations are clade and/or dataset 

dependent. Further, correlations are generally faithfully recovered in 

datasets with more than 20 taxa. No correlations are recovered in random 

data. This gives us confidence in the performance of these methods given 

sufficient data. Since correlated characters can affect phylogenetic 

reconstruction, this should be taken into account when using morphological 

data to infer evolutionary history. 

  

  

Chapter 3: Cliques of Morphological Characters in Avian and Squamate 

Datasets 



 215 

  

Cliques, or clusters, of internally consistent characters were found by 

constructing trees from character dissimilarity matrices, using the UPGMA 

clustering algorithm. The dissimilarity matrices describe the pairwise 

phylogenetic dissimilarity between characters. The largest cliques in each 

dataset were compared against shuffled data. Methods used to detect 

phylogenetic signal, i.e. whether traits cluster on tree tips more than 

expected by chance, were then applied to a) the retention indices of 

characters on independent molecular trees, and b) osteological versus non-

osteological partitions, on UPGMA tips. 

Cliques of characters are no larger than expected by chance in most 

datasets. Further, UPGMA trees are also asymmetrical, demonstrating the 

existence of few large cliques and many small cliques. Nevertheless, 

characters do cluster according to both their retention index and partition 

more than expected by chance, with larger cliques generally sharing high 

consistency with molecular trees, and often being composed of a higher 

proportion of osteological characters than smaller cliques. These results 

imply several things, that a) larger cliques are more likely to have high 

consistency with molecular data, implying phylogenetic signal, b) characters 

are more internally consistent, i.e. correlated, within partitions, and 

therefore that c) larger cliques of internally consistent characters, 

containing phylogenetic signal, are also more likely to be composed of 

osteological rather than non-osteological characters, although this differs 

between datasets. This is consistent with previous chapters showing that 

osteological characters are more consistent with molecular data, characters 

are more correlated within partitions, and that between-partition effects are 

inconsistent and dataset-dependent.   

  

  

Chapter 4: Convergence, Correlations and Cliques: An Analysis of the Relative 

Performance of Morphological Character Partitions in Mammals 

  



 216 

To test the generality of the above results, many of the methods previously 

described were applied to mammalian datasets, comparing osteological 

with dental data. I compared homoplasy, transition ages, character pair 

correlations on molecular trees and the presence of internally-consistent 

cliques between these partitions as described above, and additionally 

inferred and compared most parsimonious trees from these partitions. 

Osteological data are both less homoplasious and transition earlier than 

dental data, although the homoplasy explains the difference in transition 

ages. Correlations with reference to an independent molecular tree do not 

consistently differ between partitions. However, characters are more 

correlated within than between osteological and dental partitions both 

internally and when mapped onto a phylogeny. Trees inferred from 

osteological data rather than from dental data are closer in topology to the 

molecular tree. Overall, these results indicate different evolutionary 

dynamics between these partitions, and suggest that osteological data track 

evolutionary history more closely than dental data. This has implications for 

phylogenetic inference when using morphological data, since dental 

characters are often used alongside other morphological data to infer 

topology, particularly in fossil taxa where, besides osteological characters, 

dental characters are the only morphological data available. 

  

  

2. Consistency, Convergence and Homoplasy 

  

Some degree of homoplasy of morphological characters on molecular trees, 

as measured by both individual and ensemble retention indices measuring 

the fit of those data, is present in all partitions and subpartitions of 

morphological data tested. This is true in birds, squamates and mammals, 

regardless of the phylogeny used. However, clear differences exist in the 

levels of homoplasy between these partitions. Particularly, osteological data 

are more congruent with molecular trees than either soft characters or 

dental characters (Chapters 1 and 4). This finding has several possible 

interpretations and raises interesting questions about the nature of 
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osteological traits as compared with other subsets of morphology. One 

interpretation is that the relatively higher consilience between osteological 

than soft or dental with molecular data is evidence that osteological data 

convey more signal that is diagnostic of vertebrate clades. If true, this is 

likely to mean that trees produced from osteological data are likely to be 

more topologically accurate than trees inferred from other kinds of 

morphological data, as suggested by the closer similarity between 

osteological than dental trees with molecular trees (Chapter 4). Since 

osteological characters are preserved relatively well in the fossil record, this 

is a reassuring finding for palaeontologists working with fossil vertebrates, 

as well as being informative for phylogenetic inference using morphology in 

general. 

However, this interpretation requires that we accept that molecular data 

faithfully recover evolutionary relationships, and therefore can be used as 

the standard against which to compare the quality of other phylogenetic 

data. This assumption is not without its problems; as previously discussed, 

it is increasingly recognised that molecular data are also subject to some 

degree of convergence in areas of the genome that are under selection 

(Parker et al., 2013; Foote et al., 2015; Brown et al., 2019). It is possible that 

consilience between osteological and molecular data could therefore be in 

part the result of functional convergence. However, at least some molecular 

evolution is neutral, and owing to the objective nature and abundance of 

characters in molecular data, they are still widely considered more reliable 

than morphology in general for inferring evolutionary relationships. With 

this in mind, low consistency of individual characters or partitions on 

molecular trees built from multiple genomic loci can be regarded as 

evidence of homoplasy. 

Differences in the selective regimes acting on morphological regions may be 

an explanation for the observed pattern. Dental (Peredo, Peredo, & Pyenson, 

2018; Wysocki, 2019) and cranial (Kelley & Motani, 2015; McCurry et al., 

2017) traits are known to be influenced by convergent selection in many 

groups, likely meaning that phylogenetic signal in those characters is at least 

partially overwhelmed by directional phenotypic evolution related to 
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mastication. Some soft traits such as plumage, particularly with regards to 

colouration, may be relatively labile and convergent: limited character 

states owing to genetic and developmental constraint, as well as selection, 

have been suggested as explanations for this. For example, scale and bar 

patterns both evolve frequently in Anseriformes and Galloanserae plumage 

owing to relatively simple developmental pathways (Gluckman & Mundy, 

2016). Sexual selection is also invoked as an explanation for lability in 

plumage traits (Price, Friedman, & Omland, 2007). Developmental 

constraints in addition to selection and lability might result in high levels of 

homoplasy as a result of rapid transitions between limited character 

states.    

Lability of plumage, dental and other non-osteological traits is perhaps 

implied by their younger average transition ages on dated molecular trees 

(Chapter 1 and 4). The retention index and transition age of individual 

characters is correlated, and this model is not improved by splitting the data 

into partitions (Chapters 1 and 4), suggesting that the relationship between 

age and homoplasy is independent of the morphological region. If we take 

younger ages to be evidence of faster rates, this relationship is suggestive of 

a strong role of lability in generating convergence. 

Questions surrounding the treatment of morphological data in phylogenetic 

analysis, such as in partitioning and model use, are still unresolved. 

However, homoplasy-based partitioning (Rosa, Melo, & Barbeitos, 2019), 

weighted parsimony (Goloboff, Torres, & Arias, 2018) and other methods 

have all recently been put forward as accurate methods of recovering 

relationships from morphological data. The relative homoplasy between 

morphological subsets is therefore a timely and relevant addition to current 

discussions around the use of morphological data for phylogenetic 

reconstruction in the age of genomics. 

  

   

3. Correlation and Cliques 
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Two methods of looking for character correlations were used in this thesis. 

Firstly, a tree-dependent method was used to establish the correlations of 

characters taking into account a reference topology and branching times 

(Chapters 2 and 4). Secondly, the internal consistency of groups of 

characters was assessed using clustering methods (Chapters 3 and 4). 

Assessing correlations given an underlying phylogeny separates characters 

that appear interdependent owing to common ancestry from those are 

dependent owing to functional or other linkage. It does this by modelling 

character state changes of two characters over a topology, to determine if 

one of the characters transitions more frequently if the second is in state a 

as opposed to state b (Pagel, 1994). This method is useful when testing 

scenarios in which one trait requires or evolves more readily in the 

presence of another. For example, woody plants may be more likely to 

evolve from herbaceous plants that have a cambial layer than from those 

that do not, and thus over a tree there will be two distinct rates of transition 

from herbaceous to woody; a faster rate in the presence of a cambial layer, 

and a slower rate in its absence (Beaulieu, O’Meara, & Donoghue, 2013). 

When applying this method to many characters, an overall picture of 

integration and modularity, where character states are dependent on each 

other, can emerge. It is important to note here that both cladistic and 

morphometric data capture similar patterns of morphological disparity 

(Hetherington et al., 2015). While continuous data are useful for 

morphometric studies of modularity, it is important to use methods like 

these to look for such patterns in discrete phylogenetic data. 

Even with a very high threshold for correlation, correlated character pairs, 

given a molecular phylogeny, were found in many avian, reptilian and 

mammalian datasets (Chapters 2 and 4). Differences in degree of correlation 

between osteological, dental and soft characters were observed between 

datasets, due either to clade effects or character choice and coding of the 

authors. More in-depth work on individual clades would be needed to 

discriminate between these explanations. Interestingly, however, the 

datasets with the highest overall average correlation calculated by the 
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cumulative AICc weights of correlated models were both Charadriiformes, 

an order of waterbirds consisting of gulls, auks and waders. 

Overall, soft characters are slightly more correlated given a phylogeny than 

osteological characters, as measured by least squared means, although the 

generality of this finding is unclear. Dental and osteological characters, on 

the other hand, display roughly equal correlation in mammals, although 

with a significant and slightly higher least square mean for dental data. This 

latter finding is slightly surprising given that dental data are known to be 

correlated as a result of functional, developmental and ecological linkage 

(Labonne et al., 2014; Billet & Bardin, 2019). Further, characters are 

consistently more correlated within than between partitions. Biologically, 

this means that evolutionary change in osteological traits is likely to depend 

on the presence or absence of other osteological traits, more than it depends 

on the presence or absence of dental or soft traits. Likewise, the transition 

rates of soft traits depend on the state of other soft traits, and the same is 

true of dental traits. This is an unsurprising finding given that these 

morphological regions are likely to share evolutionary history, resulting in 

functional, developmental and genetic linkage, and thus be more tightly 

integrated. 

The internal consistency of characters was determined by cluster analysis, 

where characters cluster on UPGMA trees according to their pairwise excess 

indices, or how many steps are required on the most parsimonious tree that 

can be constructed with two characters over and above the minimum 

possible steps for those characters. The absence of an independent tree in 

this method allows us to determine which characters are consistent with 

each other regardless of an underlying phylogeny. Similarly to tree-based 

correlated character pairs, analysis of clustering patterns using methods 

designed to detect phylogenetic signal in binary characters (Fritz & Purvis, 

2010) finds that characters cluster by partition more than expected by 

chance in most datasets (Chapters 3 and 4). Additionally, larger cliques are 

more likely to be composed of osteological characters, and are more likely to 

be consistent with molecular trees. That osteological data form larger 

internally consistent cliques, in combination with their higher consistency 
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on molecular trees, reinforces the idea that osteological characters may be 

useful for phylogenetic reconstruction. This is because as well as supporting 

the molecular data, there is less conflicting signal within osteological data. 

On the other hand, soft and dental characters contain more conflicting 

signal, both in relation to molecular trees and within their respective 

partitions. 

In addition, characters in phylogenetic datasets show no more internal 

correlation than expected by chance (Chapters 3 and 4), and characters are 

less correlated than in similar studies looking at specific characters 

(Sauquet et al., 2017). Therefore, discovery of correlations seems to be 

contingent on testing specific hypotheses, involving characters and/or taxa 

where links between characters have been hypothesized a priori (Holland et 

al., 2010; Leslie et al., 2015; Billet & Bardin, 2019). Nevertheless, applying 

these methods without preconceived ideas about specific character 

correlations may be useful for uncovering surprising cases of concerted 

evolution, where functional or ecological links cannot necessarily be 

predicted a priori. 

 

 

4. Concerted Convergence 

 

Common evolutionary regimes link the homoplasy and correlation of 

morphological characters (Patterson & Givnish, 2002; Holland et al., 2010; 

Blanke et al., 2013). Functional, developmental and genetic linkage leading 

to integration of suites of traits serves to facilitate the evolution of specific 

morphotypes (Felice, Randau, & Goswami, 2018). Evolutionary regimes 

acting on traits guide suites of linked traits into adaptive peaks (Goswami et 

al., 2014). These peaks in morphospace, also called ecomorphotypes, are 

convergent when similar pressures act on different species, resulting in 

common morphology that is not the result of shared ancestry. This is 

especially likely to occur when species already share a common genetic and 

biological framework. In practice, this means that concerted convergence is 

common between related species. On a narrow level, for example, striking 
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ecological convergence has been observed at the intrageneric level in Anolis 

lizards, where several ecomorphotypes have arisen multiple times 

independently in accordance with microhabitat occupation (Losos, 1998). At 

a broader scale, the same is true across frog species (Moen, Morlon, & 

Wiens, 2016). Parallel radiations involving the adaptation of many species 

to similar or shared environments have been observed in mammals 

(Madsen et al., 2001; Gheerbrant, Filippo, & Schmitt, 2016) and birds (Fain 

& Houde, 2004). Although these examples are particularly striking, they may 

hint at a wider, more ubiquitous pattern of convergence in correlated or 

integrated traits. Ultimately, this may give evolution a degree of 

predictability, where similar environments and pressures can be expected 

to result in similar outcomes. 

Results found here are consistent with the concept of concerted 

convergence, since both homoplasy and correlation are more widespread in 

dental and soft characters than in osteological characters. This implies the 

action of convergent selective regimes on integrated dental and soft 

characters. Although non-significant, homoplasy in cranial data was also 

higher than in postcranial data in most datasets, and cranial data also had a 

lower least square mean retention index. 

Mastication is known to drive both convergence (Peredo et al., 2018; 

Wysocki, 2019) and correlation (Billet & Bardin, 2019; Wolsan et al., 2019) 

in dental characters. This is also true of the entire crania (Sadleir & 

Makovicky, 2008; McCurry et al., 2017). Dental and cranial characters are 

additionally known to support different trees than their osteological and 

postcranial counterparts (Mounce, Sansom, & Wills, 2016; Sansom, Wills, & 

Williams, 2016). Trophic convergence requires coordinated responses of 

these traits, so the results presented here are consistent with the wider 

literature on the properties of dental and cranial morphology. 

Soft traits are also ecologically important, and responsive to pressures 

specific to habitat and microhabitat, as well as being subject to sexual 

selection (Omland & Lanyon, 2000; Price et al., 2007). In conjunction with 

limited developmental pathways (Gluckman & Mundy, 2016) this leads to 

repeated and coordinated convergence of form. 
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5. Conclusions and Implications 

  

The results presented in this thesis all tend towards the conclusion that 

different subsets of morphological characters display different phylogenetic 

properties. This includes differences in the levels of homoplasy, transition 

ages, correlations with respect to a phylogeny and internal consistency of 

osteological, soft and dental data. Not only are differences in overall 

correlation observed between partitions, characters are also more likely to 

be correlated or internally consistent within partitions than between them. 

These are unsurprising findings, and may reflect different evolutionary 

trends in these character types; for example differences in rates, lability, 

constraint and directional or sexual selection. Further, this may also reflect 

differences in the evolutionary and developmental origins of these traits 

(Liang et al., 2018). Previous work has highlighted differences in the 

properties of morphological subsets with regards to phylogenetic signal 

(Mounce et al., 2016; Sansom et al., 2016; Sansom & Wills, 2017). This thesis 

continues along this vein, shedding further light on the nature of phenotypic 

evolution in different morphological subsets. These results demonstrate 

again that morphological characters are not equivalent, and should not be 

treated as such in phylogenetic or other analyses involving morphological 

data. 

Possibly the most important implications of these results involve the use of 

morphological characters in phylogenetic reconstruction. As well as 

reflecting the nature of morphological evolution, these results also stem 

from and shed light on the manner in which they are coded. For example, 

correlated traits are often coded as multiple characters, a form of 

pseudoreplication. One possibility for dealing with correlated characters is 

composite coding, reducing the number of characters coded for correlated 

traits (Torres-Montúfar, Borsch, & Ochoterena, 2018; Billet & Bardin, 2019). 

Additionally, the different levels of homoplasy in different partitions may 

need to be addressed when applying models to morphological characters in 
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phylogenetic analysis. Studies fitting models to several empirical datasets 

suggest that homoplasy-based partitioning, as a proxy for rates, 

outperforms other methods of phylogenetic inference using morphology 

(Rosa et al., 2019). While not performing as well as directly partitioning 

morphology by homoplasy, partitioning morphology by region has been 

successful compared to unpartitioned approaches (Tarasov & Génier, 2015). 

Using the partitions tested here as a prior, or as a proxy for homoplasy and 

rates, could potentially help to circumvent issues with overparametrization 

and reduce computational power. 

Despite the challenges and issues that the results presented here raise, there 

are also some reassuring findings. Generally, the largest cliques of 

characters are also those characters which best reflect evolutionary history, 

if we accept that the molecular data offers a good estimate of topology. This 

implies that generally, larger groups of internally consistent morphological 

characters tend to contain phylogenetic signal. Additionally, the most 

congruent overall signal comes from osteological data, the data type already 

most often used for the phylogenetic placement of fossils. This is a useful 

finding when constructing phylogenies containing extinct species, although 

the use of dental data should be considered carefully (Sansom et al., 2016), 

as these are also preserved in the fossil record. The accurate placement of 

fossil species in turn is indispensible for dating phylogenies (Kimura et al., 

2015). 

This thesis also in part addresses the conflict between molecular and 

morphological data. The results presented here imply the possibility that the 

hidden support often seen in morphological datasets (Gatesy et al., 2003; 

Thompson, Bärmann, & Asher, 2012; Reeder et al., 2015) may often come 

from agreement between osteological and molecular data. While the 

interpretation of hidden support and the synergistic effects of combining 

data is unclear (Thompson et al., 2012), consilience between data is an 

important theme in evolutionary biology (Field et al., 2014; McInerney, 

O’Connell, & Pisani, 2014). Ultimately, is not possible to infer evolutionary 

relationships with absolute certainty, and thus consilience between 

independent datasets, and uncovering hidden support in seemingly 
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disparate data types, is one way to address phylogenetic uncertainty and 

add support to existing hypotheses. 

 

  

5. Directions for Future Work 

 

The explicit measurement of how the homoplasy and correlation uncovered 

here affects phylogenetic analysis, and how to correct this, would be 

beneficial. Correlated characters have previously been shown to affect 

phylogenetic reconstruction (Sadleir & Makovicky, 2008; Goswami & Polly, 

2010; Guillerme & Brazeau, 2018), and homoplasy is known to mislead 

relationships. While trees were inferred here from mammal datasets under 

a parsimony framework, comparing signal in dental and osteological 

characters, a more comprehensive approach involving different statistical 

approaches, different partitions, and different clades would be a logical 

further step. Specifically, applying these methods to invertebrates, 

partitioning into analogous structures (hard and soft tissue), would be of 

particular interest since invertebrates make up the majority of animal 

diversity. Furthermore, inferring trees from all data but using partitioning 

schemes to differentiate between regions, as mentioned above, would be 

beneficial for comparison with previous studies examining methods of 

modelling morphological data in phylogenetic inference. Data could be 

partitioned further in larger datasets, although as shown here, this reduces 

statistical power as the number of traits in each partition is reduced. 

Relating the signal conveyed by homoplastic and correlated traits to ecology 

and habitat would also help to uncover information about modes of 

phenotypic evolution, differentiating stochastic noise from real biological 

processes. Clustering species by morphology using multivariate techniques 

could also do this. While morphometric techniques are often used with 

osteological data, similar multivariate analyses using soft characters would 

be useful to compare how species cluster when using soft versus 

osteological data. 
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Appendices 

 
 
Appendix 1. Example TNT Matrix with First 100 Molecular Trees 
 
 
1.1. Bertelli, Chiappe & Mayr, 2014 
 
nstates nogaps; 

xread 

 

157 17 

 

Megapodius_freycinet

 00001010?00000[01]0000?0?1?0000000??000?00130?0110031??0?10020111100000101

00000110101000000000011000?000?0000011003?10020?0?????1??2??????????????????000?0

??0?? 

Rhea_americana

 0011110210100101020?000100011010000111101110000120??1????0000???11?100????

??011??0?0?00?20??0??10?010000?110?111?10200?0????0?0???????????0????????000?0???

?? 

Tinamus_major

 10000101010120001110000100001000010101111201000011001100011011000000021100

00100011011100101010021001210000110002110?112101210101211001000000010001011211211

01 

Crypturellus_tataupa

 100001010101210011101101000010000?0111111200100101001111021010100000021111

012?01210111000010300210011300001111021002112111100101201101000000010011011211211

01 

Crypturellus_parvirostris

 100001010101210011101101000010000?0111111200100101001111021010100000021111

012?012101110000103002100113000011110210021121111001012011010000000100110????????

?? 

Crypturellus_obsoletus

 10000101010121001110010100001000010101111200100101001111021010100000021111

0110012101110000103002100113000011110210021121111001012011010000000100110????????

?? 

Crypturellus_variegatus

 1000010101012100111000010000100001010111120?000101001111021010100000021111

0110012101110000102002100123000011110210021??????????????????????????????????????

?? 

Crypturellus_undulatus

 10000101010121001110?0010000100001010111120?000001001111021010100000021111

0110012101110000102002100123000011110210021??????????????????????????????????????

?? 

Crypturellus_soui

 10000101010121001110000100001000010101111200000001001111021010100000?21111

011?01210111000010200210011300001111021002112111100101201101000000010011011211211

11 

Nothura_maculosa

 100000[01]10100011111111101000011011[01]01111112101002010011201[23]2011100

00012000001210021111101001131121102130010111111100[23]110101301000011001000010100

0?011110110000 

Nothura_darwinii

 100000110100011111111101000011011101111112101002010011201220111[01]0010120

0000121002111110100113112110213001011111110031101013010000110010000101000?0111101

10000 

Nothoprocta_cinerascens

 1[01]0010120100110111110001001011101[01]011111121020020011112012[12]010100

0[01]0[01]20100012100211111010011311211021301101111111003111100?02000100000011110

10000021110110000 

Nothoprocta_perdicaria

 11001012?10001?1111110010010111010112112221021020?????20131011100010120001

01200021111101001131121102130110111111100[23]111100?020001100000111101000?0211101

10000 

Rhynchotus_rufescens

 111111121100000111101001001010001010?111122010020110112012?01010001012000[

01]012[01]0021[01]11101001131121102?2010011111110031111010020001100000111100000?0

1?????????? 

Eudromia_elegans

 10000012011010010112010000001001110111110200001221000110023011200000[01]21
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111012000210110001010200210012310011111100002010101312011000010111011011100011111

10001 

Tinamotis_pentlandii

 101000010110?0010112010000011100210111111201000110000010023011200000020111

012000210010101110200210112311111121111011010100?020110000100110110111?0011101000

01 

Tinamotis_ingoufi

 10000011011001010112010000011100210111111201000110000010023011200000020111

01200021001[01]1011102002101123101111111110110???????????????????????????????????

????? 

; 

 

ccode  +  148; 

 

xgroup=0 (osteological) 0.115 ; 

xgroup=1 (nonosteological) 116.156 ; 

 

 

 

tread 

 

((((2 ((7 8) ((3 5) (4 6)))) ((16 (14 15)) ((12 (13 11)) (10 9)))) 1) 0)* 

((1 ((((10 9) ((12 13) 11)) ((15 14) 16)) (2 ((4 (6 (3 5))) (7 8))))) 0)* 

((1 (((((13 11) 12) (10 9)) ((14 15) 16)) (2 ((4 (5 3)) (7 (6 8)))))) 0)* 

(((((14 (15 16)) ((13 (11 12)) (9 10))) (2 ((7 8) (6 (5 (3 4)))))) 1) 0)* 

((1 ((2 ((((5 3) 4) 6) (8 7))) (((15 14) 16) ((10 9) (12 (11 13)))))) 0)* 

((((2 (6 (((5 3) 4) (7 8)))) (((14 16) 15) ((9 10) (11 (12 13))))) 1) 0)* 

((1 (((((3 4) 5) ((7 6) 8)) 2) (((10 9) (13 (12 11))) ((15 16) 14)))) 0)* 

((1 (((14 (16 15)) ((10 9) ((13 12) 11))) (((5 (3 4)) (7 (8 6))) 2))) 0)* 

((((((15 16) 14) ((10 9) ((12 13) 11))) (2 ((6 (4 (3 5))) (7 8)))) 1) 0)* 

((1 ((((10 9) ((12 13) 11)) ((15 14) 16)) (2 ((4 (6 (3 5))) (7 8))))) 0)* 

((((((15 16) 14) ((10 9) (13 (11 12)))) (2 (((6 8) 7) (5 (4 3))))) 1) 0)* 

((1 (((2 (((7 6) 8) ((3 5) 4))) (((11 13) 12) (10 9))) (14 (15 16)))) 0)* 

((1 ((2 ((5 (3 4)) (8 (7 6)))) ((14 (15 16)) (((13 12) 11) (9 10))))) 0)* 

((1 ((((16 15) 14) (((5 (3 4)) ((6 8) 7)) 2)) ((10 9) (12 (13 11))))) 0)* 

((((((16 15) 14) (((12 13) 11) (9 10))) (2 ((6 (4 (3 5))) (7 8)))) 1) 0)* 

((1 (((((12 11) 13) (10 9)) ((15 16) 14)) (2 ((8 7) (6 ((5 3) 4)))))) 0)* 

((((2 ((7 (6 8)) ((3 4) 5))) ((14 (16 15)) ((12 (13 11)) (9 10)))) 1) 0)* 

(((((14 (16 15)) ((10 9) ((12 13) 11))) (2 ((7 (6 8)) ((3 5) 4)))) 1) 0)* 

((1 ((((10 9) (11 (13 12))) (((((5 4) 3) 6) (8 7)) 2)) (14 (16 15)))) 0)* 

((1 ((((14 15) 16) (2 (((3 5) (4 6)) (8 7)))) ((13 (12 11)) (10 9)))) 0)* 

((1 (((14 (16 15)) ((12 (13 11)) (10 9))) (2 (((6 8) 7) (4 (5 3)))))) 0)* 

((1 ((((10 9) ((11 12) 13)) ((15 16) 14)) (((7 8) (5 (6 (3 4)))) 2))) 0)* 

((((((16 15) 14) ((13 (11 12)) (9 10))) (2 ((4 (5 3)) (8 (7 6))))) 1) 0)* 

(((((14 (15 16)) ((10 9) ((13 11) 12))) (2 (((8 6) 7) (4 (3 5))))) 1) 0)* 

((((2 (((3 5) 4) ((8 6) 7))) (((15 16) 14) ((11 (13 12)) (9 10)))) 1) 0)* 

((((2 ((7 8) ((3 5) (4 6)))) ((((13 11) 12) (9 10)) (14 (16 15)))) 1) 0)* 

((1 ((2 (((5 3) 4) (8 (6 7)))) (((12 (11 13)) (10 9)) (14 (16 15))))) 0)* 

((((2 ((5 (3 4)) (8 (6 7)))) ((14 (15 16)) ((9 10) ((13 11) 12)))) 1) 0)* 

((1 ((2 (((5 3) 4) (8 (7 6)))) (((15 16) 14) ((10 9) (13 (12 11)))))) 0)* 

((1 ((((9 10) ((12 11) 13)) ((14 15) 16)) (2 ((3 (5 4)) ((7 6) 8))))) 0)* 

((1 ((2 ((4 (5 3)) ((6 7) 8))) (((11 (13 12)) (10 9)) (14 (15 16))))) 0)* 

((1 ((((8 (6 7)) ((5 3) 4)) 2) ((16 (15 14)) ((10 9) ((11 12) 13))))) 0)* 

((1 (((16 15) 14) ((((11 12) 13) (10 9)) ((((7 6) 8) ((3 5) 4)) 2)))) 0)* 

((1 (((((7 6) 8) (4 (5 3))) 2) (((10 9) (13 (11 12))) ((14 16) 15)))) 0)* 

((1 ((2 (((8 7) 6) (4 (3 5)))) ((((11 13) 12) (10 9)) (14 (16 15))))) 0)* 

((1 (((((7 8) ((4 6) (5 3))) 2) ((10 9) ((11 13) 12))) (14 (16 15)))) 0)* 

((1 (((14 (15 16)) ((10 9) ((13 12) 11))) (2 (((3 5) 4) ((7 8) 6))))) 0)* 

((1 (((((12 11) 13) (10 9)) ((15 14) 16)) ((((5 3) 4) (7 (8 6))) 2))) 0)* 

((1 ((2 ((4 (3 5)) ((6 8) 7))) (((16 15) 14) ((12 (11 13)) (10 9))))) 0)* 

((((((12 (13 11)) (10 9)) (14 (16 15))) (2 ((7 8) ((3 5) (6 4))))) 1) 0)* 

((1 ((((14 16) 15) ((10 9) (11 (13 12)))) ((((6 (5 3)) 4) (7 8)) 2))) 0)* 

((((((16 15) 14) ((10 9) ((13 12) 11))) (2 (((7 6) 8) ((3 5) 4)))) 1) 0)* 

((1 ((2 (((6 8) 7) ((5 3) 4))) ((16 (15 14)) (((11 13) 12) (10 9))))) 0)* 

((((((10 9) ((13 11) 12)) ((15 16) 14)) (2 ((8 7) ((4 6) (5 3))))) 1) 0)* 

((1 ((((16 15) 14) (((12 13) 11) (10 9))) (((6 ((4 3) 5)) (7 8)) 2))) 0)* 

((1 (((((5 3) (6 4)) (7 8)) 2) (((15 16) 14) (((11 13) 12) (10 9))))) 0)* 

((((2 ((6 ((5 3) 4)) (8 7))) (((16 15) 14) (((12 11) 13) (10 9)))) 1) 0)* 

((1 ((2 (((3 5) 4) (8 (6 7)))) (((16 15) 14) ((10 9) (11 (13 12)))))) 0)* 

(((((14 (16 15)) ((9 10) (12 (13 11)))) (2 ((4 (6 (5 3))) (7 8)))) 1) 0)* 

((1 (((((12 11) 13) (9 10)) ((16 15) 14)) (2 ((7 (6 8)) ((3 5) 4))))) 0)* 

((1 ((((5 (4 3)) (8 (7 6))) 2) ((16 (14 15)) ((10 9) (13 (11 12)))))) 0)* 

((((((11 (12 13)) (9 10)) ((15 16) 14)) (2 (((5 3) 4) ((6 7) 8)))) 1) 0)* 

((((2 (((7 6) 8) ((3 5) 4))) (((16 15) 14) (((11 13) 12) (9 10)))) 1) 0)* 

((1 ((2 ((8 (7 6)) (4 (5 3)))) ((((12 13) 11) (10 9)) (16 (15 14))))) 0)* 

(((((14 (15 16)) (((12 13) 11) (10 9))) (2 (((3 5) 4) ((7 6) 8)))) 1) 0)* 

((1 (((((12 13) 11) (10 9)) ((14 15) 16)) (2 ((5 (4 3)) (8 (7 6)))))) 0)* 
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((((2 (((5 3) (4 6)) (8 7))) ((14 (15 16)) (((13 12) 11) (10 9)))) 1) 0)* 

((1 ((((14 15) 16) ((10 9) ((11 13) 12))) (((8 (7 6)) (4 (5 3))) 2))) 0)* 

((1 ((2 (((6 7) 8) ((3 5) 4))) (((15 14) 16) (((13 11) 12) (10 9))))) 0)* 

((1 ((2 (((5 3) (4 6)) (7 8))) (((15 16) 14) (((11 12) 13) (10 9))))) 0)* 

((((2 (((4 3) 5) ((7 6) 8))) ((14 (16 15)) ((11 (12 13)) (9 10)))) 1) 0)* 

((1 ((((15 14) 16) ((12 (11 13)) (10 9))) (2 ((8 7) ((6 4) (5 3)))))) 0)* 

((1 (((14 (16 15)) ((13 (11 12)) (10 9))) (2 (((6 7) 8) (5 (4 3)))))) 0)* 

((1 ((2 ((8 7) (((4 3) 5) 6))) ((((11 13) 12) (10 9)) (15 (16 14))))) 0)* 

(((((16 (14 15)) (((13 11) 12) (10 9))) (2 (((6 7) 8) (5 (3 4))))) 1) 0)* 

((((2 (((3 5) (6 4)) (8 7))) ((((11 12) 13) (9 10)) ((16 15) 14))) 1) 0)* 

((1 ((((10 9) ((13 11) 12)) ((15 16) 14)) (((8 (6 7)) (5 (3 4))) 2))) 0)* 

((1 ((2 ((8 7) ((6 4) (3 5)))) (((10 9) (11 (12 13))) (16 (14 15))))) 0)* 

((((2 ((7 (8 6)) ((5 3) 4))) ((16 (14 15)) ((10 9) ((11 12) 13)))) 1) 0)* 

((1 ((((10 9) (11 (12 13))) ((16 15) 14)) (2 (((8 6) 7) (4 (3 5)))))) 0)* 

((1 ((((14 15) 16) ((13 (11 12)) (10 9))) (2 ((((4 3) 5) 6) (7 8))))) 0)* 

((1 (((10 9) ((11 13) 12)) (((16 15) 14) (2 ((8 7) ((4 6) (5 3))))))) 0)* 

((((2 ((8 (6 7)) ((3 5) 4))) ((((11 13) 12) (9 10)) (14 (15 16)))) 1) 0)* 

((1 ((((10 9) (12 (11 13))) (14 (16 15))) (((4 (3 5)) (7 (6 8))) 2))) 0)* 

((1 ((((10 9) (12 (13 11))) (14 (16 15))) (((((5 3) 4) 6) (7 8)) 2))) 0)* 

((1 ((((11 (12 13)) (9 10)) ((15 16) 14)) (2 ((7 8) (((5 3) 4) 6))))) 0)* 

((((((15 14) 16) ((11 (12 13)) (9 10))) (2 (((5 3) 4) ((6 7) 8)))) 1) 0)* 

((((((10 9) (13 (11 12))) (16 (15 14))) (2 (((3 4) 5) (8 (7 6))))) 1) 0)* 

((((2 ((7 8) ((6 4) (3 5)))) (((14 15) 16) ((10 9) ((12 13) 11)))) 1) 0)* 

((1 ((2 ((7 8) ((3 5) (6 4)))) ((14 (16 15)) (((11 13) 12) (10 9))))) 0)* 

((1 (((14 (15 16)) (((13 12) 11) (10 9))) (((4 (5 3)) (8 (7 6))) 2))) 0)* 

((((((14 15) 16) ((13 (12 11)) (10 9))) (2 ((8 (7 6)) ((5 3) 4)))) 1) 0)* 

((((2 ((8 (6 7)) ((3 4) 5))) (((16 15) 14) (((13 12) 11) (9 10)))) 1) 0)* 

((1 (((14 (16 15)) ((10 9) (13 (11 12)))) (((8 7) ((3 5) (6 4))) 2))) 0)* 

((1 ((((7 8) ((6 (5 3)) 4)) 2) (((15 16) 14) ((11 (13 12)) (10 9))))) 0)* 

((1 (((((11 13) 12) (9 10)) (16 (15 14))) (2 (((3 5) 4) ((8 6) 7))))) 0)* 

((1 ((2 (((5 3) 4) (7 (6 8)))) (((14 16) 15) ((13 (11 12)) (10 9))))) 0)* 

((1 ((2 (((4 6) (5 3)) (8 7))) ((((11 12) 13) (10 9)) (14 (16 15))))) 0)* 

((((2 ((6 ((3 5) 4)) (7 8))) ((((13 12) 11) (9 10)) ((16 15) 14))) 1) 0)* 

((1 ((((15 16) 14) (((11 12) 13) (10 9))) (2 (((6 4) (5 3)) (8 7))))) 0)* 

((1 ((((7 (6 8)) ((3 5) 4)) 2) ((16 (15 14)) ((10 9) ((12 13) 11))))) 0)* 

((1 ((2 (((5 3) 4) ((7 6) 8))) (((13 (12 11)) (10 9)) (15 (14 16))))) 0)* 

(((((14 (16 15)) ((10 9) (12 (13 11)))) (2 ((6 (4 (3 5))) (7 8)))) 1) 0)* 

((1 ((2 (((7 6) 8) (4 (3 5)))) (((14 15) 16) ((10 9) ((13 11) 12))))) 0)* 

((((2 ((8 7) ((6 4) (3 5)))) ((((11 12) 13) (9 10)) ((16 15) 14))) 1) 0)* 

((((((10 9) (13 (12 11))) (14 (16 15))) (2 ((8 (7 6)) (4 (5 3))))) 1) 0)* 

((((((14 15) 16) (2 ((8 7) (((5 3) 4) 6)))) ((9 10) ((11 13) 12))) 1) 0)* 

((((2 (((5 3) 4) (8 (7 6)))) (((16 15) 14) (((11 13) 12) (10 9)))) 1) 0)* 

((1 ((((14 15) 16) ((11 (13 12)) (10 9))) (2 (((3 5) (4 6)) (8 7))))) 0)* 

((1 (((14 (15 16)) ((10 9) ((12 13) 11))) (((6 (4 (5 3))) (8 7)) 2))) 0)* 

 

; 

proc /; 

comments 0 

; 

 
 
Appendix 2. Code 
 
The following sections display the important code developed for this thesis. 
 
 
2.1. CIRI (Consistency Index Retention Index) 
 
Below is the TNT code, christened CIRI, used for computing the individual 
character retention indices and ensemble retention indices for partitions, 
used in Chapter 1. 
 
 

macro-; 

macro* 3 50000; 

macro [ 2000000; 

macro=; 

var-; 

log/; 
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if (ntrees==-1) errmsg no trees!; end 

 

/** deactivate taxa not in tree and create matrix with trees excluding them**/ 

/** up to three character groups specified, xgroup 7 being excluded ***/ 

 

loop 0 ntax 

 if (isintree[0 #1]) continue else taxcode -#1; end 

stop 

log $dataset<.ciri.tnt; 

xread-*; 

xgroup*; 

log/; 

tsave* $dataset<.ciri.tnt +; 

save-.; 

tsave/; 

 

 

proc $dataset<.ciri.tnt; 

 

log $dataset<.log; 

 

 

/**calculate ensemble retention indices for dataset paritions and individual 

character retention indices **/ 

 

var: minmax[(nchar+1) 2] ris[(nchar+1)] mina minb minc mind mine maxa maxb maxc 

maxd maxe theactual RIa RIb RIc RId RIe acta actb actc actd acte ncha nchb nchc 

nchd nche avria avrib avric avrid avrie tax ch; 

 

set mina 0; set minb 0; set minc 0; set mind 0; set mine 0; set maxa 0; set maxb 

0; set maxc 0; set maxd 0; set maxe 0; set RIa 0; set RIb 0; set RIc 0; set RId 

0; set RIe 0; set ncha 0; set nchb 0; set nchc 0; set nchd 0; set nche 0; set 

avria 0; set avrib 0; set avric 0; set avrid 0; set avrie 0; 

 

quote plap; 

 

loop 0 nchar 

 

 set ris[#1] 0; 

 if ((isinfo[#1]) && (minsteps[#1]>0)) 

  set minmax [#1 0] minsteps [#1]; 

  set minmax [#1 1] maxsteps [#1]; 

  if (isinxgroup[0 #1])  

   set mina ('mina' + 'minmax[#1 0]'); set maxa ('maxa' + 

'minmax[#1 1]'); set ncha ++; 

  end 

  if (isinxgroup[1 #1]) 

     set minb ('minb' + 'minmax[#1 0]'); set maxb 

('maxb' + 'minmax[#1 1]'); set nchb ++; 

 

  end 

  if (isinxgroup[2 #1]) 

   set minc ('minc' + 'minmax[#1 0]'); set maxc ('maxc' + 

'minmax[#1 1]'); set nchc ++; 

  end 

  if (isinxgroup[3 #1]) 

   set mind ('mind' + 'minmax[#1 0]'); set maxd ('maxd' + 

'minmax[#1 1]'); set nchd ++;  

     end 

  if (isinxgroup[7 #1]) 

   set ris[#1] 100000;  end 

 else set ris[#1] 100000; 

 end 

stop 

 

quote plop; 

loop 0 ntrees 

 

 set acta 0; set actb 0; set actc 0; set actd 0; set acte 0; 

 loop 0 nchar 

 

  if ((isinfo[#2]) && (minsteps[#2]>0)) 

   set theactual length [#1 #2]; 

   if (isinxgroup[0 #2])  

    set acta ('acta' + 'theactual');  

  

   end 
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   if (isinxgroup[1 #2] ) 

   set actb ('actb' + 'theactual'); 

   end 

 

   if (isinxgroup[2 #2] ) 

    

    set actc ('actc' + 'theactual'); 

   end 

    

   if (isinxgroup[3 #2] ) 

    set actd ('actd' + 'theactual'); 

   end 

   set ris[#2] ('ris[#2]' + (('minmax[#2 1]'-

'theactual')/('minmax[#2 1]'-'minmax[#2 0]')) ); 

  end 

 stop 

 if ('ncha'>0) 

  set RIa ('RIa'+ (('maxa'-'acta')/('maxa'-'mina')) ); 

 end 

 if ('nchb'>0)  

  set RIb ('RIb'+ (('maxb'-'actb')/('maxb'-'minb')) ); 

 end 

 if ('nchc'>0) 

  set RIc ('RIc' + (('maxc'-'actc')/('maxc'-'minc')) ); 

 end 

 if ('nchd'>0) 

  set RId ('RId' + (('maxd'-'actd')/('maxd'-'mind')) ); 

 end 

stop 

 

quote plip; 

 

if ('ncha'>0) 

 set RIa ('RIa'/(ntrees+1)); 

 end 

if ('nchb'>0)  

 set RIb ('RIb'/(ntrees+1)); 

  end 

if ('nchc'>0) 

 set RIc ('RIc'/(ntrees+1)); 

  end 

if ('nchd'>0) 

 set RId ('RId'/(ntrees+1)); 

 end 

 

var : output[('ncha'+'nchb'+'nchc'+'nchd') 3] count; 

 

set count 0; 

 

loop 0 nchar 

 

 set ris[#1] ('ris[#1]'/(ntrees+1)); 

 

 if ('ris[#1]'<=1)  

  set output['count' 0] (#1+1); 

 

  set output['count' 2] 'ris[#1]';   

  if (isinxgroup[0 #1])  

   set output['count' 1] 0; 

   set avria ('avria'+'ris[#1]'); 

  end 

  if (isinxgroup[1 #1]) 

   set output['count' 1] 1; 

   set avrib ('avrib'+'ris[#1]'); 

  end 

  if (isinxgroup[2 #1]) 

   set output['count' 1] 2; 

   set avric ('avric'+'ris[#1]'); 

  end 

  if (isinxgroup[3 #1]) 

   set output['count' 1] 3; 

  set avrid ('avrid'+'ris[#1]'); 

  end 

  set count++; 

 end 
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stop 

var ris*; 

quote plup; 

if ('ncha'>0) 

 set avria ('avria'/'ncha'); 

end 

if ('nchb'>0)   

 set avrib ('avrib'/'nchb'); 

end 

if ('nchc'>0) 

 set avric ('avric'/'nchc'); 

end 

if ('nchd'>0) 

 set avrid ('avrid'/'nchd'); 

end 

 

set tax (ntax+1); set ch ('ncha'+'nchb'+'nchc'+'nchd'); 

 

 

Quote ciri6-2; 

Quote output for retention indices of individual characters (informative only); 

 

var output*; 

 

quote total of included characters and informative characters 'tax' 'ch'; 

 

quote partition 1 has ensemble RI 'RIa' 'ncha' characters; 

quote partition 2 has ensemble RI 'RIb' 'nchb' characters; 

quote partition 3 has ensemble RI 'RIc' 'nchc' characters; 

quote partition 4 has ensemble RI 'RId' 'nchd' characters; 

 

 

quote partition 1 has average ri 'avria'; 

quote partition 2 has average ri 'avrib' 

quote partition 3 has average ri 'avric'; 

quote partition 4 has average ri 'avrid'; 

 

log/; 

proc/; 

 
 
2.2. Transition Ages 
 
The following R code first identifies and removes uninformative and 
multistate characters, before estimating character transition ages under an 
ACCTRAN framework as described in Chapter 1. 
  
 
Library(paleotree) 

 

colallchanges<-matrix(,nrow=(ncol(Dataset)),ncol=(Ntip(DatasetT1)*2-1)) #nrow = 

number of characters +1 (i.e. ncol(dataset)), ncol = number of internal nodes + 

number of tips (i.e. nnodes) 

row.names(colallchanges)<-names(Dataset) 

nroot<-(Ntip(DatasetT1)+1) 

nnodes<-(Ntip(DatasetT1)*2-1) 

 

#Establish which characters to remove (multistate and uninformative), and remove 

them from colallchanges 

 

Datasetnew_matrix <- Dataset[,-1] 

row.names(Datasetnew_matrix) <- Dataset[,1] 

 

Datasetrmchars <- for (j in 1:ncol(Datasetnew_matrix)){ 

   

ch<- as.vector(Datasetnew_matrix[,j]) 

 

nC=0 #number of scored characters 

 

c0=0 #whether or not state 0 exists in this character (1 = yes) 

c1=0 

c2=0 
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c3=0 

c4=0 

c5=0 

c6=0 

c7=0 

c8=0 

c9=0 

 

n0=0 #number of 0s in this character 

n1=0 

n2=0 

n3=0 

n4=0 

n5=0 

n6=0 

n7=0 

n8=0 

n9=0 

 

for (i in (ch)) { 

 if (i == 0) {c0=1 

  n0=n0+1 

  nC=nC+1} 

 if (i == 1) {c1=1 

  n1=n1+1 

  nC=nC+1} 

 if (i == 2) {c2=1 

  n2=n2+1 

  nC=nC+1} 

 if (i == 3) {c3=1 

  n3=n3+1 

  nC=nC+1} 

 if (i == 4) {c4=1 

  n4=n4+1 

  nC=nC+1} 

 if (i == 5) {c5=1 

  n5=n5+1 

  nC=nC+1} 

 if (i == 6) {c6=1 

  n6=n6+1 

  nC=nC+1} 

  if (i == 7) {c7=1 

    n7=n7+1 

    nC=nC+1} 

  if (i == 8) {c8=1 

    n8=n8+1 

    nC=nC+1} 

  if (i == 9) {c9=1 

    n9=n9+1 

    nC=nC+1}} 

   

 

nstates=c0+c1+c2+c3+c4+c5+c6+c7+c8+c9 

 

if (nstates!=2) {print (j)} else  

 {if(n0==(nC-1)) {print(j)} else 

 {if(n1==(nC-1)) {print(j)} else 

 {if(n2==(nC-1)) {print(j)} else  

 {if(n3==(nC-1)) {print(j)} else 

 {if(n4==(nC-1)) {print(j)} else 

 {if(n5==(nC-1)) {print(j)} else 

 {if(n6==(nC-1)) {print(j)} else 

 {if(n7==(nC-1)) {print(j)} else 

 {if(n8==(nC-1)) {print(j)} else 

 {if(n9==(nC-1)) {print(j)}}}}}}}}}}} 

  

} 

 

 

 

rmchars  <- read.csv("Datasetrmchars.csv") #make this file from returned 

characters 

rmchars <- rmchars$Chars 

rmchars <- as.vector(rmchars) 

 

colallchanges<-matrix(,nrow=(ncol(Dataset)),ncol=(Ntip(DatasetT1)*2-1)) #nrow = 

number of characters +1 (i.e. ncol(dataset)), ncol = number of internal nodes + 
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number of tips (i.e. nnodes) 

row.names(colallchanges)<-names(Dataset) 

 

Datasetrmrows <- paste("Col", rmchars, sep = "") 

Datasetkeeprows<- setdiff(colnames(Dataset), Datasetrmrows) 

Datasetcolallchanges <- colallchanges[Datasetkeeprows,] 

colchanges<-Datasetcolallchanges 

colchanges<-colchanges[-1,] 

colallchanges<-colallchanges[-1,] 

 

#the big loop - 100 trees[l], each character reconstruction[j], each anc-

descendant[i], extract branch ages 100 times [k] 

pb = txtProgressBar(min = 0, max = 100, initial = 0)  

colavavagechanges<-matrix(,nrow=nrow(colchanges),ncol=100) 

colavavavagechanges<-vector(length=nrow(colchanges)) 

for (l in 1:100) { 

 DatasetT_this <- DatasetT[[l]] 

 setTxtProgressBar(pb,l) 

  

 

 

 for (j in row.names (colchanges)){ 

  Col_this<-Dataset[,j] 

  Col_this<-as.vector(Col_this) 

  Col_this <- noquote(Col_this) 

  names(Col_this) <- DatasetTips 

  char_recon<-ancPropStateMat(Col_this,DatasetT_this,type="ACCTRAN") 

 

  for (i in nroot:nnodes){ 

   child_node<-Descendants(DatasetT1,i,type=("children")) 

   vec1 <- c(char_recon[child_node[1]], char_recon[i]) 

   vec1<-sort(vec1) 

   diff1 <- vec1[2] - vec1[1] 

   if (diff1 <= 0.5) {(colchanges[j,child_node[1]]<-0)} 

else{colchanges[j,child_node[1]]<-1}  

   vec2 <- c(char_recon[child_node[2]], char_recon[i]) 

   vec2<-sort(vec2) 

   diff2 <- vec2[2] - vec2[1] 

   if (diff2 <= 0.5) {(colchanges[j,child_node[2]]<-0)} 

else{colchanges[j,child_node[2]]<-1} 

  } 

 } 

 

 

#Create table for branch start and end dates 

 nodedepth <- node.depth.edgelength(DatasetT_this) 

 nodeage <- nodedepth[1] - nodedepth 

 nodeages<-matrix(,nrow=nnodes,ncol=2) 

 for (i in 1:nnodes){ 

  nodeages[i,2]<-nodeage[i] 

  anc_node<-Ancestors(DatasetT1,i,type=("parent")) 

  if(i==nroot){nodeages[i,1]<-NA}else{nodeages[i,1]<-nodeage[anc_node]} 

 } 

 

#select random ages from each transition on each branch and find averages for 100 

random iterations 

 colavagechanges<-matrix(,nrow=nrow(colchanges),ncol=100) 

 for (k in 1:100){ 

  this_colagechanges<-matrix(,nrow=nrow(colchanges),ncol=ncol(colchanges)) 

  for (i in 1:nrow(colchanges)){ 

   for (j in 1:ncol(colchanges)){ 

    if(j != nroot){ 

     if(colchanges[i,j]==1){ 

     this_colagechanges[i,j]<-

runif(1,nodeages[j,2],nodeages[j,1]) 

     } 

    } 

   } 

   colavagechanges[i,k]<-mean(this_colagechanges[i,],na.rm=TRUE) 

  } 

 } 

 

 for (i in 1:nrow(colchanges)){ 

  colavavagechanges[i,l]<-mean(colavagechanges[i,]) 

 } 

 for (i in 1:nrow(colavavagechanges)){ 

 colavavavagechanges[i] <- mean(colavavagechanges[i,], na.rm=TRUE) 
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} 

} 

row.names(colavavagechanges)<-row.names(colchanges) 

names(colavavavagechanges)<-row.names(colchanges) 

 

 
 
2.3. Fitting Uncorrelated and Correlated Models to Datasets 
 
R code fitting models of trait evolution to pairs of binary characters, first 
described in Chapter 2. “ER” in the below code is changed to “SYM” or “ARD” 
as necessary. 
 

library(corHMM) 

library(doParallel) 

library(foreach) 

 

#set rownames 

###################### 

samp2 <- morph_matrix[,-1] 

rownames(samp2) <- morph_matrix[,1] 

morph_matrix <- samp2 

 

#make blank results matrix 

###################### 

colnames <-  names(morph_matrix) 

result_matrix<-

matrix(0,ncol(morph_matrix),ncol(morph_matrix),dimnames=list(colnames, colnames)) 

 

#for row i, for each column (i:j) do corDISC 

###################### 

temp_result <- 0 

for (i in 1:nrow(result_matrix)){ 

par_result <- foreach(j=i:ncol(morph_matrix)) %dopar% { 

temp_result <- corDISC(morph_tree1, data.frame(rownames(morph_matrix), 

morph_matrix[i], morph_matrix[j]), ntraits=2, rate.mat=NULL, model=("ER"), 

node.states=("joint"), lewis.asc.bias=FALSE, p=NULL, root.p=NULL, ip=1, lb=0, 

ub=1000, diagn=FALSE) 

temp_result$AICc} 

par_result <- (unlist(par_result)) 

for(k in i:ncol(morph_matrix)){ 

result_matrix[i,k] <- par_result[(k - (i-1))]}} 

 

 

 


