
 

SOFTWARE SUPPORT FOR QUANTITATIVE NEAR-

INFRARED ANALYSIS AND BENCHMARKING OF 

CHEMOMETRIC METHODS - A CASE STUDY ON 

SINGLE KERNEL SAMPLES 

 

 

A thesis submitted to the University of Manchester for the Doctor of Philosophy degree 

in the Faculty of Science and Engineering   

 

2020 

 

Shupeng Hu 

 

School of Engineering, Department of Computer Science 





 

1 

 

LIST OF CONTENTS 

LIST OF CONTENTS ............................................................................................................................... 1 

LIST OF TABLES ...................................................................................................................................... 4 

LIST OF FIGURES .................................................................................................................................... 5 

LIST OF PUBLICATIONS ....................................................................................................................... 7 

ABSTRACT ................................................................................................................................................ 8 

DECLARATION ........................................................................................................................................ 9 

COPYRIGHT STATEMENT ................................................................................................................. 10 

ACKNOWLEDGEMENTS ..................................................................................................................... 11 

1 INTRODUCTION ................................................................................................................................. 12 

1.1 Context ............................................................................................................................................ 12 
1.2 Research Problems........................................................................................................................... 13 
1.3 Research Questions, Aims and Objectives ...................................................................................... 14 
1.4 Research Methodology .................................................................................................................... 14 
1.5 Summary of Research Contribution ................................................................................................ 15 
1.6 Thesis Scheme ................................................................................................................................. 17 

2 CONCEPTS AND BACKGROUND: NEAR-INFRARED SPECTROSCOPY AND 

CHEMOMETRICS .................................................................................................................................. 18 

2.1 Overview ......................................................................................................................................... 18 
2.2 Principle of the Near-Infrared Spectroscopy Technology ............................................................... 18 

2.2.1 Basics of Near-Infrared Spectroscopy ..................................................................................... 18 
2.2.2 Principle of the Near-infrared Spectroscopy Instrument .......................................................... 20 
2.2.3 Near-Infrared Spectral Data ..................................................................................................... 21 

2.3 Chemometrics .................................................................................................................................. 24 
2.3.1 Definition ................................................................................................................................. 24 
2.3.2 Quantitative Near-Infrared Spectroscopy Analysis (QNIRSA) ............................................... 25 

2.4 Summary .......................................................................................................................................... 31 

3 FOUNDATIONS AND RELATED WORK ........................................................................................ 32 

3.1 Overview ......................................................................................................................................... 32 
3.2 Dataset Partition Methods ................................................................................................................ 32 

3.2.1 Kennard–Stone Algorithm ....................................................................................................... 32 
3.2.2 Sample Set Partitioning Based on Joint X–Y Distances .......................................................... 33 

3.3 Pre-processing Methods ................................................................................................................... 33 
3.3.1 Multiplicative Scatter Correction ............................................................................................. 33 
3.3.2 Standard Normal Variate ......................................................................................................... 34 
3.3.3 Savitzky-Golay Polynomial Derivative Filters ........................................................................ 34 

3.4 Variable Selection Methods ............................................................................................................. 35 
3.4.1 Successive Projections Algorithm............................................................................................ 35 
3.4.2 Uninformative Variable Elimination........................................................................................ 35 
3.4.3 Simulated Annealing ................................................................................................................ 36 
3.4.4 Genetic Algorithm ................................................................................................................... 37 
3.4.5 Interval Partial Least Squares .................................................................................................. 38 
3.4.6 Backward Interval Partial Least Squares ................................................................................. 39 
3.4.7 Forward Interval Partial Least Squares .................................................................................... 39 
3.4.8 Principal Component Analysis ................................................................................................. 39 



 

2 

 

3.5 Multivariate Calibration Methods .................................................................................................... 42 
3.5.1 Multiple Linear Regression ...................................................................................................... 42 
3.5.2 Principal Component Regression ............................................................................................. 43 
3.5.3 Partial Least Squares Regression ............................................................................................. 43 

3.6 Statistic Criteria ............................................................................................................................... 45 
3.6.1 Standard Error of the Estimate ................................................................................................. 45 
3.6.2 Coefficient of Determination ................................................................................................... 46 

3.7 Related Work: Applications of Methods ......................................................................................... 46 
3.8 Summary .......................................................................................................................................... 49 

4 DESIGNING THE BENCHMARK FOR CHEMOMETRIC METHODS FOR ANALYSING 

SINGLE KERNEL SAMPLE ................................................................................................................. 50 

4.1 Overview ......................................................................................................................................... 50 
4.2 Definition of the Benchmark for Chemometric Methods ................................................................ 50 
4.3 Benchmarking Criteria ..................................................................................................................... 51 
4.4 Benchmarking Process ..................................................................................................................... 53 

4.4.1 Overview .................................................................................................................................. 53 
4.4.2 Stage 1: Data Collection .......................................................................................................... 54 
4.4.3 Stage 2: Data Processing .......................................................................................................... 56 

4.5 Summary .......................................................................................................................................... 58 

5 DEVELOPMENT OF THE QNIRSA SYSTEM ................................................................................ 59 

5.1 Overview ......................................................................................................................................... 59 
5.2 The Architecture of the QNIRSA System ....................................................................................... 59 
5.3 Functional Modelling for the QNIRSA System ............................................................................... 62 

5.3.1 Overview .................................................................................................................................. 62 
5.3.2 Control of Hardware ................................................................................................................ 64 
5.3.3 Off-Line Mode ......................................................................................................................... 65 
5.3.4 On-Line Mode .......................................................................................................................... 66 
5.3.5 Chemometric Methods Library ................................................................................................ 67 
5.3.6 Data Management .................................................................................................................... 68 

5.4 Implementation of the QNIRSA System ......................................................................................... 70 
5.5 Summary .......................................................................................................................................... 71 

6 BENCHMARK RESULTS ANALYSIS .............................................................................................. 72 

6.1 Overview ......................................................................................................................................... 72 
6.2 Results Analysis for Local Goals ..................................................................................................... 72 

6.2.1 Determinations of Parameters of Methods ............................................................................... 72 
6.2.2 Assessment for Dataset Partition Methods .............................................................................. 74 
6.2.3 Assessment for Pre-processing Methods ................................................................................. 75 
6.2.4 Assessment for Variable Selection Methods ............................................................................ 76 
6.2.5 Assessment for Calibration Methods ....................................................................................... 79 

6.3 Results Analysis for Global Comparison ......................................................................................... 80 
6.3.1 Effective Combinations of Methods ........................................................................................ 80 
6.3.2 Classify the Effective Combinations ........................................................................................ 83 

6.4 Summary .......................................................................................................................................... 84 
6.4.1 Summary of Results Analysis .................................................................................................. 84 
6.4.2 Contributions of the Benchmarking Works ............................................................................. 85 

7 TWO REAL-WORLD APPLICATIONS OF THE BENCHMARKING RESULTS AND THE 

QNIRSA SYSTEM ................................................................................................................................... 86 

7.1 Overview ......................................................................................................................................... 86 
7.2 Validation of the QNIRSA System through Two Real-World Applications ................................... 86 



 

3 

 

7.2.1 Application 1: A Calibration Transfer Optimized Single Kernel Near-Infrared Spectroscopic 

Method .............................................................................................................................................. 86 
7.2.2 Application 2: Analysis of Biuret in Urea Fertilizer by Using a Portable Near-Infrared 

Spectrometer ..................................................................................................................................... 89 
7.3 Contributions of the Benchmarking Results for Two Real-world Applications .............................. 90 
7.4 Summary .......................................................................................................................................... 91 

8 CONCLUSION ...................................................................................................................................... 92 

8.1 Summary of Research Works .......................................................................................................... 92 
8.2 Summary of Contributions .............................................................................................................. 93 
8.3 Limitations and Future Work ........................................................................................................... 94 

8.3.1 Limitations ............................................................................................................................... 94 
8.3.2 Future Works ........................................................................................................................... 95 

REFERENCES ......................................................................................................................................... 97 

GLOSSARY ............................................................................................................................................ 104 

APPENDIX 1: QNIRSA SYSTEM ....................................................................................................... 106 

APPENDIX 2.1  TABLE 1: THE PERFORMANCE OF ALL COMBINATIONS OF METHODS 

ON SRK. .................................................................................................................................................. 107 

APPENDIX 2.2  TABLE 2: THE PERFORMANCE OF ALL COMBINATIONS OF METHODS 

ON SBK. .................................................................................................................................................. 112 

APPENDIX 2.3  TABLE 3: THE PERFORMANCE OF ALL COMBINATIONS OF METHODS 

ON RF...................................................................................................................................................... 117 

APPENDIX 3: MATLAB CODES FOR METHODS ......................................................................... 122 

  



 

4 

 

LIST OF TABLES 

Table 2.1: matrix X transformed from the spectra of 120 single rice samples............................................ 23 

Table 2.2: Matrix Y corresponding to the matrix X in Table 2.1. ............................................................... 24 

Table 3.1: A summary of 28 quantitative NIRS applications on rice in the past 20 years. ........................ 48 

Table 4.1: Three global reference models. ................................................................................................. 52 

Table 6.1 Parameters of Methods ............................................................................................................... 73 

Table 6.2: Descriptive statistics for the protein content of single rice. ....................................................... 74 

Table 6.3: The optimal and average RMSEP and DRMSEP for pre-processing on three forms of single 

rice. ................................................................................................................................................... 76 

Table 6.4: The optimal and average RMSEP and DRMSEP for pre-processing on three forms of single 

rice. ................................................................................................................................................... 77 

Table 6.5 Optimal and average DRMSEP for three steps on SRK, SBK and RF. e ................................... 79 

Table 6.6 Top 15 of the performance of all combinations of methods on SRK. ........................................ 81 

Table 6.7 Top 15 of the performance of all combinations of methods on SBK. ........................................ 82 

Table 6.8 Top 15 of the performance of all combinations of methods on RF. ........................................... 83 

  



 

5 

 

LIST OF FIGURES 

Figure 2.1: The spectrum of a single rice sample. ..................................................................................... 21 

Figure 2.2: The spectra of 120 single rice samples..................................................................................... 22 

Figure 2.3: The spectra of 120 single rice samples with reference data. .................................................... 23 

Figure 2.4: The pre-processed spectra of the original spectra treated by SNV........................................... 27 

Figure 3.1: Percentages of rice forms (a) or interesting properties (b) among 28 publications. ................. 49 

Figure 4.1: BPMN diagram for the designing of the benchmarking process for chemometric methods. ... 54 

Figure 4.2: The spectra (a), (b), and (c) of SRK, SBK and RF, respectively. ............................................ 55 

Figure 5.1: The architecture of the QNIRSA system.................................................................................. 61 

Figure 5.2: The sequence diagram for the mode layer. .............................................................................. 61 

Figure 5.3: The node tree diagram for the QNIRSA system. ..................................................................... 63 

Figure 5.4: The top-level context diagram A-0. ......................................................................................... 63 

Figure 5.5: The IDEF0 diagram of A0 (Develop QNIRSA System). ......................................................... 64 

Figure 5.6: The IDEF0 diagram of A5 (Control Hardware). ...................................................................... 65 

Figure 5.7: The IDEF0 diagram of A1 (Develop Off-Line Mode). ............................................................ 66 

Figure 5.8: The IDEF0 diagram of A2 (Develop On-Line Mode). ............................................................ 67 

Figure 5.9: The IDEF0 diagram of A3 (Develop Chemometric Methods Library). ................................... 68 

Figure 5.10: The IDEF0 diagram of A4 (Manage Data). ........................................................................... 69 

Figure 5.11: The Entity-Relationship Diagram for the NIR spectral database. .......................................... 70 

Figure 5.12: The user interface dashboard. ................................................................................................ 71 

Figure 6.1: RMSEP values for three sampling methods on three forms of single rice. .............................. 75 

Figure 6.2: RMSEP values for four pre-processing methods on three forms of single rice. ...................... 76 

Figure 6.3: RMSEP values for seven variable selection methods without pre-processing on three forms of 

single rice. ......................................................................................................................................... 77 

Figure 6.4 RMSEP for seven variable selection methods with pre-processing on SRK (a), SBK (b) and RF 

(c). ..................................................................................................................................................... 78 

Figure 6.5: RMSEP for three calibration methods on three forms of single rice. ....................................... 80 

Figure 6.6: Percentages of methods among effective combinations. .......................................................... 84 

Figure 7.1: Analysis of single rice kernel protein content via two methods [2]. ........................................ 88 

Figure 7.2: IDEF0 diagram of Application 1. ............................................................................................. 88 



 

6 

 

Figure 7.3: The IDEF0 diagram of Application 2. ..................................................................................... 90 



 

7 

 

LIST OF PUBLICATIONS 

[1] L. Zhao, S. Hu, X. Zeng, Y. Wu, Y. Lin, J. Liu, et al., "An Integrated Software 

System for Supporting Real-Time Near-Infrared Spectral Big Data Analysis and 

Management," in Big Data (BigData Congress), 2017 IEEE International Congress on, 

2017, pp. 97-104. 

This paper first introduces the basic concepts of NIRS analysis intending to show its 

complexity. The paper then characterises the NIR spectral data using the “3H” of 

scientific big data, intending to show their challenges. Finally, the paper describes our 

initial effort on the development of an integrated software system to support efficient 

real-time NIRS data analysis and management. The paper claims that this development 

is an important contribution to tackling the challenges of scientific big data. 

The integrated software system introduced in this paper was an initial version of the 

QNIRSA system that will be specified in this thesis. My role in that paper was to design 

the software system and spectral database and help to write a draft about the basic 

concepts of NIRS analysis and the features of NIR spectral data. 

[2] Z. Xu, S. Fan, S. Hu, J. Liu, B. Liu, L. Tao, J. Wu, et al., "A calibration transfer 

optimized single kernel near-infrared spectroscopic method," Spectrochimica Acta Part 

A: Molecular and Biomolecular Spectroscopy, vol. 220, p. 117098, 2019. 

In this paper, a calibration transfer-optimized single kernel near-infrared spectroscopic 

method is proposed. This method aims to accurately detect the chemical composition of 

single seeds by using the calibration model of the corresponding dehusked seeds or seed 

flour. The proposed method was applied to the analysis of the protein content of a single 

rice kernel. 

This paper reported a real-world application supported by the QNIRSA system, which 

will be illustrated in section 7.2 in this thesis. My role in that paper was to configure the 

QNIRSA system to support that application, including data collection, processing and 

result analysis, and help to code the proposed method in MATLAB as well. 

[3] J. Liu, S. Hu, S. Yu, Y. Lin, P. Wei, Y. Yang, et al., "Analysis of biuret in urea 

fertiliser using a portable near-infrared spectrometer," Spectrochimica Acta Part A: 

Molecular and Biomolecular Spectroscopy, Under review 2020. 

This application is about analysing biuret in urea fertiliser using a portable near-infrared 

spectrometer. Some chemometric methods were compared and discussed. 

This paper reported another real-world application entirely supported by the QNIRSA 

system, which will be illustrated in section 7.3 in this thesis. My role in that paper was 

to configure the QNIRSA system to support that application including data collection, 

processing and result analysis. 

 



 

8 

 

ABSTRACT 

During the past decades, the technology of the Near-Infrared Spectroscopy (NIRS) has 

been widely adopted as a non-destructive analytical tool in various fields. In agriculture 

and chemometrics, NIRS analysis at single kernel level can improve not only the 

sample uniformity and purity but also the quality and economic value of a seed batch. 

However, many limitations and challenges exist in the single kernel Near-Infrared 

Spectroscopy (SKNIRS) analysis and applications. The first contribution of this PhD 

thesis was to develop an integrated software system to support data collection, 

processing and analysis for single kernel sample. IDEF0 Functional Modelling has been 

used to guide the development and implementation of the integrated software system. 

Two real-world applications supported by the integrated software system were reported 

as the validation of the integrated software system. Another contribution of this PhD 

thesis was to provide a benchmark of chemometric methods for comparative single 

kernel near-infrared spectroscopy analysis based on the proposed stepwise process. 

Sixteen methods including two dataset partition methods, three pre-processing methods, 

eight variable selection methods and three calibration methods were assessed and 

compared based on two statistics: root mean squared error of prediction (RMSEP) and 

coefficient of determination (R2). Conclusions were discussed in detail based on the 

results of benchmarking analysis, which is appropriately general and may assist the 

choice of chemometric methods for SKNIRS. 

 

Keywords: Near-Infrared Spectroscopy (NIRS), Chemometrics, Single Kernel Near-

Infrared Spectroscopy (SKNIRS), Software System Development, IDEF0 Functional 

Modelling, Benchmarking of Chemometric Methods, Quantitative Analysis, Pre-

processing, Variable Selection, Multivariate Calibration 
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1 INTRODUCTION 

1.1 Context 

Near-infrared spectroscopy (NIRS) is a spectroscopic technique which utilises near-

infrared (NIR) light region of the electromagnetic spectrum from 780 nanometres to 

2500 nanometres [4]. Compared with other analytical and conventional chemical 

methods, NIRS is non-destructive, easy to use and has rapid response [5]. Due to those 

advantages, NIRS has been widely applied for diverse fields such as food science [6], 

agriculture [7], environmental science [8], human health [9], pharmaceutics [10], wood 

and paper science [11]. In the past decades, the number of NIRS applications have 

exponentially grown because of the rapid development of NIRS instrument and 

software. One kind of the most popular applications aims to use NIRS for the selection 

and classification of samples according to specific traits and attributes without alteration 

of their properties. Specifically, in this kind of application, the analysis is essential to 

utilise methods to construct an appropriate calibration model to correlate the underlying 

relationship between the spectral data and sample properties. For example, in the 

agricultural domain, the interesting properties of samples are water concentration, fat 

content, protein content [12] and so on. Therefore, the goal of NIRS for those 

agricultural applications is to correlate the relationship between the spectral data of 

agricultural commodities and the properties of those commodities. Chemometrics is an 

inter-discipline field involving mathematics, statistics, chemistry, biology, computer 

science and maybe even more. Quantitative NIRS analysis in chemometrics is one of 

the methodologies to quantify the numeric relationship between spectra and sample 

properties. A number of coherent processes employing methods provided by other fields 

construct steps of quantitative NIRS analysis. Eventually a NIR model will be 

established to reveal the potential relationship between the NIR spectral data and sample 

properties. 

Generally, in agriculture, there are two types of solid samples for NIRS. One of the 

types is the bulk sample that every sample has similar weight about 200 grams to 250 

grams on average consisting of some single kernels, provided by NIRS bulk sample 

analysers [13]. Another type of sample is the single kernel (e.g., a single seed or single 

rice). The NIR analysis for a single kernel is undertaken for every kernel of solid sample 

one by one. Therefore, analysis of the bulk sample is much easier than the investigation 

of unequable single kernels. However, bulk samples may cause the issue that the 

heritability of the desired characteristic may be low because difference among single 

kernels cannot be discriminated. On the contrary, though the investigation of the single 

kernel is complicated, it is possible to figure out the traits of the sample in current or 

even next generation [14]. An additional advantage given by single kernel NIRS 
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analysis (SKNIRS) is the improvement of sample uniformity and purity, and the quality 

and economic value of a kernel batch [15]. 

1.2 Research Problems 

Bulk samples have been widely used in many NIRS applications, but SKNIRS has not 

reached its full potential yet. Due to the differences existing among single kernels, both 

reference methods and chemometric methods successfully apply for bulk samples may 

not have the same performance for single kernels [10]. According to the literature 

review of related work about applications of chemometric methods in section 3.7, most 

of the SKNIRS papers employed only 3 to 6 chemometric methods for one category of 

single kernel sample, which were not enough for carrying out a comparison study. Few 

numbers of chemometric methods for comparison are insufficient to provide a global 

view for NIRS benchmarking. Besides, the statistic criteria used for different papers 

sometimes may be different as well. A fair comparison should be undertaken in the 

same criteria. On the other hand, several review papers did comparative research 

between methods. However, they all focused on one category of methods such as pre-

processing methods or variable selection methods only [16], [17], [18], [19]. No review 

has emphasised on the impact between different categories of methods yet. Additionally, 

those review papers mainly focused on the theory and principle but lack of applications 

or analysis on real-world data sets. 

Before NIRS analysis at the single kernel level, the acquisition of spectral data for 

single kernels is necessary. Most of the current commercial spectrometers are used for 

bulk samples, though some of them have adapters for single kernels [13]. Some papers 

reported the issue that some current spectrometers with attached accessories available 

for bulk samples are not suitable for single kernel samples [20], [21]. Problems also 

exist in software corresponding to spectrometers. The first problem is that many 

spectrometers are available to control by their software only. As a result, if multiple 

spectrometers are required for investigation, all relevant software has to be installed and 

configured. When the spectrometer is changed, the corresponding software has to be 

swapped and reset, then re-connects with the spectrometer. This is time-consuming for 

comparative research. The second problem is that, software only responds to 

corresponding spectrometer but cannot control external sample-specific hardware 

accessories (e.g., adapters or external sensors) designed particularly for the scanning of 

single kernel sample. Thus, many NIR software are under restrictions in the SKNIRS 

analysis. The third problem is about the chemometric methods provided by the software. 

As for a large number of NIR software, only several methods are provided, which are 

not enough for NIR research, especially insufficient for a comparative study. As a result, 

NIRS analysis and spectra acquisition have to done separately on different software. 

The most current integrated software system is unavailable for the coherent process, 

including NIRS data collection and comparative analysis. 

In summary, the first research problem is the lack of a comparative study for SKNIRS 

to provide a global view for the NIR benchmarking of chemometric methods. The 
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second research problem is the lack of an integrated system at the single kernel level, 

which can not only control sample-specific hardware accessories to support spectral 

data collection of single kernel sample but also provides a wide range of chemometric 

methods to support NIRS comparative analysis. 

1.3 Research Questions, Aims and Objectives 

Research questions are based on research problems summarised in previous section 1.2. 

RQ 1. What is the most appropriate methodology for developing the integrated software 

system? 

RQ 2. What is the best statistic criterion to assess and interpret the performance of 

chemometric methods? 

RQ 3. How to classify the performance of chemometric methods based on statistic 

criterion? 

Based on three research questions, the aims of this PhD thesis is to 1) develop an 

integrated software system to support spectral data collection of single kernel sample 

and single kernel near-infrared spectroscopy analysis and 2) provide a benchmark of the 

chemometric methods for single kernel near-infrared spectroscopy analysis. Benchmark 

processes for measurement and comparison of the performance of chemometrics 

methods will be interpreted in chapter 4, while the details about the development of the 

integrated software system will be interpreted in chapter 5. In order to realise two 

research aims, research objectives below should be reached: 

Obj 1. To review the literature about software engineering, methodology and common 

methods and statistic criterion used for SKNIRS. 

Obj 2. To design an architecture for the integrated software system. 

Obj 3. To find out the most appropriate methodology for developing the integrated 

software system. 

Obj 4. To develop a chemometric methods library providing desired chemometric 

methods for the integrated software system. 

Obj 5. To figure out the best statistic criterion to assess and interpret the performance of 

desired chemometric methods. 

Obj 6. To make a comparative study for desired chemometric methods on a single 

kernel sample as the benchmark for SKNIRS analysis. 

Obj 7. To classify the performance of desired chemometric methods based on statistic 

criterion. 

1.4 Research Methodology 

The whole research of this PhD thesis has been done in steps inspired by evidence-

based software engineering [22]. These steps are: 

Step 1 Identify research problems from practical applications. 

Step 2 Convert research problems into answerable research questions. 
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Step 3 Search the literature for the best available evidence to answer the research 

questions. 

Step 4 Propose solutions based on evidence in step 3. 

Step 5 Implement proposed solutions to solve research problems. 

Step 6 Evaluate the proposed solutions in a pilot project (real-world application). 

This PhD thesis is a practical NIRS application associated with collaborators from the 

Hefei Institute of Physical Science, Chinese Academy of Sciences. Thus, in terms of 

step 1 and 2, the research problems were addressed and converted into research 

questions illustrated in section 1.2 and 1.3. In step 3, the methodology for the literature 

review is that relevant review papers recommended by collaborators were reviewed at 

first. Reference papers cited by review papers concerning potentially available evidence 

were reviewed sequentially. Afterwards, other papers cited in those reference papers 

were reviewed as further reading. This literature review progress iterated until enough 

available evidence were found to answer the research questions. Methodology 

functional modelling by the IDEF0 approach was applied for the development of the 

proposed integrated system as a solution for software system development in step 4 and 

5. Function modelling in systems engineering and software engineering is a structured 

representation of the functions within the modelled system or subject area [23]. The 

IDEF0 is a functional modelling language for describing functions and developing a 

software system. The reason why adopts such a stepwise functionalisation method is 

that NIRS analysis is a coherent, systematic process illustrated in section 2.3.2. The 

methodology for NIR benchmarking on the single rice sample refers to chapter 4 in 

sequential order: 

1. Define the keyword ‘benchmark’ to clear the objectives. 

2. Collect research data. 

3. Figure out benchmarking criterion. 

4. Design benchmarking process 

In step 6, two real-world applications will be reported in chapter 7 as the validation for 

the integrated software system. 

1.5 Summary of Research Contribution 

There are two main contributions of this PhD thesis. The first contribution is to make a 

comparative study for various statistical models established by sixteen chemometric 

methods on the single rice sample as the benchmark of chemometric methods for single 

kernel near-infrared spectroscopy analysis. Compared with previous work which 

focused on the analysis of bulk rice samples, this exploratory research in addressing 

single rice samples leads to a more accurate assessment of properties such as protein 

content. This study is also an example and guidance to show analytical processes for 

assessing different statistical models on single kernel samples. Those processes of 

benchmarking can guide future research on how to design and implement the process on 

single kernel NIR analysis. Additionally, the comparative results of those models are a 
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useful reference for chemometric methods selection on single rice samples. They 

provide detailed assessments of sixteen methods, including not only the performance of 

those methods on three forms of single rice but also the optimal parameters of methods. 

Relevant research may briefly refer to this comparative study when it is related to 

methods selection, parameters tuning or model calibration on single rice samples.  

Another contribution is to develop an integrated software system named QNIRSA 

system, which not only can control multiple spectrometers and sample-specific 

hardware for spectral data acquisition of single kernel sample, but also provides some 

chemometric methods for single kernel near-infrared spectroscopy analysis. The 

QNIRSA system can be regarded as a fully integrated functional platform which 

provides APIs for multiple spectrometers and hardware, a graphical user interface for 

users, and a chemometric methods library which provides some useful methods for 

single kernel near-infrared spectroscopy analysis as well. Two real-world NIRS 

applications have been solved by the QNIRSA system, which is reported in chapter 7. 

The QNIRSA system, including both Java codes for software and MATLAB codes for 

algorithms, was implemented by myself. 

Chemometric methods involved in this PhD thesis can be divided into four categories 

(principles of these methods will be introduced in chapter 3): 

1. Dataset Partition method. It is used to divide original data set into a training set 

and a validation set. Two sampling methods were assessed: 1) Kennard–Stone 

algorithm (KS) and 2) sample set partitioning based on joint x–y distances 

(SPXY). 

2. Pre-processing method. It is used to remove physical phenomena in the spectra 

in order to improve the subsequent analysis. Three pre-processing methods were 

assessed: 1) multiplicative scatter correction (MSC), 2) standard normal variate 

(SNV), and 3) Savitzky-Golay polynomial derivative filters (SG). 

3. Variable selection method. It is used to reduce the number of variables inside 

spectra which have noise or unrelated information, in order to improve the 

calibration model performance. Eight variable selection methods were assessed: 

1) successive projections algorithm (SPA), 2) uninformative variable elimination 

(UVE), 3) genetic algorithm (GA), 4) simulated annealing (SA), 5) principal 

component analysis (PCA), 6) interval partial least squares (iPLS), 7) backward 

interval partial least squares (BiPLS) and 8) forward interval partial least squares 

(FiPLS). 

4. Calibration method. It is also named the regression method, which is used to 

construct the calibration model based on its regression principle. Three 

calibration methods were assessed: 1) multiple linear regression (MLR), 2) 

principal component regression (PCR) and 3) partial least squares regression 

(PLSR). 
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1.6 Thesis Scheme 

Besides the first chapter, there are seven more chapters in this PhD thesis. Chapter 2 is a 

literature review including the background of NIR technology, chemometrics and 

related works. Chapter 3 will specify the theory and principle of 16 chemometric 

methods involved in this PhD thesis. Chapter 4 and 5 will illustrate the proposed 

solutions for the design of the benchmark and development of the QNIRSA system, 

respectively. Chapter 6 will analysis the benchmark and provide a comparative study for 

those chemometric methods. Chapter 7 will report two real-world applications by using 

the QNIRSA system as the validation. Chapter 8 is the conclusion of this PhD thesis. 
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2 CONCEPTS AND BACKGROUND: NEAR-

INFRARED SPECTROSCOPY AND 

CHEMOMETRICS 

2.1 Overview 

The near-infrared spectroscopy (NIRS) became a formal analytical tool utilised for 

practical application since the first application was reported by the pioneers of the NIRS, 

Hart, et al. [4]. Afterwards, a large number of NIRS applications have been developed 

in various fields. This chapter will specify the background of the near-infrared 

spectroscopy (NIRS) and chemometrics, including the principle of NIRS technology in 

section 2.2 and chemometric process in section 2.3. Specifically, section 2.2 elaborates 

the basics of NIRS, principles of NIRS instrument and features of NIRS data 

sequentially, while section 2.3 introduces the definition of chemometrics and steps of 

quantitative NIRS analysis (QNIRSA) with an overview of some popular chemometric 

methods. 

2.2 Principle of the Near-Infrared Spectroscopy Technology 

2.2.1 Basics of Near-Infrared Spectroscopy 

Full name of the spectroscopy is overtone vibrational spectroscopy (OVS), which 

utilises light-electromagnetic radiation to analyse materials by describing the energy 

transfer between light and matter [5]. A spectrum reflecting the light intensity at a 

different wavelength on multi-dimensional spectral space is the product concerning the 

description of energy. The light-electromagnetic spectrum is divided into some regions, 

and each region indicates a particular category of molecular or atomic transition with a 

corresponding spectroscopic technique [5]. Near-infrared defines the region ranging 

from 780nm to 2500nm. Between this range, molecules can absorb infrared light 

without later reemission by exciting specific vibrational frequencies, while sample 

absorbs the frequencies of polychromatic light that corresponds to its molecular 

vibrational transitions [5]. Due to this feature, the near-infrared spectrum can be 

composed of absorptions. Moreover, every molecule containing hydrogen will have a 

measurable NIR spectrum and the ubiquitous distribution of hydrogen inside the 

molecule, which means a vast number of analyte are amenable to NIR analysis [24]. 
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Compared with other analytical methods (e.g., wet chemical method) or other 

spectroscopic techniques (e.g., Raman), NIRS have six main advantages: 

1. NIRS provides multi-constituent analysis on virtually any matrix with levels of 

accuracy and precision that are comparable to primary reference methods [5]. 

The comparison based on a set of criteria between the reference data and 

predictions by NIRS analysis is an essential step to evaluate the NIRS 

calibration model. 

2. NIRS is a non-destructive and waste-free technique that does not require sample 

preparation or manipulation with hazardous chemicals, solvents, or reagents [5]. 

NIRS is attractive for straightforward, speedy characterisation of natural and 

synthetic products because it can collect and record spectral data for both solid 

and liquid samples without pre-treatment [17]. 

3. NIRS is faster than traditional laboratory analysis because NIRS allows several 

quality estimates to be performed within a manufacturing cycle in opposed to a 

single end of batch analysis [17]. This advantage may reveal potential problems 

early in the process and promote corrective actions as well. 

4. NIRS is considered as a safe technique due to intrinsically safe measurement 

probes and fibre optics [17]. 

5. NIRS is flexible, which allows the determination (it means the whole process for 

measurement of the sample properties) of multiple values in a single 

measurement [5]. 

6. NIRS is sensitive to physical parameters such as size, density and colour. This 

feature is useful for the capture of those characteristics of samples. 

However, there are also some limitations of NIRS. For example, the NIR spectra are 

often complex and usually possess broad overlapping NIR absorption bands that require 

special mathematical procedures for data analysis [5], which increases the difficulty of 

NIRS data analysis. Furthermore, with the development of the NIRS device, higher 

accuracy allows the instrument to produce a large number of spectral points as variables 

that even are more than the number of samples. A large number of variables often 

renders the prediction of a dependent variable unreliable [25]. Then proper variable 

selection method must be applied for the spectral data, which raises the analysis 

complexity as well. Although the sensitivity of NIRS to physical parameters brings the 

sixth advantage as the above context explained, it leads to an issue as well, that is, 

physical phenomena exist as noises in the spectral data. Thus, pre-processing methods, 

which increases the complexity of spectral data analysis as well, are necessary to be 

applied for the spectral data, in order to remove physical phenomena in the spectra. The 

non-destructive and waste-free features of NIRS attracts scholars’ attention, but the 

complicated analysis and processing of spectral data stop direct NIRS measurement of 

samples. To overcome those disadvantages, a specialised field, named chemometrics, 

has been investigated for years, which will be introduced in the next section 2.3. 
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2.2.2 Principle of the Near-infrared Spectroscopy Instrument 

The limited capability of the instrument has been the main reason that restricted most 

scholars’ NISR research only in laboratory condition in the last century [26]. The lack 

of advanced computer chip has made the sensitive and low noise detectors in the form 

of silica photocells or lead sulphide photometers, and fibre optic cables difficult to 

control [24]. Significant development of computer technology has taken place since the 

1990s. Nowadays, powerful computer-based elements are widely used to improve NIRS 

instrument precision and accuracy and make mathematical methods available for 

supporting the complex spectral data processing in diverse fields. Current NIRS 

instrument can be divided into two types according to its working modes. The two 

categories of working modes are transmittance mode and reflectance mode, respectively.  

NIRS instrument utilises the transmittance mode, which mainly works on the region 

from 700 to 1100 nanometres. This kind of instruments measures the transmitted 

radiation through a fixed path length of a bulk sample of grains or beans, assuming that 

the decrease of the initial radiation in travelling through the sample is due to absorption 

[13]. The path length is optimised according to the commodity being measured and the 

instrument setup. Another type of NIRS instruments deploys the reflectance mode, 

which measures the diffusely reflected radiation from the sample. According to the 

illustration written by Agelet and Hurburgh [13], the diffusely reflected signal is a 

fraction of the original radiation source which after penetrating the sample few 

millimetres, has been interacting with the sample molecules, scattered in several 

directions, and travelled back to the surface. Only the diffuse fraction of the reflected 

radiation has interacted with the compound of interest, while other reflected fractions 

may only have interacted with the sample surface and thus does not contain chemical 

information related to the sample composition. 

In terms of the techniques for spectrum measurement employed by NIR device, diode 

arrays (DA), Fourier Transform (FT), and chemical imaging units (CI) are most widely 

applied. Diode array instruments measure the signal from all the wavelengths 

simultaneously and are usually the cheapest and the most suitable for fast measurements 

in rougher environments because they do not contain mechanical parts [13]. Fourier 

Transform instruments, measuring all the wavelengths at the same time as well but in 

the frequency domain, are mostly seen as laboratory instruments because of its higher 

complexity. FT advantages over diode arrays are a higher signal to noise ratio (SNR), 

higher precisions and higher resolution. However, those benefits do not generally lead 

to significant over-performance when working in the NIR region, especially when 

working with agricultural samples [27]. Chemical imaging is a relatively newer 

technology in NIR spectroscopy, which provides an additional spatial dimension to the 

NIR multivariate data. It allows identifying and mapping NIR biochemical information. 

The feature has been proved to be useful when analysing oil content in corn kernels, 

while only pixels belonging to the germ region should be considered as most of the oil 

is located in that region [28]. However, the disadvantages of chemical imaging 
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technique are slower, have lower signal to noise ratios, and have lower penetration of 

the radiation in the sample [13].  

2.2.3 Near-Infrared Spectral Data 

When a sample is scanned by a spectrometer (NIR device), the spectrometer produces a 

single spectrum containing a large number of data points (absorptions measured at 

every single wavelength on multi-dimensional spectral space) as the result of spectral 

response. In other words, a measured NIR spectrum of a sample can be regarded as a 

massive number of absorption measurements that have to be performed at hundreds of 

wavelengths on different dimensions. Therefore, the near-infrared spectral data is 

multivariate, and its analysis is called multivariate analysis. The data point one at a 

wavelength is the independent variable of the spectral data (also named predictor in 

some papers), and the quantity of independent variable depends on the resolution of the 

spectrometer. Those data points equal to the specific term ‘observations’ in other fields 

like machine learning. Figure 2.1 shows a spectrum of a single rice sample, which has 

936 variables, while Figure 2.2 displays the spectra consisting of 120 single rice 

samples. Every sample has 936 variables. The size of the spectra is a matrix of 120×936 

in math. The X-axis presents the wavelength range while the Y-axis is about general 

absorbance. 

 

Figure 2.1: The spectrum of a single rice sample. 
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Figure 2.2: The spectra of 120 single rice samples. 

Dependent variables should be those to be predicted. Specifically, sample property (e.g., 

the concentration of water), also called desirable interest in some papers, is the 

dependent variables in NIRS analysis. In machine learning, those dependent variables 

are also named targets. In model training, reference data (value of sample property used 

for model training and calibration) corresponding to the spectra are provided by the 

laboratory experiments based on reference methods. Precision and accuracy of NIRS 

calibrations will be impacted by the quality of the reference laboratory data. 

An instance is shown in Figure 2.3 presents the relationship between the spectra of 

single rice samples (size: 120x936) and the reference data (protein content).  As it is 

seen in Figure 3, the spectra and reference data follow the one-to-one relationship. Each 

spectrum of the spectra has its corresponding value of reference data and only has one 

value for every kind of reference data. For example, in Figure 2.3, there is one property 

(multi-properties are available but here takes one property, for instance), protein content. 

Therefore, every spectrum has one corresponding value of the protein content. Thus, the 

reference data set is constructed by 120 values of protein content. Regarding the 

multiple properties, if there are p properties, the size of the reference dataset should be a 

matrix of 120×p in math. 



 

23 

 

 

Figure 2.3: The spectra of 120 single rice samples with reference data. 

In NIRS analysis, in order to make mathematical and statistical computation easier, the 

NIRS data have to be transformed into a matrix for future processes. The matrix 

transformed from the spectra is named the absorbance matrix (matrix X). An instance of 

the specific matrix X transformed from the spectra of 120 single grain samples (size: 

120×960) shown in Table 1. In this table, every sample has its corresponding spectrum, 

while every spectrum has 936 values/data points as one value at one wavelength. 

Table 2.1: matrix X transformed from the spectra of 120 single rice samples. 

Samples Spectra Wavelengths 

800.7(1st) 801.7(2nd) 802.7(3rd) …… 1726.1(936th) 

Sample 1 Spectrum 1 1.4687 1.4679 1.4671 …… 2.1623 

Sample 2 Spectrum 2 1.4488 1.4484 1.4474 …… 2.2160 

…… …… …… …… …… …… …… 

Sample 120 Spectrum 

120 

1.7821 1.7812 1.7800 …… 2.7752 

 

In terms of reference data, a matrix Y contains all the values of it. Table 2 displays the 

matrix Y corresponding to the matrix X in Table 1. One of the NIRS analysis aims is to 

establish a model to investigate and reveal the correlation between matrix X and matrix 

Y. 
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Table 2.2: Matrix Y corresponding to the matrix X in Table 2.1. 

Samples Spectra Properties 

Protein Content …… Water Concentration 

Sample 1 Spectrum 1 9.0678 …… 8% 

Sample 2 Spectrum 2 11.9476 …… 5% 

…… …… …… ……  

Sample 120 Spectrum 120 7.3899 …… 10% 

 

2.3 Chemometrics 

2.3.1 Definition 

An accepted definition of the chemometrics is that chemometrics is a chemical 

discipline that uses mathematics, statistics and formal logic to design or select optimal 

experimental procedures, provide maximum relevant chemical information by analysing 

chemical data and obtain knowledge about chemical systems [29]. Due to the 

development of machine learning, nowadays some machine learning methods (e.g., 

support vector machine and artificial neural network) are applied in chemometrics as 

well, in order to enrich the chemometric methods.  Most of the chemometric methods 

are multivariate because they can obtain more information by considering multiple 

variables than that is obtained by considering each variable individually, which may 

omit the correlation between variables. 

In terms of the NIRS domain, chemometrics applies mathematical and statistical 

approaches for multivariate NIR spectral data analysis to filter information that 

correlates to a specific property. Specifically, useful information is extracted from 

multivariate NIR spectral data, and undesired information (e.g., interferences or noise) 

is removed. The analysis of NIRS is divided into two types: quantitative analysis and 

qualitative analysis. NIRS qualitative analysis is also named NIRS identification or 

NIRS pattern recognition, which aims to classify or to cluster the spectral data into 

classes by comparing a sample spectrum to reference spectra of known materials [2]. 

NIRS quantification aims to build a mathematical model to predict the property of the 

sample. This mathematical model named the NIR model or calibration model as well, 

which is constructed to represent the correlation between measured NIR spectral data 

and reference data. Accurately, this model established by informative spectral data 

extracted by chemometric methods describes how the measured multivariate spectral 

features (data points/variables) are correlated to properties of the analyte (e.g., the water 

concentration of sample). The validation of that model is done by assessing how close 
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the predictive values by a model to the value of reference data. This PhD thesis focuses 

on the quantitative NIRS analysis (QNIRSA) of single rice so that only details about the 

QNIRSA will be illustrated in next sub-section 2.3.2. 

2.3.2 Quantitative Near-Infrared Spectroscopy Analysis (QNIRSA) 

In the past decades, in massive practical applications, biological scientists have already 

found relationship empirically existing between the NIR spectrum and constituents of 

samples [13]. The QNIRSA aims to construct a mathematical model by chemometric 

methods to quantify that relationship. However, two main problems perplex the 

QNIRSA: 

1. Physical noise exists in the spectrum. In order to improve the predictive ability 

and robustness of the model, it is significant to select appropriate reference 

method and laboratory data because the error of reference data will be accounted 

into the NIR model prediction. However, it is challenging to obtain a useful 

reference data set because that data set needs not only small errors but also a 

homogeneous distribution covering the range of sample property. When it comes 

to single seed sample, some experts have already indicated that the determining 

and accounting for the error of reference data is a hard task [13].  One of the 

problems is the sample-to-sample difference, including size, shape and colour of 

the single seed. Besides, many reference methods are destructive for samples so 

that there is no chance to repeat consistent experiments to obtain sufficient data. 

Thus, physical noise existing in the spectrum is unavoidable. 

2. Amount of variables are too large. The developing NIR device produces more 

and more independent variables in a single spectrum. As a result, another big 

problem is, the quantity of variables is usually much more than the number of 

samples, which easily gives rise to overfitting during the training. Additionally, a 

large amount of variables also causes a severe multicollinearity issue during the 

linear regression. 

It is impossible to solve these problems only in one-step. Therefore, quantitative NIR 

analysis consists of two coherent stages: 

Stage 1 Data collection. In this stage, spectral dataset and its corresponding reference 

dataset are collected in the NIR scanning and laboratory experiments 

procedures, respectively. 

Stage 2 Data processing. This stage aims to process the spectral data systematically 

and finally construct a validated model, which can perform well in prediction.  

There are five steps in stage 2: 

Step 1: Dataset Partition. In section 2.2.3, it has been explained why the NIR spectral 

data is multivariate involving complex matrices. In this circumstance, experts have 

already indicated the difficulty that reproducing the composition variability of real 
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samples relying on optimised experimental designs [30]. It is hard to extract a 

representative training set to construct a model and reasonable validation set to assess 

model from the real natural samples in NIR cases [31], [32]. Therefore, the sampling 

procedure is supposed to solve the training set, and the validation set partitioning 

problem.  

According to the review on the sampling methods, three sampling approaches are often 

employed in NIRS applications. They are random sampling, Kennard–Stone (KS) 

algorithm and sample set partitioning based on joint x–y distances (SPXY) respectively. 

Random sampling, like its literal meaning, divides the data set randomly into a training 

set and a validation set. This method is straightforward to implement, and it follows the 

statistical distribution of the whole data set. The drawback of this method is that it 

cannot ensure the samples on the boundaries of the entire set are inside the selected data 

set, which means this method does not guarantee the training set is representative [33]. 

The strategy of KS algorithm is that it uniformly covers the multi-dimensional space by 

maximising the Euclidean distances between the spectra vectors (x) (rows in the matrix 

X) of the selected samples [34].  This method has been used in some papers [32], [33], 

[34], but the case-by-case study for KS is strongly recommended by experts [33]. 

Dantas Filho et al. [35] published a paper and argued that a consideration of the 

dependent variables (y) (the information in matrix Y) deserved to add to the KS 

algorithm. His paper presents that the joint x-y consideration improves the predictive 

model performance compared with the model performance resulted by the classic KS 

algorithm. However, the data set partitioning in that paper was made on the calibration 

set, rather than on the entire data set. Galvao et al. [36] made a significant contribution 

for improving the KS algorithm and named their proposed solution sample set 

partitioning based on joint x–y distances (SPXY). The SPXY considers the variability in 

both x and y dimensions and encompasses both x- and y-differences in the calculation 

of inter-sample distances [36]. 

Step 2: Pre-processing. The sample-to-sample variations mainly caused by physical 

characteristics such as sample size, sample density and sample morphology, lead to 

light scattering effects that influence the measured NIR spectra and result in baseline 

shifts and scaling variations which are harmful to subsequent procedures [5]. Therefore, 

the pre-processing procedure is regarded as the first step of spectral data processing 

after sampling and gives the pre-treatment to NIR spectral data before variable selection 

and calibration. The aim of pre-processing is to remove the undesired physical 

phenomena in the spectra in order to facilitate the subsequent procedures [16]. Besides, 

pre-processing also helps to reduce the impact of kernel morphological characteristics, 

positioning, and orientation hiding in the spectra of single kernel sample [13]. For 

example, figure 2.4 is the pre-processed spectra of the original spectra (shown in figure 

2.2) treated by standard normal variate (SNV), displaying the effect that pre-processing 

has made on the variation between samples for different wavelength regions. Compared 

with the original spectra in figure 2.2, variations at most of the wavelengths of the pre-

processed spectra are much smaller because background offsets and slopes are removed. 
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Figure 2.4: The pre-processed spectra of the original spectra treated by SNV. 

The most optimal pre-processing method depends on not only the sample physical 

characteristics to be measured, or the sample property to be determined, but also the 

environment and instrument configuration [13]. Thus, empirically the most frequently 

used and standard pre-processing methods have been summarised by Rinnan et al. [16] 

in 2009. So far, that paper emphasising on the theoretical aspects of the pre-processing 

technique is still the only review paper about the pre-processing methods. Although that 

paper has introduced the principle and theory of most of the pre-processing methods 

clearly, there is no discussion on the effects that pre-processing methods impact on the 

subsequent procedures. Many other papers have not provided a comparative work for 

pre-processing as well, because the emphasis is often on the variable selection or 

calibration. It is commonly accepted that pre-processing is a necessary procedure 

because it can have a significant impact on the predictive model performance, but the 

optimal pretreatment is characterized by the lowest statistical errors obtained in the 

calibration step. Thus, the comparative study for pre-processing methods has to be 

finished until the end of calibration. Experts do not recommend combining several pre-

processing methods because the risk of removing the variable information exists if too 

severe pre-processing is applied [16]. 

Pre-processing methods are divided into two categories: scatter-correction methods and 

spectral derivatives [16]. Scatter-correction methods are designed to reduce the physical 

variability between samples due to scatter and adjust baseline shifts between samples. 

Multiplicative scatter correction (MSC) and standard normal variate (SNV) are the two 

most popular methods in the category of scatter-correction methods. MSC was 

developed by Martens et al. [37] at first, then improved by Geladi et al. [38], expanded 

by Martens and Stark [39], Martens et al. [40], Thennadil and Martin [41], and Windig 

et al. [42]. Concepts behind SNV are as similar as MSC, except for that standard 

reference signal for SNV is not required [16], [43]. Spectral derivatives methods can 
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remove both additive and multiplicative effects (e.g., resolving nearby peaks) in the 

spectra. Two main spectral derivatives methods are Norris-Williams (NW) derivatives 

and Savitzky-Golay (SG) polynomial derivative filters. 

The first derivative removes only the baseline, while the second derivative removes 

both baseline and linear trend. The NW derivatives method is a primary method 

developed to avoid noise inflation in differences, [44]. A moving window is used by the 

NW derivatives method for smoothing the data. Due to the span of the window, several 

points on both sides of data cannot be smoothened. In terms of the SG polynomial 

derivative filters method, it is popularized for the numerical derivation of a vector [45]. 

In order to find the derivative at the centre point i, a polynomial is fitted in a symmetric 

window on the raw data. Since the polynomial has been calculated, the derivative of any 

order of this function can be computed. This iterates for all points sequentially. 

However, the SG polynomial derivative filters method also has the problem that some 

points on both sides of data have to be neglected. For NW derivative method, the 

number of missing points equals the number of points used for smoothing plus the size 

of the gap minus one. For SG polynomial derivative filters method, the number of 

missing points equals the number of points used for smoothing minus one. 

In contrast, the NW derivative method loses more points than the SG polynomial 

derivative filters method. Experts indicated that this issue is not important if there are 

more than 500 points in the spectra [16]. Nevertheless, for the case that the spectra have 

less than 500 points, there is no perfect solution for this issue yet [46].  

Step 3: Variable Selection. The spectrum of each sample consists of independent 

variables at hundreds to thousands of wavelengths, which sums up in a large number of 

NIR spectral information that has to be processed. Thus the quantity of independent 

variables is usually much more than the number of samples, which easily gives rise to 

overfitting and unreliable prediction of the dependent variable during the data training 

[25]. In order to improve the predictive ability of the model, the number of independent 

variables should be reduced before multivariate calibration. Another challenge is the 

multi-collinearity among spectra. The multi-collinearity means the variables at 

wavelengths are correlated and not independent of each other [5], which can render bad 

prediction with linear regression model used in multivariate calibration. Besides the 

reduction of the number of variables, representative variables should be selected as well. 

These two issues are the reasons why variable selection procedure is needed before 

multivariable calibration. In a word, variable selection, based on the principle that 

selecting a small number of independent variables from the original set of variables will 

allow easier interpretation, is a crucial procedure to remove the non-informative 

information hiding inside the spectra, in order to obtain better predictions with simpler 

models in the multivariate calibration. 

The early focus of variable selection has been given to support the multiple linear 

regressions (MLR) because the MLR is easier to interpret. The successive projections 

algorithm (SPA) is a variable selection method developed to solve collinearity problems 
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in multiple linear regression (MLR), which presents the advantage of finding a small 

representative set of spectral variables with a minimum level of collinearity [47]. 

However, the SPA may lead to low signal-noise ratio or be insufficient for multivariate 

calibration, which can affect the precision of the model prediction [17]. Another popular 

variable selection method is the uninformative variable elimination (UVE) which 

addresses an automatic approach to remove the uninformative variables from the data 

set based on either high noise or low detector response [48]. Because the UVE employs 

the regression coefficient vector, the partial least squares regression (PLSR) is often 

used with it (UVE-PLS). The main advantage of using UVE of modelling is that it can 

avoid model over-fitting and usually improve its predictive ability [17]. However, 

sometimes latent variables are still required a further elimination before modelling if the 

number of variables selected by UVE is still substantial. Thus, the other two papers 

reported the performance of combing UVE and Monte Carlo cross-validation (MCCV) 

[49], and SPA [50] respectively. By combining the UVE with MCCV, better prediction 

results have been displayed compared with only UVE [49]. On the other hand, fewer 

variables need to be sought and selected but with better prediction performance when 

UVE is applied after SPA, specified by Ye et al. [50].  

Some experts consider the variable selection as an optimisation process, and they made 

efforts to find appropriate global optimisation methods. One of the typical optimisation 

methods is simulated annealing (SA), which is a probabilistic global optimisation 

technique that can traverse local optimums and to find the optimal global solution, 

firstly displayed by Kirkpatrick et al. [51], then employed for variable selection by 

Swierenga et al. [52], [53]. Details about SA will be introduced in section 3.4.3. 

Another method for the optimisation problem is the genetic algorithm (GA), which is a 

popular heuristic optimisation technique that employs a probabilistic, non-local search 

process in many fields. The GA is often used with PLS (GA-PLS) for NIR analysis, 

which combines both advantages of GA and PLS. For example, GA-PLS exhibits 

superiority over other variable selection methods in the PLS calibration, because it has 

been reported that there is no loss of prediction capacity by using a genetic algorithm 

[54], [55], [56]. The disadvantages of GA compared with other variable selection 

methods are time-consuming, and too many parameters affecting results need to be 

configured by the user. Methods like GA or SA adopts the selection strategy that selects 

the most useful wavelength variables possible but regardless of location.  

Another strategy is to select continuous variables in a specific region of the original 

variable range. The representative method adopts the latter strategy is interval PLS 

(iPLS). The iPLS method partitions the original variable range into sub-intervals, then 

build the PLS model for every sub-interval and work out which sub-interval is the best 

region based on criteria [57]. This method may not provide a significantly better PLS 

model than full-spectrum PLS model, but it gives an overview of the spectral data and 

displays interesting spectral areas which may be selected [58]. Based on iPLS, other two 

methods backward interval partial least squares (BiPLS) and forward interval partial 

least squares (FiPLS) has been developed to improve the models selected by iPLS. The 
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first step is as same as what iPLS does, that is, iPLS divides the whole variable range 

into sub-intervals. However, BiPLS calculates the PLS models with each sub-interval 

left out in a sequence [59]. For example, if iPLS selects 30 sub-intervals, then each PLS 

model is based on 29 sub-intervals leaving out one sub-interval at a time by BiPLS. The 

first omitted sub-interval gives the poorest performing model concerning criteria. This 

procedure is continued until no more sub-intervals, which can be kicked out to improve 

the performance. On the contrary, FiPLS establishes PLS models by successively 

improving intervals with respect to criteria [59]. For instance, as for 30 intervals 

selected by iPLS, FiPLS produces the first model on the sub-interval, which has the best 

performance assessed by criteria. Afterwards, FiPLS adds one remaining sub-interval to 

the first model at a time. The entered sub-interval in the model is the one that when the 

PLS model based on combination of this sub-interval and those sub-intervals which has 

been entered before, gives the best performance. This procedure is continued until no 

more sub-intervals, which can be added to improve the performance. 

Step 4: Multivariate Calibration. Multivariate Calibration is one of the most 

important techniques to ensure the quality of both quantitative and qualitative analyses. 

It aims to construct a mathematical regression model correlating the measurements of 

spectra to interesting properties of samples [60]. Mathematically, this model is 

developed through regressions of the measured NIR spectral data against the reference 

data values of analyte properties determined by reference analytical methods. For 

example, the multivariate calibration model for grain is the regression of the measured 

NIR spectra of grain against the reference data of grain properties such as protein 

content or water concentration. Then, the model is employed to predict the properties of 

samples, which are out of the calibration/training set. The reliability and accuracy of the 

predicted results rely on the quality of models. Therefore, multivariate calibration 

methods are significant for the establishment of the model.  

Main linear calibration methods are multiple linear regression (MLR), principal 

component regression (PCR) and partial least squares regression (PLSR). The MLR is a 

linear statistical technique to predict one response (dependent variable) by two or more 

predictors (independent variables). However, a phenomenon named multi-collinearity 

may occur when the MLR is used. The multi-collinearity is that one predictor variable 

in an MLR model can be linearly predicted from the others with a substantial degree of 

accuracy [61]. In this manner, the coefficient estimates of the MLR may change 

erratically in response to small changes in the model or the data. The PCR is a solution 

to solve the multi-collinearity problem to some extent, based on the principal 

component analysis (PCA). It considers regression of the response on a set of predictors 

based on a standard linear regression model but uses PCA for estimating the unknown 

regression coefficients in the model. The PCR will select some principle components 

with high-variance in the regression step, which performs well in dimension reduction 

by decreasing the adequate number of parameters characterising the underlying model 

[62]. An appropriate number of principal components can lead to an efficient prediction 

of the response based on the proposed model. The PCR can be regarded as a 
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combination of the PCA and the MLR. It may not only deal with the collinearity but 

also handle the case that the number of variables is more than the number of samples. 

The PLSR expands the PCR to some extent. The PLSR selected principal components 

as well as what PCA does, but it considers the influence of reference value during the 

regression and employs partial least squares (PLS) rather than the MLR for regression 

[63]. Besides, cross-validation is often used to support the PLSR and the PCR for 

determining the optimal number of principal components [64]. 

Step 5: Model Validation. The validation set divided in step 1 is used to validate the 

initial model constructed in step 4. Root mean square error (RMSE) and the coefficient 

of determination (R2) are the two most commonly used statistics to assess the quality of 

the model. These two statistics will be discussed in chapter 3. 

2.4 Summary 

Compared with other analytical methods (e.g., wet chemical method) or other 

spectroscopic techniques (e.g., Raman), the NIRS technology has many advantages 

such as non-destructive to samples and waste-free. NIRS spectral data is multivariate, 

and usually, the number of variables is more than the number of samples.  QNIRSA, 

which aims to quantify the correlation between the measurement of the spectrum and 

interesting property of the sample, consists of some coherent processes mainly 

including dataset partition, pre-processing, variable selection and multivariate 

calibration. Chemometric methods related to various domains are applied to support one 

or more processes in the QNIRSA. 
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3 FOUNDATIONS AND RELATED WORK 

3.1 Overview 

This chapter will specify the theory and principle of chemometric methods and criteria 

used in this PhD thesis. They are dataset partition methods in section 3.2, pre-

processing methods in section 3.3, and variable selection methods in section 3.4, 

multivariate calibration methods in section 3.5 and statistic criteria in section 3.6, 

respectively. Section 3.7 will present the related work about applications of 

chemometric methods, which is related to the first research problem in section 1.2. 

MATLAB codes for these methods can be found in Appendix 3. 

3.2 Dataset Partition Methods 

3.2.1 Kennard–Stone Algorithm 

The Kennard–Stone (KS) algorithm adopts a stepwise procedure that new selections are 

taken in regions of the space far from the samples already selected, in order to give a 

uniform distribution along with the spectral data space [36]. Euclidean distances dx (p, q) 

between the x-vectors (rows in the matrix X) of two single spectrum p and q (p, q ∈

[1, 𝑁], N is the quantity of samples), is 

d𝑥(p, q) = √∑ [𝑥𝑝(𝑗) − 𝑥𝑞(𝑗)]
2𝑗

𝑗=1            (Eq.3-1) 

In Eq.3-1, j is the number of wavelengths, while xp (j) and xq (j) are the values at 

wavelength j for spectra p and q, respectively. Steps of KS algorithm are: 

1. Calculate the Euclidean distance between every pair of single spectrums in 

matrix X. 

2. Select two single spectrums p and q, which have the largest Euclidean distance 

dx (p, q) among the entire data set, as the first pair.  

3. Calculate the minimum Euclidean distance between every remaining single 

spectrum and the first pair. For example, the Euclidean distance between a single 

spectrum C and the first pair (A, B), is 100 (C, A) and 200 (C, B) respectively. 

The minimum Euclidean distance between the single spectrum C and the first 

pair is 100 (C, A). 

4. Select the third single spectrum, which has the largest minimum Euclidean 

distance concerning the first pair.  
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5. Select the next single spectrum, which has the largest minimum Euclidean 

distance concerning those already selected single spectrums. This step is iterated 

until the expected quantity of samples is selected. 

3.2.2 Sample Set Partitioning Based on Joint X–Y Distances  

The Sample Set Partitioning Based on Joint X–Y Distances (SPXY) adopts calculation 

as similar as the Eq.3-1, for the Euclidean distance dy (p, q) between the dependent 

variable y in the matrix Y, which is corresponding to the samples p and q (p, q ∈[1, 𝑁]. 

N is the number of samples). The equation [36] is 

d𝑦(p, q) = √(𝑦𝑝 − 𝑦𝑞)
2
           (Eq.3-2) 

Then equal importance is assigned to the distribution of the samples in the x and y 

spaces by a division that both y- and x-distances dy (p, q) and dx (p, q) are divided by 

their maximum value in the data set [36]. The formula for xy-distance dxy (p, q) is  

d𝑥𝑦(p, q) =
𝑑𝑥(𝑝,𝑞)

𝑚𝑎𝑥𝑑𝑥(𝑝,𝑞)
+

𝑑𝑦(𝑝,𝑞)

𝑚𝑎𝑥𝑑𝑦(𝑝,𝑞)
         (Eq.3-3) 

Similarly, steps of SPXY are: 

1. Calculate the xy-distance dxy (p, q) between every pair of single spectrums. 

2. Select two single spectrums p and q, which have the largest xy-distance dxy (p, q) 

among the entire dataset, as the first. 

3. Calculate the minimum xy-distance between every remaining single spectrum 

and the first pair. For example, the xy-distance between a single spectrum C and 

the first pair (A, B), is 100 (C, A) and 200 (C, B) respectively. The minimum 

xy-distance between the single spectrum C and the first pair is 100 (C, A). 

4. Select the third single spectrum, which has the largest minimum xy-distance 

concerning the first pair.  

5. Select the next single spectrum, which has the largest minimum xy-distance 

concerning those already selected single spectrums. This step is iterated until the 

expected quantity of samples is selected. 

3.3 Pre-processing Methods 

3.3.1 Multiplicative Scatter Correction 

The Multiplicative Scatter Correction (MSC) assumes that unwanted scatter effect can 

be removed from the spectral data matrix X before constructing a model. The first step 

of MSC is to estimate the correction coefficients, and then spectra are corrected by the 

estimation. Eq.3-4 and Eq.3-5 show the formulas of MSC [16]. 
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X = 𝑏0 + 𝑏𝑟𝑒𝑓,1 × 𝑋𝑟𝑒𝑓 + 𝑒           (Eq.3-4) 

X𝑐𝑜𝑟𝑟 =
𝑋−𝑏0

𝑏𝑟𝑒𝑓,1
= 𝑋𝑟𝑒𝑓 +

𝑒

𝑏𝑟𝑒𝑓,1
         (Eq.3-5) 

X is the original spectra; Xref is a reference spectrum (the average spectrum of the 

training set) used for pre-processing of the entire dataset; Xcorr is the corrected spectra; e 

is the un-modelled part of X; b0 and bref,1 are scalar parameters which are different for 

every sample. The two scalar parameters can be calculated by the least squares 

regression fit between the reference spectrum and the spectrum corresponding to the 

sample. 

3.3.2 Standard Normal Variate 

The formula of the Standard Normal Variate (SNV) [65] is 

X𝑐𝑜𝑟𝑟 =
𝑋−𝑏𝑚𝑒𝑎𝑛

𝑏𝑠𝑡𝑑
         (Eq. 3-6) 

In Eq.3-6, X is the original spectra while the Xcorr is the corrected spectrum; bmean is the 

average value of the sample spectrum, and bstd is the standard deviation of the sample 

spectrum. 

3.3.3 Savitzky-Golay Polynomial Derivative Filters 

The Savitzky-Golay Polynomial Derivative Filters (SG) utilises a polynomial fitting 

technique in the symmetric window on the raw data, in order to find the derivative of 

the point. Since the polynomial has been calculated, the derivative of any order of this 

function can be computed. This iterates for all points sequentially. Both the number of 

points used to calculate the polynomial (window size) and the degree of the fitted 

polynomial are decisions that need to be made. The highest derivative that can be 

determined depends on the degree of the polynomial used during the fitting (i.e., a 

second-order polynomial can be used to estimate up to the second-order derivative). The 

formulas of this method are very sophisticated [45], [46], so the main steps of SG are 

summarised: 

1. Set up a window with a fixed-length including some points (e.g., a window of 7 

points). 

2. Set up a polynomial fit and choose the order of spectral derivative. The order of 

polynomial fit must be not less than the order of spectral derivative. 

3. Move the window from left to right on the spectrum. The point in the middle of the 

window is corrected by the polynomial fit. 

4. The techniques neglect some points at each end of the spectrum. The number of 

points lost equals the number of points used for smoothing minus one. If the 

spectral vector is long (i.e. more than 500 points), this issue is not important [16]. 
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The spectral data used in this thesis contains 936 points so that this issue will not 

affect the analysis result seriously. 

3.4 Variable Selection Methods 

3.4.1 Successive Projections Algorithm 

The Successive Projections Algorithm (SPA) is a variable selection method developed 

to reduce collinearity issues when the MLR is used. Araújo et al. reported that the SPA-

MLR model has better prediction ability than the full-spectrum PLS/PCR models for 

some applications of chemical compounds [47]. According to that paper, the SPA 

adopts the forward variable selection strategy for multivariate calibration. The SPA uses 

simple projection operations in a vector space to obtain subsets of variables with 

minimal collinearity, and its principle is that the new variable selected is the one 

variable among all of the remaining variables that has the maximum projection value in 

the orthogonal subspace of the previously selected variable [17], [47]. Explicitly, first, 

set the maximum number of variables k to be selected before a start vector is chosen in 

the space of n-dimensions (where n is the number of original variables). Subsequently, 

in an orthogonal sub-space, the vector of higher projection is selected and becomes the 

new starting vector. The choice of the orthogonal sub-space at iteration is made in order 

to select only the non-collinear variables. The optimal initial variable and number of 

variables can be determined by criteria such as the smallest root mean square error of 

validation (RMSEV) with the validation set. In summary, steps of SPA are: 

1. Set up iterations. In every iteration, the start column of variables is different, which 

ranges from the first column of variables to the last. With a given constant k, k 

columns of variables are selected in every iteration based on descending order of 

the projection operations. As a result, original dataset is divided into some 

candidate subsets according to the difference of the start column of variables. 

2. Evaluate those candidate subsets based on criteria assessing the MLR regression. 

Find the best candidate subset. 

3. Use F-test to get F-value and then use F-value to compute the threshold of criteria. 

Eliminate the variables in the best candidate subset, which value of criteria is not 

significantly larger than the threshold. 

3.4.2 Uninformative Variable Elimination 

The 3.4.2 Uninformative Variable Elimination (UVE) method was firstly investigated 

by Centner et al. [48], addressing an automatic approach to remove the uninformative 

variables from the dataset, based on either high noise or low detector response. The 

principle of the UVE is that random variables (e.g., an artificial random variable matrix 

X with minimal amplitude (e.g., 10−10)) are manually added to the training set as a 

reference so that those variables, which play a less important role than the random 
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variables, will be eliminated. Specialized term “stability” is used to measure the 

contribution of each variable during calibration. This term is defined as 

𝑠𝑗 =
𝑚𝑒𝑎𝑛(𝑏)

𝑠𝑡𝑑(𝑏)
,   𝑏 = [𝑏1, … , 𝑏𝑗], 𝑗 = 1,2, … , 𝑛         (Eq. 3-7) 

In Eq.3.7, mean(b) and std(b) are the mean and standard deviation of the jth b of 

variable j. b is the regression coefficient vector obtained from each iteration of the cross 

validation. The logic is that, the larger the stability, the more important the 

corresponding variable is. Therefore, those variables whose stability is less than a 

threshold should be eliminated as uninformative variables.  The threshold named ‘cut-

off’ is defined as the maximum of absolute value among the random variables as the 

Eq.3-8 (k is an arbitrary value such as 1 [48]). 

cutoff = 𝑘 × 𝑚𝑎𝑥(𝑎𝑏𝑠(𝑠𝑛𝑜𝑖𝑠𝑒))         (Eq. 3-8) 

Steps of UVE are: 

1. Create a noise matrix, which has the same size as the original spectral matrix. 

2. Insert the noise matrix after the original spectral matrix to make a new matrix as 

input. 

3. Use leave-one-out cross validation to calculate the regression coefficient vectors of 

each iteration. 

4. Calculate the “stability” of the original spectral matrix and noise matrix separately 

based on Eq.3-7. 

5. Calculate the cutoff based on Eq.3-8. 

6. Eliminate uninformative variables if the stability of them is not larger than the 

cutoff. 

3.4.3 Simulated Annealing 

The Simulated Annealing (SA) is a probabilistic global optimisation technique referring 

to physical annealing process of solids firstly described by Kirkpatrick et al. [51]. 

Swierenga et al. introduced the SA to variable selection and illustrated the model 

robustness had been enhanced [52]. According to the theory of the SA, it assumes that 

an initial solution for a problem should be iteratively modified subject to some control 

parameter T. When the parameter T is reduced from the maximum value, the 

convergence criterion will be challenging to satisfy. At some point, if T is lowered 

sufficiently, the solution will be frozen at a local optimum. In order to avoid this issue, 

the SA should move slowly through the solution space by accepting non-improving 

moves with a certain probability that decreases as the algorithm progresses. In terms of 

variable selection for NIR spectral data, the SA selects k variables from the whole 

variable range to produce the calibration model and computes an error value presenting 

the predictive ability of the model. In order to find the optimal value k, which minimises 

the error value at all circumstances of parameter T, iterations of SA need to be executed. 



 

37 

 

The criterion is a Boltzman’s probability distribution (Metropolis criterion) [66] as a 

function of parameter T is 

{
𝑝(∆𝐹) = 𝑒𝑥𝑝 (

−∆𝐹

𝑇
)

∆𝐹 = 𝐹(𝑣′) − 𝐹(𝑣𝑖)
         (Eq. 3-9) 

In Eq.3-9, F is the objective function, and ∆𝐹 is the increment of F, vi is the current 

values, and 𝑣′ is a randomly generated new solution in the neighbourhood of vi. Steps of 

SA are: 

1. Configure initial parameters including initial error, cooling ratio, initial temperature, 

temperature to stop, cooling schedule function, generator range and Markov chain. 

2. Set up the SA iteration. Iteration starts from initial values. Result of the current 

iteration will be compared with the previous one. If the current result is smaller 

than the previous result, keep it to be compared with the next one. The number of 

comparisons is determined by the Markov chain. However, if the current result is 

larger, an accepted probability based on Eq. 3-9 gives a chance to keep it as well. 

3. After all iterations, the optimal solution is generated. 

4. Try different initial parameters and repeat step 1 to 3. 

3.4.4 Genetic Algorithm 

The genetic algorithm (GA) is a popular heuristic optimisation technique that employs a 

probabilistic, non-local search process in many fields. GA manipulates binary strings 

called chromosomes that contain genes that encode experimental factors or variables. 

As for NIR analysis, GA is used to select suitable variables to build calibration models 

[67]. Many applications regard GA as a comparative method on many spectral data sets 

and have been shown to provide better results than full-spectrum approaches [25], [55], 

[56], [58], [67], [68]. There are four steps to apply to GA. Firstly, variables are 

represented by binary code in a vector (chromosome) with one cell for each variable. 

The first chromosome generates some chromosomes randomly to form an initial 

population. Secondly, A PLS model is made for every chromosome, and all models are 

evaluated by cross validation. A criterion named fitness value, which reveals the quality 

of the model, is computed from the cross validation for guiding the GA to the global 

optimum. Thirdly, a new population is produced as the next generation made up by 

recombination of the original chromosomes. The chromosomes with a high fitness value 

have a higher probability to reproduce than a chromosome with the target to improve 

the overall fitness of the population. Lastly, configure the mutation which is an 

inversion of a gene in a chromosome, in order to overcome some problems that may 

occur. One of the problems is, if a variable is not selected from any of the original 

chromosomes, it will never be selected in the next generations. Iterations of the four 

steps will be stopped when a certain percentage of the chromosomes are identical. In 

summary, steps of GA are: 
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1. Configure initial parameters including the number of chromosomes, maximum 

generations, probability of single-point crossover and probability of mutation. 

2. Compute the first generation. Firstly, Convert spectral data into binary code. 0 or 1 

is used to represent every variable. 1 means this variable is selected. Both 0 and 1 

have the same probability of occurrence for each variable. As a result, every 

chromosome has its corresponding genes, as a set of indices of selected variables. 

Calculate the fitness value of all chromosomes based on PLSR. Find the 

chromosome that has the best fitness. Compute average fitness for the first 

generation as well. 

3. Set up iterations as evolutions of population. In every evolution, two chromosomes 

are selected as parents. The chromosome with a higher fitness value has a higher 

probability of reproducing. Then, execute the single-point crossover for the selected 

two chromosomes. A mutation is happened after crossover according to its 

probability. The mutation point is random. Afterwards, a new generation of the 

population is established. Find the chromosome that has the best fitness and 

compute average fitness for this generation as well. 

4. Find the chromosome that has the best fitness among all generations. The average 

fitness of generations displays the trade of evolution. 

5. Try different initial parameters and repeat step 1 to 4. 

3.4.5 Interval Partial Least Squares 

Nørgaard et al. designed a method to select variables which maintain continuity in the 

original variable domain [57]. This method is named interval partial least squares 

(iPLS), which divides the original range of variables into non-overlapping sub-intervals. 

Then PLSR is used to build the PLS model for every sub-interval and get relevant 

values of criteria (usually the RMSEP seen in section 3.6). By comparing the criteria, an 

overall picture of the relevant information of different sub-sections/intervals is produced. 

Important spectral regions, which have better performance of criteria, should be 

considered into calibration. Other regions with less useful information should be 

removed. Generally, full-spectrum PLSR model is used as a global model as a reference 

for the local model. In terms of local PLSR models generated from sub-intervals, they 

must have the same dimensions as each other for a fair comparison. Because the larger 

the spectral sub-interval, the higher the number of substances that are likely to 

absorb/interfere. A simple improvement for the iPLS is to revise the width of the best 

sub-interval. For example, when the best sub-interval is determined by the iPLS, this 

sub-interval width is changed one variable at a time on both sides and evaluated by 

same criteria provided by the application of the PLS regression to the sub-interval. In 

summary, the steps of iPLS are: 

1. Set a range of the number of sub-intervals. 

2. Step up iteration. Every iteration adopts one case of the number of sub-intervals 

from minimum to maximum. Seek the best spectral region in every iteration. 
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3. Compare the best spectral regions in different iterations and find the global 

optimum.  

4. Some variables next to both sides of the global optimal spectral region may be 

possible to be added. Try to add those variables into that region one at a time. Then 

establish PLSR models to see if those variables can improve model performance 

compared with the original best sub-interval. 

3.4.6 Backward Interval Partial Least Squares 

The Backward Interval Partial Least Squares (BiPLS) firstly employs the iPLS to divide 

the original variable range into sub-intervals. Secondly, leave one sub-interval out at a 

time and use the remaining sub-intervals to build PLS models. For example, if there are 

30 sub-intervals, a sub-interval is left at a time and then use 29 sub-intervals to establish 

PLS model. The first sub-interval to be kicked out should have the most inferior 

performance assessed by criteria. Then the second model is kicked out by the same 

principle. Iteration will stop when no more sub-intervals to be kicked out to improve the 

model performance. 

3.4.7 Forward Interval Partial Least Squares 

The Forward Interval Partial Least Squares (FiPLS) is contrary to the BiPLS. If there 

are 30 sub-intervals, the FiPLS will build one PLS model for every sub-interval. The 

first sub-interval to be selected should have the best performance assessed by criteria. 

Then, the selected model combines the remaining 29 sub-intervals one at a time. Next 

model based on the next sub-interval with the early-selected sub-interval should give 

the best performance as well. This repeated selection will not stop until no more sub-

intervals can be selected to improve model performance. 

3.4.8 Principal Component Analysis 

The goals of the Principal Component Analysis (PCA) [62] are: 

1. To extract the most crucial information from the original data set. 

2. To compress the size and dimension of the original data set. 

3. To analyse the structure of the observations and variables (this is usually for 

classification or discrimination analysis). 

The two main issues the PCA may solve: 

1. Multi-collinearity between independent variables. 

2. The number of samples is less than the number of variables which may lead to 

over-fitting in calibration. 
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Briefly, the PCA eliminates those principal components with low-variance to avoid the 

first issue. Regarding the second problem, the PCA projects the variables into an M-

dimensional subspace where M is much smaller than the number of variables, in most 

cases, smaller than the number of samples as well. These M projections are used as 

predictors to fit a linear regression model by least squares. 

Principles about the PCA refers to Geladi and Kowalski’s paper [63]. Assume an 

original data set is donated X comprising n observations described by p variables (the 

size of matrix X: n*p).  

𝑋𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = [

𝑥11 ⋯ 𝑥1𝑝
⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑝

] = (𝑥1, ⋯ 𝑥𝑝)      (Eq.3-10) 

The PCA computes new variables called principal components, which are obtained as 

linear combinations of the original variables. Every principal component F is a kind of 

linear combination of the original variables. The maximum number of principal 

components equal to the number of variables. 

{

𝐹1 = 𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑝𝑥𝑝
⋮

𝐹𝑝 = 𝑎𝑝1𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎𝑝𝑝𝑥𝑝

       (Eq.3-11) 

The matrix notation of Eq.3-11 is 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
F = Q𝑋𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑

F =

[
 
 
 
 
𝐹1
.
.
.
𝐹𝑝]
 
 
 
 

𝑄 =

[
 
 
 
 
𝑎11… 𝑎1𝑝

.

.

.
𝑎𝑝1… 𝑎𝑗𝑝]

 
 
 
 

𝑋𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑒𝑑 =

[
 
 
 
 
𝑥1
.
.
.
𝑥𝑝]
 
 
 
 

      (Eq.3-12) 

In Eq.3-12, Q (coefficient matrix of the principal component) is the coefficients of the 

linear combinations. Eq.3-12 should satisfy two conditions: 

The variance of former principal components must be bigger than the latter one: 𝑉𝐹1 >

𝑉𝐹2 > ⋯ > 𝑉𝐹𝑝.   
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1. Q should be orthogonal matrix: 𝑄𝑄𝑇 = 𝐼. I is a unit matrix. 

Calculate the covariance matrix of principal component: 

𝑉𝐹 = 𝑉𝑄𝑋𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 = (𝑄𝑋𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑) ∙ (𝑄𝑋𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑)
𝑇
=

𝑄𝑋𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑𝑋𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑
𝑇𝑄𝑇 = Λ = [

𝜆1
𝜆2

⋱
𝜆𝑝

]      (Eq.3-13) 

Practically, the original data set will be centred at first. In this case, the covariance 

matrix V of the original data set equals to its correlation matrix R, notated as 

R = V = X𝑋𝑇      (Eq.3-14) 

Combining Eq.3-13 and Eq.3-14, we can obtain 

Q𝑅𝑄𝑇 = Λ → R𝑄𝑇 = 𝑄𝑇Λ      (Eq.3-15) 

Expand the Eq.3-15 to 

[

𝑟11 ⋯ 𝑟1𝑝
⋮ ⋱ ⋮
𝑟𝑝1 ⋯ 𝑟𝑝𝑝

] ∙ [

𝑎11 ⋯ 𝑎𝑝1
⋮ ⋱ ⋮
𝑎1𝑝 ⋯ 𝑎𝑝𝑝

] = [

𝑎11 ⋯ 𝑎𝑝1
⋮ ⋱ ⋮
𝑎1𝑝 ⋯ 𝑎𝑝𝑝

] ∙ [

𝜆1
𝜆2

⋱
𝜆𝑝

]   (Eq.3-16) 

According to the properties of the matrix, take the calculation involving the first column 

of QT at both sides of the equation for instance; we can get a set of homogeneous 

equations: 

{
 
 

 
 (𝑟11 − 𝜆1)𝑎11 + 𝑟12𝑎12 +⋯+ 𝑟1𝑝𝑎1𝑝 = 0

𝑟21𝑎11 + (𝑟22 − 𝜆1)𝑎12 +⋯+ 𝑟2𝑝𝑎1𝑝 = 0

⋮
𝑟𝑝1𝑎11 + 𝑟𝑝2𝑎12 +⋯+ (𝑟𝑝𝑝 − 𝜆1)𝑎1𝑝 = 0

      (Eq.3-17) 

In order to work out the homogeneous equations, the coefficient matrix should be zero. 

[

𝑟11 − 𝜆1 𝑟12
𝑟21 𝑟22 − 𝜆1

⋮ ⋮
𝑟𝑝1 𝑟𝑝2

⋯ 𝑟1𝑝
… 𝑟2𝑝

⋱ ⋮
… 𝑟𝑝𝑝 − 𝜆1

] = 0 → R − 𝜆1𝐼 = 0      (Eq.3-18) 

Therefore, 𝜆1 is the eigenvalue while 𝑄1 = {𝑎11, 𝑎12, … 𝑎1𝑝}  is the corresponding 

eigenvector of 𝜆1. As for all columns of QT, we can summarise 𝑅 − 𝜆𝑖𝐼 = 0, and 𝜆𝑖is 

the eigenvalue and its corresponding eigenvector is  𝑄𝑖 = {𝑎𝑖1, 𝑎𝑖2, … 𝑎𝑖𝑝} . First k 

principal components will be selected when the quotient obtained by dividing the sum 

of p principal components’ eigenvalues by the sum of k principal components’ 

eigenvalues, is larger than the threshold set manually. 
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∑ 𝑉𝐹𝑘
𝑘
𝑖=1

∑ 𝑉𝐹𝑝
𝑗
𝑖=1

=
∑ 𝜆𝑘
𝑘
𝑖=1

∑ 𝜆𝑝
𝑗
𝑖=1

> threshold     1 < k < p      (Eq.3-19) 

The last step is to use the corresponding matrix of PCA scores T of the selected k 

principal components for the linear regression of the response Y on those selected 

components. 𝑄𝑘
𝑇 is the loading matrix. 

{
𝑇 = 𝑋𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ∗ 𝑄𝑘

𝑇

𝑌 = 𝑇 ∗ 𝐵 + 𝐸
�̂� = (𝑇𝑇 ∙ 𝑇)−1 ∙ 𝑇𝑇 ∙ 𝑌

       (Eq.3-20) 

In Eq.3-20, B is the vector of regression coefficients, and E is the error matrix. 

3.5 Multivariate Calibration Methods 

3.5.1 Multiple Linear Regression 

In many practical applications, multiple predictor variables are affecting one response 

variable. Multiple Linear Regression (MLR) is a method to investigate the mathematical 

relationship between multiple predictors and one single response linearly. The MLR 

model with k predictor variables and one response variable y is denoted as 

𝑦 = 𝛽0 + 𝛽1𝑥1 +⋯𝛽𝑘𝑥𝑘 + 𝜖     (Eq.3-21) 

In Eq.3-21, 𝜖 is the residual, while 𝛽𝑘 is the regression coefficient. Geometrically, an 

MLR model with k predictors and one response can be regarded as a k-dimensional 

surface in space [69]. The shape of this surface depends on the structure of the model. 

The observations are the points in space, and the surface is fitted to best approximate the 

observations. Thus, the general formula for n observations is 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 +⋯𝛽𝑘𝑥𝑖𝑘 + 𝜖𝑖     i = 1,2…n     (Eq.3-22) 

The matrix form of the Eq.3-22 is  

𝑌 = 𝑋𝛽 + 𝐸     i = 1,2…n     (Eq.3-23) 

Usually, the least squares (LS) approach is used to estimate the value of β. Then, we 

can obtain some equations: 

{
 
 

 
 �̂� = (𝑋𝑇𝑋)−1𝑋𝑇𝑌

�̂� = 𝑋�̂� = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇𝑌 = 𝐻𝑌

𝐸 = 𝑌 − �̂� = 𝑌 − 𝐻𝑌
𝐻 = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇

     (Eq.3-24) 

The matrix H is named HAT-Matrix, which maps the vector of observed values Y onto 

the vector of fitted values �̂� that lie on the regression hyper-plane. 



 

43 

 

 

 

3.5.2 Principal Component Regression 

The Principal Component Regression (PCR) is based on the dimension reduction 

technique PCA. When the vector of regression coefficients B is obtained according to 

the Eq.3-20, the PCR employs the MLR to build a regression model with respect to the 

Eq.3-23. 

3.5.3 Partial Least Squares Regression  

The most significant difference between the Partial Least Squares Regression (PLSR) 

and the PCR is that the PCR only considers the variable matrix X, while the PLSR 

involves the response matrix Y into the regression step [63]. Similarly, the PLSR makes 

linear transformation for the variable vectors as well but applies the same 

transformation for the response vector. 

{
𝑋 = 𝑇𝑄 + 𝐸 = ∑𝑡𝑖𝑞𝑖 + 𝐸

𝑌 = 𝑈𝑃 + 𝐹 = ∑𝑢𝑖𝑝𝑖 + 𝐹
      (Eq.3-25) 

In Eq.3-25, T, Q and X are as same as they defined in the PCR, while U and P are the 

score matrix and loading matrix of Y, respectively. The ti and ui are the principal 

components extracted from X and Y, respectively. In order to make ti and ui contain 

information as much as possible, two conditions should be satisfied: 

1. The variance of ti and ui should be as large as possible: Variance(𝑡𝑖) →

𝑚𝑎𝑥, Variance(𝑢𝑖) → 𝑚𝑎𝑥 

2. The correlation between ti and ui should be as large as possible:  Correlation(𝑡𝑖, 𝑢𝑖) =

Covariance(𝑡𝑖, 𝑢𝑖) → 𝑚𝑎𝑥 

The PLSR iterates the extraction of principal component and regression in sequential 

order. Specifically, the PLSR extracts the first principal component t1 and u1 from the 

linear combination of X and Y, respectively. Then the PLSR regresses X by t1 and Y by 

u1. If the regression results reach the desired accuracy, the algorithm will stop. 

Otherwise, residuals of first regression will be used for the extraction of the next 

component and regression. This iteration will not stop until the regression satisfies the 

required accuracy. Assume Xs and Ys are the standardised matrixes of X and Y, 

respectively. In order to make the covariance between t1 and u1 as large as possible, 

based on relevant mathematical principles, we can deduce: 
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{
 

 
𝑋𝑠
𝑇𝑌𝑠𝑌𝑠

𝑇𝑋𝑠𝑤1 = 𝜃1
2𝑤1

𝑌𝑠
𝑇𝑋𝑠𝑋𝑠

𝑇𝑌𝑠𝑐1 = 𝜃1
2𝑐1

𝑡1 = 𝑋𝑠𝑤1
𝑢1 = 𝑌𝑠𝑐1

      (Eq.3-26) 

where 𝜃1
2 is the maximum eigenvalue while w1 and c1 are the unit eigenvector of the 

matrix 𝑋𝑠
𝑇𝑌𝑠𝑌𝑠

𝑇𝑋𝑠  and 𝑌𝑠
𝑇𝑋𝑠𝑋𝑠

𝑇𝑌𝑠 respectively. Calculate Xs and Ys from Eq.3-26: 

{
 
 

 
 
𝑋𝑠 = 𝑡1𝑞1

𝑇 + 𝐸1

q1 =
𝑋𝑠
𝑇𝑡1

‖𝑡1‖2

𝑌𝑠 = 𝑡1𝑟1
𝑇 + 𝐹1

𝑟1 =
𝑌𝑠
𝑇𝑡1

‖𝑡1‖2

      (Eq.3-27) 

If this X1 and Y1 by the first component is not good enough, the second component will 

be extracted and repeat regression. Specifically, E1 and F1 is the residual matrix which 

will be used to replace Xs and Ys respectively in Eq.3-26 and then compute the Eq.3-27 

again to obtain X2 and Y2. Eq.3-27 and Eq.3-26 will be iterated until the regression 

reaches the expected accuracy. If the rank of X is A, then the general regression 

equations are: 

{
𝑋𝑠 = 𝑡1𝑞1

𝑇 +⋯+ 𝑡𝐴𝑞𝐴
𝑇

𝑌𝑠 = 𝑡1𝑟1
𝑇 +⋯+ 𝑡𝐴𝑟𝐴

𝑇 + 𝐹𝐴
      (Eq.3-28) 

The number of the principal component selected for regression usually is determined by 

the cross-validation (CV) [64]. The simplest one is the leave-one-out cross-validation 

(LOOCV). It uses one observation as the validation set and the remaining observations 

as the training set. This method is repeated in all ways to cut the original sample on a 

validation set of one observation and a training set of n-1 observations. The predicted 

residual error sum of squares (PRESS) is a criterion of cross-validation used in 

regression analysis to provide a summary measure of the fit of a model to a sample of 

observations. It is calculated as the sums of squares of the prediction residuals for those 

observations. 

PRESS = ∑ (𝑦𝑖 − �̂�𝑖)
2𝑛

𝑖=1       (Eq.3-29) 

Therefore, the idea of using the CV to select the number of components for PLSR has 

three steps. The first step is to choose the first component for cross-validation as the 

first step and calculate its PRESS. Secondly, add the second component so that the first 

plus the second component is applied for cross-validation and obtain the new PRESS. 

Thirdly, add next component and iterate the steps until the latest PRESS becomes 

bigger than the last one. 
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3.6 Statistic Criteria 

3.6.1 Standard Error of the Estimate 

The Standard Error of the Estimate (SEE) is a classical statistic criterion for the 

measurement of the accuracy of predictions widely used in regression analysis. The 

SEE represents the average distance that the observed values fall from the regression 

line. In other words, the SEE shows how wrong the regression model is, on average, 

using the units of the response variable. Smaller values are better because it indicates 

that the observations are closer to the fitted line. 

In many papers, the standard error of prediction is calculated on different dataset [70]. 

SEE renames into the standard error of the prediction (SEP) for the validation set and 

the standard error of the cross-validation (SECV) for cross-validation on the training set. 

In the NIRS domain, usually, the root mean squared error (RMSE) is preferred as the 

calculation of SEE. Thus, the root mean square error of prediction (RMSEP) is for 

validation set while the root mean square error of cross-validation (RMSECV) is for 

cross-validation on the training set. The formula is: 

𝑅𝑀𝑆𝐸 = 𝑆𝐸𝐸𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−�̂�𝑖)

2𝑛
𝑖=1

𝑛
, i =  1,2, … , n      (Eq.3-30) 

In Eq.3-30, a set of reference values y and predictions ŷ have n samples. This RMSE is 

an estimate of the typical difference between reference value and prediction, which 

shows directly how good the calibration model is. A reasonable supplement for the 

RMSE is the average differences/bias between reference values and predictions. When 

the RMSE is large relatively, bias presents systematic errors that may be due to 

instrument, chemometric methods or reference. In this case, the SEEBIAS (SEE corrected 

for BIAS) tells how good the calibration model will be if the BIAS problem can be 

solved. 

BIAS =
∑ (𝑦𝑖−�̂�𝑖)
𝑛
𝑖=1

𝑛
, i =  1,2, … , n      (Eq. 3-31) 

SEE𝐵𝐼𝐴𝑆 = √
∑ (𝑦𝑖−�̂�𝑖−𝐵𝐼𝐴𝑆)

2𝑛
𝑖=1

𝑛−1
, i =  1,2, … , n      (Eq. 3-32) 

The SEERMSE and the SEEBIAS can be related by: 

𝑛 ∙ 𝑆𝐸𝐸𝑅𝑀𝑆𝐸
2 = (𝑛 − 1) ∙ 𝑆𝐸𝐸𝐵𝐼𝐴𝑆

2 + n ∙ 𝐵𝐼𝐴𝑆2     (Eq. 3-33) 

Approximately, we can count n-1 as n when n is big enough. Then: 

𝑆𝐸𝐸𝑅𝑀𝑆𝐸
2 = 𝑆𝐸𝐸𝐵𝐼𝐴𝑆

2 + 𝐵𝐼𝐴𝑆2     (Eq. 3-34) 
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Thus SEERMSE consists of two independent parts SEEBIAS and BIAS. If the BIAS is 

removed, the deviation term, SEEBIAS, accounts for the dispersion around the 1:1 line in 

the prediction versus reference graph. Averaging the spectral measurements can reduce 

the deviation comes from random errors, whereas the BIAS caused by systematic errors 

can only be improved by establishing a calibration model as robust as possible [71]. 

3.6.2 Coefficient of Determination 

The R2 interprets how close the predictions against the references are to the fitted 

regression line. For a set of reference values yi, associated with a set of prediction 

values �̂�𝑖, the sum of squares of residuals (SSres) and the total sum of squares (SStot) 

respectively are 

𝑆𝑆𝑟𝑒𝑠 = ∑ (𝑦𝑖 − �̂�𝑖)
2𝑛

𝑖=1 , i =  1,2, … , n      (Eq.3-38) 

𝑆𝑆𝑡𝑜𝑡 = ∑ (𝑦𝑖 − �̅�𝑖)
2𝑛

𝑖=1 , i =  1,2, … , n      (Eq.3-39) 

The R2 is 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
     (Eq.3-40) 

3.7 Related Work: Applications of Methods 

Due to the difference among sample properties, there is no point to make a comparison 

between different categories of samples. Besides, experts discouraged to combine 

reference data from different laboratories even if with the same reference method, 

because errors from different laboratories differ and precision and accuracy of NIRS 

calibrations will be determined by the quality of the reference laboratory data [13]. 

Besides, the gap of the NIRS instrument’s precision and resolution affect the calibration 

model’s predictive ability. It is difficult to compare different NIRS researches if they 

employed different reference methods or instruments because it is complicated to 

distinguish whether the results influenced by reference methods, instruments’ precision 

or chemometric methods. As a result, few related research deserves a comparison 

between them and research works done by this PhD thesis. In this section, related works 

contain two types of researches. One is review papers offering a comparison among 

chemometric methods. Another is NIRS applications on single rice sample. 

Roggo et al. provided a comprehensive review of the conventional pre-processing 

methods in NIRS [16]. That paper specified the principle, merit and demerit of 6 pre-

processing methods with some expanded methods. A quantitative example by using six 

different instruments on moisture content and sugar content of 32 marzipan samples 

(bulk sample, legacy lab data set) were offered. The first conclusion of that paper was 

using pre-processing methods one at a time is much better than using a combination of 

pre-processing methods. Another conclusion was that all pre-processing methods make 

a slight improvement for model compared with the global model built without any pre-
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processing methods. Thirdly, no single pre-processing method is useful for all either six 

instruments or two properties, but the optimal pre-processing method is changed when 

the circumstance is changed. The drawbacks of that paper are 1) the amount of samples 

utilized is relatively insufficient and 2) comparisons undertook between pre-processing 

methods only. Xiaobo et al. wrote a review paper for 12 variable selections methods 

with some expansion methods [17]. Chemical and physical basis and the principle of 

those methods have been illustrated in details. However, this review paper emphasised 

on the theory of methods and did not give an example to compare those methods. 

Mehmood et al. published a review paper for 11 PLSR-based variable selection methods 

[18]. Those two review papers presented and classified elaborately with relevant 

applications for further reading, but no common dataset offered for the comparison 

between those methods. Pasquini published a review paper for NIRS on three aspects of 

chemometrics, fundamentals and instrumentations [19] recently. That paper offered a 

summary of a wide range of methods with reference applications, but neither detailed 

principle nor example was provided. Balabin and Smirnov’s paper is the only one 

according to the literature review provided a global view for benchmarking 16 variable 

selection methods but on rapeseed biodiesel fuel samples (bulk sample) [25]. In 

summary, based on the literature review, no review papers offered a real-world example 

for benchmarking a large number of methods. Only one paper constructed a 

comparative study to benchmark a large number of variable selection methods but for 

bulk sample. 

Table 3.1 presents a summary of 28 quantitative NIRS applications on rice in the past 

20 years (papers were searched on Google Scholar and Elsevier by keywords ‘rice’ and 

‘near-infrared spectroscopy’). Rice forms depend on which form of rice was scanned to 

acquire spectrum: 1) single rough rice (SRR), 2) single brown rice (SBR), 3) single 

milled rice (SMR), 4) bulk milled rice (BMR), 5) bulk rough rice (BRR), 6) bulk brown 

rice (BBR), and 7) rice flour (RF). The average number of methods used by those 28 

applications is only three, which may be sufficient for a specific application but 

insufficient for a global comparative study. In figure 3.1, chart (a) displays the 

percentage of 28 publications in table 3.1 for three forms of rice. Almost half of those 

applications employed bulk rice sample for research. In contrast, about one-third of 

applications referred to single rice sample. Chart (b) displays the percentage of 28 

publications in table 3.1 for different interesting properties. The most interested 

property is amylose, followed by protein because the concentration of these two 

chemical properties is easy to determine by reference methods. 
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Table 3.1: A summary of 28 quantitative NIRS applications on rice in the past 20 

years. 

Paper 

ID 

Publication Year Single Rice 

Form 

Sample 

size 

No. Methods Interested Properties Reference 

1 1995 BMR 247 1 Amylose [72] 

2 2002 BMR 204 2 Amino acids [73] 

3 2003 SMR & SRR 150 1 Moisture & Protein [74] 

4 2003 SRR 222 3 Amylose [75] 

5 2004 SBR 100 4 Moisture & Protein [76] 

6 2004 SMR,SRR&SB

R 

474 2 Weight & Amylose [77] 

7 2007 BMR & RF 225 1 Starch [78] 

8 2007 BMR 90 1 Aroma, Appearance, Brightness, Taste, 

Stickiness, Hardness and Eating quality 

[79] 

9 2007 RF 586 3 Amylose, Gel consistency & Alkali 

spread value 

[80] 

10 2007 BBR 178 1 Amylose & Protein [81] 

11 2010 BMR 198 9 Surface lipid content [82] 

12 2011 RF 320 3 Starch & Protein [83] 

13 2011 BBR & RF 279 3 Amino acids [84] 

14 2013 BRR,BBR&B

MR 

106 5 Aflatoxigenic fungal contamination [85] 

15 2014 BMR 180 2 Freshness [86] 

16 2014 RF 519 3 Amylose & Protein [87] 

17 2015 SRR 160 2 Vigour [88] 

18 2016 BBR 173 3 Amylose & Protein [89] 

19 2017 RF 168 5 Amylose [90] 

20 2017 SMR 105 1 Amylose [91] 

21 2018 BRR 148 6 Sugar [92] 

22 2018 RF 168 7 Amylose [93] 

23 2019 SRR 288 2 Hardness [94] 

24 2019 BBR 832 2 Amylose [95] 

25 2019 BRR 164 3 Purity [96] 

26 2019 SRR 14 4 Moisture [97] 

27 2019 SRR 164 4 Purity [98] 

28 2019 SRR, SBR & 

RF 

201 5 Protein [2] 
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Figure 3.1: Percentages of rice forms (a) or interesting properties (b) among 28 

publications. 

3.8 Summary 

Foundations about the principles and theories of sixteen methods and two statistic 

criteria have been illustrated in this chapter. Related work for the applications of those 

methods has been reviewed as well. Most application researches refer to rice focused on 

one method and employed two more other methods as a brief comparison, which could 

not provide a sufficient comparative study. However, most review papers gave a 

demonstration between methods but lacked a dataset to show a specific difference. 

There is still no comparative study for methods on a single rice sample yet. All of these 

are evidence to support the research problems mentioned in section 1.2, and they are 

motivations of this PhD thesis as well. 
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4 DESIGNING THE BENCHMARK FOR 

CHEMOMETRIC METHODS FOR 

ANALYSING SINGLE KERNEL SAMPLE 

4.1 Overview 

This chapter will illustrate how the benchmark has been designed. Definition, criteria, 

and process will be interpreted in detail from section 4.2 to 4.4, respectively. 

4.2 Definition of the Benchmark for Chemometric Methods  

In the Oxford dictionary, the explanation of the word ‘benchmark’ is “In business, the 

benchmark is a process in which a company compares its products and methods with 

those of the most successful companies in its field, in order to try to improve its 

performance.” Although that explanation is more related to the business domain, the 

word ‘benchmark’ can be extended its meaning in other fields. The emphasis of the 

‘benchmark’ is on the comparison between methods, products or models. The keyword 

‘benchmark’ has been utilized in the title of some papers in NIRS domain, but it is hard 

to find out its earliest appearance and all of those paper did not provide a specific 

definition of benchmark when it is related to the NIRS or chemometrics. A common 

point among papers whose title contains word ‘benchmark’ is that they provided a 

comparative study. For example, among the papers which have the word ‘benchmark’ in 

the title, the paper with most citations used the ‘benchmark’ as the global comparison of 

variable selection methods in the NIRS domain on a biodiesel sample set [25]. 

Considering the domain difference between the NIRS and computer science, it is 

necessary to provide a specific definition of the word ‘benchmark’ for this PhD thesis at 

first in this chapter. Based on the original meaning of the word ‘benchmark’ and those 

relevant NIRS papers [13], [16], [17], [18], [25], which refers to the benchmark, the 

specialized definition of the benchmark in this PhD thesis is: 

 

 

This PhD thesis focuses on the QNIRSA so that four categories of chemometric 

methods have been assessed. They are dataset partition methods, pre-processing 

methods, variable selection methods and multivariate calibration methods respectively, 

and all have been specified in section 2.3.2 and chapter 3. The performance of both 

single chemometric method and the combination of two or more chemometric methods 

The Benchmark for chemometric methods is a standard or point of reference for 

evaluating chemometric methods by assessing their corresponding calibration 

models with a set of statistic criteria. 

 



 

51 

 

will be measured and assessed relatively. Specifically, the measurement for the 

performance of chemometric methods is to assess calibration models corresponding to 

different chemometric methods by the statistic criteria, while the comparison for the 

performance of chemometric methods is a comparative study between those assessment 

results. 

4.3 Benchmarking Criteria 

Two statistic criteria for assessing the calibration model have already been illustrated in 

section 3.6, and they are: 1) coefficient of determination (R2), and 2) root mean square 

errors of prediction (RMSEP). The RMSEP is an absolute criterion to measure the 

performance of the calibration model. The smaller the RMSEP, the better predictive 

performance the calibration model has. Therefore, the RMSEP will be the primary 

criterion to assess the performance of the calibration model in chapter 6. When the 

RMSEP results of different calibration models are closed (difference smaller than 0.01), 

it will be hard to conclude the best one. In this manner, the R2 and may help the 

comparison. The R2 is a statistical measure of how close the data are to the fitted 

regression line, which presents the percentage of the response variable variation that is 

explained by a linear model. The larger the R2, the better the model fits data; the more 

percentage of the response variable variation can be explained. For example, assume 

that the RMSEP of two calibration models A and B is 0.551 and 0.552, respectively. 

The difference between them is only 0.001, which is not a significant bias to say A is 

better than B convincingly. Meanwhile, assume that the R2 of A and B is 0.85 and 0.9 

respectively. In this manner, a possible conclusion is that B may be better than A 

because B fits data better than A due to the larger R2 that B has. 

Multiple chemometric methods may be used as a combination so that there will be a 

large number of possibilities for the comparative study. In order to make the 

comparison clear and logical, potential comparisons are divided into two levels: 1) 

global level and 2) local level. Comparison at the global level is executed at the level of 

a dataset. For example, to find the best combination of chemometric methods, whose 

calibration model has the best performance for the SRK data set is one of the global 

goals. The local level is on the steps of the QNIRSA. For instance, to figure out the 

impact a step makes to model is one of the local goals. Before listing all goals, reference 

model needs to be determined as a standard for comparison. Three full spectrum (FS) 

models have been established as the global reference models for three kinds of datasets, 

respectively presented in table 4.1. Full spectrum model means all variables are used to 

build the model without any variable selection methods. Spectral data remain original 

feature without any pre-processing methods. Data set is divided empirically and 

manually by experts [2] as a reference method for data partition (RMDP) (30% of the 

original dataset for validation set and 70% for training set). Calibration method for all 

models is the PLSR method specified in section 3.5.3. In terms of the three models in 

table 4.1, without any chemometric methods before calibration, the values of RMSEP 

can be standard criteria values for three data sets. If values of the RMSEP 
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corresponding to chemometric methods are larger than this standard value, those 

methods can be classified as ineffective. The decrement chemometric methods make to 

the standard values can be a criterion to distinguish the low-effective and highly-

effective method, notated as: 

DRMSEP = RMSEP − 𝑅𝑀𝑆𝐸𝑃𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑    (Eq.4-1) 

Positive DRMSEP means the relevant chemometric methods are ineffective, while 

negative DRMSEP means the relevant chemometric methods are effective. 

Table 4.1: Three global reference models. 

Model 

ID 

Data 

set 

Data partition Pre-

process 

Variable Selection Calibration Assessment 

Method Training 

set 

Validation 

set 

Method Method Selected 

variables 

Method Latent 

variable 

RMSEP R2 

1 SRK RMDP 149 52 None FS 936 PLSR 20 0.7418 0.817 

2 SBK RMDP 149 52 None FS 936 PLSR 18 0.6393 0.864 

3 RF RMDP 149 52 None FS 936 PLSR 13 0.5531 0.8982 

 

Specifically, goals at the global level include: 

1. To find the best combination of chemometric methods, whose calibration model has 

the best performance for the SRK. There will be 56 kinds of combinations of 

chemometric methods (2 x 4 x 7) for each rice form. All combinations will be 

tested and then find the best one for SRK samples by RMSEP and R2. 

2. To find the best combination of chemometric methods, whose calibration model has 

the best performance for the SBK. All combinations will be tested and then find the 

best one for SBK samples by RMSEP and R2. 

3. To find the best combination of chemometric methods, whose calibration model has 

the best performance for the RF. All combinations will be tested and then find the 

best one for RF samples by RMSEP and R2. 

4. If some combinations of chemometric methods available in the first to third global 

goal, classify them respectively based on RMSEP and R2. 

Local goals are: 

1. To figure out the impact sampling makes to PLSR model. Utilise sampling method 

one at a time to build a model. Ensure no other methods else are used except PLSR. 

Assess that model to obtain relevant RMSEP and DRMSEP. Calculate and compare 

the average and optimal performance of each sampling method to figure out the 

impact sampling makes to the model. This comparison will be repeated for SRK, 

SBK and RF samples, respectively. 
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2. To figure out the impact pre-processing makes to model. Utilise pre-processing 

method one at a time to build a model. Ensure no other methods else are used 

except PLSR. Assess that model to obtain relevant RMSEP and DRMSEP. 

Calculate and compare the average and optimal performance of each pre-processing 

method to figure out the impact pre-processing makes to the PLSR model. This 

comparison will be repeated for SRK, SBK and RF samples, respectively 

3. To figure out the impact variable selection makes to PLSR model. Utilise variable 

selection method one at a time to build a model. Ensure no other methods else are 

used except PLSR. Assess that model to obtain relevant RMSEP and DRMSEP. 

Calculate and compare the average and optimal performance of each variable 

selection method to figure out the impact variable selection makes to the model. 

This comparison will be repeated for SRK, SBK and RF samples, respectively. 

4. To figure out the impact pre-processing makes to variable selection.  Balabin and 

Smirnov made a benchmark of some variable selection methods for bulk fuel 

sample [25]. In their paper, a fixed pre-processing method was used before variable 

selection. Since the third local goal investigates the variable selection methods 

without pre-processing, the fourth local goal is to investigate variable selection 

methods with pre-processing methods. Compare the optimal, and average 

performance between the third local goal and fourth local goal to figure out the 

impact pre-processing makes to variable selection. 

5. To figure out the impact calibration methods MLR, PCR, and PLSR makes to 

model respectively based on relevant RMSEP. This comparison will be repeated for 

SRK, SBK and RF samples, respectively. 

6. To compare the impact each step makes to PLSR model. Compare the average, and 

optimal DRMSEP obtained in local goals 1, 2, and 3. The largest absolute value of 

the negative DRMSEP implies the most significant impact that step makes to model. 

4.4 Benchmarking Process 

4.4.1 Overview 

Figure 4.1 shows the BPMN (Business Process Model and Notation) diagram for the 

designing of the benchmarking process for chemometric methods. The benchmarking 

process can be divided into three stages (dash line box is the stage while the blue box is 

the step. Black case with black arrow is output data while with the white arrow is input 

data for steps.): 1) data collection, 2) data processing and 3) real-world applications. 

Conduct reference experiments and scan samples are the first two steps in stage 1.  The 

original dataset is the common input for these two steps. In terms of the second stage, 

reference data and spectra from stage 1 are imported to step 3 at first. Dataset is divided 

into a training set for step 4 and validation set for step 7. Step 4 pre-processes the 

training set, and exports pre-processed dataset to step 5. Step 5 selects variables for step 

6. Step 6 construct a model, and it is validated by step 7 with the validation set. The 

validated model is used in step 8 for real-world applications refers to chapter 7.  
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Figure 4.1: BPMN diagram for the designing of the benchmarking process for 

chemometric methods.  

4.4.2 Stage 1: Data Collection 

Some single kernel samples such as rice, corn, solid fertilisation have been collected in 

the past three years. However, there is no point to make a comparison between different 

categories due to the difference among sample properties. Additionally, compared with 

the bulk sample, it is quite difficult for single kernel samples to account for their 

laboratory error by reference methods [13]. At last, one category of those single kernel 

samples which has been successfully employed for the real-world application was 

selected. Totally 201 single rice kernels were selected for the NIR analysis. It follows 

2018 Chinese national crop variety regional test materials, with 21 rice varieties (about 

1–4 rice kernels per rice variety). The calibration samples were from 25 rice mutant 

varieties with different protein content (about 4–7 rice kernels per rice mutant variety). 

These mutant rice varieties were derived from the rice agronomic traits mutant library 

constructed by the laboratory established by collaborators from the Hefei Institute of 

Physical Science, Chinese Academy of Sciences. The mutant library was generated by 
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low energy and heavy-ion beam irradiation on rice variety ‘9311’ [99]. Three forms of 

 

Figure 4.2: The spectra (a), (b), and (c) of SRK, SBK and RF, respectively. 
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rice samples have been produced. The original form is single rice kernel (SRK) samples 

placed in an incubator for 24 h at 25 °C and relative humidity (r.h.) of 50% before 

spectra acquisition. The single brown rice kernel (SBK) samples were obtained by 

removing each SRK sample’s glume manually. The rice flour (RF) samples were 

obtained by grinding each SBK sample manually with a small mortar and pestle. 

The NIR transmission spectra were obtained by MPA Fourier transform near-infrared 

spectrometer (Bruker, Germany) in the full spectral range (800–1726 nm), with a 

spectral resolution of 1 nanometre. Every SRK and SBK sample was scanned for 20 

times slowly and averaged spectrum was calculated for usage. Each RF sample was 

scanned for five times, and the averaged spectrum was calculated as well. Every 

spectrum of a single sample has 936 variables. As a result, there are three data sets for 

SRK, SBK, and RF samples, respectively. These three data sets are shown in figure 4.2, 

where chart (a), (b) and (c) are the spectra of SRK, SBK and RF samples, respectively. 

After the spectra acquisition of three forms of rice samples, the protein contents of 

single rice kernels were analysed using the Dumas combustion method. This method 

has been proved to be effective in single seed spectral analysis for the minimum 

sampling weight was only a few milligrams [100]. However, the Dumas combustion 

method will destroy samples after analysis so we cannot get any information for other 

properties of rice. Each rice flour sample was weighed to 4.0 ± 0.2 mg using the 

electronic scale (Mettler Toledo, Switzerland) and wrapped in foil into a ball shape, and 

approximately 5 mg of pure benzene sulfonic acid was weighed and wrapped in foil, as 

the standard. All samples were analysed in an elemental analyser (Elementar, Germany). 

The protein content was calculated according to the instrument output of nitrogen (N% 

× 5.95). 

4.4.3 Stage 2: Data Processing 

As it has been illustrated in detail in the section 2.3.2, during the QNIRSA, 

chemometric methods mainly are utilised in four steps in the sequential order: 1) dataset 

partition, 2) pre-processing, 3) variable selection and 4) multivariate calibration. The 

dataset partition step is to solve the training set, and validation set partitioning problem, 

in order to extract a representative training set to construct a model and reasonable 

validation set to assess model from the original NIR spectral data set. The pre-

processing step is to remove the undesired physical phenomena in the spectra mainly 

caused by sample-to-sample variations, in order to facilitate the subsequent procedures. 

Variable selection step aims to reduce the number of variables and select representative 

variables, which can render better prediction with the regression model used in 

multivariate calibration. Multivariate calibration methods are developed through 

regressions of the measured NIR spectral data against the reference data values of 

analyte properties determined by reference analytical methods. The calibration model is 

constructed in this step and validated in the next step. Chapter 3 demonstrated principles 

about sixteen chemometric methods involved in this PhD thesis. They are two dataset 
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partition methods KS and SPXY, three pre-processing methods MSC, SNV and SG, 

eight variable selection methods SPA, UVA, SA, GA, iPLS, BiPLS, FiPLS and PCA, 

and three calibration methods MLR, PCR and PLSR. 

The original data set will be divided into training set and validation set in an empirically 

fixed ratio 7:3 [2]. Thus, as for all chemometric methods, the training set has 149 

samples while validation set has 52 samples. In order to provide a fair comparative 

study for the different chemometric methods, each method should be optimised 

independently. Although the computing time for different optimisations can be rather 

large, only the final (the best possible) results can be compared without bias. In other 

words, only the best results of every method or the combination of multiple methods 

will be compared. In terms of some chemometric methods which have statistical 

randomness for the initial parameters (e.g., SA & GA), multiple initial parameters will 

be tested for many times. The best result will be regarded as the optimal result of those 

methods. Those experiments will be repeated for SRK, SBK and RF data set 

respectively. All the chemometric methods and criteria were coded on the MATLAB 

software version 2015a (Mathworks, USA). 

The average spectrum of the training set is used as the reference spectrum for the MSC. 

Seventeen points smoothing and polynomial fit whose order is varied from 1 to 6 are set 

for both first derivative and second derivative in the SG. 

The RMSECV of 5-fold cross-validation was minimised to detect the optimal models 

on training set for all variable selection methods. The number of sub-intervals was 

optimised for the iPLS, BiPLS and FiPLS in the range between 3 and 200. There is no 

limit on the expected number of variables selected by the SPA. As for the UVE, the 

arbitrary coefficient was set from 0.1 to 1.5, respectively. The noise matrix has the same 

size as the training set, and noisy values were set to 10-10, which is relatively small 

enough. Due to the randomness of the noise matrix, 20 repetitions were done for each 

arbitrary coefficient. The cooling ratio for the SA was set from 0.5 to 0.9, respectively. 

0.001 was set for the initial value of the parameter T for every different cooling ratio. 

Markov chain was set to 4000 in default, which means the maximum number of tries 

within one value of T is 4000. The threshold value of T to stop SA was set to a fixed 

value 10-6. The size of chromosomes in the GA was set to 100, and no twins are allowed. 

There is no limit for the variables selected by GA. The maximum number of generations 

was set to 200, and the probability of single-point crossover was set from 0.5 to 0.9, 

respectively, while the probability of mutation was set from 0.05 to 0.1, respectively. 

Twenty iterations were made for different initial parameters. 

The MLR is only used to support SPA as SPA-MLR principle required, while PCR is 

used only with PCA. PLSR will be the standard calibration method. 5-fold cross-

validation is used to determine the optimal number of principal components/latent 

variable in both PCR and PLSR. 

 



 

58 

 

4.5 Summary 

Spectral dataset of three forms of single rice and their relevant protein content has been 

collected. Two dataset partition methods, three pre-processing methods, eight variable 

selection methods, and three multivariate calibration methods have been optimised. The 

priority of criteria has been interpreted for measurement, and goals of comparison have 

been listed one by one. A BPMN diagram about the process of benchmarking for 

chemometric methods was designed to guide the benchmarking experiments. 
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5 DEVELOPMENT OF THE QNIRSA SYSTEM 

5.1 Overview 

This chapter will interpret the development and implementation of the QNIRSA system. 

Section 5.2 will illustrate the architecture of the QNIRSA system, while section 5.3 will 

specify how to use functional modelling (IDEF0 approach) to design and develop the 

QNIRSA system. Section 5.4 is the implementation of the QNIRSA system. 

Programming configuration and user interface dashboard for the user are illustrated, but 

full codes will be attached in appendix A. 

5.2 The Architecture of the QNIRSA System 

Figure 5.1 presents the architecture of the QNIRSA System. There are five layers for the 

architecture. The lowest layer is the data layer referring to spectral data and reference 

data. The second layer is the data manager layer, including two data storage carrier, 

spectral database and excel document. The third layer is the component layer providing 

three advantages: 1) as for different goals, relevant components can be invoked flexibly; 

2) a component mainly designed for controlling spectrometer provides a connector for 

different devices according to their application program interface (APIs); 3) a library of 

chemometric methods are packaged and developed for universal use. The main 

components of this system are briefly described as follows: 

• Hardware Adapter. It is used to operate the NIRS spectrometer and other 

sample-specific accessories. It is responsible for 1) configuring the spectrometer, 

2) scanning the sample one at a time, 3) acquiring the sample spectrum. This 

component was implemented by the combination of the C programming 

language and Java for efficiency. The C programming language is mainly for the 

command to move hardware like the light source and conveyor belt, while Java 

is for setting up the interface of APIs for the connection between software and 

hardware. 

• Spectral Pre-processor. It supports spectral pre-treatments. Pre-processing 

methods (e.g., SNV and MSC) were implemented by using the Java 

programming language. 

• Quantitative Multivariate Analyser. It supports quantitative multivariate data 

analysis, which refers to the multivariate calibration. As for the on-line 

application, with an imported calibration model, this component employs the 

regression principles of multivariate calibration methods (e.g. PCR or PLSR) to 

predict the chemical or physical property in the sample. Regarding the off-line 

application, this component is used for constructing a calibration model. These 

methods were also implemented by using Java. 
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• Spectral Visualizer. It is used to display the analysis results, consisting of the 

analysed spectrum and the predicted chemical or physical property of the sample. 

This component is part of the user interface that was implemented by Java. 

• Data Manager. This component supports two types of data storage. One is to 

stores data in Excel document, while another employs a database to store data. It 

is coded by Java as well. 

• Chemometric Methods Library. It is used to store the implementations of 

chemometric methods. This component was implemented and packaged using 

MATLAB, which can be invoked by Java. 

• Variable selector. It supports the variable/wavelength selection. This 

component is only for off-line application because it is not required for online 

application. The variable selector was implemented by using the Java 

programming language. 

• Dataset Partitioner. This is only used for off-line application aiming to 

partition the dataset into a training set and a validation set. Partitioning methods 

are implemented by using Java programming language. 

The fourth layer is the mode layer containing on-line mode and off-line mode. The 

sequence diagram in Figure 5.2 depicts the interactions between user, on-line mode and 

off-line mode in time sequence. The user selects methods, configures parameters and 

imports known data for off-line mode at first. Then off-line mode constructs models, 

returns them to the user, and imports them to on-line mode. With the import of 

unknown data by user, on-line mode utilises those models from off-line mode to predict 

relevant properties for unknown data and return predicted results to the user. Results are 

displayed in the user interface at the presentation layer. 
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Figure 5.1: The architecture of the QNIRSA system. 

 

Figure 5.2: The sequence diagram for the mode layer. 
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5.3 Functional Modelling for the QNIRSA System 

5.3.1 Overview 

The key idea of the QNIRSA system is to modularise the steps of the proposed 

benchmarking process illustrated in section 4.4.1 by a stepwise functionalisation. Some 

requirements and functions of the QNIRSA system can be summarised according to the 

proposed benchmarking process: 

1. The QNIRSA system can connect and control the external hardware, including 

different spectrometers and single-chip microcomputer by sending a command to 

them. 

2. The QNIRSA system can acquire spectral data from the response of spectrometer. 

3. The QNIRSA system can realise the quantitative near-infrared spectroscopy 

analysis, including the establishment of a calibration model and real-time analysis 

for the unknown sample. 

4. The QNIRSA system can provide some chemometric methods to support the 

quantitative near-infrared spectroscopy analysis. 

5. The QNIRSA system can store and extract spectra data obtained in the quantitative 

near-infrared spectroscopy analysis. 

Functional modelling and IDEF0 approach are used to develop the QNIRSA system and 

model its functions. Figure 5.3 depicts the node tree diagram for the whole QNIRSA 

system. It has four levels. The top node, A-0, is the top-level context diagram setting a 

model’s scope, that is, the boundaries of what may be included in that model. Figure 5.4 

is the A-0 context diagram of a model named ‘Develop QNIRSA System (DQA)’. The 

only function shown in A-0 is the A0 function whose node is under the A-0 node in the 

node tree. This A0 function represents the whole of the subject of the model; it is the 

unique parent of the entire modelled subject and thus the ancestor of all activities 

modelled. Requirements and samples are the input of the A0 function, while the output 

should be the QNIRSA system. Spectrometer and single-chip microcomputer are the 

external hardware outside the scope of this QNIRSA system. This QNIRSA system 

aims to connect and control them. A spectrometer is a NIR device to acquire spectral 

data from sample scanning, while single-chip microcomputer is used to control other 

hardware accessories. Those accessories are sample-specific in order to support the 

scanning of the sample, which makes the QNIRSA system possible for all kinds of solid 

agricultural samples. MATLAB (The Mathworks, USA) and Eclipse (Eclipse 

Foundation, open-source) is the software to program the QNIRSA system, and the third-

party Java packages are used for serial port communication, Excel management and 

user interface design respectively. The viewpoint statement for a model shall be placed 

in the A-0 context diagram of the model, and it is a brief sentence that identifies a 

person or a personified role. The purpose statement for a model shall be placed in the A-

0 context diagram of the model, and it is a brief sentence that identifies the question 
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addressed by a model. The purpose is the development and implementation of the 

QNIRSA system.  

 

Figure 5.3: The node tree diagram for the QNIRSA system. 

 

Figure 5.4: The top-level context diagram A-0. 

The single function A0 represented in the A-0 context diagram is decomposed into its 

major sub-functions by creating its decomposition diagram. The node tree diagram 

depicts that A0 is decomposed into five lower-level decomposition diagrams from A1 to 

A5. A1 to A5 have their relevant decomposition diagrams at the lowest level as well. 

A3, A4 and A5 are exclusive for chemometric methods library, data manager and 

hardware adapter respectively at component layer.A5 is to connect and control hardware, 
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while A4 is to manage data obtained during the runtime. A3 aims to develop the 

chemometric methods library to provide methods for A1 and A2 by a combination 

programming of MATLAB and Java. A1 and A2 are at mode level, which can invoke 

components according to practical requirements. The third level nodes are all specific 

action based on the proposed benchmarking process  

Figure 5.5 shows the specific IDEF0 diagram of A0. Numbers 1 to 5 are the process ID 

of functions, and A1 to A5 are the nodes concerning function. The A0 starts at the A5 

(Control hardware) and ends at A2 (Develop online mode). A1 (Develop off-line mode) 

not only acquires input from A5’s output but also outputs model as the input of A2. A3 

(Develop chemometric methods library) provides chemometric methods for both A2 

and A1. Outputs of A5, A1 and A2 are all inputs for the A4 (Manage data). Following 

sections from 5.3.2 to 5.3.6 will interpret the decomposition diagrams of A1 to A5, 

respectively. 

 

Figure 5.5: The IDEF0 diagram of A0 (Develop QNIRSA System). 

5.3.2 Control of Hardware 

Hardware system containing spectrometer, single-chip microcomputer and other 

accessories has been designed and developed by collaborators. Commands to control 

the single-chip microcomputer and application programming interface (API) have been 

provided. Thus, the QNIRSA system controls the single-chip microcomputer by 

commands to handle those sample-specific accessories. Sending commands to the 

single-chip microcomputer is supported by a third party Java package (RXTX, open-

source)) and acquires spectral data from spectrometer via the corresponding API. Figure 

5.6 is the IDEF0 diagram of A5, which shows the process for controlling the hardware. 
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Known samples for model calibration and unknown samples for real-time analysis are 

the input. By sending commands to the single-chip microcomputer, accessories are 

handled to move those samples to the desired position to be ready for scanning. During 

scanning, accessories will push samples one by one through the position under the light 

of spectrometer. The spectrometer will obtain those light reflectance information and 

generate a spectrum. Meanwhile, the QNIRSA system will acquire those real-time 

spectra via the spectrometer API. Outputs of A5 are spectra of known samples for off-

line mode (A1) and spectra of unknown samples for on-line mode (A2). 

 

Figure 5.6: The IDEF0 diagram of A5 (Control Hardware). 

5.3.3 Off-Line Mode 

The goal of the Off-line mode is to build a calibration model, and it has five steps. 

Figure 5.7 shows the IDEF0 diagram of the off-line mode (A1). The off-line mode can 

be performed automatically in this sequence: 

1. Data set of the spectra of known samples is divided into a training set and 

validation set based on the partition methods provided by the chemometric 

methods library (A3 in section 5.2.5). 
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2. Both the training set and validation set are pre-processed by pre-processing 

methods provided by the chemometric methods library as well.  

3. Variable selection methods provided by the chemometric methods library are 

employed for both the pre-processed training set and validation set. However, 

the selected training set is the input of A14 while selected validation set is for 

A15. 

4. The training set is used to establish a model by calibration methods provided by 

the chemometric methods library as well. 

5. Model is validated by validation set based on some criteria provided by the 

chemometric methods library as well. 

 

Figure 5.7: The IDEF0 diagram of A1 (Develop Off-Line Mode). 

5.3.4 On-Line Mode 

Figure 5.8 is the IDEF0 diagram of A2 (Develop On-Line Mode) which provides a real-

time quantitative NIRS data analysis for unknown samples. This online mode has three 

steps, and they can be performed automatically in this sequence: 
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1. The spectra of unknown samples are pre-processed by pre-processing methods 

provided by the chemometric methods library.  

2. The model established in A1 is used to predict sample property for the pre-

processed spectra by calibration methods provided by the chemometric methods 

library as well. Calibration methods are the same in both A1 and A2, but the 

principles are different. In the model building (A1), it is to compute the 

regression coefficient vector by already known predictor and reference response. 

In terms of prediction for unknown sample (A2), regression coefficient vector 

and predictor are already known, and response is to be calculated. 

3. Predications are visualised by displaying them on user interface developed by 

third-party Java package (Scene Builder, free to use). 

 

Figure 5.8: The IDEF0 diagram of A2 (Develop On-Line Mode). 

5.3.5 Chemometric Methods Library 

Figure 5.9 is the IDEF0 diagram of A3 (Develop Chemometric Methods Library), 

which illustrates how this library outputs chemometric methods. MATLAB is used to 

program methods and package those methods into Java-recognizable files (.jar file) one 

for each method. Whenever chemometric methods are required, those relevant files are 

invoked to provide chemometric methods. 
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Figure 5.9: The IDEF0 diagram of A3 (Develop Chemometric Methods Library). 

5.3.6 Data Management 

Figure 5.10 is the IDEF0 diagram of A4 (Manage Data), which presents how the 

QNIRSA system imports and exports spectral data. The QNIRSA system is currently 

for research used in the laboratory, so the Excel document is determined to store the 

spectral data by storing the spectral matrix. Details about spectral matrix are explained 

in section 2.2.3.  A third-party Java package (Apache POI, open-source) supports Java 

to access Excel files. We gave a try to designed an Entity-Relationship diagram for the 

NIR spectral database displayed in figure 5.11 [1]. 
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Figure 5.10: The IDEF0 diagram of A4 (Manage Data). 
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Figure 5.11: The Entity-Relationship Diagram for the NIR spectral database. 

5.4 Implementation of the QNIRSA System 

The QNIRSA System has three editions. The first edition was reported in the first 

publication mentioned in this thesis with respect to online mode. The second edition 

refers to the second and third publications. As for these two editions, MATLAB 2015a 

(The Mathworks, USA) was used for MATLAB programming while Eclipse Oxygen 

(Eclipse Foundation, open-source) was used for Java programming with the Java 

Development Kit (JDK) environment 1.7. Three third-party Java packages RXTX (open 

source), Scene Builder (free to use) and Apache POI (open source) were used for serial 

port communication, user interface development, Excel file management respectively. 

Figure 5.12 is the user interface (UI) dashboard consisting of 6 areas. On the top of the 

UI, there are three areas Input, Methods and Predictions respectively from left to right. 

The Input area is a set of parameter required by the spectrometer. The Methods area 

provides some pre-processing methods and calibration methods for a user to choose. 

The Predictions area displays all prediction results. The area containing buttons next to 

the Predictions area is for running or stopping the on-line mode. In terms of the chart 

area, the left chart area depicts the real-time spectrum of a single sample, while the right 

chart area presents the fluctuation of predictions. When this dashboard is opened, user 

types inputs and selects desired methods in corresponding areas. Then clicks on the 
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‘Auto run’ button to activate the QNIRSA system and stops the system by clicking on 

the ‘stop’ button. Besides, inputs may be different for a different type of spectrometers, 

but current inputs are enough for three categories of spectrometers, which will be 

mentioned in chapter 7. 

 

Figure 5.12: The user interface dashboard. 

In order to make codes more readable and update the runtime environment of the 

QNIRSA system, the third edition is under implementation. Details can be found in 

Appendix 1. 

5.5 Summary 

The proposed architecture of the QNIRSA system has been illustrated, and this system 

was modularised and developed by functional modelling through IDEF0 approach. This 

system is possible for many kinds of agricultural samples because it can control the 

sample-specific hardware system. Implementation of user interface dashboard has been 

presented, and full codes can be found in appendix 1. 
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6 BENCHMARK RESULTS ANALYSIS 

6.1 Overview 

This chapter analyses the measurement and comparison between chemometric methods, 

referring to chapter 4. Local goals are analysed in section 6.2, and global goals are 

discussed in section 6.3. 

6.2 Results Analysis for Local Goals  

6.2.1 Determinations of Parameters of Methods 

All necessary parameters of every method and their possible values for selection are 

displayed in Table 6.1. All of these parameters’ values have been chosen based on 

previous research and related works, which have been mentioned in section 2.2 and 

chapter 3 already. Relevant key references are cited in Table 6.1 as well. 

In order to provide a fair comparative study for the different chemometric methods, 

each method should be optimised independently. Although the computing time for 

different optimisations can be rather large, only the final (the best possible) results can 

be compared without bias. In other words, only the best results of every method or the 

combination of multiple methods will be compared. The best result will be regarded as 

the optimal result of those methods. Table 1, 2 and 3 in appendix 2.1, 2.2 and 2.3 

display the optimal results of every combination of multiple methods, and all necessary 

parameters’ values selected for those combinations (all fixed parameters’ values can be 

found in Table 6.1, but tables in appendix only show the selection of parameters’ values 

which have multiple possible values in Table 6.1). 
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Table 6.1 Parameters of Methods 

Methods Parameters Selected Values References 

KS Percentage of the training set and 

validation set  

70% for training set while 30% for 

the validation set 
[35] 

SPXY percentage of the training set and 

validation set  

70% for training set while 30% for 

the validation set 
[36] 

MSC reference spectrum to revise original 

spectra 

the average spectrum of the 

training set 

[16], [2] 

SNV no extra parameters  

SG 

1st_der. 

order of spectral derivative 1 

order of polynomial fit (opf) 1 - 6 

length of the smoothing window 17 

SG 

2nd_der. 

order of spectral derivative 2 

order of polynomial fit (opf) 2 - 6 

length of the smoothing window 17 

SPA no extra parameters  

[17], [25], 

[19] 

UVE an arbitrary value to control the cut-off 

(av) 

0.1- 1.5 

SA 

initial energy/error value 5 

cooling ratio (cr) 0.5 - 0.9 

the initial value of T 0.001 

the final value of T 10-6 

iPLS the desired number of sub-intervals (si) 3 - 200 

FiPLS the desired number of sub-intervals (si) 3 - 200 

BiPLS the desired number of sub-intervals (si) 3 - 200 

GA 

number of chromosomes 100 

maximum number of generations 200 

probability of single-point crossover 

(pspc) 
0.5 - 0.9 

probability of mutation (pm) 0.05 - 0.1 

MLR no extra parameters  

[60], [19] 

PCA & 

PCR 

the number of selected principal 

components (pc) 

decided by the percentage of the 

total variance explained by each 

principal component 

PLSR 
the number of selected PLS components 

(PLSc) 

decided by the percentage of the 

total variance explained by each 

PLS component 
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6.2.2 Assessment for Dataset Partition Methods 

Table 6.2 displays the descriptive statistics for protein content of single rice kernels by 

using three sampling methods, of which one is the reference method for dataset partition 

(RMDP) [2], and other two are KS and SPXY. As for the reference partition method, 

the protein content of the calibration set is distributed between 6.0 and 13.1, covering 

most of the protein content of the validation set except the minimum protein content. 

The means, standard deviation (SD), and standard errors of the mean (SEM) between 

calibration set and external validation set are closed, indicating that the protein 

distribution of the validation samples was well represented by the calibration set. In 

terms of the KS, the protein content of the calibration set is distributed between 5.6 and 

12.8, covering most of the protein content of the validation set except the maximum 

protein content. The means, standard deviation (SD), and standard errors of the mean 

(SEM) between calibration set and external validation set are closed, indicating that the 

protein distribution of the validation samples was well represented by the calibration set. 

Regarding the SPXY, the protein content of the calibration set is distributed between 5.6 

and 13.1, entirely covering the protein content of the validation set. The means, standard 

deviation (SD), and standard errors of the mean (SEM) between calibration set and 

external validation set are closed, indicating that the protein distribution of the 

validation samples was well represented by the calibration set. In summary, from the 

perspective of these statistics for protein content, SPXY＞KS≈RMDP. 

Table 6.2: Descriptive statistics for the protein content of single rice. 

Method Training set Validation set 

Sample 

size 

Range Mean SD SEM Sample 

size 

Range Mean SD SEM 

RMDP 149 6.0-

13.1 

9.18 1.394 0.114 52 5.6-

12.8 

8.72 1.751 0.234 

KS 149 5.6-

12.8 

9.00 1.490 0.122 52 6.0-

13.1 

9.25 1.540 0.217 

SPXY 149 5.6-

13.1 

9.12 1.529 0.125 52 5.9-

13.1 

8.91 1.426 0.200 

 

Figure 6.1 presents the values of RMSEP for three dataset partition methods on three 

forms of single rice (smaller RMSEP reveals the better performance the method made.). 

A first observation is that both KS and SPXY have better performance than RMDP. The 

second general comment is KS has smaller RMSEP than SPXY on single kernel data set 

SRK and SBK, while SPXY is better on rice flour. The RMSEP difference between KS 

and SPXY is small. Two conclusions are 1) both KS and SPXY are useful sampling 

methods for single rice spectral data; 2) KS may be better for single kernel data set, 

while SPXY may be better for rice flour. 
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Figure 6.1: RMSEP values for three sampling methods on three forms of single 

rice. 

6.2.3 Assessment for Pre-processing Methods 

Figure 6.2 shows the values of RMSEP for four pre-processing methods on three forms 

of single rice (smaller RMSEP reveals the better performance the method made.). The 

first general observation is that most of the pre-processing methods do not provide 

improving performance. The average DRMSEP (in table 6.3) on SRK, SBK and RF are 

0.0129, 0.0041 and 0.0642 respectively (positive DRMSEP means the relevant 

chemometric methods are ineffective, while negative DRMSEP means the relevant 

chemometric methods are effective), indicating that pre-processing makes few impacts 

even detrimental to model. The reason may be that PLSR considers both predictor and 

response for regression so that pre-processing cannot give impressive improvement for 

the PLSR model. However, the optimal pre-processing method is positive for SRK, 

SBK and RF. A significant example is that SNV has excellent performance on SBK. 

Therefore, conclusions are 1), not all pre-processing methods are useful for single rice 

spectral data; 2) from the average DRMSEP perspective, pre-processing cannot make a 

significant improvement to model, but there may be one pre-processing method is 

entirely appropriate for a specific single rice data set. Pre-processing methods still 

deserve a try. 
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Figure 6.2: RMSEP values for four pre-processing methods on three forms of 

single rice.  

Table 6.3: The optimal and average RMSEP and DRMSEP for pre-processing on 

three forms of single rice. 

Rice Form Step Optimal Average 

RMSEP DRMSEP Method RMSEP DRMSEP 

SRK Pre-

processing 

0.7239 -0.0179 MSC 0.7547 0.0129 

SBK Pre-

processing 

0.4284 -0.2109 SNV 0.6343 0.0041 

RF Pre-

processing 

0.5438 -0.0093 SG-1st der. 0.6173 0.0642 

 

6.2.4 Assessment for Variable Selection Methods 

Figure 6.3 shows the RMSEP for seven variable selection methods without pre-

processing on three forms of single rice (Smaller RMSEP reveals the better performance 

the method made). All variable selection methods are more or less effective for 

improving the model. Quantified evidence is the average DRMSEP for seven variable 

selection methods in table 6.4 (positive DRMSEP means the relevant chemometric 
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methods are ineffective, while negative DRMSEP means the relevant chemometric 

methods are effective). All the values of average DRMSEP are negative, indicating the 

variable selection is useful for improving the model. UVE may be the best variable 

selection method because it is the optimum for SRK and RF. Additionally, RMSEP of 

UVE is 0.485 on SBK, which is closed to 0.45, the RMSEP of GA, which is optimum 

on SBK. Conclusions are 1) variable selection is a useful step to improve model; 2) 

without pre-processing UVE may be the best variable selection method for single rice 

spectral data. 

 

Figure 6.3: RMSEP values for seven variable selection methods without pre-

processing on three forms of single rice. 

Table 6.4: The optimal and average RMSEP and DRMSEP for pre-processing on 

three forms of single rice. 

Rice Form Step Optimal Average 

RMSEP DRMSEP Method RMSEP DRMSEP 

SRK Variable 

selection 

0.6033 -0.1384 UVE 0.6519 -0.0899 

SBK Variable 

selection 

0.4502 -0.1891 GA 0.4988 -0.1405 

RF Variable 

selection 

0.3279 -0.2252 UVE 0.4118 -0.1413 

 

Figure 6.4 displays the RMSEP for seven variable selection methods with pre-

processing on SRK (diagram (a)), SBK (diagram (n)) and RF (diagram (c)) respectively. 

A global observation for three diagrams is that the RMSEP of all variable selection 

methods decreased more or less when pre-processing methods were used in advance. So 

pre-processing plays an assist role in quantitative NIRS analysis. When pre-processing 

methods were used alone, no distinct improvement they made to the PLSR model. 
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However, the combination of pre-processing and variable selection shows a further 

improvement to the model compared with either using pre-processing alone or variable 

selection alone. 

 

 

 

Figure 6.4 RMSEP for seven variable selection methods with pre-processing on 

SRK (a), SBK (b) and RF (c). 

Table 6.5 presents optimal and average DRMSEP values for three steps on SRK, SBK 

and RF, respectively (positive DRMSEP means the relevant chemometric methods are 

ineffective, while negative DRMSEP means the relevant chemometric methods are 

effective). According to the average values, dataset partition is the most significant step 
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on SRK and SBK, but the variable selection is more critical on RF. As for optimal 

DRMSEP, dataset partition made the most significant improvement on SRK, but the 

optimal for three steps are similar on SBK, while variable selection made an 

outstanding improvement on RF. 

Table 6.5 Optimal and average DRMSEP for three steps on SRK, SBK and RF. e 

Rice Form Step DRMSEP  

Optimal Average 

SRK Dataset Partition -0.3294 -0.2954 

Pre-processing -0.0179 -0.0129 

Variable Selection -0.1384 -0.0899 

SBK Dataset Partition -0.2042 -0.1945 

Pre-processing -0.2109 -0.0041 

Variable Selection -0.1891 -0.1405 

RF Dataset Partition -0.0805 -0.0615 

Pre-processing -0.0093 -0.0642 

Variable Selection -0.2252 -0.1413 

 

6.2.5 Assessment for Calibration Methods 

Figure 6.5 depicts the RMSEP for three calibration methods on three forms of single 

rice (smaller RMSEP reveals the better performance the method makes). Obviously, for 

three rice forms, the rank of performance of three calibration methods is 

PLSR>PCR>>MLR. That is the reason why PLSR is the most common calibration 

method used for NIRS. The poor performance of MLS should be caused by the multi-

collinearity when the number of variables of spectra data is much more than the number 

of samples. 
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Figure 6.5: RMSEP for three calibration methods on three forms of single rice. 

6.3 Results Analysis for Global Comparison 

6.3.1 Effective Combinations of Methods 

After a large number of tests for all combinations of 16 methods, three tables are used 

for presenting the performance of all combinations of methods on SRK, SBK, and RF, 

respectively. Table 6.6, 6.7 and 6.8 present the top 15 performance of all combinations 

of methods on SRK, SBK and RF respectively (PDRMSEP is the percentage of 

decrement of RMSEP that method combination made compared with the RMSEP of the 

global reference model). Full results can be found in Table 1 in Appendix 2.1, Table 2 

in Appendix 2.2 and Table 3 in Appendix 2.3. Full results were attached in Appendix 2. 

The best model on SRK was built by a combination of KS, MSC, UVE and PLSR. The 

best model on SBK was built by a combination of KS, SNN, UVE and PLSR. The best 

model on RF was built by a combination of SPXY, MSC, GA and PLSR. Though 

performances of several combinations of methods were even worse than the 

performance of some single methods, generally speaking, the performance of most 

combinations of methods are better than the reference models in table 4.1. 
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Table 6.6 Top 15 of the performance of all combinations of methods on SRK. 

Combination 

ID 

Rice 

Form 

Methods Assessment 

Dataset 

Partition 

Pre-

processing 

Variable 

Selection 

Calibration RMSEP PDRMSEP 

1 SRK KS MSC UVE PLSR 0.2652 64.25% 

2 SRK SPXY MSC UVE PLSR 0.2977 59.87% 

3 SRK KS MSC SPA PLSR 0.3011 59.41% 

4 SRK KS SNV SPA PLSR 0.3073 58.57% 

5 SRK SPXY SNV UVE PLSR 0.3073 58.57% 

6 SRK SPXY MSC GA PLSR 0.3125 57.87% 

7 SRK KS SNV UVE PLSR 0.3128 57.83% 

8 SRK KS SG 

1st_der. 

SA PLSR 0.3145 57.60% 

9 SRK SPXY SNV SA PLSR 0.3145 57.60% 

10 SRK KS MSC GA PLSR 0.3214 56.67% 

11 SRK SPXY MSC SA PLSR 0.3241 56.31% 

12 SRK KS SG 

1st_der. 

UVE PLSR 0.3279 55.80% 

13 SRK KS SNV GA PLSR 0.3284 55.73% 

14 SRK KS MSC SA PLSR 0.3294 55.59% 

15 SRK KS SNV SA PLSR 0.3341 54.96% 
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Table 6.7 Top 15 of the performance of all combinations of methods on SBK. 

Combination 

ID 

Rice 

Form 

Methods Assessment 

Dataset 

Partition 

Pre-

processing 

Variable 

Selection 

Calibration RMSEP PDRMSEP 

1 SBK KS SNV UVE PLSR 0.2776 56.58% 

2 SBK KS SNV GA PLSR 0.2874 55.04% 

3 SBK SPXY SNV GA PLSR 0.2874 55.04% 

4 SBK KS SNV SA PLSR 0.2942 53.98% 

5 SBK SPXY SNV UVE PLSR 0.3031 52.59% 

6 SBK KS MSC GA PLSR 0.3074 51.92% 

7 SBK SPXY SNV SA PLSR 0.3075 51.90% 

8 SBK SPXY SNV SPA PLSR 0.3127 51.09% 

9 SBK KS SNV SPA PLSR 0.3154 50.66% 

10 SBK KS MSC SA PLSR 0.3171 50.40% 

11 SBK SPXY MSC GA PLSR 0.3179 50.27% 

12 SBK SPXY SNV BiPLS PLSR 0.3247 49.21% 

13 SBK KS MSC SPA PLSR 0.3341 47.74% 

14 SBK KS SNV BiPLS PLSR 0.3354 47.54% 

15 SBK SPXY MSC SA PLSR 0.3354 47.54% 
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Table 6.8 Top 15 of the performance of all combinations of methods on RF. 

Combination 

ID 

Rice 

Form 

Methods Assessment 

Dataset 

Partition 

Pre-

processing 

Variable 

Selection 

Calibration RMSEP PDRMSEP 

1 RF SPXY MSC GA PLSR 0.3187 42.38% 

2 RF SPXY SNV SA PLSR 0.3274 40.81% 

3 RF SPXY SNV UVE PLSR 0.3339 39.63% 

4 RF KS SNV SA PLSR 0.33571 39.30% 

5 RF KS MSC UVE PLSR 0.3374 39.00% 

6 RF KS MSC GA PLSR 0.3387 38.76% 

7 RF KS SNV UVE PLSR 0.3388 38.75% 

8 RF KS MSC SA PLSR 0.3427 38.04% 

9 RF SPXY SNV SPA PLSR 0.3471 37.24% 

10 RF SPXY MSC SA PLSR 0.3478 37.12% 

11 RF SPXY SG 

1st_der. 

GA PLSR 0.3487 36.96% 

12 RF SPXY MSC UVE PLSR 0.3505 36.63% 

13 RF SPXY SG 

2nd_der. 

SA PLSR 0.3517 36.41% 

14 RF KS SNV GA PLSR 0.3571 35.44% 

15 RF KS MSC SPA PLSR 0.3571 35.44% 

 

6.3.2 Classify the Effective Combinations 

Based on Tables 6.6, 6.7 and 6.8, all combinations of methods on SRK can be divided 

into four classes based on PDRMSEP relatively. 

1. Highly effective combinations: PDRMSEP is higher than 60%. 

2. Well effective combinations: PDRMSEP is from 50% to 59.9%. 

3. Effective combinations: PDRMSEP is from 40% to 49.9%. 

4. Low effective combinations: PDRMSEP is lower than 40%. 
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Therefore, for SRK in Table 6.6, Combination 1 is highly effective, Combinations 2-35 

is well effective, and 36-56 is effective. In terms of SBK in table 6.7, Combinations 1-

11 is well-effective, 12-33 is effective, and 34-56 is low effective. Regarding RF in 

table 6.8, combinations 1 and 2 are effective. The rest of the combinations are all low 

effective combinations. The effectiveness is relative so that low effectiveness dose not 

equal to ineffectiveness. There are 91 combinations of methods are effective or higher 

than effective. Figure 6.6 shows pie charts for the percentages of the number of 

effective combinations, which contains a specific method in total combinations. Pie 

chart (a), (b) and (c) are for dataset partition, pre-processing and variable selection 

methods respectively. In terms of sampling, the effective combinations containing 

SPXY is a bit more than that of KS, but they are closed and no clear evidence to judge 

which one is better. Effective combinations containing SNV is the most in pre-

processing, followed by MSC. MSC and SNV should be a wide choice for pre-

processing single rice spectral data. The percentage of effective combinations 

containing each variable selection method is closed, indicating no outstanding variable 

selection method over others. GA and SA share the first place in variable selection with 

a lead of 2% over the third method SPA and iPLS. 

 

Figure 6.6: Percentages of methods among effective combinations. 

6.4 Summary 

6.4.1 Summary of Results Analysis 

Specific assessments of combinations of methods have been done for SRK, SBK and 

RF, respectively. The following general conclusions can be drawn: 

1. Both KS and SPXY are useful dataset partition methods for single rice spectral data. 

From the perspective of statistics for protein content in table 7, SPXY＞KS. 

Nevertheless, if based on the RMSEP, the performances of SPXY and KS are 

closed. There is no clear evidence to judge which one is better. 

2. Variable selection is a useful step to improve the PLSR model. The use of pre-

processing methods before variable selection methods provides a further 

improvement for the PLSR model. 

3. Dataset partition step has the most significant impact on the PLSR model. 
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4. Calibration methods ranking: PLSR>PCR>>MLR. 

5. MSC and SNV should be a wide choice for pre-processing single rice spectral data. 

6. Time consumed for the optimization variable selection methods: BiPLS (sub-

intervals more than 80)>SA>GA> SPA>FiPLS>iPLS>UVE. BiPLS is not 

recommended when sub-intervals are more than 80. In that circumstance, BiPLS is 

quite time-consuming but cannot have leading superiority compared with other 

variable selection methods. 

6.4.2 Contributions of the Benchmarking Works 

The Benchmarking analysis works in chapter 6 constructed a comparative study for 

various statistical models established by sixteen chemometric methods on the single rice 

sample as the benchmark of chemometric methods for single kernel near-infrared 

spectroscopy analysis. Compared with previous work which focused on the analysis of 

bulk rice samples, this exploratory research in addressing single rice samples leads to a 

more accurate assessment of properties such as protein content. This study is also an 

example and guidance to show analytical processes for assessing different statistical 

models on single kernel samples. Those processes of benchmarking can guide future 

research on how to design and implement the process on single kernel NIR analysis. 

Additionally, the comparative results of those models are a useful reference for 

chemometric methods selection on single rice samples. They provide detailed 

assessments of sixteen methods, including not only the performance of those methods 

on three forms of single rice but also the optimal parameters of methods. Relevant 

research may briefly refer to this comparative study when it is related to methods 

selection, parameters tuning or model calibration on single rice samples. 

Specifically, the benchmarking processes specified in chapter 4 and analytical processes 

presented in chapter 6 are representative examples of SKNIRS. They showed how to 

design coherent processes from data collection to statistical model assessment. This 

would help future researchers to design the process and experiment to select appropriate 

models on single kernel samples. In terms of single rice samples, those findings in 

chapter 6 are a useful reference for chemometric methods selection and statistical model 

assessment. For example, in section 6.4.1, the first finding suggests applying dataset 

partition method either SPXY or KS in before other methods, because results show both 

SPXY and KS made a crucial improvement on model performance. One more example 

is that the comparison results between calibration methods reveal the PLSR is the best 

one in the calibration stage because commonly the PLSR model has better performance 

than other calibration models. 

Details about how the benchmarking works impacted two real-world applications and 

helped my collaborators will be specified in section 7.3. 
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7 TWO REAL-WORLD APPLICATIONS OF THE 

BENCHMARKING RESULTS AND THE 

QNIRSA SYSTEM 

7.1 Overview 

The QNIRSA system has been already successfully applied for real-world applications. 

This chapter reports those two real-world applications as the validation of the QNIRSA 

system. The first application is ‘A calibration transfer optimised single kernel near-

infrared spectroscopic method’, which has been published [2]. This application will be 

addressed in section 7.2, which provided a calibration transfer optimised method to 

accurately detect the chemical composition of single seeds by using the calibration 

model of the corresponding dehusked seeds or seed flour. Another application is 

‘Analysis of biuret in urea fertiliser by using a portable near-infrared spectrometer’, 

which introduced a fast and straightforward method for detection of biuret in urea 

fertiliser using a portable near-infrared spectrometer. The paper refers to this application 

is still under review [3]. In section 7.3, it will interpret how those benchmarking 

processes and results helped my collaborators to complete the two real-world 

applications. 

7.2 Validation of the QNIRSA System through Two Real-

World Applications 

7.2.1 Application 1: A Calibration Transfer Optimized Single Kernel 

Near-Infrared Spectroscopic Method 

The application ‘A calibration transfer optimised single kernel near-infrared 

spectroscopic method’ provided a calibration transfer optimised method to accurately 

detect the chemical composition of single seeds by using the calibration model of the 

corresponding dehusked seeds or seed flour [2]. The proposed method was applied to 

the analysis of the protein content of a single rice kernel. The near-infrared transmission 

spectra of three forms of rice (single rice kernel (SRK), single brown rice kernel (SBK) 

and rice flour (RF)) of 201 individual rice seeds and the corresponding protein content 

values were obtained. By comparing different pre-processing methods and spectral 

ranges, the spectral range 950–1250 nm, the standard normal variate transformation 
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(SNV), and 9 PLS latent variables were selected to construct the optimal PLSR models. 

Then, the protein content of single rice kernels was determined through two different 

methods. The direct method, in which single rice kernels were analysed using the single 

rice kernel model directly. Another is the proposed method, in which the spectra of 

single rice kernels were transferred into the spectra of single brown rice kernels and rice 

flours with a calibration transfer algorithm, spectral space transformation (SST), and 

were analysed by the respective calibration models. The external validation coefficient 

correlation (R) value of the direct method was 0.971, and the R values of the proposed 

method were 0.962 (SBK) and 0.975 (RF). The root mean square error of prediction 

(RMSEP) value of the direct method was 0.423, and the RMSEP of the proposed 

method was 0.480 (SBK) and 0.401 (RF). Besides, the transfer results among the 

spectra of three forms of rice were compared. By comparison, the results of the 

proposed method are relatively close to the results of the direct method. The results 

indicate that the spectra generated from one individual rice seed can be transferred 

freely among the three forms by means of calibration transfer. The proposed method is a 

promising way to overcome the challenges associated with analysing individual seeds 

and improving SKNIRS. 

Figure 7.1 is the flow chart of single rice kernel protein content near-infrared spectral 

analysis via two methods. Those processes inside the black box were undertaken by the 

QNIRSA system. Figure 7.2 is the IDEF0 diagram for this application. The diagram (a) 

presents the whole application and indicates that not only spectra acquisition, sample 

pre-processing and chemical analysis for SRK, SBK, RF samples have been done by the 

QNIRSA system, but also the prediction by the direct method has been completed by 

this system. One of the outputs from the QNIRSA system, a validation set of SRK 

spectra is used for the proposed method which has been finished outside the QNIRSA 

system. Diagram (b) is the decomposition diagram of (a) displaying how the QNIRSA 

system has been utilised to support the whole application. Firstly, the QNIRSA system 

controlled the spectrometer, MPA (Bruker, Germany), single-chip microcomputer and 

other hardware accessories to scan SRK, SBK and RF samples and acquired spectra of 

them respectively. Secondly, the off-line mode is activated to establish SRK, SBK and 

RF models respectively by chemometric methods provided by the chemometric 

methods library. Outputs of the QNIRSA system are predictions by the direct method, 

SBK model, RF model and validation set of SRK spectra respectively. 
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Figure 7.1: Analysis of single rice kernel protein content via two methods [2]. 

 

Figure 7.2: IDEF0 diagram of Application 1. 
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7.2.2 Application 2: Analysis of Biuret in Urea Fertilizer by Using a 

Portable Near-Infrared Spectrometer 

This application is about analysing biuret in urea fertiliser using a portable near-infrared 

spectrometer [3]. One hundred thirty-five bulk samples of urea were collected, and 

reference biuret concentrations which ranged from 0.7% to 1.8% were measured by the 

AOAC Official Method 960.04 [101]. Some kernels weighing about 200 grams made 

up of every bulk sample. As for each bulk sample, 5 grams of it was used for biuret 

determination by reference method, while 150 grams of it was used for NIRS analysis. 

The concentration of the biuret is expressed in mass fraction varying from 0.7% and 

1.8%. The mean and standard deviation value are 1.17% and 0.21% respectively. 

Spectral data were acquired by the QNIRSA system with a portable near-infrared 

spectrometer, NIRQuest512/1.7 (Ocean optics, USA). The spectral range is 900-

1700nm. Outliers were eliminated by employing PLSR combining with a robust 

modelling strategy. The proposed method was used to determine biuret at 

concentrations from 0.78% to 1.78% in the calibration set and validation set. 

Experiment results have shown that the coefficient (R) of external validation set is 

0.9868 with root mean square error (RMSE) of 0.0342, the ratio of performance 

deviation (RPD) value in calibration and validation set is 12.94 and 4.95 respectively. 

So, it can be concluded that this method can be potentially used as an alternative to 

traditional wet chemical methods due to its simplicity, sensitivity, and portability. 

This paper provided a comparative experiment between the portable spectrometer and 

another commercial spectrometer, AOTF-3075 (Brimrose, USA), in order to evaluate 

the performance of that portable spectrometer. Therefore, so far, there are three 

spectrometers have been used with the QNIRSA system. It proves that the QNIRSA 

system is available for multiple spectrometers if they provide API. Besides the urea 

sample and rice sample involved in these two completed applications, other categories 

of agricultural samples such as corn and wheat have already been tested with the 

support from different hardware accessories.  It gave the evidence to prove that the 

QNIRSA system can control multiple sample-specific hardware systems if they provide 

commands. 

Figure 7.3 shows how the QNIRSA system supports this application. Diagram (a) is the 

IDEF0 diagram for the whole application while diagram (b) is the decomposition 

diagram of (a). By controlling hardware, urea samples were scanned, and the spectra of 

them were obtained. The off-line mode was activated to process the spectra of urea 

samples and produce the results by the proposed method provided by the chemometric 

methods Library. These steps were repeated for two spectrometers, respectively, for the 

comparative study. Besides, this application employed the sampling error profile 

analysis (SEPA) method, which was out of original chemometric methods library. 

Therefore, this method has been programmed and packaged by MATLAB. Then a Java-

recognizable file for the SEPA is imported into that chemometric methods library 

before running the off-line mode. Generally, in terms of other methods which are out of 
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the current chemometric methods library, the QNIRSA system is possible to use them if 

the Java-recognizable files of them are imported. 

 

Figure 7.3: The IDEF0 diagram of Application 2. 

7.3 Contributions of the Benchmarking Results for Two Real-

world Applications 

As it has been interpreted in section 6.4.2, contributions of the benchmarking results are 

mainly embodied in two aspects. The first aspect is that those coherent processes of 

benchmarking from data collection to model assessment could help researchers to 

design the process and experiment for SKNIRS. Specifically, take the Application 2 in 

7.2.2, for instance. Although Application 2 did not use single rice samples, it took 

similar process pattern as what the benchmarking did in this thesis to analyse the biuret 

property of urea. After the data collection completed by a portable NIR spectrometer 

handled by the QNIRSA system, two pre-processing methods, three variable selection 

methods and PLSR were selected to establish six statistical models. RMSE is the main 
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criterion for model assessment and comparison as well. All of those methods and 

assessment were done by the QNIRSA system. 

Another aspect is that the benchmarking results are a good reference for those 

researches on single rice samples. Take Application 1 in 7.2.1, for example. This 

application used the same samples which were used in this thesis. Therefore, the 

benchmarking results were used directly for that application. The selection of all 

methods, except the novel method reported in that paper, referred to the benchmarking 

results in this thesis. Statistical models built by those methods were imported from this 

thesis. Therefore, the last thing my collaborators needed to do was to compare the 

model established by that novel method with those statistical models. Additionally, the 

benchmarking results made it possible to investigate the difference between the three 

forms of single rice. 

7.4 Summary 

Two real-world applications have been reported in this chapter as the validation of the 

QNIRSA system. They prove that the QNIRSA system can undertake multiple 

applications of NIRS analysis. The QNIRSA system is available for various agricultural 

samples, spectrometers and chemometric methods. So far both completed applications 

emphasised on the establishment of an appropriate model so that only off-line mode 

have been utilised. Real-time Applications involving in on-line mode are investigating, 

but papers of them will be future works. On the other hand, interpretations about how 

those benchmarking processes and results helped my collaborators to complete the two 

real-world applications have been made as well. 
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8 CONCLUSION 

8.1 Summary of Research Works  

Near-Infrared Spectroscopy (NIRS) technology is a widely used non-destructive 

analytical tool in agriculture. This PhD thesis found two research problems in practical 

Single Kernel NIRS (SKNIRS) applications. The first research problem is the lack of a 

comparative study for SKNIRS to provide a global view for the benchmarking of 

chemometric methods. A literature review about NIRS applications on rice in the past 

20 years was done by this PhD thesis as evidence to show the first research problem. 

Only 35.7% of those applications were related to a single rice sample, and the average 

number of methods those applications applied was three. No comparative study of 

methods on single rice has been investigated before progress made by this thesis. 

Another research problem is the lack of an integrated system at the single kernel level, 

which can not only controls sample-specific hardware accessories to support spectral 

data collection of single kernel sample but also provides a wide range of chemometric 

methods to support NIRS comparative analysis. This research problem is summarised 

based on the practical NIRS analysis applications at single kernel level and suggestions 

from relevant experts.  

In order to solve the two research problems, the proposed solution of this PhD thesis 

was to design a stepwise process for benchmarking the chemometric methods. This 

proposed solution includes eight steps in three stages. The first stage is data collection 

that acquires both spectral data and reference data of single kernel samples. Spectral 

dataset and its reference data for rice’s protein content of 201 single rice samples were 

collected and used for the research in this thesis. The second stage is data processing. In 

this stage, chemometric methods mainly are utilised in four steps in sequential order: 1) 

dataset partition, 2) pre-processing, 3) variable selection and 4) multivariate calibration. 

The dataset partition step is to solve the training set, and validation set partitioning 

problem, in order to extract a representative training set to construct a model and 

reasonable validation set to assess model from the original NIR spectral data set. The 

pre-processing step is to remove the undesired physical phenomena in the spectra 

mainly caused by sample-to-sample variations, in order to facilitate the subsequent 

procedures. Variable selection step aims to reduce the number of variables and select 

representative variables, which can render better prediction with the regression model 

used in multivariate calibration. Multivariate calibration methods are developed through 

regressions of the measured NIR spectral data against the reference data values of 

analyte properties determined by reference analytical methods. The calibration model is 

constructed in this step and validated in the next step. The third stage is to employ a 

validated model for real-world applications. In addition to the benchmarking of 
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chemometric methods involved in this thesis, the other two real-world applications were 

reported as well, as the instances of stage 3 of the proposed solution. 

An integrated software system named QNIRSA system has been developed and 

illustrated by this thesis, in order to support the proposed solution. The key idea of the 

QNIRSA system is to modularise the steps of the proposed benchmarking process by a 

stepwise functionalisation. The architecture of the QNIRSA system consists of five 

layers. Five layers are data layer, data manager layer, component layer, mode layer and 

presentation layer. The data layer refers to spectral data and reference data, while the 

data manager layer includes two data storage carrier, spectral database and excel 

document. The component layer consists of some components. They are hardware 

adapter for manage hardware and spectrometer; spectral pre-processor for preprocessing 

spectral data; quantitative multivariate analyser for multivariate calibration, spectral 

visualiser for displaying spectral data; data manager for manager spectral data and 

reference data; chemometric methods library for providing desired chemometric 

methods for a comparative study of benchmarking; variable selector for selecting 

variables and dataset partitioner for dividing the dataset into a training set and a 

validation set. The QNIRSA system is available for multiple sample-specific hardware 

accessories and spectral device validated by real-world applications.  

In terms of the benchmark for chemometric methods for analysing single kernel sample, 

firstly, single rice samples with threes forms including single brown rice kernel, single 

rice kernel and rice flour were collected. Spectral data of 201 single rice samples and 

their relevant reference data of rice’s protein content were used for benchmarking. 

Different combinations of 16 methods were applied and compared, in order to provide a 

global view of how those methods performed on single rice sample. 

Regarding the three research questions in the first chapter, the IDEF0 functional 

modelling approach has been adopted to develop the QNIRSA system because it is an 

appropriate tool to modularise the proposed solution. The RMSEP should be the best 

criterion to assess the performance of chemometric methods because it is an absolute 

criterion to measure the performance of the calibration model. The smaller the RMSEP, 

the better predictive performance the calibration model has. In terms of the 

classification of the performance of chemometric methods, PDRMSEP (the percentage 

of decrement of RMSEP that method combination made compared with the RMSEP of 

the global reference model) has been used to classify the combination of chemometric 

methods into four classes. Highly effective combinations that PDRMSEP is higher than 

60%; Well effective combinations that PDRMSEP is from 50% to 59.9%; Effective 

combinations that PDRMSEP is from 40% to 49.9%; Low effective combinations that 

PDRMSEP is lower than 40%. 

8.2 Summary of Contributions 

There are two main contributions of this PhD thesis. The first contribution is to make a 

comparative study for various statistical models established by sixteen chemometric 
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methods on the single rice sample as the benchmark of chemometric methods for single 

kernel near-infrared spectroscopy analysis. Compared with previous work which 

focused on the analysis of bulk rice samples, this exploratory research in addressing 

single rice samples leads to a more accurate assessment of properties such as protein 

content. This study is also an example and guidance to show analytical processes for 

assessing different statistical models on single kernel samples. Those processes of 

benchmarking can guide future research on how to design and implement the process on 

single kernel NIR analysis. Additionally, the comparative results of those models are a 

useful reference for chemometric methods selection on single rice samples. They 

provide detailed assessments of sixteen methods, including not only the performance of 

those methods on three forms of single rice but also the optimal parameters of methods. 

Relevant research may briefly refer to this comparative study when it is related to 

methods selection, parameters tuning or model calibration on single rice samples. 

Another contribution is to develop an integrated software system named QNIRSA 

system, which not only can control multiple spectrometers and sample-specific 

hardware for spectral data acquisition of single kernel sample, but also provides some 

chemometric methods for single kernel near-infrared spectroscopy analysis. The 

QNIRSA system can be regarded as a fully integrated functional platform which 

provides APIs for multiple spectrometers and hardware, a graphical user interface for 

users, and a chemometric methods library which provides some useful methods for 

single kernel near-infrared spectroscopy analysis as well. Two real-world NIRS 

applications have been solved by the QNIRSA system, which is reported in chapter 7. 

The QNIRSA system, including both Java codes for software and MATLAB codes for 

algorithms, was implemented by myself. 

8.3 Limitations and Future Work 

8.3.1 Limitations 

The main limitation of the single rice data set used in this thesis is the single category of 

single kernel samples. Although three forms of rice have been discussed, no other 

categories of single kernel samples have been analyzed. Therefore, findings in chapter 6 

are constrained in single rice samples. This is because it is quite difficult for single 

kernel samples to account for their laboratory error by reference methods. As a result, it 

is difficult to collect representative single kernel data sets. Details have been interpreted 

in section 4.4.2. However, the processes of benchmarking in this thesis are still can be 

an example for the design of analytical process on single kernel samples, but attention 

should be paid to the specific performance of statistical models when categories of 

single kernel samples are different.  

Another limitation of the single rice data set is the small number of samples compared 

with a large number of variables. An average number of 200 to 300 single kernels 
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samples are often provided for SKNIRS. By contrast, the number of variables in a NIRS 

dataset reaches about 500 to several thousand depending on the precision of the spectral 

device. The number of variables is much more than the number of single rice samples, 

which may easily cause the over-fitting in model calibration. However, this is a 

common issue in agricultural NIRS applications. This issue would be alleviated 

gradually in the future when more single kernel samples can be provided with the 

development of NIRS technology. 

One limitation objectively exists in the QNIRSA system, due to time limits, the spectral 

database was designed initially, but no further implementations have been made. 

Currently, the QNIRSA system utilises the Excel document to import and export 

spectral data. When the size of data becomes large, potential data security issues such as 

I/O exception may occur for the Excel document. Besides, the QNIRAS system 

provides a coherent process for SKNIRS but requires specialized knowledge from the 

user. Honestly, it is not friendly enough for the user who is out of the NIRS or 

chemometrics domain. Firstly, the user interface of the software displays several charts 

for the original spectrum, pre-processed spectrum, and variable selected spectrum, 

respectively. A professional and experienced user can check them if they may even have 

minor issues, but a general user who is not familiar with this domain is hard to 

distinguish them. On the other hand, though the software provides default parameters 

for every method, the professional and experienced user knows how to configure them 

appropriately. 

This thesis assessed and compared eight variable selection methods, but more other 

methods are potential to consider. For example, the artificial neural network refers to 

deep learning may be able to improve the NIR model performance. Support vector 

machine is also a popular method in machine learning domain that may help the 

SKNIRS analysis. Another limitation is related to multivariate calibration.  Calibration 

methods used in this thesis such as PLSR, PCR and MLR, are all linear regression 

techniques. Although the results showed that linear regression performed well in 

multivariate calibration, but they were not perfect. Non-linear regression tools may give 

an improvement based on current linear regression approaches. 

8.3.2 Future Works 

Future work may be undertaken in three aspects. With SKNIRS application goes, data 

will be massive. Data management and classification will be an important issue. 

Therefore, firstly the spectral database should be improved to support both real-time and 

off-line data import and export. Secondly, the QNIRSA system needs to optimize to be 

more user-friendly. Thirdly, more chemometric methods can be assessed and compared 

to enrich the benchmark of chemometric methods in this thesis. Non-linear regression 

methods and deep learning methods deserve investigation on single kernel samples. One 

of the foreseeable research issues is how to avoid the over-fitting problem when using 
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those advanced methods because NIRS spectral data is typical that the number of 

variables is much more than the number of samples. 
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GLOSSARY 

BBR Bulk Brown Rice 

BiPLS Backward interval Partial Least Squares 

BMR Bulk Milled Rice 

BPMN Business Process Model and Notation 

BRR Bulk Rough Rice 

CV Cross-Validation 

FiPLS Forward interval Partial Least Squares 

FS Full Spectrum 

GA Genetic Algorithm 

iPLS interval Partial Least Squares 

LOOCV Leave-One-Out Cross-Validation 

LS Least Squares 

MLR Multiple Linear Regression 

MSC Multiplicative Scatter Correction 

NIR Near-Infrared  

NIRS Near-Infrared Spectroscopy 

KS Kennard–Stone algorithm 

PCA Principal Component Analysis 

PCR Principal Component Regression 

PLS Partial Least Squares 

PLSR Partial Least Squares Regression 

PRESS Predicted Residual Error Sum of Squares 

QNIRSA Quantitative Near-Infrared Spectroscopy Analysis 

R2 Coefficient of Determination 

RF Rice Flour 
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RMDP Reference Method for Data Partition 

RMSE Root Mean Square Error 

RMSEV Root Mean Square Error of Validation 

SA Simulated Annealing 

SBK Single Brown Rice Kernel 

SBR Single Brown Rice 

SG Savitzky-Golay polynomial derivative filters 

SMR Single Milled Rice 

SNV Standard Normal Variate 

SKNIRS Single Kernel Near-Infrared Spectroscopy 

SPA Successive Projections Algorithm 

SPXY Sample set Partitioning based on joint X–Y distances 

SRK Single Rice Kernel 

SRR Single Rough Rice 

UVE Uninformative Variable Elimination 
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APPENDIX 1: QNIRSA SYSTEM 

The QNIRSA System, including both Java codes for software and MATLAB codes for 

algorithms, was implemented by myself. 

The third edition of the QNIRSA System can be accessed by the below Github link: 

https://github.com/ShupengHu/QNIRSA-System.git 

Most codes in the third edition are moved from the previous two editions. Main 

differences are: 

1. Java packages and classes are restructured to make them more readable. 

2. User interface dashboard is re-designed to make it easier to use. Online mode and 

offline mode are divided into two graphical user interfaces (GUI). Functions in the 

previous two editions are all remained, but they are re-distributed on the GUI. 

3. Intellij IDEA (Community version 2019.3, free to use) is used for Java 

programming, while MATLAB R2018 is used for coding algorithms. 

4. Maven (version 3.6.3) is used for managing the open-source third-party Java 

package utilized in QNISA System. 

5. Due to copyright reasons, some codes refer to hardware or spectral device have to 

be omitted. 

 

 

https://github.com/ShupengHu/QNIRSA-System.git
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APPENDIX 2.1  

TABLE 1: THE PERFORMANCE OF ALL COMBINATIONS OF 

METHODS ON SRK. 

Combination 

ID 

Rice 

Form 

Methods Assessment 

Dataset 

Partition 

Pre-

processing 

Variable 

Selection 

Calibration RMSEP PDRMSEP 

1 SRK KS MSC UVE 

(av: 1) 

PLSR 

(PLSc: 20) 

0.2652 64.25% 

2 SRK SPXY MSC UVE 

(av: 0.9) 

PLSR 

(PLSc: 20) 

0.2977 59.87% 

3 SRK KS MSC SPA PLSR 

(PLSc: 20) 

0.3011 59.41% 

4 SRK KS SNV SPA PLSR 

(PLSc: 20) 

0.3073 58.57% 

5 SRK SPXY SNV UVE 

(av: 1) 

PLSR 

(PLSc: 20) 

0.3073 58.57% 

6 SRK SPXY MSC GA 

(pspc: 0.7 

pm: 0.1) 

PLSR 

(PLSc: 20) 

0.3125 57.87% 

7 SRK KS SNV UVE 

(av: 0.8) 

PLSR 

(PLSc: 20) 

0.3128 57.83% 

8 SRK KS SG 1st_der 

(opf: 2) 

SA 

(cr: 0.7) 

PLSR 

(PLSc: 20) 

0.3145 57.60% 

9 SRK SPXY SNV SA 

(cr: 0.7) 

PLSR 

(PLSc: 20) 

0.3145 57.60% 

10 SRK KS MSC GA 

(pspc: 0.7 

pm: 0.1) 

PLSR 

(PLSc: 20) 

0.3214 56.67% 

11 SRK SPXY MSC SA PLSR 0.3241 56.31% 
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(cr: 0.6) (PLSc: 20) 

12 SRK KS SG 1st_der 

(opf: 3) 

UVE 

(av: 0.8) 

PLSR 

(PLSc: 20) 

0.3279 55.80% 

13 SRK KS SNV GA 

(pspc: 0.5 

pm: 0.08) 

PLSR 

(PLSc: 20) 

0.3284 55.73% 

14 SRK KS MSC SA 

(cr: 0.8) 

PLSR 

(PLSc: 20) 

0.3294 55.59% 

15 SRK KS SNV SA 

(cr: 0.8) 

PLSR 

(PLSc: 20) 

0.3341 54.96% 

16 SRK SPXY MSC SPA PLSR 

(PLSc: 20) 

0.3341 54.96% 

17 SRK SPXY MSC BiPLS 

(si: 37) 

PLSR 

(PLSc: 20) 

0.3347 54.88% 

18 SRK KS SG 1st_der 

(opf: 3) 

GA 

(pspc: 0.5 

pm: 0.08) 

PLSR 

(PLSc: 20) 

0.3357 54.75% 

19 SRK KS MSC FiPLS 

(si: 54) 

PLSR 

(PLSc: 20) 

0.3461 53.34% 

20 SRK SPXY SG 1st_der 

(opf: 3) 

UVE 

(av: 1) 

PLSR 

(PLSc: 20) 

0.3522 52.52% 

21 SRK KS SG 1st_der 

(opf: 3) 

SPA PLSR 

(PLSc: 20) 

0.3541 52.26% 

22 SRK SPXY SNV SPA PLSR 

(PLSc: 20) 

0.3547 52.18% 

23 SRK SPXY MSC FiPLS 

(si: 54) 

PLSR 

(PLSc: 20) 

0.3574 51.82% 

24 SRK SPXY SG 1st_der 

(opf: 3) 

SA 

(cr: 0.7) 

PLSR 

(PLSc: 20) 

0.3578 51.77% 
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25 SRK SPXY MSC iPLS 

(si: 72) 

PLSR 

(PLSc: 20) 

0.3578 51.77% 

26 SRK SPXY SG 

2nd_der 

(opf: 4) 

UVE 

(av: 1) 

PLSR 

(PLSc: 20) 

0.3597 51.51% 

27 SRK SPXY SG 1st_der 

(opf: 2) 

GA 

(pspc: 0.5 

pm: 0.05) 

PLSR 

(PLSc: 20) 

0.3604 51.42% 

28 SRK KS SG 1st_der 

(opf: 3) 

FiPLS 

(si: 60) 

PLSR 

(PLSc: 20) 

0.3647 50.84% 

29 SRK KS SG 

2nd_der 

(opf: 5) 

GA 

(pspc: 0.5 

pm: 0.05) 

PLSR 

(PLSc: 20) 

0.3674 50.47% 

30 SRK SPXY SNV GA 

(pspc: 0.6 

pm: 0.05) 

PLSR 

(PLSc: 20) 

0.3674 50.47% 

31 SRK SPXY SNV BiPLS 

(si: 42) 

 

PLSR 

(PLSc: 20) 

0.3677 50.43% 

32 SRK SPXY SNV FiPLS 

(si: 57) 

PLSR 

(PLSc: 20) 

0.3678 50.42% 

33 SRK SPXY SG 

2nd_der 

(opf: 5) 

SA 

(cr: 0.8) 

PLSR 

(PLSc: 20) 

0.3678 50.42% 

34 SRK KS SG 1st_der 

(opf: 3) 

BiPLS 

(si: 46) 

PLSR 

(PLSc: 20) 

0.3684 50.34% 

35 SRK SPXY SG 

2nd_der 

(opf: 4) 

GA 

(pspc: 0.8 

pm: 0.07) 

PLSR 

(PLSc: 20) 

0.3698 50.15% 

36 SRK KS SNV FiPLS PLSR 0.3746 49.50% 
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(si: 64) (PLSc: 20) 

37 SRK SPXY SG 1st_der 

(opf: 3) 

SPA PLSR 

(PLSc: 20) 

0.3748 49.47% 

38 SRK SPXY SNV iPLS 

(si: 73) 

PLSR 

(PLSc: 20) 

0.3751 49.43% 

39 SRK KS MSC iPLS 

(si: 72) 

PLSR 

(PLSc: 20) 

0.3754 49.39% 

40 SRK KS SG 

2nd_der 

(opf: 4) 

UVE 

(av: 0.9) 

PLSR 

(PLSc: 20) 

0.3766 49.23% 

41 SRK SPXY SG 

2nd_der 

(opf: 4) 

SPA PLSR 

(PLSc: 20) 

0.3777 49.08% 

42 SRK SPXY SG 

2nd_der 

(opf: 2) 

iPLS 

(si: 71) 

PLSR 

(PLSc: 20) 

0.3798 48.80% 

43 SRK SPXY SG 

2nd_der 

(opf: 5) 

FiPLS 

(si: 66) 

PLSR 

(PLSc: 20) 

0.3812 48.61% 

44 SRK KS SNV iPLS 

(si: 75) 

PLSR 

(PLSc: 20) 

0.3828 48.40% 

45 SRK KS MSC BiPLS 

(si: 49) 

PLSR 

(PLSc: 20) 

0.3841 48.22% 

46 SRK KS SG 

2nd_der 

(opf: 4) 

SA 

(cr: 0.7) 

PLSR 

(PLSc: 20) 

0.3874 47.78% 

47 SRK KS SG 

2nd_der 

(opf: 5) 

FiPLS 

(si: 65) 

PLSR 

(PLSc: 20) 

0.3878 47.72% 

48 SRK KS SG 

2nd_der 

(opf: 4) 

BiPLS 

(si: 51) 

PLSR 

(PLSc: 20) 

0.3946 46.81% 
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49 SRK KS SNV BiPLS 

(si: 55) 

PLSR 

(PLSc: 20) 

0.3974 46.43% 

50 SRK SPXY SG 1st_der 

(opf: 2) 

FiPLS 

(si: 66) 

PLSR 

(PLSc: 20) 

0.3977 46.39% 

51 SRK KS SG 1st_der 

(opf: 2) 

iPLS 

(si: 68) 

PLSR 

(PLSc: 20) 

0.3987 46.25% 

52 SRK KS SG 

2nd_der 

(opf: 4) 

iPLS 

(si: 69) 

PLSR 

(PLSc: 20) 

0.3997 46.12% 

53 SRK SPXY SG 1st_der 

(opf: 2) 

BiPLS 

(si: 48) 

PLSR 

(PLSc: 20) 

0.4021 45.79% 

51 SRK SPXY SG 

2nd_der 

(opf: 3) 

BiPLS 

(si: 45) 

PLSR 

(PLSc: 20) 

0.4056 45.32% 

55 SRK KS SG 

2nd_der 

(opf: 4) 

SPA PLSR 

(PLSc: 20) 

0.4084 44.94% 

56 SRK SPXY SG 1st_der 

(opf: 3) 

iPLS 

(si: 65) 

PLSR 

(PLSc: 20) 

0.4104 44.68% 
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APPENDIX 2.2  

TABLE 2: THE PERFORMANCE OF ALL COMBINATIONS OF 

METHODS ON SBK. 

Combination 

ID 

Rice 

Form 

Methods Assessment 

Dataset 

Partition 

Pre-

processing 

Variable 

Selection 

Calibration RMSEP PDRMSEP 

1 SBK KS SNV UVE 

(av: 1) 

PLSR 

(PLSc: 20) 

0.2776 56.58% 

2 SBK KS SNV GA 

(pspc: 0.8 

pm: 0.1) 

PLSR 

(PLSc: 20) 

0.2874 55.04% 

3 SBK SPXY SNV GA 

(pspc: 0.8 

pm: 0.1) 

PLSR 

(PLSc: 20) 

0.2874 55.04% 

4 SBK KS SNV SA 

(cr: 0.6) 

PLSR 

(PLSc: 20) 

0.2942 53.98% 

5 SBK SPXY SNV UVE 

(av: 0.9) 

PLSR 

(PLSc: 20) 

0.3031 52.59% 

6 SBK KS MSC GA 

(pspc: 0.7 

pm: 0.1) 

PLSR 

(PLSc: 20) 

0.3074 51.92% 

7 SBK SPXY SNV SA 

(cr: 0.5) 

PLSR 

(PLSc: 20) 

0.3075 51.90% 

8 SBK SPXY SNV SPA PLSR 

(PLSc: 20) 

0.3127 51.09% 

9 SBK KS SNV SPA PLSR 

(PLSc: 20) 

0.3154 50.66% 

10 SBK KS MSC SA 

(cr: 0.7) 

PLSR 

(PLSc: 20) 

0.3171 50.40% 
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11 SBK SPXY MSC GA 

(pspc: 0.8 

pm: 0.07) 

PLSR 

(PLSc: 20) 

0.3179 50.27% 

12 SBK SPXY SNV BiPLS 

(si: 32) 

PLSR 

(PLSc: 20) 

0.3247 49.21% 

13 SBK KS MSC SPA PLSR 

(PLSc: 20) 

0.3341 47.74% 

14 SBK KS SNV BiPLS 

(si: 32) 

PLSR 

(PLSc: 20) 

0.3354 47.54% 

15 SBK SPXY MSC SA 

(cr: 0.6) 

PLSR 

(PLSc: 20) 

0.3354 47.54% 

16 SBK SPXY SNV FiPLS 

(si: 39) 

PLSR 

(PLSc: 20) 

0.337 47.29% 

17 SBK KS SNV FiPLS 

(si: 40) 

PLSR 

(PLSc: 20) 

0.3378 47.16% 

18 SBK KS SNV iPLS 

(si: 42) 

PLSR 

(PLSc: 20) 

0.3421 46.49% 

19 SBK SPXY SNV iPLS 

(si: 43) 

PLSR 

(PLSc: 20) 

0.3427 46.39% 

20 SBK SPXY SG 1st_der 

(opf: 3) 

SA 

(cr: 0.7) 

PLSR 

(PLSc: 20) 

0.3457 45.93% 

21 SBK KS MSC BiPLS 

(si: 37) 

PLSR 

(PLSc: 20) 

0.3512 45.06% 

22 SBK KS MSC FiPLS 

(si: 32) 

PLSR 

(PLSc: 20) 

0.3572 44.13% 

23 SBK SPXY MSC SPA PLSR 

(PLSc: 20) 

0.3671 42.58% 

24 SBK KS MSC iPLS 

(si: 45) 

PLSR 

(PLSc: 20) 

0.3674 42.53% 
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25 SBK KS SG 2nd_der 

(opf: 4) 

BiPLS 

(si: 34) 

PLSR 

(PLSc: 20) 

0.3674 42.53% 

26 SBK SPXY SG 1st_der 

(opf: 2) 

SPA PLSR 

(PLSc: 20) 

0.3674 42.53% 

27 SBK SPXY SG 1st_der 

(opf: 3) 

GA 

(pspc: 0.6 

pm: 0.06) 

PLSR 

(PLSc: 20) 

0.3674 42.53% 

28 SBK KS SG 2nd_der 

(opf: 5) 

iPLS 

(si: 44) 

PLSR 

(PLSc: 20) 

0.3714 41.91% 

29 SBK SPXY SG 1st_der 

(opf: 3) 

iPLS 

(si: 41) 

PLSR 

(PLSc: 20) 

0.3715 41.89% 

30 SBK SPXY SG 2nd_der 

(opf: 4) 

GA PLSR 

(PLSc: 20) 

0.3752 41.31% 

31 SBK SPXY SG 1st_der 

(opf: 3) 

FiPLS 

(si: 37) 

PLSR 

(PLSc: 20) 

0.3754 41.28% 

32 SBK KS SG 1st_der 

(opf: 3) 

SA 

(cr: 0.5) 

PLSR 

(PLSc: 20) 

0.3781 40.86% 

33 SBK SPXY SG 1st_der 

(opf: 3) 

BiPLS 

(si: 36) 

PLSR 

(PLSc: 20) 

0.3817 40.29% 

34 SBK KS SG 2nd_der 

(opf: 4) 

FiPLS 

(si: 40) 

PLSR 

(PLSc: 20) 

0.3842 39.90% 

35 SBK KS SG 1st_der 

(opf: 2) 

BiPLS 

(si: 37) 

PLSR 

(PLSc: 20) 

0.3871 39.45% 

36 SBK SPXY SG 2nd_der 

(opf: 4) 

iPLS 

(si: 43) 

PLSR 

(PLSc: 20) 

0.3872 39.43% 

37 SBK SPXY MSC iPLS 

(si: 44) 

PLSR 

(PLSc: 20) 

0.3874 39.40% 

38 SBK SPXY SG 2nd_der 

(opf: 5) 

SA 

(cr: 0.7) 

PLSR 

(PLSc: 20) 

0.3874 39.40% 
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39 SBK KS SG 2nd_der 

(opf: 5) 

SA 

(cr: 0.7) 

PLSR 

(PLSc: 20) 

0.3878 39.34% 

40 SBK SPXY SG 1st_der 

(opf: 3) 

UVE 

(av: 0.8) 

PLSR 

(PLSc: 20) 

0.3884 39.25% 

41 SBK SPXY SG 2nd_der 

(opf: 4) 

UVE 

(av: 0.9) 

PLSR 

(PLSc: 20) 

0.3918 38.71% 

42 SBK KS SG 1st_der 

(opf: 3) 

GA 

(pspc: 0.7 

pm: 0.07) 

PLSR 

(PLSc: 20) 

0.3941 38.35% 

43 SBK KS SG 2nd_der 

(opf: 4) 

SPA PLSR 

(PLSc: 20) 

0.3952 38.18% 

44 SBK SPXY SG 2nd_der 

(opf: 5) 

BiPLS 

(si: 35) 

PLSR 

(PLSc: 20) 

0.3972 37.87% 

45 SBK SPXY MSC BiPLS 

(si: 37) 

PLSR 

(PLSc: 20) 

0.3974 37.84% 

46 SBK SPXY MSC FiPLS 

(si: 38) 

PLSR 

(PLSc: 20) 

0.3975 37.82% 

47 SBK KS SG 2nd_der 

(opf: 4) 

GA 

(pspc: 0.8 

pm: 0.08) 

PLSR 

(PLSc: 20) 

0.3984 37.68% 

48 SBK KS SG 1st_der 

(opf: 3) 

UVE 

(av: 1) 

PLSR 

(PLSc: 20) 

0.3994 37.53% 

49 SBK KS SG 2nd_der 

(opf: 5) 

UVE 

(av: 1) 

PLSR 

(PLSc: 20) 

0.3994 37.53% 

50 SBK KS SG 1st_der 

(opf: 2) 

SPA PLSR 

(PLSc: 20) 

0.4001 37.42% 

51 SBK KS SG 1st_der 

(opf: 3) 

FiPLS 

(si: 40) 

PLSR 

(PLSc: 20) 

0.4025 37.04% 

52 SBK SPXY SG 2nd_der FiPLS PLSR 0.4027 37.01% 
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(opf: 5) (si: 39) (PLSc: 20) 

53 SBK SPXY SG 2nd_der 

(opf: 4) 

SPA PLSR 

(PLSc: 20) 

0.4027 37.01% 

51 SBK KS SG 1st_der 

(opf: 3) 

iPLS 

(si: 43) 

PLSR 

(PLSc: 20) 

0.4125 35.48% 

55 SBK SPXY MSC UVE 

(av: 0.9) 

PLSR 

(PLSc: 20) 

0.4265 33.29% 

56 SBK KS MSC UVE 

(av: 0.9) 

PLSR 

(PLSc: 20) 

0.4278 33.08% 
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APPENDIX 2.3  

TABLE 3: THE PERFORMANCE OF ALL COMBINATIONS OF 

METHODS ON RF. 

Combination 

ID 

Rice 

Form 

Methods Assessment 

Dataset 

Partition 

Pre-

processing 

Variable 

Selection 

Calibration RMSEP PDRMSEP 

1 RF SPXY MSC GA 

(pspc: 0.6 

pm: 0.09) 

PLSR 

(PLSc: 20) 

0.3187 42.38% 

2 RF SPXY SNV SA 

(cr: 0.7) 

PLSR 

(PLSc: 20) 

0.3274 40.81% 

3 RF SPXY SNV UVE 

(av: 1) 

PLSR 

(PLSc: 20) 

0.3339 39.63% 

4 RF KS SNV SA 

(cr: 0.6) 

PLSR 

(PLSc: 20) 

0.33571 39.30% 

5 RF KS MSC UVE 

(av: 1) 

PLSR 

(PLSc: 20) 

0.3374 39.00% 

6 RF KS MSC GA 

(pspc: 0.7 

pm: 0.07) 

PLSR 

(PLSc: 20) 

0.3387 38.76% 

7 RF KS SNV UVE 

(av: 1) 

PLSR 

(PLSc: 20) 

0.3388 38.75% 

8 RF KS MSC SA 

(cr: 0.8) 

PLSR 

(PLSc: 20) 

0.3427 38.04% 

9 RF SPXY SNV SPA PLSR 

(PLSc: 20) 

0.3471 37.24% 

10 RF SPXY MSC SA 

(cr: 0.6) 

PLSR 

(PLSc: 20) 

0.3478 37.12% 

11 RF SPXY SG 1st_der GA PLSR 0.3487 36.96% 



 

118 

 

(opf: 2) (pspc: 0.5 

pm: 0.05) 

(PLSc: 20) 

12 RF SPXY MSC UVE 

(av: 1) 

PLSR 

(PLSc: 20) 

0.3505 36.63% 

13 RF SPXY SG 2nd_der 

(opf: 4) 

SA 

(cr: 0.6) 

PLSR 

(PLSc: 20) 

0.3517 36.41% 

14 RF KS SNV GA 

(pspc: 0.6 

pm: 0.08) 

PLSR 

(PLSc: 20) 

0.3571 35.44% 

15 RF KS MSC SPA PLSR 

(PLSc: 20) 

0.3571 35.44% 

16 RF SPXY SNV BiPLS 

(si: 65) 

PLSR 

(PLSc: 20) 

0.3574 35.38% 

17 RF KS MSC FiPLS 

(si: 70) 

PLSR 

(PLSc: 20) 

0.3621 34.53% 

18 RF KS SNV SPA PLSR 

(PLSc: 20) 

0.3645 34.10% 

19 RF SPXY SNV iPLS 

(si: 68) 

PLSR 

(PLSc: 20) 

0.3664 33.76% 

20 RF KS SNV FiPLS 

(si: 66) 

PLSR 

(PLSc: 20) 

0.3674 33.57% 

21 RF KS MSC iPLS 

(si: 71) 

PLSR 

(PLSc: 20) 

0.3674 33.57% 

22 RF SPXY SG 2nd_der 

(opf: 5) 

GA 

(pspc: 0.7 

pm: 0.06) 

PLSR 

(PLSc: 20) 

0.3674 33.57% 

23 RF SPXY MSC SPA PLSR 

(PLSc: 20) 

0.3678 33.50% 

24 RF KS MSC BiPLS PLSR 0.3715 32.83% 
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(si: 64) (PLSc: 20) 

25 RF SPXY SNV FiPLS 

(si: 68) 

PLSR 

(PLSc: 20) 

0.3728 32.60% 

26 RF SPXY SG 2nd_der 

(opf: 4) 

SPA PLSR 

(PLSc: 20) 

0.3758 32.06% 

27 RF KS SNV BiPLS 

(si: 69) 

PLSR 

(PLSc: 20) 

0.3777 31.71% 

28 RF SPXY MSC FiPLS 

(si: 71) 

PLSR 

(PLSc: 20) 

0.378 31.66% 

29 RF KS SNV iPLS 

(si: 74) 

PLSR 

(PLSc: 20) 

0.3784 31.59% 

30 RF KS SG 2nd_der 

(opf: 5) 

iPLS 

(si: 73) 

PLSR 

(PLSc: 20) 

0.3789 31.50% 

31 RF SPXY SG 1st_der 

(opf: 2) 

FiPLS 

(si: 70) 

PLSR 

(PLSc: 20) 

0.3789 31.50% 

32 RF KS SG 1st_der 

(opf: 3) 

GA 

(pspc: 0.6 

pm: 0.1) 

PLSR 

(PLSc: 20) 

0.3841 30.56% 

33 RF SPXY MSC iPLS 

(si: 74) 

PLSR 

(PLSc: 20) 

0.3871 30.01% 

34 RF SPXY SG 1st_der 

(opf: 3) 

SA 

(cr: 0.6) 

PLSR 

(PLSc: 20) 

0.3872 29.99% 

35 RF SPXY SG 2nd_der 

(opf: 4) 

GA 

(pspc: 0.8 

pm: 0.06) 

PLSR 

(PLSc: 20) 

0.3897 29.54% 

36 RF SPXY MSC BiPLS 

(si: 70) 

PLSR 

(PLSc: 20) 

0.3927 29.00% 

37 RF KS SG 2nd_der 

(opf: 4) 

GA 

(pspc: 0.7 

PLSR 

(PLSc: 20) 

0.394 28.77% 
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pm: 0.08) 

38 RF SPXY SG 1st_der 

(opf: 3) 

iPLS 

(si: 69) 

PLSR 

(PLSc: 20) 

0.3957 28.46% 

39 RF KS SG 1st_der 

(opf: 3) 

SA 

(cr: 0.8) 

PLSR 

(PLSc: 20) 

0.3975 28.13% 

40 RF SPXY SG 1st_der 

(opf: 2) 

SPA PLSR 

(PLSc: 20) 

0.3998 27.72% 

41 RF KS SG 1st_der 

(opf: 3) 

FiPLS 

(si: 71) 

PLSR 

(PLSc: 20) 

0.4027 27.19% 

42 RF SPXY SG 2nd_der 

(opf: 4) 

iPLS 

(si: 74) 

PLSR 

(PLSc: 20) 

0.4075 26.32% 

43 RF KS SG 1st_der 

(opf: 2) 

SPA PLSR 

(PLSc: 20) 

0.4087 26.11% 

44 RF KS SG 2nd_der 

(opf: 5) 

SA 

(cr: 0.8) 

PLSR 

(PLSc: 20) 

0.4087 26.11% 

45 RF SPXY SG 2nd_der 

(opf: 4) 

UVE 

(av: 0.8) 

PLSR 

(PLSc: 20) 

0.4116 25.58% 

46 RF SPXY SG 1st_der 

(opf: 3) 

BiPLS 

(si: 68) 

PLSR 

(PLSc: 20) 

0.4128 25.37% 

47 RF SPXY SG 2nd_der 

(opf: 4) 

BiPLS 

(si: 67) 

PLSR 

(PLSc: 20) 

0.4158 24.82% 

48 RF KS SG 1st_der 

(opf: 3) 

iPLS 

(si: 72) 

PLSR 

(PLSc: 20) 

0.4187 24.30% 

49 RF KS SG 2nd_der 

(opf: 4) 

FiPLS 

(si: 69) 

PLSR 

(PLSc: 20) 

0.423 23.52% 

50 RF SPXY SG 1st_der 

(opf: 3) 

UVE 

(av: 0.7) 

PLSR 

(PLSc: 20) 

0.4255 23.07% 

51 RF SPXY SG 2nd_der 

(opf: 5) 

FiPLS 

(si: 68) 

PLSR 

(PLSc: 20) 

0.427 22.80% 
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52 RF KS SG 1st_der 

(opf: 3) 

UVE 

(av: 0.9) 

PLSR 

(PLSc: 20) 

0.4272 22.76% 

53 RF KS SG 2nd_der 

(opf: 5) 

UVE 

(av: 0.8) 

PLSR 

(PLSc: 20) 

0.4286 22.51% 

51 RF KS SG 1st_der 

(opf: 2) 

BiPLS 

(si: 71) 

PLSR 

(PLSc: 20) 

0.4298 22.29% 

55 RF KS SG 2nd_der 

(opf: 4) 

BiPLS 

(si: 70) 

PLSR 

(PLSc: 20) 

0.435 21.35% 

56 RF KS SG 2nd_der 

(opf: 5) 

SPA PLSR 

(PLSc: 20) 

0.447 19.18% 
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APPENDIX 3: MATLAB CODES FOR METHODS 

KENNARD-STONE ALGORITHM (KS) 

function [index,distance,TsetX,TsetY,VsetX,VsetY] = KS(spectra,RefData,k) 

%%         KS(Kennard-Stone Algorithm) 

  

%-----------------------Input------------------------- 

% spectra: spectral data matrix: n(samples) x m(variables) 

% RefData: reference data: n(samples) x p(properties) 

% k: number of samples to be selected for training set 

  

%-----------------------Output------------------------ 

% index: indices (of rows in X) of the selected samples for training set 

% distance: largest minimum Euclidean distance. 

%           distance(1)=0 

%           distance(2)=Euclidean distance between the 1st pair of samples selected by the 

algorithm 

%           distance(i)=largest minimum Euclidean distance between the i-th selected 

sample and  

%                       the previously selected samples(i>2) 

% TsetX: spectra data of training set: k(samples) x m(variables) 

% TsetY: reference of training set: k(samples) x p(properties) 

% VsetX: spectral data validation set: n-k(samples) x m(variables) 

% VsetY: reference of validation set: n-k(samples) x p(properties) 

  

%%        Last modified by Shupeng Hu. July 5th 2019 

  

% Check the input 
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[nSmp,~] = size(spectra); 

if k >= nSmp 

    k = nSmp; 

end 

  

%initialize the parameters 

index = []; 

distance=ones(k,1); 

distance(1)=0; 

  

%Calcuate the Euclidean distance between pairs of observations in X. For 

%example, D(1,3)=D(3,1)= the Euclidean distance between 1st observation and 3rd 

D = squareform(pdist(spectra)); 

  

%find the first pair of observations which has the largest Euclidean distance 

[index(1),index(2)] = find(D==max(max(D)),1,'first');   

distance(2)=max(max(D)); 

  

%stepwise selection 

while length(index) < k 

    %calculate the minimum Euclidean distances between every remaining samples and 

the selected samples 

    minDist = min(D(index,:));  

    %find the sample which has the largest minimum Euclidean distance 

    [distance(length(index)+1),trIdx1] = max(minDist); 

    index = [index,trIdx1]; 

end 
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%partition training set and validation set 

TsetX=spectra(index,:); %spectra data of training set 

spectra(index,:)=[]; 

VsetX=spectra; %spectral data validation set 

TsetY=RefData(index,:); %reference of training set 

RefData(index,:)=[]; 

VsetY=RefData; %reference of validation set 

  

End 
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SAMPLE SET PARTITIONING BASED ON JOINT X-Y 

DISTANCES (SPXY) 

function [index,distance,TsetX,TsetY,VsetX,VsetY] = SPXY(spectra,RefData,k) 

%%      SPXY(Sample set Partitioning based on joint X-Y distances) 

  

%-----------------------Input--------------------------------------------- 

% spectra: spectral data matrix: n(samples) x m(varibales) 

% RefData: reference data: n(samples) x p(properties) 

% k: number of samples to be selected (minimum of 2) 

  

%-----------------------Output--------------------------------------------- 

% index: indices of the selected samples for training set 

% distance: largest minimum joint XY distance 

%           distance(1) = 0; 

%           distance(2) = joint XY distance between the 1st pair of samples selected by the 

algorithm 

%           distance(i) = largest minimum joint XY distance between the i-th selected 

sample and  

%           the previously selected samples (i > 2) 

% TsetX: spectra data of training set: k(samples) x m(varibales) 

% TsetY: reference of training set: k(samples) x p(properties) 

% VsetX: spectral data validation set: n-k(samples) x m(varibales) 

% VsetY: reference of validation set: n-k(samples) x p(properties) 

  

%%      Last modified by Shupeng Hu. July 5th 2019 

  

distance = zeros(1,k); % Initializes the vector of minimum distances 

M = size(spectra,1); % Number of rows in X (samples) 
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samples = 1:M; 

originalReference=RefData; 

  

% Auto-scales the Y matrix 

for i=1:size(RefData,2) % For each parameter in Y 

    yi = RefData(:,i); 

    RefData(:,i) = (yi - mean(yi))/std(yi); 

end 

  

D = zeros(M,M); % Initializes the matrix of X distances 

Dy = zeros(M,M); % Initializes the matrix of Y distances 

  

for i=1:M-1 

    xa = spectra(i,:); 

    ya = RefData(i,:); 

    for j = i+1:M 

      xb = spectra(j,:); 

      yb = RefData(j,:); 

      D(i,j) = norm(xa - xb); 

      Dy(i,j) =  norm(ya - yb); 

    end 

end 

  

Dmax = max(max(D)); 

Dymax = max(max(Dy)); 

  

D = D/Dmax + Dy/Dymax; % Combines the distances in X and Y 
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% D: Upper Triangular Matrix 

% D(i,j) = Euclidean distance between objects i and j (j > i) 

  

[maxD,index_row] = max(D); % maxD = Row vector containing the largest element of 

each column in D 

                             % index_row(n) = Index of the row with the largest element in the n-

th column 

  

[~,index_column] = max(maxD); % index_column = column corresponding to the 

largest element in matrix D 

  

index = []; 

index(1) = index_row(index_column); 

index(2) = index_column; 

  

distance(2) = D(index(1),index(2)); 

  

for i = 3:k 

    % This routine determines the distances between each sample still available for 

selection and each of the samples already selected 

    pool = setdiff(samples,index); % pool = Samples still available for selection 

    dmin = zeros(1,M-i+1); % Initializes the vector of minimum distances between each 

sample in pool and the samples already selected 

    for j = 1:(M-i+1) % For each sample xa still available for selection 

        indexa = pool(j); % indexa = index of the j-th sample in pool (still available for 

selection) 

        d = zeros(1,i-1); % Initializes the vector of distances between the j-th sample in 

pool and the samples already selected 
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        for p = 1:(i-1) % The distance with respect to each sample already selected is 

analyzed 

            indexb =  index(p); % indexb = index of the k-th sample already selected 

            if indexa < indexb 

                d(p) = D(indexa,indexb); 

            else 

                d(p) = D(indexb,indexa); 

            end 

        end 

        dmin(j) = min(d); 

    end 

    % The selected sample corresponds to the largest dmin 

    [distance(i),trIdx1] = max(dmin); 

    index(i) = pool(trIdx1); 

end 

  

  

%partition training set and validation set 

TsetX=spectra(index,:); %spectra data of training set 

spectra(index,:)=[]; 

VsetX=spectra; %spectral data validation set 

TsetY=originalReference(index,:); %reference of training set 

originalReference(index,:)=[]; 

VsetY=originalReference; %reference of validation set 

  

end 
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STANDARD NORMAL VARIATE (SNV) 

function [Xcorr] = SNV(spectra) 

%%            SNV(Standard Normal Variate) 

  

%------------------------------Input----------------------- 

% spectra: original spectra: n(samples) x m(varibales) 

  

%------------------------------Output---------------------- 

% Xcorr: corrected spectra 

  

%%       Last modified by Shupeng Hu. April 18th 2018   

  

[m,n]=size(spectra); 

Xcorr=spectra; 

for i=1:m 

    for j=1:n 

        Xcorr(i,j)=(spectra(i,j)-mean(spectra(i,:),2))/std(spectra(i,:)); 

    end 

end 

  

end 
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MULTIPLICATIVE SCATTER CORRECTION (MSC) 

function [Xcorr] = MSC( spectra,Xref ) 

%%         MSC(Multiplicative Scatter Correction) 

  

%------------------------------Input----------------------- 

% spectra: original spectra: n(samples) x m(varibales) 

% Xref: reference spectra from calibration set. Usually calculate the average 

%       spectrum of the calibration set as the reference spectrum. 

%       size: n(samples) x m(varibales) 

  

%------------------------------Output---------------------- 

% Xcorr: corrected spectra 

  

%%     Last modified by Shupeng Hu. April 18th 2018   

  

[m,n]=size(spectra);  

me=mean(Xref); %calculate the average spectrum of the calibration set 

Xcorr=ones(m,n); 

  

for i=1:m           %for each spectrum in spectra 

    p=polyfit(me,spectra(i,:),1);       % least square fit between mean spectrum and each 

spectrum in spectra (first-degree polynomial)  

    Xcorr(i,:)=(spectra(i,:)-p(1,2)*ones(1,n))./(p(1,1)*ones(1,n)); % each spectrum in 

spectra is corrected  

end  

  

end 
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SAVITZKY-GOLAY POLYNOMIAL DERIVATIVE FILTERS 

(SG) 

function [Xcorr]=SG(spectra,wavelength,ddx,N,F) 

%%                    SG(Savitzky-Golay polynomial derivative filters) 

  

%------------------------------Input----------------------- 

% spectra: spectral data matrix: n(samples) x m(varibales) 

% wavelength: the corresponding wavelengths of the spectra 

% ddx: the order of spectral derivative: ddx=0 : smoothing  

%                                        ddx=1 : first derivative  

%                                        ddx=2 : second derivative 

% N: order of polynomial fit, N>=ddx 

% F: window length which must be an odd positive integer 

  

%------------------------------Output---------------------- 

% Xcorr: spectra corrected by SG. The number of points lost equals to F. 

  

%%     Last modified by Shupeng Hu. July 2th 2019   

  

[m,p] = size(spectra); %% m number of sample, p is spectrum wavelength span   

dt=(wavelength(1)-wavelength(2)); 

HalfWin  = ((F+1)/2) -1; 

  

[~,g] = sgolay(N,F);   % Calculate S-G coefficients 

  

Xcorr = zeros(m,p); 

v1=g(:,ddx+1)'; 
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v2=repmat(v1,m,1); 

  

for n = (F+1)/2:p-(F+1)/2 

   

   v3=spectra(:,n - HalfWin: n + HalfWin); 

  

switch ddx 

    case 0 

        Xcorr(:,n)=dot(v2,v3,2); 

    case 1 

        Xcorr(:,n)=dot(v2,v3,2); 

    case 2 

        Xcorr(:,n)=2*dot(v2,v3,2)'; 

end 

     

    

end 

  

switch ddx 

    case 0  

    case 1 

       Xcorr = Xcorr/dt;    

    case 2 

       Xcorr = Xcorr/(dt*dt); 

end 

  

end 
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SUCCESSIVE PROJECTIONS ALGORITHM (SPA) 

function [var_sel,sTsetX] = SPA(TsetX,TsetY,VsetX,VsetY) 

%%           SPA(Successive Projections Algorithm) 

  

% [var_sel,var_sel_phase2] = SPAa(Xcal,ycal,Xval,yval) --> Validated by validation 

set 

% [var_sel,var_sel_phase2] = SPA(Xcal,ycal,[],[]) --> Cross-validation 

  

%------------------------------Input------------------ 

% TsetX: spectral data matrix of training set 

%        size:n(samples) x m(varibales), 

% TsetY: reference data of training set: n(samples) x p(properties),p=1 

% VsetX: spectral data matrix of validation set: n(samples) x m(varibales) 

% VsetY: reference data of validation set: n(samples) x p(properties),p=1 

  

%------------------------------Output----------------- 

% var_sel: index set of selected variables 

% sTsetX: variables-selected spectra for training set 

  

  

%% Last modified by Shupeng Hu. on Sept.9th 2019  

  

  

N = size(TsetX,1); % number of samples in training set 

K = size(TsetX,2); % number of original variables 

m_min = 1; 

m_max = min(N-2,K);  



 

134 

 

  

  

%Step 1:Projection operations for the selection of candidate subsets 

  

% The projections are applied to the columns of Xcal after mean-centering  

for k = 1:K 

    x = TsetX(:,k); 

    Xcaln(:,k) = (x - mean(x)); 

end 

  

SEL = zeros(m_max,K); 

for k = 1:K 

    SEL(:,k) = projections_qr(Xcaln,k,m_max);%Index set of the variables resulting 

from the projection operations 

end 

     

disp('Step 1 (projections) completed !') 

     

%Step 2:Evaluation of the candidate subsets according to the PRESS criterion 

  

PRESS = Inf*ones(m_max,K); 

for k = 1:K 

    for m = m_min:m_max 

        var_sel = SEL(1:m,k); % index set of selected variables 

        [~,~,press] = validation(TsetX,TsetY,VsetX,VsetY,var_sel); 

        PRESS(m,k) = press; 

    end 



 

135 

 

end 

  

%PRESSmin is the minimum value of PRESS at each column, m_sel is the index of 

rows for the minimum value of PRESS 

[PRESSmin,m_sel] = min(PRESS);  

% the minimum value of PRESS among all cases, k_sel is the index of column 

[~,k_sel] = min(PRESSmin); 

%index of selected variables in the best candidate subset 

var_sel_phase2 = SEL(1:m_sel(k_sel),k_sel);  

  

disp('Step 2 (evaluation of variable subsets) completed !') 

  

%---------------Step 3:Final elimination of variables------ 

%-------------Step 3.1:Calculation of the relevance index-- 

  

Xcal2 = [ones(N,1),TsetX(:,var_sel_phase2)];  

b = Xcal2\TsetY; % MLR with intercept term 

std_deviation = std(Xcal2); 

relev = abs(b.*std_deviation'); 

relev = relev(2:end); % The intercept term is always included 

% Sorts the selected variables in decreasing order of "relevance" 

[~,index_increasing_relev] = sort(relev); % Increasing order 

index_decreasing_relev = index_increasing_relev(end:-1:1); % Decreasing order 

  

%----------------Step 3.2:Calculation of PRESS values---------------------- 

  

for i = 1:length(var_sel_phase2) 
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    [~,e,press] = 

validation(TsetX,TsetY,VsetX,VsetY,var_sel_phase2(index_decreasing_relev(1:i)) ); 

    PRESS_scree(i) =press; 

end 

RMSEP_scree = sqrt(PRESS_scree/length(e)); 

  

figure, grid, hold on 

plot(RMSEP_scree) 

xlabel('Number of variables included in the model'),ylabel('RMSE') 

  

%---------------------Step 3.3:F-test criterion---------------------------- 

PRESS_scree_min = min(PRESS_scree); 

alpha = 0.05; 

dof = length(e); % Number of degrees of freedom 

fcrit = finv(1-alpha,dof,dof); % Critical F-value 

PRESS_crit = PRESS_scree_min*fcrit; 

% Finds the minimum number of variables for which PRESS_scree 

% is not significantly larger than PRESS_scree_min  

i_crit = min(find(PRESS_scree < PRESS_crit));  

i_crit = max(m_min,i_crit); % The number of selected variables must be at least m_min 

  

var_sel = var_sel_phase2( index_decreasing_relev(1:i_crit) ); 

sTsetX=TsetX(:,var_sel); %variables-selected spectra for training set 

  

title(['Final number of selected variables: ' num2str(length(var_sel)) '  (RMSE = ' 

num2str(RMSEP_scree(i_crit)) ')']) 

  

% Indicates the selected point on the scree plot 



 

137 

 

plot(i_crit,RMSEP_scree(i_crit),'s') 

  

disp('Step 3 (final elimination of variables) completed !') 

  

% Presents the selected variables  

% in the first object of the calibration set 

figure,plot(TsetX(1,:));hold,grid 

plot(var_sel,TsetX(1,var_sel),'s') 

legend('Original variables','Selected variables') 

xlabel('Variable index') 

  

end 

 

 

function chain = projections_qr(X,k,M) 

  

% Projections routine for the Successive Projections Algorithm using the 

% built-in QR function of Matlab 

% 

% chain = projections(X,k,M) 

% 

% X --> Matrix of predictor variables (# objects N x # variables K) 

% k --> Index of the initial column for the projection operations 

% M --> Number of variables to include in the chain 

% 

% chain --> Index set of the variables resulting from the projection operations 
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X_projected = X; 

  

norms = sum(X_projected.^2);    % Square norm of each column vector 

norm_max = max(norms); % Norm of the "largest" column vector 

  

X_projected(:,k) = X_projected(:,k)*2*norm_max/norms(k); % Scales the kth column 

so that it becomes the "largest" column 

  

[~,~,order] = qr(X_projected,0);  

chain = order(1:M)'; 

 

function [yhat,e,PRESS] = validation(Xcal,ycal,Xval,yval,var_sel) 

  

% [yhat,e] = validation(Xcal,ycal,Xval,yval,var_sel) --> Validation with a separate set 

% [yhat,e] = validation(Xcal,ycal,[],[],var_sel) --> Cross-validation 

  

N = size(Xcal,1); % Number of objects in the calibration set 

NV = size(Xval,1); % Number of objects in the validation set 

  

if NV > 0 % Validation with a separate set 

    Xcal_ones = [ones(N,1) Xcal(:,var_sel)]; 

    b = Xcal_ones\ycal; % MLR with offset term (b0) 

    yhat = [ones(NV,1) Xval(:,var_sel)]*b; % Prediction over the validation set 

    e = yval - yhat; % Validation error 

    PRESS=sumsqr(e); 

else % Cross-validation     

    yhat = zeros(N,1); % Setting the proper dimensions of yhat 
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    for i = 1:N 

       % Removing the ith object from the calibration set 

       cal = [[1:i-1] [i+1:N]]; 

       X = Xcal(cal,var_sel); 

       y = ycal(cal); 

       xtest = Xcal(i,var_sel); 

       ytest = ycal(i); 

       X_ones = [ones(N-1,1) X]; 

       b = X_ones\y; % MLR with offset term (b0) 

       yhat(i) = [1 xtest]*b; % Prediction for the ith object 

    end 

    e = ycal - yhat; % Cross-validation error 

     PRESS=sumsqr(e); 

end 
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UNINFORMATIVE VARIABLE ELIMINATION (UVE) 

Function[UV,var_sel,sTsetX,sVsetX] 

=UVE(TsetX,TsetY,VsetX,componentNo,k) 

%%           UVE(Uninformative Variable Elimination) 

  

% this UVE method employs PLS to obtain regression coefficient vector. So 

% before UVE, PLSR should be used to determine the suitable number of 

% PLS principal components 

  

%-----------------------Input------------------------------ 

% TsetX: spectral data matrix of training set 

%        size:n(samples) x m(varibales), 

% TsetY: reference data of training set: n(samples) x p(properties) 

% VsetX: spectral data matrix of validation set: n(samples) x m(varibales) 

% componentNo: the number of selected PLS principal components 

% k:(optional, default=1)an arbitrary value to control the cutoff by: 

cutoff=k*max(abs(stability_noise)) 

  

%-----------------------Output----------------------------- 

% UV:index set of uninformative variables 

% var_sel: index set of informative variables 

% sTsetX: variables-selected spectra for training set 

% sVsetX: variables-selected spectra for validation set 

  

%%      Last modified by Shupeng Hu. Sept. 10th 2019  

  

if nargin<5 
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    k=1; 

end 

  

%--------Step 1:create the noise matrix-------------------- 

[n,m]=size(TsetX); 

noise=1E-10*rand(n,m); 

newX=[TsetX,noise]; 

  

%----------Step 2:leave-one-out cross-validation----------- 

disp('leave-one-out cross-validation starts!'); 

  

B=ones(n,size(newX,2)); 

for i=1:n 

    out=i;     % index of the leave-one 

    in=1:1:n;   

    in(out)=[];% index set except the leave-one 

    X=newX(in,:); 

    Y=TsetY(in,:); 

         

    [~,~,~,~,betaPLS,~,~,~] = plsregress(X,Y,componentNo); 

    %B:b-matrix contains all b-vectors obtained from every iteration of leave-one-out 

cross-validation 

    B(i,:)=betaPLS(2:end,1)'; 

  

end 

  

disp('regression coefficient matrix obtained'); 
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%--------------------Step 3:calculate stability and cutoff----------------- 

stability=mean(B)./std(B); 

stability_X=stability(1,1:m); 

stability_noise=stability(1,(m+1):end); 

  

cutoff=k*max(abs(stability_noise)); 

  

%----Step 4:identify uninformative variables by cutoff----- 

UV=find(abs(stability_X)<=cutoff);  %index set of uninformative variables 

var_sel=find(abs(stability_X)>cutoff); % index set of informative variables 

sTsetX=TsetX(:,var_sel);   %selected variables for training set 

sVsetX=VsetX(:,var_sel);   %selected variables for validation set 

  

%draw graph 

figure,plot(TsetX(1,:));hold,grid 

plot(var_sel,TsetX(1,var_sel),'s') 

legend('Original variables','Selected variables') 

xlabel('Variable index') 

  

end 
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SIMULATED ANNEALING (SA) 

function [finalVal_Sel,finalenergy,sTsetX,sVsetX,total]=SA 

(TsetX,TsetY,VsetX,componentNo,initenergy,c,initialT,stopT) 

%%                SA(Simulated Annealing) 

  

% the number of principal components should be determined before SA. So use 

% PLSR or PCR to obtain a fixed number of PCs prior to SA 

  

% Objective function F = currentenergy - newenergy  

%               energy = sqrt(sumsqr(TsetY-y)/size(y,1)); 

  

%------------------------------Input----------------------- 

% TsetX: spectral data matrix of training set 

%        size:n(samples) x m(varibales), 

% TsetY: reference data of training set: n(samples) x p(properties) 

% VsetX: spectral data matrix of validation set: n(samples) x m(varibales) 

% VsetY: reference data of validation set: n(samples) x p(properties) 

% componentNo: the number of selected PLS principal components 

% initenergy: initial energy/error value, for NIR it is the initial MSE 

%             from cross-validation 

% c: cooling ratio.A constant between (0,1) for cooling schedule. 

%    default=0.8 

% initialT: initial value of T. default=0.005 

% stopT: final value of T at which to stop. default=1e-6 

  

%------------------------------Output---------------------- 
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% finalVal_Sel: optimal solution, for NIR it is the optimal index set of SA-selected 

variables 

% finalenergy: RMSEP of the optimal solution 

% sTsetX: variables-selected spectra for training set 

% sVsetX: variables-selected spectra for validation set 

% total: total tries for all cases of T 

  

%%       Last modified by Shupeng Hu. on Sept.11th 2019  

  

  

%-----------------------Step 1:configure parameters-------- 

  

[~,n]=size(TsetX); 

  

%identify inputs 

 if nargin==5 

    c=0.8; 

    initialT=0.005; 

    stopT=1e-6; 

 elseif nargin==6 

    initialT=0.005; 

    stopT=1e-6; 

 elseif nargin==7 

    stopT=1e-6; 

end 

  

%cooling schedule: a function takes a scalar as input and returns a smaller  



 

145 

 

%but positive scalar as output. the constant 0<c<1 is a parameter to control 

%cooling ratio 

coolSched=@(T) (c*T); 

  

%the number of selected variables need to be at least 1 higher than the 

%number of principal components. Maximum equal to the nearest integer to  

%half of the number of original variables in the training set 

minVal_Sel=componentNo+1; 

maxVal_Sel=round(n/2); 

%Generator: a new solution to replace the old one. Solution for NIR is the 

%index set of selected variables. 

Generator=@(min,max) (randperm(max,randi([min,max],1,1))); 

  

%set the Markov chain 

maxTries=(maxVal_Sel-minVal_Sel)*10;%maximum number of tries within one 

temperature 

maxConsRej=round(maxTries/5);%maximum number of consecutive rejections within 

one temperature 

maxSuccess=round(maxTries/3);%maximum number of successes within one 

temperature 

  

stopRMSEP=-Inf; %RMSEP at which to stop immediately. -Inf means SA almost will 

not stop by this value 

k = 1; % default Boltzmann constant 

  

%-----------------------Step 2:initialize values----------- 

  

tries = 0; %counter the number of tries within one T 
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success = 0;% counter the number of successes within one T 

finished = 0;% flag to control the loop 

consRej = 0;% counter the number of consecutive rejections within one T 

total=0; % total tries for all cases of T 

  

T = initialT; 

initVal_Sel=1:1:n; % initial index set of selected variables=full spectrum 

currentVal_Sel=initVal_Sel; %current solution, for NIR it is the current index set of 

selected variables 

currentenergy = initenergy; %current energy= current RMSEP 

  

%---------------------------Step 3: SA loop---------------- 

  

disp('SA loop starts!') 

%loop for SA 

while finished==0 

     tries = tries+1;  

     

    if tries >= maxTries || success >= maxSuccess|| consRej >= maxConsRej 

        if T < stopT  

            finished = 1;  

            total = total + tries; 

            break; % break the while loop 

        else 

            T = coolSched(T);  % decrease T according to cooling schedule 

            disp(['Current T is  ',num2str(T)]); 

            total = total + tries; 
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            tries = 1; 

            success = 1; 

            consRej=0; 

        end 

    end 

      

     %compute the new solution and new energy 

     newVal_Sel = Generator(minVal_Sel,maxVal_Sel); %new solution 

     newX=TsetX(:,newVal_Sel); % new spectra by new solution 

     %[~,~,~,~,betaPLS,~,~,~] = plsregress(newX,TsetY,componentNo);      

     %y = [ones(size(newX,1),1),newX]*betaPLS; 

     %newenergy=sqrt(sumsqr(TsetY-y)/size(y,1)); % new RMSEV by new solution 

     regf=@(XTRAIN,ytrain,XTEST)(XTEST*regress(ytrain,XTRAIN,0.05)); 

     mse = crossval('mse',[ones(size(newX,1),1),newX],TsetY,'kfold',5,'predfun',regf); 

     newenergy=sqrt(mse); 

      

    %break the while loop if new RMSEP is smaller than the RMSEP at which to stop 

    if (newenergy < stopRMSEP) 

        currentVal_Sel = newVal_Sel;  

        currentenergy = newenergy; 

        break; %break the while loop 

    end 

     

    %compare the current energy with the new energy by Boltzman¡̄s probability 

distribution (Metropolis criterion) 

    % 1)if new energy is smaller enough (decrement>1e-6) than current energy, accepted 

probability=1(100%). 
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    % 2)if new energy is larger than current energy, accepted probability=a single 

uniformly distributed random value between 0 and 1. 

     if (currentenergy-newenergy > 1e-6) 

        currentVal_Sel = newVal_Sel; 

        currentenergy = newenergy; 

        success = success+1; 

        consRej = 0; 

     else  

        if (rand < exp( (currentenergy-newenergy)/(k*T) ))  

            currentVal_Sel = newVal_Sel; 

            currentenergy = newenergy; 

            success = success+1; 

        else 

            consRej = consRej+1; 

        end 

     end 

      

end 

  

%------------------------Step 4: final results------------- 

%final results 

finalVal_Sel = currentVal_Sel; % optimal solution, for NIR it is the optimal index set of 

SA-selected variables 

finalenergy = currentenergy;  % RMSEP of the optimal solution 

sTsetX=TsetX(:,currentVal_Sel); %selected variables for training set 

sVsetX=VsetX(:,currentVal_Sel); %selected variables for validation set 

%draw graph 

figure,plot(TsetX(1,:));hold,grid 
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plot(finalVal_Sel,TsetX(1,finalVal_Sel),'s'); 

legend('Original variables','Selected variables'); 

xlabel('Variable index'); 

  

end 
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GENETIC ALGORITHM (GA) 

function[bestFitValue,best_val_sel,sTsetX,sVsetX]=GA(TsetX,TsetY,VsetX,componen

tNo,chromosomeNo,maxGenerations,p_crossover,p_mutation) 

%%                  GA(Genetic Algorithm) 

  

%------------------------------Input------------------ 

% TsetX: spectral data matrix of training set 

%        size:n(samples) x m(varibales), 

% TsetY: reference data of training set: n(samples) x p(properties) 

% VsetX: spectral data matrix of validation set: n(samples) x m(varibales) 

% VsetY: reference data of validation set: n(samples) x p(properties) 

% chromosomeNo: number of chromosomes. default=100 

% maxGenerations: maximum number of generations. default=200 

% p_crossover: probability of single-point crossover. default=0.8 

% p_mutation: probability of mutation. default=0.05 

  

%------------------------------Output----------------- 

% bestFitValue: best fitness among all generations 

% best_val_sel: best index set of selected varialbes 

% sTsetX: variables-selected spectra for training set 

% sVsetX: variables-selected spectra for validation set 

  

%%   Last modified by Shupeng Hu. on Sept.12th 2019  

  

  

%-------------------Step 1: configure parameters------ 
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if nargin==4 

    chromosomeNo=100; 

    maxGenerations=200;  

    p_crossover=0.8;  

    p_mutation=0.05;  

elseif nargin==5 

    maxGenerations=200;  

    p_crossover=0.8;  

    p_mutation=0.05;  

elseif nargin==6 

    p_crossover=0.8;  

    p_mutation=0.05; 

elseif nargin==7 

    p_mutation=0.05; 

end 

     

%-------------------Step 2: compute the first generation-- 

  

geneLength=size(TsetX,2); % number of variables = length of chromosome/ number of 

genes 

allmax=ones(1,maxGenerations); 

allmean=ones(1,maxGenerations); 

allChro=ones(maxGenerations,geneLength); 

  

%first generation of population.  

generation=1; 

[population,componentNo]=Code(chromosomeNo,geneLength,componentNo); % 

binary code for spectral data 
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fitValue= Fitness(population,TsetX,TsetY,componentNo); % fitness of all 

chromosomes 

  

%record the best fitness with corresponding chromosome,and average fitness for the 

first generation 

[fmax,fmax_index]=max(fitValue); 

allmax(generation)=fmax; %best fitness 

allChro(generation,:)=population(fmax_index,:);%chromosome which has best fitness 

allmean(generation)=mean(fitValue); %average fitness 

  

disp('First generation completed!'); 

  

%-------------------Step 3: iteration of evolutions--- 

  

newChro_co=ones(chromosomeNo,geneLength); 

newChro_mu=ones(chromosomeNo,geneLength); 

while generation<maxGenerations 

   for j=1:2:chromosomeNo  

      %select two chromosomes 

      seln=SelChro(fitValue); 

      %single-point crossover 

      chro_co=Crossover(population,seln,p_crossover,geneLength,componentNo); 

      newChro_co(j,:)=chro_co(1,:); 

      newChro_co(j+1,:)=chro_co(2,:); 

      %mutation 

      

newChro_mu(j,:)=Mutation(newChro_co(j,:),p_mutation,geneLength,componentNo); 
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newChro_mu(j+1,:)=Mutation(newChro_co(j+1,:),p_mutation,geneLength,componentN

o); 

   end 

    

   generation=generation+1; %new generation 

   population=newChro_mu;  %new generation of population 

   %compute fitness for the new generation 

   fitValue=Fitness(population,TsetX,TsetY,componentNo); 

   %record the best fitness with corresponding chromosome, and average fitness for the 

new generation 

   [fmax,fmax_index]=max(fitValue);   

   allmax(generation)=fmax; 

   allChro(generation,:)=population(fmax_index,:); 

   allmean(generation)=mean(fitValue); 

    

   disp(['Current generation is  ' ,num2str(generation)]); 

    

end 

  

%-----------------------Step 4: final results--------- 

  

[bestFitValue,index]=max(allmax); % best fitness among all generations 

bestChro=allChro(index,:); %chromosome which has best fitness among all generations 

best_val_sel=find(bestChro(1,:)==1); %best index set of selected varialbes 

sTsetX=TsetX(:,best_val_sel);%selected variables for training set 

sVsetX=VsetX(:,best_val_sel);%selected variables for validation set 
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%draw graph 

figure(1),grid,plot(TsetX(1,:));hold on 

plot(best_val_sel,TsetX(1,best_val_sel),'s'); 

legend('Original variables','Selected variables'); 

xlabel('Variable index'); 

  

figure(2);grid 

hand1=plot(1:generation,allmax); 

set(hand1,'linestyle','-','linewidth',1.8,'marker','*','markersize',6) 

hold on; 

hand2=plot(1:generation,allmean); 

set(hand2,'color','r','linestyle','-','linewidth',1.8,... 

'marker','h','markersize',6) 

xlabel('Generations');ylabel('Maximum/Average fitness');xlim([1 generation]); 

legend('Maximum fitness','average fitness'); 

  

end 

 

 

function [population,componentNo] = 

Code(chromosomeNo,geneLength,componentNo) 

%% Generate binary codes for spectral data 

  

% populaion size: chromosomeNo x geneLength. 

% row = chromosome; Column = gene = either 1 or 0; 1 means this variable will 

% be selected 
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population=ones(chromosomeNo,geneLength); 

val_selNo=0; % number of selected variables 

for i=1:chromosomeNo    

    %the minimum number of selected variables must be at least one larger  

    %than the number of PLS principal components;  

    while val_selNo<=componentNo 

         

    population(i,:)=round(rand(1,geneLength)); 

    val_sel=find(population(i,:)==1); %index set of genes whose value = 1 

    val_selNo=size(val_sel,2); 

     

    end 

    val_selNo=0; %reset 

end 

  

end 

  

 

 

function [fitValue] = Fitness(population,TsetX,TsetY,componentNo) 

%% Compute the fitness value for all chromosomes by PLSR 

  

% fitness value = 1/RMSEP 

% fitness function = sqrt(sumsqr(VsetY-y)/size(y,1)); 

  

fitValue=ones(1,size(population,1)); 

for i=1:size(population,1) % i= chromosome  
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    val_sel=find(population(i,:)==1); % index set of selected variables   

    newX=TsetX(:,val_sel); % variable-selected spectra for training set 

    [~,~,~,~,betaPLS,~,~,~] = plsregress(newX,TsetY,componentNo);  

    y = [ones(size(newX,1),1),newX]*betaPLS; 

    RMSEV=sqrt(sumsqr(TsetY-y)/size(y,1)); 

    fitValue(i)=1/RMSEV; 

     

end 

  

end 

  

 

 

function [seln] = SelChro(fitValue) 

%% Selection two chromosomes for cross-over(reproduce) 

  

% seln: index of two selected chromosomes 

  

%calculate the selection probability of every chromosome; the chromosomes  

%with a higher fitness value has a higher probability of reproducing 

p_selection=fitValue./sum(fitValue); 

  

seln=[0,0]; 

while seln(1)==seln(2) %two chromosomes cannot be same 
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seln=randsrc(1,2,[1:size(fitValue,2);p_selection]); %select two chromosomes based on 

the selection probability 

  

end 

  

end 

  

 

 

function [chro_co] = Crossover(population,seln,p_crossover,geneLength,componentNo) 

%%                      Single-point crossover 

  

%chro_co: two new chromosomes after crossover 

  

% flag=1, crossover; flag=0, no crossover 

flag=randsrc(1,1,[1,0;p_crossover,1-p_crossover]); 

if flag==1 

   % number of selected variables 

   val_selNo1=0;  

   val_selNo2=0; 

   %the minimum number of selected variables must be at least one larger  

   %than the number of PLS principal components 

   while val_selNo1<=componentNo || val_selNo2<=componentNo  

        

   cp=round(rand*(geneLength-2))+1;  %randomly generate the crossover point between 

[1,geneLength-1] 

   chro_co(1,:)=[population(seln(1),1:cp),population(seln(2),(cp+1):geneLength)]; 

   chro_co(2,:)=[population(seln(2),1:cp),population(seln(1),(cp+1):geneLength)]; 
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   val_sel1=find(chro_co(1,:)==1); %index set of genes whose value = 1 

   val_selNo1=size(val_sel1,2); 

   val_sel2=find(chro_co(2,:)==1); %index set of genes whose value = 1 

   val_selNo2=size(val_sel2,2); 

    

   end 

else 

   chro_co(1,:)=population(seln(1),:); 

   chro_co(2,:)=population(seln(2),:); 

end 

  

end 

  

 

 

function [newChro_mu] = Mutation( 

newChro_co,p_mutation,geneLength,componentNo) 

%%                       Mutation 

  

% newChro_mu: chromosome after mutation 

  

newChro_mu=newChro_co; 

% flag=1, mutation; flag=0, no mutation 

flag=randsrc(1,1,[1,0;p_mutation,1-p_mutation]); 

if flag==1   

   val_selNo=0; % number of selected variables 

   %the minimum number of selected variables must be at least one larger  
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   %than the number of PLS principal components 

   while val_selNo<=componentNo  

        

   mp=round(rand*(geneLength-1))+1;  %randomly generate the mutation point between 

[1,geneLength] 

   newChro_mu(mp)=abs(newChro_co(mp)-1); 

   val_sel=find(newChro_mu(1,:)==1); %index set of genes whose value = 1 

   val_selNo=size(val_sel,2); 

    

   end 

end 

  

end 
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INTERVAL PARTIAL LEAST SQUARES (IPLS) 

function 

[bestmse,bestinterval,bestintervalNo,bestmseSOBI,bestintervalSOBI]=iPLS(TsetX,Tset

Y,componentNo,intervalsNo) 

%%             Interval Partial Least Squares (iPLS) 

  

% number of PC should be the same for all local PLS models 

  

%-----------------------Input------------------------------ 

% TsetX: spectral data matrix of training set 

%        size:n(samples) x m(varibales), 

% TsetY: reference data of training set: n(samples) x p(properties) 

% VsetX: spectral data matrix of validation set: n(samples) x m(varibales) 

% componentNo: nubmer of PLS components 

% intervalsNo: (optional) the desired number of intervals. default = auto-divide 

intervals 

  

%-----------------------Output----------------------------- 

% globalmse: the mse of global PLS model 

% bestmse£ºbest mse from cross-validation 

% bestinterval: best interval which has best mse from cross-validation 

% bestintervalNo: best number of intervals 

% bestmseSOBI: best mse after SOBI 

% bestintervalSOBI: best interval which has best mse after SOBI 

  

  

%%       Last modified by Shupeng Hu. Sept. 14th 2019  
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%-----------------------Step 1:configure inputs------------ 

  

[~,n]=size(TsetX);  

min_intervals=3; % at least 3 intervals 

max_intervals=floor(n/(componentNo+1)); % maximum number of intervals 

  

if nargin==3 

   intervalsNo=-1; 

end 

  

%-------------------Step 2:seek the best spectral regions-- 

  

bestmse=10; 

if intervalsNo==-1 

    for i=min_intervals:max_intervals 

    disp(['Currently there are ',num2str(i),' intervals']); 

         

    width=floor(n/i); % identical width for each interval 

    intervals=IntervalPartition(width,i); 

    allmse=iPLSMSE(intervals,componentNo,TsetX,TsetY); 

    [localmse,bestmse_index]=min(allmse); 

    if localmse<bestmse 

    bestmse=localmse; 

    bestinterval=intervals(bestmse_index,:);  

    bestintervalNo=i; 

    end   
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    end   

else 

    width=floor(n/intervalsNo); % identical width for each interval 

    intervals=IntervalPartition(width,intervalsNo); 

    allmse=iPLSMSE(intervals,componentNo,TsetX,TsetY); 

    [localmse,bestmse_index]=min(allmse); 

    if localmse<bestmse 

    bestmse=localmse; 

    bestinterval=intervals(bestmse_index,:); 

    end 

    bestintervalNo=intervalsNo; 

end 

  

%----------------------Step 3: simple optimization--------- 

  

[bestmseSOBI,bestintervalSOBI] = 

SOBI(bestinterval,bestmse,componentNo,TsetX,TsetY); 

  

disp('Simple optimization for iPLS completed'); 

  

%draw graph 

figure,plot(TsetX(1,:));hold,grid 

plot(bestinterval,TsetX(1,bestinterval),'s') 

legend('Original variables','Selected variables') 

xlabel('Variable index') 

  

end 
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function [intervals] = IntervalPartition(width,intervalsNo) 

%compute the intervals 

  

intervals=ones(intervalsNo,width); 

for j=1:intervalsNo  

    intervals(j,:)=(width*(j-1)+1):1:(width*j);         

end 

  

end 

  

 

 

function [allmse] = iPLSMSE(intervals,componentNo,TsetX,TsetY) 

%calculate the PLS-mse for all intervals 

  

[m,~]=size(intervals); 

allmse=ones(1,m); 

for i=1:m 

    newX=TsetX(:,intervals(i,:)); 

    [~,~,~,~,betaPLS,~,~,~] = plsregress(newX,TsetY,componentNo); 

    y = [ones(size(newX,1),1),newX]*betaPLS; 

    mse=sumsqr(TsetY-y)/size(y,1); 

    allmse(1,i)=mse; 

end 
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end 

  

 

 

function [bestmse,bestinterval] = 

SOBI(bestinterval,bestmse,componentNo,TsetX,TsetY) 

%%        Simple Optimization of the Best Interval 

  

% when the best interval is determined by iPLS, this interval width  

% is changed one variable at a time on both sides and evaluated by  

% same criteria provided by the application of PLS regression to the interval. 

  

  

%expand interval on right side 

while size(bestinterval)<size(TsetX,2) 

[~,n]=size(bestinterval); 

exinterval=bestinterval(1):1:(bestinterval(n)+1); %one variable at a time 

newX=TsetX(:,exinterval); 

[~,~,~,~,betaPLS,~,~,~] = plsregress(newX,TsetY,componentNo); 

y = [ones(size(newX,1),1),newX]*betaPLS; 

mse=sumsqr(TsetY-y)/size(y,1); 

if mse<bestmse 

bestmse=mse; 

bestinterval=exinterval; 

else 

    break; 

end 
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end 

  

%expand interval on left side 

while bestinterval(1)>1 

[~,n]=size(bestinterval); 

exinterval=(bestinterval(1)-1):1:bestinterval(n); %one variable at a time 

newX=TsetX(:,exinterval); 

[~,~,~,~,betaPLS,~,~,~] = plsregress(newX,TsetY,componentNo); 

y = [ones(size(newX,1),1),newX]*betaPLS; 

mse=sumsqr(TsetY-y)/size(y,1); 

if mse<bestmse 

bestmse=mse; 

bestinterval=exinterval; 

else 

    break; 

end 

end 

  

  

end 
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BACKWARD INTERVAL PARTIAL LEAST SQUARES 

(BIPLS) 

function [finalmse,finalIntervals,bestintervalNo,sTsetX,sVsetX] = 

BiPLS(TsetX,TsetY,VsetX,componentNo,intervalsNo) 

%%                Backward Interval Partial Least Squares (BiPLS) 

  

% number of PC should be the same for all local PLS models 

  

%-----------------------Input------------------------------% TsetX: spectral data matrix of 

training set 

%        size:n(samples) x m(varibales), 

% TsetY: reference data of training set: n(samples) x p(properties) 

% VsetX: spectral data matrix of validation set: n(samples) x m(varibales) 

% componentNo: nubmer of PLS components 

% intervalsNo: (optional) the desired number of intervals. default = auto-divide 

intervals 

  

%-----------------------Output----------------------------- 

% finalmse: best mse of cross-validation 

% finalIntervals: index set of selected variables whose has best mse of cross-validation 

% bestintervalNo: best number of intervals 

% sTsetX: variables-selected spectra for training set 

% sVsetX: variables-selected spectra for validation set 

  

%%      Last modified by Shupeng Hu. Sept. 15th 2019  

  

  

%-----------------------Step 1:configure inputs------------ 



 

167 

 

  

[~,n]=size(TsetX); 

min_intervals=3; % at least 3 intervals 

%max_intervals=floor(n/(componentNo+1)); % maximum number of intervals 

max_intervals=94; 

  

if nargin==4 

   intervalsNo=-1; 

end 

  

%-------------------Step 2:seek the best spectral regions-- 

  

finalmse=10; 

leaveIndex=0; 

counter=0; 

flag=0; 

  

if intervalsNo==-1 

for i=min_intervals:max_intervals 

disp(['Currently there are ',num2str(i),' intervals']); 

  

width=floor(n/i); % identical width for each interval 

intervals=IntervalPartition(width,i); %partition intervals 

newX=TsetX(:,intervals); 

[~,~,~,~,betaPLS,~,~,~] = plsregress(newX,TsetY,componentNo); 

y = [ones(size(newX,1),1),newX]*betaPLS; 

localmse=sumsqr(TsetY-y)/size(y,1); 
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%backward stepwise iterations 

while size(intervals,1)>1 

for j=1:size(intervals,1)   

    interval=intervals; 

    interval(j,:)=[]; 

    newX=TsetX(:,interval); 

    [~,~,~,~,betaPLS,~,~,~] = plsregress(newX,TsetY,componentNo); 

    y = [ones(size(newX,1),1),newX]*betaPLS; 

    mse=sumsqr(TsetY-y)/size(y,1); 

    if mse<localmse 

        localmse=mse; 

        leaveIndex=j;  

    elseif j<size(intervals,1) 

        counter=counter+1; 

    elseif j==size(intervals,1) && counter==(size(intervals,1)-1) 

        flag=1; 

    end 

end 

counter=0; 

if flag==1  %this interation completed 

    flag=0; 

    break; 

end 

  

intervals(leaveIndex,:)=[]; %% the interval should be kicked out at this interation 
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end 

  

if localmse<finalmse %compare the mse between iterations 

finalmse=localmse; 

fi=intervals; 

bestintervalNo=i; 

end 

  

end 

  

else       % given a fixed desired number of intervals   

     

width=floor(n/intervalsNo); % identical width for each interval 

intervals=IntervalPartition(width,intervalsNo); %partition intervals     

newX=TsetX(:,intervals); 

[~,~,~,~,betaPLS,~,~,~] = plsregress(newX,TsetY,componentNo); 

y = [ones(size(newX,1),1),newX]*betaPLS; 

localmse=sumsqr(TsetY-y)/size(y,1);    

     

%backward stepwise iterations   

while size(intervals,1)>1 

for j=1:size(intervals,1)   

    interval=intervals; 

    interval(j,:)=[]; 

    newX=TsetX(:,interval); 

    [~,~,~,~,betaPLS,~,~,~] = plsregress(newX,TsetY,componentNo); 

    y = [ones(size(newX,1),1),newX]*betaPLS; 
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    mse=sumsqr(TsetY-y)/size(y,1); 

    if mse<localmse 

        localmse=mse; 

        leaveIndex=j;  

    elseif j<size(intervals,1) 

        counter=counter+1; 

    elseif j==size(intervals,1) && counter==(size(intervals,1)-1) 

        flag=1; 

    end 

end 

  counter=0; 

if flag==1  %no more intervals should be kicked out at this iteration 

    break; 

end 

  

intervals(leaveIndex,:)=[]; 

  

end   

fi=intervals; 

finalmse=localmse; 

bestintervalNo=intervalsNo; 

end 

  

%----------------------Step 3: final results--------------- 

  

%extract all variable indexes into one row 

finalIntervals=[]; 
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for k=1:size(fi,1) 

    finalIntervals=[finalIntervals,fi(k,:)];  

end 

  

sTsetX=TsetX(:,finalIntervals); %selected variables for training set 

sVsetX=VsetX(:,finalIntervals); %selected variables for validation set 

  

%draw graph 

figure,plot(TsetX(1,:));hold,grid 

plot(finalIntervals,TsetX(1,finalIntervals),'s') 

legend('Original variables','Selected variables') 

xlabel('Variable index') 

  

  

end 
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FORWARD INTERVAL PARTIAL LEAST SQUARES (FIPLS) 

function [finalmse,finalIntervals,bestintervalNo,sTsetX,sVsetX] = 

FiPLS(TsetX,TsetY,VsetX,componentNo,intervalsNo) 

%%     Forward Interval Partial Least Squares (FiPLS) 

  

% number of PC should be the same for all local PLS models 

  

%-----------------------Input------------------------------ 

% TsetX: spectral data matrix of training set 

%        size:n(samples) x m(varibales), 

% TsetY: reference data of training set: n(samples) x p(properties) 

% VsetX: spectral data matrix of validation set: n(samples) x m(varibales) 

% componentNo: nubmer of PLS components 

% intervalsNo: (optional) the desired number of intervals. default = auto-divide 

intervals 

  

%-----------------------Output----------------------------- 

% finalmse: best mse of cross-validation 

% finalIntervals: index set of selected variables whose has best mse of cross-validation 

% bestintervalNo: best number of intervals 

% sTsetX: variables-selected spectra for training set 

% sVsetX: variables-selected spectra for validation set 

  

  

%%      Last modified by Shupeng Hu. Sept. 15th 2019  
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%-----------------------Step 1:configure inputs------------ 

  

[~,n]=size(TsetX);  

min_intervals=5; % at least 3 intervals 

max_intervals=floor(n/(componentNo+1)); % maximum number of intervals 

  

if nargin==4 

   intervalsNo=-1; 

end 

  

%-------------------Step 2:seek the best spectral regions-- 

  

finalmse=10; 

localmse=10; 

flag=0; 

counter=0; 

if intervalsNo==-1 

for i=min_intervals:max_intervals 

    disp(['Currently there are ',num2str(i),' intervals']); 

     

        width=floor(n/i); % identical width for each interval 

        intervals=IntervalPartition(width,i); %partition intervals 

        currentIntervals=[]; 

         

%forward stepwise iterations 

while size(currentIntervals,2)<width*i 

for j=1:size(intervals,1)    
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        interval=[currentIntervals,intervals(j,:)]; 

        newX=TsetX(:,interval); 

        [~,~,~,~,betaPLS,~,~,~] = plsregress(newX,TsetY,componentNo); 

        y = [ones(size(newX,1),1),newX]*betaPLS; 

        mse=sumsqr(TsetY-y)/size(y,1); 

       if mse<localmse 

          localmse=mse; 

          addIndex=j;    

       elseif j<size(intervals,1)  

           counter=counter+1; 

       elseif j==size(intervals,1) && counter==(size(intervals,1)-1) 

           flag=1; 

       end    

end 

counter=0; 

if flag==1  %no more intervals should be selected at this interation 

    flag=0; 

    break; 

end 

currentIntervals=[currentIntervals,intervals(addIndex,:)]; 

intervals(addIndex,:)=[]; 

end 

  

    if localmse<finalmse  % compare the mse between iterations 

finalIntervals=currentIntervals; 

finalmse=localmse; 

bestintervalNo=i; 
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    end 

     

localmse=10; % reset local mse for next iteration 

end 

  

else % given a fixed desired number of intervals 

     

width=floor(n/intervalsNo); % identical width for each interval 

intervals=IntervalPartition(width,intervalsNo); %partition intervals 

currentIntervals=[]; 

  

%forward stepwise iterations 

while size(currentIntervals,2)<width*intervalsNo 

for j=1:size(intervals,1)    

        interval=[currentIntervals,intervals(j,:)]; 

        newX=TsetX(:,interval); 

        [~,~,~,~,betaPLS,~,~,~] = plsregress(newX,TsetY,componentNo); 

        y = [ones(size(newX,1),1),newX]*betaPLS; 

        mse=sumsqr(TsetY-y)/size(y,1); 

       if mse<localmse 

          localmse=mse; 

          addIndex=j;             

       elseif j<size(intervals,1)  

           counter=counter+1; 

       elseif j==size(intervals,1) && counter==(size(intervals,1)-1) 

           flag=1; 

       end    
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end 

counter=0; 

if flag==1  %no more intervals should be selected at this interation 

    break; 

end 

  

currentIntervals=[currentIntervals,intervals(addIndex,:)]; 

intervals(addIndex,:)=[]; 

end 

finalIntervals=currentIntervals; 

finalmse=localmse; 

bestintervalNo=intervalsNo; 

end 

  

%----------------------Step 3: final results--------------- 

  

sTsetX=TsetX(:,finalIntervals); %selected variables for training set 

sVsetX=VsetX(:,finalIntervals); %selected variables for validation set 

  

%draw graph 

figure,plot(TsetX(1,:));hold,grid 

plot(finalIntervals,TsetX(1,finalIntervals),'s') 

legend('Original variables','Selected variables') 

xlabel('Variable index') 

  

end 
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MULTIPLE LINEAR REGRESSION (MLR) 

function [stats,outliers,y,RMSEP,R2,RPD] = MLR(TsetX,TsetY,VsetX,VsetY,alpha) 

%%                  MLR(Multiple Linear Regression) 

  

%------------------------------Input----------------------- 

% TsetX: spectral data matrix of training set 

%        size:n(samples) x m(varibales), 

%        n>m, otherwise, this function has problem 

% TsetY: reference data of training set: n(samples) x p(properties),p=1 

% VsetX: spectral data matrix of validation set: n(samples) x m(varibales) 

% VsetY: reference data of validation set: n(samples) x p(properties),p=1 

% alpha: confidence level=(1-alpha)% 

  

%------------------------------Output---------------------- 

% stats: statistics of calibration set 

%        stats(1)= R2 

%        stats(2)= F-statistic,  

%        stats(3)= p-value 

%        stats(4)= error variacne 

% outliers: possible outliers in calibration set 

% y: predicted response for validation set 

% RMSEP: root mean squared of standard error of prediction 

% R2: coefficient of determination 

% RPD: ratio of standard error of performance to deviation  

  

%%   Last modified by Shupeng Hu. March 18th 2018  
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%b: regression coefficients 

%rint: residuals interval 

%stats: see it in output 

[b,~,~,rint,stats] = regress(TsetY,[ones(size(TsetX,1),1),TsetX],alpha); 

  

%------------------------------Validation------------------%Diagnose outliers by finding the 

residual intervals that do not contain 0 

outliers = find((rint(:,1)<0 & rint(:,2)>0)==false);  

  

y=[ones(size(VsetX,1),1),VsetX]*b; %predicted response 

  

%criteria 

RMSEP=sqrt(sumsqr(VsetY-y)/size(y,1)); 

R2=1-(sumsqr(VsetY-y)/sumsqr(VsetY-mean(VsetY))); 

RPD=sqrt(sumsqr(VsetY-mean(VsetY))/(size(y,1)-1))/RMSEP; 

  

end 
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PRINCIPAL COMPONENTS REGRESSION (PCR) 

function 

[eigenPercent,MSE,outliers,stats,y,RMSEP,R2,RPD]=PCR(TsetX,TsetY,VsetX,VsetY,

alpha,componentsNo) 

%%                PCR(Principal Components Regression) 

  

%-----------------------Input------------------------------% TsetX: spectral data matrix of 

training set 

%        size:n(samples) x m(varibales), 

% TsetY: reference data of training set: n(samples) x p(properties) 

% VsetX: spectral data matrix of validation set: n(samples) x m(varibales) 

% VsetY: reference data of validation set: n(samples) x p(properties) 

% alpha: confidence level=(1-alpha)% 

% componentsNo: the number of seleced principal components 

  

%------------------------------Output---------------------- 

% eigenPercent: the percentage of the total variance explained by each principal 

component 

% MSE: mean squared of standard error in leave-one-out cross validation for 

0:ncomponents 

% outliers: possible outliers in calibration set 

% stats: statistics of calibration set 

%        stats(1)= R2 

%        stats(2)= F-statistic,  

%        stats(3)= p-value 

%        stats(4)= error variacne 

% y: predicted response for validation set 

% RMSEP: root mean squared of standard error of prediction 
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% R2: coefficient of determination 

% RPD: ratio of standard error of performance to deviation  

  

%%        Last modified by Shupeng Hu. July 10th 2019  

  

  

%----------------------------use the PCA function----------%loading: principal component 

coefficients 

%score: PCA score matrix: n*k, k is the number of principal components 

%eigenPercent: see it in output 

[loading,score,~,~,eigenPercent,~] = pca(TsetX); 

  

%----------------------principal components selection------ 

%calculate the MSE in cross validation 

MSE = sum(crossval(@pcrsse,TsetX,TsetY,'kfold',5),1)/size(TsetX,1); 

selectedScore=score(:,1:componentsNo); %size: omponentsNo 

selectedLoading=loading(:,1:componentsNo); %size: m*componentsNo 

  

%-----------------------------Regression------------------- 

%b: regression coefficients 

%rint: residuals interval 

%stats: see it in output 

[b,~,~,rint,stats] = regress(TsetY,[ones(size(selectedScore,1),1),selectedScore],alpha); 

  

%------------------------------Validation------------------ 

%Diagnose outliers by finding the residual intervals that do not contain 0 

outliers = find((rint(:,1)<0 & rint(:,2)>0)==false);  
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%get the regression coefficient vector corresponding to the selected components 

B=selectedLoading*b(2:size(b,1),1); 

  

y=[ones(size(VsetX,1),1),VsetX]*[mean(TsetY)-mean(TsetX)*B;B]; %predicted 

response 

  

%criteria 

RMSEP=sqrt(sumsqr(VsetY-y)/size(y,1)); 

R2=1-(sumsqr(VsetY-y)/sumsqr(VsetY-mean(VsetY))); 

RPD=sqrt(sumsqr(VsetY-mean(VsetY))/(size(y,1)-1))/RMSEP; 

  

end 
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PARTIAL LEAST SQUARES REGRESSION (PLSR) 

function [eigenPercent,MSE,stats,y,RMSEP,R2,RPD] = 

PLSR(TsetX,TsetY,VsetX,VsetY,componentNo) 

%%           PLSR(Partial Least Squares Regression) 

  

%-----------------------Input------------------------------ 

% TsetX: spectral data matrix of training set 

%        size:n(samples) x m(varibales), 

% TsetY: reference data of training set: n(samples) x p(properties) 

% VsetX: spectral data matrix of validation set: n(samples) x m(varibales) 

% VsetY: reference data of validation set: n(samples) x p(properties 

 total variance explained by each principal component) 

% componentNo: the number of selected PLS components 

  

%------------------------------Output---------------------- 

% eigenPercent:the percentage of the 

%              eigenPercent(1,:)=percentage of variance explained in X by each PLS 

component 

%              eigenPercent(2,:)=percentage of variance explained in Y by each PLS 

component 

% MSE: mean-squared errors for PLS models with 0:ncomp components 

%      MSE(1,:)=mean-squared errors for the predictor variables in X  

%      MSE(2,:)=mean-squared errors for the response variable(s) in Y 

%stats:contains W ¡ª A p-by-ncomp matrix of PLS weights so that XS = X0*W. 

%                T2 ¡ª The T2 statistic for each point in XS. 

%                Xresiduals ¡ª The predictor residuals, that is, X0-XS*XL'. 

%                Yresiduals ¡ª The response residuals, that is, Y0-XS*YL'. 

% y: predicted response for the validation set 
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% RMSEP: root mean squared of the standard error of prediction 

% R2: coefficient of determination 

% RPD: the ratio of the standard error of performance to deviation  

  

%%       Last modified by Shupeng Hu. July 11th 2019  

  

%----------------------------use the PLS function---------- 

%XLoading: predictor loading 

%YLoading: response loading 

%XSocre: predictor scores 

%YScore: response scores 

%betaPLS: PLS regression coefficients 

%eigenPercent: see in the output 

%MSE: see in the output 

%stats: see in the output 

%Leave-one-out cross validation= full-fold cross validation 

%[~,~,~,~,betaPLS,eigenPercent,MSE,stats] = 

plsregress(TsetX,TsetY,componentNo,'cv',size(TsetX,1)); 

[~,~,~,~,betaPLS,eigenPercent,MSE,stats] = 

plsregress(TsetX,TsetY,componentNo,'cv',5); 

  

  

%-----------------------------------validaiton------------- 

y = [ones(size(VsetX,1),1),VsetX]*betaPLS; 

  

%criteria 

RMSEP=sqrt(sumsqr(VsetY-y)/size(y,1)); 

R2=1-(sumsqr(VsetY-y)/sumsqr(VsetY-mean(VsetY))); 
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RPD=sqrt(sumsqr(VsetY-mean(VsetY))/(size(y,1)-1))/RMSEP; 

  

end 

  

  

 

 


