
EFFECTS OF NETWORK WEIGHT

STRUCTURE IN ECHO STATE

NETWORKS

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Science and Engineering

2020

Danny J. Wood

School of Engineering

Department of Computer Science

Contents

Abstract 13

Declaration 14

Copyright 15

Acknowledgements 16

1 Introduction 18

1.1 Motivation . 19

1.2 Research Questions . 19

1.3 Contributions . 20

1.4 Thesis Structure . 21

2 Supervised Learning and Neural Networks 23

2.1 Supervised Learning . 23

2.1.1 Regression Problems . 26

2.1.2 Sequence Learning Problems 27

2.2 Artificial Neural Networks . 28

2.2.1 Feedforward Networks . 29

2.2.2 Recurrent Neural Networks 31

2.2.3 Training Networks using Gradient-Based Optimisation . . 32

3 Echo State Networks 36

3.1 Reservoir Computing . 36

3.2 Echo State Networks . 37

3.2.1 Training the Network . 38

3.2.2 The Echo State Property 40

3.3 Memory Capacity . 43

2

3.4 Reservoir Initialisation Methods 45

3.4.1 Random Reservoir Constructions 46

3.4.2 Deterministic Reservoir Construction 48

3.5 Deep and Modular Structures . 50

3.5.1 Deep Networks . 51

3.5.2 Other Modularisation Strategies 55

3.6 Managing Memory and Non-Linearity 55

4 Memory in Linear Networks 58

4.1 Introduction . 58

4.2 Background . 60

4.3 Analytically Determining Memory Capacity 61

4.3.1 Example: Circulant Reservoirs (SCR and ALR) 66

4.4 Application to Random Networks 72

4.4.1 Shallow Networks . 72

4.4.2 Deep Networks . 75

4.5 Related Work . 81

4.6 Conclusion . 85

5 Depth in Recurrent Neural Networks 86

5.1 Introduction . 86

5.2 Background . 88

5.2.1 Notation and Network Structure 89

5.3 Sensitivity to Perturbation . 90

5.3.1 Initial Experiments . 93

5.3.2 Spectral Radius . 95

5.3.3 Hidden Layer Size . 101

5.4 Memory Capacity . 103

5.5 Effects of Non-Linearity . 115

5.6 Conclusion . 125

6 Asymptotic Behaviour of Linear Networks 126

6.1 Introduction . 126

6.2 Background . 128

6.2.1 Sub-Gaussian Random Variables 131

6.3 The Stable Case: ρ(W) < 1 . 133

3

6.3.1 Stable Networks with Sub-Gaussian Inputs 136

6.4 The Unstable Case: ρ(W) = 1 . 139

6.5 The Explosive Case: ρ(W) > 1 147

6.6 Convergence of Hidden States . 150

6.7 Conclusion . 153

7 Conclusion 155

7.1 Summary of Research . 155

7.1.1 Memory in Linear Networks 155

7.1.2 Depth in Recurrent Networks 156

7.1.3 The Asymptotic Behaviour of Linear Networks 157

7.2 Outlook and Future Work . 157

7.2.1 Memory in Linear Networks 158

7.2.2 Depth in Recurrent Networks 158

7.2.3 The Asymptotic Behaviour of Linear Networks 159

7.3 Closing Remarks . 160

A Linear Algebra Background 178

A.1 Matrix Decompositions . 178

A.2 Useful Inequalities . 181

A.3 Gelfand’s Formula . 183

B Supplementary Material for Chapter 4 185

C Supplementary Material for Chapter 5 189

C.1 Proof of Lemma 5.4.1 . 189

C.2 Additional Non-Linear Memory Capacity Experiments 192

C.3 Long Term Behaviour of Perturbations 195

D Supplementary Material for Chapter 6 198

D.1 Proofs for Section 6.4 . 198

D.2 Proofs for Section 6.5 . 201

Word Count: 41,553

4

List of Tables

5.1 Slope and R2 of regression on log of size of maximum effect of

perturbation . 98

5.2 Slope and R2 of regression on k at which maximum ‖y‖(l)
k is reached101

5.3 MC(l) for layers of a deep linear ESN with 100 units per layer for

various spectral radii. 109

5

List of Figures

2.1 An MLP with three input units, two output units and two layers

of four hidden units . 30

2.2 Diagram of a simple RNN . 32

2.3 Unrolled diagram of a simple RNN 33

3.1 Reservoir topologies for various deterministic reservoirs 49

3.2 DeepESN . 52

3.3 Unrolled DeepESN . 53

4.1 Memory capacity of ALR reservoirs 71

4.2 Visualisation of the process of showing the a lin-DeepESN with

independently sampled weights has maximum memory capacity —

unique eigenvalue . 82

4.3 Visualisation of the process of showing the a lin-DeepESN with

independently sampled weights has maximum memory capacity —

shared eigenvalue . 83

4.4 Visualisation of the process of showing the a lin-DeepESN with

shared weights has maximum memory capacity 84

5.1 Size of effect of perturbation of input in different layers of a Lin-

DeepESN over time . 94

5.2 Effect of spectral radius on sensitivity to perturbation Lin-DeepESN’s

layers, part 1 . 96

5.3 Effect of spectral radius on sensitivity to perturbation Lin-DeepESN’s

layers, part 2 . 97

5.4 Log of size of maximum
∥∥y(l)k

∥∥ against layer size for 20-layer Lin-

DeepESNs with various spectral radii. Logarithms are taken in

base 10 in order to allow easier comparison with Figure 5.1 99

6

5.5 Value of k at which maximum
∥∥∥y(l)

k

∥∥∥ occurs against layer size for

20-layer Lin-DeepESN. 100

5.6 Log of maximum perturbation size at each hidden layer when

varying number of units per layer. 102

5.7 Delay until maximum perturbation size is reached for each hidden

layer when varying the number of units per layer. 102

5.8 Layer-wise memory capacity of Lin-DeepESN, part 1 110

5.9 Layer-wise memory capacity of Lin-DeepESN, part 2 111

5.10 Proportion of average variance that each principal component is

responsible for in layers of an DeepESN. 114

5.11 PCA and memory capacity for ρ(Wi) = 0.5 116

5.12 Comparison of memory capacity curves for ρ(Wi) = 0.9 and ρ(Wi =

0.95) . 117

5.13 Memory capacity curve for network with ρ(W) = 0.999 118

5.14 Memory capacity curves of Deep-ESNs 120

5.15 Size of state norms for layers of a DeepESN with input scale 0.1 . 123

5.16 Total memory capacity for network layers, varying recurrent spectral

radius and feedforward norm size. Input weight vector scaled to

satisfy ‖vi‖ = 0.1 in all cases. 124

C.1 Total memory capacity for network layers, varying recurrent spectral

radius and feedforward norm size. Input weight vector scaled to

satisfy ‖vi‖ = 10−6 . 192

C.2 Total memory capacity for network layers, varying recurrent spectral

radius and feedforward norm size. Input weight vector scaled to

satisfy ‖vi‖ = 10−4 . 193

7

List of Notation

Echo State Networks

W Recurrent weight matrix

v Input weight vector

V Input weight matrix

M Size of hidden state

D Dimension of elements of the input sequence

xt Hidden state of network at time t

ut Vector input at time t

ut Scalar input at time t

MCk The k-delay memory capacity of the network

MC The total memory capacity of the network

wk The optimal reconstruction weights for ut−k

(W,v) The linear Echo state network with recurrent weight matrix W

and input weight vector v

MW,v The memory matrix of the network (W,v)

Cstate Bound on the norm of the hidden state of the network

Cin Bound on the norm of the inputs

P Matrix of eigenvectors of W

Λ Matrix whose diagonal entries are the eigenvalues of W

J The Jordan normal form of the matrix W

v’ Input weight vector in the basis of (generalised) eigenvectors of W

α Leaky integrator parameter

G(x, U) Iterated update operator acting on initial state x and finite-length

sequence U

Deep Echo State Networks

W1, . . .WL The recurrent weight matrices for layers 1, ..., L of the network

v1 The input vector for the first later of the network

V2, . . . VL The input weight matrices for layers 2, ..., L of the network

x
(l)
t The state of the lth layer of the network at time t

W̄ The recurrent weight matrix of the flattened network

v̄ The input weight matrix of the flattened weight matrix

W̄ (l) Recurrent matrix for the flattened network composed of the first l

layers of (W̄ , v̄)

v̄(l) Input weight vector for the flattened network composed of the first

l layers of (W̄ , v̄)

x̄
(l)
t The hidden state at time t for the flattened network composed of

the first l layers of (W̄ , v̄)

ȳ
(l)
k The contribution of a unit input k time-steps ago to the lth layer

of the network in the present

L The number of hidden layers in the network

MC
(l)
k The k-delay memory capacity of the lth layer of the network

MC(l) The total memory capacity of the lth layer of the network

Miscellaneous

ρ(X) Spectral radius of the matrix X

Xᵀ Transpose of the matrix X

d(x,y) Euclidean distance between vectors x and y

δij The Kronecker delta (i.e., 1 when i = j, zero otherwise)

‖v‖P The infinity norm of v in the basis of columns of Q

r1, r2, . . . Independent Rademacher random variables

σ2 Variance or proxy-variance of a distribution

o(f(n)) A function, say g(n), such that limn→∞g(n)/f(n)

det(A) Determinant of the matrix A

var(X) Variance of the random variable X

cov(X) Covariance of the random variable X

SM−1 The set of all unit-norm vectors in the space RM

diag(A1, A2, ...)Matrix whose diagonal consists of the matrix A1, A2, . . . in order,

and whose other entries are all zero

S(A) The set of eigenvalues of the matrix A

10

List of Abbreviations

ALR Adjacent-feedback Loop Reservoir

ANN Artificial Neural Network

cov Covariance

DeepESN Deep Echo State Network

DFT Discrete Fourier Transform

DLR Delay Line Reservoir

ESN Echo State Network

ESP Echo State Property

FNN Feedforward Neural Network

GRU Gated Recurrent Unit

i.i.d. independent and identically distributed

Lin-DeepESN Linear Deep Echo State Network

LSTM Long Short Term Memory

MC Memory Capacity

MCk k-delay Memory Capacity

MLP Multi-Layer Perceptron

PCA Principal Component Analysis

PoV Proportion of Variance

RNN Recurrent Neural Network

SCR Simple Cyclic Reservoir

SCRJ Simple Cyclic Reservoir with Jumps

tanh Hyperbolic Tangent

var Variance

12

Abstract

Effects of Network Weight Structure in Echo State
Networks

Danny J. Wood
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2020

Echo state networks (ESNs) are a type of recurrent neural model with a fixed

internal weight structure and an adaptable readout trained using the network’s

hidden states as features. Since an ESN’s weight structure is fixed (and often

randomly generated), it is important that we understand how the behaviours

which emerge from these networks are influenced by the design choices made in the

network’s construction. In this thesis, we examine the impact of several of these

choices on the behaviour of ESNs. First, we examine the role of network weight

structure in determining the memory capacity of ESNs. By drawing connections

with results in control theory, we derive an expression for the memory capacity of

a linear network in terms of structures within its weights. Next, we show that the

previously reported phenomenon of deeper layers operating at slower ‘time-scales’

is exhibited even by linear networks, and we provide deeper insights into this

behaviour by examining the sensitivity to perturbation and memory capacity of

different layers. Finally, we examine the asymptotic behaviour of linear networks,

and input-driven linear systems more generally. In the cases where the network

is stable, we show properties which emerge from this stability, and construct

tail bounds on the components of the hidden state when the network’s input is

perturbed by noise. In cases of instability, we construct bounds on the expectation

of the hidden state’s norm in the presence of noisy input.

13

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

14

Copyright

i. The author of this thesis (including any appendices and/or schedules to

this thesis) owns certain copyright or related rights in it (the “Copyright”)

and s/he has given The University of Manchester certain rights to use such

Copyright, including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard

or electronic copy, may be made only in accordance with the Copyright,

Designs and Patents Act 1988 (as amended) and regulations issued under it

or, where appropriate, in accordance with licensing agreements which the

University has from time to time. This page must form part of any such

copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other

intellectual property (the “Intellectual Property”) and any reproductions of

copyright works in the thesis, for example graphs and tables (“Reproduc-

tions”), which may be described in this thesis, may not be owned by the

author and may be owned by third parties. Such Intellectual Property and

Reproductions cannot and must not be made available for use without the

prior written permission of the owner(s) of the relevant Intellectual Property

and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication

and commercialisation of this thesis, the Copyright and any Intellectual

Property and/or Reproductions described in it may take place is available

in the University IP Policy (see http://documents.manchester.ac.uk/

DocuInfo.aspx?DocID=24420), in any relevant Thesis restriction declara-

tions deposited in the University Library, The University Library’s regula-

tions (see http://www.manchester.ac.uk/library/about/regulations)

and in The University’s policy on presentation of Theses

15

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://www.manchester.ac.uk/library/about/regulations

Acknowledgements

First and foremost, I would like to thank my supervisory team Ke Chen and

Paul Glendinning, for their expertise and guidance. Without them, this thesis

would not have been possible. I am grateful to Ke for fostering my interest in

machine learning, and for his willingness to share his advice and technical expertise.

Equally, I am thankful to Paul for his guidance, boundless enthusiasm, and his

knack both for finding interesting questions and for offering clarifying perspectives

on their answers.

I owe a great deal of thanks Andrew Webb for his willingness to listen to, and

provide feedback on, even my most incoherent ideas, helping to shape them into

something more sensible; and to Henry Reeve and Joe Mellor for sharing their

knowledge and enthusiasm. I would also like to thank Jon Parkinson for his sound

advice.

I feel lucky to have had many great people in my CDT cohort. Thanks to

Alex, Amy, Cameron, Emily, Georgiana, Lara, Mike, Richard, Rob for sharing

countless lunches, dinners and drinks. Spending my time in Manchester with such

an amazing group of people has made it a wonderful experience, and I hope we

remain friends long after we’ve all moved on to new and exciting things. Doing

a PhD was also made immeasurably easier through sharing an office with many

brilliant people, I am very grateful that I was able to spend my time in the research

group in such great company. There are too many of you to name individually, but

special thanks to Alessio Sarullo, Jon Crawford and Will Woof for proof-reading

parts of this thesis.

In the wider school, I would like to thank John Latham and Giles Reger

for sharing their experience and wisdom, and Gavin Donald, Susie Hymas and

16

Richard Ward in the student support office for always being helpful, friendly and

cheerful in equal measure.

I would like to thank Mark and Emily for their sharing their home with me

for the last two years. And thank you to my friends in Huddersfield for sharing in

many memorable adventures, especially to Becky for her constant support and

proofreading services. And thanks to Jax, for only barking at me when he felt I

truly deserved it.

I am also very grateful to Gavin Brown for his help and support in preparing

for my viva and final submission.

Thank you to the Engineering and Physical Sciences Research Council for fund-

ing my research through the the Centre for Doctoral Training Grant [EP/1038099/1].

Finally, thank you to my parents for their love, support and generosity.

17

Chapter 1

Introduction

It is a common aphorism that “it is difficult to make predictions, especially about

the future”.1 While this is undoubtedly true, the ability to reason about the world

and infer how a system will evolve given its current state and historical behaviour

is an incredibly important one. In almost every scientific field, as well as in the

practices of business and governance, the ability to make reasonable predictions

about the future of a system given its past behaviour is vital in aiding our ability

to both understand and influence complex systems.

In statistics and machine learning, a wide range of models have been developed

to tackle the task of time series prediction. Classical statistical models for analysis

of time series rely on the concept of auto-regression, using linear combinations of

previous observations in order to predict the future values of the sequence. While

these models can be very sophisticated and deal with a range of behaviours, the

inherent linearity of the models ultimately restricts the kinds of sequences which

they are able to successfully model.

Recently, the resurgence of neural networks has lead to a deeper exploration of

recurrent neural models as a tool for processing complex time series. These models

have proven to be very effective, despite the fact that they have several major

drawbacks which are absent from neural models which operate in the feedforward

paradigm. These problems are mainly concerned with the training phase, in which

the model’s parameters are learnt, with the recurrent nature of the model leading

to many undesirable network behaviours.

1Though it’s possible the sentiment was repeated by Danish physicist Niels Bohr—one of
the many prominent figures to whom it is often attributed—it appears that the earliest written
record attributes it to an unnamed member of Danish parliament, albeit with some claiming
that its provenance is earlier as a Danish proverb [O’T13]

18

1.1. MOTIVATION 19

This difficulty lead to the emergence of reservoir computing, using the idea

that a large untrained recurrent network can serve to generate a rich set of

features, which a simple linear regression procedure is able to exploit to achieve

good performance on time series prediction tasks. This idea was developed

simultaneously for discrete time networks, in the form of Echo State Networks

(ESNs) [Jae01] and continuous time networks in the form of Liquid State Machines

(LSMs) [Maa+02]. It is the discrete time version, ESNs, which are of interest in

this thesis.

1.1 Motivation

As interest in ESNs has grown, many efforts have been made to improve their

design and attempt to overcome the shortcomings of previous network design

strategies. It is important that this work of designing novel network architectures

be performed in a reasoned and principled way, building on a strong foundation

of theoretical knowledge regarding the impact of network design choices on the

resulting network’s properties and behaviour. In this thesis, we seek to build a

deeper understanding of the impact of the choices made in the design of ESNs, with

the hope that the ideas that we develop can be used to guide future researchers

in their efforts to improve echo state network architectures.

A property of the network which will be of particular interest to us is its

memory capacity (MC). The memory capacity of a network is, loosely speaking,

the amount of information about the input history which can be inferred from the

network’s state. This is important in ESNs because, unlike other recurrent neural

network paradigms, in reservoir computing the network’s hidden state does not

adapt to the patterns within the input sequence. Therefore, the network cannot

learn to discriminate between relevant and irrelevant information, and the network

must retain as much information as possible about the input history in order

to ensure it is able to perform computations involving long-term dependencies

between the input and desired output.

1.2 Research Questions

The primary question that we seek to answer in this thesis is a relatively simple

one: How does the structure of an Echo State Network affect its behaviour?.

20 CHAPTER 1. INTRODUCTION

While this is an important question, it is a very broad one, and it is unlikely

that a satisfactory answer to this question could be distilled into a single volume.

Instead, we focus on sub-questions which can be meaningfully answered, and

in this way attempt to contribute to the literature on the broader question. In

particular, we attempt to answer the following, more specific, questions:

• How does the structure of a network’s weights determine the amount of

information that a network can contain? In particular, how can we infer

the memory capacity of a linear network from properties of the network’s

weights?

• It is an oft-observed phenomenon that deeper layers of deep recurrent neural

networks respond to inputs in ways that suggest that those layers operate

at different time-scales. What are the causes of this phenomenon, and how

does the structure of the network affect the ways in which it manifests?

• How does the structure of a network’s weights determine its asymptotic

behaviour? Particularly in the case of linear networks, how does the spectral

structure of the network’s recurrent weight matrix affect the long-term

behaviour of the network and how is this influenced by the existence of noise

in the network’s input?

1.3 Contributions

We provide more detailed summaries of our contributions to each of the research

questions above in the relevant chapters but, in broad strokes, the research

contributions of this thesis are as follows:

• We illuminate the relationship between the memory capacity of linear

networks and the notion of controllability in control theory. By leveraging

this relationship, we show how we can analytically determine the memory

capacity of a range of network structures, and that networks where weights

are sampled from continuous distributions achieve the maximum possible

memory capacity with probability one. Additionally, we find the same is

true for deep networks under common random initialisation schemes.

• We provide insights into the relationship between the structure of deep echo

state networks and the temporal behaviour of the layers. In particular, we

1.4. THESIS STRUCTURE 21

conduct a series of experiments which demonstrate the effects of a layer’s

depth on how it recovers from perturbation of elements of the input sequence

and on its memory capacity. Through empirical study, we provide novel

insights into the nature of these phenomena.

• We provide a comprehensive overview of the relationship between the spectral

structure of a linear network’s recurrent weight matrix and the asymptotic

network behaviour.

These contributions are the primary subjects of Chapters 4, 5 and 6, respectively.

1.4 Thesis Structure

The remainder of this thesis is organised as follows:

• Chapter 2 covers supervised learning and neural networks, providing context

both for the types of problems ESNs are designed to solve, and the family

of models to which they belong.

• Chapter 3 introduces ESNs and the related concepts required to understand

the rest of the thesis.

• Chapter 4 examines how the structure of a network’s weights affects the

network’s memory capacity.

• Chapter 5 examines the effects of depth in ESNs, particularly the causes

of the phenomenon of different network layers ‘operating at different time-

scales’.

• Chapter 6 examines the asymptotic behaviour of linear networks in terms of

the spectral radius of their recurrent weight matrix.

• Chapter 5 contains the thesis’ conclusions and suggests directions for future

work.

In addition to these chapters, the thesis contains four appendices. In Appendix

A, we present some standard definitions and theorems from the literature; in

particular, this appendix serves as a very brief overview of the standard results from

linear algebra used throughout the thesis. Each of the three research chapters,

22 CHAPTER 1. INTRODUCTION

Chapters 4, 5 and 6, have an associated appendix (Appendices B, C and D,

respectively) containing supplementary material (primarily proofs for intermediate

lemmas which would disrupt the flow of the main text of the chapters).

Chapter 2

Background: Supervised Machine

Learning and Neural Networks

Before discussing Echo State Networks (ESNs) themselves, we cover two pre-

requisite topics: firstly, we introduce supervised machine learning, and in particular

sequence learning problems, this provides the motivation for the models discussed

later in the thesis and describes the problems which they are designed to solve;

secondly, we introduce artifical neural networks, and recurrent neural networks in

particular, giving an overview of the class of models to which ESNs belong. A

detailed introduction to ESNs, and related material is provided in Chapter 3.

2.1 Supervised Learning

Supervised learning is a machine learning paradigm in which a training set of input-

target pairs is used to select, from a family of candidate models, the model which

best describes the relationship between the inputs and the targets. More formally,

we define an input domain U, a target domain T and some joint distribution D
over pairs (u, t) with u ∈ U and t ∈ T. We would like to construct a function

f : U → T which gives a good prediction of t, given that we know u, and that

(u, t) ∼ D. In order to do this, we need to define exactly what is meant by a ‘good

prediction’. For this purpose, we choose a loss function L : T× T→ R+, where

L(f(u), t) is a measure of the closeness of the prediction given by the model f

for the input u to the target t. We would like f(u) to generally be as close to

t as possible for pairs (u, t) which have high likelihood under our distribution

(i.e., likely input target pairs should yield a small loss). In particular, we would

23

24 CHAPTER 2. SUPERVISED LEARNING AND NEURAL NETWORKS

like to find a function for which the associated risk is as low as possible. Risk is

measured using the risk function, defined as

R(f)
def
= ED[L(f(u),y)].

In order to find such a function, we first select a family of models F (i.e, a set

of candidate functions), which we believe to be expressive enough (that is to say,

large and varied enough) such that at least one of its members will result in a

suitably low risk. We then attempt to find the model f ∗ that gives the lowest risk

amongst the models in F ; that is to say, we try to find

f ∗ = arg min
f∈F

R(f).

Unfortunately, the joint distribution D is not known, and therefore it is

not possible to find the candidate model that minimises R(·) over the true

distribution D. Instead, we only have access to a training set of T input-target

pairs sampled independently from the joint distribution, i.e., we have a set

S = {(u1, t1), . . . (uT , tT)} with (ui, ti) ∼ D for i ∈ {1, . . . T}. As a proxy for

finding the function in F that minimises the expectation of R over D, we attempt

to find the function that minimises the empirical risk over the set S. In other

words, we look for f ∗ ∈ F which satisfies:

f ∗
def
= arg min

f∈F

1

T

T∑
i=1

L(f(ui), ti))

We search for f ∗ using a training algorithm: a procedure which takes our family

of candidate models and training data set and selects, through some criterion, a

function f † ∈ F , which we believe to produce an empirical risk close to that of f ∗.

In some cases, such as linear regression, it is possible to find f ∗ through direct

computation, though for more complex models, it is in general not possible to

find f ∗ itself (or even to know if we have indeed found it).

Of course, since our training data is in the form of a finite set, an easy way to

minimise the empirical risk is simply to have a function which acts as a lookup

table for the values from U which occur in S, and returns the corresponding

element in T. With such a model, we have no guarantees that it will provide

sensible outputs when the input is not in the training set: the model may not

2.1. SUPERVISED LEARNING 25

generalise well to unseen examples from the distribution. In order to prevent

us from choosing such a model, care must be taken when selecting F to restrict

the class of functions which it contains. One method of constructing F is to

use a parameterised function with a large number of parameters, varying those

parameters to give the functions which serve as elements of the set F . For instance,

we may construct a family of functions as

F = {f(·; Θ) | Θ ∈ RN},

where N ∈ N and f : U× RN → T. By limiting the number of parameters (i.e.,

by making N smaller), we limit the class of functions F , and therefore prevent

the models from being complex enough that they are able to simply memorise the

dataset1. An additional way of preventing overfitting is to have the loss function

penalise model complexity, biasing the choice of f † to simpler models, even if those

models have a higher empirical risk with respect to the original loss function. This

process is known as regularisation. For instance, a common form of regularisation

is penalising large values of the weights, encouraging parameters to have little/no

influence on the function’s value, unless having a larger value has a large effect on

how well the function fits the training data. In this way, more complex models

must justify themselves with a decrease in empirical risk commensurate with the

degree of complexity of the function. A common form of this is L2 regularisation,

in which the regularisation term is proportional to the sum of the squares of the

weights.

When it comes to evaluating how good our choice of f † is, we once again

run into the problem of not being able to distinguish between models which are

fitting the distribution D, and those which have just memorised the targets for

the training data. In order to get an accurate measure of model performance, we

generate a test set by sampling from D again, and calculate the empirical risk on

that test set. Since we don’t want our choice of f † to be informed in any way

by the test set, it is sometimes necessary to split the training set further. If, for

instance, we have multiple candidate families of models, we might wish to use a

training procedure on each of them, but withhold a set amount of training data

which can be used to evaluate which model family has produced the best candidate,

1This is a slight simplification: it is not always true that fewer parameters mean a less expres-
sive model, and with infinite precision computation it is possible to construct a parameterised
function with a single parameter capable of perfectly fitting any training data set [Bou19]

26 CHAPTER 2. SUPERVISED LEARNING AND NEURAL NETWORKS

and only calculate the empirical risk for the test set on that candidate model. In

this case, the witheld set of training examples is referred to as a validation set.

2.1.1 Regression Problems

Broadly speaking, there are two categories of supervised learning problems of

interest to machine learning researchers: classification and regression. In the

former, T is a collection of discrete labels which offer a description of some aspect

of examples which we would like to infer from the example’s features. In the latter,

the target is a scalar or vector value quantifying some characteristic of the data

which can be inferred from the input features. It is the latter case with which we

are most interested, in particular, we consider the case where T = R.

In this case, we wish for our loss function to serve as a measure of the distance

between the prediction f(u) and the target t. A common choice is to define

distance using the Euclidean metric, which gives rise to the squared loss defined

as

L(f(u), t) = (f(u)− t)2.

For a model with parameters Θ, combination of the loss function with L2 regular-

isation gives the empirical risk as

1

T

T∑
i=1

(f(ui)− ti)2 + λ · ‖Θ‖2

where λ is the strength of the regularisation; for the unregularised case, we simply

set λ = 0. This choice of loss function and regularisation are standard choices in

the ESN literature (and beyond) but this does not mean that they are always

the right choice: they come with a set of underlying assumptions about the the

data and the model. Though these considerations are outside the scope of this

thesis, it is worth noting that under a Bayesian framework, this loss function and

regularisation term can be derived in a principled manner under the assumptions

that the target is subject to additive Gaussian noise and that there is a Gaussian

prior on the model weights [Bis06].

2.1. SUPERVISED LEARNING 27

2.1.2 Sequence Learning Problems

Thus far we have specified the target domain T, we now turn our attention to the

input domain U. A standard case in supervised learning is to have elements of U
expressible as some finite length feature vector, e.g. U = RD for some D. While

this is the canonical example for supervised machine learning, it is not always the

most natural representation for the data sources that we may be interested in.

A problem which is of frequent interest in a wide variety of fields is predicting

the future of a time series, given that time series’ history. In particular, one might

envisage a process starting at time t = 0, from which we are able to extract a

sequence of observations u0, u1 . . ., where each ut is a scalar value, measuring some

quantity of interest at time t. Given u0, . . . ut, it would be useful to be able to

select a model which is able to predict ut+k for some positive integer k. In the

paradigm of supervised learning, this gives a training set of input/target pairs of

the form

((u0), u0+k)

((u0, u1), u1+k)

((u0, u1, u2), u2+k)

...

This presents a problem for standard machine learning methods, as the domain of

the inputs is the set of all finite length sequences whose entries are in R (or RD in

the case of multi-dimensional inputs).

Classical auto-regressive time series prediction methods typically deal with this

kind of data by selecting a fixed-length window (i.e, a fixed number of the most

recently observed values) and constructing the model with inputs from this window

as features (examples of such models are autoregression (AR), auto-regressive

moving average (ARMA) and auto-regressive integrated moving average (ARIMA)).

Though these models can be useful, they are limited by their assumption that the

relationships between past and present inputs are fundamentally linear [Zha03].

Non-linear fixed-length window methods can be used in order to model more

complex relationships between the most recent inputs and future values, and

these have also been combined with the auto-regressive approach mentioned in

the previous paragraph [Zha03]. Though they allow modelling of more complex

28 CHAPTER 2. SUPERVISED LEARNING AND NEURAL NETWORKS

non-linear relationships in the data, these approaches still have the problem that

a fixed-length window must be selected from which to draw features.

A more natural method for modelling time series with neural networks is

using recurrent neural networks (RNNs). In an RNN, the data is fed sequentially

into the network, and the network state is updated to incoporate both the new

information and information from the previous state of the network. In this

way, the network contains a fixed-length representation of information from the

entire history of the network. It is this family of models, to which our model of

interest, the ESN, belongs. The remaining sections of this chapter are devoted to

a description of this family of models, preparing the reader for the introduction of

ESNs themselves in the next chapter.

Finally for this section, we note that though we frame the motivation for

ESNs in terms of time series prediction—as this is the most common use case for

ESNs—ESNs have also been used in other machine learning paradigms, such as

sequence classification [TTC14].

2.2 Artificial Neural Networks

Artifical Neural Networks (ANNs) are a family of machine learning models which

are based on the principle that information can be represented in a distributed

manner by the collective state of a large number of number of components where

the behaviour of each component is determined by simple rules. The name neural

networks comes from the fact that the models are loosely inspired by the principles

governing the workings of biological brains. Though the update rules for each

component can be relatively simple, when taken in aggregate, they are capable of

complex computation.

Though the history of ANNs is long and complex, with improvements and

innovations being made over many decades (See [Sch15] for an in-depth review), in

recent years ANNs have enjoyed a huge surge in popularity, particularly under the

paradigm of deep learning. The development of methods for successfully training

deeper models, where components are connected in a hierarchical manner, allowed

networks to learn more complex functions of the input [HOT06], while improve-

ments in computational power, as well as the ability to transfer computation to

graphic processing units (GPUs), made it feasible to train larger networks and on

larger datasets than was previously possible [Cir+11; KSH12].

2.2. ARTIFICIAL NEURAL NETWORKS 29

In this section, we provide a brief primer on ANNs, starting with the most

simple variety: Feedforward Neural Networks (FNNs), before discussing a common

variant for dealing with sequential data: Recurrent Neural Networks (RNNs), of

which ESNs are a sub-class.

2.2.1 Feedforward Networks

The simplest version ANN is the Feedforward Neural Network (FNN). The basic

idea for this kind of network was first presented in [Ros58] as the preceptron, though

the model we present here—the multilayer perceptron (MLP)—is significantly

developed from Rosenblatt’s, particularly in the use of hidden units. The MLP

consists of three kinds of units: input units, hidden units and output units.

In using neural networks, the goal is to approximate some unknown function

f : RD → RO. The input units consist of a D dimensional vector u ∈ RD, and

the output units are an O-dimensional vector y ∈ RO. The hidden units form

intermediate layers between the inputs and outputs. For an L layer network, we

denote these hidden layers as x(1), . . . ,x(L), with each x(i) ∈ RMi for some Mi ∈ N.

Here, as in the rest of the thesis, we will refer to a single entry in a hidden state

vector as a hidden unit—with the number of hidden units of a network being

equivalent to the sum of the lengths of the network’s hidden state vectors. The

values of the hidden states are determined by equations of the form

x(1) = σ(W1u + b(l))

x(i) = σ(Wix
(i−1) + b(i)) for 2 ≤ i ≤ L

y = g(WL+1x
(L) + b(L+1)).

Here, σ is the activation function, commonly a function from the sigmoid family

such as the hyperbolic tangent (tanh), or, alternatively, the rectifier or ReLU

function2. The function g is chosen based on the particular kind of function that

the network is being used to approximate. An example of an MLP is shown in

Figure 2.1. The function computed by the network is determined by the weights

and biases of the network, the Wis and the b(i)s, respectively. Together, these

make up the parameters of the network. Here, each Wi is a matrix in RMi×Mi−1

(with the exceptions W1 ∈ RM1×D and WL+1 ∈ RO×ML) and each b(i) is a vector

in RMi (with b(L+1) ∈ RO). For a given network architecture (i.e., a specific

2That is, for a hidden state vector x, the element-wise function max(0,x)

30 CHAPTER 2. SUPERVISED LEARNING AND NEURAL NETWORKS

input layer

hidden layer 1

hidden layer 2

output layer

Figure 2.1: An MLP with three input units (green), two output units (orange)
and two layers of four hidden units each (purple). The edges between nodes show
dependencies between units, with the higher units in the image directly dependent
on lower units. The bias term in the network definition is not represented in this
image.

choice of activation functions, number of hidden layers and hidden layer sizes),

varying these parameters allows us to select different members of the family F
of candidate functions. The notation that we use here for our description of the

network deviates slightly from the notation most frequently used to describe MLPs

in the literature, we do this in order to make our notation as consistent with the

notation for ESNs which we will introduce in the next chapter.

FNNs can approximate any smooth function on a finitely bound domain with

arbitrary accuracy. This property, the universal approximation property, is even

true of single layer networks, though the proof of this is non-constructive, and the

number of hidden units required may be prohibitively large [Hor10]; it is for this

reason that deep networks are preferred. It can be shown that for some classes

of networks, that deep networks can compute some functions with exponentially

fewer hidden units than their shallow counterparts [Has86; Mon+14; Tel16].

2.2. ARTIFICIAL NEURAL NETWORKS 31

2.2.2 Recurrent Neural Networks

Feedforward neural networks impose the restriction that the examples and labels

can both be represented by fixed-length vectors. However, for problems with a

temporal structure, it is often desirable that the model can process sequences

of arbitrary length. In order to accommodate this kind of input, it is possible

to extend feedforward networks to include recurrent connections. The inclusion

of these connections changes the role of the network from modelling a mapping

between the input and output, to modelling a dynamical system. The input is

fed into the network sequentially, with the hidden state of the network being

updated in response to each input. The structure of the output of the network

depends upon the exact nature of the task, though it is common to have an output

computed at each time-step as a function of the network’s hidden state (often

concatenated with the network’s input from that time-step).

A major advantage of recurrent networks over their feedforward counterparts

is that, while feedforward networks can model any continuous function [Cyb89;

Hor10], recurrent networks are able to approximate the dynamics of large classes

of dynamical systems. In fact, the algorithmic fashion in which recurrent neural

networks receive and process inputs allows them to compute any function that

is computable by a Turing machine [SS92]. Interestingly, the converse is not

true: it is possible for a recurrent network to simulate chaotic systems which

are not computable by a Turing machine [Sie95]. However, harnessing the the-

oretical ability of RNNs for super-Turing computation requires that calculation

is performed using infinite precision using real numbers [Sie95]. If we restrict

ourselves to performing computation exclusively in the rational numbers, the

ability to perform super-Turing computation disappears, and it becomes possible

for a Turing machine to simulate any such RNN.

The literature contains a vast array of different recurrent network architectures

but perhaps the most common network design is the Elman network [Elm90].

This network is such a commonly used baseline architecture that it is frequently

referred to as a vanilla RNN [KJFF15; LB16; CSDS16; CPS18].

The basic structure of an Elman network is described by the equations

xt = σ (Wxt−1 + V ut)

yt = g (Uxt)

32 CHAPTER 2. SUPERVISED LEARNING AND NEURAL NETWORKS

input layer

hidden layer

output layer

Figure 2.2: Diagram of a simple RNN. Connections through time are represented
by dotted lines.

Here xt ∈ RM is the hidden state at time t ∈ N and ut ∈ RD and yt ∈ RO are

respectively the input and output vectors at time t. The network parameters

W ∈ RM×M , V ∈ RM×D and U ∈ RO×M are respectively the recurrent weight

matrix, the input weight matrix and the output weight matrix. Like in the MLP,

σ and g are element-wise activation functions. Figure 2.2 and 2.3 present two

ways of visualising the Elman network. Visualising the network as in Figure 2.3 is

referred to as unrolling the network.

2.2.3 Training Networks using Gradient-Based Optimisa-

tion

In order for a neural network to be useful for a given task, it is necessary to find

parameters which allow it to approximate the desired mapping between the input

and target spaces. In this section, we discuss the standard process of training

networks. The difficulties in this process of determining a recurrent network’s

parameters is an important part of the motivation for the development of ESNs,

and reservoir computing approaches more generally.

FNNs are most frequently trained using the backpropagation algorithm, intro-

duced in [Rum85]. This algorithm consists of two parts: the forward pass and the

backward pass. In the forward pass, an input vector is provided to the network,

and the network output is calculated; the distance between the network output

and the desired output is then calculated using the pre-selected loss function. In

the backward pass, the derivative of the loss function with respect to each of the

2.2. ARTIFICIAL NEURAL NETWORKS 33

input layer

hidden layer

output layer

Time

Figure 2.3: Diagram of an unrolled RNN. Arrows represent that each node inside
the box the arrow is pointing to is dependent upon each node in the box the arrow
is coming from. Feedforward connections are shown as solid lines and recurrent
connections are shown as dotted lines.

34 CHAPTER 2. SUPERVISED LEARNING AND NEURAL NETWORKS

network’s parameters is calculated, and each parameter is updated proportionally

to its derivative in the direction which reduces the loss. This process is performed

either for a fixed number of iterations, or until the weights of the network converge.

Typically, in each iteration, either a batch of training examples are processed, or

the entire dataset, and the weights are updated with the average of the update

vectors from each of the examples.

The introduction of recurrent connections significantly complicates the training

process. Training is usually done through a fairly natural extension of backpropa-

gation achieved by unrolling the network, as visualised in Figure 2.3. This method

is referred to as backpropagation-through-time [Wer90]. Unrolling the network is

essentially the same as treating the network as a feedforward network, but with an

additional input at each layer. Here, the forward pass requires several applications

of the same linear transformation matrix, the elements of the matrix are updated

according to the sum of the contributions to the gradient from different numbers

of these applications.

However, this iterated application of the recurrent weight matrix can lead to

several issues in training. Most prominent among these are the vanishing and

exploding gradient problems, first described in [BSF94]. The problem arises from

the fact that the partial derivative of the error at time t with respect to parameters

which effect the dynamics of the network is decomposable into a sum of products of

partial derivatives between the error, network states and the network parameters.

The nature of the products leads to an exponential weighting between terms in the

sum, so the contributions to the gradient will be unreasonably skewed to either

almost completely neglect the role of the distant past or even worse, have only

the most distant past have any significant influence (these issues are the vanishing

gradient problem and the exploding gradient problem, respectively). This is not

the only problem, a recurrent network is essentially a parameterised dynamical

system, in which bifurcations can occur, with small changes to the network weights

having the possibility of causing major qualitative changes to the dynamics of the

network [Doy92]. These unpredictable changes in network behaviour caused by

small changes in parameters can have severe negative implications for the process

of gradient descent [Doy92; PMB12].

Several approaches have been developed in order to avoid this problem in

recurrent networks. One of the most popular approaches is the use of gated

network units, which are constructed in such a way that the gradient updates

2.2. ARTIFICIAL NEURAL NETWORKS 35

are additive rather than multiplicative, removing the problem of exponential

growth in gradient norms. Long Short Term Memory units (LSTMs) [HS97] and

Gated Recurrent Units (GRUs) [Cho+14] are the most ubiquitous examples of

this, though many variations on the idea exist [Gre+16]. This approach adds

complexity to the structure of the network, but is extremely popular (and effective)

when dealing with complex and multi-dimensional data with highly non-linear

relationships between the inputs and the target (such as in language modelling).

Other approaches take more care with the gradient descent scheme, using more

complex algorithms in order to mitigate the negative effects [PMB12; MS11], or

else allow for the creation of more direct paths through the network, bypassing

many time-steps via recurrent skip connections, i.e., direct connections from the

state at time t to the state at time t+ k for some k ≥ 2 [Zha+16].

We are interested in yet another alternative approach: reservoir computing

(RC). Whereas the methods listed above deal with the problems inherent in

training RNNs by adding complexity, and often incurring additional computational

costs, reservoir computing can be thought of as taking the opposite approach:

circumventing the problem by simplifying the training procedure. The next

chapter of this thesis is dedicated to introducing RC model of interest to us: Echo

State Networks.

Chapter 3

Background: Echo State

Networks

In this chapter, we introduce our primary model of interest: Echo State Networks

(ESNs). We first introduce the standard architecture for the model, before defining

important properties of ESNs which will be of interest in later chapters, notably the

Echo State Property (ESP) and Memory Capacity (MC). We finish the chapter by

describing modifications and improvements to the standard network architecture

which motivate some of the work later in the thesis.

3.1 Reservoir Computing

Reservoir Computing (RC) is a paradigm for machine learning models dealing

with sequential data. In RC, a large but fixed-size hidden state is used to store a

representation of the history of the inputs to the model up to the present time.

The approach was developed independently in [Maa+02] and [Jae01], with the

former focusing on continuous time systems in the form of Liquid State Machines,

while the latter dealt with the discrete case, introducing Echo State Networks

(ESNs).

In both cases the system is designed so that the hidden state contains a rich

representation of the input, but the network’s dynamics have a single stable state

and satisfies a condition known as the fading memory or echo state property. This

is the property that the effect of perturbations to the system fade over time. In

[Maa+02], the analogy is made to the properties of a body of liquid. The surface

of the liquid has a single stable state, which can be perturbed by external forces

36

3.2. ECHO STATE NETWORKS 37

(e.g., pebbles dropping into a pool of water), causing ripples which propagate over

the surface. By observing the state of the liquid at a given time, it is possible to

infer where and when the events that caused the perturbations occurred, even

though the system will—in the absence of further disruptions—asymptotically

return to its original unperturbed state. In reservoir computing the hidden state

is ‘perturbed’ by the input sequence, and by observing the hidden states, we are

able to learn a mapping between these states and the target variable. Unlike the

recurrent networks discussed in the previous chapter, the parameters dictating

the structure of the hidden state are not learnt, and only the mapping between

the states and the ouput is dependent upon the training data.

In terms of the supervised learning paradigm discussed in the previous chapter,

this means that the class of candidate functions F is determined not just by

hyperparameters like network size, but also by the parameters of the network (i.e.,

the network’s weights), and selecting a candidate from F is done by choosing the

appropriate parameters for the read-out weights.

Since its inception, RC has proven a popular paradigm for training recurrent

neural networks. ESNs in particular have been shown to be a powerful tool in the

field of non-linear system modelling and prediction, giving dramatic performance

improvements over previous techniques [JH04]. This has lead to the successful

application of ESNs to forecasting problems in diverse domains such as electrical

power [DS12], weather forecasting [CST19] and finance [LYS09]. Using ESNs for

more complex high-dimensional inputs has also proved fruitful, for example in

speech recognition [SH07] and robotics [Ish+04].

3.2 Echo State Networks

We are now ready to give a formal definition of the ESN. We consider an ESN

with M hidden units, driven by an input sequence {ut}∞t=1 with ut ∈ RD. The

sequence of hidden state vectors can be written as {x}∞t=1 with xt ∈ RM and the

sequence of output vectors as {yt}∞t=1 with yt ∈ RO; these vectors are related to

the input sequence by the update rules

xt = f(Wxt−1 + V ut) (3.1)

yt = W outxt. (3.2)

38 CHAPTER 3. ECHO STATE NETWORKS

Here, f is an element-wise 1-Lipschitz continuous function1, such as tanh or the

identity function. The matrices W ∈ RM×M and V ∈ RM×D remain fixed to

the values to which they are initialised; it is this part of the network which we

refer to as the reservoir. The exact initialisation scheme for these weights can

vary greatly, but it is common for the elements of these matrices to be sampled

independently from some carefully chosen distribution (the choice initialisation

procedure will be discussed in greater detail in Section 3.4.1). In contrast with the

input and feedforward weights, the weights of the output matrix W out ∈ RO×M

are determined by our chosen training procedure.

As a useful shorthand, we define F (x,u)
def
= f(Wx + V u). With this, we are

able to define the iterated update operator G(·, ·). This operator takes an initial

state for the network x0 ∈ RM and a finite-length input sequence {u1, . . . ,uT}
and returns the value of the hidden state of a network initialised with the initial

state x0 and driven for T time-steps by the given input sequence. That is,

G(x0, {ui}Ti=1) = F (F (. . . F (x0,u1), . . .),uT−1),uT).

We also introduce here a convention that we will rely on in later chapters of

referring to a linear ESN by its parameters. That is to say, we will write (W,V) to

refer to the linear ESN with recurrent weight matrix W and input weight matrix

V . When the input a sequence of scalars rather than vectors (i.e, the case where

D = 1), V becomes a vector, which we denote by v and we denote the linear

network by (W,v).

3.2.1 Training the Network

Arguably, the biggest advantage of ESNs over other recurrent neural networks is

the ease with which they are trained. Though there are on-line techniques where

the network is continually trained while receiving novel inputs, it is sufficient for

our purposes to consider the off-line training regime. In this regime, the network

is run for a training period of length T , the states generated by the network are

collected into a matrix X ∈ RT×M (or alternatively both the state at time t and

the input at that time are collected and concatenated into a single vector, giving

(X ∈ RT×(M+D))). Similarly the target values for the network during this period

are concatenated into a matrix Y ∈ RT×O, where O ∈ N is the dimension of

1A function f : R→ R is 1-Lipschitz continuous if for all x, y ∈ R, |f(x)− f(y)| ≤ |x− y|

3.2. ECHO STATE NETWORKS 39

the target space. From these two matrices, we are able to determine the output

weights which minimise the squared error between the network’s states X and

the desired output Y . The optimisation which computes such weights has a

closed-form expression given by

W out = Y ᵀX(XᵀX)−1

Frequently, ridge regression is used instead of linear regression. This is done by

introducing a regularisation term, with the optimal weights now calculated as

W out = Y ᵀX(XᵀX + βI)−1

where I is the M ×M identity matrix and β is the shrinkage parameter. There

are a couple of reasons why the introduction of the shrinkage coefficient is useful.

Firstly, it allows the regression problem to be solved even if XᵀX is singular.

Secondly, a shrinkage parameter greater than zero penalises large weights, acting

as a form of regularisation—in particular, L2 regularisation.

When training a network, it is standard procedure to discard the initial states.

This is due to the fact that the initial transient behaviour does not reflect the

long-term dynamics of the network.

The fact that networks with untrained dynamics provide a set of features rich

enough to give good predictive power with a simple linear regression is perhaps

surprising, and the exact mechanisms behind it are not completely understood.

However, there are several directions of research which shed some light on this

phenomenon. It has been noted that networks can exhibit good performance on

some tasks, even before the recurrent weights are trained, assuming that the initial

random weights are small [TCB04]. This is caused by the Markovian architectural

bias of such networks, the property that networks with similar recent histories

will tend to have states which are tightly clustered together.

Recently, a series of papers [GO18; GO19] has examined the power of ESNs from

the perspective of universality, showing that they can approximate large classes

of causal time-invariant filters2 with arbitrary accuracy. Perhaps surprisingly,

these results extend even to ESNs with linear dynamics, as long as a non-linear

(specifically, polynomial) transformation is applied to the states before training

2Roughly speaking, time-invariant filters are maps between infinite sequences which can be
described by a mapping between a left-infinite input sequence and a scalar value.

40 CHAPTER 3. ECHO STATE NETWORKS

the regression.

Using randomly initialised networks is related to the technique of random

projections, in which data in a high-dimensional feature space is projected into

a lower dimensional sub-space. This is a technique which has been fruitfully

applied in other areas of machine learning and statistics. Random projections are

a powerful tool, and have been shown to have desirable properties: random pro-

jections can be made from a high-dimensional space to a much lower-dimensional

one while approximately preserving distances between a set of points with high-

probability[JL84], and regressions performed on features generated using random

projections offer competitive performance compared to far more computationally-

intensive models which they approximate [RR08; RR09]. The complexity added

by the iterated application of the recurrent weight matrix in ESNs, along with a

non-linear activation function means a direct application of the theory developed

in these works to ESNs is not possible, but they give a flavour of the power of

random projections as a tool in machine learning.

3.2.2 The Echo State Property

In order to ensure stability in the hidden state, we desire that ESNs satisfy the

Echo State Property (ESP). Roughly speaking, the ESP means that the network’s

state is asymptotically independent of the network’s initial conditions. This

ensures that the network’s state is most heavily influenced by the recent past, and

that inputs cannot cause the network’s state to become permanently trapped in

a restricted region of the state space for all possible future inputs. Formally, we

state the echo state property with the following definition.

Definition 3.2.1 (Echo State Property). Let G(·, ·) be the iterated update opera-

tor describing the dynamics of some ESN accepting D-dimensional inputs. We

say the ESN has the echo state property if there exists a sequence {δi}∞i=1 with

limi→∞ δi = 0 such that for all right-infinite input sequences {uj}∞j=1 where each

uj satisfies uj ∈ U ⊂ RD for the compact set U and for all x0,x
′
0 ∈ A ⊂ RM ,

where A is a compact subset of RM containing all permissible network states,

d(G(x0, {uj}tj=1), G(x′0, {uj}tj=1)) < δt, where d(·, ·) is the Euclidean distance

function.

Along with this definition, Jaeger’s original paper [Jae01] provides two results

giving sufficient and necessary conditions for the property to occur. These

3.2. ECHO STATE NETWORKS 41

conditions are stated in terms of the spectral radius and the operator norm

of the matrix W . Before stating the conditions, we define these terms.

Definition 3.2.2 (Spectral Radius). For a matrix A, the spectral radius, ρ(A) is

defined as the maximum absolute value amongst the eigenvalues of A, that is,

ρ(A)
def
= max (|λ| : λ ∈ S(A)) ,

where S(A) is the set of eigenvalues of A.

Definition 3.2.3 (Operator Norm). For a matrix A ∈ RM×N , it’s operator norm,

‖A‖ is defined as

‖A‖ def
= max

x∈RN

‖Ax‖
‖x‖

,

where the norm used on the right-hand side is the vector 2-norm (i.e., ‖x‖ =√∑N
i=1 |(x)i|2)

With these definitions, we can state the necessary condition for the ESP as:

Proposition 3.2.1. For an ESN with update rule given in Equation 3.1 and

1-Lipschitz activation function f , in order for the ESP to hold it is a necessary

condition that ρ(W) < 1.

The sufficient condition is as follows.

Proposition 3.2.2. For an ESN with update rule given in Equation 3.1 and

1-Lipschitz activation function f , the ESP holds if ‖W‖ < 1.

It is interesting to note that these conditions are independent of the structure

of V . For the sufficient condition, the proof allows for arbitrary inputs and proof

of the necessary condition assumes only that the zero vector is a valid input.

Making stronger assumptions about V and the statistical properties of the input

sequence yields a different set of conditions for the ESP, but this is beyond the

scope of this work [MJ13].

For many initialisation schemes for the network weights, there is a significant

gap between the sufficient condition and necessary condition given by these two

propositions. As an example, take the initialisation schemes where W has elements

drawn from some zero-mean distribution with variance σ2

M
for some σ2 > 0. The

42 CHAPTER 3. ECHO STATE NETWORKS

asymptotic behaviour of the network as M → ∞ is agnostic to the choice of

distribution, as long as the fourth moment of the distribution is bounded [BY86].

In particular, we have that as M →∞, the spectral radius of W tends to σ2 [BY86]

almost surely. However we also have that the largest singular value tends to 2 · σ2

almost surely [YBK88]. Due to the size of this gap between the sufficient condition

and the necessary one, much effort has been invested in attempting to find less

restrictive sufficient conditions. In particular [BY06] shows that it is sufficient for

the norm of W to be less than unity in any one of a family of norms, of which

the operator norm is a member. This idea was reformulated in [YJK12] to be

expressed in terms of the Schur stability of W . Though these results improve

upon the previous sufficient condition in [Jae02b], empirical evidence suggests that

the gap between the sufficient and necessary conditions in randomly initialised

networks remains large in practice [ZMW12].

The existence of this gap between the sufficient and necessary conditions

causes problems in the principled application of ESNs to practical problems. The

sufficient condition is often too restrictive, giving recurrent weight matrices where

the weights are too small and leading to networks which are incapable of retaining

information over long time periods. Meanwhile, it can be tempting to treat the

necessary condition as a sufficient one: large networks satisfying the necessary

condition often have properties one would expect of networks satisfying the echo

state property [Cal+13], even if it isn’t provably the case. In [ZMW12], more

support is given to the idea that the necessary condition is likely to be sufficient

for large enough random recurrent weight matrices: it is shown that a spectral

radius less than one means that the probability that the distance between two

randomly chosen states is increased by a network update is exponentially small in

the size of the network when the weights are chosen in an i.i.d. manner [ZMW12].

This has lead to some confusion amongst researchers, with some conflating the

necessary condition with the sufficent one, while other researchers warn of the

dangers of such a conflation [YJK12]. The confusion is compounded further by the

practical advice that one should try spectral radii larger than one in conducting a

hyperparameter search [Luk12], as such configurations can offer better performance

on certain tasks.

Other efforts have reframed the echo state property to be dependent upon the

statistical properties of the inputs, loosening the restrictions discussed above for

certain kinds of inputs. [MJ13] notes that the standard conditions do not consider

3.3. MEMORY CAPACITY 43

the role of a saturating non-linearity, which creates a compressive effect drawing

large pre-activation values much closer together than it would small pre-activation

values, and therefore if the inputs are sufficiently large a new looser sufficient

condition can be constructed.

3.3 Memory Capacity

The hidden state of an ESN is often thought of as having two roles: storing a

representation of the network’s input history and performing non-linear computa-

tions on that representation. In order to measure the network’s ability to perform

the first of these tasks, the amount of information stored within the state of the

network is often quantified by the network’s Memory Capacity (MC). Memory

capacity is a measure that was introduced in [Jae02b] to measure the information

stored in the network. Though we refer to this quantity as memory capacity or

MC, we note that it is also common in the literature to refer to it as Short Term

Memory (STM).

The memory capacity of an ESN is a measure of how well the network retains

information about the past inputs. The k-delay memory capacity of a network

is the square of the Pearson correlation between the input at time t− k and the

optimal linear reconstruction of that input from the hidden state vector at time

t. If we consider the network (W,v), the k-delay memory capacity quantifies the

amount of information that can be captured from the networks hidden state xt

about the input k steps in the past, and the total memory capacity is the sum

of the k-delay capacities over the positive integers. Typically, we are concerned

with memory in the worst-case scenario: the scenario where the input sequence is

random, with no correlation between the inputs at different times. While this is

not a realistic use case, correlations between inputs allow the network to recall

more inputs with more clarity, and therefore the performance in the uncorrelated

case gives a lower bound on the network’s performance on correlated inputs.

Throughout the rest of this thesis, when talking about memory capacity we will

specifically be discussing the memory capacity under this worst-case scenario;

that is, we assume the network is driven by a sequence of random scalar inputs

44 CHAPTER 3. ECHO STATE NETWORKS

{ut}∞t=−∞ where each ut is zero mean and has the same finite variance. If we define

zt
def
=

(
ut

xt

)

and wk
def
= arg minŵk

E [(ŵᵀ
kzt − ut−k)2], then the k-delay memory capacity of the

network is defined by the expression

MCk(W,v)
def
=

cov2(wᵀ
kzt, ut−k)

var(wᵀ
kzt) · var(ut)

,

where cov and var denote the covariance and variance, respectively. Here, the

expectation is with respect to the distribution over input sequences. Note that we

assume that the network has been running since t = −∞, so the value of MCk is

the same, no matter what (finite) value of t we consider when taking expectations.

We refer to the sequence of values of MCk for k ∈ N as the memory capacity curve

of the system. The total memory capacity of the system (MC), is defined as the

infinite sum

MC(W,v)
def
=

∞∑
k=1

MCk(W,v). (3.3)

When memory capacity of a system is evaluated numerically, quantities are

calculated by averaging over time-steps in a single run of the network. By

convention, this run is done on a long sequence of randomly generated scalar

values over the interval [−1, 1] [Jae02b; FBG16]. It is worth noting that it is not

uncommon in the ESN literature to measure memory capacity by performing

regressions on xt, rather than zt. We prefer zt, partly due to the fact that it is the

original definition as given in [Jae02b], and partly because it has properties which

will be useful to us in Chapter 4. Since this difference in definition corresponds to

adding a single feature to the data in the regression problem, the difference between

the two definitions in terms of required computational resources is minimal.

It was shown in [Jae02b] that the memory capacity of a network with M

hidden units is at most M . The same paper also provided the following proposi-

tion describing the situation in which this maximum memory capacity could be

achieved.

Proposition 3.3.1 ([Jae02b], Proposition 4). For a linear ESN (W,v), define

3.4. RESERVOIR INITIALISATION METHODS 45

the matrix MW,v
def
=
(
Wv W 2v · · · WMv

)
, i.e., MW,v is the M ×M matrix

whose ith column is the vector W iv, where W i is W to the ith power. The memory

capacity of a linear ESN is M if and only if the matrix MW,v has full rank.

When determining memory capacity via empirical experiment, since it is not

possible to compute an infinite sum in Equation 3.3, a maximum value kmax is

selected, and the truncated sum calculated from 1 to kmax. As long as a sufficiently

large value of kmax is chosen (usually at least the number of hidden units in the

network), the effects of using this approximation are minimal, since the memory

capacity is at most M , and plotting MCk usually reveals a plateau structure

where there exists some 1 ≤ k′ ≤M , such MCk ≈ 1 for k ≤ k′, then dropping off

quickly to zero above that value.

Though memory capacity is the most popular measure in the echo state

literature, it is not the only method by which the memory of an ESN can be

quantified. The Fisher memory curve offers another perspective on the memory of

an input-driven system, quantifying the senstivity of the system to perturbations in

its input history [GHS08]— though it can be shown in linear networks, the Fisher

memory curve is related to the memory capacity curve by a result presented in

[TR13]. Additional measures were investigated in [Boe+11], using an information

theoretic approach to examine how much information was stored in each unit of

the reservoir about the network’s state history. Interestingly, these additional

measures, along with memory capacity, are all empirically shown to be maximised

as the spectral radius of W approaches one.

It is important to note that the memory capacity quantifies only the net-

work’s ability to retain information, but says nothing of its ability to process

that information in order that meaningful computations on the input might be

extracted. There have been attempts to extend memory capacity to give a broader

computational capacity measure of the network. Particularly notable for its prin-

cipled approach is [Dam+12], in which the ability of the network to approximate

Legendre polynomials of its inputs is systematically quantified.

3.4 Reservoir Initialisation Methods

In this section, we discuss some strategies for initialising the reservoir of an ESN

(i.e., the recurrent weight matrix and the input weights). Since these weights

are fixed before the network is trained, choosing a suitable initialisation is vital

46 CHAPTER 3. ECHO STATE NETWORKS

to the network’s ability to perform well on a given task. Here, we examine two

particular kinds of strategies: random initialisations and deterministic reservoir

construction.

3.4.1 Random Reservoir Constructions

The original description of the ESN called for the recurrent weight matrix to be a

large sparse randomly generated matrix, claiming that this would give rise to a

rich set of dynamics [Jae01]. Though many alternative methods of initialisation

have been suggested over the years, networks where matrix entries are drawn

independently from some pre-chosen distribution are still extremely common.

Likewise, the method suggested in [Jae01] for initialising the input weights—

sampling them from a uniform distribution over an interval centred at zero—is

still common practice. For the input weights, the size of the interval determines

the input scaling, and therefore how large a compressive effect the activation

function will have in non-linear networks.

The sparsity constraint on W was initially assumed to be important in ensuring

the network would function optimally—with sparsity promoting diversity of

features by restricting communication between different parts of the network—

but this has proved to make little difference in practice. On the other hand, it is

pointed out in [Luk12], that a potential advantage of sparsity comes not from an

improvement in performance on the learning task, but on the time complexity

of training and inference. In order to get this improvement, rather than having

sparsity as a fixed ratio of network size, the number of outgoing connections from

each unit is fixed instead; this kind of sparsity constraint can be used to reduce

the computational complexity of the matrix operations. For sparse networks, the

non-zero elements of the recurrent weight matrix can be chosen either from a

uniform distribution with zero mean or from the two element set {−a, a} for some

positive real number a.

The spectral radius of a large random matrix is determined asymptotically al-

most surely by the variance of its entries, and similarly for the operator norm [BY86;

YBK88]. These results allow confidence in achieving a given network behaviour,

even without the computationally expensive step of computing the SVD or eigen-

decomposition in order to scale the matrix to give the desired value. However, as

discussed in the previous section, when generating random matrices in an i.i.d.

manner, we encounter a problem due to the gap between the variance needed

3.4. RESERVOIR INITIALISATION METHODS 47

to satisfy the sufficient condition for the ESP and the variance required for the

necessary condition [ZMW12]. This problem can be resolved while still allowing

construction of a random network by using symmetric matrices, e.g. a Wigner

ensemble, as in [Tin17]. This causes the spectral radius and operator norm to

coincide, and therefore their shared value being below one is enough to guarantee

the echo state property. The same effect is achieved in [FG17], albeit with an

alternative approach: a random recurrent weight matrix is generated, then an

orthogonalisation or orthonormalisation procedure is applied. Despite these, and

other works [WLS04] on orthogonal recurrent weight matrix initialisations, how

well these reservoir constructions work in practical applications is a question that

has not been explored.

Another approach to generating random matrices with more structure is by

constructing a decoupled reservoir, as in [ZW08]. In a decoupled reservoir, hidden

units exist in pairs or in isolation, with each hidden unit receiving recurrent

updates from only itself or itself and the unit it is paired with. It is shown in

[ZW08] that such networks have the same approximation ability as a network

with a dense recurrent weight matrix when the identity is used as an activation

function, and such a network can perform better than the standard ESN on some

tasks. In order to generate a decoupled reservoir, the authors suggest sampling

values from the unit disk in the complex plane and using those values to define the

coupling strengths of pairs of hidden units. Asymptotically, this gives a matrix

with the same density of eigenvalues on the complex plane as if the elements of

W were sampled i.i.d.. This idea, constructing a recurrent weight matrix by first

designing a set of desirable spectral characteristics and building a recurrent weight

matrix to have those characteristics, was also explored in [OXP07], using the

rational canonical form of the matrix [BW89], though in this case, an unsupervised

learning algorithm is also applied to adapt the weights to the input sequence.

Another approach is to generate reservoirs algorithmically, but with steps in

the algorithm having probabilistic rules. In [DZ07], a method of constructing

reservoirs is suggested in which a sparse recurrent weight matrix is generated in

which hidden units are clustered into groups, with units in the same group having

non-zero weights with high-probability, and few non-zero weights connecting nodes

from distinct groups. Though the global structure of these matrices is deter-

mined algorithmically, the local connections are chosen randomly. The approach

in [DZ07] generates weight matrices which are small-world (i.e., the distance

48 CHAPTER 3. ECHO STATE NETWORKS

between nodes is logarithmic in network size) and scale-free (the distribution of

number of connections that nodes have obeys a power law). The combination of

these two properties appears to have beneficial effects on network performance,

whereas networks with only the small world property appear to only do better

than i.i.d. entry networks when the number of hidden units which are connected

to the inputs and outputs are restricted [Kaw+17; KPA19].

3.4.2 Deterministic Reservoir Construction

Early literature on ESNs would frequently place an emphasis on the importance

on choosing a reservoir initialization which maximised the richness of the represen-

tation of the hidden state. It was not however, made explicit exactly what richness

of representation meant, or how best it could be achieved. While increasing the

complexity of networks could potentially improve the network in this regard, a

pair of papers [RT11a; Rod12] asked the opposite question: How much can the

network structure be simplified while still giving rise to competitive models? In

these two papers, three main reservoir structures were proposed: the Delay Line

Reservoir (DLR), the Simple Cycle Reservoir (SCR) and a Simple Cycle Reservoir

with Jumps (SCRJ)3.

In the DLR, the hidden units form a chain, the input is received by only

the first unit, and successive units are updated based solely on the state of the

previous unit at the previous time-step, as seen in Figure 3.1a. This can also be

augmented with feedback connections, as seen in Figure 3.1b. SCR is similar to

DLR, but with the units forming a ring rather than a chain, as seen in 3.1c. In

the SCRJ this ring structure is further augmented by having periodic connections

between non-adjacent units in the ring, as visualised in Figure 3.1e. The SCRJ

can be extended to have jumps of different sizes, as in the Cycle Reservoir with

Hierarchical Jumps (CRHJ), shown in Figure 3.1f. While the SCR achieves close

to the same performance as a typical ESN a range of benchmark tasks, the SCRJ

has been shown to be able to frequently exceed it.

The recurrent weight matrices of these networks are deterministic and highly

structured, but the input weight matrices need to be in some sense unstructured

in order for the network’s performance to not deteriorate. While these weights

3It is also worth noting the existence of the earlier, exploratory work by [FE05] in this
direction, examining the effects of a strictly diagonal recurrent weight matrix.

3.4. RESERVOIR INITIALISATION METHODS 49

(a) (b) (c)

(d) (e) (f)

(g)

Figure 3.1: Reservoir topologies for various reservoirs introduced in [RT11a] and
[Rod12]. The topologies are: (a) Delay Line Reservoir, (b) Delay Line Reservoir
with Feedback, (c) Simple Cycle Reservoir, (d) Adjacent-feedback Loop Reservoir
(e) Cycle Reservoir with Jumps, (f) Cyclic Reservoir with Hierarchical Jumps. (g)
Concentric Echo State Network.

50 CHAPTER 3. ECHO STATE NETWORKS

can be chosen in a deterministic way, e.g. by determining the weights based on

successive digits of an irrational constant, the networks still rely on a degree of

pseudo-randomness to generate useful network dynamics. This is in order to break

the symmetry that could otherwise be present in the networks, which would cause

hidden units in distinct regions of the network to contain identical information.

These ideas have been built upon in several papers by other researchers. In

[Sun+12], the SCR is modified so that each unit in the hidden state is connected

to both the next and previous unit in the ring, producing the Adjacent-feedback

Loop Reservoir (ALR) as shown in Figure 3.1d, and another recent paper built

further explored the space of possible models with the Concentric Echo State

Network (CESN), which builds upon the SCR and CRJ with the inclusion of

multiple interconnected cycles [BB18], an example of this network structure is

shown in Figure 3.1g. The more elaborate structures proposed in [BB18] trade

away some of the simplicity of the models in [RT11a] [Rod12], but appear to offer

consistently better performance across a range of tasks and network sizes. These

results suggest that further exploration of similar reservoir topologies is likely to

yield further improvements. Though these improvements often add complexity

to the network design, they still offer a deterministic network design which can

be described and exactly replicated with greater ease than randomly generated

networks. Additionally, the simple structure of the network allows for reservoir

adaptation techniques which apply specifically to these networks, and can be

used in order to efficiently find reservoir constructions which provide the best

performance for a specific task (e.g, [YN15], [WJY15], [TTC14]).

3.5 Deep and Modular Structures

A key property of ESNs is that the network state at a given time serves as a

rich representation of the input history up to that point. As such, a range of

strategies have been developed to promote diversity in the features of the hidden

state. One such strategy is to modularise the hidden state, with different parts of

the state being subject to different update rules, and therefore containing different

representations of the input history. In this section, we examine some of these

strategies, focusing particularly on deep networks, but also briefly discussing other

methods of modularising the network.

3.5. DEEP AND MODULAR STRUCTURES 51

3.5.1 Deep Networks

In the feedforward case, the strategy of constructing networks in a hierarchical

manner was motivated by the idea that composing hidden states in such a way

allows the representational power of the network to grow exponentially with the

number of layers [Mon+14], and deeper layers of the network are able to learn

more abstract representations of the input [Ben09]. Since the success of [KSH12]

on the task of image classification, deep learning methods have come to be a

dominant method in machine learning—and since the qualities of deep networks

that we’ve just described are equally desirable when dealing with sequential data,

much effort has been made to construct deep recurrent networks.

Early precursors of modern deep recurrent architectures include the work

of [Sch92], in which networks were constructed in order to contain reduced length

descriptions of their inputs, with the first layer encoding as much information

about the input sequence as possible, and successive layers of the network used

to encode information not successfully captured by the previous layers. Another

notable early work [EB96] introduced the idea of separating the hidden state

into several components with different dependencies and update frequencies. The

networks in [EB96] are a precursor to today’s deep recurrent networks, and though

the networks are not on the same scale as modern architectures in terms of the

size of the hidden state, the paper contains examples of features such as skip-

connections and hierarchical states which would become popular many years later.

These models serve as early examples of the most common method of adding

depth to recurrent networks: hidden state stacking. In a model with stacked

hidden states, multiple hidden state vectors exist at each time-step, with the

state held in a layer determined by an update rule combining the value of that

layer’s state vector at the previous time-step and the current value of the state

of the layer directly beneath it. This variety of deep network has proven to be

successful in tackling problems in a wide variety of domains, such as time series

classification for medical diagnosis [Lip+15], handwriting recognition [Gra12],

language modelling [KJFF15], and as part of a pipeline for image classification

in video [Ng+15]. Outside of reservoir computing, these deep networks most

commonly use layers of Long Short Term Memory (LSTM) units for these tasks,

but other layer structures such as simple sigmoid layers or Gated Recurrent Units

(GRUs) [Cho+14] can just as easily be applied.

52 CHAPTER 3. ECHO STATE NETWORKS

Figure 3.2: Diagram of two layer DeepESN with two hidden layers of four units
each.

State stacking can also be applied to ESNs as a hierarchical method of modular-

ising the network structure, producing the Deep Echo State Network (DeepESN),

as shown in Figure 3.2. We consider a DeepESN with L layers of M hidden

units each. The first layer of the network is defined in a manner similar to the

single-layer ESN, with the update equation

x
(1)
t = f(W1x

(1)
t−1 + V1ut)

where x
(1)
t ∈ RM is the hidden state of the first layer at time t, W1 ∈ RM×M is

the recurrent weight matrix for the first layer of the network, ut ∈ RD is the input

at time t and V1 ∈ RM×D is the input weight matrix (we may also write v1 if

D = 1). Subsequent layers of the network are defined iteratively for 2 ≤ i ≤ L

with the update equations

x
(i)
t = f(Wix

(i)
t−1 + Vix

(i−1)
t),

where Wi ∈ RM×M and Vi ∈ RM×M are the recurrent weight matrix for the ith

layer and the feedforward weight matrix for the ith layer, respectively. In the

DeepESN, each x
(l)
t can be calculated as a function from state of the previous

layer (x
(l−1)
t) and the state of the current layer at the previous time-step (x

(l)
t−1).

A visualisation of these dependencies is shown in Figure 3.3.

As reported in [HS13], layers of a deep recurrent network with stacked hidden

states differ in regards to how their response to inputs varies as greater and greater

3.5. DEEP AND MODULAR STRUCTURES 53

input layer

2nd hidden layer

output layer

Time

1st hidden layer

Figure 3.3: Diagram of an unrolled DeepESN with two hidden layers of three
units each.

54 CHAPTER 3. ECHO STATE NETWORKS

time-lags are introduced between the relevant input and when the network’s state

is observed. This phenomenon is referred to as different layers of the network

operating on different time-scales. This phenomenon has also been shown to exist

in untrained networks, such as DeepESNs [GM16]. Additionally, a series of papers

by Gallicchio et al have provided an appraisal of many other desirable properties

of DeepESNs, including in terms of the echo state property [GM17], memory

capacity [Gal18], frequency response[GMP19] and Lyapunov exponents [GMS18].

Other methods of implementing depth in ESNs have also been explored, notable

examples include [MHW17], in which the weight matrices which parameterise the

transformations of data at each layer are identical, and the models presented in

[Car+18], which experimented with various reservoir topologies as methods of

incorporating depth into the network.

The method most commonly used in training output weights in deep ESNs is

to use as features the hidden states at every layer. This unfortunately introduces

the problem that as the depth of the network increases so does the number of

features on which the regression is performed. In turn, this increases the number

of training data points required in order to successfully train the network. As a

remedy to this, [MSC17] introduces encoding layers between the high-dimensional

reservoir at each layer, performing the regression on a concatenation of these lower

dimensional encodings. In [Liu+18], a simpler approach is used. Rather than

concatenating the states, regression is performed on each layer separately, and

the outputs from each layer ensembled by taking the arithmetic mean.

It is worth noting that in recurrent networks, there is no single definition

of depth, and that there are a multitude of methods by which depth can be

implemented in recurrent architectures. [Pas+13] and [Zha+16] represent two

attempts to systematise the study of deep recurrent networks. The former examines

the various places in which ‘depth’ can be added to a network, discussing the effects

that such depth could have on computation, and the latter attempts to quantify

the depth of such networks with the introduction of architectural complexity

measures. While the intent of both papers was the study of recurrent networks

subjected to backpropagation to minimise a loss function, they suggest a wide

and largely unexplored, search space for echo state network models.

3.6. MANAGING MEMORY AND NON-LINEARITY 55

3.5.2 Other Modularisation Strategies

Though in this section we have primarily focused on depth as a method of

modularising networks, it is worth noting that other methods of modularising a

network have also been attempted, with the goal of fostering diverse representations

amongst the modules.

Perhaps the most extreme approach to modularising an ESN is to have distinct

reservoir components with non-interacting dynamics, with the only interaction

between different parts of the network happening in the combining of the out-

puts, this essentially leads to an ensemble of independently operating networks.

This approach was demonstrated in [SL09], showing favourable performance of

ensembles of ESNs compared to ensembles of multi-layer perceptrons on sequence

prediction tasks.

In [XYH07], a modular structure was examined whereby the network is con-

structed to have distinct sub-reservoirs, but these reservoirs are coupled together

using lateral inhibition to ensure de-correlation between the dynamics of the sepa-

rate reservoirs and therefore improve their collective performance. In [Qia+17],

a different approach is used, progressively constructing a reservoir in a modular

fashion, until some stopping criterion, based on the task-specific performance of

the reservoir, is met.

3.6 Managing Memory and Non-Linearity

Constructing echo state networks necessarily involves a compromise between two

desirable network characteristics: long-term memory of the inputs and ability

to model non-linear relationships between the input and target sequences. The

simplest method of managing this trade-off is by scaling the weights of the

network—particularly the input weights, though the recurrent weights also play

a role. Smaller weights force the network dynamics into the more linear region

around zero, improving the network’s memory, whereas larger weights allow inputs

to push the network into the non-linear regions.

While weight scaling is a simple method of dealing with this trade-off, it would

be preferable if it were possible to mitigate the need to make such a compromise

in the first place. In order to do so, several methods of managing the memory

non-linearity trade-off have been explored in the literature.

The first method of augmenting a network in order to manage the trade-off

56 CHAPTER 3. ECHO STATE NETWORKS

between memory and non-linearity was introduced in the same paper as ESNs

themselves [Jae01]. The idea, having the next state be a convex sum of the current

state and the update function, was later expanded upon in [Jae+07]. The hidden

units in these networks are referred to as leaky-integrator units. In a network with

leaky-integrator units, the state at time t can be calculated from the input and

previous state as

xt = (1− α)xt−1 + αf(Wxt−1 + V ut),

where α ∈ (0, 1] is an additional hyper-parameter of the network. Decreasing α

has the effect of ‘slowing’ the dynamics of the network and increases the ability of

the network to retain information from long-past inputs [Jae+07; Luk12]. On the

other hand, a higher α value means that the network state is more able to adapt

the representation in its hidden state to quickly changing inputs. For this reason,

it is non-trivial to find the optimal value of α, and it is usually chosen empirically

by minimising loss on a validation set.

Another strategy for overcoming the need for this trade-off is composing the

update equation to have both linear and non-linear components. The reasoning for

this strategy is that since memory is maximised in linear networks, and non-linear

function modelling maximised in non-linear ones, a network with both linear and

non-linear components offers both these benefits simultaneously, with different

aspects of the required computation being delegated to different components of

the network. An initial investigation in this direction was carried out in [IY17]:

rather than having the activation function applied to each element of the hidden

state, the tanh function would be applied to some portion of the hidden units,

while the identity function would be applied to the rest. Other implementations of

this idea include performing the regression on a concatenation of states from two

networks which are identical save for one using a non-linear activation function

and the other using the identity and using a convex combination of identity and

non-linear activation functions on the hidden states [GGM18].

An alternative approach to solving this problem is to perform the regression

on some transformation of the network states, or perform the regression on a

concatenation of the network states and such a transformation. One of the

simplest techniques using this strategy is to perform regression on a concatenation

of the state with the element-wise square of the state [Jae02a]. This introduces

non-linearity and allows the approximation of even functions, which is not possible

3.6. MANAGING MEMORY AND NON-LINEARITY 57

in the standard ESN model without a bias [Dam+12]. An alternative approach

to augmenting a network’s features was tested in [BVS10], which augments the

network with an extreme learning machine based approach: the network state

is concatenated with non-linear transformations of random projections of both

the state space and the input, giving a richer representation of the data. Moving

further from the conventional ESN training paradigm, [BP06] demonstrated that

it is possible to improve performance over traditional ESN models by constructing

an MLP on top of an echo state network, using the network states as input features

for the feedforward network. This detracts from the computational simplicity of

the original ESN as training becomes iterative via backpropagation. However, it

does also mean that techniques from the domain of feedforward neural networks

can be used in order to improve the task-specific performance. An example of this

is [RT11b] in which negative correlation learning is used on an ensemble of ESNs

in order to improve performance over simple ESN ensembles.

Chapter 4

Memory in Linear Networks

4.1 Introduction

In this chapter, we ask how the memory capacity of a linear echo state network

can be inferred from the structure of its weights. In answering this question, we

reveal connections between the memory capacity of linear ESNs and the notion of

controllability in control theory, and provide an explicit expression for memory

capacity of linear systems in terms of properties of its weights W and v.

When constructing models for time series analysis, we are frequently interested

in modelling data where there is a large time-lag between the output and some

of the inputs required to accurately predict that output. Modelling this kind of

long-term dependency was, in fact, one of the motivating factors behind LSTMs,

and other gated network structures [HS97]. Unlike these gated networks, the

weights of an ESN are not learnt from the data, and the network is unable to

learn to distinguish between important and unimportant inputs. It is therefore

advantageous to have the network retain as much information as possible, i.e., for

the network to have a large memory.

Memory capacity, as discussed in Section 3.3 is one popular way of quantifying

the amount of memory in a network. It is well-established that the upper bound

for the memory capacity of a linear network is determined by the number of

hidden units in the network, and Proposition 3.3.1 gives conditions under which

this memory capacity can be achieved. However, it can be difficult to verify

whether or not a given network configuration meets the conditions, and the

proposition provides no information about the memory capacity in the case where

the conditions are not met. Other existing work gives explicit expressions for

58

4.1. INTRODUCTION 59

memory capacity for networks with simple deterministic structures (for instance

[RT11a; Sun+12; Liu+18]), but does not provide any information about the more

general relationship between a network’s weights and its memory capacity.

In this chapter, we expand on [Jae02b] in order to provide a more general

method of determining the memory capacity of a system. In doing so, we provide

the following contributions:

• We highlight the connections between the memory capacity of linear systems

and the notion of controllability in control theory.

• We show that the memory capacity of a linear system is integer-valued1, and

the value is determined by the Jordan form of the recurrent weight matrix

W and the direction of v.

• We show that when a network’s weights are sampled independently from con-

tinuous distributions, the network achieves this maximum memory capacity

with probability one.

• For deep linear networks, we provide an expression allowing the construction

of an equivalent single-layer network, and by analysing this network, show

that deep linear networks whose weights are sampled from continuous distri-

butions also attain the maximum possible memory capacity with probability

one.

These contributions show that achieving the maximum possible memory capacity

is easy. In fact, almost all (in the measure-theoretic sense) possible weight

matrix/vector combinations attain this value. However, this finding is at odds with

what is observed in experiments (see, for instance [Jae02b]), and this discrepancy

highlights a deeper issue in our understanding of the memory capacity of recurrent

networks with regards to the effects of finite precision computation, an issue which

is explored further in Chapter 5.

1Specifically, we make this claim for memory capacity defined to include the current input ut
as a feature for the regression step.

60 CHAPTER 4. MEMORY IN LINEAR NETWORKS

4.2 Background

In this chapter, we consider ESNs with 1-dimensional input sequences, described

by the update equation

xt = Wxt−1 + vut,

where xt ∈ RM is the hidden state at time t ∈ N for some fixed hidden state size

M ∈ N, ut ∈ R is the input at time t, W ∈ RM×M is the recurrent weight matrix

and v ∈ RM is the input weight vector. Since such an ESN is uniquely defined

by its weights, we will adopt the practice of referring to the ESN with weights

W and v simply as (W,v). Throughout this chapter, we consider only the case

ρ(W) < 1, where ρ(W) is the spectral radius of W . We also adopt the notation

λ ∈ S(W) to denote that λ is in the set of eigenvalues of the matrix W .

In Proposition 3.3.1, we presented a result from [Jae02b], which states that

the memory capacity of (W,v) is M—the maximum possible value—if and only if

the matrix (
Wv · · · WMv

)
is full rank. In the rest of this chapter, we will make frequent use of this matrix;

we therefore introduce the following definition and notation.

Definition 4.2.1 (Memory Matrix). Let (W,v) be a linear ESN with M hidden

units, we define the memory matrix of (W,v) as

MW,v
def
=
(
Wv · · · WMv

)
,

i.e., MW,v is the matrix M ×M matrix whose ith column is the vector W iv, where

W i is the ith power of the matrix W .

The condition for maximum memory capacity given in Proposition 3.3.1 has

a close parallel in control theory, in a result relating to controllability of linear

systems. We refer to a discrete-time linear system as controllable if for any state

x ∈ RM there exists a sequence of inputs u1, . . . uM ∈ R such that a network driven

by those inputs satisfies xM = x. A commonly used condition for controllability

in linear systems is that the controllability matrix (v Wv · · · WM−1v) is

of rank M .

4.3. ANALYTICALLY DETERMINING MEMORY CAPACITY 61

For weights (W,v), the memory matrix of a system is simply the controllability

matrix left-multiplied by W . As a consequence, assuming W is full rank, the

memory matrix is full rank if and only if the controllability matrix is also full

rank. The relationship between these matrices allows us to import results from

control theory to aid our analysis of the memory capacity of ESNs. In particular,

it allows us to make use of a variation of Hautus’ Lemma [Hau69], which we state

as follows:

Lemma 4.2.1 (Hautus’ Lemma, [Hau69], Theorem 1). Let W be a full rank

matrix, then rank(MW,v) = M if and only if for every eigenvalue λ of W ,

rank
((

v W − λI
))

= M.

Relative to the standard formulation of the lemma, we have swapped the order

of v and W − λI. This change of ordering does not affect the rank of the matrix,

but will simplify explanations in later sections. We also state the result in terms

of the memory matrix instead of the controllability matrix, which requires that

we introduce the restriction to full-rank W .

4.3 Analytically Determining Memory Capacity

In this section, we will show how the memory capacity of an ESN can be inferred

from the network structure. As a starting point for our analysis, we show that

Proposition 3.3.1 can be generalized to give the memory capacity of a linear

system even when the memory matrix MW,v is not full rank.

Proposition 4.3.1. Let (W,v) be an ESN with W full rank and ρ(W) < 1. The

memory capacity of the network is given by

MC(W,v) = rank (MW,v) .

Proof. If MW,v is full rank, then we have the result by Proposition 3.3.1. Otherwise,

say rank(MW,v) = N < M . We can choose an invertible matrix P ∈ RM×M such

that the last M −N rows of P−1MW,v are zero row-vectors. Define Ŵ
def
= P−1WP

and v̂
def
= P−1v. This gives us for any k ≤ M , the bottom M − N entries of

Ŵ kv̂ are zero. In fact, this holds for all k ≥ 0, as for any j either Ŵ jv̂ /∈

62 CHAPTER 4. MEMORY IN LINEAR NETWORKS

span(Ŵ v̂, . . . , Ŵ j−1v̂) or span(Ŵ v̂, . . . , Ŵ j−1v̂) = limj′→∞ span(Ŵ v̂, . . . , Ŵ j′v̂),

and therefore limj′→∞ span(Ŵ v̂, . . . , Ŵ j′v̂) = span(Ŵ v̂, . . . , ŴM v̂). For any

state xt of the network (W,v), we can write

xt =
t−1∑
k=0

W kvut−k

=
t−1∑
k=0

PŴ kv̂ut−k

= P
t−1∑
k=0

Ŵ kv̂ut−k.

This is equivalent to writing the states of the original network as a linear trans-

formation of the states of a network (Ŵ , v̂) driven by the same input sequence.

We denote the state of (Ŵ , v̂) at time t by x̂t. The two networks have the

same approximation power in the sense that for any vector w ∈ RM , we can

write wᵀzt = (wᵀP ′)ẑt and wᵀẑt = (wᵀP ′−1)zt, where ẑt ∈ RM+1 is the input ut

concatenated with the vector x̂t, and P ′ = diag(1, P).

Though this second network (Ŵ , v̂) also has a hidden state of size M , by

construction the last M −N entries of the network state at any time t are just

scaled copies of ut. We can therefore construct a linear echo state network of

size N , with the same approximation power as (Ŵ , v̂). To do this, let W̃ be

the top left N × N sub-matrix of Ŵ , ṽ be the vector consisting of the top N

entries of v̂ and let z̃t be the input concatenated with that state of (W̃ , ṽ) at

time t. Since the last M −N entries of x̂t are proportional to ut and therefore

don’t contain any additional information, we can construct w̃ ∈ RN such that

wᵀzt = wᵀP ′ẑt = w̃ᵀz̃t, and similarly for any w̃ we can construct a corresponding

w. This means that the memory capacity of (W,v) is the same as the memory

capacity of (W̃ , ṽ). It now remains to show that the memory capacity of (W̃ , ṽ)

is N . By construction, for any L ≥ 1,

rank
(
W̃ ṽ . . . W̃Lṽ

)
= rank

(
Ŵ v̂ . . . ŴLv̂

)
. (4.1)

Once again we use that for any j, either Ŵ jv̂ /∈ span(Ŵ v̂, . . . , Ŵ j−1v̂) or

span(Ŵ v̂, . . . , Ŵ j−1v̂) = limj′→∞ span(Ŵ v̂, . . . , Ŵ j′v̂), this time in conjunction

with the fact that rank(MŴ ,v̂) = rank(P−1MŴ ,v̂) = rank(MW,v) = N , to conclude

4.3. ANALYTICALLY DETERMINING MEMORY CAPACITY 63

that rank
((

Ŵ v̂ . . . ŴN v̂
))

= N . The relationship in Equation 4.1 now

immediately yields that rank(MW̃ ,ṽ) = N and it is therefore full-rank. Proposition

3.3.1 can now be applied to get that the memory capacity of (W̃ , ṽ) is N , and

therefore we have established MC(W,v) = MC(W̃ , ṽ) = N , completing the

proof.

Using this generalisation of Proposition 3.3.1 allows us to find the memory

capacity of a network with any set of weights. In particular, we can derive a

relationship between the memory capacity of a linear ESN, the structure of Jordan

form of W and the directions of its generalized eigenvectors relative to v.

In what follows, we consider the Jordan matrix decomposition of W , which we

write as W = PJP−1, where P is the matrix whose columns are the generalized

eigenvectors of W , and J = diag(J1, . . . , Jn), where each Ji is a Jordan block

(we provide supplementary material describing this decomposition in more detail

in Appendix A). We also write P−1v =
(

vᵀ
1 vᵀ

2 · · · vᵀ
n

)ᵀ
, where each vi

corresponds in size to the ith Jordan block. We define the effective size of a

Jordan block Ji with respect to vi as the greatest natural number di such that

(vi)di 6= 0 (or define it as zero if no such number exists). In what follows, the

effective size of a Jordan block Ji is always defined with respect to a particular

vector vi, though when discussing a block’s effective size, the reference to vi will

be omitted for brevity, and we will discuss the property as being the effective size

of Ji.

Theorem 4.3.1. Consider an ESN (W,v), where W is full rank with Jordan

matrix decomposition W = PJP−1, where J = diag(J1, . . . Jn), and each Ji is a

Jordan block. Let di be the effective size of the Jordan block Ji and define Sλ as

the set of Ji with eigenvalue λ. The memory capacity of the network (W,v) is

given by the expression

MC(W,v) =
∑
λ

max ({di : Ji ∈ Sλ}) ,

where the sum is over all distinct eigenvalues of W .

Proof. We consider the rank of MW,v. Since P is full rank, we have

rank(MW,v) = rank(P−1MW,v) = rank(MJ,v′), (4.2)

64 CHAPTER 4. MEMORY IN LINEAR NETWORKS

where v′ = P−1v.

In order to determine the rank of MJ,v′ , we consider under what conditions

rows of the matrix can lose linear independence. We first consider the conditions

under which an all-zero row of MJ,v′ can exist. Consider a row of MJ,v′ which is

the ith row in its d-row Jordan block and assume that this row’s entries are all

zero. Let D be the d×M sub-matrix of MJ,v′ corresponding to this block and

write v′ = (v′1, . . . , v
′
M)ᵀ. Each (D)ik satisfies the expression

(D)ik = (D)(i+1)(k−1) + λ · (D)i(k−1), (4.3)

(see Lemma B.0.1 for the proof of this fact). A consequence of this is that for a

row of MJ,v′ to be zero, there must be zeros in at least the first M − 1 entries

of the row below. Applying this argument recursively gives that there must be

zero entries in at least the first M − (d− i) entries of all rows below i. Since the

entries of the bottom row are of the form (D)dj = λjv′d for 1 ≤ j ≤M , we have

that if any entry of the row is zero (as is the case here), then all entries are zero.

By the same reasoning Equation 4.3 gives that if the (j + 1)th row is all zero,

the jth row either is all zero or all non-zero. Since we have already established

that each of the rows below the ith are have at least one entry which is equal to

zero, they must all be rows of just zeros. This can only occur if the corresponding

entries of v′ are zero. Therefore, the rank of D is at most the effective size of the

Jordan block to which D corresponds.

Furthermore, if W has multiple Jordan blocks with the same eigenvalue, then

the span of all rows of MJ,v′ corresponding to that eigenvalue is the same as the

span of the any of the Jordan blocks for that eigenvalue of largest effective size

(proof of this fact is relegated to Lemma B.0.2 in Appendix B). This means that,

for each eigenvalue λ, we can choose one of the Jordan blocks for that eigenvalue

with largest effective size, and remove all rows corresponding to the other Jordan

blocks with corresponding eigenvalue λ while maintaining the same rank as MJ,v′ .

Removing these rows for each λ, as well as removing every all-zero row gives a

matrix which we will refer to as M ′
J,v′ . We now have that

rank(MJ,v′) = rank(M ′
J,v′) ≤

∑
λ

max {di : Ji ∈ Sλ} , (4.4)

where the inequality is established by counting the rows of M ′
J,v. We now remove

all rows and columns of J for which the correspondingly indexed row of MJ,v′ is

4.3. ANALYTICALLY DETERMINING MEMORY CAPACITY 65

not in M ′
J,v′ and call the resulting matrix Ĵ , similarly remove the corresponding

entries of v′ to create the vector v̂. We can use Lemma 4.2.1 to get that MĴ ,v̂

is full rank by showing that Y =
(

v̂ Ĵ − λI
)

is full rank for any λ which

is an eigenvalue of W . For any fixed eigenvalue of W , λ, let j be the index of

the last row containing the Jordan block for λ in Ĵ . By construction, the first

entry of this row is non-zero, but all other entries are zero. If we permute the

rows of Y so that j becomes the first row, but all other rows maintain their

relative positions, and similarly permute the columns of Y so that the j + 1

column (which is the zero vector) is moved to be the rightmost column, then

taking the sub-matrix consisting of all but the last column of this matrix gives

a lower triangular matrix with non-zero diagonal. Y is therefore full rank and

consequently rank(MĴ ,v̂) =
∑

λ max {di : Ji ∈ Sλ}. The memory matrix MŴ ,v̂ is

a sub-matrix of M ′
J,v′ , and therefore rank(M ′

J,v′) ≥ rank(MŴ ,v̂). Combining this

with Equation 4.2 and Equation 4.4 gives the result:

rank(MW,v) = rank(MJ,v′) =
∑
λ

max {di : Ji ∈ Sλ} .

The above theorem essentially states that there are two ways that the memory

capacity of a linear ESN can be diminished: if v′ is configured in such a way

that the last elements of a Jordan chain are not excited (i.e., there is a difference

between a Jordan block’s size and effective size), or if there are multiple Jordan

chains for the same eigenvalue. In both cases, this loss of memory capacity is the

result of the network not making full use of the state space available to it: in

the former case, there is a direction in in RM+1 in which the projection of zt is

always zero; in the latter, looking at the memory matrix in the basis of generalised

eigenvectors reveals directions which are linearly dependent, so once again the

network is not using the full state space to store information.

The approach of the proof, using the Jordan matrix decomposition and elimi-

nating linearly dependent rows, is similar to the approach in [PA18] for finding

the minimal realisation of linear time-invariant control systems. We consider

only the case of full-rank W , however the result holds of rank-deficient W if we

change the sum to be over only non-zero eigenvalues of W . This can be seen by

constructing a smaller network with the same expressive power as (W,v), as we

did in Theorem 4.3.1, and applying the theorem to that network.

66 CHAPTER 4. MEMORY IN LINEAR NETWORKS

A consequence of this theorem is that in order to find the memory capacity of

a network where W is full rank and has a simple spectrum, it suffices to count

the non-zero entries of vᵀP . Once again, we find that this result is similar to a

known controllability condition: the Popov-Belevitch-Hautus test—a condition

for controllability expressed in terms of eigenvectors and eigenvalues of W and

the direction of v [Hau69]. We state this idea more formally with the following

immediate corollary of Theorem 4.3.1.

Corollary 4.3.1. Consider a linear ESN (W,v), where W is a full rank matrix

with no repeated eigenvalues and eigendecomposition W = PΛP−1. The memory

capacity of the ESN is equal to the number of non-zero entries of vᵀP .

4.3.1 Example: Circulant Reservoirs (SCR and ALR)

Consider the Simple Cycle Reservoir (SCR) as presented in [RT11a] and visualised

in Figure 3.1c. For an SCR with M hidden units, W is defined by:

Wij =


γ, if i = j + 1

γ, if i = 1 and j = M

0, otherwise

.

For instance, for M = 5, the matrix would be written as
0 0 0 0 γ

γ 0 0 0 0

0 γ 0 0 0

0 0 γ 0 0

0 0 0 γ 0

 .

For any M ∈ N, the recurrent weight matrix is a circulant matrix, i.e., a

matrix where each row is a copy of the row above, but with the entries rotated to

the right by one place. A nice property of circulant matrices is that all circulant

matrices of size M have the same set of eigenvectors [Bam18]. For 1 ≤ k ≤ M ,

4.3. ANALYTICALLY DETERMINING MEMORY CAPACITY 67

we can write the kth eigenvector of a circulant matrix of size M as

pk =
1√
M



1

ωk

ω2
k
...

ωM−1
k


,

where ωk
def
= exp

(
i · 2·π·k

M

)
. Note that the matrix whose columns are the eigenvec-

tors of W in the order k = M, 1, . . . ,M − 2,M − 1 is symmetric, since ωjk = ωkj

for all 0 ≤ k, j ≤M , and also note that this matrix is exactly the matrix which

applies the discrete Fourier transform (DFT) on a signal of length M . There is

also a simple expression for the eigenvalues of a circulant matrix: if the first row

of W has entries a0, a2, . . . , aM−1, then the kth eigenvalue is

λk = a0 + a1 · ωk + a2 · ω2
k + . . .+ aM−1 · ωM−1

k , (4.5)

which in the case of the SCR gives λk = −γ · ωk. This gives that the eigenvalues

are the M distinct Mth roots of unity, each multiplied by γ, and are therefore all

distinct.

For the special case of SCR networks,[RT11a] gives a necessary condition for

maximum memory capacity to be achieved (the condition being that v is not

periodic with period less than M). A necessary and sufficient condition—that the

square matrix whose columns are rotations of v is full rank—is also given, but the

full circumstances where this condition is met are not explored. Here, we are able

to give a different necessary and sufficient condition for (W,v) to have memory

capacity M : the DFT of v has no non-zero components.

As a particular example, this allows us to construct non-periodic v where the

full memory capacity is not achieved. Consider the case where the sum of elements

of v is zero, i.e.,
∑M

i=1(v)i = 0. In this case, if we consider the first eigenvector

68 CHAPTER 4. MEMORY IN LINEAR NETWORKS

(i.e., k = 0):

vᵀpk =
M∑
j=1

exp

(
i · 2 · π · (j − 1) · k

M

)
· (v)j

=
M∑
j=1

1 · (v)j = 0,

and therefore the memory capacity of (W,v) is at most M − 1. Note that this

is a case that can also be found using the condition in [RT11a]: If the elements

of v sum to zero, then in the matrix of rotations of v, the last row is necessarily

equal to the sum of all other rows, and the matrix therefore loses rank. There

are, however, other situations where the memory capacity is diminished which

our method allows us to see more easily. As an example, consider the case where

M = 4 and v =
(

0 1 1 0
)ᵀ

, and γ = 0.9.

The memory matrix for the network (W,v) can be written

MW,v =


0 0.81 0.729 0

0 0 0.729 0.6561

0.9 0 0 0.6561

0.9 0.81 0 0


By inspection, we can see that the last row of MW,v is the sum of the first and

third rows, minus the second row. Therefore the memory matrix has rank 3, and

so MC = 3. Though v is not periodic and its entries don’t sum to 0, we note that

when k = 2, we have

vᵀpk =
M∑
j=1

1√
M

exp

(
i · 2 · π · k · (j − 1)

M

)
· (v)j

=
1√
M

4∑
j=1

exp

(
i · 2 · π · 2 · (j − 1)

4

)
· (v)j)

=
1√
4

(
exp

(
i · 2 · π · 2 · 0

4

)
· 0 + exp

(
i · 2 · π · 2 · 1

4

)
· 1

+ exp

(
i · 2 · π · 2 · 2

4

)
· 1 + exp

(
i · 2 · π · 2 · 3

4

)
· 0
)

=
1√
4

(
exp

(
i · 2 · π · 2 · 1

4

)
· 1 + exp

(
i · 2 · π · 2 · 2)

4

)
· 1
)

4.3. ANALYTICALLY DETERMINING MEMORY CAPACITY 69

=
1√
4

(exp (i · π) · 1 + exp (i · 2 · π) · 1)

=
1√
4

(−1 · 1 + 1 · 1) = 0

We already know MC = 3, so Corollary 4.3.1 gives that the other values of k must

give vᵀpk 6= 0. Indeed, computing these values, we find −0.5 + 0.5i, −0.5− 0.5i

and 1 for k = 1, 3 and 4, respectively. We note that though this is an interesting

example, it is not a true SCR as defined in [RT11a], as in their specification only

−a and a are allowed as entries in the input weight vector for some a ∈ R+.

Since the eigenvectors of a circulant matrix are the same regardless of the

values of the entries of the matrix, this result extends to any circulant reservoir.

In particular, we can apply the same principle to the Adjacent-feedback Loop

Reservoir (ALR), albeit reaching a different conclusion than we do for the SCR.

We define W in such as reservoir as

Wij =



γ, if i = j + 1

γ, if i = j − 1

γ, if i = 1 and j = M

γ, if i = M and j = 1

0, otherwise.

For example, for M = 5, W would be written as
0 γ 0 0 γ

γ 0 γ 0 0

0 γ 0 γ 0

0 0 γ 0 γ

γ 0 0 γ 0

 .

We need to verify that this matrix has M distinct eigenvalues. By Equation 4.5,

we have λk = γ ·ωk + γ ·ωM−1
k . Using Euler’s formula, along with simple algebraic

manipulations, gives

λk = γ ·
(
ωk + ωM−1

k

)
= γ ·

(
exp

(
i · 2 · π · k

M

)
+ exp

(
i · 2 · π · k · (M − 1)

M

))

70 CHAPTER 4. MEMORY IN LINEAR NETWORKS

= γ ·
(

exp

(
i · 2 · π · k

M

)
+ exp

(
i · −2 · π · k

M

))
= γ ·

(
cos

(
2 · π · k
M

)
+ i · sin

(
2 · π · k
M

)
+ cos

(
−2 · π · k

M

)
+ i · sin

(
−2 · π · k

M

))
= 2 · γ · cos

(
2 · π · k
M

)
.

Since cosine is an even function, we have λk = λM−k and therefore there are

in fact repeated eigenvalues. Furthermore, since the matrix W is symmetric,

it is necessarily diagonalisable, and therefore has a simple spectrum. Using

Theorem 4.3.1, this means that the memory capacity of the network is equal

to the number of distinct eigenvalues of the network (assuming that v is not

orthogonal to any pk). Taking into account the fact that λk = λM−k and that

cos
(

2·π·M/4
M

)
= 0, the total memory capacity can be evaluated as:

MC =

2 · n if M is of the form 4 · n, 4 · n− 1 or 4 · n− 2

2 · n+ 1 if M is of the form 4 · n− 3,
(4.6)

where in each case n is a natural number.

This differs significantly from the memory capacity given by Lemma 1 in [Liu+12],

even accounting for the difference in how we define memory capacity (they use

the convention that they do not include ut as a feature for the regression). We

therefore deem it prudent to conduct a numerical exploration of ALR networks in

order verify our conclusions.

We run a series of experiments to calculate memory capacity of the networks,

i.e., to show how well we are able to extract information about the input history

in the worst case scenario where the inputs are a sequence of random values. In

order to do so, we use the following setup: we generate a stream of 1000 scalar

inputs, generated from a uniform random distribution over the interval [−1, 1].

For a variety of different network sizes, we generate an ALR recurrent weight

matrix and an input weight vector with entries chosen independently from the set

{−1, 1}, each with probability 0.5. For each reservoir size, we scale the elements to

have a desired spectral radius ρ(W), then run the network on the input sequence.

Memory capacity is then calculated using the first 750 states and inputs of the

network as training data to train the regression weights, then the last 250 are

used to calculate the MC from those weights. We repeat this for process for

4.3. ANALYTICALLY DETERMINING MEMORY CAPACITY 71

Figure 4.1: Maximum memory capacity of ALR reservoirs found in numerical
experiment, and the memory capacity predicted by Equation 4.6. For visual
clarity, the predicted values are offset slightly on the horizontal axis.

ρ(W) ∈ {0.2, 0.25, . . . , 0.9, 0.95}. For each spectral radius, we conduct 20 runs of

the experiment and average the results, we then record the maximum memory

capacity achieved for each reservoir size across all spectral radii2.

The results of this experiment are shown in Figure 4.1 for reservoir size M =

3, . . . , 20, along with the the memory capacity values predicted by Equation 4.6.

We can see that there is a very close correspondence between the best memory

capacity achieved in our experiments and the prediction from our theorem.

The SCR and ALR are the two simplest full-rank deterministic reservoir

structures presented in Figure 3.1, it remains an interesting open question as to

whether this method can be adapted to the more complex deterministic reservoir

structures. This is likely a productive area of future research. In particular, we

note that it can be shown that the CRJ and CRHJ recurrent matrices can be

2Although in principle the memory capacity should not be sensitive to the spectral radius,
in practice finite precision computation means that the effects of varying spectral radius can
be substantial. We find in our experiments that for smaller reservoirs, large spectral radii
worsen numerical issues, in contrast with larger reservoirs where larger values of ρ(W) are often
preferable.

72 CHAPTER 4. MEMORY IN LINEAR NETWORKS

written as block-circulant matrices3, that is, matrices which can be partitioned

into smaller square matrix blocks, and the block-matrix consisting of those smaller

blocks is circulant. This allows us to find the eigenvectors of the matrices with

relative ease [Tee05], but determining the structure of the eigenvalues is a more

difficult proposition which we leave for future research.

4.4 Application to Random Networks

In this section, we show how the insights that we have gained can be used to

improve our understanding of the memory capacity of networks under common

random initialisation schemes. In particular, we show that for networks where the

individual entries of the weights (W,v) are sampled independently from continuous

distributions, the maximum possible memory capacity of M is achieved with

probability one. We begin with single-layer networks, before going on to show

that the same is true of deep networks, even if the same weights are used in each

layer.

4.4.1 Shallow Networks

We first consider the case where all entries W and v are sampled from independent

distributions with continuous cumulative distribution functions. In doing so, we

will make frequent use of the following lemma.

Lemma 4.4.1. Let x1, . . . , xN be N continuous random variables each with support

in R. For any non-constant polynomial p(x1, . . . , xN), and for any constant c ∈ R,

P (p(x1, . . . , xN) = c) = 0.

This lemma is an immediate consequence of the main result in [CT05]. In the

proofs that follow, the main value of this lemma is that it yields the fact that if

the weights of an ESN are drawn from a distribution with a continuous cumulative

distribution function, then useful non-constant polynomials in those entries (such

as the determinant) are non-zero with probability one.

Since we make no assumptions about the support of the distributions that we

are sampling from, we have no guarantees on the spectral radius of a recurrent

3When the jump sizes divide M with no remainder

4.4. APPLICATION TO RANDOM NETWORKS 73

weight matrix. To combat this, we impose the rule that each recurrent weight

matrix has its entries sampled from a some continuous distribution, then the

matrix is scaled to have some pre-determined spectral radius between zero and

one. Note that this does not affect the directions of the eigenvectors of the matrix,

nor whether the spectrum is simple. However, it does mean that we have to be

careful when applying Lemma 4.4.1, while it’s true for polynomial functions of the

entries of the unscaled matrix, it does not necessarily hold for polynomial function

of the scaled matrix when the scaling is determined by entries of the matrix.

Theorem 4.4.1. Let Wunscaled be a random matrix and v a random vector, with

entries of both drawn from independent, continuous distributions, and let W be a

copy of Wunscaled which has been scaled to satisfy 0 < ρ(W) < 1. With probability

one, the ESN (W,v) has memory capacity M .

Proof. We first argue that W has a simple spectrum (i.e., has no repeated eigen-

values), with probability one. Since the spectrum of W is just the spectrum

of Wunscaled multiplied by a non-zero scaling factor, W ’s spectrum is simple if

and only if Wunscaled’s is. In order for Wunscaled to not have a simple spectrum,

the characteristic polynomial must have a repeated root, this occurs when the

discriminant of the characteristic polynomial is zero. Since the discriminant is

also a polynomial in the entries of Wunscaled, by Lemma 4.4.1, the probability of

choosing entries of Wunscaled such that this is the case is zero, and therefore, W is

simple with probability one. Using a similar argument with the determinant of

the matrix allows us to conclude that W is not just simple but also non-singular

with probability one.

Next, assume that W has M distinct non-zero eigenvalues, and let p1, . . . ,pM

be the eigenvectors of W . We require that for each pi, pᵀ
iv 6= 0 with probability

one. We get that for the ith eigenvector

pᵀ
iv =

M∑
j=1

(pi)j · (v)j

For any fixed matrix W , we have that each pi is fixed, and therefore we have

a linear equation in the entries of v. Using Lemma 4.4.1, we have that this

expression is non-zero with probability one for each of the M eigenvectors. Since

we have the dot product of v with each of the M eigenvectors is non-zero, the

74 CHAPTER 4. MEMORY IN LINEAR NETWORKS

matrix is non-singular and simple—all with probability one— Corollary 4.3.1 gives

that the network has maximum memory capacity, also with probability one.

We can also extend this proof to linear networks with leaky integrator units,

as demonstrated in the following corollary.

Corollary 4.4.1. Let W be a matrix with entries drawn i.i.d. from some contin-

uous distribution then rescaled to ensure that ρ(W) < 1, and let v be a random

vector whose entries are also drawn i.i.d. from some continuous distribution.

Define a linear network with leaky integrator units by the update equation

xt = (1− α)xt−1 + α (Wxt−1 + vut) , (4.7)

for some 0 < α ≤ 1. The memory capacity of the network is at least M − 1 with

probability one.

Proof. Note that we can re-arrange Equation 4.7 to give

xt = (αW + (1− α)I) xt−1 + αvut

Let p be an eigenvalue of W with eigenvalue λ, by definition (W − λI) p = 0,

and we can therefore reason

(W − λI)p = 0

⇒ (αW − α · λI)p = 0

⇒ (αW + (1− α)I − (α · λ+ (1− α))I)p= 0.

Once again using the definition of eigenvalues and their corresponding eigen-

vectors, p is an eigenvector of (αW + (1− α)I) with eigenvalue α · λ+ (1− α).

Since the eigenvectors are the same as the non-leaky network, and W has simple

spectrum with probability one, Corollary 4.3.1 gives that the memory capacity of

the network is M if α · λ+ (1− α) is non-zero whenever λ is an eigenvalue of W .

Since α · λ+ (1− α) = 0 has a unique solution for λ, at most one eigenvalue of

the original system is mapped to one, and since W is simple with probability one,

the eigenvalue is not repeated and the memory capacity is therefore diminished

by at most one, again with probability one.

We note that the above corollary gives a more general observation about the

memory of networks with leaky-integrator units. In general, the memory capacity

4.4. APPLICATION TO RANDOM NETWORKS 75

of a linear leaky-integrator network is the same as that of the corresponding

non-leaky network as long as for each eigenvalue λ of W , both λ and α ·λ+ (1−α)

are non-zero. We have once again had to take care to deal with consequences

of re-scaling the matrix W to a specific spectral radius. If we were to refrain

from re-scaling, or place restrictions on our leak rate α, it would be possible to

strengthen the result to have maximum memory capacity with probability one.

A common practice when choosing a distribution for ESNs is to have some

sparsity constraint on the recurrent weight matrix. For instance, one may choose

to initialise the recurrent weight matrix not from a continuous distribution, but

from a discrete distribution with a large probability mass at zero. Clearly, in this

scenario, it is possible for the criteria for maximal memory capacity to not be

met (e.g., if all the recurrent weights are zero). However, results from random

matrix theory yield that, if the entries are i.i.d. with zero-mean and bounded

fourth moment, the matrix is non-singular [RV08] and has a simple spectrum

[Ge17] both with probability 1− o(1) in M . If entries of v are from a continuous

distribution, we can use the same argument as in the above proof to give that the

memory capacity is M with high probability. If the entries of v are also from a

discrete distribution, to the best of our knowledge, it remains an open question as

to whether maximum memory capacity is achieved with high probability.

4.4.2 Deep Networks

A common strategy used in the construction of neural networks is to compose the

network of multiple layers, with each successive layer receiving the previous layer’s

activations as its inputs. This practice can successfully be applied to recurrent

networks, where empirical evidence suggests that composing hidden states in

such a manner can lead to network layers whose response to variation in inputs

operates on distinct time-scales [HS13] [GM16]. The advantages of depth appear

to be present even when the weights of the network are unchanged by training, as

in ESNs, and exploring the space of deep ESN architectures has proved to be a

productive area of research [MHW17; MSC17; Car+18].

In this section, we consider deep linear networks, with update equations of the

76 CHAPTER 4. MEMORY IN LINEAR NETWORKS

form:

x
(1)
t = W1x

(1)
t−1 + v1ut

x
(2)
t = W2x

(2)
t−1 + V2x

(1)
t

...

x
(L)
t = WLx

(L)
t−1 + VLx

(L−1)
t ,

where each Wi and Vi is an M ×M matrix, and v1 ∈ RM . We can re-write this
network as a single layer network in the manner shown in Equation 4.8.



x
(1)
t

x
(2)
t

x
(3)
t

...

x
(L)
t


=



W1 0 0 · · · 0

V2W1 W2 0 · · · 0

V3V2W1 V3W2 W3 · · · 0
...

...
...

. . .
...(

x∏L
i=2Vi

)
W1

(
x∏L

i=3Vi

)
W2 · · · · · · WL





x
(1)
t−1

x
(2)
t−1

x
(3)
t−1
...

x
(L)
t−1


+



v1

V2v1

V2V2v1

...(
x∏L

i=2Vi

)
v1


ut

(4.8)

Here, x denotes that in the matrix product, terms with higher indices pre-multiply

the lower index terms. We will refer to the (M · L) × (M · L) recurrent weight

matrix in this formulation as W̄ and the (M · L) input weight vector as v̄. This

form of DeepESN—which we will refer to as a Lin-DeepESN—is a linear version

of the ESN explored in a series of papers [GM16; GM17; GMP17]. Since a deep

linear network can be expressed as a shallow one of the form in Equation 4.8,

we know from [Jae02b] that the upper bound on the memory capacity of the

network is (M ·L). We devote the rest of this section to showing that this memory

capacity is achieved with probability one when the network weights are drawn

from continuous distributions.

Independent Weights

Perhaps the most common way of initializing deep networks is to have the weights

of each layer sampled independently from some distribution. We consider the case

of an L layer network, where each Wi and each Vi and v1 are independent random

variables, with entries of each chosen from a continuous distribution.

Theorem 4.4.2. Let (W̄ , v̄) be a Lin-DeepESN, with L layers, each of size

M . If each of the entries of W1, . . . ,WL, V2, . . . , VL and v1 are independently

4.4. APPLICATION TO RANDOM NETWORKS 77

sampled from continuous distributions, and each Wi is subsequently scaled to satisfy

0 < ρ(Wi) < 1, then MC(W̄ , v̄) = M · L with probability one

Proof. We prove the theorem by using Hautus’ Lemma to show that MW̄ ,v̄ is

full rank. If we had not scaled each Wi, then we would have that W̄ has M · L
distinct eigenvalues with probability one, since λ is a eigenvalue of Wi if and only

if det(Wi − λI) = 0, and for any λ ∈ R, this is a non-constant polynomial in the

entries of Wi. However, re-scaling gives us a non-zero probability of the largest

eigenvalue being -1 or +1 for multiple Wi. This means we must consider the what

happens when an eigenvalue is shared by multiple Wi. For this reason, we split

the proof into two cases: the case where eigenvalues are unique to a single Wi,

and the case where they are common to multiple Wi.

We begin with the case where λ ∈ S(Wi) for exactly one i. To apply Hautus’

lemma we consider the rank of the matrix(
v̄ W̄ − λI

)
,

which using Equation 4.8 we are able to write this (M · L)× (M · L+ 1) as block

matrix with blocks of the form

v1 W1 − λI 0 · · · 0

V2v1 V2W1 W2 − λI · · · 0

V3V2v1 V3V2W1 V3W2 · · · 0
...

...
...

. . .
...

x∏L
j=2Vjv1

x∏L
j=2VjW1

x∏L
j=3VjW2 · · · WL − λI


. (4.9)

For each 2 ≤ j ≤ L, for the jth row-block, we subtract Vj copies of the row-block

above, preserving the matrix’s rank and getting a matrix of the form

v1 W1 − λI 0 · · · · · · 0

0 λV2 W2 − λI 0 · · · 0

0 0 λV3 W3 − λI · · · 0
...

...
...

...
. . .

...

0 0 · · · · · · · · · WL − λI


. (4.10)

Then, for each Wj, we can take the eigendecomposition Wj = PjΛjP
−1
j . If

we pre-multiply Matrix 4.10 by diag(P−1
1 , P−1

2 , . . . , P−1
L) and post-multiply by

78 CHAPTER 4. MEMORY IN LINEAR NETWORKS

diag(1, P1, . . . , PL), we get the matrix



P−1
1 v1 Λ1 − λI 0 · · · · · · 0

0 λP−1
2 V2P1 Λ2 − λI 0 · · · 0

0 0 λP−1
3 V3P2 Λ3 − λI · · · 0

...
...

...
...

. . .
...

0 0 · · · · · · · · · ΛL − λI


. (4.11)

Because by assumption, for j 6= i we have λ /∈ S(Wj), we get that Λj − λI is

full rank. This, along with rank-preserving row manipulations allow us to zero

out blocks on the lower diagonal blocks while preserving the matrix’s rank4. If

λ ∈ Wi, we wish to zero out the block to the left of Λi − λI, i.e., the block of the

form λP−1
i ViPi−1 (if i = 1, this step is not necessary). To do this, we subtract

multiples of the rows of Λi−1 − λI using the row-blocks above. For instance, in

the case where λ ∈ S(W2), performing the required operations gives a matrix of

the form



P−1
1 v1 Λ1 − λI 0 · · · · · · 0

C2P
−1
1 v1 0 Λ2 − λI 0 · · · 0

0 0 λP−1
3 V3P2 Λ3 − λI · · · 0

0 0 0 λP−1
4 V4P3 · · · 0

...
...

...
...

. . .
...

0 0 0 · · · · · · ΛL − λI


. (4.12)

Note that or each i ≤ j, this operation has the effect adding CiP
−1
1 v1 to the

first entry in the ith row, and that Ci is full rank with probability one. This

gives that the entries of CiP
−1
1 v1 are non-zero with probability one using Lemma

4.4.1, since (CiP
−1
1 v1)i =

∑M
k=1(CiP

−1
1)ik(v1)k, a non-constant polynomial in the

entries of v1.

Let k and l be the row and column indices in our matrix of the same form

as Matrix 4.12 of the diagonal entry of Λi − λI which is zero. We can now get

the first M · L columns of the matrix into a lower triangular form with non-zero

4In particular, we use the fact that if a matrix consists of rows r1, r2, . . . , rM , then the row
ri can be replaced with ri +

∑M
j=1,j 6=i αjrj without altering the matrix’s rank.

4.4. APPLICATION TO RANDOM NETWORKS 79

diagonal entries by permuting the kth row to the top of the matrix and the

lth column to the right, preserving the relative positions of all other rows and

columns. A visualisation of these operations is given in Figure 4.2. The diagonal

entries of this matrix are the differences between λ and all the other eigenvalues

of the Wj’s (possibly with repeats), except for the first entry, which we have

already established is non-zero with probability one. The matrix is therefore rank

M · L, and since it was constructed from Matrix 4.9 using only rank-preserving

transformations, we therefore have that Matrix 4.9 has rank M · L.

Now we consider the case where λ is an eigenvalue of two or more of the

recurrent weight matrices. For some 1 ≤ i1 < i2 < . . . < in,≤ L, let λ ∈
S(Wi1) ∩ S(Wi2) ∩ . . . S(Win). From Equation 4.11 we can construct via rank-

preserving operations the matrix

P−1
1 v1 Λ1 − λI 0 · · · · · · 0

C2P
−1
1 v1 R12 Λ2 − λI 0 · · · 0

C3P
−1
1 v1 R21 R22 Λ3 − λI · · · 0
...

...
...

...
. . .

...

CLP
−1
1 v1 RL1 RL2 RL3 · · · ΛL − λI


(4.13)

where Rij is all zero if λ /∈ S(Wi) ∩ S(Wj), and otherwise is all zero apart from a

single entry (Rij)kl, where (Λi)kk = (Λj)ll = λ. Each Rij is constructed by first

subtracting copies of columns in column blocks where Λj − λI is in the jth row

block and then rows in row blocks where Λi − λI is in the i+ 1th column block.

When λ ∈ S(Wi) ∩ S(Wj), these manipulations leave an entry in (Rij)kl which is

a non-constant polynomial in the entries of Vi and Vj, and is therefore non-zero

with probability one.

By the construction Matrix 4.13, we have that the rightmost non-zero entry

of each row occurs in a distinct column. Therefore, after we move the all-zero

column (i.e., the column which occurs in the column-block containing Λin − λI,

in the column where (Λin)jj = λ) to be the rightmost column, we can permute

the rows of the matrix to be lower triangular with non-zero diagonal, giving that

the matrix is rank M · L. A visualisation of the required operations for this proof

is shown in Figure 4.3. We therefore have that for all eigenvalues of all Wi the

matrix
(
v̄ W̄ − λI

)
is full rank, and therefore by Hautus’ lemma, the memory

matrix is of full rank, and the total memory capacity of the network is M · L.

80 CHAPTER 4. MEMORY IN LINEAR NETWORKS

Shared Weights

We now turn our attention to the deep network proposed in [MHW17], in which

V2 = V3 = · · · = VL and W1 = W2 = · · · = WL. In this construction, writing the

network in the form Equation 4.8 shows that there are repeated eigenvalues in

W̄ , as the eigenvalues of the lower triangular matrix W̄ are the eigenvalues of its

diagonal blocks. We find that by dealing with repeated eigenvalues in a manner

similar to how we handled them in the previous proof, we are able to show that

the network still attains the maximum possible memory capacity with probability

one.

Theorem 4.4.3. Let (W̄ , v̄) be a Lin-DeepESN, with L layers, each of size M .

Let W1 = · · · = WL = W and V2 = · · · = VL = V , with entries of W , V and v

all sampled from continuous distributions with W subsequently scaled to satisfy

0 < ρ(W) < 1. We have MC(W̄ , v̄) = M · L with probability one.

Proof. We perform the same rank-preserving manipulations as in the proof for

the independent weights case to get a matrix of in the same form as Equation 4.11

and proceed to show that the matrix,

P−1v1 Λ− λI 0 · · · · · · 0

0 λP−1V P Λ− λI 0 · · · 0

0 0 λP−1V P Λ− λI · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · Λ− λI


,

has rank M ·L. For any eigenvalue λ of W , Λ−λI is not full rank and and because

it appears in all but the first column of the matrix, we are unable to remove the

lower diagonal entries using row operations as in the previous proof. However,

due to the structure of
(

Λ− λI
)

we can we can perform rank-preserving row and

column operations to get

P−1
1 v1 Λ− λI 0 · · · · · · 0

C2P
−1
1 v1 R22 Λ− λI 0 · · · 0

C3P
−1
1 v1 0 R33 Λ− λI · · · 0
...

...
...

...
. . .

...

CLP
−1
1 v1 0 0 0 · · · Λ− λI


(4.14)

4.5. RELATED WORK 81

where the only non-zero element of each Rii is (Rii)kk, where k is the index such

that (Λ− λI)kk = 0. In particular, each Rii is constructed by subtracting copies

of rows in row block above it (of the form Λ− λI) and columns in column blocks

to the right of it (also of the form Λ− λI). These manipulations cannot affect

the entry Rkk, and we know this to be non-zero with probability one since it is

(λP−1V P)kk is a polynomial in entries of V .

Inspecting the matrix Equation 4.14, we notice that the rightmost non-zero

entry of each row occurs in a distinct column. Therefore, after we move the all-zero

column to be the rightmost column, we can permute the rows of the matrix to be

lower triangular with non-zero diagonal, giving that the matrix is rank M · L. A

visualisation of the required operations for this proof is shown in Figure 4.4.

4.5 Related Work

Since its invention as a measure in [Jae02b], memory capacity has been of great

interest to researchers, and numerous empirical studies have been performed

to examine the quantity’s relationship to other network characteristics [BF14;

FBG16; GM16; FG17; GM16; Gal18].

Previous work giving closed-form expressions for memory capacity has been

restricted only to networks with simple delay-line structures, or variations thereof

[RT11a; Sun+12; Liu+18]. In comparison to the approach in these works, our

approach is more general, as we make no assumptions about the network structure

other than that the spectral radius of W is less than one. There is another

difference between our results and these previous works that is also worth noting:

in these previous works, memory capacity was not found to always be integer

valued. The reason for this difference, as discussed in Section 4.2, is in the features

used in the regression, whereas we use the approach in [Jae02b], using zt for our

features, these other papers use xt.

In [WLS04], the memory capacity of orthogonal networks is explored, and a

variation of Proposition 3.3.1 is given in terms of the covariance of the hidden

states. Whereas we suppose infinite precision, [WLS04] restricts the precision of

measurements of the network state by introducing white noise to each xt. Given

the restrictions in precision inherent in real-world computation, this is a desirable

property to model, but makes the analysis dependent on a fuller understanding of

the structure of W . We also note that the observation that the approximation

82 CHAPTER 4. MEMORY IN LINEAR NETWORKS

(a) (b)

(c) (d)

Figure 4.2: Visualisation of the matrix manipulations used in showing that a
lin-DeepESN with independently sampled weights has full rank using Hautus’
Lemma for a unique eigenvalue. The matrix 4.11 is depicted in a). b) shows the
matrix after zeroing out the block to the left of the block containing the eigenvalue
under consideration. c) shows the permutation of the rows. d) shows the matrix in
c) after permuting the columns, getting the first M columns into lower triangular
form.

4.5. RELATED WORK 83

(a) (b)

(c) (d)

Figure 4.3: Visual representation of the matrix manipulations required to apply
Hautus’ Lemma when an eigenvalue is shared between multiple Wi (In this case
W2 and W4. (a) depicts the matrix after the operations zeroing out the rows
to the left of each Λi − λI by subtracting columns. b) shows the matrix after
zeroing the rows that were missed by the previous set of operations, this time by
subtracting rows from above the current row. c) shows the permutation of the
rows d) shows the matrix in c after permuting the columns to get the matrix in
lower triangular form.

84 CHAPTER 4. MEMORY IN LINEAR NETWORKS

(a) (b)

(c) (d)

Figure 4.4: Visual representation of the process of showing that matrix with
shared weights has full rank using Hautus’ Lemma. The matrix 4.14 is depicted
in a). b) shows the matrix after zeroing out all but one element of each block
below the diagonal by rank-preserving row and column operations. c) shows the
permutation of the columns (all occurring in the last block). d) shows the matrix
in c after permuting the rows to get the matrix in lower triangular form.

4.6. CONCLUSION 85

power of a network is determined by its spectrum is found in [ZW08]. Since having

the same memory capacity is a consequence of having the same approximation

power, Corollary 4.3.1 can be thought of as a special case of their result.

4.6 Conclusion

In this chapter, we explored the relationship between the notion of memory

capacity in linear echo state networks and the notion of controllability in control

theory. By elucidating the connections between the two concepts, we are able to

import existing results from control theory to strengthen our understanding of

the relationship between a network’s memory capacity and its weights W and v.

We have given examples of how this knowledge can be applied to networks

in order to find the theoretical maximum memory capacity of those networks.

In doing so, we have shown that networks where the weights are sampled from

a continuous random distribution will achieve the maximum possible memory

capacity with probability one, for both shallow and deep linear architectures.

It is important to note that in this work we have made the assumption that it is

possible to carry out all computation with infinite precision, a luxury not afforded

to us by computation in the real world. In practice, the finite precision available

to us means that networks fail to achieve their theoretical maximum memory

capacity. Due to the exponentially decaying nature of contributions of past inputs,

MC(W,v)/N → 0 as N →∞, unless the network is constructed specifically to ensure

the existence of entries of xt dependent only on inputs from the distant past (such

as in a delay-line reservoir). While numerical simulations aid understanding of

the restrictions imposed on us by finite precision computation [Jae02b], further

work is required to fully understand its effects on memory capacity.

Despite this shortcoming, we have shown that our results are still useful as

they give a necessary condition that ESNs must satisfy in order to achieve the

best possible memory capacity. In applying our new understanding to SCR and

ALR reservoirs, we are able to provide fresh insights into the behaviour of existing

ESN designs. While finite precision will remain an issue, the approach examined

is this chapter provides future researchers a useful suite of tools for establishing

that their model (at least in principle) can attain the maximum possible memory

capacity.

Chapter 5

Effects of Depth in Recurrent

Neural Networks

5.1 Introduction

It has frequently been observed that deep recurrent neural networks exhibit a

phenomenon in which a network’s layers respond differently to inputs depending

on how deep the layers are in the network. In particular, the layers behave

differently with respect to how the influence of an input varies depending upon

the delay between the input entering the network and the time-step at which

the network state is observed. This class of behaviours is often summarised as

the layers of the network ‘operating on different time-scales’. Though several

different manifestation of this phenomenon have been reported in the literature,

its underlying causes are not yet well understood.

In this chapter, we examine the nature of the phenomenon and its relationship

to other properties of the network. We focus on two particular manifestations

of the phenomenon: sensitivity to input perturbation over time, and memory

capacity. In doing so, we attempt to shed light on the causes of the behaviour

and the nature of its effects. Though in existing work, the phenomenon has most

frequently been observed in non-linear networks, we show that the additional

complexity of a saturating non-linearity is not necessary for the phenomenon, and

its presence can even diminish the effect.

Our investigation of this phenomenon follows in the spirit of many previ-

ous works which empirically examine phenomena related to the behaviour of

86

5.1. INTRODUCTION 87

ESNs [Boe+11; Cal+13; BF14; FBG16; FG17], including previous work examin-

ing Deep Echo State Networks (DeepESNs) [GM16; GMP18; GMS18; GMP19].

Our motivation for this work is threefold: firstly, we aim to shed more light on

the root causes of the different times-scales phenomenon. Secondly, by system-

atically reporting upon its effects, we aim to provide a resource through which

the effects can be more thoroughly understood and therefore exploited in future

work. Thirdly, by drawing attention to certain aspects of the phenomenon, we

hope to inspire future work which more rigorously describes and explains its

underlying causes; in particular, by demonstrating that the properties of interest

are inherent in the linear version of the networks, we show that future analysis

of the phenomenon need not be concerned with the complications which are

introduced in non-linear systems.

We outline our contributions in more detail at the start of each section, but at

a high level, the contributions of this chapter are:

• We show that in linear networks, though the asymptotic response to per-

turbations over time of each layer is described by an exponential decay, the

short-term behaviour varies substantially between network layers. In deeper

network layers, the size of the effect of perturbations initially increases over

time, before beginning its exponential decay. We demonstrate that the

deeper the layer, the larger the maximum effect of the perturbation becomes,

but the longer it takes for this maximum to be reached.

• We expand upon the work of [Gal18] demonstrating the effects of depth

on memory capacity. We examine a wider range of hyper-parameter values

and show that the phenomenon that they describe also occurs in linear

networks. By examining the weights used in reconstructing the inputs and

other statistical properties of the states in each layer, we shed light on

the causes of differences between the memory capacity curves of different

network layers.

• We examine the effect of introducing non-linearity into deep networks. In

particular, we highlight the importance of the norms of the feedforward

weight matrices in determining the behaviour of the network.

88 CHAPTER 5. DEPTH IN RECURRENT NEURAL NETWORKS

5.2 Background

It was first noted in [HS13] that in deep recurrent networks, layers further from

the input layer would recover more slowly from perturbations in the input than

those closer to it. This was demonstrated by driving a network with a given

input sequence, perturbing the value of the input at a single time-step early in

the sequence, then running the network again on the modified input sequence. It

was observed that though the difference between the perturbed and unperturbed

network states tended to zero in all layers, the convergence was notably slower in

deeper layers.

This phenomenon was described as the network layers operating at different

time-scales. The original work of [HS13] was concerned solely with trained networks

with element-wise tanh as their activation function. However, more recent research

has shown that this phenomenon, along with several other related phenomena,

can also be observed in Deep Echo State Networks (DeepESNs).

In [GM16]—the paper in which the DeepESN was introduced—it was observed

that even given the randomly generated weight structure of DeepESNs, the different

time-scales phenomenon could be observed. This is an important observation,

as it demonstrates that the behaviour seen in [HS13] was not merely a property

which emerges through training with backpropagation through time. [GM16]

also demonstrated the influence of various network modifications on the different

time-scales phenomenon, showing that the effect could be heightened by applying

varying strengths of leaky-integration to layers of the network, as well as by

applying the unsupervised learning algorithm intrinsic plasticity to the network

weights. However, an important observation is that though the different time-

scales phenomenon is observed in DeepESNs, its effects are different from the

typical effect observed in [HS13]. In the standard DeepESN in [GM16], the

curves showing the size of the perturbation’s effects for different layers have

approximately same eventual gradient when plotted on the log scale (albeit offset

so that the size of the effect of the perturbation in deeper layers is larger). This

behaviour can also be observed in some of the results of [HS13], but it is more

common for deeper layers of the trained network to have a slower rate of decay

of sensitivity to perturbations. It is plausible that this behaviour is due to some

mechanism whereby weights in deeper layers are adapted to be, on average, larger

in magnitude, thereby decreasing the contractive effects of a typical application of

recurrent weight matrix to the state of that layer. This hypothesis is somewhat

5.2. BACKGROUND 89

supported by the fact that the same behaviour can be observed in deeper network

layers in [GM16] when the network is trained with intrinsic plasticity. However,

examination of this aspect of the phenomenon is outside the scope of this work.

[Gal18] examined the impact of the depth of a layer in a DeepESN on memory

capacity. It was observed that layers deeper in the network had a larger total

memory capacity and were able to accurately recall inputs from further in the

past than shallower layers. Though this was an important observation, the scope

of [Gal18] was limited, reporting the memory capacity curves for a single hyper-

parameter configuration, and examining in isolation effects of varying spectral

radius on the total memory capacity of network layers.

In [GMP19], another manifestation of the different time-scales phenomenon

in DeepESNs was reported. It was observed that in linear DeepESNs, different

layers of the network showed different degrees of sensitivity to inputs of different

frequencies. In particular, it was demonstrated that the dynamics of deeper layers

are ‘slower’, in the sense that when the network was driven by an input sequence

consisting of a superposition of sine waves of the same magnitude but different

frequencies, the discrete Fourier transform of hidden units in different layers

reveals a greater sensitivity in deeper layers for slower oscillations in the input.

The sensitivity of the DeepESNs to small perturbations has also been examined

by numerically evaluating the local Lyapunov exponents of networks with different

numbers of layers [GMS18]. Though the analysis of these networks considered

only the global behaviour of the networks, rather than isolating individual layers,

experimental evidence suggested an increase in sensitivity to changes in initial

conditions in deeper layers of the network.

5.2.1 Notation and Network Structure

Similarly to the previous chapter, we define a DeepESN with L layers each with

M hidden units each as described in Section 3.5.1 and the update equations are

of the form:

x
(1)
t = f(W1x

(1)
t−1 + v1ut)

x
(2)
t = f(W2x

(2)
t−1 + V2x

(1)
t)

...

x
(L)
t = f(WLx

(L)
t−1 + VLx

(L−1)
t),

90 CHAPTER 5. DEPTH IN RECURRENT NEURAL NETWORKS

where f is the identity function in linear networks, and element-wise tanh in non-

linear networks. We refer to W1, . . . ,WL ∈ RM×M collectively as the recurrent

weight matrices of the network, V2, . . . VL ∈ RM×M as the feedforward weight

matrices and v1 ∈ RM as the input weight vector. Throughout this chapter we

assume that for 1 ≤ i ≤ L, ρ(Wi) < 1. Furthermore, we consider networks where

‖V2‖ = . . . = ‖VL‖, and refer to this value as the feedforward norm. Similarly, we

set ρ(W1) = . . . = ρ(WL), and refer to this as the recurrent spectral radius. We

set ‖v1‖ separately from the norms of the feedforward weight matrices, referring

to it as the input weight vector norm. Note that varying this norm by rescaling

v1 is equivalent to rescaling the network’s inputs by the same value.

In the linear case, as we saw in the previous chapter, we can construct a

single-layer linear network with the same dynamics. For a given Linear Deep Echo

State Network (Lin-DeepESN), we refer to this single-layer version as the flattened

network, and write it as (W̄ , v̄), where W̄ and v̄ are defined as in Equation 4.8.

The state of the flattened network at time t is written as x̄t. Note that for each

l ∈ {1, . . . , L}, x
(l)
t = (x̄t)(l−1)·M :l·M . Here we are using the notation xa:b to denote,

for a vector x and positive integers a and b, the vector of size b − a comprised

of the elements of the vector x from the element indexed a (exclusive) and the

element indexed b (inclusive). This notation for slices of vectors will be used in

the rest of this chapter. When it does not cause ambiguity, we may refer to a

Lin-DeepESN by its flattened network (W̄ ,v).

Unless otherwise stated, we use the same network architecture for all exper-

iments in this chapter. We use a 10-layer Lin-DeepESN with 100 hidden units

per layer. We initialise each Wi so that each entry is sampled from uniform

distribution over an interval centered at zero, then the whole matrix is scaled to

satisfy ρ(Wi) = 0.9, each Vi is scaled so that ‖Vi‖ = 1 and and v1 scaled such

that ‖v1‖ = 1. This exact choice of architecture is somewhat arbitrary, however,

we will examine the effects of varying each of these parameters over the course of

the chapter.

5.3 Sensitivity to Perturbation

In [HS13], it was observed that deeper layers of a trained non-linear network

recovered more slowly from input perturbations than layers closer to the input.

In this section, we demonstrate that this phenomenon is not restricted to such

5.3. SENSITIVITY TO PERTURBATION 91

networks, and can also be observed in untrained linear networks. In particular,

the contributions of this section are as follows:

• We demonstrate the existence of the different time-scales phenomenon in

untrained deep linear networks.

• We provide proof that for each layer of such a network, the different time-

scales phenomenon is only a short term behaviour, and asymptotically all

layers exhibit an exponential decay in their sensitivity to perturbation.

• We provide empirical evidence that in Lin-DeepESNs, the maximal magni-

tude of the effect a perturbation of a layer’s state and the delay at which

that magnitude occurs both grow linearly with the distance of the layer from

the input. Additionally, we provide evidence that the rate of growth of these

two characteristics is dependent upon the spectral radius of the recurrent

weight matrices of the network, but is not very sensitive to changes in layer

size for even moderately-sized networks.

In order to examine this phenomenon, we consider two identical linear networks

driven by input sequences which are also identical for every t > 1, and at t = 1

have a difference which is of unit magnitude. Denote the states of these two

networks at time t as xt and x′t respectively. The norm of the difference between

these two networks can be written as

‖x′t − xt‖ =

∥∥∥∥∥
t−1∑
k=0

W kvut−k −
t−1∑
k=0

W kvu′t−k

∥∥∥∥∥
=
∥∥W t−1vu1 −W t−1vu′1

∥∥
=
∥∥W t−1v(u1 − u′1)

∥∥
= |u1 − u′1| ·

∥∥W t−1v
∥∥

=
∥∥W t−1v

∥∥
Consider a Lin-DeepESN with L layers of M hidden units each and with flattened

representation (W̄ , v̄), we can write the size of the effect of the perturbation at

time t on layer l as ∥∥∥(x
′(l)
t − x

(l)
t)
∥∥∥ =

∥∥∥(x̄′t − x̄t)(l−1)·M :l·M

∥∥∥
=
∥∥∥(W̄ t−1v̄

)
(l−1)·M :l:·M

∥∥∥ .

92 CHAPTER 5. DEPTH IN RECURRENT NEURAL NETWORKS

For future use, we define

y
(l)
k

def
=
(
W̄ kv̄

)
(l−1)·M :l·M ,

and note that ∥∥∥(x
′(l)
t − x

(l)
t)
∥∥∥ =

∥∥∥y(l)
t−1

∥∥∥ . (5.1)

Consequently,
∥∥∥y(l)

k

∥∥∥ is the size of the effect of a unit-sized perturbation to the

input k time-steps ago on the norm of the state of the lth layer. Not only does this

give us a convenient trick for calculating the size of the effect of the perturbation

in deeper layers, it also allows us to place bounds on the long-term behaviour of

the perturbed network with respect to the original, as described by the following

proposition.

Proposition 5.3.1. Let (W̄ , v̄) be an L layer Lin-DeepESN such that for 1 ≤
i ≤ L, ρ(Wi) < 1. For 1 ≤ l ≤ L, there exists γ < 1, α > 0 and t0 such that for

all t > t0 ∥∥∥x′(l)t − x
(l)
t

∥∥∥ < α · γt

Proof. Let (W̄l, v̄l) be the l layer network composed of the first l layers of (W̄ , v̄),

and let x̄
′(l)
t and x̄

(l)
t be the perturbed and unperturbed states of (W̄l, v̄l) at time

t respectively. We have∥∥∥x′(l)t − x
(l)
t

∥∥∥ =
∥∥∥(x̄′t − x̄t)(l−1)·M :l·M

∥∥∥
≤
∥∥∥W̄l

t−1
v̄l

∥∥∥
≤
∥∥∥W̄l

t−1
∥∥∥ ‖v̄l‖ .

Using the fact that the eigenvalues of a block triangular matrix are the eigenvalues

of its diagonal blocks (See Appendix A.1 or [Use10] for proof), the construction

of the flattened network as given in Equation 4.8 gives that the spectral radius

of W̄l is max(ρ(W1), . . . , ρ(Wl)). Hence, by Lemma A.3.1 we have that for all

γ > max(ρ(W1), . . . , ρ(Wl)) there exists t0 such that for all t > t0,
∥∥∥W̄l

t−1
∥∥∥ < γt−1.

Choosing γ to satisfy max(ρ(W1), . . . , ρ(Wl)) < γ < 1 and α = γ−1·‖v̄l‖ completes

the proof.

5.3. SENSITIVITY TO PERTURBATION 93

Though the above proposition shows that all layers of a linear network ulti-

mately exhibit an exponential decay in their response to perturbation over time

(assuming that the recurrent weight matrices are appropriately scaled), it does

not tell us anything about the short-term behaviour of the network. Through

numerical experiments, we show that in this shorter time frame we can observe

interesting variation between network layers.

5.3.1 Initial Experiments

For experiments involving sensitivity to perturbation of different layers, we examine

the effect of the perturbation of an input on the network by measuring the norm

of y
(l)
k for different values of k, essentially measuring how the size of the effect of

a perturbation of unit magnitude evolves over time. We conduct this experiment

1000 times, using the network architecture described in Section 5.2.1, resampling

the weights at the start of each run and reporting the average over the runs.

As can be seen in Figure 5.1, a linear untrained network has sufficient com-

plexity to give rise to the different time-scales phenomenon—in the sense that in

different network layers the effects of perturbations evolve in different ways, with

deeper network layers recovering from perturbations more slowly. In particular,

we can see that in the first layer, the sensitivity to perturbation is monotonically

decreasing with time. In contrast, higher layers exhibit a phenomenon where the

effect of the perturbation on the network state initially increases with time, before

beginning the exponential decay dictated by Proposition 5.3.1. Since the scaling

of the states in the layers is somewhat arbitrary1, it is perhaps more insightful to

re-normalise by the size of the initial effect of the perturbation (i.e., for the ith

layer, divide
∥∥∥y(l)

k

∥∥∥ by ‖VlVl−1 · · ·V2v1‖). Doing so produces Figure 5.1b, which

shows that this phenomenon can have very significant effects, with the size of

the perturbation in the tenth layer growing ≈ 179 times its initial size before

beginning its exponential decay.

A natural question to ask is how this phenomenon depends upon the choice of

hyperparameters of the network. We can see that scaling the norms of the feed-

forward matrices will only have the effect of multiplying the size of perturbations

1The scale is arbitrary in the following sense: consider a network with weights W1,W2, . . .WL

and v1, V2, . . . Vl . . . , VL driven by some input, and denote the state of the lth layer at time t as

x
(l)
t . The state of the network with the same weight matrices, except for Vl, which is replaced

with αVl for some α ∈ R, the state of the new layer at time t will be αx
(l)
t .

94 CHAPTER 5. DEPTH IN RECURRENT NEURAL NETWORKS

(a)

(b)

Figure 5.1: Size of effect of perturbations of input in different layers of a Lin-
DeepESN over time. (a) shows the size of the effect for each layer as k varies, (b)
shows the same, but each layer is normalised so that the effect of the perturbation
at time t = 0 has a norm of unit magnitude.

5.3. SENSITIVITY TO PERTURBATION 95

by a constant factor. As such, we can disregard this hyperparameter and consider

two others: spectral radius and hidden layer size.

5.3.2 Spectral Radius

In order to observe the effect of changing the spectral radius, we repeat the previous

experiment, but re-scaling the spectral radius for different runs. In particular,

we perform runs with spectral radii 0.5, 0.75, 0.9, 0.95 and 0.99. Additionally,

we increase the number of layers in our network to 20, allowing us to collect

more data about the way that the behaviour of layers changes when they are

positioned deeper in the network. As before, for each spectral radius we run 1000

different initialisations of the network and report the average of the results (in

the case of the magnitude of the perturbation, we report the average of the log).

In Figure 5.2 and Figure 5.3, we visualise the effect of varying the spectral radii

of the recurrent weight matrices on the size of the effect of an input perturbation

on various network layers. We observe two changes to the network’s behaviour

as the spectral radius increases: the maximum magnitude of
∥∥∥y(l)

k

∥∥∥ for a given

l increases, and time-lag (the value of k) at which this maximum occurs also

increases.

To examine this phenomenon more deeply, we plot the the maximum size to

which the effect of perturbation grows in each layer against the layer’s depth. This

is shown in Figure 5.4, where we observe the maximum size attained growing with

depth of the network. Interestingly, the maximum height achieved appears to

grow linearly with depth of the layer, with the gradient of the line that we observe

increasing as the spectral radius is increased towards one.

In order to quantify how linear this relationship is in reality, for each spectral

radius we fit a linear regression to to the collected data and compute the squared

Pearson’s correlation coefficient between the data and and the regression model’s

prediction for each layer. For each spectral radius, we fit two regressions, one

which uses the perturbation sizes for all twenty layers, and a second regression

in which we use only layers starting at the first layer for which the proportion

of runs where the maximum perturbation occurs at k = 0 is less than 0.01. We

discuss the motivation for this criterion later in this section.

Table 5.1 reports the results of this analysis, and gives strong numerical

evidence that there is indeed a linear relationship between the depth of a layer of

the network and the expectation of the log of the maximum size of the perturbation

96 CHAPTER 5. DEPTH IN RECURRENT NEURAL NETWORKS

(a) (b)

(c)

(d) (e)

Figure 5.2: Figures showing the effects of spectral radius on a Lin-DeepESN’s
sensitivity to perturbation of input over different time-delays for the 1st, 5th and
10th layers. On the left, see the behaviour of network layers with spectral radius
0.5, 0.75, 0.9, 0.95 and 0.99, plotted on the log scale, highlighting the eventual
exponential decay. On the right, the same data is plotted on a linear scale, in order
to more clearly show the growth in perturbation size that occurs in deep layers for
shorter delays. For clarity, we omit spectral radius 0.99 on the linear-scale plot.

5.3. SENSITIVITY TO PERTURBATION 97

(a) (b)

(c) (d)

Figure 5.3: Figures showing the effects of spectral radius on a linear ESN’s
sensitivity to perturbation of input over different time-delays for the 15th and
20th layers. For further detail, refer to the caption of Figure 5.2.

98 CHAPTER 5. DEPTH IN RECURRENT NEURAL NETWORKS

All Layers Using Criterion

Spectral Radius Slope R2 First Layer Slope R2

0.5 0.099 0.9786 8 0.115 0.9994
0.75 0.327 0.9965 3 0.338 0.9994
0.9 0.650 0.9987 2 0.658 0.9996
0.95 0.872 0.9990 2 0.882 0.9996
0.99 1.269 0.9988 2 1.282 0.9994

Table 5.1: Slope and R2 of regression on log of size of maximum effect of pertur-
bation

caused by the input.

Next we examine the values of the time-delay k for which this maximum in

perturbation size is reached. This is shown in Figure 5.5. Once again, we note that

the observed values follows a linear trend (though in some cases with non-linear

behaviour in initial layers).

As with the the log-magnitude of the maximum perturbation size, the initial

behaviour is non-linear, particularly for spectral radii 0.5 and 0.75. In these

cases, the pattern that emerges after the initial layers is suggestive of a linear

relationship between the layer number and the delay for which the maximum

perturbation occurs, but with the fitted line having a non-zero intercept. Of

course, there is a hard floor of k = 0 on the y-axis2. To be able to disregard

this initial behaviour, we may wish to consider only layers for which where the

maximum perturbation occurs for k above this value. To do so, we construct the

criterion that we include in our regression only layers for which the proportion

of runs where the perturbation is at k = 0 is less than 0.01. This threshold is

somewhat arbitrary, but is preferable to choosing the threshold as zero since it

makes the result of using the criterion more robust to changes in the number of

runs of the experiment that we conduct. The same reasoning also motivates the

use of this criterion in the previous regressions in Table 5.1.

In Table 5.2, we once again observe strong evidence that the relationship is

indeed linear. Once again the squared correlation coefficients are highly suggestive

of an asymptotically linear relationship, especially if the behaviour of initial layers

is discounted.

From the evidence in this section, we conjecture that for a given reservoir size,

2In principle, we could consider W̄ kv̄ for negative values of k, though this is not meaningful
in terms of the network’s behaviour, and so we refrain from doing so.

5.3. SENSITIVITY TO PERTURBATION 99

Figure 5.4: Log of size of maximum
∥∥y(l)k

∥∥ against layer size for 20-layer Lin-
DeepESNs with various spectral radii. Logarithms are taken in base 10 in order
to allow easier comparison with Figure 5.1

100 CHAPTER 5. DEPTH IN RECURRENT NEURAL NETWORKS

(a) ρ(W) = 0.5 (b) ρ(W) = 0.75

(c) ρ(W) = 0.95 (d) ρ(W) = 0.95

(e) ρ(W) = 0.99

Figure 5.5: Value of k at which maximum
∥∥∥y(l)

k

∥∥∥ occurs against layer size for

20-layer Lin-DeepESN.

5.3. SENSITIVITY TO PERTURBATION 101

All Layers Using Criterion

Spectral Radius Slope R2 First Layer Slope R2

0.5 0.291 0.9961 8 0.300 0.9997
0.75 1.052 0.9997 3 1.058 0.9999
0.9 3.060 0.9998 2 3.072 0.9999
0.95 5.696 0.9991 2 5.736 0.9992
0.99 20.203 0.9967 2 20.511 0.9978

Table 5.2: Slope and R2 of regression on k at which maximum ‖y‖(l)
k is reached

the expected value of maxk∈N log(||y(l)
k ||) for a network layer is asymptotically

(in l, the depth of the layer, and after normalisation) proportional to the depth

of the layer, with some constant of proportionality Cρ(W),M , where Cρ(W),M is

dependent only on the spectral radius to which the recurrent weight matrices have

been scaled and the network size M . We also conjecture a similar relationship

between the k at which the maximum perturbation occurs and the layer under

consideration, with a different constant which is also determined solely by ρ(W)

and M .

Next, we examine the role of the hidden layer size to determine whether it

does in fact play a role in determining this relationship.

5.3.3 Hidden Layer Size

In the same way as we did with spectral radius, we look at how the maximum

effect of a perturbation, and the delay necessary to reach this maximum are

affected by the number of hidden units per layer of the network.

We conduct the same experiments as in the previous section, but this time

keeping the spectral radius fixed at 0.9 and varying the layer size, with the number

of units per layer taking values between 20 and 200 in increments of 20, repeating

the experiment 1000 times for each layer size and reporting the average.

The results of these experiments can be observed in Figure 5.6. In Figure 5.7,

we observe the same thing for the value of k at which this maximum perturbation

occurs.

Though the network’s behaviour in the regards that we are examining appears

to be relatively insensitive to the size of the network’s layers, the strength of

the evidence presented is insufficient for us to conjecture that the maximum

perturbation size and the time-delay in its occurrence are truly independent from

102 CHAPTER 5. DEPTH IN RECURRENT NEURAL NETWORKS

Figure 5.6: Log of maximum perturbation size at each hidden layer when varying
number of units per layer.

Figure 5.7: Delay until maximum perturbation size is reached for each hidden
layer when varying the number of units per layer.

5.4. MEMORY CAPACITY 103

the network size. In particular, we note that Figure 5.6 shows some deviation in

behaviour for the smallest of the networks which were examined. It may be the

case that the constants of proportionality are of the form Cρ(W),M , dependent upon

the size of the hidden layers but that for each ρ(W) there exists some constant

Cρ(W) such that limM→∞Cρ(W),M = Cρ(W) and Cρ(W),M approximates this limit

even for even modestly sized layers.

5.4 Memory Capacity

The second manifestation of the different time-scales phenomenon which we

investigate in this chapter is its effect on the per-layer memory capacity of deep

echo state networks. In this section, we build on [Gal18], which showed an increase

in memory capacity in deep layers of a DeepESN as compared to the memory

capacity of layers closer to the input. The full contributions of this section are

listed as follows:

• We show that if a Lin-DeepESN has the maximum possible memory capacity

(M · L), where M is the number of units per layer and L is the number of

layers, then each layer of the network, when considered in isolation, has a

memory capacity of M .

• We show that the phenomenon reported in [Gal18] is also exhibited by linear

random networks, and the effect is not dependent on the tanh activation

function used in their work.

• We examine the different ways in which finite precision computation can

cause loss of memory capacity in deep networks, and how these problems

can be mitigated against.

We first define the per-layer memory capacity of the network as follows.

Definition 5.4.1 (Layer-wise memory capacity). Let (W̄ , v̄) be an L layer ESN

and let {ut}∞t=−∞ be a sequence of i.i.d. random scalar inputs with finite variance.

Define

z
(l)
t

def
=

(
ut

x
(l)
t

)

104 CHAPTER 5. DEPTH IN RECURRENT NEURAL NETWORKS

and w
(l)
k

def
= arg minŵk

E
[
(ŵᵀ

kz
(l)
t − ut−k)2

]
, where the expectation is over the dis-

tribution of input sequences, then the k-delay memory capacity of the lth layer of

the network MC
(l)
k is defined as

MC
(l)
k

def
=

cov2((w
(l)
k)ᵀz

(l)
t , ut−k)

var(wᵀ
kz

(l)
t) · var(ut)

,

The total memory capacity of the lth layer of the network is defined by the infinite

sum

MC(l) def
=

∞∑
k=1

MC
(l)
k

We know from the previous chapter that, in theory, a randomly initialised

Lin-DeepESN with weights drawn independently from continuous distributions

has a total memory capacity of M · L with probability one. Furthermore, we can

show that the per-layer memory capacity MC(l) for each layer is bounded by M ,

and is almost surely M in the case where the weights are randomly initialised from

continuous distributions. In order to prove this, we first introduce the following

lemma.

Lemma 5.4.1. Let (W̄ , v̄) be an L layer neural network with M hidden units per

layer. For some 1 ≤ l ≤ L, let Q be a matrix satisfying Q
(
E
[
z

(l)
t (z

(l)
t)ᵀ

])
Qᵀ = I,

where Q = Λ−
1
2P ᵀ for an orthonormal matrix P and a full-rank diagonal matrix Λ,

and let Q satisfy E
[
(Qz

(l)
t)iut

]
= δi1, where δij is the Kronecker delta. Defining

z̃
def
= Qz, if the input sequence has zero-mean and unit variance, for k ≥ 1 the

following equalities hold:

MC
(l)
k =

∞∑
k=1

E
[
(y

(l)
k)2

]
=

M+1∑
i=2

E
[
(z̃

(l)
t)i · ut−k

]2

.

Where y
(l)
k is the optimal linear reconstruction of ut−k from the state z

(l)
t .

The proof of this lemma is essentially the same as in [Jae02b], so we relegate

the details to Appendix C. It is interesting to note that the lemma gives us an

alternative way of thinking of the memory capacity of linear networks: as the

5.4. MEMORY CAPACITY 105

sum of variances of the optimal input reconstructions (or the variances of the

optimal reconstructions divided by the variance of the inputs when they are not

normalised to have unit variance). This is something that makes intuitive sense

in the extreme cases: when the input can be reconstructed perfectly, yk will

have the same variance as ut−k, and when there is no information that can be

extracted about the hidden state, the best strategy is to predict the mean (i.e,

zero), meaining the variance will be zero.

With the lemma in hand, we proceed to the main proposition:

Proposition 5.4.1. Let (W̄ , v̄) be a Lin-DeepESN with L layers of M hidden

units per layer and memory capacity M · L, then

MC(l) = M.

Proof. Our proof follows the same structure of the argument made for Proposition

4 in [Jae02b]. To begin, we consider the correlation matrix R = E
[
z

(l)
t (z

(l)
t)ᵀ

]
showing that it has full rank. To do this we first show that E

[
x

(l)
t (x

(l)
t)ᵀ

]
is

positive definite (i.e., for all y ∈ RM , yᵀE
[
x

(l)
t (x

(l)
t)ᵀ

]
y > 0). Since the memory

capacity of (W̄ , v̄) is M ·L by assumption, the memory matrix of the network (as

defined in Definition 4.2.1) must be full rank. This in turn implies that for any

layer l, the sub-matrix
(
MW̄ ,v̄

)
(l−1)·M :l·M is full row-rank. For each i ∈ N, define

ri
def
=
(
W̄ iv̄

)
(l−1)·M :l·M

Now take an arbitrary non-zero vector y ∈ RM . Due to
(
MW̄ ,v̄

)
l·M :(l+1)·M being

full rank, for at least one i ∈ {1, . . . ,M · L}, we must have yᵀri 6= 0. If we

consider the state of the network at time t, when the network has been driven by

a left-infinite input sequence from time −∞, the independence of ui and uj when

i 6= j yields

yᵀE
[
x

(l)
t (x

(l)
t)ᵀ

]
y = yᵀE

[(
∞∑
k=0

rkut−k

)(
∞∑
k=0

rkut−k

)ᵀ]
y

= yᵀE

[
∞∑
k=0

(rkut−k) (rkut−k)
ᵀ

]
y

= E

[
yᵀ

∞∑
k=0

(rkut−k) (rkut−k)
ᵀ y

]

106 CHAPTER 5. DEPTH IN RECURRENT NEURAL NETWORKS

= E

(yᵀ
∞∑
k=0

(rkut−k)

)2


= E

(∞∑
k=0

yᵀ (rkut−k)

)2


= E

[
∞∑
k=0

(yᵀ (rkut−k))
2

]

=
∞∑
k=0

E
[
(yᵀ (rkut−k))

2]
=
∞∑
k=0

(yᵀrk)
2 · E

[
u2
t−k
]

> 0.

Therefore E
[
x

(l)
t (x

(l)
t)ᵀ

]
is positive definite and must be full rank. Note that

E
[
x

(l)
t (x

(l)
t)ᵀ

]
is the matrix making up the bottom-right M ×M sub-matrix of

R. Combining this with the fact that the top row is all-zero, except for the first

entry, we get that R is full-rank.

Since R is a full-rank symmetric matrix, it can be decomposed R = PΛP ᵀ

where Λ is a diagonal matrix and P is a matrix whose columns are form an

orthonormal basis of RM (and therefore P ᵀ = P−1). We define Q = Λ−
1
2P ᵀ,

noting that QRQ−1 = I and also define z̃
(l)
t = Qz

(l)
t . Due to the structure of the

top row of R, it is also possible to choose P in order to impose the restriction on

Q that (Q−1z
(l)
t)1 = (z

(l)
t)1, and therefore the conditions for Lemma 5.4.1 hold.

Define x̄
(l)
t as the ((l − 1) ·M)-length vector consisting of the states of the

first l − 1 layers of (W̄ , v̄), and define V̄l as the M × ((l − 1) ·M) matrix whose

last M columns are the columns of Vl and all other entries are zero. Finally, if

we define W̄l and v̄ to be the matrix and vector such that (W̄l, v̄l) is the network

with ((l − 1) ·M) hidden units whose states are the first ((l − 1) ·M) states of

(W̄ , v̄) under the same input, we are able to write

x
(l)
t = Wlx

(l)
t + V̄lx̄

(l−1)
t

=
∞∑
k=0

W k
l V̄lx̄

(l−1)
t−k

5.4. MEMORY CAPACITY 107

=
∞∑
k=0

W k
l V̄l

∞∑
j=0

W̄ j
l v̄lut−(j+k)

=
∞∑
k=0

∞∑
j=0

W k
l V̄lW̄

j
l v̄lut−(j+k)

=
∞∑
k=0

(
k∑

m=0

W k
mV̄lW̄

m−k
l v̄l

)
ut−k. (5.2)

Equation 5.2 decomposes the state of the lth layer into the sum of contributions

from individual inputs, in the same way as xt =
∑∞

k=0W
kvut−k does in the single

layer case. This allows us to derive an expression for components of z̃
(l)
t in terms

of the contributions of individual inputs. For i 6= 1, we have

(z̃
(l)
t)i = Qi1ut +

M+1∑
j=2

Qij(x
(l)
t)j−1

= Qi1ut +
M∑
j=1

Qi(j+1)

(
∞∑
k=0

k∑
m=0

Wm
l V̄lW̄

m−k
l v̄lut−k

)
j

= Qi1ut +
∞∑
k=0

M∑
j=1

Qi(j+1)

(
k∑

m=0

Wm
l V̄lW̄

m−k
l v̄l

)
j

ut−k

=
∞∑
k=1

M∑
j=1

Qi(j+1)

(
k∑

m=0

Wm
l V̄lW̄

m−k
l v̄l

)
j

ut−k, (5.3)

Define βik =
∑M

j=1Qi(j+1)

(∑k
m=0W

m
l V̄lW̄

m−k
l v̄l

)
j
. With this definition, we have

for 2 ≤ i ≤M + 1

(z̃
(l)
t)i =

∞∑
k=0

βikut−k,

and we can use Equation 5.3 to get. Since memory capacity of a linear network is

invariant to changes in scale of the input, we can assume without loss of generality

108 CHAPTER 5. DEPTH IN RECURRENT NEURAL NETWORKS

that the input has unit variance, giving

∞∑
k=1

β2
ik =

∞∑
k=1

β2
ik · E

[
u2
t−k
]︸ ︷︷ ︸

=1

=
∞∑
k=1

∑
E
[
(βik · ut−k)2]

= E

 ∞∑
k=1

 M∑
j=1

Qi(j+1)

(
k∑

m=0

Wm
l V̄lW̄

m−k
l v̄l

)
j

ut−k

2
= E

 ∞∑
k=1

M∑
j=1

Qi(j+1)

(
k∑

m=0

Wm
l V̄lW̄

m−k
l v̄l

)
j

ut−k

2
= E

[
(z̃

(l)
t)2

i

]
= 1

where fourth line is derived from the third by noting that the cross terms in the

square are all zero because E [ut−kut−l] = E [ut−k]E [ut−l] = 0 whenever l 6= k.

Putting this all together, we have

MC(l) =
∞∑
k=1

M+1∑
i=2

E
[
(z̃

(l)
t)i · ut−k

]2

=
∞∑
k=1

M+1∑
i=2

E

[(
∞∑
j=0

βij · ut−j · ut−k

)]2

=
∞∑
k=1

M+1∑
i=2

E
[
(βik · ut−k)2

]
=

M+1∑
i=2

∞∑
k=1

β2
ik · E

[
u2
t−k
]

=
M+1∑
i=2

∞∑
k=1

β2
ik

= M

Though we do not prove it here, it seems likely that this result can be extended

to a more general case, where the memory capacity of entries of a hidden state

5.4. MEMORY CAPACITY 109

Spectral Radius

Layer Number 0.5 0.75 0.9 0.95 0.99
1 39.70 62.17 75.67 79.38 81.13
4 49.85 91.94 99.76 99.58 97.62
7 55.21 99.00 99.75 99.49 96.47
10 59.50 99.86 99.75 99.38 94.89

Table 5.3: MC(l) for layers of a deep linear ESN with 100 units per layer for
various spectral radii.

(in this case, the M entries corresponding to a single layer in an M · L flattened

network) can be inferred from the row-rank of the corresponding rows in the

memory matrix of the network.

The above proposition can be used in conjunction with results from Chapter 4.

For instance, combining it with Theorem 4.4.2 gives that when the weights of a

Lin-DeepESN are sampled from a continuous distribution, the network layers will

each have memory capacity M with probability one.

Note that the proposition does not consider the finite precision available to us,

nor does it give us any information about the shape of memory capacity curve.

It is, however, useful in the following sense: it guarantees that, given infinite

precision computation and that the memory capacity of the flattened network

is M · L, each of the layers have the same memory capacity, and therefore any

differences between the total memory capacity of different layers must be a result

of finite precision computation. Knowledge of this fact can be used to inform

the approach that is used when empirically evaluating the memory capacity of a

network.

We begin our investigation by plotting the memory capacity curve of networks

using the standard network architecture described in Section 5.2.1. This is

presented in Figures 5.8 and 5.9, where we show the k-delay memory capacities of

layers of a Lin-DeepESNs averaged over 1000 runs with different initialisations of

the network. Each network has 10 layers of 100 hidden units each, with weights

randomly initialised for each run. Each run is conducted by driving the network

with a sequence of 6000 inputs generated from a uniform distribution over the

interval [−1, 1]. We subject this sequence to a 5000:1000 train/test split, and

discard the first 100 states of the training set in order to eliminate initial transient

behaviour in the network.

We remark upon two notable aspects of the network behaviour which can be

110 CHAPTER 5. DEPTH IN RECURRENT NEURAL NETWORKS

(a) Spectral Radius = 0.5

(b) Spectral Radius = 0.75

(c) Spectral Radius = 0.9

Figure 5.8: Layer-wise memory memory capacities of layers of a 10-layer Lin-
DeepESN with 100 units per layer for various spectral radii. The left images show
the values of MC

(l)
k for l = 1, 4, 7, 10 while varying k. The right images show the

norm of w
(l)
k for each k for those same networks. The line showing the size of the

norm becomes dotted when MC
(l)
k falls below 0.5. The vertical lines show the

value of k for which an input at time t−k would cause the maximum perturbation
for the layer with the corresponding colour.

5.4. MEMORY CAPACITY 111

(a) Spectral Radius = 0.95

(b) Spectral Radius =0.99

Figure 5.9: Per layer memory capacities of layers of a 10-layer network with 100
units per layer for various spectral radii. Further detail can be found in the caption
for Figure 5.8

112 CHAPTER 5. DEPTH IN RECURRENT NEURAL NETWORKS

observed in Figure 5.8 and Figure 5.9:

1. Effects of Depth and Spectral Radius on Total Memory Capacity:

Like [Gal18] found in the non-linear case, we find that deeper layers of the

network have longer memories than those closer to the input. In particular,

Table 5.3 shows that for all spectral radii, layers 4, 7 and 10 have greater

layer-wise memory capacity than the first layer. However, we do not find this

to be a universal phenomenon, i.e., greater depth and higher spectral radius

do not guarantee a higher total memory capacity. In fact, for spectral radii

0.9, 0.95 and 0.99, the maximum memory capacity amongst the observed

layers occurs in the fourth layer of the network, with spectral radius 0.99

seeing a marked degradation in total memory capacity in deeper layers.

2. Effects of Depth and Spectral Radius on Size of Reconstruction

Weights: Examining the norms of the weights required for the reconstruc-

tions, we find that for deeper layers, the growth is not monotonic with respect

to k. From the previous section examining the size of perturbations, this is

something that might have been predicted: the weight norms shrink initially

as the size of the contribution of ut−k grows. However, we also observe from

the figures that it is not the case that the delay for which the perturbation

is greatest is also the delay for which the weights are smallest, with the k for

which the perturbation is maximised being larger than the k for which the

reconstruction weights have the largest norm. To understand why this may

be the case, we consider what is happening to W̄ kv̄ as k →∞. Not only is

the size of the contribution geting smaller, i.e.,
∥∥W̄ kv̄

∥∥→ 0, the directions

in which these vectors point is getting less varied, i.e., there exists a low-

dimensional subspace3 of RM ·L such that the component of W̄ kv/
∥∥W kv

∥∥
orthogonal to that subspace decays exponentially (See Appendix C.3 for

additional detail).

The first of these two observations is of particular interest to us, as under-

standing what causes the layer-wise memory capacity to deviate from the value

3The dimension of the subspace is determined by the spectrum of W (assuming that v has a
non-zero component in the directions of all generalised eigenvectors of W). For W where the
entries are sampled from a continuous distribution, the dimension of the subspace is almost
surely one or two, depending on whether there is a single eigenvalue of largest magnitude or
two forming a complex conjugate pair. Though once again rescaling adds complications to the
picture, and allows the dimension of the subspace to grow linearly with depth for deeper layers.

5.4. MEMORY CAPACITY 113

predicted by Proposition 5.4.1 is an important first step in designing strategies

to mitigate against the effect. As such, we further investigate the causes of the

phenomenon through additional experiments.

We first address why deeper network layers are able to remember inputs further

in the past than the first layer of the network. In order to do so, we perform

Principal Component Analysis (PCA) on the collected network states for each

layer. For a matrix X ∈ RN×M with M < N , PCA constructs an orthonormal

basis for the space RM , with the basis vectors ranked in order of the amount of

variance the rows of X have in the direction of those vectors. If X ∈ RN×M is a

matrix whose rows are states of a layer of an DeepESN when driven by a given

input sequence, PCA first finds the direction in RM in which the empirical variance

in those states is maximised—we refer to this as the first principal component.

For 2 ≤ i ≤M , the ith principal component is defined iteratively as the direction

orthogonal to the first (i−1) principal components for which variance is maximised.

The variance in each of these directions (σ1, . . . σM) are the singular values of X.

Using our standard 10 layer, 100 unit-per-layer architecture, we run 1000

randomly initialised networks on the same input sequence of length 6000 whose

entries are draw independently from a uniform distribution over [−1, 1]. The

states of each layer are collected at each time step, the first 100 time-steps are

discarded and for each layer of interest, PCA is performed on the 5900 × 100

matrix with rows consisting of the transposed states of that layer. We consider

the proportion of variance (PoV) attributed to each principal component, i.e., for

1 ≤ i ≤M , we are interested in the value σi/
∑M

j=1 σj.

The mean proportion of variance attributed to each principal component

over all runs is presented in Figure 5.10 for networks with spectral radii 0.5,

0.75, 0.9, 0.95 and 0.99. For all observed spectral radii, in the first layer the

proportion of variance that principal components are responsible can be observed

dropping faster than exponentially with the index of the principal component,

until eventually levelling off. It is worth noting that the highest proportion of

variance is of the order 10−1, the levelling off occurs at values on the order 10−17

and—since we are conducting experiments using NumPy’s 64-bit arrays with a 52

bit mantissa[Oli06]—computation is performed with approximately 16 significant

digits in the decimal representation. This is highly suggestive of the idea that

there are directions where the variance is attributable to rounding error, and

therefore the whole space is not being utilised.

114 CHAPTER 5. DEPTH IN RECURRENT NEURAL NETWORKS

(a) (b)

(c) (d)

(e)

Figure 5.10: Proportion of average variance that each principal component is
responsible for in layers of an DeepESN.

5.5. EFFECTS OF NON-LINEARITY 115

This problem puts a restrictive upper limit on the memory capacity of ESN

layers, as demonstrated in Figure 5.11, and it appears that the rate of decay of PoV

amongst the principal components varies little with layer size. Successive doublings

the size of the network layers offers diminishing returns, both on improvement in

memory capacity and on decrease in decay rate of PoV, approaching some limit.

We also observe that the drop-off in PoV gets slower for each successive network

layer. This means that PCA cannot explain the reduced memory capacity seen

in the deep layers of the network with ρ(Wi) = 0.99, as observed in Figure 5.9b.

Indeed, in Figure 5.10e we observe that PoV for the 10th layer of that network has

has slowest decay amongst all observed spectral radius/layer pairings. Though we

are unable to offer a complete explanation for the cause of this phenomenon, we

conjecture that it can be thought of as being the opposite extreme from the issue

that we find with low spectral radii. That is to say, it appears to be related to

signals not dying out quickly enough, and the state space becoming in a sense

‘cluttered’. In support of this idea, we note that:

• Unlike the issue encountered when the spectral radius is low, we are able to

mitigate this problem by increasing the size of layers of the network. This

can be observed in Figure 5.12, where we observe that for spectral radius

0.99, the observed degradation in performance disappears for networks with

layers of size 200 and 400 and a drop in performance occurs in the 50 unit

per layer network for spectral radius 0.95.

• The same phenomenon can be observed, albeit to a lesser extent, in single

layer networks with high spectral radius (and in the first layer of Lin-

DeepESNs). An example of this is shown in Figure 5.13. In order to create

this effect in a single-layer network, the spectral radius had to be chosen

to be very close to one, and the network size had to be relatively small,

whereas the effect is significantly more pronounced in deeper layers of a deep

network.

5.5 Effects of Non-Linearity

Throughout this chapter thus far, we have consider only the case where the

activation function is the identity function. This allows us to gain valuable

insights into the root causes of observed phenomena, but it is not representative

116 CHAPTER 5. DEPTH IN RECURRENT NEURAL NETWORKS

Figure 5.11: Left: Proportion of variance for which each principal component is
responsible in the first and tenth layers of Lin-DeepESNs of varying sizes with
spectral radius 0.5. Right: Memory capacity curves for those same network layers.
Both figures show the average over 200 random network initialisations.

5.5. EFFECTS OF NON-LINEARITY 117

Figure 5.12: Memory capacity curves for the 10th layer of Lin-DeepESNs with
spectral radii 0.95 and 0.99. For each layer size, we plot the average value of each
MCk over 200 random initialisations

118 CHAPTER 5. DEPTH IN RECURRENT NEURAL NETWORKS

Figure 5.13: Memory capacity curve for the first layer of an Lin-DeepESN with
spectral radius 0.999 averaged over 200 random initialisations (solid lines). The
memory capacity curves for networks with spectral radius 0.9 are shown as dashed
lines.

of how these networks are used in practice. In this section, we briefly examine

how the effects we have observed in the linear case manifest differently when a

saturating activation function is used.

An important consideration when moving from the linear to the non-linear

case is that we no longer have the scale-invariance which we benefited from in

the linear case. In particular, as the norm of the components of the hidden state

before the activation increases, so does the compressive effect of the non-linearity,

and in this sense, the dynamics of the layer will be ‘more non-linear’. In this

section, we will show why it is an important to consider this behaviour when

designing DeepESNs, and we will demonstrate the impact of both the recurrent

spectral radius and the feedforward norm on this effect.

As a motivating example, we perform a similar experiment to that performed

in [Gal18] measuring the memory capacity curves of various layers of a non-linear

DeepESN. In particular, we examine the typical layer-wise memory capacity of a

ten-layer network with 100 hidden units in each layer, using the tanh activation

function. The weights in these networks are initialised using a uniform distribution

over the interval [−1, 1], then the weight matrices are rescaled to have the desired

characteristics: each recurrent weight matrix is scaled so that its spectral radius

is 0.9, feedforward weight matrices are scaled to have unit norm, and the input

5.5. EFFECTS OF NON-LINEARITY 119

weight vector is scaled to have a norm of 0.1. We repeat the experiment 200 times

and report the average of the results. For this experiment, and the rest of the

experiments in this section, we use an input sequence of length 6000, with entries

sampled independently from the interval [−1, 1]. We discard the first 100 network

states, the next 4900 are used for training the regression weights and the last 1000

are used for calculating the memory capacity given those weights. The average of

the memory capacity curves for this experiment is shown in Figure 5.14a.

Like [Gal18], we observe that deeper network layers have higher memory

capacity, and are able to retain information for longer. However, if we increase the

spectral radius from 0.9 to 0.95, we get Figure 5.14b, where the last layer shows a

substantial drop in memory capacity compared to the the case where the spectral

radius is 0.9 (from a average total memory capacity of 83.03 to 71.15). While we

also observe a drop in memory capacity in the 10th layer in the linear case, as

shown in Table 5.3, the effect in the linear network is much smaller, both in terms

of absolute value and as a proportion of the total memory capacity (dropping

from 99.75 to 99.38).

If the feedforward weights are not sufficiently small as to compress the state

of a layer before it is passed to the next layer, the average size of the hidden state

grows at each layer. In the linear case, this would lead to exponential growth of

the hidden state norm as we get deeper in the network; in the non-linear case, the

non-linearity has an increasingly large effect at each layer. We hypothesise that

this is the cause of the drop in performance on the memory capacity task.

In order to test this hypothesis, we first conduct experiments to examine the

relationship between the average norm of the hidden state of each layer and the

recurrent spectral radius and feedforward norm of the network. In particular, we

vary the spectral radius of the recurrent weight matrices and the spectral norm of

the feedforward matrices, and examine what values of these lead to contraction

between layers versus expansion. We generate 200 random networks, scale the

recurrent and feedforward weight matrices, then run each network on a sequence

of 1000 scalar values sampled uniformly from the interval [−1, 1]. The states of

each layer of the network are recorded at each time-step, and the average norm of

the last 900 states of each layer are recorded. The results of these experiments are

shown in Figure 5.15. The intersection of the dotted and solid lines in Figure 5.15

shows when the feedforward norm becomes sufficiently large that we start seeing

expansion rather than contraction in the average state size between layers. It

120 CHAPTER 5. DEPTH IN RECURRENT NEURAL NETWORKS

(a)

(b)

Figure 5.14: Memory capacity curves of DeepESNs. (a) shows the memory
capacity curves of layers when ρ(Wi) = 0.9 for each i. (b) shows the memory
capacity curves of layers when ρ(Wi) = 0.95

5.5. EFFECTS OF NON-LINEARITY 121

can be observed that increasing the spectral radius decreases the minimum size

at which the feedforward weights cause expansion in the size of the hidden state

between layers as opposed to contraction.

We now proceed to examine the relationship between this phenomenon and

the layer-wise memory capacity of the network. Again, we use 200 randomly

generated networks, rescaling the spectral radius and feedforward norms to the

desired values. As in the previous memory capacity experiments in this section,

we run the network on a sequence of 6000 inputs uniformly sampled from [−1, 1],

with the same 100/4900/1000 split for transient/train/test. As a practical matter,

in conducting these experiments we found it necessary to rescale the first entry of

zt (i.e., the entry equal to ut) so that it had the same variance within the training

data as a typical entry of xt. Our failure to do so in preliminary runs lead to

numerical issues where we would observe a degradation of memory capacity not

just for excessively large values of the feedforward norm, but also for excessively

small ones.

The results from the experiments are shown in Figure 5.16. Additionally, we

conduct the same experiment with input weight norms 10−6, 10−4 and 10−2. The

results of these experiments are shown in Appendix C in Figure C.1, Figure C.2

and Figure C.3, respectively. Once again, there are several aspects to these Figures

which are worthy of discussion:

• Behaviour for small values of ‖Vi‖: For small values of the feedforward

norm, we see that the curves are relatively flat. As ‖Vi‖ → 0, the inputs

to each layer become closer to zero, and therefore the layer operates in

the approximately linear region of the tanh function. This means that

below a certain threshold, decreasing the feedforward weights further has

little impact on the memory capacity. Note that the decision to scale ‖vi‖
independently means that the maximum memory capacity reached by each

layer is still significantly less than observed in the linear case in Table 5.3,

likely because all signals to deeper layers must pass through the first layer,

where the state is large enough for the non-linearity to have a detrimental

effect. This can be verified by examining Figure C.1, where the input weights

are scaled so that ‖vi‖ = 10−6, and the memory capacities achieved are

much closer to those observed in the linear case.

• Effects of spectral radius: Much like in the linear case, we see that in

deeper layers of the network, it is not the case that larger spectral radius

122 CHAPTER 5. DEPTH IN RECURRENT NEURAL NETWORKS

always implies a greater memory capacity. The reasons for this are likely

the same reasons as discussed in the previous section. However, the non-

linearity of the networks adds some complexity and we observe that the best

spectral radius for a given layer size and depth can vary with the choice of

feedforward norm.

• Contractive vs. expansive effects of ‖Vi‖: Noticeable memory degra-

dation in all observed layers of our networks begins well before the point

that the feedforward weight matrices go from being contractive to expansive.

However, this is likely due in part to our relatively large input weights v1,

since even with the input to layers getting smaller with depth, their states

can still be large enough to be significantly affected by tanh’s saturating

effect. Indeed in Figures C.2 and C.1, we observe the opposite behaviour,

especially in early layers of the network, i.e., even for values of ‖Vi‖ which

increase the size of states at between layers we do not observe a drop in

memory capacity. Again, this makes intuitive sense: for extremely small

‖v1‖, the signal has to be expanded over more applications of feedforward

weight matrices until it encounters enough of an effect from the non-linearity

in order for memory degradation to happen. While the contractive/expan-

sive nature of the feedforward norms does appear to play an important part

in determining the memory capacity of network layers, these results suggest

our initial hypothesis was an over-simplification and fails to account for the

full complexity of the system.

The effects that we observe here highlight an important shortfall in our

current understanding of deep recurrent networks. In deep feedforward networks,

principled methods for initialisation exist; these methods focus on initialising

the weights so that the norms of the hidden states of each layer are the same

size on average, as are the norms of the gradients under backpropagation [GB10;

He+15]4. These existing initialisation techniques do not naturally extend to deep

recurrent networks, since the relationship between the variance of hidden states

of different layers of a recurrent network and the network’s weights is significantly

more complex.

4It is interesting to note that for square matrices the scheme proposed in [GB10] is equivalent
to setting the spectral radius to be close to 1. Indeed, we can think of initialising W to have
spectral radius close (but strictly less than) to 1 in ESNs as having the same motivation as
Glorot initialisation, i.e, preserving the magnitude of signal passing through W (even if in the
latter case we do want eventual decay in order to preserve the ESP).

5.5. EFFECTS OF NON-LINEARITY 123

(a) (b)

(c) (d)

(e)

Figure 5.15: Mean size of state of hidden layer in non-linear network against the
size of the norm of the feedforward weight matrices. Solid lines show the norm of
the layer under consideration and dotted lines show the mean of the norm of the
previous layer.

124 CHAPTER 5. DEPTH IN RECURRENT NEURAL NETWORKS

(a) (b)

(c) (d)

(e)

Figure 5.16: Total memory capacity for network layers, varying recurrent spectral
radius and feedforward norm size. Input weight vector scaled to satisfy ‖vi‖ = 0.1
in all cases. Vertical lines show the feedforward norm at which the average norm
of the current layer’s state is larger than the average norm of the previous layer’s
state.

5.6. CONCLUSION 125

5.6 Conclusion

In this chapter, we have examined the different time-scales phenomenon in deep

recurrent networks.

We have shown the phenomenon is exhibited in linear networks, despite

the fact that perturbations in such networks necessarily exhibit asymptotically

exponentially decreasing influence. We have further shown that the first layer of

the such networks is qualitatively different in its behaviour compared to deeper

layers in the network. By confirming the existence of the phenomenon in linear

networks, we were able to study it in more detail than existing work (e.g., [GM16]),

giving deeper insight into the nature of the phenomenon.

We provided a similar contribution for memory capacity, not only showing

that the phenomenon previously observed for non-linear networks exists in the

linear case, but also highlighting its complex relationship to the spectral radius

of the recurrent weight matrix. Furthermore, we proved that the difference in

memory capacity between layers in the linear case is due to the finite precision

with which the computation was performed. Using this knowledge, we were able

to more deeply investigate the phenomenon.

Finally, we demonstrated the importance of careful scaling of the feedforward

matrix norms in the non-linear case, showing that improper scaling leads to

a degradation in performance in the memory capacity task. We highlight the

problem of managing these effects as a potential area of future research.

Most of the results in this chapter have been empirical in nature. While

this research provides important insights into the causes of previously observed

phenomena, it does not offer complete explanations for why this behaviour occurs.

To the best of our knowledge, no work has been done on understanding these

systems from a random matrix theory perspective, and we believe that this could

be a productive area of future research.

By increasing the understanding of the nature of the phenomenon, we hope to

pave the way for future research into how this phenomenon can be exploited to

allow for improved performance of networks in tasks which require the network to

approximate complex interactions between inputs in the recent and distant past.

Chapter 6

The Asymptotic Behaviour of

Linear Input-Driven Systems

6.1 Introduction

When investigating the relationship between network weight structure and network

behaviour, it is often useful to consider the case of linear networks (as, for example,

we have done in previous chapters). However, removing the saturating non-linearity

introduces new practical considerations in ESN construction. In particular, it is

highly desirable that, given uniformly bounded inputs, the space of all reachable

hidden state configurations is also bounded. This is trivial in the case where the

state is subjected to a saturating activation function, but in the linear case, more

care must be taken to ensure stability in this sense.

In the simplest terms, the relationship between the spectral radius of the

recurrent matrix and the stability of the network is described by well-known

results from linear systems theory (i.e., ρ(W) ≥ 1 allows for the possibility that

unstable trajectories through the state-space emerge from a network driven by

bounded inputs, whereas ρ(W) < 1 does not). And indeed, most investigations

into linear networks restrict their analyses to the case where the spectral radius

of the recurrent weight matrix satisfies ρ(W) < 1.

While existing work will usually state that they consider only the case ρ(W) <

1, the connection to network stability is rarely made explicit. Instead, the

restriction is sometimes framed in terms of ensuring the necessary condition for

the Echo State Property (ESP) is met (e.g., [GGM18; GMP19]). It is worth

remembering that in the non-linear case, ρ(W) < 1 is also necessary for the

126

6.1. INTRODUCTION 127

ESP, but performance of the network can sometimes be improved by choosing

ρ(W) > 1, hence, for the linear case it is more natural to think of ρ(W) < 1

implying stability as the reason for it being preferred1. However, it is rare to find

work that explicitly discusses the conditions for stability of a linear ESNs—and

even when the connection between the recurrent weight matrix and stability is

made, it is often only as a passing comment, without referring the reader to a

source where more detail can be found (e.g., [WLS04; OXP07]). Part of the

motivation of this chapter is to bring knowledge relating the recurrent weight

matrix’s spectrum and stability inside of the ESN literature, rather than relying

on the reader’s existing knowledge of linear systems theory. In addition, we offer

results regarding the consequences of network instability. We examine the effects

an ESN’s weights have on the asymptotic behaviour of the network, focusing on

the relationship between a network’s long-term behaviour and the spectrum of

its recurrent weight matrix W (and also subject to some conditions on the input

weight matrix V). In doing so, we provide a more complete understanding of how

network structure influences the long-term behaviour of the network. We consider

three distinct cases: the stable case (ρ(W) < 1), the unstable case (ρ(W) = 1),

and the explosive case (ρ(W) > 1), allowing us to provide a more comprehensive

understanding of the way that a network’s weights affect the network’s behaviour.

We note that though in the context of this thesis, it is most appropriate to

frame the results in terms of linear ESNs, they are general enough to apply to a

broader range of input-driven linear systems. Indeed, even though instability is

typically an undesirable property in ESNs, unstable linear systems are of interest

in other domains [KCP86; TT90; STM18]. [STM18] in particular, discusses several

domains in which unstable linear systems arise and describes how auto-regressive

models can be a useful tool in modelling those systems.

The contributions in this chapter are as follows:

• For linear ESNs driven by input from a compact set, we show that if

ρ(W) < 1, then the network’s hidden state is bounded and that the echo

state property is satisfied. While the first of these is a standard result in

linear systems theory, to the best of our knowledge it is yet to be explicitly

included in the ESN literature. Furthermore, we show that light-tailed inputs

1 Though ρ(W) > 1 means that the necessary condition for the ESP is not met, in the
non-linear case large enough inputs can still result in the network becoming insensitive to initial
conditions. While this adds nuance to discussion of non-linear case, it does not apply to linear
networks.

128 CHAPTER 6. ASYMPTOTIC BEHAVIOUR OF LINEAR NETWORKS

guarantee that the distributions of the components of the network state

are also light-tailed. In particular, for sub-Gaussian random variables (as

defined later in this chapter in Section 6.2.1), we show that in the zero-mean

case the distribution of the state vector is also sub-Gaussian, and that the

distribution has sub-exponential tails in the case where the input has a

deterministic component and additive sub-Gaussian noise.

• For the case ρ(W) = 1, we show that for independently distributed random

inputs from zero-mean distributions, the expected rate of growth of the of

the norm is polynomial in sequence length, with the degree of the polynomial

determined by the structure of W and the directions of the columns of the

input weight matrix V . We also extend this result to show the consequences

for deterministic inputs perturbed by additive noise.

• For the case ρ(W) > 1, we show that the asymptotic rate of growth is

exponential regardless of the structure of W , except for a simple condition

on the relationship between W and V which ensures proper coupling of the

input with the network state.

• The echo state property implies that the states of two identical networks

with different initial conditions will converge asymptotically if the networks

are driven by the same input. We show a complementary property: that in

the case that identical networks are driven by two distinct sequences, the

states of two networks will converge if and only if the two input sequences

converge.

The rest of this chapter is organised as follows. In Section 6.2, we define the

model and notation used throughout the rest of the chapter. In Sections 6.3, 6.4

and 6.5 we present our analysis of model behaviour in the three major cases:

ρ(W) < 1, ρ(W) = 1 and ρ(W) > 1. In Section 6.6, we examine how the

asymptotic behaviour of the network is determined by the asymptotic behaviour of

the input. Finally, Section 6.7 contains some concluding remarks for the chapter.

6.2 Background

Throughout this chapter, we consider a linear ESN with M hidden units. In the

case of single-dimensional input sequences, we denote the input sequence {ut}∞t=1

6.2. BACKGROUND 129

with ut ∈ U , where U is a compact subset of the real line. In this case, we give

the update rule of the network as

xt = Wxt−1 + vut. (6.1)

We refer to W ∈ RM×M as the recurrent weight matrix and v ∈ RM as the input

weight vector, and we refer to the network itself as (W,v).

In the multi-dimensional input case, we denote the input sequence {ut}∞t=1,

with ut ∈ U where U is a compact subset of RD for some D ∈ N. In this case,

the input weight vector is replaced with an input weight matrix V ∈ RM×D and

the update rule becomes

xt = Wxt−1 + V ut. (6.2)

Once again, we refer to the network using the notation (W,V). We define ρ(W)

to be the spectral radius of W , i.e., ρ(W)
def
= max({|λ| : λ ∈ S(W)}), where

S(W) is the set of eigenvalues of W , and ‖W‖ to be the spectral norm of W , i.e.,

‖W‖ def
= maxx∈RM

‖Wx‖
‖x‖ . Unless stated otherwise, we set the initial state of the

network x0 = 0, though all the results stated are easily modifiable to hold for

non-zero initial state.

In this chapter we are interested in the asymptotic behaviour of these systems,

and in particular whether or not the systems are stable. For this reason, it is

useful to formalise the notion of stability as follows:

Definition 6.2.1. Consider a dynamical system with some update function F (·, ·),

such that xt = F (xt−1,ut), where {ut}∞t=1 is a sequence of vectors in some compact

subset of RD, U . We call the system stable, if there exists a constant C, such that

for all permitted input sequences, ‖xt‖ < C for all t ∈ N. Conversely, we call the

system unstable if there exists an input sequence {ut}∞t=1 such that for all C, there

exists t such that ‖xt‖ > C.

It is worth noting that in general neither the echo state property nor stability

imply the other. In one direction, we just need to note the existence of networks

with tanh as their activation function where the echo state property doesn’t hold

(see, for instance, [YJK12]). For the other direction, we can imagine constructing a

system where all trajectories converge to be arbitrarily close to a single trajectory

whose norm grows without limit, satisfying the ESP without being stable (as a

130 CHAPTER 6. ASYMPTOTIC BEHAVIOUR OF LINEAR NETWORKS

trivial example, we could consider the 1-dimensional system f(xt, ut) = t).

In what follows, it will frequently be convenient to consider vectors in the basis

of generalized eigenvectors of W . In order to do so, we fix some notation here.

Firstly, we define the Jordan decomposition of W as W = PJP−1, where J is the

Jordan normal form of W and P is the matrix whose columns are the generalized

eigenvectors of W , ordered to correspond with the entries of J in the usual manner.

We define the vector norm ‖·‖P as the norm satisfying ‖x‖P
def
= ‖P−1x‖∞ for

all x ∈ RM , i.e., the infinity norm2 of the vector in the basis of generalized

eigenvectors of W .

If we have a vector of the form W kvu, the component in the direction of the

ith generalized eigenvector can be written as

(
P−1W kvu

)
i

=
(
JkP−1vu

)
i
.

Using the expression for powers of Jordan blocks in Appendix A, if the ith

component is in the Jordan block of size d′ running from j to j + d′ − 1, and we

write v′
def
= P−1v, then the component is given by

(
P−1W kvu

)
i

=

j+d′−1∑
l=i

(
k

l − i

)
· λk−(l−i)

n · v′l · u. (6.3)

Note that we can write the magnitude as

∣∣(P−1W kvu
)
i

∣∣ =
∣∣λkn∣∣ ·

∣∣∣∣∣
j+d′−1∑
l=i

(
k

l − i

)
· λi−ln · v′l · u

∣∣∣∣∣ , (6.4)

and in the case where |λn| = 1, we can eliminate the first term on the right hand

side. We define the function

pi(k)
def
=

j+d′−1∑
l=i

(
k

l − i

)
· λ(i−l)

n · v′l, (6.5)

and note that by expansion of the combination function, we can show that each

pi(k) is a polynomial of degree at most d′ − 1 [Lea94], and we can write

(
P−1W kv′u

)
i

= λki · pi(k) · u. (6.6)

2The infinity norm on a vector x ∈ R is defined as ‖x‖∞ = max({|(x)i| : 1 ≤ i ≤M}

6.2. BACKGROUND 131

Of particular use is the fact that when |λn| = 1,

∣∣(P−1W kv′u
)
i

∣∣ = |pi(k) · u| . (6.7)

Throughout this chapter, we will will consider linear networks driven by both

deterministic input sequences and sequences of random variables. In the latter

case, the network state is a random vector. In order to distinguish between the

two cases, we denote the hidden state of a network driven by random inputs as

xt, in contrast with the deterministic state xt.

To aid our analysis, we will make frequent use of the following result from

linear algebra. We provide proof of the result in Appendix A, but also state the

result here for clarity.

Lemma A.3.1. Let A be a matrix such that ρ(A) < 1. For all γ satisfying

ρ(A) < γ, there exists k0 ∈ N such that, for all k > k0,
∥∥Ak∥∥ < γk.

This result is useful in considering the asymptotic behaviour of a network,

as combining it with the sub-multiplicity of the norm not only gives that the

contribution of an input k time-steps in the past eventually converges to zero3,

but that it eventually converges at an exponential rate. Unfortunately the result

is not strong enough to tell us anything about the short term behaviour of the

network, since for small k, not only can
∥∥W k

∥∥ be significantly greater than the

spectral radius, we also don’t have guarantees that it is monotonically decreasing.

In addition to the material presented here, this chapter relies on several well-

known inequalities from linear algebra and probability theory. These are referred

by name when on first use, and are listed, along with references, in Appendix A.2.

6.2.1 Sub-Gaussian Random Variables

In the case where ρ(W) < 1, we explore what happens when we remove the usual

restriction of taking inputs from a compact subset of a real coordinate space

and instead impose the restriction that the inputs are taken from a distribution

with sufficiently light tails. In particular, we examine the case where the input

distributions are sub-Gaussian. In this sub-section, we define what it means for a

variable to be sub-Gaussian, and state some useful results relating to sub-Gaussian

variables.

3Since we can write
∥∥W kvut−k

∥∥ ≤ ∥∥W k
∥∥ · ‖vut−k‖

132 CHAPTER 6. ASYMPTOTIC BEHAVIOUR OF LINEAR NETWORKS

Definition 6.2.2 (Sub-Gaussian Random Variable). Let x be a random vector

with support in RM . We say that x is sub-Gaussian with proxy variance σ2 if

E [x] = 0 and for all unit vectors u ∈ SM−1, and all s ∈ R

P(|uᵀx| > s) ≤ 2 · exp

(
−s2

2 · σ2

)
Note that in the case where x is a random variable taking values in R, the

condition simplifies to P (|x| > s) ≤ 2 · exp
(
−s2
2·σ2

)
.

While a sub-Gaussian random variable may have non-zero density on the entire

space, the tails of the distribution drop off at least as fast as the tails of a Gaussian

distribution. This means that while it is possible for arbitrarily large values to be

observed, they are extremely improbable. The Gaussian, in both its univariate

and multivariate forms, is a notable example of a sub-Gaussian distribution, so

the results for sub-Gaussian inputs are directly applicable to networks where the

input is subjected to additive Gaussian noise.

An equivalent definition of a sub-Gaussian random variable is given by the

following lemma.

Lemma 6.2.1. A random variable x with support in RM is sub-Gaussian with

proxy variance σ2 if and only if E [x] = 0 and for all t ∈ R, and all u ∈ SM−1

E [exp (t · uᵀx)] ≤ exp

(
σ2 · t2

2

)
.

Proof. See, for instance [Riv12].

We state this lemma because it provides an alternative definition for sub-

Gaussian random variables and vectors which can be used to trivially prove the

following two properties:

1. If x is a sub-Gaussian with proxy variance σ2, for any α ∈ R, αx is sub-

Gaussian with proxy variance α2 · σ2

2. If x is sub-Gaussian with proxy variance σ2
1, for any σ2

2 > σ2
1, x is sub-

Gaussian with proxy variance σ2
2.

We will also use the following lemma concerning the sum of sub-Gaussian random

variables.

6.3. THE STABLE CASE: ρ(W) < 1 133

Lemma 6.2.2. Let X1, . . . Xn be n independent scalar (i.e, 1-dimensional) sub-

Gaussian random variables, where Xi has proxy variance σ2
i . For all s > 0

P

[∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > s

]
≤ 2 · exp

(
−s2

2 ·
∑n

i=1 σ
2
i

)

Proof. See, for instance [Wai15].

6.3 The Stable Case: ρ(W) < 1

In this section, we examine the behaviour of linear echo state networks when

ρ(W) < 1. In the literature, analysis of ESNs is usually restricted to this case,

with the implicit assumption that this ensures network stability; in this section, we

show explicitly why this is the case, and that in linear networks ρ(W) < 1 serves as

a necessary and sufficient condition for the echo state property. Furthermore, we

show that even when the input is perturbed by additive noise, we retain stability

in the sense that sub-Gaussian noise leads to the distribution of the norm of

the hidden state having sub-exponential tails (and sub-Gaussian tails in the case

where the input has no deterministic component).

In linear systems theory, the relationship between the norm of the hidden

state and the spectral radius of the recurrent matrix is a well understood subject.

Indeed, the stability of linear echo state networks under bounded inputs is just a

special case of external stability (or bounded-input bounded-output stability) in

linear systems theory. Proof of the more general case can be found in linear systems

textbooks (e.g. [Rug96]). However, for the sake of clarity and completeness, we

provide a direct proof for the specific network structure in Equation 6.2.

Theorem 6.3.1. Given an echo state network with recurrent weight matrix W

such that ρ(W) < 1 and inputs from a compact domain U , the hidden state of the

network is bounded, i.e., there exists a constant Cstate such that for all right-infinite

input sequences {ut}∞t=1 with each ut ∈ U and for all t, ‖xt‖ < Cstate.

Proof. We define Cin
def
= maxu∈U ‖V u‖ and examine the norm of the hidden state

134 CHAPTER 6. ASYMPTOTIC BEHAVIOUR OF LINEAR NETWORKS

using the triangle inequality and sub-multiplicativity of the norm,

‖xt‖ =

∥∥∥∥∥
t−1∑
k=0

W kV ut−k

∥∥∥∥∥
≤

t−1∑
k=0

∥∥W kV ut−k
∥∥

≤
t−1∑
k=0

∥∥W k
∥∥ · ‖V ut−k‖

≤ Cin ·
t−1∑
k=0

∥∥W k
∥∥ .

We now use Lemma A.3.1, choosing γ satisfying ρ(W) < γ < 1 and define k0 as

the smallest natural number such that for all k ≥ k0,
∥∥W k

∥∥ < γk. Next, we define

C0 as an upper bound on the value the norm of the contributions from inputs in

the k0 most recent time-steps:

C0 = Cin ·
k0−1∑
k=0

∥∥W k
∥∥ .

We now consider the maximum size the norm of the hidden state. For any

t ≥ k0, we have

‖xt‖ ≤ Cin ·
t−1∑
k=0

∥∥W k
∥∥

≤ Cin

(
k0−1∑
k=0

∥∥W k
∥∥+

t−1∑
k=k0

∥∥W k
∥∥)

= C0 + Cin ·
t−1∑
k=k0

∥∥W k
∥∥

= C0 + Cin ·
t−1∑
k=k0

γk

< C0 +
Cin · γk0

1− γ
,

therefore the norm of the hidden state is bounded by Cstate
def
= C0 + Cin·γk0

1−γ .

An oft cited misconception about ESNs is that spectral radius less than one

6.3. THE STABLE CASE: ρ(W) < 1 135

is sufficient condition to ensure the echo state property [LJ09; YJK12; Cal+13;

MJ13]. This misconception probably arises due to its apparent sufficiency in

practice [Luk12; Cal+13]. Adding further nuance to this story, we show that

ρ(W) < 1 is sufficient condition for the echo state property when the network is

linear.

Theorem 6.3.2. For linear networks with admissible initial states in the set

A = {x ∈ RM : ‖x‖ < C} for some positive constant C, ρ(W) < 1 is both

sufficient and necessary condition for the echo state property.

Proof. As mentioned in the previous section, ρ(W) < 1 is a well known necessary

condition for the echo state property [Jae01], so we consider only whether it is

also a sufficient condition. To show this, let x, x′ ∈ A be two network states. The

distance at time t between two networks initialized to x and x′ then driven by

the same input sequence is:

‖xt − x′t‖ =

∥∥∥∥∥W tx +
t−1∑
k=0

W kV ut−k −W tx′ −
t−1∑
k=0

W kV ut−k

∥∥∥∥∥
=
∥∥W tx−W tx′

∥∥
≤
∥∥W tx

∥∥+
∥∥W tx′

∥∥
≤
∥∥W t

∥∥ · (‖x‖+ ‖x′‖)

< 2 ·
∥∥W t

∥∥ · C
Using Lemma A.3.1 we get that for any γ satisfying ρ(W) < γ < 1, and for some

t0, for all t > t0, ‖W t‖ < γt. Since limt→∞ γ
t = 0, we have limt→∞ ‖W t‖ = 0.

Consequently, the distance between the states of the two networks tends to zero,

and since maxx∈A ‖x‖ = C <∞ the echo state property is satisfied.

This result means that in the linear case, we need not be concerned with the

spectral norm—all the important information about the network’s stability is

contained within the spectral radius.

The echo state property describes only the asymptotic behaviour of the network;

we suggest that it is likely that the above result can be extended to give non-

asymptotic bounds on the difference between the network states—however, we

leave this to future work.

136 CHAPTER 6. ASYMPTOTIC BEHAVIOUR OF LINEAR NETWORKS

6.3.1 Stable Networks with Sub-Gaussian Inputs

Thus far, we have restricted our analysis to the case where all inputs are drawn

from a compact subset of a real space. However, this denies us the chance to

consider sequences which are subjected to white noise. In order to expand our

analysis to such inputs, we consider the situation where the input sequence is of

the form {ui}∞i=1, with each ui decomposed into ui = ûi + εi where each εi is i.i.d.

noise and each ûi is drawn from the same compact subset of RD. Rather than

specifying the distribution of the noise, the tails of the distribution are constrained

to ensure that they are sufficiently light. In particular, we consider the case where

the where the distribution is sub-Gaussian, as defined in Section 6.2.1.

Using the results from Section 6.2.1, we are able to show that if a linear echo

state network is driven by a sequence of sub-Gaussian random variables, there is

a proxy-variance σ2 such that for all t, xt is sub-Gaussian with proxy variance σ2.

Theorem 6.3.3. Let {εi}∞i=1 be a sequence of D-dimensional sub-Gaussian random

vectors each with proxy variance σ2
0. Let W ∈ RM×M be a matrix satisfying

ρ(W) < 1 and let V ∈ RM×D. If the ESN (W,V) is driven by the input sequence

{εi}∞i=1, there exists proxy variance σ2 such that for all t, xt is sub-Gaussian with

proxy variance σ2

Proof. Note that for any u ∈ SM−1, either
(
uᵀW kV/

∥∥uᵀW kV
∥∥)ᵀ ∈ Sd−1 or

uᵀW kV is the zero vector. If it’s zero, trivially for all s > 0 and any σ2 > 0,

P
(∣∣uᵀW kV εt−k

∣∣ > s
)

= 0

< 2 · exp

(
−s2

2 · σ2

)
,

otherwise the fact that εt−k is sub-Gaussian gives us,

P
(∣∣uᵀW kV εt−k

∣∣ > s
)

= P

(∣∣uᵀW kV εt−k
∣∣

‖uᵀW kV ‖
>

s

‖uᵀW kV ‖

)

= P
(∣∣∣∣ uᵀW kV

‖uᵀW kV ‖
εt−k

∣∣∣∣ > s

‖uᵀW kV ‖

)

≤ 2 · exp


(

−s2

‖uᵀWkV ‖2
)

2 · σ2
0



6.3. THE STABLE CASE: ρ(W) < 1 137

= 2 · exp

(
−s2

2 · ‖uᵀW kV ‖2 · σ2
0

)
≤ 2 · exp

(
−s2

2 · ‖W kV ‖2 · σ2
0

)
,

so for any k, W kV εt−k is sub-Gaussian with proxy variance
∥∥W kV

∥∥2 · σ2
0 By

Lemma A.3.1, we have that there exist constants ρ(W) < γ < 1 and C ′ > 0

such that for all non-negative integers k,
∥∥W k

∥∥ < C ′ · γk, and so
∥∥W kV

∥∥ ≤∥∥W k
∥∥ · ‖V ‖ < C · γk, where C

def
= C ′ · ‖V ‖. This gives that W kV εt−k is sub-

Gaussian with proxy variance C2 · γ2·k · σ2
0 for all k ∈ N.

Now we can use Lemma 6.2.2 and the fact
∑t−1

k=0 γ
2·k < 1

1−γ2·k to get that for

all u ∈ SM−1 and all t,

P(|uᵀxt| > s) = P

(∣∣∣∣∣uᵀ

(
t−1∑
k=0

W kV (εt−k)

)∣∣∣∣∣ > s

)

= P

(∣∣∣∣∣
(

t−1∑
k=0

uᵀW kV εt−k

)∣∣∣∣∣ > s

)

≤ 2 · exp

(
−s2∑t−1

k=0C
2 · γ2·k · σ2

0

)

< 2 · exp

 −s2

C2·σ2
0

1−γ2

 .

Therefore, for all t, xt is sub-Gaussian with proxy variance
C2·σ2

0

1−γ2 .

In particular, this gives us strong concentration bounds on the components

of the basis vectors of RM , so components in these directions are unlikely to be

extremely large (we could trivially use the union bound to bound the probability

that any component of xt in the direction of a basis vector is above a given

threshold at the expense of a factor of M).

Thus far, we have considered only the case where the network is driven by

zero mean sub-Gaussian noise. However, this is not a situation which is likely

to occur in practice. A more common scenario is that our network is driven by

an input signal which is deterministic, but perturbed by additive noise. In this

case, the state of the network is not necessarily sub-Gaussian, even if the noise

is. Though we could re-centre around the mean state at time t and show that

this re-centred state is sub-Gaussian, this is not particularly useful, as we are

138 CHAPTER 6. ASYMPTOTIC BEHAVIOUR OF LINEAR NETWORKS

interested in the asymptotic behaviour of the distribution of the size of entries of

xt, not the asymptotic distance from the mean. In order to better understand the

behaviour in this case, we present the following theorem.

Theorem 6.3.4. Let (W,V) be an ESN with ρ(W) < 1. Let {εt}∞t=1 be a sequence

of sub-Gaussian random vectors, each with proxy variance σ2
0, and U be a compact

subset of RD. For all 1 ≤ β < 2, there exist constants s0 ≥ 0 and σ > 0, such that

for all sequences {ut}∞t=1 where for each t, ut = ut + εt with ut ∈ U , and for all t

and s > s0, when (W,V) is driven by {ut}∞i=1, for all u ∈ SM−1

P(uᵀxt > s) < 2 · exp

(
−sβ

2 · σ2

)
.

Proof. We can define the state at time t, xt, as the sum of x′t and yt, where

x′t =
∑t−1

k=0W
kV ut−k and yt =

∑t−1
k=0W

kV εt−k. By Theorem 6.3.3 for all t, yt is

sub-Gaussian with some proxy variance σ2. This gives that for all u ∈ SM−1 and

all s > |uᵀx′t|

P (|uᵀxt| > s) = P (|uᵀx′t + uᵀyt| > s)

≤ P (|uᵀx′t|+ |uᵀyt| > s)

= P (|uᵀyt| > s− |uᵀx′t|)

≤ 2 · exp

(
−(s− |uᵀx′t|)2

2 · σ2

)
. (6.8)

By Theorem 6.3.1, we know that there exists Cstate > 0 such that ‖x′t‖ < Cstate

for all t and therefore |uᵀx′t| < Cstate. Define µt
def
= uᵀx′t. We have

(s− |µt|)2 = s2 − 2 · |µt| · s+ |µt|2

≥ s2 − 2 · |µt| · s

≥ s2 − 2 · Cstate · s.

Eventually, s2 − 2 · Cstate · s dominates sβ for any 1 ≤ β < 2. Therefore, there

exists s0 such that for all possible non-negative |µt| and s > s0,

(s− |µt|)2 > sβ,

6.4. THE UNSTABLE CASE: ρ(W) = 1 139

for all such s, Equation 6.8 gives

P(|uᵀxt| > s) ≤ exp

(
−(s− |µt|)2

2 · σ2

)
< exp

(
−sβ

2 · σ2

)
,

giving the result.

Though in the case of zero mean inputs (or a deterministic input sequence

perturbed by Gaussian noise), the tails are not necessarily sub-Gaussian, they are

sub-exponential, and therefore the probability of extreme values in the entries of

the hidden state decays faster than exponentially in the tails.

6.4 The Unstable Case: ρ(W) = 1

We now consider the case ρ(W) = 1. In this case, we know that we cannot achieve

the echo state property [Jae01], and from linear systems theory we know that

unstable trajectories exist [Rug96] (i.e., there are input sequences for which the

norm of the hidden state has no finite bound). In this section, we show that if

the network is driven by a sequence of independent random vectors with zero

mean and a common non-zero variance, then the expectation of the norm of the

hidden state grows polynomially with time, and and we show how the degree of

this polynomial can be determined by the structure of the network’s weights.

Initially, we restrict ourselves to the case of 1-dimensional input, where the

input sequence consists of 1-dimensional random variables εt, where for each t, εt

is drawn independently from the same zero-mean distribution (or at a minimum—

independent distributions with the same finite variance), though we will show how

the result generalised to higher dimensional inputs later in the section.

We will soon find that the rate of growth of E [‖xt‖] is intimately linked to

the Jordan canonical form of W and the direction of v. In particular, we will find

that it can be diminished if there are generalised eigenvectors of W which are

orthogonal to v. In order for us to be able to discuss this more precisely, we give

the following definition.

Definition 6.4.1 (Degree of Alignment). Let v be a vector in RM and W a

matrix in RM×M . We say that v is aligned to W with degree d if d is the largest

natural number such that there exists at least one generalized eigenvector p of W

which: is of rank d, is not orthogonal to v, and has corresponding eigenvalue λ

such that |λ| = ρ(W).

140 CHAPTER 6. ASYMPTOTIC BEHAVIOUR OF LINEAR NETWORKS

We can see that if v is aligned to W with degree d and ρ(W) = 1, then by

Equation 6.7 there exists a component of P−1W kv′ whose magnitude grows with

k at a rate polynomial in k with degree d− 1. Note that there is a relationship

between the notion of degree of alignment and effective rank from Chapter 4, in

that the degree of alignment is the largest effective rank amongst Jordan blocks

with eigenvalues equal in magnitude to the spectral radius of W . In what follows,

we will assume that v is aligned to W with degree at least one. If we were to

assume otherwise, then we could find a lower-dimensional system with a smaller

spectral radius but the same representational power, which would mean that the

system is in fact stable and we could instead apply the results from the previous

section.

With the above definition, we are able to use the polynomial rate of growth of

the components of the hidden state to get the following lemma.

Lemma 6.4.1. Let W be a matrix such that ρ(W) = 1 and v a vector which is

aligned to W with degree d ≥ 1. Define vk = vεk, where each εk is a random vari-

able with zero-mean and the same non-zero finite variance. There exist constants

C1, C2, t0 > 0 such that for all t > t0,

C1 · t2·d−1 < E

[
t−1∑
k=0

∥∥W kvt−k
∥∥2

]
< C2 · t2·d−1.

The proof of this lemma is provided in Appendix D.1.

If a function f(t) is eventually bounded above and below by some constant

multiples of another function g(t), we will write f(t) = Θ(g(t)). Using this

notation, we can express the above lemma as E
[∑t−1

k=0

∥∥W kv
∥∥2
]

= Θ(t2·d−1)).

Theorem 6.4.1. Let xt be the state of an ESN with update rule as in Equation

6.1 driven by the random input sequence {εt}∞t=1, with each εt having the same

non-zero finite variance. Let ρ(W) = 1 and d ≥ 1 be the degree of alignment of v

with W , then

E [‖xt‖] = Θ(td−0.5).

Proof. For notational convenience, we define vk
def
= vεk. Before we show either

6.4. THE UNSTABLE CASE: ρ(W) = 1 141

bound, we first note that using the independence of εt and εt′ for t 6= t′, we can

write

E
[
‖xt‖2] = E

∥∥∥∥∥
t−1∑
k=0

W kvt

∥∥∥∥∥
2


= E

[(
t−1∑
k=0

W kvt−k

)ᵀ(t−1∑
k=0

W kvt−k

)]

= E

[
t−1∑
k=0

t−1∑
k′=0

(
W kvt−k

)ᵀ (
W k′vt−k′

)]

=
t−1∑
k=0

t−1∑
k′=0

E
[(
W kvt−k

)ᵀ (
W k′vt−k′

)]
=

t−1∑
k=0

E
[(
W kvt−k

)ᵀ (
W kvt−k

)]
=

t−1∑
k=0

E
[∥∥W kvt−k

∥∥2
]

= E

[
t−1∑
k=0

∥∥W kvt−k
∥∥2

]
. (6.9)

Upper Bound: First we note that by Jensen’s inequality

E
[
‖xt‖2] ≥ (E [‖xt‖])2 .

Taking square roots of both sides gives√
E
[
‖xt‖2] ≥√(E [‖xt‖])2 = E [‖xt‖]

Using this, along with Equation 6.9 we have

E [‖xt‖] ≤
√
E
[
‖xt‖2]

=

√√√√E

[
t−1∑
k=0

‖W kvt−k‖2

]
,

which means by Lemma 6.4.1, we have the existence of C3 > 0 and t0 such that

142 CHAPTER 6. ASYMPTOTIC BEHAVIOUR OF LINEAR NETWORKS

for all t > t0,

E [‖xt‖] <
√

(C3 · t2·d−1)

=
√
C3 · td−0.5

We therefore have that, for all large enough t,

E [‖xt‖] < C1 · td−0.5. (6.10)

where C1
def
=
√
C3.

Lower Bound: For each i ∈ N, let ri be a Rademacher random variable, that is,

a random variable with P(ri = 1) = P(ri = −1) = 0.5. For all t, by the inequality

in Theorem A.2.5, we have

E [‖xt‖] = E

[∥∥∥∥∥
t−1∑
k=0

W kvt−k

∥∥∥∥∥
]

≥ 1

2
· E

[∥∥∥∥∥
t−1∑
k=0

W kvt−krt−k

∥∥∥∥∥
]
,

We are now able to make use of the Khinchin-Kahane inequality (as defined in

Theorem A.2.6) to get

E [‖xt‖] ≥
1

2
· E

[∥∥∥∥∥
t−1∑
k=0

W kvt−krt−k

∥∥∥∥∥
]

≥ 1

2
· 1

C1,2

·

√√√√√E

∥∥∥∥∥
t−1∑
k=0

W kvt−krt−k

∥∥∥∥∥
2


=
1

2 · C1,2

·

√√√√E

[(
t−1∑
k=0

W kvt−krt−k

)ᵀ(t−1∑
k=0

W kvt−krt−k

)]

=
1

2 · C1,2

·

√√√√E

[
t−1∑
k=0

(W kvt−krt−k)
ᵀ (W kvt−krt−k)

]

=
1

2 · C1,2

·

√√√√E

[
t−1∑
k=0

(W kvt−k)
ᵀ (W kvt−k)

]

6.4. THE UNSTABLE CASE: ρ(W) = 1 143

=
1

2 · C1,2

·

√√√√E

[
t−1∑
k=0

‖W kvt−k‖2

]
.

Now we apply Lemma 6.4.1 in order to get

E [‖xt‖] ≥
1

2 · C1,2

·

√√√√E

[
t−1∑
k=0

‖W kvt−k‖2

]

>
1

2 · C1,2

·
√
C4 · t2·d−1

= C2 · td−0.5,

where C2
def
= 1

2·C1,2
·
√
C4.

From here, we can expand to the multi-dimensional case without too much

difficulty.

Corollary 6.4.1. Let {ut}∞t=1 be a sequence of random vectors in RD, with the

entries of all vectors being independent with zero-mean and a common non-zero

finite variance. For the ESN (W,V) driven by that sequence, if ρ(W) = 1 and

there exists at least one column of V aligned with W with degree at least one, then

E ‖xt‖ = Θ(td−0.5).

Proof. First we note that

xt =
t−1∑
k=0

W kV ut−k

=
D∑
i=1

t−1∑
k=0

W kV·,i(ut−k)i,

where V·,i is the ith column of V . Define

x
(i)
t

def
=

t−1∑
k=0

W kV·,i(ut−k)i,

We can write xt =
∑D

i=1 x
(i)
t , giving that xt is the sum of independent random

vectors. The upper bound can easily be obtained by splitting the norm of this sum

144 CHAPTER 6. ASYMPTOTIC BEHAVIOUR OF LINEAR NETWORKS

into a sum of norms using the triangle inequality, then applying Theorem 6.4.1.

That is to say, we have

E [‖xt‖] = E

[∥∥∥∥∥
D∑
i=1

x
(i)
t

∥∥∥∥∥
]

≤ E

[
D∑
i=1

∥∥∥x(i)
t

∥∥∥]
< D · C2 · td−0.5

For the lower bound, we use the independence of each x
(i)
t , Theorem A.2.5 and

the Khinchin-Kahane inequality to get

E [‖xt‖] = E

[∥∥∥∥∥
D∑
i=1

x
(i)
t

∥∥∥∥∥
]

≥ 1

2
· E

[∥∥∥∥∥
D∑
i=1

rix
(i)
t

∥∥∥∥∥
]

≥ 1

2
· 1

C1,2

·

√√√√√E

∥∥∥∥∥
D∑
i=1

rix
(i)
t

∥∥∥∥∥
2


=
1

2 · C1,2

·

√√√√ D∑
i=1

E
[∥∥∥rix(i)

t

∥∥∥2
]

=
1

2 · C1,2

·

√√√√ D∑
i=1

E
[∥∥∥x(i)

t

∥∥∥2
]

=
1

2 · C1,2

·

√√√√√E

∥∥∥∥∥
D∑
i=1

x
(i)
t

∥∥∥∥∥
2


≥ 1

2 · C1,2

·

√
E
[∥∥∥x(j)

t

∥∥∥2
]

>
√
C ′1 · t2·t−1 > C1 · td−0.5,

where V·j is one of the columns of V which has the maximum degree of alignment

d.

We are not usually interested in the behaviour of a network subjected to purely

6.4. THE UNSTABLE CASE: ρ(W) = 1 145

random input. We do, however, frequently consider data drawn from noisy sources,

particularly data which has been perturbed by Gaussian random noise. This is

the case that we deal with in the following corollary.

Corollary 6.4.2. Let (W,V) be an ESN satisfying ρ(W) = 1, with V ∈ RD and

let d ≥ 1 be the maximum degree of alignment of W with any of the columns of V .

Let xt be the state of (W,V) at time t driven by the input sequence {ut}∞t=1, where

for each t, ut = ut + εt, where each ut is in RD and each entry of each εt is an

i.i.d. random variable, and all entries of all εt have the same non-zero variance.

There exist C1, C2 > 0 and t0 such that for all t > t0,

C1 · td−0.5 < E [‖xt‖] <

∥∥∥∥∥
t−1∑
k=0

W kV ut

∥∥∥∥∥+ C2 · td−0.5.

Proof. For the upper bound, we can simply use the triangle inequality to get:

E [‖xt‖] = E

[∥∥∥∥∥
t−1∑
k=0

W kV ut−k

∥∥∥∥∥
]

= E

[∥∥∥∥∥
t−1∑
k=0

W kV (ut−k + εt−k)

∥∥∥∥∥
]

= E

[∥∥∥∥∥
t−1∑
k=0

W kV ut−k +
t−1∑
k=0

W kV εt−k

∥∥∥∥∥
]

≤ E

[∥∥∥∥∥
t−1∑
k=0

W kV ut−k

∥∥∥∥∥+

∥∥∥∥∥
t−1∑
k=0

W kV εt−k

∥∥∥∥∥
]

Combining this with Theorem 6.4.1 on the above gives for sufficiently large t

E [‖xt‖] <

∥∥∥∥∥
t−1∑
k=0

W kV ut

∥∥∥∥∥+ C2 · td−0.5.

For the lower bound, we use Theorem 6.4.1 to say that for some constants C3 and

all t0 > t

C3 · td−0.5 <

∥∥∥∥∥
k−1∑
t=0

W kV εt−k

∥∥∥∥∥ . (6.11)

146 CHAPTER 6. ASYMPTOTIC BEHAVIOUR OF LINEAR NETWORKS

Now choose C4 < C3 and define x′t
def
=
∑t−1

k=0 W
kV ut−k. For all t > t0, if ‖x′t‖ >

C4 · td−0.5, the convexity of the norm along with Jensen’s inequality gives

E [‖xt‖] = E

[∥∥∥∥∥
t−1∑
k=0

W kV ut−k +
t−1∑
k=0

W kV εt−k

∥∥∥∥∥
]

≥

∥∥∥∥∥∥∥∥∥
t−1∑
k=0

W kV ut−k + E

[
t−1∑
k=0

W kV εt−k

]
︸ ︷︷ ︸

=0

∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥
t−1∑
k=0

W kV ut−k

∥∥∥∥∥
> C4 · td−0.5

Otherwise, we have ‖x′t‖ ≤ C4·td−0.5 and by applying the reverse triangle inequality,

then Jensen’s inequality we get for such t,

E [‖xt‖] ≥ E

[∣∣∣∣∣‖x′t‖ −
∥∥∥∥∥
t−1∑
k=0

W kV εt−k

∥∥∥∥∥
∣∣∣∣∣
]

≥

∣∣∣∣∣E
[
‖x′t‖ −

∥∥∥∥∥
t−1∑
k=0

W kV εt−k

∥∥∥∥∥
]∣∣∣∣∣

=

∣∣∣∣∣‖x′t‖ − E

[∥∥∥∥∥
t−1∑
k=0

W kV εt−k

∥∥∥∥∥
]∣∣∣∣∣

=

∣∣∣∣∣E
[∥∥∥∥∥

t−1∑
k=0

W kV εt−k

∥∥∥∥∥
]
− ‖x′t‖

∣∣∣∣∣ .
We can now use Equation 6.11 to get

∣∣∣∣∣E
[∥∥∥∥∥

t−1∑
k=0

W kV εt−k

∥∥∥∥∥
]
− ‖x′t‖

∣∣∣∣∣ ≥
∣∣∣∣∣∣∣∣∣∣
E

[∥∥∥∥∥
t−1∑
k=0

W kV εt−k

∥∥∥∥∥
]

︸ ︷︷ ︸
>C3·td−0.5

− ‖x′t‖︸︷︷︸
≤C4·td−0.5

∣∣∣∣∣∣∣∣∣∣
> |(C3 − C4)| · td−0.5

Combining the two cases, we can complete the proof by setting C1
def
= min(C4, C3−

6.5. THE EXPLOSIVE CASE: ρ(W) > 1 147

C4).

Note the dependence of the upper bound on the norm of the deterministic

part. In general, we do not have assurances that the deterministic part grows at

the same asymptotic rate, even if we make the assumption that all inputs are

form a compact subset of the input space. Consider for example the case where

W = Jd(1) 4 for some d and (v)i = δid for 1 ≤ i ≤ d and the input sequence

ut = 1 for all ut. This would give that for each k,

(
W kv

)
1

=
kd−1

(d− 1)!
+ o(kd−1)

Since this component of W kv is positive for all k, we have

(x′t)i =
t−1∑
k=0

kd−1

(d− 1)!
+ o(kd−1)

= C · td + o(td),

for some positive constant C. This gives that the norm ‖x′t‖ grows at a rate

at least commensurate with td. Though we omit proof, it is possible to use the

results of [Lea94] to show that for a compact input space, this is the upper bound

on the rate of growth.

6.5 The Explosive Case: ρ(W) > 1

The final case we consider is ρ(W) > 1. In this section, we once again wish

to find the rate of growth of the expectation of the norm of the hidden state.

As one might expect, the rate of growth is exponential and determined by the

spectral radius. Calculating this uses a similar approach to that in the previous

section. We begin with a lemma analogous to Lemma 6.4.1. Proof of this lemma

is provided in Appendix D.2.

Lemma 6.5.1. Let W be a matrix such that ρ(W) > 1, and v be a vector which

is aligned with W with degree d ≥ 1. Define vk = vεk, where each εk is a random

variable with zero mean and the same non-zero finite variance. For any ε > 0,

4We remind the reader that Jd(1) is the d × d Jordan block with 1’s on the diagonal, as
defined in AppendixA.1

148 CHAPTER 6. ASYMPTOTIC BEHAVIOUR OF LINEAR NETWORKS

there exist constants t0 > 0, C1 > 0 and C2 > 0 such that for all t ≥ t0

C1 · ρ(W)2·k < E

[
t−1∑
k=0

∥∥W kvt−k
∥∥2

]
< C2 · (ρ(W) + ε)2·k.

In the same way that Lemma 6.4.1 is used in the previous section, we are

able to leverage Lemma 6.5.1 in order to derive inequalities for the asymptotic

behaviour of our network.

Theorem 6.5.1. Let xt be the state of an ESN (W,v) driven by a sequence of

random variables {εt}∞t=1, each with zero mean and the same fixed variance. If

ρ(W) > 1 and v is aligned to W with degree d ≥ 1, then for all ε > 0 there exist

constants C1 > 0, C2 > 0, t0 > 0 such that for all t > t0,

C1 · ρ(W)t < E [‖xt‖] < C2 · (ρ(W) + ε)t.

Proof. We again define vt−k
def
= vεt−k. For the upper bound we use Jensen’s

inequality and Equation 6.9 to get

E [‖xt‖] ≤
√
E
[
‖xt‖2]

=

√√√√ t−1∑
k=0

E
[
‖W kvt−k‖2

]
.

Using the second inequality in Lemma 6.5.1, we get for large enough t and some

constant C3 > 0

E [‖xt‖] <
√
C3 · (ρ(W) + ε)2·t

= C2 · (ρ(W) + ε)t

Where C2
def
=
√
C3. For the lower bound, we use Theorem A.2.5 and the Khinchin-

Kahane inequality to get for Rademacher random variables r1, . . . rt,

E [‖xt‖] = E

[∥∥∥∥∥
t−1∑
k=0

W kvt−k

∥∥∥∥∥
]

≥ 1

2
· E

[∥∥∥∥∥
t−1∑
k=0

rt−kW
kvt−k

∥∥∥∥∥
]

6.5. THE EXPLOSIVE CASE: ρ(W) > 1 149

≥ 1

2 · C1,2

√√√√E

[∥∥∥∥∥
t−1∑
k=0

riW kvt−k

∥∥∥∥∥
]2

=
1

2 · C1,2

√√√√E

[
t−1∑
k=0

‖riW kvt−k‖

]2

=
1

2 · C1,2

√√√√E

[
t−1∑
k=0

‖W kvt−k‖

]2

.

We are now able to apply the lower bound in Lemma 6.5.1 to get for sufficiently

large t,

E [‖xt‖] >
1

2 · C1,2

√
C ′1 · ρ(W)2·t

= C1 · ρ(W)t

where C1
def
=

√
C′1

2·C1,2
.

As with the unstable case, this result can be extended in a fairly natural

manner to the case of multi-dimensional input.

Corollary 6.5.1. Let {ut}∞t=1 be a sequence of random vectors in RD, with the

entries of all vectors being zero-mean and a common non-zero finite variance. For

the ESN (W,V) driven by that sequence, if ρ(W) > 1 and there exists at least one

column of V aligned with W with degree at least one, then for all ε > 0 there exist

C1 > 0, C2 > 0, t0 > 0 such that for all t > t0,

C1 · ρ(W)t < E [‖xt‖] < C2 · ρ(W + ε)t.

The proof of the above corollary is identical in structure to Corollary 6.4.1,

but makes use of Theorem 6.5.1 and Lemma 6.5.1 instead of Theorem 6.4.1 and

Lemma 6.4.1, respectively. As such, we omit the full proof from the main text,

and instead include it in Appendix D.2.

Similarly, we can can adapt Corollary 6.4.2 to this case as follows

Corollary 6.5.2. Let (W,V) be an ESN satisfying ρ(W) > 1. Let d ≥ 1 be the

greatest degree of alignment of columns of V with W . Let xt be the state of the

ESN (W,V) driven by the input sequence {ut}∞t=1 where for each t, ut = ut + εt

150 CHAPTER 6. ASYMPTOTIC BEHAVIOUR OF LINEAR NETWORKS

with each ut as some vector in RD and each εt as a vector of the same size whose

entries are zero-mean i.i.d. random variables, with the entries of all εt having the

same non-zero variance. For all ε > 0, there exist C1, C2, t0 > 0 such that for all

t > t0,

C1 · ρ(W)t < E [‖xt‖] <

∥∥∥∥∥
t−1∑
k=0

W kV ut

∥∥∥∥∥+ C2 · (ρ(W) + ε)t.

Again, the structure of the proof of this corollary is identical to the equivalent

result in the unstable case (in this case Corollary 6.4.2). As such, we once again

relegate the full proof to Appendix D.2.

6.6 Convergence of Hidden States

The echo state property is of interest because it guarantees that the initial state

of the network is inconsequential to the network’s long-term behaviour. However,

in order for the network’s hidden state to be a useful representation of the input,

it is also necessary for the trajectory of the hidden state through the state space

to be defined by the input sequence. The following theorem gives some aymptotic

guarantees on the network behaviour in this regard.

Theorem 6.6.1. Let xt and yt be the trajectories of the hidden states of two

linear ESNs, both with recurrent weight matrix W satisfying ρ(W) < 1 and input

weight matrix V , and driven by input sequences {ut}∞t=1 and {vt}∞t=1, respectively.

Then ‖xt − yt‖ → 0 if and only if ‖V (ut − vt)‖ → 0.

Proof. (⇒) We define zt
def
= xt − yt and note that

zt =
t−1∑
k=0

W kV ut−k −
t−1∑
k=0

W kV vt−k

=
t−1∑
k=0

W kV (ut−k − vt−k)

= Wzt−1 + V (ut − vt). (6.12)

Now, by assumption ‖zt‖ → 0, meaning we also get ‖Wzt‖ → 0 (since ‖Wzt‖ ≤

6.6. CONVERGENCE OF HIDDEN STATES 151

‖W‖ ‖zt‖). By rearrangement of Equation 6.12, we have

‖V (ut − vt)‖ = ‖zt+1 −Wzt‖

≤ ‖zt+1‖+ ‖Wzt‖ ,

and since both terms on the right hand side go to zero as t→∞, ‖V (ut − vt)‖
must also go to zero.

(⇐) For the converse, we note that by unrolling V (ut − vt) = zt+1 −Wzt, we

can obtain the more general expression

zt −W kzt−k =
k−1∑
i=0

W iV (ut−i − vt−i).

Rearranging and considering the norms of each side, we can use the triangle

inequality to give

‖zt‖ =

∥∥∥∥∥W kzt−k +
k−1∑
i=0

W iV (ut−i − vt−i)

∥∥∥∥∥
≤
∥∥W kzt−k

∥∥+

∥∥∥∥∥
k−1∑
i=0

W iV (ut−i − vt−i)

∥∥∥∥∥
≤
∥∥W k

∥∥ · ‖zt−k‖+

∥∥∥∥∥
k−1∑
i=0

W iV (ut−i − vt−i)

∥∥∥∥∥ . (6.13)

From Theorem 6.3.1, we know that for ρ(W) < 1, the norm of the hidden states

xt and yt are bounded by some constant Cstate, so we can choose a constant C

such that C > 2 ·Cstate. This gives that the norm of zt is bounded above by C. By

Lemma A.3.1, for any ε > 0, we can also choose k0 ∈ N such that for all k ≥ k0,∥∥W k
∥∥ < ε/(2·C) Setting k = k0 in Equation 6.13, we get that the first term in the

right hand side of the final inequality is less than. ε/(2·C) · C = ε/2. We now want

to show that for any fixed k the second term on the right hand side tends to zero

as t→∞. Using the triangle inequality again gives∥∥∥∥∥
k0−1∑
i=0

W iV (ut−i − vt−i)

∥∥∥∥∥ ≤
k0−1∑
i=0

∥∥W i
∥∥ · ‖V (ut−i − vt−i)‖ .

152 CHAPTER 6. ASYMPTOTIC BEHAVIOUR OF LINEAR NETWORKS

Since ρ(W) < 1, by Lemma A.2.1 there exists a (sub-multiplicative) norm |||·|||
such that |||W ||| < 1 and constant C1 > 0 such that ‖X‖ ≤ C1 · |||X||| for all

X ∈ Rm, therefore,

k0−1∑
i=0

∥∥W i
∥∥ ≤ ∞∑

i=0

∥∥W i
∥∥ ≤ C1

∞∑
i=0

∣∣∣∣∣∣W i
∣∣∣∣∣∣ ≤ C1

∞∑
i=0

|||W |||i =
C1

1− |||W |||
.

Since ‖V (ut−i − vt−i)‖ → 0, we can choose t0 such that for any ε, ‖V (ut − vt)‖ <
(1−|||W |||)·ε/(2·C1) for all t > t0. giving∥∥∥∥∥

k0−1∑
i=0

W iV (ut−i − vt−i)

∥∥∥∥∥ < C1

1− |||W |||
· (1− |||W |||) · ε

2 · C1

=
ε

2

for all t > t0 + k0 − 1. Plugging this back into Equation 6.13 gives us:

‖zt‖ ≤
∥∥W k0

∥∥ · ‖zt−k‖+

∥∥∥∥∥
k0−1∑
i=0

W iV (ut−i − vt−i)

∥∥∥∥∥
<
ε

2
+
ε

2

= ε.

So for any ε, we can find t0, such that ‖zt‖ < ε for all t > t0, and consequently

limt→∞ ‖zt‖ = 0.

For the case ρ(W) ≥ 1, the forward direction of this proof still holds. The

backwards direction, however, does not. As a simple example of this, consider

u1 = a for a 6= 0 and ui = vj = 0 for all i > 1 and all j > 0. Choose p to be an

eigenvector of W associated with an eigenvalue with the same magnitude as the

spectral radius of W and choose V to be a vector such that pᵀV 6= 0. Clearly,

for these inputs, ‖V (ut − vt)‖ → 0. Define v to be the component of V in the

direction of p. We consider the norm ‖·‖P and use the equivalence of norms, to

get that for constant C2 > 0

zt =
∥∥W t−1V u1

∥∥
≥ C2 ·

∥∥W t−1V u1

∥∥
P

≥ C2 · |ρ(W)|t−1 · |v · a|

≥ C2 · |ρ(W)| · |v · a| .

6.7. CONCLUSION 153

The last expression is greater than zero, and not dependent on t, so zt cannot

converge to zero.

6.7 Conclusion

In this chapter we have clarified the relationship between the spectral radius of

the recurrent matrix, ρ(W), and the asymptotic behaviour of the network. For the

case of ρ(W) < 1, we have provided proof of the boundedness of the hidden norm

of the hidden state, incorporating standard results from linear systems theory

previously absent from the echo state network literature; we have also shown the

sufficiency of ρ(W) < 1 for the echo state property, and shown that sub-Gaussian

input is sufficient to guarantee sub-exponential tails in the distribution of the

hidden state of the network. For the case ρ(W) ≥ 1, we have described the rate

of growth of the expectation of the norm of the hidden state, showing that in the

case ρ(W) = 1, the rate of growth is polynomial, with the degree determined by

the structure of W and the direction of v or V . For ρ(W) > 1, we have shown

that the rate of growth is exponential, again conditioned on the direction of v or

V . Finally, we have provided insight into how the asymptotic behaviour of the

network is dependent upon the asymptotic behaviour of the input driving it.

In terms of practical considerations for ESNs, the key insight from this chapter

is not an especially novel one: in linear networks, one should generally ensure

that ρ(W) < 1. However, we have shown why this advice is so important in

linear networks, giving insight into the desirable properties that we get when the

condition is satisfied, and showing how things go wrong when it is not. This

emphasizes the contrast between the linear and non-linear cases: when a saturating

non-linearity is applied, it is useful to explore the possibility of larger radii [LJ09],

using the boundedness of activation function to ensure stability even though the

echo state property does not hold. Additionally, we have shown that spectral

radius less than one is sufficient condition for the echo state property in the linear

case, again in contrast to the non-linear case, where there is a significant gap

between known necessary conditions and sufficient ones [YJK12].

These considerations about the behaviour of linear echo state networks are

increasingly important in practice, as researchers experiment with methods of

increasing network memory that include constructing networks with both linear

and non-linear components [IY17; GGM18]. In theoretical work, the simplification

154 CHAPTER 6. ASYMPTOTIC BEHAVIOUR OF LINEAR NETWORKS

from non-linear to linear dynamics allows for analysis of the effects of different

reservoir structures [WLS04; RT11a; Rod12].

Finally, we once again emphasise the generality of these results: they hold not

just for ESNs, but for any linear input-driven system of the forms given in Equa-

tion 6.1 and Equation 6.2. And while we can view these results as an important

part of completing our understanding of linear ESNs, further applications of this

work are as likely to be in domains which are outside the scope of this thesis as

they are to be within ESNs, or even machine learning more broadly.

Chapter 7

Conclusion

In this thesis, our goal was to contribute knowledge towards an answer to the

question: “How does the structure of an Echo State Network affect its behaviour?”.

In this chapter, we examine the contributions made in the thesis, and discuss to

what extent they achieve this goal. We also discuss how these contributions fit

into and expand upon the existing body of knowledge on the subject. Finally, we

close the chapter, and the thesis, by proposing future directions of research which

build upon the work which we have presented.

7.1 Summary of Research

In this section, we summarise the contributions made in each of the three research

chapters of this thesis, as well as briefly discuss how the work contributes to the

literature.

7.1.1 Memory in Linear Networks

In Chapter 4, we examined how the memory capacity of a network could be

inferred from the structure of its weights. Building on [Jae02b] and results from

control theory, we constructed an explicit expression for the memory capacity

of a network based on the Jordan decomposition of its recurrent weight matrix

and the direction of its input weight vector. We showed how these results could

be used to give explicit memory capacity measurements for existing network

designs, including both deterministic and random network initialisation schemes.

By examining random initialisations we found, perhaps surprisingly, that almost

155

156 CHAPTER 7. CONCLUSION

all possible reservoirs have the maximum possible memory capacity. We also

extended our analysis to deep linear networks, and by deriving an expression

that allows us to construct a single-layer network with the same dynamics as

an arbitrary deep network, we showed almost all deep linear networks achieve

this maximum memory capacity, even if we impose the restriction that the same

weight matrices are repeated by each layer.

This is an important contribution to the literature, as it gives a new perspective

on memory capacity and a novel tool for analytically determining the memory

capacity of a given network. Additionally, we provide several demonstrations of

the power of this tool in determining the memory capacity of existing reservoir

structures. While we showed that achieving the maximum possible memory

capacity is easy, in the sense that randomly generated networks will achieve it

with probability one, we also noted that this was with the assumption of infinite

precision computation. In practice, with finite precision hardware, the empirical

memory capacity of networks can vary greatly from the theoretical upper bound

(as we saw, for example, in Chapter 5). This is an important caveat to the work,

but our contribution still provides a useful necessary condition that a reservoir

structure must satisfy in order to achieve the maximum memory capacity, even if

in practice it is not a sufficient condition.

7.1.2 Depth in Recurrent Networks

In Chapter 5, we examined the previously reported, but largely unexplained,

phenomenon in which different layers of deep recurrent networks exhibit different

behaviours in how their response to inputs varies over time. We refer to this as

the ‘different time-scales phenomenon’. Through a series of careful experiments,

we examined two particular manifestations of the phenomenon: sensitivity to

perturbations of input and layer-wise memory capacity. In both cases, we demon-

strated that the effect was present in linear networks, and explored the sensitivity

of the phenomenon to network hyperparameters.

Though the different time-scales phenomenon has been observed previously, we

are able to offer several novel insights into the nature and cause of the phenomenon.

In the linear case, we establish evidence of a simple relationship between layer depth

and the effects of input perturbation, as well as showing how this phenomenon is

affected by the spectral radius of the recurrent weights. In examining the memory

capacity of these systems, we are able to utilise results from Chapter 4 in order

7.2. OUTLOOK AND FUTURE WORK 157

to provide insights into the cause of the difference in memory between layers.

Additionally, in the non-linear case, we highlight the importance of considering

the scaling between layers in controlling the properties of the network.

7.1.3 The Asymptotic Behaviour of Linear Networks

In Chapter 6, we examined the role of the recurrent weight matrixW in determining

the asymptotic behaviour of the network on arbitrarily long input sequences. In

particular, we clarified the relationship between the spectral radius of W and two

important notions of stability: external stability and the echo state property. We

showed that both of these forms of stability are achieved by the same condition in

linear networks, namely ρ(W) < 1. For such networks, we showed the effects of

sub-Gaussian noise on the network state, showing that if the tails of the input

distribution are light, then so will be the tails of the distribution of the components

of the hidden state. For unstable networks, we showed that the expected rate

of growth of the norm is polynomial in the case ρ(W) = 1, and exponential in

the case ρ(W) > 1. We also showed a complementary property to the echo state

property holds in linear networks with ρ(W) < 1, namely, the distance between

network states of identical networks which are fed distinct sequences converges if

and only if those sequences converge.

The role of this chapter in the literature is primarily in terms of clarifying and

completing our understanding of the behaviour of ESNs, particularly in terms

of stability. By showing that the ESP holds for all W satisfying ρ(W) < 1 in

the linear case, we highlight an important distinction between the linear and

non-linear cases. Additionally, by examining unstable network configurations, we

provide a more complete picture of the dynamics of linear input-driven systems.

While we do not claim any direct applications of these result, they improve our

understanding of the behaviour of an oft-neglected class of such systems.

7.2 Outlook and Future Work

In this section, we discuss the directions of future research motivated by work in

this thesis.

158 CHAPTER 7. CONCLUSION

7.2.1 Memory in Linear Networks

An important limitation of the work in Chapter 4 is our assumption that we are

able to perform computation with infinite precision. Since this is not the case in

practice, an important direction of future research is the exploration of the effects

of finite precision computation on the memory capacity of networks with randomly

sampled weights. Particularly, developing the tools to be able to reason about

the expected memory capacity of a random network given known constraints on

the network’s precision would be useful for predicting network behaviour without

relying on empirical study.

Another direction of research was suggested within the chapter itself, namely

exploring the conditions for maximum memory capacity in deterministic reservoir

constructions. In particular, it would be useful to be able to generate explicit

condition or simple heuristics which guarantee the maximum possible memory

capacity for ESNs for all deterministic structures discussed in Section 3.4.2. There

are also other interesting reservoir structures to which our results for memory

capacity may be applicable.

One of the key insights of the chapter was that we can draw parallels between

the notion of memory capacity and the notion of controllability; this allowed us

to drawn on existing results from control theory in our work. However, we have

not fully explored the full suite of tools which this gives us access to, and it may

be that further research could reveal more connections which may be useful in

examining memory capacity in the non-linear case.

7.2.2 Depth in Recurrent Networks

In Chapter 5, our exploration of the different time-scales phenomenon was almost

entirely empirical. This is an important first step in increasing our understanding

of the phenomenon, and is useful when considering practical ways of leveraging

this network behaviour, but it means there is still plenty more work to be done.

The work presented in Chapter 5 offers multiple avenues of future research,

both in further exploring the causes and consequences of the different time-

scales phenomenon and in designing networks to more fully exploit our current

understanding of it.

The work in the chapter does not attempt to satisfactorily explain why these

phenomena occur. To this end, we suggest that it may be fruitful to take a more

7.2. OUTLOOK AND FUTURE WORK 159

rigorous mathematical approach, rather than an empirical one (particularly in

attempting to explain the differences in sensitivity to perturbation which we have

observed between layers).

In terms of exploitation of the insights gained from this thesis, an important

direction of research is in designing DeepESNs which to mitigate the numerical

errors found in Section 5.4. By careful consideration of how spectral radius and

layer size should vary between layers of the network, it may be possible to improve

upon the usual network design, both in terms of layer-wise memory capacity

and memory capacity of the network as a whole. Equally, it is important that

we explore whether such networks are useful in practice, i.e., whether they offer

improved performance for time-series prediction problems where the network is

required to model long-term dependencies.

Additionally, it is our belief that these tools could have applications in recur-

rent networks more generally. In particular, a more rigorous understanding of

these phenomena could lead to the development of more principled initialisation

schemes for deep recurrent networks, in the same manner that Xavier/Glorot and

Kaiming/He initialisation were developed for the case of feedforward networks.

The aforementioned initialisation schemes are designed so that signals retain

approximately the same magnitude when traversing through different layers of

the network. Given the effects that we’ve observed when varying the feedfoward

weights of a DeepESN, it is plausible that finding an initialisation scheme that ac-

complishes the same results for recurrent networks would prove similarly important

to improving network training.

7.2.3 The Asymptotic Behaviour of Linear Networks

In Chapter 6, we examined the effects of network structure on the asymptotic

behaviour of linear echo state networks. Though through our analysis we are able

make stronger claims about the asymptotic behaviour than previously existed,

further research could strengthen the claims further. For instance, while we

make the claim about the rate of growth of the expectation of the norm of the

hidden state, it may be desirable to strengthen the results by considering the

concentration of norm of the state around its mean.

We make the claim that the work presented in Chapter 6 is applicable to a

wider range of linear systems—and indeed there is nothing that particularly ties

our description of the network to problems in machine learning. As such, it is

160 CHAPTER 7. CONCLUSION

possible that future work using the results in Chapter 6 could emerge from other

domains. In particular, the results in the unstable and explosive cases may be

applicable to methods of modelling of unstable systems which are beyond the

scope of this thesis.

7.3 Closing Remarks

In this thesis, we have clarified several aspects of the relationship between the

structure of an ESNs weights and the behaviour of the network. A common

theme amongst the chapters of this thesis is that in the linear case, a lot of a

network’s behaviour can be inferred from just the Jordan decomposition of the

recurrent weight matrix and the direction of the input vector v. Indeed, when

the recurrent weight matrix of W is simple, a lot of the behaviour can be inferred

from the magnitude of the eigenvalues and whether v is orthogonal to any of

the eigenvectors. Though we have focused primarily on the linear case, we have

shown that even with this simplification our understanding remains incomplete,

and there is plenty of fresh ground still to tread. In the non-linear case, there

is even more that we still do not know, and we are likely to need new and more

powerful techniques in order to advance our understanding.

Bibliography

[AR10] H Anton and C Rorres. Elementary Linear Algebra: Applications

Version. John Wiley & Sons, 2010. isbn: 9780470432051. url: https:

//books.google.co.uk/books?id=1PJ-WHepeBsC.

[Bam18] Bassam Bamieh. Discovering the Fourier Transform: A Tutorial on

Circulant Matrices, Circular Convolution, and the DFT. 2018. arXiv:

1805.05533. url: http://arxiv.org/abs/1805.05533.

[BB18] Davide Bacciu and Andrea Bongiorno. “Concentric ESN: Assessing

the Effect of Modularity in Cycle Reservoirs”. In: Proceedings of

the International Joint Conference on Neural Networks 2018-July

(2018). doi: 10.1109/IJCNN.2018.8489462. arXiv: 1805.09244.

url: https://arxiv.org/pdf/1805.09244.pdf.

[Ben09] Yoshua Bengio. “Learning Deep Architectures for AI”. In: Foundations

and Trends in Machine Learning 2.1 (2009), pp. 1–127. issn: 1935-

8237. doi: 10.1561/2200000006. arXiv: 0500581. url: http://www.

iro.umontreal.ca/bengioy.

[BF14] P. Barancok and I. Farkas. Memory Capacity of Input-Driven Echo

State Networks at the Edge of Chaos. Ed. by Stefan Wermter et

al. Vol. 8681. Lecture Notes in Computer Science. Cham: Springer

International Publishing, 2014, pp. 41–48. isbn: 978-3-319-11178-0.

doi: 10.1007/978-3-319-11179-7-6. url: http://cogsci.fmph.

uniba.sk/{~}farkas/Papers/barancok-farkas.icann14.pdf.

[Bis06] Christopher M. Bishop. Machine Learning and Pattern Recoginiton.

Springer, 2006. isbn: 9780387310732.

[Boe+11] Joschka Boedecker et al. “Information processing in echo state net-

works at the edge of chaos.” In: Theory in biosciences = Theorie in den

Biowissenschaften (2011). issn: 1611-7530. doi: 10.1007/s12064-

161

https://books.google.co.uk/books?id=1PJ-WHepeBsC
https://books.google.co.uk/books?id=1PJ-WHepeBsC
http://arxiv.org/abs/1805.05533
http://arxiv.org/abs/1805.05533
https://doi.org/10.1109/IJCNN.2018.8489462
http://arxiv.org/abs/1805.09244
https://arxiv.org/pdf/1805.09244.pdf
https://doi.org/10.1561/2200000006
http://arxiv.org/abs/0500581
http://www.iro.umontreal.ca/∼bengioy
http://www.iro.umontreal.ca/∼bengioy
https://doi.org/10.1007/978-3-319-11179-7-6
http://cogsci.fmph.uniba.sk/{~}farkas/Papers/barancok-farkas.icann14.pdf
http://cogsci.fmph.uniba.sk/{~}farkas/Papers/barancok-farkas.icann14.pdf
https://doi.org/10.1007/s12064-011-0146-8
https://doi.org/10.1007/s12064-011-0146-8

162 BIBLIOGRAPHY

011- 0146- 8. url: http://www.ncbi.nlm.nih.gov/pubmed/

22147532.

[Bou19] Laurent Boué. Real numbers, data science and chaos: How to fit

any dataset with a single parameter. 2019. arXiv: 1904.12320. url:

http://arxiv.org/abs/1904.12320.

[BP06] Štefan Babinec and Jíı Posṕıchal. “Merging Echo State and Feedfor-

ward Neural Networks for Time Series Forecasting”. In: ICANN 2006:

Artificial Neural Networks ICANN 2006. Springer, 2006, pp. 367–375.

doi: 10.1007/11840817_39. url: http://link.springer.com/10.

1007/11840817{_}39.

[BSF94] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. “Learning long-

term dependencies with gradient descent is difficult”. In: IEEE Trans-

actions on Neural Networks 5.2 (1994), pp. 157–166. issn: 10459227.

doi: 10.1109/72.279181. arXiv: arXiv:1211.5063v2. url: http:

//deeplearning.cs.cmu.edu/pdfs/Bengio{_}94.pdf.

[BVS10] John Butcher, David Verstraeten, and Benjamin Schrauwen. “Ex-

tending reservoir computing with random static projections: a hybrid

between extreme learning and RC”. In: 18th European Symposium on

Artificial Neural Networks (ESANN 2010 April (2010). url: https:

//www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2010-

99.pdf.

[BW89] Joel G. Broida and S Gill Williamson. A Comprehensive Introduction

to Linear Algebra. Addison Wesley Longman Publishing Co, 1989.

isbn: 978-0201500653. url: https://cseweb.ucsd.edu/{~}gill/

CILASite/.

[BY06] Michael Buehner and Peter Young. “A tighter bound for the echo state

property”. In: IEEE Transactions on Neural Networks 17.3 (2006),

pp. 820–824. issn: 10459227. doi: 10.1109/TNN.2006.872357.

[BY86] Z. D. Bai and Y. Q. Yin. “Limiting behavior of the norm of products of

random matrices and two problems of Geman-Hwang”. In: Probability

Theory and Related Fields 73.4 (1986), pp. 555–569. issn: 01788051.

doi: 10.1007/BF00324852.

https://doi.org/10.1007/s12064-011-0146-8
https://doi.org/10.1007/s12064-011-0146-8
http://www.ncbi.nlm.nih.gov/pubmed/22147532
http://www.ncbi.nlm.nih.gov/pubmed/22147532
http://arxiv.org/abs/1904.12320
http://arxiv.org/abs/1904.12320
https://doi.org/10.1007/11840817_39
http://link.springer.com/10.1007/11840817{_}39
http://link.springer.com/10.1007/11840817{_}39
https://doi.org/10.1109/72.279181
http://arxiv.org/abs/arXiv:1211.5063v2
http://deeplearning.cs.cmu.edu/pdfs/Bengio{_}94.pdf
http://deeplearning.cs.cmu.edu/pdfs/Bengio{_}94.pdf
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2010-99.pdf
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2010-99.pdf
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2010-99.pdf
https://cseweb.ucsd.edu/{~}gill/CILASite/
https://cseweb.ucsd.edu/{~}gill/CILASite/
https://doi.org/10.1109/TNN.2006.872357
https://doi.org/10.1007/BF00324852

BIBLIOGRAPHY 163

[Cal+13] Ken Caluwaerts et al. “The spectral radius remains a valid in-

dicator of the Echo state property for large reservoirs”. In: The

2013 International Joint Conference on Neural Networks (IJCNN).

IEEE, 2013, pp. 1–6. isbn: 978-1-4673-6129-3. doi: 10.1109/IJCNN.

2013.6706899. url: http://ieeexplore.ieee.org/document/

6706899/.

[Car+18] Zachariah Carmichael et al. Mod-DeepESN: Modular Deep Echo State

Network. 2018. arXiv: 1808.00523. url: https://arxiv.org/pdf/

1808.00523.pdf.

[Cho+14] Kyunghyun Cho et al. “Learning Phrase Representations using RNN

Encoder-Decoder for Statistical Machine Translation”. In: (2014).

issn: 09205691. doi: 10.3115/v1/D14-1179. arXiv: 1406.1078. url:

http://arxiv.org/abs/1406.1078.

[Cir+11] Dan C Ciresan et al. “Flexible, High Performance Convolutional Neu-

ral Networks for Image Classification”. In: Proceedings of the Twenty-

Second International Joint Conference on Artificial Intelligence Flex-

ible (2011), pp. 1237–1242. issn: 10450823. doi: 10.5591/978-1-

57735-516-8/IJCAI11-210. arXiv: arXiv:1011.1669v3.

[CPS18] Minmin Chen, Jeffrey Pennington, and Samuel S. Schoenholz. Dy-

namical Isometry and a Mean Field Theory of RNNs: Gating En-

ables Signal Propagation in Recurrent Neural Networks. 2018. arXiv:

1806.05394. url: http://arxiv.org/abs/1806.05394.

[CSDS16] Jasmine Collins, Jascha Sohl-Dickstein, and David Sussillo. Capacity

and Trainability in Recurrent Neural Networks. 2016. arXiv: 1611.

09913. url: http://arxiv.org/abs/1611.09913.

[CST19] Mohammad Amin Chitsazan, M. Sami Fadali, and Andrzej M. Trzy-

nadlowski. “Wind speed and wind direction forecasting using echo

state network with nonlinear functions”. In: Renewable Energy 131

(2019), pp. 879–889. issn: 18790682. doi: 10.1016/j.renene.2018.

07.060. url: https://doi.org/10.1016/j.renene.2018.07.060.

[CT05] Richard Caron and Tim Traynor. The zero set of a polynomial. 2005.

url: http://www1.uwindsor.ca/math/sites/uwindsor.ca.math/

files/05-03.pdf.

https://doi.org/10.1109/IJCNN.2013.6706899
https://doi.org/10.1109/IJCNN.2013.6706899
http://ieeexplore.ieee.org/document/6706899/
http://ieeexplore.ieee.org/document/6706899/
http://arxiv.org/abs/1808.00523
https://arxiv.org/pdf/1808.00523.pdf
https://arxiv.org/pdf/1808.00523.pdf
https://doi.org/10.3115/v1/D14-1179
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-210
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-210
http://arxiv.org/abs/arXiv:1011.1669v3
http://arxiv.org/abs/1806.05394
http://arxiv.org/abs/1806.05394
http://arxiv.org/abs/1611.09913
http://arxiv.org/abs/1611.09913
http://arxiv.org/abs/1611.09913
https://doi.org/10.1016/j.renene.2018.07.060
https://doi.org/10.1016/j.renene.2018.07.060
https://doi.org/10.1016/j.renene.2018.07.060
http://www1.uwindsor.ca/math/sites/uwindsor.ca.math/files/05-03.pdf
http://www1.uwindsor.ca/math/sites/uwindsor.ca.math/files/05-03.pdf

164 BIBLIOGRAPHY

[Cyb89] G. Cybenko. “Approximation by superpositions of a sigmoidal func-

tion”. In: Mathematics of Control, Signals, and Systems 2.4 (1989),

pp. 303–314. issn: 0932-4194. doi: 10.1007/BF02551274. url: http:

//link.springer.com/10.1007/BF02551274.

[Dam+12] Joni Dambre et al. “Information Processing Capacity of Dynamical

Systems”. In: Scientific Reports 2 (2012), p. 514. issn: 2045-2322. doi:

10.1038/srep00514. url: http://www.nature.com/doifinder/

10.1038/srep00514.

[Doy92] K. Doya. “Bifurcations in the learning of recurrent neural networks”.

In: [Proceedings] 1992 IEEE International Symposium on Circuits

and Systems. Vol. 6. 4. IEEE, 1992, pp. 2777–2780. isbn: 0-7803-0593-

0. doi: 10.1109/ISCAS.1992.230622. url: http://ieeexplore.

ieee.org/document/230622/.

[DS12] Ali Deihimi and Hemen Showkati. “Application of echo state net-

works in short-term electric load forecasting”. In: Energy 39.1 (2012),

pp. 327–340. issn: 03605442. doi: 10.1016/j.energy.2012.01.007.

url: http://dx.doi.org/10.1016/j.energy.2012.01.007.

[DZ07] Zhidong Deng and Yi Zhang. “Collective Behavior of a Small-World

Recurrent Neural System With Scale-Free Distribution”. In: IEEE

Transactions on Neural Networks 18.5 (2007), pp. 1364–1375. issn:

1045-9227. doi: 10.1109/TNN.2007.894082. url: http://ieeexplore.

ieee.org/document/4298110/.

[EB96] Salah El Hihi and Yoshua Bengio. “Hierarchical recurrent neural

networks for long-term dependencies”. In: NIPS 8. MIT Press, 1996.

doi: 10.1109/TDPVT.2004.1335423. url: https://papers.nips.

cc/paper/1102- hierarchical- recurrent- neural- networks-

for-long-term-dependencies.pdf.

[Elm90] Jeffrey L Elman. “Finding Structure in Time”. In: Cognitive Science

14.2 (1990), pp. 179–211. issn: 03640213. url: http://crl.ucsd.

edu/{~}elman/Papers/fsit.pdf.

[FBG16] Igor Farkaš, Radomı́r Bosák, and Peter Gerge. “Computational anal-

ysis of memory capacity in echo state networks”. In: Neural Networks

83 (2016), pp. 109–120. issn: 08936080. doi: 10.1016/j.neunet.

https://doi.org/10.1007/BF02551274
http://link.springer.com/10.1007/BF02551274
http://link.springer.com/10.1007/BF02551274
https://doi.org/10.1038/srep00514
http://www.nature.com/doifinder/10.1038/srep00514
http://www.nature.com/doifinder/10.1038/srep00514
https://doi.org/10.1109/ISCAS.1992.230622
http://ieeexplore.ieee.org/document/230622/
http://ieeexplore.ieee.org/document/230622/
https://doi.org/10.1016/j.energy.2012.01.007
http://dx.doi.org/10.1016/j.energy.2012.01.007
https://doi.org/10.1109/TNN.2007.894082
http://ieeexplore.ieee.org/document/4298110/
http://ieeexplore.ieee.org/document/4298110/
https://doi.org/10.1109/TDPVT.2004.1335423
https://papers.nips.cc/paper/1102-hierarchical-recurrent-neural-networks-for-long-term-dependencies.pdf
https://papers.nips.cc/paper/1102-hierarchical-recurrent-neural-networks-for-long-term-dependencies.pdf
https://papers.nips.cc/paper/1102-hierarchical-recurrent-neural-networks-for-long-term-dependencies.pdf
http://crl.ucsd.edu/{~}elman/Papers/fsit.pdf
http://crl.ucsd.edu/{~}elman/Papers/fsit.pdf
https://doi.org/10.1016/j.neunet.2016.07.012

BIBLIOGRAPHY 165

2016.07.012. url: http://linkinghub.elsevier.com/retrieve/

pii/S0893608016300946.

[FE05] Georg Fette and Julian Eggert. “Short term memory and pattern

matching with simple echo state networks”. In: Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics) 3696 LNCS (2005),

pp. 13–18. issn: 03029743. doi: 10.1007/11550822_3.

[FG17] Igor Farkas and Peter Gergel. “Maximizing memory capacity of echo

state networks with orthogonalized reservoirs”. In: Proceedings of

the International Joint Conference on Neural Networks 2017-May.1

(2017), pp. 2437–2442. doi: 10.1109/IJCNN.2017.7966152.

[Gal18] Claudio Gallicchio. Short-term Memory of Deep RNN. 2018. arXiv:

1802.00748. url: http://arxiv.org/abs/1802.00748.

[GB10] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of

training deep feedforward neural networks”. In: Proceedings of the

13th International Conference on Artificial Intelligence and Statistics

(AISTATS) 9 (2010), pp. 249–256. issn: 15324435. doi: 10.1.1.

207.2059. url: http://machinelearning.wustl.edu/mlpapers/

paper{_}files/AISTATS2010{_}GlorotB10.pdf.

[Ge17] Stephen Cong Ge. “The Eigenvalue Spacing of IID Random Matrices

and Related Least Singular Value Results”. PhD thesis. University of

California, 2017.

[GGM18] Eleonora Di Gregorio, Claudio Gallicchio, and Alessio Micheli. “Com-

bining Memory and Non-linearity in Echo State Networks”. In: 27th

International Conference on Artificial Neural Networks July (2018).

[GHS08] Surya Ganguli, Dongsung Huh, and Haim Sompolinsky. “Memory

traces in dynamical systems.” In: Proceedings of the National Academy

of Sciences of the United States of America 105.48 (2008), pp. 18970–

5. issn: 1091-6490. doi: 10.1073/pnas.0804451105. url: http:

//www.ncbi.nlm.nih.gov/pubmed/19020074.

[GM16] Claudio Gallicchio and Alessio Micheli. “Deep Reservoir Computing:

A Critical Analysis”. In: European Symposium on Artificial Neural

https://doi.org/10.1016/j.neunet.2016.07.012
https://doi.org/10.1016/j.neunet.2016.07.012
http://linkinghub.elsevier.com/retrieve/pii/S0893608016300946
http://linkinghub.elsevier.com/retrieve/pii/S0893608016300946
https://doi.org/10.1007/11550822_3
https://doi.org/10.1109/IJCNN.2017.7966152
http://arxiv.org/abs/1802.00748
http://arxiv.org/abs/1802.00748
https://doi.org/10.1.1.207.2059
https://doi.org/10.1.1.207.2059
http://machinelearning.wustl.edu/mlpapers/paper{_}files/AISTATS2010{_}GlorotB10.pdf
http://machinelearning.wustl.edu/mlpapers/paper{_}files/AISTATS2010{_}GlorotB10.pdf
https://doi.org/10.1073/pnas.0804451105
http://www.ncbi.nlm.nih.gov/pubmed/19020074
http://www.ncbi.nlm.nih.gov/pubmed/19020074

166 BIBLIOGRAPHY

Networks, Computational Intelligence and Machine Learning April

(2016), pp. 27–29.

[GM17] Claudio Gallicchio and Alessio Micheli. “Echo State Property of

Deep Reservoir Computing Networks”. In: Cognitive Computation

9.3 (2017), pp. 337–350. issn: 18669964. doi: 10.1007/s12559-017-

9461-9.

[GMP17] Claudio Gallicchio, Alessio Micheli, and Luca Pedrelli. “Deep reservoir

computing: A critical experimental analysis”. In: Neurocomputing 268

(2017), pp. 87–99. issn: 18728286. doi: 10.1016/j.neucom.2016.12.

089.

[GMP18] Claudio Gallicchio, Alessio Micheli, and Luca Pedrelli. “Design of

deep echo state networks”. In: Neural Networks 108 (2018), pp. 33–

47. issn: 18792782. doi: 10.1016/j.neunet.2018.08.002. url:

https://doi.org/10.1016/j.neunet.2018.08.002.

[GMP19] Claudio Gallicchio, Alessio Micheli, and Luca Pedrelli. “Hierarchical

Temporal Representation in Linear Reservoir Computing”. In: Neural

Advances in Processing Nonlinear Dynamic Signals. Ed. by Anna

Esposito et al. Vol. 102. Smart Innovation, Systems and Technologies.

Cham: Springer International Publishing, 2019, pp. 119–129. isbn:

978-3-319-95097-6. doi: 10.1007/978-3-319-95098-3_11. arXiv:

1705.05782. url: http://link.springer.com/10.1007/978-3-

319-95098-3{_}11.

[GMS18] Claudio Gallicchio, Alessio Micheli, and Luca Silvestri. “Local Lya-

punov exponents of deep echo state networks”. In: Neurocomputing

298 (2018), pp. 34–45. issn: 18728286. doi: 10.1016/j.neucom.2017.

11.073. url: https://doi.org/10.1016/j.neucom.2017.11.073.

[GO18] Lyudmila Grigoryeva and Juan Pablo Ortega. “Echo state networks

are universal”. In: Neural Networks 108 (2018), pp. 495–508. issn:

18792782. doi: 10.1016/j.neunet.2018.08.025. arXiv: 1806.

00797.

[GO19] Lukas Gonon and Juan-Pablo Ortega. “Reservoir Computing Uni-

versality With Stochastic Inputs”. In: IEEE Transactions on Neu-

ral Networks and Learning Systems (2019). issn: 2162-237X. doi:

10.1109/tnnls.2019.2899649. arXiv: 1807.02621.

https://doi.org/10.1007/s12559-017-9461-9
https://doi.org/10.1007/s12559-017-9461-9
https://doi.org/10.1016/j.neucom.2016.12.089
https://doi.org/10.1016/j.neucom.2016.12.089
https://doi.org/10.1016/j.neunet.2018.08.002
https://doi.org/10.1016/j.neunet.2018.08.002
https://doi.org/10.1007/978-3-319-95098-3_11
http://arxiv.org/abs/1705.05782
http://link.springer.com/10.1007/978-3-319-95098-3{_}11
http://link.springer.com/10.1007/978-3-319-95098-3{_}11
https://doi.org/10.1016/j.neucom.2017.11.073
https://doi.org/10.1016/j.neucom.2017.11.073
https://doi.org/10.1016/j.neucom.2017.11.073
https://doi.org/10.1016/j.neunet.2018.08.025
http://arxiv.org/abs/1806.00797
http://arxiv.org/abs/1806.00797
https://doi.org/10.1109/tnnls.2019.2899649
http://arxiv.org/abs/1807.02621

BIBLIOGRAPHY 167

[Gra12] Alex Graves. Supervised Sequence Labelling with Recurrent Neural

Networks. Vol. 385. Studies in Computational Intelligence. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2012, p. 124. isbn: 978-3-

642-24796-5. doi: 10.1007/978-3-642-24797-2. arXiv: arXiv:

1308.0850v1. url: https://www.cs.toronto.edu/{~}graves/

preprint.pdf.

[Gre+16] Klaus Greff et al. “LSTM: A Search Space Odyssey”. In: IEEE

Transactions on Neural Networks and Learning Systems (2016). issn:

21622388. doi: 10.1109/TNNLS.2016.2582924. arXiv: 1503.04069.

[GV96] Gene H. Golub and Charles F. Van Loan. Matrix Computations (3rd

Ed.) John Hopkins University Press, 1996. isbn: 0-8018-5413-X.

[Has86] Johan Hastad. “Almost Optimal Lower Bounds for Small Depth

Circuits”. In: Advances in Computing Research (1986).

[Hau69] Malo L. J. Hautus. “Controllability and Observability Conditions

of Linear Autonomous Systems”. In: Proceedings of the Koninklijke

Nederlandse Akademie van Wetenschappen, Series A — Mathematical

Sciences 72.5 (1969), p. 443.

[He+15] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-

level performance on imagenet classification”. In: Proceedings of the

IEEE International Conference on Computer Vision 2015 Inter (2015),

pp. 1026–1034. issn: 15505499. doi: 10.1109/ICCV.2015.123. arXiv:

1502.01852.

[HJ85] Roger A Horn and Charles R Johnson. Matrix Analysis. Cambridge

University Press, 1985. isbn: 978-0-521-38632-6.

[Hor10] Kur Hornik. “Multilayer Feedforward Networks are Universal Ap-

proximators”. In: Neural Networks 2 (2010), pp. 359–366. url: http:

//deeplearning.cs.cmu.edu/pdfs/Kornick{_}et{_}al.pdf.

[HOT06] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. “A Fast

Learning Algorithm for Deep Belief Nets”. In: Neural Computation

18.7 (2006), pp. 1527–1554. issn: 0899-7667. doi: 10.1162/neco.

2006.18.7.1527. url: http://www.mitpressjournals.org/doi/

10.1162/neco.2006.18.7.1527.

https://doi.org/10.1007/978-3-642-24797-2
http://arxiv.org/abs/arXiv:1308.0850v1
http://arxiv.org/abs/arXiv:1308.0850v1
https://www.cs.toronto.edu/{~}graves/preprint.pdf
https://www.cs.toronto.edu/{~}graves/preprint.pdf
https://doi.org/10.1109/TNNLS.2016.2582924
http://arxiv.org/abs/1503.04069
https://doi.org/10.1109/ICCV.2015.123
http://arxiv.org/abs/1502.01852
http://deeplearning.cs.cmu.edu/pdfs/Kornick{_}et{_}al.pdf
http://deeplearning.cs.cmu.edu/pdfs/Kornick{_}et{_}al.pdf
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.2006.18.7.1527
http://www.mitpressjournals.org/doi/10.1162/neco.2006.18.7.1527
http://www.mitpressjournals.org/doi/10.1162/neco.2006.18.7.1527

168 BIBLIOGRAPHY

[HS13] Michiel Hermans and Benjamin Schrauwen. “Training and Analyzing

Deep Recurrent Neural Networks”. In: NIPS (2013), pp. 190–198. issn:

10495258. url: http://papers.nips.cc/paper/5166-training-

and-analysing-deep-recurrent-neural-networks.pdf.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory.”

In: Neural computation 9.8 (1997), pp. 1735–80. issn: 0899-7667. doi:

10.1162/neco.1997.9.8.1735. arXiv: 1206.2944. url: http:

//www.ncbi.nlm.nih.gov/pubmed/9377276.

[Ish+04] Kazuo Ishii et al. “Identification of motion with Echo State Network”.

In: Ocean ’04 - MTS/IEEE Techno-Ocean ’04: Bridges across the

Oceans - Conference Proceedings 3 (2004), pp. 1205–1210. doi: 10.

1109/oceans.2004.1405751.

[IY17] Masanobu Inubushi and Kazuyuki Yoshimura. “Reservoir Computing

Beyond Memory-Nonlinearity Trade-off”. In: Scientific Reports 7.1

(2017), p. 10199. issn: 2045-2322. doi: 10.1038/s41598-017-10257-

6. url: http://www.nature.com/articles/s41598-017-10257-6.

[Jae+07] Herbert Jaeger et al. “Optimization and applications of echo state

networks with leaky- integrator neurons”. In: Neural Networks 20.3

(2007), pp. 335–352. issn: 08936080. doi: 10.1016/j.neunet.2007.

04.016.

[Jae01] Herbert Jaeger. “The echo state approach to analysing and train-

ing recurrent neural networks”. In: GMD Report 148 (2001). url:

http://minds.jacobs-university.de/sites/default/files/

uploads/papers/EchoStatesTechRep.pdf.

[Jae02a] Herbert Jaeger. “Adaptive Nonlinear System Identification with Echo

State Networks”. In: Advances in Neural Information Processing

Systems (NIPS) (2002), pp. 593–600. issn: 10495258. url: http:

//books.nips.cc/nips15.html.

[Jae02b] Herbert Jaeger. Short term memory in echo state networks. Tech. rep.

2002.

[JH04] Herbert Jaeger and Harald Haas. “Harnessing Nonlinearity: Predicting

Chaotic Systems and Saving Energy in Wireless Communication”.

In: Science 304.5667 (2004), pp. 78–80. issn: 0036-8075. doi: 10.

http://papers.nips.cc/paper/5166-training-and-analysing-deep-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/5166-training-and-analysing-deep-recurrent-neural-networks.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1206.2944
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://www.ncbi.nlm.nih.gov/pubmed/9377276
https://doi.org/10.1109/oceans.2004.1405751
https://doi.org/10.1109/oceans.2004.1405751
https://doi.org/10.1038/s41598-017-10257-6
https://doi.org/10.1038/s41598-017-10257-6
http://www.nature.com/articles/s41598-017-10257-6
https://doi.org/10.1016/j.neunet.2007.04.016
https://doi.org/10.1016/j.neunet.2007.04.016
http://minds.jacobs-university.de/sites/default/files/uploads/papers/EchoStatesTechRep.pdf
http://minds.jacobs-university.de/sites/default/files/uploads/papers/EchoStatesTechRep.pdf
http://books.nips.cc/nips15.html
http://books.nips.cc/nips15.html
https://doi.org/10.1126/science.1091277

BIBLIOGRAPHY 169

1126/science.1091277. arXiv: arXiv:1011.1669v3. url: http:

//www.sciencemag.org/cgi/doi/10.1126/science.1091277.

[JL84] William B. Johnson and Joram Lindenstrauss. “Extensions of Lips-

chitz mappings into a Hilbert space”. In: Contemporary Mathematics

26.January 1984 (1984), pp. 189–206. doi: 10.1090/conm/026/

737400. url: http://www.ams.org/conm/026/.

[Kaw+17] Yuji Kawai et al. “Echo in a small-world reservoir: Time-series pre-

diction using an economical recurrent neural network”. In: 2017

Joint IEEE International Conference on Development and Learning

and Epigenetic Robotics (ICDL-EpiRob). IEEE, 2017, pp. 126–131.

isbn: 978-1-5386-3715-9. doi: 10.1109/DEVLRN.2017.8329797. url:

http://ieeexplore.ieee.org/document/8329797/.

[KCP86] M.M. Konstantinov, N.D. Christov, and P.Hr. Petkov. “On the Sta-

bility of Linear Stochastic Systems with Additive Noise”. In: IFAC

Proceedings Volumes 19.5 (1986), pp. 157–160. issn: 14746670. doi:

10.1016/S1474- 6670(17)59785- 2. url: http://linkinghub.

elsevier.com/retrieve/pii/S1474667017597852.

[KJFF15] Andrej Karpathy, Justin Johnson, and Li Fei-Fei. “Visualizing and

Understanding Recurrent Networks”. In: Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics) 8689 LNCS.PART 1 (2015),

pp. 818–833. issn: 16113349. arXiv: 1506.02078. url: http://arxiv.

org/pdf/1506.02078.pdfhttp://arxiv.org/abs/1506.02078.

[KPA19] Yuji Kawai, Jihoon Park, and Minoru Asada. “A small-world topology

enhances the echo state property and signal propagation in reser-

voir computing”. In: Neural Networks 112 (2019), pp. 15–23. issn:

18792782. doi: 10.1016/j.neunet.2019.01.002. url: https:

//doi.org/10.1016/j.neunet.2019.01.002.

[KR16] Apoorva Khare and Bala Rajaratnam. The Khinchin-Kahane in-

equality and Banach space embeddings for metric groups. 2016. arXiv:

1610.03037. url: http://arxiv.org/abs/1610.03037.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet

classification with deep convolutional neural networks”. In: Advances

in neural information processing systems. 2012, pp. 1097–1105.

https://doi.org/10.1126/science.1091277
https://doi.org/10.1126/science.1091277
http://arxiv.org/abs/arXiv:1011.1669v3
http://www.sciencemag.org/cgi/doi/10.1126/science.1091277
http://www.sciencemag.org/cgi/doi/10.1126/science.1091277
https://doi.org/10.1090/conm/026/737400
https://doi.org/10.1090/conm/026/737400
http://www.ams.org/conm/026/
https://doi.org/10.1109/DEVLRN.2017.8329797
http://ieeexplore.ieee.org/document/8329797/
https://doi.org/10.1016/S1474-6670(17)59785-2
http://linkinghub.elsevier.com/retrieve/pii/S1474667017597852
http://linkinghub.elsevier.com/retrieve/pii/S1474667017597852
http://arxiv.org/abs/1506.02078
http://arxiv.org/pdf/1506.02078.pdf http://arxiv.org/abs/1506.02078
http://arxiv.org/pdf/1506.02078.pdf http://arxiv.org/abs/1506.02078
https://doi.org/10.1016/j.neunet.2019.01.002
https://doi.org/10.1016/j.neunet.2019.01.002
https://doi.org/10.1016/j.neunet.2019.01.002
http://arxiv.org/abs/1610.03037
http://arxiv.org/abs/1610.03037

170 BIBLIOGRAPHY

[LB16] Thomas Laurent and James von Brecht. A recurrent neural network

without chaos. 2016. arXiv: 1612.06212. url: http://arxiv.org/

abs/1612.06212.

[Lea94] J. J. Leader. “The norms of powers of matrices with unit spectral

radius”. In: Applied Mathematics Letters 7.2 (1994), pp. 15–17. issn:

08939659. doi: 10.1016/0893-9659(94)90023-X.

[Lip+15] Zachary C. Lipton et al. Learning to Diagnose with LSTM Recurrent

Neural Networks. 2015. doi: 10.14722/ndss.2015.23268. arXiv:

1511.03677. url: http://arxiv.org/abs/1511.03677.

[Liu+12] Xiang Liu et al. “Performance evaluation of new echo state networks

based on complex network”. In: Journal of China Universities of

Posts and Telecommunications 19.1 (2012), pp. 87–93. issn: 10058885.

doi: 10.1016/S1005-8885(11)60232-X. url: http://dx.doi.org/

10.1016/S1005-8885(11)60232-X.

[Liu+18] Xuanlin Liu et al. “Analysis of Memory Capacity for Deep Echo

State Networks”. In: 2018 17th IEEE International Conference on

Machine Learning and Applications (ICMLA) (2018), pp. 443–448.

doi: 10.1109/ICMLA.2018.00072.

[LJ09] Mantas Lukoševičius and Herbert Jaeger. “Reservoir computing

approaches to recurrent neural network training”. In: Computer

Science Review 3.3 (2009), pp. 127–149. issn: 15740137. doi: 10.

1016 / j . cosrev . 2009 . 03 . 005. url: http : / / minds . jacobs -

university.de/sites/default/files/uploads/papers/2261{_

}LukoseviciusJaeger09.pdf.

[Luk12] M Lukoševičius. “A practical guide to applying echo state networks”.

In: Neural Networks: Tricks of the Trade, Reloaded (2012), pp. 659–

686. issn: 03029743. doi: 10.1007/978-3-642-35289-8-36. url:

http://minds.jacobs-university.de/sites/default/files/

uploads/papers/PracticalESN.pdf.

[LYS09] Xiaowei Lin, Zehong Yang, and Yixu Song. “Short-term stock price

prediction based on echo state networks”. In: Expert Systems with

Applications 36.3 PART 2 (2009), pp. 7313–7317. issn: 09574174.

doi: 10.1016/j.eswa.2008.09.049. url: http://dx.doi.org/10.

1016/j.eswa.2008.09.049.

http://arxiv.org/abs/1612.06212
http://arxiv.org/abs/1612.06212
http://arxiv.org/abs/1612.06212
https://doi.org/10.1016/0893-9659(94)90023-X
https://doi.org/10.14722/ndss.2015.23268
http://arxiv.org/abs/1511.03677
http://arxiv.org/abs/1511.03677
https://doi.org/10.1016/S1005-8885(11)60232-X
http://dx.doi.org/10.1016/S1005-8885(11)60232-X
http://dx.doi.org/10.1016/S1005-8885(11)60232-X
https://doi.org/10.1109/ICMLA.2018.00072
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1016/j.cosrev.2009.03.005
http://minds.jacobs-university.de/sites/default/files/uploads/papers/2261{_}LukoseviciusJaeger09.pdf
http://minds.jacobs-university.de/sites/default/files/uploads/papers/2261{_}LukoseviciusJaeger09.pdf
http://minds.jacobs-university.de/sites/default/files/uploads/papers/2261{_}LukoseviciusJaeger09.pdf
https://doi.org/10.1007/978-3-642-35289-8-36
http://minds.jacobs-university.de/sites/default/files/uploads/papers/PracticalESN.pdf
http://minds.jacobs-university.de/sites/default/files/uploads/papers/PracticalESN.pdf
https://doi.org/10.1016/j.eswa.2008.09.049
http://dx.doi.org/10.1016/j.eswa.2008.09.049
http://dx.doi.org/10.1016/j.eswa.2008.09.049

BIBLIOGRAPHY 171

[Maa+02] Wolfgang Maass et al. “Real-time computing without stable states: a

new framework for neural computation based on perturbations.” In:

Neural computation 14.11 (2002), pp. 2531–60. issn: 0899-7667. doi:

10.1162/089976602760407955. url: http://www.ncbi.nlm.nih.

gov/pubmed/12433288.

[MHW17] Zeeshan Khawar Malik, Amir Hussain, and Qingming Jonathan Wu.

“Multilayered Echo State Machine: A Novel Architecture and Algo-

rithm”. In: IEEE Transactions on Cybernetics 47.4 (2017), pp. 946–

959. issn: 21682267. doi: 10.1109/TCYB.2016.2533545.

[MJ13] G. Manjunath and H. Jaeger. “Echo State Property Linked to an

Input: Exploring a Fundamental Characteristic of Recurrent Neu-

ral Networks”. In: Neural Computation 25.3 (2013), pp. 671–696.

issn: 0899-7667. doi: 10.1162/NECO_a_00411. url: http://www.

mitpressjournals.org/doi/10.1162/NECO{_}a{_}00411.

[Mon+14] Guido Montúfar et al. “On the number of linear regions of deep neural

networks”. In: Advances in Neural Information Processing Systems

4.January (2014), pp. 2924–2932. issn: 10495258. arXiv: 1402.1869.

[MS11] James Martens and Ilya Sutskever. “Learning recurrent neural net-

works with Hessian-free optimization”. In: Proceedings of the 28th

International Conference on Machine Learning, ICML 2011 (2011),

pp. 1033–1040. url: http://www.icml-2011.org/papers/532{_

}icmlpaper.pdf.

[MSC17] Qianli Ma, Lifeng Shen, and Garrison W Cottrell. Deep-ESN: A Multi-

ple Projection-encoding Hierarchical Reservoir Computing Framework.

2017. arXiv: 1711.05255. url: http://arxiv.org/abs/1711.

05255.

[Ng+15] Joe Yue Hei Ng et al. “Beyond short snippets: Deep networks for

video classification”. In: Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition 07-12-June

(2015), pp. 4694–4702. issn: 10636919. doi: 10.1109/CVPR.2015.

7299101. arXiv: 1503.08909.

[O’T13] Garson O’Toole. Quote Investigator: It’s Difficult to Make Predictions,

Especially About the Future. 2013. url: https://quoteinvestigator.

com/2013/10/20/no-predict/ (visited on 11/14/2019).

https://doi.org/10.1162/089976602760407955
http://www.ncbi.nlm.nih.gov/pubmed/12433288
http://www.ncbi.nlm.nih.gov/pubmed/12433288
https://doi.org/10.1109/TCYB.2016.2533545
https://doi.org/10.1162/NECO_a_00411
http://www.mitpressjournals.org/doi/10.1162/NECO{_}a{_}00411
http://www.mitpressjournals.org/doi/10.1162/NECO{_}a{_}00411
http://arxiv.org/abs/1402.1869
http://www.icml-2011.org/papers/532{_}icmlpaper.pdf
http://www.icml-2011.org/papers/532{_}icmlpaper.pdf
http://arxiv.org/abs/1711.05255
http://arxiv.org/abs/1711.05255
http://arxiv.org/abs/1711.05255
https://doi.org/10.1109/CVPR.2015.7299101
https://doi.org/10.1109/CVPR.2015.7299101
http://arxiv.org/abs/1503.08909
https://quoteinvestigator.com/2013/10/20/no-predict/
https://quoteinvestigator.com/2013/10/20/no-predict/

172 BIBLIOGRAPHY

[Oli06] Travis E Oliphant. A guide to NumPy. Vol. 1. Trelgol Publishing

USA, 2006.

[OXP07] Mustafa C Ozturk, Dongming Xu, and Jose C. Principe. “Analysis

and Design of Echo State Networks for Function Approximation”. In:

Neural Computation 19.1 (2007), pp. 111–138.

[PA18] Kameleh Nassiri Pirbazari and Mehdi Azari. “The order of mini-

mal realization of Jordan canonical form systems”. In: Boletim da

Sociedade Paranaense de Matematica 36.3 (2018), pp. 81–88. issn:

21751188. doi: 10.5269/bspm.v36i3.23030.

[Pas+13] Razvan Pascanu et al. “How to Construct Deep Recurrent Neural

Networks”. In: arXiv preprint arXiv:1312.6026 (2013), pp. 1–10.

arXiv: 1312.6026. url: http://arxiv.org/abs/1312.6026.

[PMB12] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. “On the dif-

ficulty of training recurrent neural networks”. In: Proceedings of

The 30th International Conference on Machine Learning 2 (2012),

pp. 1310–1318. doi: 10.1109/72.279181. url: http://jmlr.org/

proceedings/papers/v28/pascanu13.pdf.

[Qia+17] Junfei Qiao et al. “Growing Echo-State Network With Multiple Sub-

reservoirs”. In: IEEE Transactions on Neural Networks and Learn-

ing Systems 28.2 (2017), pp. 391–404. issn: 2162-237X. doi: 10.

1109/TNNLS.2016.2514275. url: http://ieeexplore.ieee.org/

document/7386673/.

[Riv12] Omar Rivasplata. Subgaussian random variables : An expository

note. 2012. url: http://www.mendeley.com/c/6521046371/p/

7256383/rivasplata- 2012- subgaussian- random- variables--

an - expository - note / {\ % }0Apapers3: / / publication / uuid /

F630DD28-8135-4949-93F1-4077219E26DB.

[Rod12] Ali Rodan. “Architectural designs of Echo State Network”. In: May

(2012), p. 147. url: http://etheses.bham.ac.uk/3610/{\%

}0Ahttp://etheses.bham.ac.uk/3610/1/Alrodan12PhD.pdf.

[Ros58] F Rosenblatt. “The perceptron: a probabilistic model for information

storage and organization in the brain.” In: Psychological review 65.6

(1958), pp. 386–408. issn: 0033-295X. doi: 10.1037/h0042519.

https://doi.org/10.5269/bspm.v36i3.23030
http://arxiv.org/abs/1312.6026
http://arxiv.org/abs/1312.6026
https://doi.org/10.1109/72.279181
http://jmlr.org/proceedings/papers/v28/pascanu13.pdf
http://jmlr.org/proceedings/papers/v28/pascanu13.pdf
https://doi.org/10.1109/TNNLS.2016.2514275
https://doi.org/10.1109/TNNLS.2016.2514275
http://ieeexplore.ieee.org/document/7386673/
http://ieeexplore.ieee.org/document/7386673/
http://www.mendeley.com/c/6521046371/p/7256383/rivasplata-2012-subgaussian-random-variables--an-expository-note/{\%}0Apapers3://publication/uuid/F630DD28-8135-4949-93F1-4077219E26DB
http://www.mendeley.com/c/6521046371/p/7256383/rivasplata-2012-subgaussian-random-variables--an-expository-note/{\%}0Apapers3://publication/uuid/F630DD28-8135-4949-93F1-4077219E26DB
http://www.mendeley.com/c/6521046371/p/7256383/rivasplata-2012-subgaussian-random-variables--an-expository-note/{\%}0Apapers3://publication/uuid/F630DD28-8135-4949-93F1-4077219E26DB
http://www.mendeley.com/c/6521046371/p/7256383/rivasplata-2012-subgaussian-random-variables--an-expository-note/{\%}0Apapers3://publication/uuid/F630DD28-8135-4949-93F1-4077219E26DB
http://etheses.bham.ac.uk/3610/{\%}0Ahttp://etheses.bham.ac.uk/3610/1/Alrodan12PhD.pdf
http://etheses.bham.ac.uk/3610/{\%}0Ahttp://etheses.bham.ac.uk/3610/1/Alrodan12PhD.pdf
https://doi.org/10.1037/h0042519

BIBLIOGRAPHY 173

[RR08] Ali Rahimi and Benjamin Recht. “Uniform Approximation of Func-

tions with Random Bases”. In: 46th Annual Allerton Conference on

Communication, Control, and Computing (2008).

[RR09] Ali Rahimi and B Recht. “Weighted sums of random kitchen sinks:

Replacing minimization with randomization in learning”. In: Ad-

vances in Neural Information Processing Systems (2009). url: http:

//papers.nips.cc/paper/3495- weighted- sums- of- random-

kitchen-sinks-replacing-minimization-with-randomization-

in-learning.

[RT11a] Ali Rodan and Peter Tino. “Minimum Complexity Echo State Net-

work”. In: IEEE Transactions on Neural Networks 22.1 (2011), pp. 131–

144. issn: 1045-9227. doi: 10.1109/TNN.2010.2089641. url: http:

//ieeexplore.ieee.org/document/5629375/.

[RT11b] Ali Rodan and Peter Tino. “Negatively Correlated Echo State Net-

works”. In: 1.April (2011), pp. 27–29.

[Rug96] Wilson J Rugh. Linear Systems Theory. 2nd. Prentice-Hall, 1996.

isbn: 9780262232586.

[RV08] Mark Rudelson and Roman Vershynin. “The Littlewood-Offord prob-

lem and invertibility of random matrices”. In: Advances in Mathe-

matics 218.2 (2008), pp. 600–633. issn: 00018708. doi: 10.1016/j.

aim.2008.01.010. arXiv: 0703503v2 [arXiv:math].

[Sch15] Jürgen Schmidhuber. “Deep Learning in neural networks: An overview”.

In: Neural Networks 61 (2015), pp. 85–117. issn: 18792782. doi:

10.1016/j.neunet.2014.09.003. arXiv: 1404.7828.

[Sch92] Jürgen Schmidhuber. “Learning Complex, Extended Sequences Using

the Principle of History Compression”. In: Neural Computation 4.2

(1992), pp. 234–242. issn: 0899-7667. doi: 10.1162/neco.1992.4.

2.234. url: http://www.mitpressjournals.org/doi/10.1162/

neco.1992.4.2.234.

[SH07] Mark D. Skowronski and John G. Harris. “Noise-robust automatic

speech recognition using a predictive echo state network”. In: IEEE

Transactions on Audio, Speech and Language Processing 15.5 (2007),

pp. 1724–1730. issn: 15587916. doi: 10.1109/TASL.2007.896669.

http://papers.nips.cc/paper/3495-weighted-sums-of-random-kitchen-sinks-replacing-minimization-with-randomization-in-learning
http://papers.nips.cc/paper/3495-weighted-sums-of-random-kitchen-sinks-replacing-minimization-with-randomization-in-learning
http://papers.nips.cc/paper/3495-weighted-sums-of-random-kitchen-sinks-replacing-minimization-with-randomization-in-learning
http://papers.nips.cc/paper/3495-weighted-sums-of-random-kitchen-sinks-replacing-minimization-with-randomization-in-learning
https://doi.org/10.1109/TNN.2010.2089641
http://ieeexplore.ieee.org/document/5629375/
http://ieeexplore.ieee.org/document/5629375/
https://doi.org/10.1016/j.aim.2008.01.010
https://doi.org/10.1016/j.aim.2008.01.010
http://arxiv.org/abs/0703503v2
https://doi.org/10.1016/j.neunet.2014.09.003
http://arxiv.org/abs/1404.7828
https://doi.org/10.1162/neco.1992.4.2.234
https://doi.org/10.1162/neco.1992.4.2.234
http://www.mitpressjournals.org/doi/10.1162/neco.1992.4.2.234
http://www.mitpressjournals.org/doi/10.1162/neco.1992.4.2.234
https://doi.org/10.1109/TASL.2007.896669

174 BIBLIOGRAPHY

[Sie95] H. T. Siegelmann. “Computation Beyond the Turing Limit”. In:

Science 268.5210 (1995), pp. 545–548. issn: 0036-8075. doi: 10 .

1126/science.268.5210.545. url: http://www.sciencemag.org/

cgi/doi/10.1126/science.268.5210.545.

[Sil00] John R. Silvester. “Determinants of Block Matrices”. In: The Mathe-

matical Gazette 84.501 (2000), p. 460. issn: 00255572. doi: 10.2307/

3620776.

[SL09] Friedhelm Schwenker and Amr Labib. “Echo state networks and

neural network ensembles to predict sunspots activity”. In: ESANN

2009, 17th European Symposium on Artificial Neural Networks. 2009.

[SS92] Hava T. Siegelmann and Eduardo D. Sontag. “On the computational

power of neural nets”. In: Proceedings of the fifth annual workshop on

Computational learning theory - COLT ’92. Vol. 50. 1. New York, New

York, USA: ACM Press, 1992, pp. 440–449. isbn: 089791497X. doi:

10.1145/130385.130432. url: https://linkinghub.elsevier.

com/retrieve/pii/S0022000085710136http://portal.acm.org/

citation.cfm?doid=130385.130432.

[STM18] Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, and George

Michailidis. “Finite time identification in unstable linear systems”. In:

Automatica 96.i (2018), pp. 342–353. issn: 00051098. doi: 10.1016/

j.automatica.2018.07.008. arXiv: 1710.01852.

[Sun+12] Xiao-chuan Sun et al. “Modeling deterministic echo state network with

loop reservoir”. In: Journal of Zhejiang University SCIENCE C 13.9

(2012), pp. 689–701. issn: 1869-1951. doi: 10.1631/jzus.C1200069.

url: http://link.springer.com/10.1631/jzus.C1200069.

[TCB04] P. Tino, M. Cernansky, and L. Benuskova. “Markovian Architectural

Bias of Recurrent Neural Networks”. In: IEEE Transactions on Neural

Networks 15.1 (2004), pp. 6–15. issn: 1045-9227. doi: 10.1109/TNN.

2003.820839. url: https://www.cs.bham.ac.uk/{~}pxt/PAPERS/

rnn.arch.bias.pdf.

[Tee05] Garry J Tee. “Eigenvectors of block circulant and alternating circulant

matrices”. In: Res. Lett. Inf. Math. Sci. 8 (2005), pp. 123–142. issn:

1175-2777. url: http://iims.massey.ac.nz/research/letters/

volume8/tee/tee.pdf.

https://doi.org/10.1126/science.268.5210.545
https://doi.org/10.1126/science.268.5210.545
http://www.sciencemag.org/cgi/doi/10.1126/science.268.5210.545
http://www.sciencemag.org/cgi/doi/10.1126/science.268.5210.545
https://doi.org/10.2307/3620776
https://doi.org/10.2307/3620776
https://doi.org/10.1145/130385.130432
https://linkinghub.elsevier.com/retrieve/pii/S0022000085710136 http://portal.acm.org/citation.cfm?doid=130385.130432
https://linkinghub.elsevier.com/retrieve/pii/S0022000085710136 http://portal.acm.org/citation.cfm?doid=130385.130432
https://linkinghub.elsevier.com/retrieve/pii/S0022000085710136 http://portal.acm.org/citation.cfm?doid=130385.130432
https://doi.org/10.1016/j.automatica.2018.07.008
https://doi.org/10.1016/j.automatica.2018.07.008
http://arxiv.org/abs/1710.01852
https://doi.org/10.1631/jzus.C1200069
http://link.springer.com/10.1631/jzus.C1200069
https://doi.org/10.1109/TNN.2003.820839
https://doi.org/10.1109/TNN.2003.820839
https://www.cs.bham.ac.uk/{~}pxt/PAPERS/rnn.arch.bias.pdf
https://www.cs.bham.ac.uk/{~}pxt/PAPERS/rnn.arch.bias.pdf
http://iims.massey.ac.nz/research/letters/volume8/tee/tee.pdf
http://iims.massey.ac.nz/research/letters/volume8/tee/tee.pdf

BIBLIOGRAPHY 175

[Tel16] Matus Telgarsky. “Benefits of depth in neural networks”. In: Journal

of Machine Learning Research 49.June (2016), pp. 1517–1539. issn:

15337928. arXiv: 1602.04485.

[Tin17] Peter Tino. “Fisher Memory of Linear Wigner Echo State Networks”.

In: European Symposium on Artificial Neural Networks (ESANN)

April (2017), pp. 26–28. url: https://pdfs.semanticscholar.

org/fb1a/48244d52f709f762e92a54c8be992fcc4547.pdf.

[Tom82] B. Tomaszewski. “Two remarks on the Khintchine-Kahane inequality”.

In: Colloquium Mathematicum 46.2 (1982), pp. 283–288. issn: 0010-

1354. doi: 10.4064/cm-46-2-283-288. url: http://www.impan.

pl/get/doi/10.4064/cm-46-2-283-288.

[TR13] Peter Tino and Ali Rodan. “Short term memory in input-driven

linear dynamical systems”. In: Neurocomputing 112 (2013), pp. 58–63.

issn: 09252312. doi: 10.1016/j.neucom.2012.12.041. url: https:

//linkinghub.elsevier.com/retrieve/pii/S0925231213001768.

[Tro16] Joel A. Tropp. “The Expected Norm of a Sum of Independent Random

Matrices: An Elementary Approach”. In: June. 2016, pp. 173–202.

doi: 10.1007/978-3-319-40519-3_8. url: http://arxiv.org/

abs/1506.04711http://link.springer.com/10.1007/978-3-

319-40519-3{_}8.

[TT90] Ruey S. Tsay and George C. Tiao. “Asymptotic Properties of Mul-

tivariate Nonstationary Processes with Applications to Autoregres-

sions”. In: The Annals of Statistics 18.1 (1990), pp. 220–250. issn:

0090-5364. doi: 10.1214/aos/1176347499. url: http://projecteuclid.

org/euclid.aos/1176347499.

[TTC14] Fengzhen Tang, Peter Tino, and Huanhuan Chen. “Learning the

deterministically constructed Echo State Networks”. In: Proceedings

of the International Joint Conference on Neural Networks (2014),

pp. 77–83. doi: 10.1109/IJCNN.2014.6889714.

[Use10] User17762. Prove that the eigenvalues of a block matrix are the com-

bined eigenvalues of its blocks. Mathematics Stack Exchange. 2010.

url: https://math.stackexchange.com/q/21456.

http://arxiv.org/abs/1602.04485
https://pdfs.semanticscholar.org/fb1a/48244d52f709f762e92a54c8be992fcc4547.pdf
https://pdfs.semanticscholar.org/fb1a/48244d52f709f762e92a54c8be992fcc4547.pdf
https://doi.org/10.4064/cm-46-2-283-288
http://www.impan.pl/get/doi/10.4064/cm-46-2-283-288
http://www.impan.pl/get/doi/10.4064/cm-46-2-283-288
https://doi.org/10.1016/j.neucom.2012.12.041
https://linkinghub.elsevier.com/retrieve/pii/S0925231213001768
https://linkinghub.elsevier.com/retrieve/pii/S0925231213001768
https://doi.org/10.1007/978-3-319-40519-3_8
http://arxiv.org/abs/1506.04711 http://link.springer.com/10.1007/978-3-319-40519-3{_}8
http://arxiv.org/abs/1506.04711 http://link.springer.com/10.1007/978-3-319-40519-3{_}8
http://arxiv.org/abs/1506.04711 http://link.springer.com/10.1007/978-3-319-40519-3{_}8
https://doi.org/10.1214/aos/1176347499
http://projecteuclid.org/euclid.aos/1176347499
http://projecteuclid.org/euclid.aos/1176347499
https://doi.org/10.1109/IJCNN.2014.6889714
https://math.stackexchange.com/q/21456

176 BIBLIOGRAPHY

[Wai15] Martin Wainwright. “Chapter 2 – Basic tail and concentration bounds”.

In: 210B Lecture Notes University (2015). url: https://www.stat.

berkeley.edu/{~}mjwain/stat210b/Chap2{_}TailBounds{_

}Jan22{_}2015.pdf.

[Wer90] Paul J. Werbos. “Backpropagation through time: What it does

and how to do it”. In: Proceedings of the IEEE 78.9039172 (1990),

pp. 1550–1560.

[WJY15] Heshan Wang, Jian Huang, and Xuefeng Yan. “Improved cycle

reservoir with regular jump networks with simple disjunction al-

gorithm”. In: 2015 Chinese Automation Congress (CAC). 1. IEEE,

2015, pp. 809–814. isbn: 978-1-4673-7189-6. doi: 10.1109/CAC.

2015.7382609. url: http://ieeexplore.ieee.org/document/

7382609/.

[WLS04] Olivia L. White, Daniel D. Lee, and Haim Sompolinsky. “Short-

Term Memory in Orthogonal Neural Networks”. In: Physical Review

Letters 92.14 (2004), p. 148102. issn: 0031-9007. doi: 10.1103/

PhysRevLett.92.148102. url: https://link.aps.org/doi/10.

1103/PhysRevLett.92.148102.

[XYH07] Yanbo Xue, Le Yang, and Simon Haykin. “Decoupled echo state

networks with lateral inhibition”. In: Neural Networks 20.3 (2007),

pp. 365–376. issn: 08936080. doi: 10.1016/j.neunet.2007.04.014.

[YBK88] Y. Q. Yin, Z. D. Bai, and P. R. Krishnaiah. “On the limit of the

largest eigenvalue of the large dimensional sample covariance matrix”.

In: Probability Theory and Related Fields 78.4 (1988), pp. 509–521.

issn: 01788051. doi: 10.1007/BF00353874.

[YJK12] Izzet B. Yildiz, Herbert Jaeger, and Stefan J. Kiebel. “Re-visiting

the echo state property”. In: Neural Networks 35 (2012), pp. 1–9.

issn: 08936080. doi: 10.1016/j.neunet.2012.07.005. url: https:

//linkinghub.elsevier.com/retrieve/pii/S0893608012001852.

[YN15] Sumeth Yuenyong and Akinori Nishihara. “Evolutionary pre-training

for CRJ-type reservoir of echo state networks”. In: Neurocomputing

149.PC (2015), pp. 1324–1329. issn: 18728286. doi: 10.1016/j.

neucom.2014.08.065. url: http://dx.doi.org/10.1016/j.

neucom.2014.08.065.

https://www.stat.berkeley.edu/{~}mjwain/stat210b/Chap2{_}TailBounds{_}Jan22{_}2015.pdf
https://www.stat.berkeley.edu/{~}mjwain/stat210b/Chap2{_}TailBounds{_}Jan22{_}2015.pdf
https://www.stat.berkeley.edu/{~}mjwain/stat210b/Chap2{_}TailBounds{_}Jan22{_}2015.pdf
https://doi.org/10.1109/CAC.2015.7382609
https://doi.org/10.1109/CAC.2015.7382609
http://ieeexplore.ieee.org/document/7382609/
http://ieeexplore.ieee.org/document/7382609/
https://doi.org/10.1103/PhysRevLett.92.148102
https://doi.org/10.1103/PhysRevLett.92.148102
https://link.aps.org/doi/10.1103/PhysRevLett.92.148102
https://link.aps.org/doi/10.1103/PhysRevLett.92.148102
https://doi.org/10.1016/j.neunet.2007.04.014
https://doi.org/10.1007/BF00353874
https://doi.org/10.1016/j.neunet.2012.07.005
https://linkinghub.elsevier.com/retrieve/pii/S0893608012001852
https://linkinghub.elsevier.com/retrieve/pii/S0893608012001852
https://doi.org/10.1016/j.neucom.2014.08.065
https://doi.org/10.1016/j.neucom.2014.08.065
http://dx.doi.org/10.1016/j.neucom.2014.08.065
http://dx.doi.org/10.1016/j.neucom.2014.08.065

BIBLIOGRAPHY 177

[Zha+16] Saizheng Zhang et al. Architectural Complexity Measures of Recurrent

Neural Networks. 2016. arXiv: 1602.08210. url: http://arxiv.org/

abs/1602.08210.

[Zha03] G.Peter Zhang. “Time series forecasting using a hybrid ARIMA

and neural network model”. In: Neurocomputing 50 (2003), pp. 159–

175. issn: 09252312. doi: 10.1016/S0925-2312(01)00702-0. url:

https://linkinghub.elsevier.com/retrieve/pii/S0925231201007020.

[ZMW12] Bai Zhang, David J. Miller, and Yue Wang. “Nonlinear System

Modeling With Random Matrices: Echo State Networks Revisited”.

In: IEEE Transactions on Neural Networks and Learning Systems

23.1 (2012), pp. 175–182. issn: 2162-237X. doi: 10.1109/TNNLS.

2011.2178562. url: http://ieeexplore.ieee.org/document/

6105577/.

[ZW08] Bai Zhang and Yue Wang. “Echo state networks with decoupled

reservoir states”. In: Proceedings of the 2008 IEEE Workshop on

Machine Learning for Signal Processing, MLSP 2008 (2008), pp. 444–

449. doi: 10.1109/MLSP.2008.4685521.

[Rum85] Ronald J Rumelhart, David E and Hinton, Geoffrey E and Williams.

Learning Internal Representations by Error Propagation. Tech. rep.

California Univ San Diego La Jolla Inst for Cognitive Science, 1985.

doi: https://doi.org/10.1016/B978-1-4832-1446-7.50035-2.

url: http://www.csri.utoronto.ca/{~}hinton/absps/pdp8.

pdf.

http://arxiv.org/abs/1602.08210
http://arxiv.org/abs/1602.08210
http://arxiv.org/abs/1602.08210
https://doi.org/10.1016/S0925-2312(01)00702-0
https://linkinghub.elsevier.com/retrieve/pii/S0925231201007020
https://doi.org/10.1109/TNNLS.2011.2178562
https://doi.org/10.1109/TNNLS.2011.2178562
http://ieeexplore.ieee.org/document/6105577/
http://ieeexplore.ieee.org/document/6105577/
https://doi.org/10.1109/MLSP.2008.4685521
https://doi.org/https://doi.org/10.1016/B978-1-4832-1446-7.50035-2
http://www.csri.utoronto.ca/{~}hinton/absps/pdp8.pdf
http://www.csri.utoronto.ca/{~}hinton/absps/pdp8.pdf

Appendix A

Linear Algebra Background

In this Appendix, we review the pre-requisite linear algebra for the research

chapters of the thesis.

A.1 Matrix Decompositions

Definition A.1.1 (Diagonalisable, eigendecomposition). For A ∈ RM×M , we say

that A is diagonalisable if there exist non-singular matrix P and diagonal matrix

Λ such that A = PΛP−1, where the columns of P are eigenvectors of A and Λ is

the diagonal matrix whose ith diagonal entry is the eigenvalue to which the ith

column of P corresponds. We refer to PΛP−1 as the Eigendecomposition of A.

Not all matrices are diagonalisable, and therefore not every matrix has an

eigendecomposition. However, there does exist a generalisation of this idea, the

Jordan Normal Form.

Definition A.1.2 (Jordan Block, Jordan Matrix). For λ ∈ C and k ∈ N, we

define the Jordan block Jk(λ) as the k × k matrix of the form



λ 1 0 · · · 0

0 λ 1 · · · 0
...

...
.

...

0 0 0
. . . 1

0 0 0 · · · λ


.

178

A.1. MATRIX DECOMPOSITIONS 179

We say that an M ×M matrix is a Jordan matrix if it is of the form
Jn1(λ1) 0 · · · 0

0 Jn2(λ2) · · · 0
...

...
. . .

...

0 0 · · · Jnl(λl)


where each Jni(λi) is a Jordan block.

Definition A.1.3 (Jordan Normal Form, Jordan Decomposition). For A ∈
RM×M , we say that J is the Jordan normal form of A if J is a Jordan matrix

and there exists non-singular M ×M matrix P such that A = PJP−1. We call

JPJ−1 the Jordan decomposition of A.

The number of Jordan blocks for a given eigenvalue is the geometric multiplicity

of that eigenvalue. The algebraic multiplicity of that eigenvalue is the sum of the

sizes of those blocks. In the eigendecomposition, columns of the matrix P are the

eigenvectors of A; in the Jordan decomposition, the columns of P are generalised

eigenvectors of A.

Definition A.1.4 (Rank of Generalised Eigenvectors). A vector p ∈ RM is said

to be a generalised eigenvector of the matrix A ∈ RM of rank r if

(A− λI)rv = 0

and

(A− λI)r−1v 6= 0.

Consider an M ×M Jordan matrix, with a Jordan block of size d running

between the rows indexed a+ 1 and b (inclusive) for some 0 ≤ a < b ≤M with

a − b = d. For 1 ≤ i ≤ d, the (a + i)th column of P contains an eigenvector of

rank i.

180 APPENDIX A. LINEAR ALGEBRA BACKGROUND

Proposition A.1.1. Let Jk(λ) be a Jordan block and t ∈ N,

(Jk(λ))t =



λt
(
t
1

)
λt−1

(
t
2

)
λt−2 · · ·

(
t

k−1

)
λt−k+1

0 λt
(
t
1

)
λt−1 · · ·

(
t

k−2

)
λt−k+2

...
...

.
...

0 0 · · · λt
(
t
1

)
λt−1

0 0 · · · 0 λt


(A.1)

Proof. See, for instance [GV96].

It is useful to note that for any fixed j, when t ≥ j,(
t

j

)
=

t!

j! · (t− j)!

=
t · (t− 1) · · · · · (t− j + 1)

j!

=
tj + o(tj)

j!
, (A.2)

where the last line is obtained by noting that there are j terms in the product

in the line above, and reasoning about what the expanded product would like.

Therefore the upper triangular entries of (Jk(λ))t are of the form pij(t) · λt, where

pij is a polynomial of degree at most k − 1.

The following proposition is used in Chapter 4. The proof we provide is

adapted from [Use10].

Proposition A.1.2. Define a block triangular matrix

M =


A11 0 · · · 0

A21 A22 · · · 0
...

...
. . .

...

An1 An2 · · · Ann

 ,

λ ∈ C is an eigenvalue of M if and only if it is also an eigenvalue of of at least

one of A11, A22, . . . , Ann.

Proof. By Lemma 2 of [Sil00], we have that

det

((
A 0

B C

))
= det(AC) = det(A) · det(C)

A.2. USEFUL INEQUALITIES 181

We omit the details, but this can naturally be extended to more general block trian-

gular matrices using induction in the obvious way, giving det(M) =
∏n

i=1 det(Aii).

We can now consider, for some λ the block-triangular matrix (M − λI). λ is

an eigenvalue of M if and only if det(M − λI) = 0. Equivalently the condition

can be expressed as
∏L

i=1 det(Aii − λI) = 0. Clearly this will happen if and only

if one of the factors in the product is zero, which in turn only occurs if λ is an

eigenvalue for some Aii.

A.2 Useful Inequalities

Chapter 6 is frequently be concerned with the magnitude of certain vector

quantities, particularly in relation to their norms. As such, in the chapter, we

make use of several standard inequalities. For completeness, we state the necessary

inequalities here.

Theorem A.2.1 (Triangle Inequality). Let |||·||| be a norm on the space RM . For

any x,y ∈ RM , we have

|||x + y||| ≤ |||x|||+ |||y|||.

This theorem is tautologically true, since it describes a necessary condition for

|||·||| being a norm. Through manipulations of the triangle inequality, we are able

to derive the reverse triangle inequality, which we state now.

Theorem A.2.2 (Reverse Triangle Inequality). Let |||·||| be a norm on the space

RM . For any x,y ∈ RM , we have

||||x||| − |||y|||| ≤ |||x− y|||.

Theorem A.2.3 (Jensen’s Inequality). If X be a random variable taking values

in R and g : R→ R is a convex function, then

E [g(X)] ≥ g (E [X])) .

Proof. See, for example, [HJ85]

182 APPENDIX A. LINEAR ALGEBRA BACKGROUND

Theorem A.2.4 (Equivalence of Norms). Let ‖·‖a and ‖·‖b be two norms on a

finite dimensional vector space V . There exist constants 0 < C1 ≤ C2 such that

for all x ∈ V ,

C1 · ‖x‖a ≤ ‖x‖b ≤ C2 · ‖x‖a .

Proof. See, for example, [HJ85]

Next, we consider a couple of results bounding the expectation of norms of

random variables.

Theorem A.2.5. Let x1,x2, . . . ,xn be n independent random vectors with mean

zero and finite expected norm, and let r1, . . . , rn be n independent Rademacher

random variables,

E

[∥∥∥∥∥
n∑
i=1

xi

∥∥∥∥∥
]
≥ 1

2
· E

[∥∥∥∥∥
n∑
i=1

rixi

∥∥∥∥∥
]
.

Proof. See [Tro16]

Theorem A.2.6 (The Khinchin-Kahane Inequality). For all p, q ∈ [1,∞), there

exists a constant Cp,q > 0 depending only upon p, q such that for all n ∈ N, for all

finite sets of vectors x1,x2, . . . ,xn ∈ RM and independent Rademacher variables

r1, r2, . . . , rn,

E

[∥∥∥∥∥
n∑
i=1

rixi

∥∥∥∥∥
q] 1

q

≤ Cp,q · E

[∥∥∥∥∥
n∑
i=1

rixi

∥∥∥∥∥
p] 1

p

.

Proof. See, for instance [Tom82] (though the above formulation of the theorem is

taken from [KR16]).

Re-arranging, we can also get the inequality

E

[∥∥∥∥∥
n∑
i=1

rixi

∥∥∥∥∥
p] 1

p

≥ 1

Cp,q
· E

[∥∥∥∥∥
n∑
i=1

rixi

∥∥∥∥∥
q] 1

q

.

Though the theorem is applied to fixed vectors x1,x2, . . .xn, it is trivial to extend

it to the expectation of random vectors. Suppose that x1, . . . ,xn are random

vectors in RM . We can use the fact that if f(x) ≥ g(x) for all values of x then

A.3. GELFAND’S FORMULA 183

∫
f(x)dx ≥

∫
g(x)dx, whenever the two integrals are over the same region of the

space, to take the expectation not just over each ri, but also over the xi, yielding

E

[∥∥∥∥∥
n∑
i=1

rixi

∥∥∥∥∥
p] 1

p

≥ 1

Cp,q
· E

[∥∥∥∥∥
n∑
i=1

rixi

∥∥∥∥∥
q] 1

q

.

Lemma A.2.1. Let A ∈ RM×M be a matrix with spectral radius ρ(A). For any

ε > 0 there exists a sub-multiplicative matrix norm |||·||| such that ρ(A) ≤ |||A||| ≤
ρ(A) + ε.

Proof. See, for instance, Lemma 5.6.10 from [HJ85]

A.3 Gelfand’s Formula

In Chapter 5 and and Chapter 6, we make use of the following lemma:

Lemma A.3.1. Let A be a matrix such that ρ(A) < 1. For all γ satisfying

ρ(A) < γ, there exists k0 ∈ N such that, for all k > k0,
∥∥Ak∥∥ < γk.

Proof. Let A = PJP−1 where J is the Jordan form of A, we can write, by

sub-multiplicativity of the norm and equivalence of norms, we can write

∥∥Ak∥∥ ≤ ‖P‖ · ∥∥Jk∥∥ · ∥∥P−1
∥∥

= C ′1 ·
∥∥Jk∥∥

≤ C1 ·
∥∥Jk∥∥

F
,

where ‖·‖F is the Frobenius norm1, C ′1
def
= ‖P‖ · ‖P−1‖ and C1 is some positive

constant. Since all elements of Jk grow at a rate bounded by C2 · kM−1 · ρ(W)k

(this can be seen by using A.2 to determine the degree of the polynomials bounding

the combination functions in Equation A.1), for some C2 > 0, we have for any

1That is, the norm defined as ‖X‖F =
√∑M

i,j=1 |(X)ij |2 for X ∈ XM×M

184 APPENDIX A. LINEAR ALGEBRA BACKGROUND

ε > 0, for all sufficiently large k

∥∥Ak∥∥ ≤ C1 ·
∥∥Jk∥∥

F

= C1 ·

(
M∑
i=1

M∑
j=1

(
∣∣Jk∣∣)2

ij

) 1
2

≤ C1 ·
(
M2 · C2 · kM−1 · ρ(A)2·k) 1

2

≤ C1 ·
(
M2 · C2 · (ρ(A) + ε)2·k) 1

2

= C1 ·M ·
√
C2 · (ρ(A) + ε)k

For any constant γ > ρ(A), we can choose ε > 0 such that ρ(A) + ε < γ

and therefore have that for such ε there exists k0 such that for all k > k0,

γk > C1 ·M · (ρ(A) + ε)k, completing the proof.

Appendix B

Supplementary Material for

Chapter 4

In this appendix, we state and prove intermediate results required for Theorem

4.3.1.

Lemma B.0.1. Let D be a d×M matrix of the form

D
def
=
(
Jd(λ)v Jd(λ)2v · · · Jd(λ)Mv

)
Where v ∈ Rd and Jd(λ) is the Jordan block of size d with eigenvalue λ (see

Appendix A.1 for more detail). For 2 ≤ k ≤M and 1 ≤ i ≤ d,

(D)ik = (D)(i+1)(k−1) + λ(Di(k−1)),

where we define (D)(d+1)k = 0 for all k.

Proof. For all k,

(Jd(λ))kv =



λk
(
k
1

)
λk−1

(
k
2

)
λk−2 · · ·

(
k
d−1

)
λk−d+1

0 λk
(
k
1

)
λk−1 · · ·

(
k
d−2

)
λk−d+2

...
...

.
...

0 0 · · · λk
(
k
1

)
λk−1

0 0 · · · 0 λk





v1

v2

...

vd−1

vd


185

186 APPENDIX B. SUPPLEMENTARY MATERIAL FOR CHAPTER 4

=



∑d−1
j=0 λ

k−j(k
j

)
v1+j∑d−2

j=0 λ
k−j(k

j

)
v2+j

...∑1
j=0 λ

k−j(k
j

)
vd−1+j

λkvd


So, in general we have

(D)ik =
d−i∑
j=0

λk−j ·
(
k

j

)
· vi+j.

Therefore

(D)ik =
d−i∑
j=0

λk−j ·
(
k

j

)
· v′i+j

=
d−i∑
j=0

λk−j ·
(
k − 1

j − 1

)
· v′i+j +

d−i∑
j=0

λk−j ·
(
k − 1

j

)
· v′i+j

=
d−i−1∑
j=−1

λk−(j+1) ·
(
k − 1

j

)
· v′i+j+1 + λ

d−i∑
j=0

λ(k−1)−j ·
(
k − 1

j

)
· v′i+j

=

d−(i+1)∑
j=0

λ(k−1)−j ·
(
k − 1

j

)
· v′(i+1)+j + λ

d−i∑
j=0

λ(k−1)−j ·
(
k − 1

j

)
· v′i+j

= D(i+1)(k−1) + λ ·Di(k−1).

We get second line in the above manipulations using the identity
(
k
j

)
=
(
k−1
j−1

)
+(

k−1
j

)
.

Lemma B.0.2. Let J be a matrix in Jordan form with at least two blocks corre-

sponding to some eigenvalue λ 6= 0. Choose two such blocks J1 and J2 of effective

sizes d1 and d2 (with respect to vectors v1 and v2, respectively) and d1 ≤ d2. For

any M , the rows of the matrix

M1
def
=
(
J1v1 J2

1 v1 · · · JM1 v1

)
are in the row space of the matrix

M2
def
=
(
J2v2 J2

2 v2 · · · JM2 v2,
)

187

Furthermore, the rank of that row space is d2.

Proof. We begin by noting that for any positive integer k,

(M1)ik = (Jk1 v1)i =

d1−i∑
j=0

λk−j
(
k

j

)
(v1)j+i

and similarly

(M2)ik = (Jk2 v2)i =

d2−i∑
j=0

λk−j
(
k

j

)
(v2)j+i.

Our strategy is to show that the rows of the M2, and the M1 are both in the

row-space of the matrix

Γ =


(

1
0

)
λ1

(
2
0

)
λ2 · · ·

(
M
0

)
λM(

1
1

)
λ1

(
2
1

)
λ1 . . .

(
2
1

)
λM

...
.

...(
1

d2−1

)
λ1 · · · · · ·

(
M
d2−1

)
λM

 .

Note that we can write (Γ)ik =
(
k
j

)
λk, and therefore we can write (M1)ik as

(M1)ik =
d−i∑
j=0

λk−j ·
(
k

j

)
· (v2)i+j

=
d−i∑
j=0

λ−j ·
[
λk ·

(
k

j

)]
· (v2)i+j

=
d−i∑
j=0

λ−j · [(Γ)jk] · (v2)i+j.

This gives that we can write the ith row of M1 as

(M1)i· =

d1−i∑
j=0

λ−j · vi+j Γj·,

and therefore every row of M1 is in the row-space of Γ.

The same argument can be applied to M2 to get that each of its rows are in

the row-space of Γ, giving that both rows of M1 and M2 are in the row-space of Γ.

188 APPENDIX B. SUPPLEMENTARY MATERIAL FOR CHAPTER 4

Noting that (v1)d2 6= 0, we can obtain that M2 is rank d2 via Hautus’ lemma

by considering a system with the recurrent weight matrix as Jordan block of size

d2 with an input vector v ∈ Rd2 satisfying (v)d2 6= 0. Since all rows of M2 are in

Γ’s row space, this means that rank(Γ) ≥ d2. Given that Γ is of size d2 ×M , it

must therefore be the case that rank(Γ) = d2

Appendix C

Supplementary Material for

Chapter 5

This appendix contains supplementary material for Chapter 5. In Section C.1, we

provide proof of Lemma 5.4.1. In Section C.2, we shown additional experiments

examining the role of non-linearity in DeepESNs.

C.1 Proof of Lemma 5.4.1

In this section, we re-state and provide proof for Lemma 5.4.1.

Lemma 5.4.1. Let (W̄ , v̄) be an L layer neural network with M hidden units

per layer. For 1 ≤ l ≤ L, let Q be a matrix satisfying Q
(
E
[
z

(l)
t (z

(l)
t)ᵀ

])
Qᵀ = I,

where Q = Λ−
1
2P ᵀ for an orthonormal matrix P and a full-rank diagonal matrix Λ,

and let Q satisfy E
[
(Qz

(l)
t)iut

]
= δi1, where δij is the Kronecker delta. Defining

z̃
def
= Qz, if the input sequence has zero-mean and unit variance, for k ≥ 1 the

following equalities hold:

MC
(l)
k =

∞∑
k=1

E
[
(y

(l)
k)2

]
=

M+1∑
i=2

E
[
(z̃

(l)
t)i · ut−k

]2

.

Where y
(l)
k is the optimal linear reconstruction of ut−k from the state z

(l)
t .

Proof. To begin the proof, we use that by using the closed-form solution for linear

189

190 APPENDIX C. SUPPLEMENTARY MATERIAL FOR CHAPTER 5

regression we can expand the optimal reconstruction weights w
(l)
k to get

yk = (w
(l)
k)ᵀz

(l)
t

=

((
E
[
z

(l)
t

(
z

(l)
t

)ᵀ])−1

E
[
z

(l)
t ut−k

])ᵀ

z
(l)
t . (C.1)

Define p̃k = QE
[
z

(l)
t ut−k

]
, pk = E

[
z

(l)
t − ut−k

]
and R = E

[
z

(l)
t

(
z

(l)
t

)ᵀ]
. From

the definition of Q = Λ−
1
2P ᵀ, we get that Q−1 = QᵀΛ. Using this, along with

Equation C.1, gives

yk = (R−1pk)
ᵀz

(l)
t

= ((Q−1QRQ−1Q)−1Q−1Qpk)
ᵀz

(l)
t

= ((Q−1QRQT︸ ︷︷ ︸
=I

ΛQ)−1Q−1Qpk)
ᵀz

(l)
t

= ((Q−1ΛQ)−1Q−1p̃k)
ᵀz

(l)
t

= (Q−1Λ−1QQ−1p̃k)
ᵀz

(l)
t

= (Q−1Λ−1p̃k)
ᵀz

(l)
t

= (QᵀΛΛ−1p̃k)
ᵀz

(l)
t

= (Qᵀp̃k)
ᵀz

(l)
t

= (p̃k)
ᵀQz

(l)
t

= (p̃k)
ᵀz̃

(l)
t

=
M+1∑
i=1

E
[(

z̃
(l)
t

)
i
· ut−k

]
(z̃

(l)
t)i (C.2)

=
M+1∑
i=2

E
[(

z̃
(l)
t

)
i
· ut−k

]
(z̃

(l)
t)i, (C.3)

Where the last equivalence comes from the assumption in the statement of the

lemma about the construction of Q. From this, we can derive the second equality

in the statement of the lemma, since by the above

E
[
y2
k

]
= E

(M+1∑
i=2

E
[((

z̃
(l)
t

)
i
· ut−k

)]
·
(
z̃

(l)
t

)
i

)2


= E

[
M+1∑
i=2

((
z̃

(l)
t

)
i
· ut−k

)2
]
. (C.4)

C.1. PROOF OF LEMMA 5.4.1 191

We get the second equality in the above manipulation by expanding the square

and using that by definition of z̃t, E [(z̃t)i · (z̃t)j] = 0 for i 6= j.

For the first part of the lemma, plugging Equations C.3 and C.4 into the

definition of MC
(l)
k , we get

MC
(l)
k =

cov2(yk, ut−k)

var(yk) · var(ut)

=
(E [yk · ut−k])2

E [y2
k] · var(ut−k)

=

(∑M+1
i=2

(
E
[
E
[
(z̃

(l)
t)i · ut−k

]
(z̃

(l)
t)i

)
· ut−k

])2

E
[∑M+1

i=2

(
(z̃t

(l))i · ut−k
)2
]
· var(ut−k)

=

(∑M+1
i=2

(
E
[
(z̃

(l)
t)i · ut−k

]
E
[
(z̃

(l)
t)i · ut−k

]))2

E
[∑M+1

i=2

(
(z̃t

(l))i · ut−k
)2
]
· var(ut−k)

=

(∑M+1
i=2

(
E
[
(z̃

(l)
t)i · ut−k

])2
)2

E
[∑M+1

i=2

(
(z̃t

(l))i · ut−k
)2
]
· var(ut−k)

=

(∑M+1
i=2

(
E
[
(z̃

(l)
t)i · ut−k

])2
)

var(ut−k)

=
M+1∑
i=2

(
E
[
(z̃

(l)
t)i · ut−k

])2

.

192 APPENDIX C. SUPPLEMENTARY MATERIAL FOR CHAPTER 5

C.2 Additional Non-Linear Memory Capacity Ex-

periments

(a) (b)

(c) (d)

Figure C.1: Total memory capacity for network layers, varying recurrent spectral
radius and feedforward norm size. Input weight vector scaled to satisfy ‖vi‖ = 10−6

C.2. ADDITIONAL NON-LINEARMEMORYCAPACITY EXPERIMENTS193

(a) (b)

(c) (d)

(e)

Figure C.2: Total memory capacity for network layers, varying recurrent spectral
radius and feedforward norm size. Input weight vector scaled to satisfy ‖vi‖ = 10−4

194 APPENDIX C. SUPPLEMENTARY MATERIAL FOR CHAPTER 5

(a) (b)

(c) (d)

(e)

Figure C.3: Total memory capacity for network layers, varying recurrent spectral
radius and feedforward norm size. Input weight vector scaled to satisfy ‖vi‖ = 0.01

C.3. LONG TERM BEHAVIOUR OF PERTURBATIONS 195

C.3 Long Term Behaviour of Perturbations

In this appendix, we state and prove a result regarding the asymptotic behaviour

of the vector W kv as k →∞, where W ∈M×M and v ∈ RM . The purpose of

the proposition is to demonstrate how and why the (normalised) vectors W kv tend

towards a low-dimensional sub-space of RM . Though we state and prove the result

only in the specific case that the maximum-magnitude eigenvalues are a complex

conjugate pair, it generalises naturally to other scenarios, with the size of the

sub-space being the number of eigenvalues which are joint maximum magnitude

such that their associated eigenvectors are not orthogonal to v (including the

multiplicities of repeated eigenvalues).

Proof of this proposition loosely follows the strategy of the standard method of

proving the convergence of the power iteration method to the dominant eigenvector

of a matrix (i.e., the case where there is a single eigenvalue of largest magnitude

and a single associated eigenvector), which can be found in linear algebra textbooks

(for instance [AR10]).

Proposition C.3.1. Let W be a matrix with a simple spectrum such that there

exist exactly two eigenvalues of largest magnitude, with these two eigenvalues

forming a complex conjugate pair, and v be a vector with a non-zero component

in the direction of these eigenvectors. There exist real vectors a,b such that

W kv

|ρ(W)k|
= c1,ka + c2,kb + c3,kvk,

where for every natural number k, vk satisfies ‖vk‖ = 1 and constants c1,k, c2,k

and c3,k satisfy max(|c1,k| , |c2,k|) ≥ D1 and c3,k < D2 ·γk, for constants D1, D2 > 0

and 0 < γ < 1.

Proof. Let λ1, λ2 be the two eigenvalues of largest magnitude and p1,p2 be their

corresponding eigenvectors, and label the other eigenvalues λ3, · · · , λM in order

of decreasing magnitude. We can decompose v as v = c1p1 + c2p2 + · · ·+ cMpM

for some c1, . . . , cM , with c1, c2 6= 0. We can write p1 = a + ib for real vectors a

and b. We have

W kv = W k (c1p1 + c2p2 + · · ·+ cMpM)

=
(
c1 · λk1p1 + c2 · λk2p2 + · · ·+ cM · λkMpM

)

196 APPENDIX C. SUPPLEMENTARY MATERIAL FOR CHAPTER 5

Dividing through by
∣∣ρ(W)k

∣∣ gives

W kv

|ρ(W)k|
=

(
c1 · λk1p1 + c2 · λk2p2 + · · ·+ cM · λkMpM

)
|ρ(W)k|

= c1 ·
λk1

|ρ(W)k|
p1 + c2 ·

λk2
|ρ(W)k|

p2 + · · ·+ cM ·
λkM
|ρ(W)k|

pM

= c1 ·
(

λ1

|ρ(W)|

)k
p1 + c2 ·

(
λ2

|ρ(W)|

)k
p2 + · · ·+ cM ·

(
λM
|ρ(W)|

)k
pM .

Define vk =
c3·(λ3

|ρ(W)|)
k
p3+···+cM

(
λM
|ρ(W)|

)k
p3∥∥∥∥c3·(λ3

|ρ(W)|)
k
p3+···+cM

(
λM
|ρ(W)|

)k
pM

∥∥∥∥ . By the triangle inequality, we have

∥∥∥∥∥c3 ·
(

λ3

|ρ(W)|

)k
p3 + · · ·+ cM

(
λM
|ρ(W)|

)k
pM

∥∥∥∥∥
≤

∥∥∥∥∥c3 ·
(

λ3

|ρ(W)|

)k
p3

∥∥∥∥∥+ · · ·+

∥∥∥∥∥cM
(

λM
|ρ(W)|

)k
pM

∥∥∥∥∥
=

∣∣∣∣∣c3 ·
(

λ3

|ρ(W)|

)k∣∣∣∣∣+ · · ·+

∣∣∣∣∣cM
(

λM
|ρ(W)|

)k∣∣∣∣∣
< M ·max(|c3| , . . . , |cM |) · γk,

where γ satisfies |λ3|
ρ(W)

< γ < ρ(W). Setting D2 = M ·max(|c3| , . . . , |cM |) gives a

bound for the constants c3,k.

Next, we note that since λ1 and λ2 are a complex conjugate pair, it is also

true that p1 and p2 are complex conjugates of each other, i.e., p2 = a− ib. From

this, we use Euler’s formula to write for some θ,

1

|ρ(W)k|
·
(
c1 · λk1p1 + c2 · λk2p2

)
=c1 · (cos(k · θ) + i · sin(k · θ))(a + ib)

+ c2 · (cos(k · −θ) + i · sin(k · −θ))(a− ib)

=c1 · (cos(k · θ) + i · sin(k · θ))(a + ib)

+ c2 · (cos(k · θ)− i · sin(k · θ))(a− ib)

= ((c1 + c2) · cos(k · θ) + i · (c1 − c2) · sin(k · θ)) a

+ (−(c1 + c2) · sin(k · θ) + i · (c1 − c2) · cos(k · θ)) b.

We now consider three cases. Firstly, assume c1 − c2 = 0, then c1,k = (c1 + c2) ·

C.3. LONG TERM BEHAVIOUR OF PERTURBATIONS 197

cos (k · θ) and c2,k = −(c1 + c2) · sin (k · θ). Since for any θ, max(|cos θ| , |sin θ|) ≥
1√
2
,1 we get can set D1 = 1√

2
|(c1 + c2)|. For the second case, assume c1 + c2 = 0

and we can construct D1 = 1√
2
(c1 + c2) in a similar manner. Finally, for the case

where neither is zero, we get

c1,k
def
= (c1 + c2) · cos (k · θ) + i · (c1 − c2) · sin (k · θ)

and

c2,k
def
= −(c1 + c2) · sin (k · θ) + i · (c1 − c2) · cos (k · θ) .

Note that

i · c2,k = i · (c1 + c2) · sin (k · θ) + (c1 − c2) · cos (k · θ)

and therefore

|c1,k − i · c2,k| = |2 · c1 · (cos(k · θ) + i · sin(k · θ))|

= |2 · c1| · |(cos(k · θ) + i · sin(k · θ))|

≥ |2 · c1|

This implies that at least one of c1,k and i · c2,k must be of magnitude at least |c1|
(since if both had norms smaller than |c1|, by the triangle inequality we would

have |c1,k − i · c2,k| ≤ |c1,k|+ |i · c2,k| < 2 · |c1|)). This gives for all k,

max(|c1,k| , |c2,k|) = max(|c1,k| , |i · c2,k|)

≥ |c1| .

Setting D1 = |c1| completes the proof (note that we could also have considered

c1,k + i · c2,k to get the bound as |c2|).

1 This can easily be shown from the identity cos2θ + sin2 θ = 1. For the identity to hold,
either cos2θ ≥ 1

2 or sin2 θ ≥ 1
2 , taking the square root gives the result

Appendix D

Supplementary Material for

Chapter 6

In this appendix, we provide proof of the various intermediate lemmas stated in

the main text of Chapter 6.

D.1 Proofs for Section 6.4

In this section, we provide proof of Lemma 6.4.1. In order to make the proof as

clear and straightforward as possible, we first prove the following supplementary

lemma.

Lemma D.1.1. Let W be a matrix such that ρ(W) = 1 and let v be aligned to W

with degree d ≥ 1. Define v
def
= vε, where ε is a random variable with zero mean

and finite variance. There exists constants k0, C1, C2 > 0 such that for all k > k0

C1 · k2·(d−1) < E
[∥∥W kv

∥∥2
]
< C2 · k2·(d−1).

Proof. We can show that the same inequalities hold when using the norm ‖·‖P ,

though not necessarily for the same constants, then use the equivalence of norms1.

Consider the components of the vector P−1W kv: for 1 ≤ i ≤M , if the eigenvalue

associated with the ith component λi satisfies |λi| < 1, then with a small amount

of manipulation Equation 6.3 tells us that the magnitude of the component in that

direction decays asymptotically exponentially with k. For the remaining elements,

1We remind the reader that ‖·‖P is defined in Chapter 6 as the norm such that for any
x ∈ RM , ‖x‖P =

∥∥P−1x∥∥∞
198

D.1. PROOFS FOR SECTION 6.4 199

|λi| = 1, and there exists a polynomial pi(k) such that
∣∣(P−1W kv)i

∣∣ = |pi(k) · ε|.
Define S as the set of all such i, this gives that for large enough k,

E
[∥∥W kvε

∥∥2

P

]
= E

[(
max
i∈S

((∣∣(P−1W kv)
∣∣)
i

))2
]

= E

[(
max
i∈S

(|pi(k)| · |ε|)
)2
]

= max
i∈S

(
|pi(k)|2 · E

[
|ε|2
])

Since the largest degree amongst the polynomials pi(k) is d − 1, we have that

there exist positive constants C ′1, C ′2 and t0 such that for all k > k0

C ′1 · k2·(d−1) ≤ E
[∥∥W kv

∥∥2

P

]
≤ C ′2 · k2·(d−1)

Using equivalence of norms we can get the desired bounds for the 2-norm.

With this lemma in place, we are ready to proceed to Lemma 6.4.1.

Lemma 6.4.1. Let W be a matrix such that ρ(W) = 1 and v a vector which is

aligned to W with degree d ≥ 1. Define vk = vεk, where each εk is a random

variable with zero-mean and the same finite variance. There exist constants

C1, C2, t0 > 0 such that for all t > t0

C1 · t2·d−1 < E

[
t−1∑
k=0

∥∥W kvt−k
∥∥2

]
< C2 · t2·d−1

Proof. By Lemma D.1.1 we have that there exists C ′1, C
′
2, k0 > 0 such that for all

k ≥ k0

C ′1 · k2·(d−1) < E
[∥∥W kv

∥∥2
]
< C ′2 · k2·(d−1)

Let C0 = E
[∑k0−1

k=0

∥∥W kvt−k
∥∥2
]
. We can construct a lower bound using that for

200 APPENDIX D. SUPPLEMENTARY MATERIAL FOR CHAPTER 6

all t > 2 · k0, we have

E

[
t−1∑
k=0

∥∥W kvk
∥∥2

]
= C0 + E

[
t−1∑
k=k0

∥∥W kvk
∥∥2

]
> C0 +

t−1∑
k=k0

C ′1 · k2·(d−1)

>

t−1∑
k=k0

C ′1 · k2·(d−1) ≥
t−1∑
k=d t

2
e

C ′1 · k2·(d−1)

≥
t−1∑
k=d t

2
e

C ′1 ·
(
t

2

)2·(d−1)

=
t−1∑
k=d t

2
e

C ′1
22·(d−1)

· t2·(d−1)

=

(
t− d t

2
e
)
· C ′1

22·(d−1)
· t2·(d−1)

≥
(
t− t

2
− 1

)
· C ′1

22·(d−1)
· t2·(d−1)

=

(
t

2
− 1

)
· C ′1

22·(d−1)
· t2·(d−1)

=
C ′1

22·d−1
·
(
t2·d−1 + 2 · t2·d−2

)
> C1 · t2·d−1,

for some constant C1 and sufficiently large t.

For the upper bound, we use the other inequality in Lemma D.1.1 to get

E

[
t−1∑
k=0

∥∥W kv
∥∥2

]
= C0 + E

[
t−1∑
k=k0

∥∥W kv
∥∥2

]

< C0 +
t−1∑
k=k0

C ′2 · k2·(d−1)

< C0 +
t−1∑
k=k0

C ′2 · t2·(d−1)

< C0 + (t− 1− k0 + 1) · C ′2 · t2·(d−1)

< C0 + t · C ′2 · t2·(d−1)

= C0 + C ′2 · t2·d−1

< (C0 + C ′2) · t2·d−1,

therefore setting C2
def
= C0 + C ′2 completes the proof.

D.2. PROOFS FOR SECTION 6.5 201

D.2 Proofs for Section 6.5

In this appendix, we provide proof of Lemma 6.5.1. Mirroring the structure of

the previous section, we begin with the following lemma.

Lemma D.2.1. Let W be a matrix such that ρ(W) > 1. Define v = vε, where ε

is a random variable, with zero mean and non-zero variance, and v is aligned to

W with degree at least one. For any ε > 0, there exist constants C1, C2, k0 > 0,

such that for all k > k0,

C1 · ρ(W)2·k < E
[∥∥W kv

∥∥2
]
< C2 · (ρ(W) + ε)2·k.

Proof. By equivalence of norms it suffices to consider whether the inequalities

hold for E
∥∥W kv

∥∥
P

(albeit for different constants C ′1 and C ′2). By Equation 6.3,

we have the magnitude of the ith component can be written as

∣∣(P−1W kv)i
∣∣ =

∣∣λk · pi(k) · ε
∣∣ ,

where pi(k) is a polynomial in k. We can write

E
[∥∥W kv

∥∥2

P

]
= E

[(
max

1≤i≤M

∣∣(P−1W kv)i
∣∣)2
]

= E

[(
max

1≤i≤M

∣∣λki · pi(k)
∣∣ |ε|)2

]
= max

1≤i≤M

∣∣λk · pi(k)2
∣∣ · E [|ε|2] . (D.1)

For large enough k, the maximum will correspond to an i satisfying |λi| = ρ(W),

since if |λi| < ρ(W), asymptotically
∣∣(λki · pi(k))2

∣∣ < ∣∣ρ(W)2·k
∣∣. This means that

for large enough k, Equation D.1 yields

E
[∥∥W kv

∥∥2

P

]
> C1 · ρ(W)2k · E

[
|ε|2
]
,

for some constant C ′1 > 0, giving us a lower bound. We also have that for any

ε′ > 0, for all for all sufficiently large k,

∣∣pi(k)2
∣∣ < ∣∣(1 + ε′)2·k∣∣ ,

202 APPENDIX D. SUPPLEMENTARY MATERIAL FOR CHAPTER 6

Setting ε′ = ε
λ
, we get that for all sufficiently large k

∣∣λ2·k · pi(k)2
∣∣ < ∣∣λ2·k · (1 + ε′)2·k∣∣

=
∣∣(λ+ ε)2·k∣∣ = (ρ(W) + ε)2·k. (D.2)

Combining this with Equation D.1, we have for sufficiently large k,

E
[∥∥W kv

∥∥2

P

]
< C ′2 · (ρ(W) + ε)2·k · E [|ε|]2 . (D.3)

From inequalities D.2 and D.3, we get the desired result by the equivalence of

norms.

With this lemma in hand, we proceed to the proof of Lemma 6.5.1

Lemma 6.5.1. Let W be a matrix such that ρ(W) > 1, and v be a vector which

is aligned with W with degree d ≥ 1. Define vk = vεk, where each εk is a random

variable with zero mean and the same non-zero finite variance. For any ε > 0,

there exist constants t0 > 0, C1 > 0 and C2 > 0 such that for all t ≥ t0

C1 · ρ(W)2·k < E

[
t−1∑
k=0

∥∥W kvt−k
∥∥2

]
< C2 · (ρ(W) + ε)2·k

Proof. By Lemma D.2.1 we have that there exists C ′1, C
′
2, k0 > 0 such that for all

k ≥ k0

C ′1 · ρ(W)2·k < E
[∥∥W kvt−k

∥∥2
]
< C ′2 · (ρ(W) + ε)2·k.

Let C0 = E
[∑k0−1

k=0

∥∥W kvt−k
∥∥]. We have

E

[
t−1∑
k=0

∥∥W kvt−k
∥∥2

]
= C0 + E

[
t−1∑
k=k0

∥∥W kvt−k
∥∥2

]

> C0 +
t−1∑
k=k0

C ′1 · ρ(W)2·k

≥ C0 + C ′1 · ρ(W)2·(t−1)

= C0 + C ′1 · ρ(W)−2 · ρ(W)2·t

> C ′1 · ρ(W)−2 · ρ(W)2·t

D.2. PROOFS FOR SECTION 6.5 203

Therefore for if we define C1 = C ′1 · ρ(W)−2, for t > k0, we have the lower bound.

For the upper bound, we have for some constant C3 > 0 and ε′ such that 0 < ε′ < ε

E

[
t−1∑
k=0

∥∥W kvt−k
∥∥2

]
= C0 + E

[
t−1∑
k=k0

∥∥W kvt−k
∥∥2

]

< C0 +
t−1∑
k=k0

C ′2 · (ρ(W) + ε′)2·k

≤ C0 +
t−1∑
k=k0

C ′2 · (ρ(W) + ε′)2·(t−1)

≤ C0 + (t− 1− k0 + 1) · C ′2 · (ρ(W) + ε′)2·(t−1)

= C0 + (t− k0) · C ′2 · (ρ(W) + ε′)2·(t−1)

< C0 + C ′2 · C3 · (ρ(W) + ε′)2·(t−1)

= C0 + C ′2 · C3 · (ρ(W) + ε)−2 · (ρ(W) + ε)2·t

< (C0 + C ′2 · C3 · (ρ(W) + ε)−2) · (ρ(W) + ε)2·t

Defining C2 = (C0 + C ′2 · C3 · (ρ(W) + ε)−2) and setting t0 = k0 completes the

proof.

The next two proofs are mostly trivial modifications of proofs from Section 6.4.

As such, we provide abridged versions of the proof, and refer readers to the

analogous proof in that section for additional detail of intermediate steps.

Corollary 6.5.1. Let {ut}∞t=1 be a sequence of random vectors in RD, with the

entries of all vectors being zero-mean and a common non-zero finite variance. For

the ESN (W,V) driven by that sequence, if ρ(W) > 1 and there exists at least one

column of V aligned with W with degree at least one, then for all ε > 0 there exist

C1 > 0, C2 > 0, t0 > 0 such that for all t > t0,

C1 · ρ(W)t < E [‖xt‖] < C2 · ρ(W + ε)t.

Proof. First, note that

xt =
D∑
i=1

t−1∑
k=0

W kV·,i(ut−k)i,

204 APPENDIX D. SUPPLEMENTARY MATERIAL FOR CHAPTER 6

where V·,i is the ith column of V . Define

x
(i)
t

def
=

t−1∑
k=0

W kV·,i(ut−k)i,

We can write xt =
∑D

i=1 x
(i)
t , giving that xt is the sum of independent random

vectors. The upper bound can easily be obtained by splitting the norm of this

sum into a sum of norms using the triangle inequality. That is to say, we have for

any ε < 0, there exist C2, t0 > 0 such that for all t > t0

E [‖xt‖] = E

[∥∥∥∥∥
D∑
i=1

x
(i)
t

∥∥∥∥∥
]

≤ E

[
D∑
i=1

∥∥∥x(i)
t

∥∥∥]
≤ D · C2 · (ρ(W) + ε)t

Using the same argument as in Corollary 6.4.1, we have

E ‖xt‖ ≥
1

2 · C1,2

·

√√√√E

[
D∑
i=1

∥∥∥x(i)
t

∥∥∥2
]

Combining this with Lemma 6.5.1 yields

E ‖xt‖ ≥
1

2 · C1,2

·
√
C ′1 ·D · (ρ(W))2·t

=

√
C ′1 ·D

2 · C1,2

· (ρ(W))t.

Setting C1 =

√
C′1·D

2·C1,2
completes the proof.

Corollary 6.5.2. Let (W,V) be an ESN satisfying ρ(W) > 1. Let d ≥ 1 be the

greatest degree of alignment of columns of V with W . Let xt be the state of the

ESN (W,V) driven by the input sequence {ut}∞t=1 where for each t, ut = ut + εt

with each ut as some vector in RD and each εt as a vector of the same size whose

entries are zero-mean i.i.d. random variables, with the entries of all εt having the

same non-zero variance. For all ε > 0, there exist C1, C2, t0 > 0 such that for all

D.2. PROOFS FOR SECTION 6.5 205

t > t0,

C1 · ρ(W)t < E [‖xt‖] <

∥∥∥∥∥
t−1∑
k=0

W kV ut

∥∥∥∥∥+ C2 · (ρ(W) + ε)t.

Proof. For the upper bound, we have

E [‖xt‖] ≤ E

[∥∥∥∥∥
t−1∑
k=0

W kV ut−k

∥∥∥∥∥+

∥∥∥∥∥
t−1∑
k=0

W kV εt−k

∥∥∥∥∥
]

Combining this with Theorem 6.5.1 on the above gives for sufficiently large t

E [‖xt‖] <

∥∥∥∥∥
t−1∑
k=0

W kV ut

∥∥∥∥∥+ C2 · (ρ(W) + ε)t

For the lower bound, we use Theorem 6.4.1 to say that for some constants C3 and

all t0 > t

C3 · ρ(W)t <

∥∥∥∥∥
k−1∑
t=0

W kV εt−k

∥∥∥∥∥ . (D.4)

Now choose C4 < C3 and define x′t =
∑t−1

k=0 W
kV ut−k. For all t > t0, if ‖x′t‖ >

C4 · ρ(W)t, the convexity of the norm along with Jensen’s inequality gives

E [‖xt‖] = E

[∥∥∥∥∥
t−1∑
k=0

W kV ut−k +
t−1∑
k=0

W kV εt−k

∥∥∥∥∥
]

≥

∥∥∥∥∥
t−1∑
k=0

W kV ut−k

∥∥∥∥∥
> C4 · ρ(W)t

Otherwise, we have ‖x′t‖ ≤ C4 · ρ(W)t and we have,

E [‖xt‖] ≥

∣∣∣∣∣E
[∥∥∥∥∥

t−1∑
k=0

W kV εt−k

∥∥∥∥∥
]
− ‖x′t‖

∣∣∣∣∣ .

206 APPENDIX D. SUPPLEMENTARY MATERIAL FOR CHAPTER 6

We can now use Equation D.4 to get

∣∣∣∣∣E
[∥∥∥∥∥

t−1∑
k=0

W kV εt−k

∥∥∥∥∥
]
− ‖x′t‖

∣∣∣∣∣ ≥
∣∣∣∣∣∣∣∣∣∣
E

[∥∥∥∥∥
t−1∑
k=0

W kV εt−k

∥∥∥∥∥
]

︸ ︷︷ ︸
>C3·ρ(W)t

− ‖x′t‖︸︷︷︸
≤C4·ρ(W)t

∣∣∣∣∣∣∣∣∣∣
> |(C3 − C4)| · ρ(W)t

= C1 · ρ(W)t

Defining C1
def
= min(C4, C3 − C4) completes the proof.

	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	Motivation
	Research Questions
	Contributions
	Thesis Structure

	Supervised Learning and Neural Networks
	Supervised Learning
	Regression Problems
	Sequence Learning Problems

	Artificial Neural Networks
	Feedforward Networks
	Recurrent Neural Networks
	Training Networks using Gradient-Based Optimisation

	Echo State Networks
	Reservoir Computing
	Echo State Networks
	Training the Network
	The Echo State Property

	Memory Capacity
	Reservoir Initialisation Methods
	Random Reservoir Constructions
	Deterministic Reservoir Construction

	Deep and Modular Structures
	Deep Networks
	Other Modularisation Strategies

	Managing Memory and Non-Linearity

	Memory in Linear Networks
	Introduction
	Background
	Analytically Determining Memory Capacity
	Example: Circulant Reservoirs (SCR and ALR)

	Application to Random Networks
	Shallow Networks
	Deep Networks

	Related Work
	Conclusion

	Depth in Recurrent Neural Networks
	Introduction
	Background
	Notation and Network Structure

	Sensitivity to Perturbation
	Initial Experiments
	Spectral Radius
	Hidden Layer Size

	Memory Capacity
	Effects of Non-Linearity
	Conclusion

	Asymptotic Behaviour of Linear Networks
	Introduction
	Background
	Sub-Gaussian Random Variables

	The Stable Case: (W) < 1
	Stable Networks with Sub-Gaussian Inputs

	The Unstable Case: (W)=1
	The Explosive Case: (W)>1
	Convergence of Hidden States
	Conclusion

	Conclusion
	Summary of Research
	Memory in Linear Networks
	Depth in Recurrent Networks
	The Asymptotic Behaviour of Linear Networks

	Outlook and Future Work
	Memory in Linear Networks
	Depth in Recurrent Networks
	The Asymptotic Behaviour of Linear Networks

	Closing Remarks

	Linear Algebra Background
	Matrix Decompositions
	Useful Inequalities
	Gelfand's Formula

	Supplementary Material for Chapter 4
	Supplementary Material for Chapter 5
	Proof of Lemma 5.4.1
	Additional Non-Linear Memory Capacity Experiments
	Long Term Behaviour of Perturbations

	Supplementary Material for Chapter 6
	Proofs for Section 6.4
	Proofs for Section 6.5

