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Abstract

3D HAND TRACKING

FROM RGB SEQUENCES

Peter Thompson
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2020

Vision-based hand tracking has been an active field of research since the early
1990s. Early attempts tended to use generative kinematic models, in which a hand
state proposal is quantitatively evaluated according to features extracted from an in-
put image. The approximate hand pose is then found by optimising the pose of the
kinematic model according to those features. This paradigm continued to be used in
both RGB-based tracking and in later depth-based tracking approaches. More recent
attempts have made use of convolutional neural networks (CNN) to predict keypoint
locations discriminatively. Here, a contemporary CNN approach is applied to the con-
ventional generative hand tracking paradigm. This is done by using CNNs to semanti-
cally segment each frame of an RGB sequence containing hand gestures before using
a generative kinematic model to find the optimal hand pose for each frame given the
semantic segmentation result.
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Chapter 1

Introduction

Hand tracking has been an active field of research for several decades due to the po-

tential advantages of applying hand tracking systems in human-computer interaction.

Hand tracking can be used to create intuitive ways for people to interact with comput-

ers without the need for physical contact. This is particularly advantageous in contexts

where physical contact is impossible or undesirable, such as sterile environments or

public terminals. Hand tracking may also be used in conjunction with other techniques

to collect data about how people behave and interact in various situations, which could

inform the design of both commercial products and of public spaces.

The goal of hand tracking is to recover the pose of a hand from sensor data. In

vision-based tracking, which has been an active field of research since the early 1990s,

the sensor is a standard RGB camera. In the late 2000s, depth camera input also be-

came a staple of the field. Depth cameras brought a significant improvement in the

accuracy of hand tracking systems, since they provide information about the 3D po-

sition of the hand as opposed to an ambiguous projection into 2D that RGB cameras

provide. There has, however, in recent years been a trend of moving away from depth

camera input and back to RGB. This trend is motivated by the fact that RGB cam-

eras are cheaper, virtually ubiquitous, and typically double the resolution of equivalent

14
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depth cameras, as well as not suffering from the range limitations and distortion arte-

facts common to depth cameras. This allows RGB-based algorithms to be deployed in

a much wider variety of contexts than depth-based algorithms. The trend of moving

back to RGB is mostly facilitated by deep learning, which allows features to be learned

from large quantities of training data.

The primary focus of this thesis is RGB-based hand tracking techniques. Depth-

based hand tracking will also be discussed as they had a significant impact on the field

and must be discussed in order to contextualise properly contemporary techniques.

Hand tracking systems that rely on sensor gloves or visual markers will not be dis-

cussed since such techniques represent a very different set technical considerations

and potential applications. In addition to a discussion of the history of the field, the

different techniques that have been applied, and recent advances and their limitations,

a novel technique for hand tracking from RGB is introduced and evaluated in a variety

of ways.

The proposed method for hand tracking is partially inspired by the recent resur-

gence of interest in RGB-based hand tracking and makes use of convolutional neu-

ral networks (CNNs)[LBD+90], which are currently ubiquitous in the field[ZB17,

POA18, MBS+18, IMBJGK18, CGCY18, DMB+18, ROL18, NOTA18, YY19, BKK19].

It is also inspired by the more conventional generative, model-based approaches to

hand tracking and attempts to capture the advantages of such approaches. One such

advantage is the ability to take an possible hand pose and evaluate it’s likelihood given

the state of the input, which allows arbitrary constraints to put on the output of the al-

gorithm. These constraints often reflect the physiological constraints on the pose of the

hand and can guarantee that the algorithm produces a physiologically plausible result.

Another related advantage is the natural way in which model-based approaches can put

limitations on the variation of the pose over time, thus allowing them to be improved

through the observation of temporal consistency.
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The fundamental limitation of generative RGB-based hand tracking stems from

the fact that the appearance of the RGB image is mostly determined by the lighting

conditions, the object in the frame besides the hand, and the reflective properties of

the hand surface, and is thus grossly underdetermined by the pose of the hand. This

necessitates some form of feature extraction be performed on the input RGB before the

generative model can be applied. The simple line and region-based features common

in early systems were severely limited in that they did not specifically resolve the

ambiguity in mapping the pose to the image. The reason for this is the fact that, while

the presence of a hand can reasonably be expected to have an impact on the appearance

of these features, the reverse is not true, as these features will exist in any image,

regardless of whether or not a hand is present. To overcome this limitation, CNNs are

used to semantically segment the input images. The result of doing so is a semantic

map containing the estimated likelihood that each pixel contains each part of the hand.

This resolves the ambiguity in the input RGB images and provides information that is

precisely relevant to the pose of the hand.

The goal of the research was to create a pipeline for RGB-based hand tracking that

incorporated contemporary deep learning methods into the generative hand tracking

paradigm by using CNNs to perform semantic segmentation on input hand images and

a generative, model-based tracking algorithm to recover the state of the hand for each

frame in a sequence. This was done by rendering a mesh model of the hand as an

image of labels. This image of labels was compared with the output of the network in

order to calculate a cost. This cost was then minimised by Differential Evolution (DE)

to find the estimated pose for each frame.

The semantic segmentation part of the pipeline works well, with the semantic pre-

dictions being generally accurate and self-consistent, in that the CNN is capable of

learning the composition of the hand parts implicitly from examples, with particular
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labels being confined to local regions of the image. Within these regions, the rele-

vant label dominates (i.e. they are free from “noise”) and adjacent regions generally

correspond to physically plausible hand poses. The tracking algorithm also performs

well when tested in a variety of ways, ranging from a simple joint location match-

ing problem to operating as part of the pipeline as described. When tracking from an

ideal semantic input, the tracking algorithm performs comparably to the contemporary

state-of-the-art RGB hand tracking methods.

The content of the subsequent chapters is as follows. Chapter 2 gives the tech-

nical background of the field of hand tracking, with particular attention paid to those

techniques that are relevant to contemporary RGB-based algorithms, and a review of

important contributions to the literature in the field. Chapter 3 introduces a novel ap-

proach to hand tracking and describes its operation in detail. Chapter 4 reports the

results of a number of experiments on this novel hand tracking system. Chapter 5

summarises the contributions of this thesis and discusses potential avenues for future

work.



Chapter 2

Background

Hand tracking algorithms can be broadly categorised as being either generative or dis-

criminative. In generative tracking, a model of the hand is placed in a candidate pose

and used to predict features of the input data. The discovered pose that is able to pre-

dict these features best is selected as the result. This approach may also be referred to

as model-based or analysis-by-synthesis. This approach requires a model of the hand

that can be put in an arbitrary pose and used to generate corresponding information

to that which is extracted from the input. In discriminative tracking, the pose is in-

ferred directly from features in the data, either by an expert system, comparison with

predefined pose-feature pairs, or a learned model of some kind. Regression does not

necessarily require a hand model, though sometimes one is used to ensure that a phys-

ically plausible hand pose is recovered. Aspects of these two broad approaches can

also be combined in various ways to create hybrid systems.

The following sections will describe various algorithms, techniques, and approaches

that have been relevant to the field of hand tracking, with particular emphasis placed

on those that are relevant to the proposed method described in the next chapter. Sec-

tion 2.5 will then summarise the history of the field and place the proposed method in

context.

18



2.1. MODELLING THE HAND 19

2.1 Modelling the hand

The natural articulations of the human hand are a result of its skeletal composition.

There are three classes of bones in the hand: carpals, metacarpals, and phalanxes. The

carpals are the small bones near the wrist, metacarpals the long bones in the palm, and

phalanxes the bones in the fingers. These bones are connected by joints, which are

referred to according to the bones they connect (e.g. carpal-metacarpal, distal inter-

phalangeal, etc.) and can articulate in three ways. The first is medial/lateral rotation,

when the bone rotates around its long axis. The other two are flexion/extension and

abduction/adduction, which both refer to rotations about a short axis, with the former

applied to movements that tend to make the skeleton ”curl up” (i.e. those associated

with a grasping motion in the case of hands) and the latter applied to movements that

make the skeleton ”spread out”, as well as the respective reverse motions.

In model based tracking, the principle way in which the articulations the hand are

described is through kinematic modelling. A kinematic model, is a network of com-

ponents connected in a hierarchy such that any transformations applied to any com-

ponent in the hierarchy will affect all of the components beneath it. Mathematically,

each component is represented by a relative transformation, consisting of a translation

and set of intrinsic rotations. The product of the relative transformations from the root

to a particular component is the total transformation applied to the component. The

different kinematic states (i.e. poses) of the model are achieved by altering the relative

transformations of the components.

In hand tracking, these components represent the bones in the skeleton, and the

transformation represents the state of the joint. The palm is generally taken as the

root of the hierarchy and rotates around its centre or wrist joint. The palm is typically

assumed to be rigid, with the flexion/extension of the fourth and fifth carpal-metacarpal

joint ignored. The metacarpal in the thumb is typically assumed to have two degrees
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Figure 2.1: Schematic diagram of the conventional 26 degree-of-freedom hand model.
An image of a real hand with the joints marked is also shown for clarity.

of freedom, though in reality it rotates slightly about its axis. The other joints in the

hand are typically represented accurately, with the metacarpal-phalaxial joints having

two degree-of-freedom and the interphalanxial joints having one. The translations are

fixed, as the bones in a hand do not change size on the time scale of hand tracking. The

result of these approximations is the conventional 26 degree-of-freedom hand model.

Figure 2.1 shows the simplified kinematics of this model of the hand.

The joints in the hand are subject to constraints, with degree-of-freedom in each

joint having a minimum and maximum rotation, with the exception of the root joint,

which can move and rotate freely. An additional simplification is the assumption of

orthogonality between the joints, meaning the constraints are independent of the state

of the model.

Under these assumptions, the pose of the hand can be specified by a set of 26

parameters. These parameters can be seen as representing points in a 26-dimensional

state space, in which each point within an orthotopic region1 represents a different

1This a region defined as the points within a particular set of coordinate intervals. An aligned “hyper-
rectangle”.
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Figure 2.2: Diagram showing a state vector and its relationship to the pose of a partic-
ular skeletal model.

possible pose of the hand, and the goal of generative hand tracking can be seen as

searching this region to find the best pose. Figure 2.2 shows a state vector and its

relationship to the pose of a corresponding skeletal model.

In generative hand tracking, a kinematic model of this kind typically drives a ge-

ometric model of the hand, which can be compared against features extracted from

input data. The specifics of the geometric model depend heavily on the features and

the design of the algorithm. Alternatively, if the extracted features are fingertip or

joint locations, a kinematic model model alone may be sufficient. As such, discrimina-

tive systems sometimes use kinematic models to find a physiologically plausible pose

whose joint positions are close to those found through regression.
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2.2 Optimisation Algorithms

In generative hand tracking, two things are assumed to be available: data containing

information about the pose of the hand and a model of the hand from which features

of that data may be predicted. The objective is then to find the pose that best explains

the data. In mathematical terms, it could said that the goal is to maximise the posterior

likelihood of a particular pose given the input data. One way to do this is to model

the prior and joint probability distribution in order that the an estimate posteriori dis-

tribution can be calculated explicitly. Alternatively, the maximisation may be done

implicitly through optimisation of an objective function that has been designed to take

the same information into account. Objective functions may also be referred to as loss,

cost or energy functions when they are to be minimised, and reward functions when

they are to be maximised. In either case, the task of hand tracking under the generative

paradigm is reduced, at least partially, to one of non-linear optimisation.

Since many hand tracking systems take this approach, some of the different optimi-

sation algorithms that have been used in the hand tracking literature will be described.

They generally require some initial guess at the solution that is refined in successive it-

erations. This initial guess may simply be a random sample from the space of possible

poses or may be determined through some initialisation procedure.

Optimisation algorithms can be broadly divided into two categories: those that

require the gradient of the objective function to be calculated as part of the update pro-

cedure and those that do not[CSV]. Those that do are referred to as gradient-based and

those that do not as gradient-free or direct-search algorithms. Gradient-based meth-

ods may also be referred to as first-order, second-order, etc. according to the order

of derivative that must be calculated. A distinction may also be made between algo-

rithms that sample the search space at a single point that is updated iteratively and

those that maintain a population of sample points and combine information from all of
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them in some way. These types are referred to as single-solution and population-based

respectively.

The simplest gradient-based technique is Gradient-Decent[BBV04a], introduced

in the nineteenth century by Cauchy. This is a single-solution algorithm in which the

next sample point is determined by displacing the current one by a vector proportional

to the gradient of the loss function at that point. That is,

pi+1 = pi−α∇L(pi) (2.1)

where α, the learning rate, is an arbitrary constant that may be decreased as the iter-

ations proceed, and L is the loss function. An important related technique is Stochastic

Gradient Descent (SGD), which works in the same way, except the gradient is esti-

mated on the basis of a random subset of the information available[RM51]. This is

done to prevent the algorithm from getting stuck at a local minimum. SGD is partic-

ularly relevant here, since it is also an important algorithm in the training of neural

networks.

Another gradient-based algorithm is Newton’s method[BBV04b]. This is a root

finding algorithm that assumes the function is a locally linear or locally quadratic. In

the simpler version of this algorithm, the sample point is updated according to the

ratio of loss function’s value to its partial derivative in each dimension. This is usually

written as follows,

pi+1 = pi− J(pi)
−1L(pi) (2.2)

where J is the Jacobian matrix of partial derivatives,

Ji =
∂L
∂xi

(2.3)
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Another formulation of this method uses the ratio of first to second-order deriva-

tives, such that,

pi+1 = pi−H(pi)
−1

∇L(pi) (2.4)

where H is the Hessian matrix of second-order derivatives,

Hi, j =
∂2L

∂xi∂x j
(2.5)

When formulated as a least-squares problem, this method can be simplified slightly

and is referred to as the Gauss-Newton method[Deu11a]. Frequently, the Jacobian is

unknown or cannot be computed efficiently. Algorithms that instead attempt to approx-

imate one of these quantities in some way are called Quasi-Newton methods[Deu11b].

Another common gradient-based technique is the Levenberg-Marquardt algorithm[Deu11c].

This algorithm combines elements of the Gauss-Newton method and Gradient-Descent,

such that it behaves more like the former when close to the solution and more like

the latter otherwise. This is sometimes also referred to as Damped-Least-Squares or

Damped-Gauss-Newton[MNT04].

The simplest gradient-free technique is Hill Climbing[Ski98a]. This is a single-

solution algorithm that simply samples the region local to the current solution. If the

sampled solution is better than the current one, it replaces it. This process is repeated it-

eratively. This could be seen as the gradient-free analogue of Gradient-Descent. There

is also an analogue of SGD, Stochastic Hill Climbing (SHC)[Ski98b], in which each

iteration only considers a random subset of the information available. If multiple sam-

ples are taken at each iteration and the discovered point with the lowest cost adopted,

the resulting algorithm is referred to as best-first search[Kor96]. Beam-search is a finite

memory approximation of best-first search that also has a stochastic variant[KC12].

An important variation of Hill Climbing is Simulated Annealing (SA)[Ski98b], in
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which the sample point is assigned a ”temperature” that will allow it to move to a

worse solution with a certain probability. This probability is gradually reduced as the

algorithm proceeds. This modification makes the algorithm much less likely to get

stuck at a local optimum. SA can also be applied to other algorithms where a random

component can be incorporated.

In high dimensional spaces, the approach taken to sampling can be critical. This

is because naive approaches that may be appropriate in low dimensional spaces, such

as evenly sampling the space around a particular point, quickly become intractable in

higher dimensions. As a result, optimisation algorithms frequently draw inspiration

from statistical filtering methods. Sequential Monte Carlo (SMC), also known as Par-

ticle Filtering, is a class of algorithms in which previous samples are used to guide

future sampling[DM97]. This idea is closely related to that of Genetic Algorithms

(GA) and Evolutionary Strategies (ES)2 in which a the characteristics of a population

are mutated and/or recombined over successive generations in order to optimise an ob-

jective function[BBM08]. Differential Evolution (DE)[SP97], a specific algorithm of

this kind, will be discussed in detail in section 3.3.

There are also some sampling techniques designed to work with dynamic systems.

Though they are not optimisation algorithms per se, they are frequently used to guide

optimisation algorithms by reducing the size of the effective search space. The sim-

plest of these is the Markov Chain[Gag17], in which the probability of the system tran-

sitioning to a new state is entirely dependant on the state that it is in. This is referred

to as the Markov property. When incorporated with any kind of Monte Carlo sampling

method, the result is referred to as Markov chain Monte Carlo (MCMC)[FJs+05]. The

Hidden Markov Model (HMM)[Bau72] is a related model in which the state of the

2Usually, GA refers to algorithms that operate over discrete or binary search spaces, while ES refers
to algorithms that operate over real-valued ones.
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system is considered unobservable and the statistical relationship between the observ-

ables and the hidden state of the system is approximated along with the transition

probabilities. Both of these have been used in hand tracking several times to make

dynamical predictions[Bra99, SBS02, NTTC05]. It should also be noted that simple

first-order dynamical predictions are applicable to hand tracking, and have been used

many times[DD92, Roh94, WN99].

Another gradient-free method is the Nelder-Mead algorithm[NM65]. In this algo-

rithm, a population of sample points is initialised. The number of sample points is

always one more than the dimensionality of the search space. In each iteration, the

worst sample point is selected for replacement, which is done by reflecting its position

about the mean position of the other points. Its distant from the mean is usually also

multiplied by a constant slightly less than one to ensure that the algorithm converges.

Force-based optimisation algorithms[LK95] are ones in which the candidate so-

lution is imagined to be in a dynamic system with forces acting on it. The forces

represent the various contributors to the loss function, and are sometimes derived from

a potential model. The system is updated incrementally such that it converges on a

point of equilibrium.

Particle Swarm Optimisation (PSO) is another gradient-free population-based op-

timisation algorithm, due to Eberhart and Kennedy[EK95], that has become quite im-

portant in hand tracking. Like force-based optimisation, PSO also treats the state space

as a dynamical one but uses multiple sample points, referred to as particles, and has

them traverse the space with initially randomised velocities. The best quality solutions

found at a given moment act as attractors, meaning the space around them is sampled

more frequently. Pseudocode for a basic PSO algorithm is given in Algorithm 1.

In the very specific case when what is being optimised is the average square dis-

tance of the points in one point cloud to the points in a second reference point cloud,

the Iterated Closest Points (ICP) algorithm is applicable[CM92]. This algorithm was
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Algorithm 1 A basic PSO algorithm with reflecting boundaries. U(a,b) randomly
samples a uniform distribution between the given bounds. bl and bu are the lower and
upper bounds of the search space respectively.

for all i in S do . For each particle
xi :=U(bl,bu) . Initialise particles randomly in search space
pi := xi . Set best position to current one
if f (pi)< f (g) then

g := pi . Select global best according to loss function
end if
vi :=U(−|bl−bu|, |bl−bu|) . Initialise velocities

end for
for all g in gen max do

for all i in S do
for all d in D do . Update velocity with inertia and random

rp :=U(0,1) . attraction to local and global best
rg :=U(0,1)
vi,d := ωvi,d +φprp(pi,d− xi,d)+φg(gi,d− xi,d)

end for
xi := xi +vi . Update position
for all d in D do . Enforce boundary conditions

if xi,d < bl,d then
xi,d := bl,d
vi,d :=−vi,d

else if xi,d > bu,d then
xi,d := bu,d
vi,d :=−vi,d

end if
end for
if f (xi)< f (pi) then . Update local and global best

pi := xi
if f (pi)< f (g) then

g := pi
end if

end if
end for

end for
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originally intended to work with points that move together as a rigid rotor when the

correspondences between the clouds are not known. The algorithm proceeds by tem-

porarily associating each point in one cloud with the closest point in the other cloud

and minimising that least-squares problem, which has a closed-form solution3. The as-

sociations are then remade on the basis of the new positions. This process is repeated

until the associations no longer change. In the original case of a single rigid cloud, the

algorithm is proven to converge on the true solution. In the case of a multi-part articu-

lated point cloud, such as one driven by a kinematic hand model, the algorithm is not

guaranteed to find a perfect solution, but is still widely used as a metaheuristic. The

Coherent Point Drift (CPD)[MS10] algorithm is a similar algorithm in which non-rigid

deformations of the point cloud are allowed but penalised.

2.3 Convolutional Neural Networks

Convolution Neural Networks (CNN) were first devised by Waibel et al.[WHH+95]

for use in the field of speech recognition and subsequently introduced into computer

vision for the purpose of handwritten digit classification[DGG+89, LBD+90]. Ini-

tially, CNNs were generally inferior to other algorithms at most tasks, as those other

techniques made use of domain specific knowledge or more rigorous statistical reason-

ing. However, the highly parallel nature of the algorithm allowed CNNs to be GPU-

accelerated with speed-ups of up to 60 times, meaning vast quantities of data could

be processed by correspondingly large networks. As a result, CNNs began to outper-

form competing algorithms at image classification[CMM+11, KSH12], and were later

applied to a wide range of vision problems.

The basic operation of a CNN is relatively straightforward. The input image is

3A closed-formed solution is one that is expressible as a self-contained mathematical formula, as
opposed to the result of an iterative process.
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Figure 2.3: An illustration of the convolution operation.

divided into many equally sized and spaced regions. These regions are referred to as

receptive fields and typically overlap. A set of kernels is also defined with each the

same size as a receptive field. Each kernel is multiplied with the set of input variables

in each receptive field and summed to create an output image of size equal to the

number of receptive fields and depth equal to the number of kernels. This operation is

referred to as convolution. Figure 2.3 contains a diagram of this operation.

A non-linear activation function is then applied to each of the variables in this

output image before the process is repeated with a new set of kernels. Examples of

common activation functions are shown in figure 2.4. The sigmoid function, f (x) =

(1+ exp(−x))−1, was originally the most widely used but has now been largely re-

placed by the rectified linear unit (ReLU)[GBB11], in which negative activations are

set to zero and positive ones are left unchanged. This is because ReLU has constant

gradient at high activations and therefore trains more efficiently, as neurons do not

”saturate” at high activation. The output of each layer besides the last are called latent

features or latent variables. Generally, a batch of examples is processed simultaneously
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Figure 2.4: Illustrations of different activation functions. Top left shows the sigmoid
function, f (x) = (1+ exp(−x))−1, bottom left shows the hyberbolic tangent function,
f (x) = tanh(x), top right shows ReLU, and bottom right shows the BNLL activation,
f (x)= log(1+exp(x)), which is a continuously differentiable approximation of ReLU.

and training proceeds iteratively.

Most neural networks use some kind pooling, in which multiple latent variables

from a local region of a single channel of a feature map are aggregated into a single

variable to make a smaller output.4 Max-pooling, in which the largest latent variable is

selected to be the output, is by far the most common kind. Average pooling, in which

the mean of the latent variables is used as the output, is also sometimes used. Other

options include stochastic pooling, in which a random latent variable is selected from

4Although in practice the output of a pooling operation can be made to be the same size as the input,
this is rarely done in practice as there is little advantage to doing so.
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the input field.

Other operations may be applied between convolutions. Common ones include

batch normalisation, in which the distribution of each latent variable in a batch is

mapped to a unit normal distribution by subtracting the mean and dividing by the vari-

ance. This technique was proposed by Ioffe and Szegedy[IS15] to address the problem

of internal covariate shift, a problem encountered in deep neural networks in which

the later layers fail because the distribution produced by previous layers changes as

training proceeds. Dropout, a technique introduced by Hinton et al.[HSK+12], is also

common. This is a form of regularisation in which a subset of features are randomly set

to zero during training. The idea is that this will naturally cause the network to acquire

some redundancy and generalise more effectively to new data as a result, since features

in a new example may not be strongly recognised by a particular neural pathway, but

the aggregate of multiple redundant ones may be enough to achieve the correct result.

The output layers, and sometimes also intermediate layers, of a neural network are

subject to a loss function. The form of the loss function depends on the problem. In

classification, the loss function is usually multinomial logistical loss and is used in

conjunction with softmax function, which s the outputs to sum to one and hence be

interpretable as the estimated probabilities for each of the classes. This loss function

for a single example can be written as follows,

L =−log
( eŷi

∑
M
m=1 eŷ j

)
(2.6)

where ŷ is the network output, M is the number of classes and output features, and

i is the index of the true class. When the output is permitted to belong to more than

one class, cross-entropy loss is used. In this case, the sigmoid function is applied to

the output rather than softmax, since the probabilities do not need to sum to one. This

can be written as follows,
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L =
M

∑
m=1

pmlog(p̂m)+(1− pm)log(1− p̂m) (2.7)

where p is the one-hot encoding of the true classes and p̂ is the network output after

the sigmoid function has been applied. When the output is real-valued, the Euclidean

distance between the output vector and its true value is the most commonly used loss

function. This can be written as follows,

L =
M

∑
m=1

(ŷm− ym)
2 (2.8)

where y is the true value of the output vector. In practice, these losses are summed

or averaged across a batch a data samples.

The standard method of training a CNN is through SGD[LBOM12], or a variant

of that algorithm, which is used to optimise all of the parameters in the network. The

gradient is ascertained through the backpropagation of derivatives via the chain rule.

This requires all of the functions used in the network to be piecewise differentiable.

This means a finite gradient exists at every point in the function’s domain, though the

function itself may not be smooth at certain points.5

For some applications, such as classification, the output does not have any spatial

extent, meaning it is a single value or set values that do not correspond to the geometry

of the input image. In this case, the last few layers generally take the entire feature map

as their receptive field, rendering them identical to the layers in standard neural net-

work. These layers are sometimes called inner-product, fully-connected, or perceptron

layers.

When the output does have a spatial extent the task is referred to as a dense es-

timation or image-to-image problem. This can be achieved with inner-product layers

5Max pooling is differentiable, with the partial derivative of the output being one with respect to the
highest value input and zero with respect to the rest.



2.3. CONVOLUTIONAL NEURAL NETWORKS 33

Figure 2.5: Diagram of the unpooling operation.

by making the final output large and reshaping to a 2D feature map. This approach

does not take advantage of the locality constraints of the output features and severely

limits the resolution of the output. Hence, contemporary architectures for this kind

of problem typically forego the inner-product layers and are thus referred to as Fully

Convolutional Networks (FCN)[LSD15]. Networks of this kind typically rely on some

form of deconvolution. This is a convolution operation that maps a lower resolu-

tion feature map to a higher resolution one. In the abstract, this means the kernel

is larger than the receptive field, and thus produces an different output for each posi-

tion within it. In practice, deconvolution is never done this way, but the same effect

can be achieved by several different methods, mostly commonly by padding out the

feature map with zeros, a process known as unpooling (see figure 2.5) and performing

standard convolution[ZTF11].

Residual networks (Resnets) were introduced in 2016 by He et al.[HZRS16] and

allowed for much deeper networks than had been seen previously and consequently

a significant improvement in classification performance. Residual networks contain
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residual units, which are so called because they estimate a residual from the iden-

tity operation, has been shown to be beneficial, particularly for deeper networks. In

practical terms, this means the input of a layer is summed with its output, the con-

volution operation being defined such that the input and output are the same size. If

the input and output are concatenated rather than added, the result is called a dense

network[HLVDMW17].

Generative neural network models[GBC16] have come to prominence in the past

few years and impacted on the field hand tracking. One such model is the variational

autoencoder (VAE)[KW13]. These are similar autoencoders in that they map their in-

put to itself via a low dimensional latent representation, the key distinction being that

the latent representation is a zero-mean unit-variance normal distribution. This distri-

bution can be sampled from to generate a realistic output. This is achieved by min-

imising both the reconstruction error and the Kullback-Leibler divergence[Kul59] of

the distribution of latent variables from the unit normal during training. Another impor-

tant generative neural model is the generative adversarial network (GAN)[GPAM+14].

In this model, two subnetworks, referred to as the generator and the discriminator, are

trained simultaneously. The generator maps variables sampled from a random distribu-

tion to approximations of an input image, while the discriminator attempts to classify

the images it is shown as being either real or products of the generator. During training,

the weights in the discriminator are updated to maximise the classification accuracy,

while the weights in the generator are updated to minimise it. The end result for both

models is the same: a network that will generate plausible data when given variables

sampled from a known distribution.
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2.4 Semantic Segmentation

Semantic segmentation is the task of associating each pixel in an image with a label

corresponding to the class to which the object occupying that pixel belongs[GGOEO+18].

The task has been studied for decades, most early approaches using Markov ran-

dom fields (MRF)[BKR11] on raw pixels in low resolution images, superpixels (i.e.

small homogeneous image regions), or some other simple image feature[HS85, The83,

Bes86]. MRFs are a class of graphical models applied to structured data where the state

of a node in the graph is statistically dependent on its neighbours only. MRFs belong

to the more general class of conditional random fields (CRF) in which nodes can be

dependent on non-neighbouring nodes[Hri]. Shapiro et al.[SBB94] proposed a system

for semantic segmentation using multiscale MRFs. This approach was adopted by He

et al.[HZCP04], who relaxed the Markov properties of in order to learn discrimina-

tively the relationship between features.

More recently, other techniques have been applied to the problem. Shotton et

al.[SJC08] proposed an approach using random decision forests. Socher et al.[SLMN11]

used recurrent neural networks on hand engineered image features. Farabet et al.[FCNL12]

used a CNN to learn dense image features which were then pooled in superpixel

regions and used in conjunction with a CRF to label each region. Papandreou et

al.[PCMY15] also combined a CNN architecture with a CRF but took a weakly super-

vised approach to training. Pinheiro and Collobert[PC15] used an image classification

network to provide a prior to a non-FCN per-pixel segmentation network. FCNs began

to be applied in 2015[RFB15, LSD15, NHH15] and became a standard approach to the

problem[JDV+17, LMSR17, CZP+18, FLW+19, LCS+19, GGOEO+18].

Semantic segmentation CNNs have also been applied to hand images on occasion.

Neverova et al.[NWTN14] took a semi-supervised approach to train a VGG-like archi-

tecture to segment hand parts in depth images. Saleh et al.[SRAN+19] used multiscale



36 CHAPTER 2. BACKGROUND

low-level feature extraction and an FCN architecture on close-cropped RGB images to

perform hand parts segmentation.

2.5 Related Work

In this section, the literature relating to markerless vision-based three-dimensional

hand pose tracking will be reviewed. Algorithms that require gloves or visual mark-

ers [Dor94, Hol97, Lie05] or an unrealistically specific context for the tracking to be

performed [SK99] will not be included. Similarly, algorithms that only track the posi-

tion of the hand, or algorithms that only track the hand in the two-dimensional image

space are considered out-of-scope. Pose reconstruction techniques that use only a sin-

gle frame will be included, since they are a special case of hand tracking and generally

very relevant in terms of the techniques applied. Since hand tracking techniques have

tended to derive from human pose tracking, relevant papers in that discipline will also

be included.

2.5.1 Early RGB-Based Techniques

The earliest attempts at biometric tracking considered partial or whole human body

poses. The earliest such system was that of O’Rourke and Badler[OB80] from 1980,

who introduced the idea of a kinematic model and fit it through iterative refinement to

a set of keypoint locations on a 2D image. The keypoint locations were hand labelled

and the question of how those locations could be automatically determined was not

addressed.

Three years later, Hogg[Hog83] proposed a system that fully established the gen-

erative paradigm, with the two part process being described explicitly: “The visual

problem can be divided broadly into two parts; namely, what should be described and

how can such descriptions be derived from a time-varying 2D image.” In this case, the
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kinematic model of the human body had an accompanying appearance model in which

different body parts were represented by cylinders. The lines produced by projecting

this cylinder model into the image plane were compared against the edge transform of

the input intensity image using. Simple geometric primitives, such as cylinders[Roh94,

RK94a], elliptical cones[WN99, GD96], as well as mesh models[OK94] became stan-

dard ways of representing surface geometry in both body and hand tracking. Edge fea-

tures also became standard[Roh94, GD96, WN99, DBR00, HH96, OH99, WLH01].

Soon after Hogg, Akita[Aki84] proposed a method of feature extraction that distin-

guished the figure from the background by using the difference image of consecutive

frames. This temporal approach to feature extraction also became common, either in

the form of difference images[PT94, Roh94] or optical flow[ST03, YY00, SISB04,

WH99, LMSO03]. Downton and Druit[DD92] also took an approach similar to Hogg,

but constrained their search with first-order dynamics, in which the state of the hand

is projected to the next frame according to its current estimated rate of change. Dy-

namical constraints would continue to be feature of tracking systems going forward.

Kalman Filtering also became common[Roh94, WN99].

Hogg set the standard for markerless vision-based tracking and, as such, the first

hand tracking system, due to Rehg and Kanade[RK94a, RK94b], worked in a very

similar way, with a cylinder-based appearance model being compared to the edge fea-

tures in the image. In this case, the Levenberg-Marquardt algorithm was used to fit the

kinematic hand model, which had 26 degrees-of-freedom.

Almost all model-based tracking used kinematic models. There were some ex-

ceptions, however. Bregler and Malik[BM98] adopted a soft kinematic approach in

which each body part was able to move as a rigid rotor, but the joint likelihood of two

body parts being in a particular configuration falls away exponentially as the kinematic

constraints between them are violated. This approach in combination with a Gaussian
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observation model effectively transformed the problem of tracking into one of max-

imising the a posteriori likelihood of the observation and the joint distributions. It also

allowed for the formulation of an overall energy function that was differentiable, mean-

ing a Quasi-Newton method could be applied. This idea has been used several times

since in both body [ST03, SISB04, GPKT10, DF15] and hand[HSKMVG09, MES18]

tracking. Another interesting exception was that of Heap and Hogg[HH96], who de-

fined a deformable mesh model of the hand and used Principle Components Analysis to

determine statistically the primary modes of deformation from synthesised data. These

primary modes of deformation served in place of joint angles as the low dimensional

pose representation.

Some researchers took the view that hand tracking can be seen as a high-dimensional

non-convex optimisation and began to experiment with different kind of optimisation

algorithms, all in much the same general framework as Rehg and Kanade. Lee and

Kunii[LK95] used a force-based optimisation technique. Nirei et al.[NSMO96] and

Wu and Huang[WH99] used genetic algorithms. Shimada et al.[SSKM98] used Beam-

search. Ouhaddi and Horain[OH99] compared Levenberg-Marquardt, Nelder-Mead,

and Powell’s method[Pow64]6, finding that they performed similarly in terms of ac-

curacy, with Nelder-Mead being preferred on the basis of computational complexity.

Wu et al.[WLH01] used a Monte Carlo variant with importance sampling. Lin et al.

used Sequential Monte Carlo[LWH02] and Stochastic Nelder-Mead[LWH04], which

is essentially the simplex algorithm with some Monte Carlo like features.

Other researchers took the view that the search problem is trivialised if the track-

ing is good enough, and so attempted to learn statistical motion models. This was

mostly done in body tracking, were movement is more smooth and predictable than

it is in hand tracking, and has included HMMs[Bra99, SBS02, NTTC05], Baysian

6Powell’s method is an approach to finding the root of a function with multiple arguments, in which
each argument in optimised individually and iteratively. The actual optimisation is performed by some
other algorithm.
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networks[SBS02], and Markov Models[CGH05]. One interesting example in hand

tracking was that of Zhou et al.[Z+03], who used eigenanalysis to predict the motion

of hands. In general, hand tracking seems not to benefit from elaborate dynamical

models. The utility of even first-order dynamics is questionable, given how quickly

hands can accelerate and the fact that it is difficult to maintain accurate dynamical

information when parts of the hand are occluded, as they often are.

Besides these generative approaches, a significant strand of research was in dis-

criminative pose estimation, which attempts to map appearance features directly to the

pose either through learned regression or example-based methods. These approaches

often benefit from more informative features than just edges or regions. An early

example would be that of Ahmad[Ahm94], who attempted to find 2D fingertip lo-

cations on a binary image produced by skin colour segmentation. Pose estimation

was then done by finding the nearest neighbour in a set of predefined poses. Shi-

mada et al.[SKS01] found the closest matching silhouette in a database of predefined

poses, then refined the relevant pose generatively. Athitsos and Sclaroff[AS03] also

performed a database lookup to find a ranked list of hypothesis poses from which the

best was selected according to how well it corresponded to edge features in the image.

Romero et al.[RKK09] used histogram of gradient (HOG) features to encode the hand

region, then k-nearest-neighbours to find the pose. Techniques such as this became

more common after the introduction of depth cameras.

Some researchers also used more descriptive features to help fit generative mod-

els. Nolker and Ritter[NR02] also extracted fingertip locations but did so using neural

networks on regions of interest discovered around the silhouette of the hand. A model

was then fit to these fingertip locations. Lu et al.[LMSO03] attempted to track shad-

ing changes over time in order to fit hand surface normals under the assumption of

Lambertian lighting conditions7.

7Lambertian lighting conditions are a set simplifying about lighting in which surfaces are assumed
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Some approaches required multiple calibrated cameras, beginning with Kuch and

Huang[KH95] who simultaneously fit their generative model according to multiple

viewpoints. Ueda et al.[UMIO03] used multiple views to perform a full voxel-based

volumetric reconstruction of the hand, to which a kinematic model was fit. Delamarre

and Faugeras [DF01] and Dewaele et al.[DDH04] both used short baseline stereo to

produce dense point clouds to which kinematic models were fit, with Delamarre and

Faugeras using gradient-descent with a differentiable loss function that matched sur-

face normals, and Dewaele et al. using ICP. These methods are quite similar to the

generative approaches used with depth cameras.

More recently, Zhang et al.[ZJC+16] revived the idea of tracking from stereo pairs

and introduced a benchmark dataset for this purpose. Their approach was similar to ap-

proaches that use a depth camera (see section 2.5.2) but a dense disparity map acquired

from short baselines stereo pairs rather than camera input. Panteleris et al.[PA17] took

a similar approach and also modelled hand-object interactions.

2.5.2 Tracking With Depth Cameras

Towards the end of the 2000’s, depth cameras became increasingly important in hand

and body tracking. A depth camera is a camera that outputs a 2.5d point cloud rep-

resenting the surfaces in its field of view, usually while simultaneously outputting a

corresponding RGB image. The most common kind are time-of-flight cameras, such

as the Microsoft Kinect, which precisely measure the time it takes an emitted pulse of

infrared light to reflect off a surface and be detected by a sensor. Structured light cam-

eras were also used early on. These work by simultaneously shining two lasers onto

a surface at slightly different angles and determine the distance from the interference

to be perfectly opaque and effects such as self-occlusion, self-shadowing, self-lighting, and specular
reflection are ignored. Under these conditions, the brightness of a surface is determined only by its
reflectance, its angle to the light source, and the strength of the source.
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pattern produced. The relatively high cost and low accuracy of structured light cameras

meant they became largely disused after time-of-flight cameras became available.

Although cameras of this type have no more to do with the human visual system

than a sensor glove, and depth-based algorithms are therefore not strictly in the scope

of vision-based hand tracking, the trend of using depth was significant enough that it

would not be possible to give a full context for the current state-of-the-art without dis-

cussing them since many of the techniques used in contemporary RGB-based tracking

were first used in this domain.

It should be noted that, while RGB-based hand tracking became much less com-

mon in the era of depth cameras, RGB-based body tracking has been a continuously

active field of research. Sarafianos et al.[SBIK16] provide a comprehensive review of

contributions to this field from 2008 to 2016.

As has been discussed, model-based tracking can be reduced to two main com-

ponents: feature extraction and pose optimisation. To an extent, depth information

trivialises the first part, since the model can, in principle, be fit to the raw input.

The initial attempts at hand tracking from depth data resembled the initial at-

tempts at hand tracking from image data, with an early contribution from Bray et

al.[BKMM+04] reformulating the generative framework for input from a structured

light camera. The model was fitted according to its surface normals using a differen-

tial loss function and stochastic gradient descent. Another early contribution was from

Mo and Neumann[MN06], who took a data-driven approach that tried to identify fin-

gers on the input depth map. Hamer et al.[HSKMVG09] took an approach similar to

Bregler and Malik[BM98], using soft kinematics and MAP estimation through belief

propagation.

Oikonomidis et al.[OKA11] used PSO to fit their model, which became a popular

choice of algorithm. Melax et al.[MKO13] used ICP and incorporated first-order dy-

namics into their tracking. Sridhar et al.[SOT13] used a sum-of-gaussians model and
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fit it using least-squares gradient descent.

The optimisation problem was generally posed as trying to keep the near sur-

face of the model as close to the point cloud as possible while not allowing it to

exceed the boundaries of the hand segment. Sometimes other constraints, such as

self-collision[QSW+14], were also represented as terms in the loss function.

Qian et al.[QSW+14] proposed ICP-PSO, a hybrid of ICP and PSO, and used it

to fit a sphere-based hand model. Tagliasacchi et al.[TST+15] used ICP to coarsely fit

their model, then Levenberg-Marquardt to fine tune it. Sharp et al.[SKR+15] combined

PSO with GAs in order to make the tracking more robust to noise. Li and Zhou [LZ15]

combined DE with particle filtering to optimise a mesh model to the input depth map

and learned semantic priors. Taylor et al.[TBC+16] generated smooth mesh models

on the fly for whatever pose was required. The pose was then fit using Levenberg-

Marquardt and a loss function that had terms representing dynamical constraints and

a learned pose prior, as well as a term that matched the models fingertips to ones

discovered in the data.

It became clear at this time that hand tracking systems cannot rely entirely on track-

ing from depth, since the results tend to degrade over time. This became known in the

literature as the drifting problem[YSZ+11]. In response, researchers began to consider

automatic reinitialisation techniques, which were generally based on some kind of

discriminative pose estimation, and integrate them into their systems. The most com-

mon approach was fingertip detection[SOT13, QSW+14, TST+15, TBC+16]. Sharp

et al.[SKR+15] regress on global orientation from the current depth map.

Regression-based systems also became important in this period. Like generative

approaches, regression is easier when depth data is available, since only the 2D location

of the joint needs to be estimated as the 3D joint can be readily reconstructed using the

depth value at that location. Some of these regression-based systems were very similar

to the RGB-based ones described above, such as Rogez et al.[RKSI+14], who used a
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cascade classifier on HOG features extracted from the depth map.

A significant trend was the application of Random Decision Forests (RDFs). These

were first applied in body tracking by Shotton et al.[SFB+11] and Girshick et al.[GSK+11]

at Microsoft Research and came to dominate that field for a few years[HVZM+12,

SKS12, TSSF12, YKC13, CN13, PMTS+13, HWLX15, ?, YJLSHDY15].

When applied to hands, however, RDFs did not work quite as well, probably be-

cause of the lack of visual indicators on the surface of the hand and the fact hands

articulate and self-occlude in much more complex ways than arms and legs. The first

application of RDFs to hand tracking was by Keskin et al.[KKKA12], and relied on a

more complicated two-stage approach than was generally used in body tracking. Tang

et al.[TYK13] used RDFs to classify the hand as being in a predefined pose, then re-

fined this pose according to the depth data using a Gaussian Mixture Model. Similarly,

Xu et al.[XC13] used an RDF classifier on Hough features extracted from the depth

map then refined the result using gradient descent. Tang et al.[TJCTK14] and Sun et

al.[SWL+15] both used cascade regression to find the joint locations on the depth map.

Wan et al.[WYVG16] used surface normal features to regress on joint locations using

an RDF conditioned on the results from the previous frame.

A more recent trend that has come dominate the field of hand tracking is the ap-

plication of CNNs. Tompson et al.[TSLP14] used a CNN to generate joint heatmaps

to which a kinematic model was fit using PSO. Oberweger et al.[OWL15] experi-

mented with various CNN architectures to regress directly on 2D joint locations. Ye et

al.[YYK16] used a cascaded CNN classifier to the same effect. Zhou et al.[ZWZ+16,

ZSZ+16] used a CNN to regress directly on the state of a kinematic model. Forward

kinematics were then performed so a loss based on the depth could be calculated. The

kinematic part was all differentiable, allowing the network to be trained from this loss

using standard backpropagation. Neverova et al.[NWNT17] used a CNN to label each

pixel in the depth map as belonging to a part of the hand, with the small region around
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the pixel being the input. This information was then used as input into another CNN

which regressed on joint locations.

Wan et al.[WPVGY17] used a generative model based on VAEs and GANs to cre-

ate a low-dimensional latent hand pose space to which the input depth image could

be mapped to with a CNN. Ge et al.[GLYT17] and Moon et al.[MYCML18] used

a 3D CNN to produce a volumetric reconstruction of the hand, similar to Ueda et

al.[UMIO03] but using depth data rather than multiple viewpoints. Guo et al.[GWC+17]

found regions in which each joint was likely to be and input them into separate CNNs

to find the precise location of the relevant joint. Chen et al.[CWGZ19] took a similar

approach but used a coarsely fit kinematic model to determine the regions. Choi et

al.[CKR17] also regressed on 2D joint locations but used a proximity function on the

surface of hand to guide the training. Ge et al.[GCWY18] regressed on the joint loca-

tions but took the whole 3D point cloud as input. Chen et al.[CWZ+18] took this same

approach but included a semantic segmentation network to provide a semantic prior to

a network that regressed on joint locations. Wan et al.[WPVGY18] used FCNs to find

joint heatmaps as an intermediate representation before regressing on joint locations.

Malik et al.[MEN+18] trained a CNN to predict both the hand pose and a detailed mesh

model of the hand simultaneously. Malik et al.[MES18] proposed a system in which

the kinematic constraints of the hand are encoded into the training loss of a regression

CNN.

2.5.3 RGB-Based Hand Tracking With CNNs

In recent years, the widespread application of CNNs has lead to renewed interest in

RGB-based hand tracking.

Zimmermann and Brox[ZB17] proposed a CNN approach that regressed directly

on relative keypoint locations. This was achieved by first regressing on 2D heatmap
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joint location and estimating the viewpoint, i.e. the global orientation of the hand

relative to the camera, then estimating the relative pose from this information.

Panteleris et al.[POA18] used an off-the-shelf 2D keypoint locator to find the joints

in an image. The discrepancy between the reprojected joint locations in a kinematic

hand model and the discovered joint location in the image was then minimised using

the Levenberg-Marquardt algorithm in order to find the 3D pose and location of the

hand.

Mueller et al.[MBS+18] took a similar approach to Zimmermann and Brox but

used GANs to produce large amounts of realistic training data. They also localised

the hand in 3D space as well as retrieving the relative pose. Iqbal et al.[IMBJGK18]

regressed on both latent 2D heatmaps and a latent depth map representation, which

were combined to estimate the 3D joint locations.

Cai et al.[CGCY18] and Dibra et al.[DMB+18] also regressed on the pose but also

used depth images corresponding to the input RGB during training. This was done by

rendering a model of the hand as a synthetic depth image. This allowed the training set

to be extended to include unlabelled images. Rad et al.[ROL18] also took advantage

of depth information during training but did so by mapping depth images to pose via a

low-dimensional representation to which the input RGB was then mapped. Nicodemou

et al.[NOTA18] attempted to learn to map RGB to depth directly, so that the resulting

depth map could be used as input into any algorithm that requires depth.

Spurr et al. used VAEs to encode multiple modes of data to the same latent space.

The modes included RGB, depth, and 2D and 3D pose. The shared latent space was

achieved by training separate encoder and decoders for each modality in a round-robin

fashion. The resulting model allowed any modality to be generated from any other.

Yang and Yao[YY19] took the same approach but explicitly embedded variation due

to background and viewpoint in a subset of their latent variables, the assumption being

that the remaining variation will be more relevant to the pose.
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Baek et al.[BKK19] proposed a CNN architecture that predicted a mesh represen-

tation of the hand simultaneously with the hand pose. The mesh was then used to refine

the pose according to extracted 2D features.

2.6 Summary

As discussed in section 2.5.1, the earliest hand tracking systems were RGB-based and

took a generative approach. The limitations of those early systems stemmed from the

ways in which features were extracted from the RGB input, with an overwhelming

reliance on simple line and region features. Contemporary RGB-based hand tracking

systems, such as those discussed in section 2.5.3, generally use deep learning to ex-

tract features, which are used in a discriminative manner. The approach described in

the following chapter attempts to bring together the feature extraction capabilities of

deep learning with the conventional generative approach to hand tracking. It does this

by semantically segmenting input hand image in a manner similar to the systems de-

scribed in section 2.4. Dense semantic features allow for better tracking performance

compared to the simple features used in early generative hand tracking systems, as they

are much less ambiguous and more relevant to the pose of the hand.



Chapter 3

Methodology

In this chapter, a novel method of hand tracking will be presented. The basic idea

is inspired by conventional generative hand tracking systems, in which features were

extracted from the input RGB image and then matched to those generated by a kinetic

model of the hand in order to find the pose. The features extracted are probabilities for

each pixel being of a particular class, with classes corresponding to parts of the hand,

and are produced by a convolutional neural network. The generative part of the system

synthesises an equivalent label map by way of a kinematically-driven mesh model. The

pose of the model is optimised using a specialised version of the Differential Evolution

algorithm.

This method, which will be described in detail in the following sections, is compa-

rable to the contemporary RGB-based pose estimation algorithms in that it makes use

of deep learning but also follows in the tradition of the earliest hand tracking systems

by taking a generative, model-based approach to recovering the kinematic state of the

hand.

47
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Figure 3.1: Hand mesh model with semantic labels.

3.1 Hand Model

The hand is modelled using the conventional 26 degree-of-freedom hand model de-

scribed in section 2.1. This kinematic model is used to drive a low-polygon mesh

model adapted from one made freely available online[Mat13]. The parts labels were

added to the model by colouring the vertices in Blender. Each vertex in the mesh is

attached to one bone in the model. Since there are no textures and the angular range

of the joints is small, there is little advantage to interpolation. When placed in a par-

ticular pose and rendered, the model effectively provides a prediction of the semantic

segmentation of an image of a hand in that pose. Figure 3.1 show the hand mesh model

coloured according to the parts labels.
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3.2 Semantic Segmentation Of Hand Images

Semantic segmentation is the task of assigning a label to each pixel in an image accord-

ing to the object contained in that region of the image, or lack thereof. In the context

of hand tracking, an ”object” is a part of the hand. The parts of the hand are defined in

order that they correspond to the rigid components of the hand model described above,

i.e. the palm, the phalanxes and the thumb metacarpal. A pixel in an image of a hand

can belong to one of these classes or be part of the background.

3.2.1 Estimating Semantic Ground Truth

Supervised learning requires that every training example be labelled. This means a

ground truth semantic map is required for each image in the dataset. There are two

ways in which this might be done. One is to use synthetic images, for which cor-

responding semantic images may be rendered simultaneously with RGB ones. This

approach has the advantage that the semantic maps will correspond exactly to the rel-

evant regions of the image, but also has the problem that the synthesised RGB images

may not be realistic enough for the resulting model to be used on natural images.

The alternative is to estimate the semantic ground truth of natural images. It is pos-

sible to do this in the context of hand tracking as ground truth joint location estimates

are available. This means that an estimate of the semantic ground truth can be acquired

by fitting the model described above to the joint location ground truth and rendering

the result. To do this, the algorithm described in section 3.3 is used to minimise the

least-squares error between corresponding joints in the model and ground truth.

3.2.2 Architecture

In order to perform semantic segmentation, an FCN architecture inspired by current

state-of-the-art semantic segmentation systems is used. The architecture consists of an
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Figure 3.2: The network architecture. Orange blocks represent convolution. Purple
blocks represent sequences of batch normalisation, scaling, ReLU, and dropout. Red
blocks represent max pooling. Green blocks represent four-layer residual units. Blue
blocks represent interleaving deconvolution.

encoder part and a decoder part. The encoder part contains convolution and pooling

operations that decrease the linear dimension of the feature map by a factor of two.

Correspondingly, the decoder part contains deconvolution operations that increase the

linear dimension of the incoming feature map by a factor of two. These are interspersed

with residual units consisting of four convolutional layers. Batch normalisation, scal-

ing, dropout, and ReLU layers are also used throughout. Softmax is applied to the

output of the final convolutional layer. The end result is a probability map that is half

the size of the input RGB image. Figure 3.2 shows the network architecture.

The deconvolution operation was defined through interleaving the results of four

stride one convolutions. This technique was proposed by Laina et al.[LRB+16] in

the context of depth estimation, another dense estimation problem. They showed that

the technique is mathematically equivalent to conventional deconvolution, in which

unpooling is performed before a convolution, but more efficient as zero-multiplications
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Figure 3.3: Diagram showing deconvolution through interleaving.

are avoided1. Figure 3.3 shows a diagram of how interleaving deconvolution operates.

3.2.3 Training

The model was trained using a loss function designed to maximise the per-class accu-

racy of the final result. To this end, the standard multinomial logistic loss was modi-

fied such that each class was weighted in the overall loss calculation according to the

inverse of its frequency in the ground truth. This is necessary, as, unlike in other se-

mantic segmentation context where the dataset can be selected to contain a roughly

equal number of instances of each class, hand images are intrinsically biased toward

classes that tend to occupy more space in the image. This loss function can be written

as follows,

E =− 1
N

N

∑
i

Hcilog(p̂ci) (3.1)

where

Hc =
M
N

N

∑
i

M

∑
c′

δc′c (3.2)

1The technique is precisely equivalent to conventional deconvolution when specifically shaped ker-
nels are used, and practically equivalent otherwise.
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ci is the ground truth label of pixel i, N is the total number of pixels in the batch,

and M is the number of classes.

Training was done using SGD with batches of 16 examples, as this was roughly the

maximum that could be processed using the graphics memory available. A momentum

of 0.9 and weight decay of 0.0005 were used, as these are fairly common choices

in CNNs having been used by Krizhevsky et al.[KSH12]. Training proceeded for a

million iterations, which was more than enough for the networks to converge. The

initial learning rate was 0.01 and decreased by a factor of ten every fifty-thousand

iterations.

3.2.4 Factoring out hand segmentation

Two variations of the architecture were trained and deployed. One only classifies pixels

as background or hand, the other ignores any pixel labelled background and assigns a

hand part label to every pixel. The is necessary since, when both of these task are

learned simultaneously, the network does not train well. It is also convenient to isolate

the hand segmentation because it requires data with a large diversity of backgrounds to

generalise effectively, whereas the parts labelling only requires a representative sample

of hand poses.

The results of both networks were then recombined as follows,

p(b) = kp1(b), (3.3)

p(c) = (1− kp1(b))p2(c),∀c 6= b, (3.4)

where p1 and p2 are the outputs of the background and hand part networks respec-

tively, b is the background label, and k is a constant between 0 and 1, which will be

referred to as the background factor. The background factor can be adjusted to create
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final output depth maps that are more or less sensitive to hand part labels. The effect

of this factor is discussed more in section 4.2.1.

3.3 Semantic Fitting

In order to evaluate a pose of the hand model, a cost function must be defined. This can

be done in several ways. The most obvious would be to calculate the total negative-

log-likelihood of the whole image. This cost function would be written as follows,

L(θ) =−
N

∑
i

log(pi(Ri(θ))) (3.5)

where θ is the state vector of the hand model, pi is the probability distribution

over the possible labels for the ith pixel in the network output, and Ri is the label of

the ith pixel in the rendered semantic image. This function is essentially the posterior

probability of the hand being in the state given the network output on a logarithmic

scale.

Alternatively, the sum-of-complements cost function may be used. Using this func-

tion means the probability for each pixel is being considered independently on a linear

scale. It is written as follows,

L(θ) =
N

∑
i

1− pi(Ri(θ)) (3.6)

Another cost function that will be considered is the number of incorrect pixels.

This is simply the number of pixels whose probability for the true label falls below a

certain threshold and written as follows,

L(θ) =
N

∑
i


1 pi(Ri(θ))< t

0 pi(Ri(θ))≥ t
(3.7)
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The performance of these cost functions will be compared in section 4.4.1.

3.3.1 Optimisation

Given a choice of cost function, the task of hand tracking is now reduced to one of

non-linear optimisation. There are several algorithms that could potentially be used

for this. The one that is used is Differential Evolution (DE), which is a population-

based algorithm that falls into the general category of Evolutionary Strategies and was

proposed by Storn and Price[SP97].

DE is suitable for this task because its gradient-free, fast to converge and robust

to noise and non-linearities. Given the nature of the optimisation problem, there is no

obvious way to use ICP, as this requires the problem be formulated as one of match-

ing 3D point-clouds whereas only 2D semantic information is available in this case.

Because semantic maps are subject to self-occlusions, the search space is highly non-

linear, meaning algorithms such as stochastic hill climbing or Nelder-Mead would not

work unless the model was initialised very close to the solution and the quality of the

tracking would be fragile. Since DE is oriented towards global optimisation it can

handle these non-linearities and should also be somewhat robust to drifting and track-

ing failures. Since PSO was designed to search high-dimensional spaces efficiently,

it may seem like a good choice. PSO does not work well in practice, however (see

section 4.4.3).

As is the case in all evolutionary strategies, DE maintains a population of sample

points, referred to as agents, in a real-valued search space. Over successive genera-

tions, new agents are created by mutating and recombining existing ones and replacing

them according to a set of stochastic rules. The distinguishing feature of DE is that

the new agents are created by adding to one agent a vector proportional to the average

difference between pairs of existing agents. This allows the population to self-organise
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incrementally according to the structure of the search space, without out the need to

define or estimate a covariance matrix explicitly. This mutated vector is randomly

combined with one from the current population to create a trial vector. The specific

way in which this combination happens in called the crossover scheme. The trial vec-

tor replaces the original if its loss is lower. For each generation, this process is repeated

for each agent in the population. Pseudocode for the basic algorithm is shown in Al-

gorithm 2.

Many variants of DE are possible depending on how the agents are selected, how

many pairs are selected, and the specific of the replacement rule. The original pro-

posers of the algorithm suggested the following notation to describe its variants,

DE/x/y/z (3.8)

x represents the way in which the agent that will be mutated is selected, with com-

mon choices being “rand” and “best”, referring to the case in which the agent is se-

lected randomly and the case in which the current best solution is selected. y represents

the number of pairs used to calculate the mutation. z represents the crossover scheme,

with the most common being “bin”, which is an abbreviation of “binomial” and refers

to the case in which each component is either selected or not selected independently

with a certain probability.

The tracking algorithm is based and DE, with modifications made to make it suit-

able for the task at hand. A variant in which one pair of agents is used to calculate

the mutation and a binomial crossover scheme is used as well as an approach to agent

selection in which the best agent is selected half of the time and a random one the other

half. This variant can be written in the above notation as,

DE/best− rand/1/bin (3.9)
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Algorithm 2 The basic DE algorithm (DE/rand/1/bin) due to Storn and Price[SP97].
The functions randi() and randu() randomly sample integers and real numbers from the
the interval 0 to 1 respectively. gen max is the number of generations the algorithm
runs for, NP is the number of agents in the population, D is the dimensionality of the
search space, CR is the crossover rate (this version of the algorithm uses binomial
crossover), F is the differential weight, and evaluate is the loss function. x1 is a ran-
domly initialised set of vectors and cost the corresponding losses, the initial evaluations
of which are not shown.

count := 0
while count < gen max do

for all i < NP do
do . Pick three distinct vectors

a := randi() mod NP
while a 6= i
do

b := randi() mod NP
while b 6= i and b 6= a
do

c := randi() mod NP
while c 6= i and c 6= a and c 6= b
j := randi() mod D . Randomly pick and mutate first parameter.
trial( j) := x1(c, j)+F× (x1(a, j)− x1(b, j))
for D repeats do

j := ( j+1) mod D
if i = j or randu()≤CR then . Randomly select parameters to mutate

trial( j) := x1(c, j)+F× (x1(a, j)− x1(b, j))
else . according to weighted differential

trial( j) := x1(i, j)
end if . or keep the same.

end for
score = evaluate(trial) . Evaluate trial vector with loss function.
if score≤ cost(i) then . Keep trial vector if better than current one.

x2(i) := trial
cost(i) := score

else
x2(i) := x1(i)

end if
x1 := x2

end for
count := count +1

end while
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Algorithm 3 DE-based tracking algorithm.
randomly initialise population of N agents
for each frame do

run DE/(best-rand)/1/bin for gen max generations
sort agents according to loss
select best agent as result for current frame
replace worst M agents with mutations of best

end for

This variant of the algorithm is run on each frame for a fixed number of generations.

After each frame, the highest cost agents are replaced. The new agents are created by

sampling a Gaussian distribution centred on the current best agent and a fixed diagonal

covariance matrix, with each entry proportional to the interval between the boundaries

of the search space in the relevant dimension. This allows the algorithm to deal with the

changing loss landscape without losing the information gained on the previous frames.

Pseudocode for the tracking algorithm is shown in Algorithm 3.

3.4 Summary

The proposed technique allows hand tracking to be performed on RGB images. Al-

though it makes use of CNNs like the recent RGB-based described in section 2.5.3, the

approach more closely resembles more conventional RGB-based tracking algorithms

(such as many of those described in section 2.5.1), since it first extracts features from

the RGB input, then recovers the hand pose through analysis-by-synthesis. The ap-

proach could therefore characterised as an application of deep learning and generative

paradigm to RGB-based hand tracking. A diagram of the full proposed hand tracking

pipeline is shown in figure 3.4.
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Figure 3.4: The proposed hand tracking pipeline. The left hand side shows the seman-
tic segmentation of each input frame. The shows the optimisation using these semantic
maps to produce a 3D pose estimate for each frame.



Chapter 4

Experiments and results

4.1 Datasets

The technique described in the previous chapter was tested using several different

publicly available datasets, the main one being the stereo hand tracking benchmark

(STB)[ZJC+16]. This is a challenging dataset consisting of twelve 1500 frame se-

quences of hand motion performed against six highly varied backgrounds. For each

background, two routines, “Counting” and “Random”, are performed, with “Random”

being significantly more challenging in terms of the speed at which the subject moves

and the diversity of gestures.

RGB and depth from a depth camera and ground truth joint location estimates are

provided. The dataset also provides paired stereo images from a short-baseline stereo

camera. The baseline of the stereo camera and the focal lengths of both cameras are

also given. Unfortunately, the field-of-view (or other quantities from which it could be

calculated) are not given. For the depth camera, this quantity was found on the man-

ufacturer’s website. For the stereo camera, it was estimated by rendering the ground

truth keypoint locations against the left RGB image. This was necessary for the exper-

iment in section 4.4.5.
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This dataset is the only one on which the entire pipeline is tested. Other com-

mon hand tracking datasets are not applicable, either because they only contain sin-

gle images and not sequences (RHD[ZB17]) or because they either do not provide

RGB (MRSA[QSW+14], ICVL[YYS+17]) or the provided RGB is not of good qual-

ity (NYU[TSLP14], B2RGB[PA17]).

The Rendered Handpose Dataset (RHD)[ZB17] is a large dataset of synthetic im-

ages generated procedurally by randomly combining sampling from a set of back-

ground and human models as well a range of viewpoints and hand poses. The dataset

consists of 41258 training and 2728 testing examples, with RGB, depth, ground truth

joint locations, and ground truth semantic maps. This dataset was used in the training

and evaluation of the semantic segmentation CNNs.

MSRA[QSW+14] is a dataset of depth sequences output from a depth camera. The

dataset contains six sequences of 400 frames each from six different subjects. Each

frame has had the background removed algorithmically. Semi-manually determined

ground truth joint locations are also provided. This dataset was used to evaluate the

tracking algorithm independently of the semantic estimation and fitting part of the

pipeline.

4.2 Semantic Segmentation

In order to perform semantic segmentation, the STB dataset is divided into a training

set and a testing set, with the testing set containing two sequences with the same back-

ground (“B1Counting” and “B1Random”) and the training set containing the rest, all

which have different backgrounds from the testing set. All images are downsampled by

a factor of two and ground truth semantic maps are estimated in the manner described

in section 3.2.1.

While this training set is sufficient for the parts estimator, the background estimator
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struggles, presumably due to there only being five backgrounds. The RHD training set

is therefore included when training this network, since it contains a greater diversity of

backgrounds. Given this training data, the background estimator performs quite well.

Table 4.1 shows a comparison of the background estimation for the whole system with

some contemporary state-of-the-art hand segmentation techniques. The metrics shown

in the table are calculated as follows,

IOU =
T P

T P+FP+FN
(4.1)

precision =
T P

T P+FP
(4.2)

recall =
T P

T P+FN
(4.3)

F1 =
2× precision× recall

precision+ recall
(4.4)

where TP, FP, TN, and FN and the true positive, false positive, true negative, and

false negatives rates respectively. For the purpose of these metrics, the hand is the

positive class and the background is the negative one.

According to IOU and f1-score, the proposed system is roughly as good or better

than the examples from the literature. The example with higher recall[ZB17] also had

very low precision. This is because the network was being used to coarsely segment

the hand so it could be cropped out of the input and passed to a subsequent network

stage. This is not true in the case of the proposed system, as the tracking algorithm

requires a per-pixel estimate of the location of the hand in the input. The example with

higher precision and lower recall[BKK19] tended to give results in which the hand area

was smaller than it appeared in the input. This would cause problems in the proposed
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IOU Precision Recall F1-score
Proposed 0.633 0.733 0.822 0.775
Baek et al.[BKK19] 0.651 0.828 0.753 0.789
Zimmermann et al.[ZB17] 0.354 0.365 0.921 0.523
Urooj and Borji[UB18] 0.527 0.717 0.666 0.690

Table 4.1: Comparison of the background estimation with examples from the literature
on the RHD testing set. The metrics are intersect-over-union (IOU), precision, recall,
and f1-score. Higher is better in all cases.

system, since the determination of the position of the hand in 3D space requires a good

estimate of the projected area of the hand.

4.2.1 Effect of background factor

The performance of the semantic segmentation algorithm as a whole depends on the

background factor, as well as the metric used to evaluate it. Figures 4.1 and 4.2 show

there is a trade-off to be made between per-class and per-pixel accuracy, with the for-

mer tending to decrease as the background factor is raised and the latter tending to

decrease. The mean class accuracy also decreases as the background factor approaches

zero and the background is misclassified as one the hand regions (typically the palm,

as this is the next most populated class). Figure 4.3, which contains qualitative results

for a particular example across a range of background factors, also demonstrates this

trade-off, as segmentation results for higher background factors are less blurry, with

the boundary between the background and hand more precisely defined, but also tend

to lose important details around the edge of the hand region, such as the shape of the

palm and protruding fingers.

This trade-off can also be seen in figures 4.4 and 4.5, which show the f1-score and

intersect-over-union metric respectively (with background as the negative class and

hand as the positive class, as above), with both being maximal when the background

factor somewhere around 0.5. As such, this is the value that was used to produce all



4.2. SEMANTIC SEGMENTATION 63

Figure 4.1: Mean per-class accuracy across a range of background factors.

Figure 4.2: Per-pixel accuracy across a range of background factors.
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Figure 4.3: Segmentation results on the same input frame for different background
factors. The columns from left to right show the input RGB image, the estimation
semantic ground truth, the output of the background network, and the final segmenta-
tion result. (The first three columns are identical, having been repeated for clarity and
consistency with subsequent figures.)
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semantic segmentations used as input to the tracking algorithm.

Figures 4.6 and 4.7 show qualitative examples for a background factor of 0.5.

These examples were selected from the STB testing set at evenly spaced intervals.

4.3 Tracking Algorithm

In order to evaluate the tracking algorithm described in section 3.3.1, it was applied

to two hand tracking problems, both making use of the MRSA dataset. The first was

a very simple case in which the algorithm was used to match the keypoints in a hand

model to the ground truth keypoint locations. The cost function in this case was simply

the sum of square distances from the keypoints in the model to the corresponding

keypoints in the ground truth. The second was a depth-based hand tracking problem

that made use of the algorithm devised by Qian et al.[QSW+14] by adopting the same

cost function. The DE-based algorithm was compared against an implementation of

Qian et al’s ICP-PSO in both cases1. This algorithm depends heavily on a data-driven

fingertip detection subroutine, which is was approximated by coarsely fitting the model

to the ground truth fingertip location using a short run of DE, with results reported both

with and without this reinitialisation performed. All quantitative tracking results are

in millimetres. In all cases, the relevant algorithm was run five times and the results

averaged.

Table 4.2 and figure 4.8 show the results for the first case with fingertip reinitiali-

sation. It can be seen that DE generally outperforms ICP-PSO, though both algorithms

perform near perfectly, with error mainly arising from differences in the positions of

joints in the model and ground truth and noise in both the sensor data and estimated

1For clarity, Qian et al.’s algorithm will be referred to as ICP-PSO even in the first case when the
point correspondences are known.
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Figure 4.4: F1-score for a range of background factors.

Figure 4.5: IOU for a range of background factors.
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Figure 4.6: Qualitative segmentation results. The columns from left to right show the
input RGB image, the estimation semantic ground truth, the output of the background
network, and the final segmentation result.
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Figure 4.7: More qualitative segmentation results. The columns from left to right
show the input RGB image, the estimation semantic ground truth, the output of the
background network, and the final segmentation result.
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ground truth keypoint locations. Table 4.3 and figure 4.9 show equivalent results with-

out fingertip reinitialisation. Whereas DE-based algorithm is largely unaffected by this

change, the accuracy of ICP-PSO decreases significantly.

Subject DE ICP-PSO
1 6.8 11.0
2 5.0 9.3
3 5.6 9.1
4 6.2 9.9
5 6.2 10.9
6 7.3 11.0

Table 4.2: Mean keypoint error in millimetres for each sequence in MRSA when track-
ing joint locations with fingertip reinitialisation.

Subject DE ICP-PSO
1 6.8 35.9
2 5.1 34.2
3 5.9 35.7
4 6.0 48.4
5 6.2 43.9
6 9.9 58.1

Table 4.3: Mean keypoint error in millimetres for each sequence in MRSA when track-
ing joint locations without fingertip reinitialisation.

Table 4.4 and figure 4.10 show results for the second case. This is the case in which

ICP-PSO was intended to be used and it can be seen that both algorithms perform sim-

ilarly well. Table 4.5 and figure 4.11 show equivalent results without reinitialisation.

It can be seen that, though the accuracy of both algorithms decreases significantly, DE

generally outperforms ICP-PSO.
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Figure 4.8: Mean keypoint error across each sequence in MRSA when tracking joint
locations with fingertip reinitialisation. DE is in blue, ICP-PSO is in red. Subjects 1-6
are shown in order left-to-right top-to-bottom.
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Figure 4.9: Mean keypoint error across each sequence in MRSA when tracking joint
locations without fingertip reinitialisation. DE is in blue, ICP-PSO is in red. Subjects
1-6 are shown in order left-to-right top-to-bottom.
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Figure 4.10: Mean keypoint error across each sequence in MRSA when tracking from
depth with fingertip reinitialisation. DE is in blue, ICP-PSO is in red. Subjects 1-6 are
shown in order left-to-right top-to-bottom.
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Figure 4.11: Mean keypoint error across each sequence in MRSA when tracking from
depth without fingertip reinitialisation. DE is in blue, ICP-PSO is in red. Subjects 1-6
are shown in order left-to-right top-to-bottom.
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Subject DE ICP-PSO
1 28.2 27.6
2 17.7 22.9
3 22.6 25.4
4 26.4 28.7
5 27.6 31.8
6 32.8 27.3

Table 4.4: Mean keypoint error in millimetres for each sequence in MRSA when track-
ing from depth with fingertip reinitialisation.

Subject DE ICP-PSO
1 51.2 57.2
2 25.4 51.3
3 39.1 54.9
4 36.5 53.7
5 46.3 59.0
6 52.3 53.5

Table 4.5: Mean keypoint error in millimetres for each sequence in MRSA when track-
ing from depth without fingertip reinitialisation.

4.4 Semantic Fitting

In this section, the full algorithm will be evaluated on the STB dataset. All results

are based on the semantic segmentation results reported in section 4.2. All quantita-

tive results are in millimetres and represent the average of five repeats of the relevant

experiment.

4.4.1 Choice of cost function

As mentioned in section 3.3, there are several different cost functions that may be used

with the tracking algorithm. The cost functions under consideration are negative-log-

likelihood (NLL), sum-of-complements (SoC), and number of incorrect pixels (IP).

All three were compared using 16 agents and 50 generations per frame, and with three

different thresholds (t=0.1, 0.3, and 0.5) used with the IP cost function.

Tables 4.6 and 4.7 show the relative keypoint errors and root errors respectively
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for each cost function and sequence. Figures 4.12-4.15 show how the same quanti-

ties varying over the course of each sequence. It can be seen that IP with too high

a threshold does little better than random chance, as it would with a threshold close

to zero. NLL also tends to perform poorly compared to the others. SoC and IP with

t = 0.3 perform similarly, with SoC being slightly more robust due to its taking more

information into account. IP with t = 0.3 is better at localising in some cases due to its

enforcing a strict boundary around the hand region, but also appears to be more fragile.

For this reason, SoC will be used in all following experiments.

Cost function B1Counting B1Random
NLL 37.1 33.0
SoC 35.2 31.6

IP, t=0.1 39.1 31.1
IP, t=0.3 32.0 39.5
IP, t=0.5 76.7 70.3

Table 4.6: Mean relative keypoint error in millimetres for each sequence in the STB
testing set for each cost function.

Cost function B1Counting B1Random
NLL 43.2 47.0
SoC 34.8 43.4

IP, t=0.1 43.3 46.8
IP, t=0.3 31.5 64.7
IP, t=0.5 160.0 145.6

Table 4.7: Mean root error in millimetres across each sequence in the STB testing set
for each cost function.

4.4.2 Hyperparameters

The tracking algorithm has two significant hyperparameters. The first is the number of

agents in the population. The second is the number of generations of DE performed on

each frame. In this section, the impact of these hyperparameters on the performance

of the tracker will be assessed.
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Figure 4.12: Mean relative keypoint error for “B1Counting” for each cost function.

Figure 4.13: Mean relative keypoint error for “B1Random” for each cost function.
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Figure 4.14: Mean root error for “B1Counting” for each cost function.

Figure 4.15: Mean root error for “B1Random” for each cost function.
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To assess the impact of the number of agents in the population, the algorithm was

run with 8, 16, 32, and 64 agents. In each case, 50 generations of DE were performed

per frame. The results are shown in tables 4.8 and 4.9 and figures 4.16-4.19. It can

be seen that the number of agents does not generally have a substantial impact on the

performance of the algorithm. With smallest population size of 8, the algorithm is

slightly more accurate in some cases but also takes longer to recover from tracking

failures.

Agents Counting Random
8 34.1 30.3

16 34.7 32.3
32 35.3 33.8
64 36.0 33.8

Table 4.8: Mean relative keypoint error in millimetres across each sequence in the STB
testing set for a range of population sizes.

Agents Counting Random
8 37.2 52.5

16 33.6 46.2
32 36.1 44.4
64 37.2 44.2

Table 4.9: Mean root error in millimetres across each sequence in the STB testing set
for a range of population sizes.

The algorithm was also run with 10, 50, 100, and 200 generations per frame. A

population of 16 agents was used in each case. Similar to the population size, the

number of generations per frame only has a significant effect on the accuracy of the

algorithm when it is small, with the accuracy being improved in the general case, but

also more susceptible to tracking failures. This is due to the population being less able

to adapt any particular frame, which improves its ability to adapt to each new frame

when it is close to the solution, but also makes it harder to recover when it is not.

In subsequent experiments, 16 agents and 50 generations per frame will be used,

since there is no advantage to using larger values.
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Figure 4.16: Mean relative keypoint error for “B1Counting” for a range of population
sizes.

Figure 4.17: Mean relative keypoint error for “B1Random” for a range of population
sizes.
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Figure 4.18: Mean root error for “B1Counting” for a range of population sizes.

Figure 4.19: Mean root error for “B1Random” for a range of population sizes.
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Figure 4.20: Mean relative keypoint error for “B1Counting” for a range of generations
per frame.

Figure 4.21: Mean relative keypoint error for “B1Random” for a range of generations
per frame.
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Figure 4.22: Mean root error for “B1Counting” for a range of generations per frame.

Figure 4.23: Mean root error for “B1Random” for a range of generations per frame.
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Generations Counting Random
10 31.8 37.0
50 35.0 31.4

100 35.6 33.3
200 35.4 32.4

Table 4.10: Mean relative keypoint error in millimetres across each sequence in the
STB testing set for a range of generations per frame.

Generations Counting Random
10 33.7 74.4
50 36.1 45.7

100 36.1 42.8
200 36.3 42.3

Table 4.11: Mean root error in millimetres across each sequence in the STB testing set
for a range of generations per frame.

4.4.3 Comparison with PSO

To verify that DE is an appropriate algorithm for this task, an equivalent algorithm

based on PSO was implemented. PSO is a commonly used algorithm in depth-based

hand tracking and one of only a few that are applicable to this problem, as it is gradient-

free and does not the problem to be reducible to one of matching point clouds. Since

PSO well known to be highly dependent on initial conditions, the first frame of each

sequence was initialised by matching the model to the ground truth keypoint locations

using DE, and the populations were initialised by randomly perturbing the result of

this optimisation.

The results from both the DE and PSO-based algorithms are shown in table 4.12

and figures 4.24-4.27. It can be seen that DE is generally more accurate, particularly in

localising the hand. PSO generally fails to search the space efficiently, with subsequent

frames failing to improve on the result from a previous frame in many cases. Also

shown are tracking results when the semantic ground truth used as the input for the

tracking algorithm. DE also does better in this case. Apart from a severe tracking

failure in the second sequence from which the algorithm quickly recovers, using the
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ground truth input leads to results that are high quality in terms of both gesture recovery

and hand localisation.

Counting Random
DE estimate 34.9 32.7
DE ground 16.1 24.0

PSO estimate 71.5 93.7
PSO ground 93.7 106.7

Table 4.12: Mean relative keypoint error in millimetres across each sequence in the
STB testing set for DE and PSO-based tracking.

4.4.4 Impact of global orientation

The main source of error in the tracking results is ambiguity in global orientation. To

demonstrate this, an orientation oracle was determined for each frame by fitting the

model to the ground truth keypoint locations. The algorithm was then run with the

agents fixed to this orientation. Figures 4.28 and 4.29 show the effect of doing so on

the qualitative results. It can be seen that, without the oracle, the model tends to be in

a position that covers the semantic regions, but with the wrong orientation, which puts

the 3D joint locations out of position by a few centimetres. This is shown quantitatively

in table 4.13 and figures 4.30-4.33. The effect is most striking on the relative keypoint

error, which improves considerably when the oracle is accessed. The localisation error

tends to increase when the oracle is accessed due to the 3D position of the hand being

more sensitive to the input noise when the orientation is fixed.

Counting Random
Free 34.9 32.7

Oracle 11.8 10.7

Table 4.13: Mean relative keypoint error in millimetres across each sequence in the
STB testing set for the tracking algorithm with and without the global orientation ora-
cle.
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Figure 4.24: Mean relative keypoint error for “B1Counting” for DE and PSO-based
tracking.

Figure 4.25: Mean relative keypoint error for “B1Random” for DE and PSO-based
tracking.
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Figure 4.26: Mean root error for “B1Counting” for DE and PSO-based tracking.

Figure 4.27: Mean root error for “B1Random” for DE and PSO-based tracking.



4.4. SEMANTIC FITTING 87

Figure 4.28: Qualitative examples showing the effect of the global orientation oracle
on the final results. The left and right columns show results attained without and with
the oracle respectively.
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Figure 4.29: Qualitative examples showing the effect of the global orientation oracle
on the final results. The left and right columns show results attained without and with
the oracle respectively.
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Figure 4.30: Mean relative keypoint error for “B1Counting” for the tracking algorithm
with and without the global orientation oracle.

Figure 4.31: Mean relative keypoint error for “B1Random” for the tracking algorithm
with and without the global orientation oracle.
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Figure 4.32: Mean root error for “B1Counting” for the tracking algorithm with and
without the global orientation oracle.

Figure 4.33: Mean root error for “B1Random” for the tracking algorithm with and
without the global orientation oracle.
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4.4.5 Tracking from stereo pairs

One potential way to reduce the ambiguity in global orientation is to use stereo pairs,

which are provided in the STB dataset. When using stereo pairs, the tracking algorithm

remains the same but the model is rendered in the frame of both the left and right

image and the combined cost function is minimised. The calculation of the stereo cost

function is illustrated in figure 4.34.

The background estimator is not used in the stereo case, since the triangulation

of the parts labels is sufficient to segment the hand implicitly. The results are shown

in tables 4.14 and 4.15 and figures 4.35-4.38. It can be seen that the localisation of

the hand is substantially improved by the addition of stereo information. The gesture

recognition results are mixed, with some cases improving and others worsening. In

general, it seems that short baseline stereo is sufficient to localise the hand but does

not provide enough spatial information to improve the gesture recognition.

Counting Random
Mono 34.9 32.7
Stereo 30.7 41.3

Table 4.14: Mean relative keypoint error in millimetres across each sequence in the
STB testing set for mono and stereo tracking.

Counting Random
Mono 35.6 44.7
Stereo 22.1 32.3

Table 4.15: Mean root error in millimetres across each sequence in the STB testing set
mono and stereo tracking.

4.4.6 Comparison with state-of-the-art

Figure 4.39 shows a comparison of the proposed approach with algorithms from the

literature, including several that reconstruct the hand pose from RGB. The graph shows
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Figure 4.34: Calculation of the cost when using stereo pairs.

Figure 4.35: Mean relative keypoint error for “B1Counting” for mono and stereo track-
ing.
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Figure 4.36: Mean relative keypoint error for “B1Random” for mono and stereo track-
ing.

Figure 4.37: Mean root error for “B1Counting” for mono and stereo tracking.
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the percentage correct keypoint (PCK) curves for a number of algorithms. PCK curves

show on y-axis the percentage of keypoints that fall inside the error threshold denoted

by the value on the x-axis when the position of the palms are aligned. It can be seen

that the proposed method falls short of the contemporary state-of-the-art in the general

case. Accessing the oracle global orientation brings the results into line with the rest

of the state-of-art, as does using the ground truth semantic input.

Qualitative results for the whole system applied to the STB testing sequences are

shown in 4.40 and 4.41. It can be seen that, with a few exceptions (such as the example

on the bottom row of figure 4.40), the algorithm generally finds poses for which the

hand model covers the appropriate region of the semantic image.
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Figure 4.38: Mean root error for “B1Random” for mono and stereo tracking.

Figure 4.39: PCK curves for comparison with the current state-of-the-art on STB.
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Figure 4.40: Qualitative tracking examples for “B1Counting”. The leftmost column
shows the input, the middle the segmentation results, and the rightmost shows the final
tracking results for that frame overlaid on the input.
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Figure 4.41: Qualitative for “B1Random”. The leftmost column shows the input, the
middle the segmentation results, and the rightmost shows the final tracking results for
that frame overlaid on the input.
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Conclusion

In this thesis, the problem vision-based hand tracking was discussed and a novel ap-

proach to performing hand tracking was presented and evaluated. This approach used

CNNs to extract features from RGB images in the form of dense semantic labels. A

generative model was then used to recover the pose of the hand. This was achieved by

using a DE-based tracking algorithm to find the pose that minimised the difference be-

tween the output of the network and a rendered semantic image created using labelled

mesh model of the hand in a particular pose.

The use of semantic segmentation provides features that are precisely relevant to

the pose of the hand and therefore overcomes one of the main limitations of generative

hand tracking. This allows for accurate and robust tracking with all of the advantages

of a model-based algorithm, such as the ability to easily incorporate physiological and

temporal constraints.

The semantic segmentation performs well, with the hand parts localised in the im-

age in an accurate and consistent manner, insofar as the results generally show that the

network learned the plausible configurations of the parts of the hand in an image from

the examples given. Additionally, the background estimator, for which a quantitative

comparison is possible, it performs similarly to the contemporary state-of-the-art.

98
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A significant part of the approach is the use of a DE-based hand tracking algorithm.

This algorithm was tested against ICP-PSO on a joint location tracking problem and

a depth-based tracking problem and compared favourably in both cases. The algo-

rithm performed well when the semantic ground truth was provided as input. It also

performed favourably to an equivalent PSO-based algorithm on the semantic fitting

problem with both estimated and ground truth input.

Several factors that affect the performance of the tracking algorithm were exam-

ined, including the choice of cost function and the value of the algorithm’s main hyper-

parameters. The impact of these variables on the final results was generally slight. The

main source of error was determined to be ambiguity in global orientation. As a result

of this ambiguity, the algorithm generally falls short of contemporary CNN approaches

to hand tracking from RGB in terms of relative keypoint error. When tracking from

the semantic ground truth or with a global orientation oracle available, however, the

tracking results are comparable to the contemporary state-of-the-art.

More generally, these results and the current direction of the literature demonstrate

the potential for CNNs to help address long outstanding issues in computer vision.

Vision-based hand tracking and the generative paradigm are both decades old and the

limitations of conventional RGB-based algorithms were severe enough that the field

was fairly stagnant before the introduction of CNNs, but has now seen real progress as

a result. The application of CNNs to problem areas that have in the past been limited by

a lack of determinative features is a trend that will no doubt continue to bring progress

in the future.

5.1 Future work

There are several ways in which this work could extended in the future. The main

focus of future work should be resolving the main source of error, which is ambiguity
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in the global orientation of the hand. This could be done by using some form of

discriminative system to predict the orientation directly. It may also be possible to

learn more descriptive labels or localised features, such as landmark points on the

surface of the hand. Such features would give more information about the orientation

of the palm and could guide the optimiser towards a better solution. A learned prior on

the pose of the hand may also help in this regard, as the orientation of the palm would

be constrained by the requirement for a likely hand pose rather than just a physically

plausible one.

The tracking algorithm works well when the ground truth semantic maps are used

as input. This is due to the same model being used to generate semantic estimates as is

used in the tracking algorithm. When using estimated semantic maps (as in 4.40 and

4.41), the shape of the hand corresponds to the shape of the subjects hand in the image,

frequently causing the palm to displaced from its correct location. There are several

ways in which this could be addressed. One way would be to impose constraints on

the estimated semantic maps to ensure the hand is the same shape as in the ground

truth. This could be be done with some kind of CRF. Another approach would be to

simply model the subject’s hand more accurately. This approach may not generalise

well to other subjects, however. A more generalisable way to address the problem

would be to have an adaptive mesh model that is refined continuously during tracking,

in a manner similar to that of Malik et al.[MEN+18], but with semantic information

instead of depth. A discriminative mesh estimation approach similar to that of Baek et

al.[BKK19] could also be used. It may also be useful to exploit the interdependency of

the mesh and the semantic prediction by predicting both jointly using a single model.
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