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5.9 Transient velocity response on Ê3 compared to lifted results from T̂3

for a cantilever beam measured at the free end. . . . . . . . . . . . .
5.10 Transient lateral response by displacement unit on Ê3 compared to
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T̂3 under clamped-pinned boundary conditions measured at point of
applied displacement. . . . . . . . . . . . . . . . . . . . . . . . . .

5.12 Transient lateral response by velocity unit on Ê3 compared to the
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lifted results on the anisotropic T̂3 for a clamped-clamped boundary
conditions measured at the point of applied displacement. . . . . . .

5.18 Transient lateral response by displacement unit on Ê3 compared to
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6.6 Displacement legend for frequency analysis . . . . . . . . . . . . .
6.7 Transient lateral response in terms of displacement on Ê1 compared
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5.10 Studied case for pre-fractal and tessellated beams on Ê3 and T̂3. . . .
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lated under PPPP BC. . . . . . . . . . . . . . . . . . . . . . . . . .

6.12 The natural frequency comparison in both space for a structure type
k = 3 under CCCC BC. . . . . . . . . . . . . . . . . . . . . . . . .

6.13 Mode shapes of Sierpinski Carpet Ê3and its corresponding tessel-
lated under CCCC BC. . . . . . . . . . . . . . . . . . . . . . . . .

6.14 The natural frequency comparison in both space for a structure type
k = 3 under CPCP BC. . . . . . . . . . . . . . . . . . . . . . . . .

6.15 Mode shapes of Sierpinski Carpet Ê3 and its corresponding tessel-
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Abstract
An important method for lightening the weight of structures is with the incorpora-
tion of perforated materials but a good understanding of their dynamic behaviour
is required. The more interesting types of perforated structure in the field of
engineering are those representable by fractals. Fractals permit the representation
of intricate perforated geometries, but their application is recognised to be beset
with difficulties, which stem from an inability to define traditionally derived
physical quantities such as stress.
The presented research provides a novel methodology based on transport theory
for pre-fractals, which facilitates the modelling of complex perforated structures.
This approach is called tessellated continuum mechanics, which has recently
been developed at the University of Manchester. Tessellated continuum me-
chanics is an approach that enables known analytical and numerical continuum
solutions to be immediately applied to the fractal space. A feature of the ap-
proach is the representation of fractal structures in equivalent continuum spaces,
which can be readily analysed by available numerical techniques. The tessellated
approach links pre-fractal elements to tiles in a tessellated continuum by means
of a hole-fill map; so called because when applied to a perforated structure (i.e. a
pre-fractal) it closes all holes to form a tessellation. It is shown in the thesis how
pre-fractals and tessellations can be created independently and very efficiently
using iterated function schemes. Such schemes when used in tessellated contin-
uum mechanics involve the recursive application of contraction maps and the
exact same number of maps is required for forming tessellations and pre-fractals.
To accommodate any discontinuous physics that arises on a tessellation it is
necessary to imbue it with a discontinuity network. Jumps in displacement,
velocity and derivatives are permitted on a discontinuity network.
The research presented in the thesis tests the hypothesis that the dynamic be-
havior of perforated plates and beams can be analysed to high accuracy on a
tessellated continuum. The work also examines the role of similitude, which is
an integral feature of the tessellated approach. Similitude enables the physics of a
tile on a tessellated continuum to be related to an element of a pre-fractal. In this
way it can be demonstrated that a collection of tiles which forms a tessellation
has the same behavior as a pre-fractal structure.
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The work confirms the validity of tessellated continuum mechanics by means of
extensive numerical trials using commercial FE software on pre-fractal beams
and plates along with corresponding tessellations.
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Chapter 1

Introduction

1.1 General view
This chapter presents the background of this research and discusses the impor-
tance of exploring the tessellated method in vibration analysis. This is completed
by introducing: a catastrophic failure of a telescope using a mirror in a fractal
arrangement. The scope and methodology of the project are also discussed. This
Chapter ends with a brief description of the aims and objectives of the research
and thesis outlines and summarising the publishing work.

1.2 General background and motivation
Perforated plates and sheets are used in a broad number of applications for
sorting and screening any substance, such as sugar and spices to sand and gravel.
Additionally, they are used widely in heating and ventilating installations, also
in blending different practicals. Moreover, they are extensively used in panel
as a noise absorber, besides porous panel configurations are substantial due to
environmental and cleaning considerations.
Due to their vast use in industry there is also a particular type of irregular per-
forated structures known as fractal. These irregular perforated panels are also
widely used in industry as heat exchanger applications, antenna configurations
and architectural designs, etc. These irregular perforated plates have unique sys-
tematic shapes. Fractals, in general, are usually used to describe random objects
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in nature, such as the snowflake, clouds, tree, etc. Mainly, these geometries
can not be represented by the Euclidean coordinate system. But they can be
represented in fractal space by creating a primary object then be iterated through
mathematical manipulations.
It is clear that, the uses of fractal in industry are vast and to give a clear demon-
stration of their use with advantages and disadvantages extremely important. So,
the most significant uses of fractal in the industry are in designing the Over-
whelmingly Large (OWL) telescope mirror. The mirrors are conceived in a
honeycomb design that is illustrated in Figure 1.1 and 1.2, where V shows the
number of mirror’s segments that are needed to form the main mirror. The
mirrors are designed in such a way to reduce the curvature of the lenses where
the main mirror is better to be separated through a significant length [1]. For this
reason and because a telescope image is a high-energy light or particles, it needs
to minimise any vibration sources as much as reasonable. On the other hand, a
telescope that is installed on earth is suffering from all the dynamic loads from
wind and earthquakes [2], etc. In 1990, the Hubble space telescope was launched
into space and settled in its orbit. At the first testing to the telescope, it was found
that the information quality that was received on earth had a lower accuracy
compared to the designed plans. Later on, it was found that the problem was in
the positioning of one of the primary lenses where it had been incorrectly shifted
about 1.3 mm out of position [3]. Although the number appears insignificant,
the effect was huge on such equipments. So, the effect of the dynamical loads,
due to lunch the equipments into the space, can cause a lot of damage to such
sensitive and finished designs. Also, the best way to avoid such issues in the
future is by improving the vibration analysis in an irregular structures by using
untraditional methods [4]. Moreover, the application of using such structure
is widely implemented in the industry as mentioned earlier; this gives more
motivation to carry this work.

This is lead to a curious question what is Fractal? Fractals are irregular structures
as mentioned earlier. These structures were firstly suggested by Mandelbrot as
been cited in [5]. Usually, fractals are used to represent better cellular objects
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Figure 1.1: The formations of a pre-fractal mirror in each mirror segment in the
OWL telescope.

Figure 1.2: The honeycomb in the primary mirror of the OWL telescope mirror
under analysis [3].
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[6]. Since that time the researchers irritated to find methods to analysis physical
quantities on these spaces. For example, Tarasov [7] and Ostoja- Starzewski [8]
studied the implementation of transport approaches in fractals. Their strategies
were founded on the application of fractional derivatives. These methods were
untested and physically impenetrable in many aspects since fractional derivatives
do not readily arise from the governing physics. The other option to avoid, is the
need for fractional derivatives which are the indirect use of fractal quantities [9];
this type of solutions have severe limitations akin to those arising with the calling
of parameters in empirical expressions, For this reason, it was not considered
further here [10].
To avoid using fractional derivative and what companies them from the heavy
mathematics skills to form the equations of motion to the implement of unde-
veloped section of mathematics. All these difficulties of analysing vibration in
a fractal structure, this work introduces the idea of implementing a Tessellated
Continuum Mechanics (TCM) method. The first official introduction to the
transport equations theory was in 2013 by Davey and Prosser [11]. In a brief
description, a transport equation is used as a general theory to analysis different
types of 1-D applications. This theory is built on the concept of creating a
number of maps to construct an alternative space that has the ability to mirror
the physics on the original model. The mapped model is totally different from
the original model but can be scaled back to the real model. This is the concept
behind the general method which is called the Finite Similitude theory. One of
the branches of this theory is TCM. The TCM theory is simply directed to find
a solution on the fractal space on a local basis. All the other branches of the
Finite Similitude theory (FS) used the global scaling procedure while this is the
first time to consider the uses of local scaling procedure in applied mechanics.
Precisely, this work is devoted developing the TCM method in the fractal analysis
as structures in applied mechanics.
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1.3 Scope and methodology
In the field of mechanical fluid and architectural engineering, the need for high
efficiency, high functionality, and high profitability have led to the use of irregu-
lar perforated structures. For instance, irregular plates can be found in nuclear
reactors, which provide both structural support and flow passage of a coolant
[12]. These structures are required to stand various external loadings such as an
earthquake and loading design basis, for example, due to a pipe break. Therefore,
it is vital to ensure structural integrity [13]. And especially for objects such as
fractal designs.
In general, fractal objects and phenomena in nature such as mountains, coastlines
and earthquakes signature are an area well studied by Mandelbrot sets [14] . Two
of the most essential properties of fractals are self-similarity; and non-integer
dimensions. A fractal can be described as an object less regular than ordinary
geometrical objects. The term fractal came in use late 1975, by Mandelbrot
(as been cited in [5]) who also gave the first mathematical definition of what
should be considered as a fractal. The use of fractal analysis is wide. It ranges
from probability theory, physical theory and applications, stock market and to a
number of theories among many others.
Fractal analysis is a valuable tool when the researcher needs to study eccentric
geometrical objects, e.g. a set with a non-integer dimension value (Lightening,
tree branches, etc.). Fractal analysis has developed intensively over the last 30
years, which gives a hint to its young age as a branch of mathematics.
There are mainly two favourite types of fractals: complex number fractals see
Figure 1.3 , and Iterated Function System (IFS) fractals see Figure 1.4. This
work is concerned with IFS fractals. IFS fractals are created on the basis of
simple plane transformations: scaling, dislocation, and plane’s axes rotation.
Creating an IFS fractal consists of the following steps [6]:

1. Defining a set of plane transformations.

2. Drawing an initial pattern on the plane (any pattern).

3. Transforming the initial pattern using the transformations defined in the
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first step.

4. Transforming the new model (combination of initial and transformed
patterns) using the same set of transformations.

5. Repeating the fourth step as many times as possible (in theory, this pro-
cedure can be repeated an infinite number of times). More details are
explained in Appendix A.

Figure 1.3: Complex fractal geometry [6].

Iteration is one of the most powerful tools in mathematics, because it can simply
transfer a process from discontinuity into continuity. This can clearly revealed in
sketching a continuos function (by any method such as by hand or computer) by
drawing a discrete sets of points then refines the distance between the selected
points and reconnecting them will lead to create a finer continuous function. The
interpolating process lays at the heart of the mathematics, because interpolating
redefines the continuity itself and makes it depends on the chosen limits of the
function’s independent variables. This enables researchers to choose wisely
their necessary limits when plotting their functions. This enforced researchers to
carefully chose their satisfactory limits of iteration while studying fractals as a
structure.
At this point, it is essential to introduce an alternative method to solve problems
in the fractal space. So the tessellated continuum mechanics approach in a brief
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Figure 1.4: IFS fractal geometry (Sierpinski Carpet) in three-dimension (3-D)
[6].

explanation: It is an alternative representation to specific physical subjects (such
as heat transfer [11] and vibration [15]) into a second hypothetical domain. This
domain is called ’Tessellation’. To create such a domain transport equations must
be implied to define the physics of the hypothetical domain, where, conservation
laws must be preserved and proportioned at both spaces. This study is focusing
on studying the physical problem in the shape of fractal structures.
Moreover, as mentioned earlier these geometries have random holes perfora-
tion in a systematic means, which means it involves the application of iteration
function schemes using affine contraction and expansion maps. Highly complex
geometries can be produced using a modest number of contraction mappings.
For the current time, the formation of the tessellation geometries is more con-
strained with the initial meshes that are built on the fractal spaces. Besides, the
TCM method has been significantly modified by introducing some techniques
such as hole-filling maps and the discontinuity network that will be presented
extensively in the next chapters. However, briefly, the hole filling-maps are
deforming the associated mesh on the tessellation that is initially created from
initial mesh on the fractal. The hole-fill maps are constructed using an iterated
function scheme similar to the one applied in the fractal generation process
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The discontinuity network is tested in providing a proper representation of the
physics relating to cellular beam structure designs, a general scheme explaining
the TCM method is presented in Figure 1.5. It is necessary to explain the main
response characteristic that is used in this work. Mainly, the responses or the de-
formation in the longitudinal and transverse vibration are expressed by ui where i
represent either ps or ts.These subscripts are denoted to the analysis run on either
the pre-fractal ps or the analysis run on the tessellates ts. This can be applied to
the time symbols too. This would allow applying different time running on each
space. More symbols are shown in Figure 1.5 and will be explained broadly in
Chapter Three. Basically, this work is going to test the hypothesis of applying
a vibration analysis on a porous structure represented by an IFS fractal. This
is achieved by running two different analyses on two different spaces (fractal
and tessellated) by using the same analysis method, which is in this case is the
finite element method (FEM); then comparing the results in order to investigate
the accuracy of the tessellated method in mimicking the fractal problems. In
other words, a transport theory for fractals is introduced, which is used with a
hole-fill mapping strategy, to facilitate the analysis of the transport problems on a
tessellated continuum. Mainly, the TCM method enables well-known analytical
and numerical continuum solutions to be immediately applied to solve problem
on the pre-fractal space.
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Figure 1.5: General mappings through both spaces.

1.4 Aim and objectives
The main aim of this study is to test the proposition of solving discontinuous
domain problems such as a fractal as a structure in one-dimensional (1-D) and
two-dimensional (2-D) spaces by mapping the problem into a continuous domain
named as a tessellated space. This is accomplished through the following actions:

1. Establishing transport equations that link physics on the fractal to the
tessellated in any dimensions of 1-D or 2-D.

2. Implementing the newly devolved method in creating the tessellated space
and improving the work started in reference [11] for 1-D or 2-D applica-
tion.

3. Investigating the possibility of using an isotropic and anisotropic scaling
process in creating the tessellated space, for 1-D application.

4. Developing a Python code to build pre-fractal model and it is correspond-
ing tessellated model automatically for 2-D model. Especially to ease
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calculating the F-Function; and calculating then assigning the complex
and local material properties.

5. Presenting complex material distribution matrices on different tessellated
continuum spaces of non-product fractals with the aid of Python code in
ABAQUS.

6. Testing the analytical solutions on both spaces (fractal and tessellated) to
investigated the theory accuracy for 1-D and 2-D models.

7. Testing the numerical analysis of the fractal and the tessellated on 1-D and
2-D models.

8. Testing the finite element method (FEM) in performing different analysis
such as static, frequency and dynamic on each model separately.

9. Expanding the validity of the proposed theory by testing different boundary
conditions and vibrating excitations cases.

10. Investigate the possibility of using different pre-fractals as structures in
this study, such as the Sierpinski Carpet and the Vicsek fractal.

1.5 Outline
The next chapters are presenting the following information

1. Chapter Two presents an extended historical background for vibration of
structures, fractals and tessellated.

2. Chapter Three explains the main continuum equations that are employed
in this work. Also listing the main steps of applying the TCM theory.

3. Chapter Four demonstrates the static analysis for the tested pre-fractal
models in 1-D and 2-D spaces.

4. Chapter Five tests the dynamic analysis for 1-D pre-fractal models.

5. Chapter Six verifies the TCM theory for the dynamic analysis for 2-D
pre-fractal models.
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6. Chapter Seven lists the main conclusions and future works.

1.6 Publishing
• Posters:

– Show Case University of Manchester, 2016.

– MACE PGR Conference, 2017.

• Conference Papers:

– 2-D Study on Free Vibration Analysis of Pre-fractal Structures Using
Finite Element Method , MACE PGR Conference.

– Tessellated continuum mechanics: forced vibration of cantor Dust-
Like structures, Fourth International Conference on Mathematics and
Computers in Sciences and in Industry (MCSI), 2017.

• Journals Papers:

– A tessellated continuum approach: A Similitude Approach to Holey-
Beam Vibration,Applied Mathematical modelling , 2018.

– A tessellated continuum approach for the static analysis of perforated
structures, Computers and Structures, 2019.

40

32



Chapter 2

Literature Review

2.1 Introduction
This chapter introduces the background and the historical development of the
following subjects: theory of plates; fractals; and tessellated. In more details, the
main methodologies associated with the use of fractals in industry along with a
brief introduction to each application. Most importantly, a brief description of
the novel method called the Tessellated Continuum Mechanics (TCM) theory and
its application in the literature is presented. This chapter ends with a summary
of the main observations on the presented literature review about the subjects
mentioned above.

2.2 Vibration analysis
Vibration analysis of industrial machinery has been around for many decades,
but gained prominence with the introduction and widespread use of the personal
computer. Vibration analysis refers to the process of measuring the vibration
levels and frequencies of industrial machinery, and using that information to
determine the ’health’ of the machine, and its components; a very simple example
is an industrial machine (such as a fan or pump) when it is operated, it generates
vibration.
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2.2.1 Applications perforated plates

The mechanical and dynamical behaviour for irregular perforated structures is
crucial to be considered for optimisation purposes, due to the wide range of
their applications in industry, as mentioned earlier in Chapter One. Again, the
perforated plate is mostly used in nuclear reactors. There are several perfo-
rated structures, which provide both structural support and flow-passage of a
coolant [16]. In the automotive industry, perforated plates are used in vehicle
exhaust silencers, attenuators in jet engines [17]. Moreover, the applications of
micro-perforated plates are well found in architecture and urban in Mandelson
aeronautics and space industries for their well-known noise reduction property
[18]; Thus perforated plates are also widely used in absorber design.

2.2.2 Theory of plate

Many scholars have developed the theory of plates. However, the exact solution
is quite rare and only available for simple boundary conditions [19]. Therefore,
the numerical methods are more widely recognised in this type of work. Most
scholars are satisfied with using two-dimensional (2-D) Finite Element (FE)
models to simulate the response of smart structures and avoid using the use of
three-dimensional (3-D) models due to their complexity compared to the 2-D
models with a comparable accuracy. Semi closed-form solutions of the dynamic
response of plates were presented mainly for a few cases of boundary conditions,
such as those of simple support at all four edges of plate (Navier-type solutions)
or at parallel edges (Levy-type solutions) [20].

2.2.3 Theory of perforated plates

O ’Donnell in 1970 [21] introduced an astonishing idea of predicting the static de-
formation of perforated plates. The researcher introduced the using of equivalent
elastic properties that make a solid plate’s deflection identical to that of a whole
continuous thick plate. This solution depends on using deflection efficiency
z = G/G⇤, where G is the flexural rigidity of the plate, while ⇤ is denoted for
the equivalent plate and depends on the type of perforation. On the same hand,
ligament efficiency r depends on the degree of the plate perforation and it is
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defined by r = p/d; where p is the pitch and d is diameter of the holes. These
outcomes are implemented in ASME in 2004, and have a limitations regarding
the hole’s shape and the distribution of the holes on an array of equilateral trian-
gles, besides the holes thickness compared to the hole pitch as cited in reference
[22]. The results is found to be taken under a static loading that will cover only
the first mode. And for this reason later researchers had to redefine the material
properties for the dynamic analysis as will be explained later.
Due to the difficulty of analysing this field, since 1976 researchers attempted to
use numerical methods in dealing with these models. For example, Aksu and
Ali. [23], in the same mentioned year succeeded in demonstrating the possibility
of using 2-D finite difference method (FDM). The researchers used this method
in computing the natural frequency and modal analysis behaviour of plates with
rectangular cut-outs for the first time in the literature. The results showed that the
natural frequencies were lower than the experimental data. Later on, in 1988, the
first numerical and experimental validations to the calculations of the dynamic
structural response were investigated by Choi [24]. This solution was found to
be inaccurate because it used the concept of equivalent solid material properties
where a static approach is used to solve a dynamic problem. Later, the researcher
tested different perforated plates. For example, in 1996, specific parameters
that define the geometry of the holes were introduced to provide a better un-
derstanding of the effect of one hole on the natural frequencies of perforated
plates as in Boay [25], where they presented a parametric study on a composite
perforated plate by changing the hole diameters and boundary conditions to find
their effects on the natural frequencies and mode shapes. Another researcher in
the same year compared the tensile behaviour between the numerical and experi-
mental results of the shadow mask1 by Baik et al. [26] where they obtained good
results by FEM. On the other hand, some researchers used a model-updating
technique to improve the FEM analysis in car exhaust [27]. These methods are
not practical for a complicated structure. Besides, this approach is considered to
be time-consuming, because of the necessity of designing and manufacturing
new experimental specimens for each case.
Unfortunately, researchers found that the accuracy of the equivalent material

1shadow mask: is a technology of manufacturing the Cathode Ray Tube (CRT) television and
computer screen display.
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properties is less than the real case. In 1997, Kaap et al. [28] found that the
modal frequencies based upon equivalent static material properties give results
less than those obtained from modal frequencies with real material properties by
using FE methods.
Some alternative methods are used nowadays, such as in Kalita and Haldar
[29], where the authors studied the dynamical characteristics of thick and thin
rectangular plates with central cut-outs by incorporating a first-order shear de-
formation theory (FSDT) in the FE method on the frequency response. The
non-dimensional frequency parameters for plates of various aspect ratio, bound-
ary conditions, and thickness ratio were computed.
Jhung in 2006 [30] used modal analysis to propose equations to calculate Young’s
moduli in a perforated plate with a square penetration. Most recently, researchers
are studying more complicated configurations such as considering the hydro-
elastic water impact of a perforated plate by using the commercial explicit finite
element code LS-DYNA [31]. Furthermore, all the previously discussed work
only tests uniform hole scattering patterns. Besides this, the listed works above
were limited to boundary condition such as free, clamped, and simply supported.

2.3 Fractals
Fractals are constructed by two different methods. A lot of complex geometries
are represented using fractals, but their uses in practical analysis is laid with
lots of difficulties. The reason behind this is the lack of meaningful measures of
higher iteration fractals, where traditional dimension of length, area, and volume
are undefined because of non-integer Hausdorff fractal dimensions2 [32]. This
will affect defining the traditional physical quantities such as fluxes (rates per
unit area) and densities (mass per unit volume). Attempts to overcome these
difficulties can be found in the literature [33]. One possible method to avoid
the problem altogether is to use pre-fractals, which are explained in detail in the
following sections:

2Hausdorff fractal dimensions is a measure of roughness and/or chaos that was first introduced in
1918 by mathematician Felix Hausdorff, where the number zero represents a single point; 1 represents a
line; 2 represent a square; and finally a cube is represented by number 3
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2.3.1 Background

In physical problems, fractal geometry is not possible to use, as has been men-
tioned earlier in Section 2.3. This is because that the traditional definitions
of stress, pressure, and strain become non-quantifiable on these spaces. So, it
better to work with pre-fractals, where these quantities are definable. This can
be rephrase as pre-fractal represents a closer approximation to reality than the
fractal itself. Moreover, fractals are generated by recursion process. Infinite
sequences of pre-fractal recursion can generated a fractal, while choosing the
limits of this iteration is following the researcher’s insight.
An alternative perspective to view pre-fractal is in like viewing other geometric
finite element objects such as cylinders, spheres, cuboids, etc. Although the fact
that these models are not appear in real physical space but still are used to fill the
engineering analysed models. The application of fractal geometry from mathe-
matical perspective to a physical fractals can be found in the references [34] and
[35]. It is necessary to recognise that the standard definition of stress and strain
is not defined on a fractal. This led to use fractional derivatives [36]. Although
this science is consider new compared to the other branch of mathematics, where
it used for the first time in 1695, there is still no united definition for fractal
calculus but the Riemann one [37]. Other definitions to fractional derivatives
[38], but still give rise to zero for a constant function. Again using pre-fractals
to replace the analysis on fractal is can be found in [39]. This is enabled using
the governing equations in describing the standard physical quantities which are
quantifiable on pre-fractal space. Some researchers [35] established a general
framework for fractal mechanics. All what is mentioned earlier are showing the
need to the TCM methodology to be particularly useful in obtaining classical so-
lutions. The methodology presented in this project is founded on small defection
theory and modal analysis.
Some of the interesting research in the filed is testing the acoustics damping
properties for Peano-fractal where the results proved that this geometry has a
better damping characteristics than the current used models [40]. A dynamic
analysis is investigated for Von koch fractal as a CF beam [41] with ignoring the
damping and the external force. This is accomplished by using the transfer law
to find the elasticity and the mass. Some researchers have used fractals in the
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description and testing methods to quantify different types of data in calculus,
such as quantifying the area-restricted searching (ARS) for a prey searching
predator animals, for understanding animals’ critical habitat in searching for
prey and foraging specialisation [42].

2.3.2 Industrial applications

Fractals can be found almost everywhere and in all areas of science. This section
introduces a short list of the main areas where scientists have tested the beauty
and the efficiency of applying pre-fractals in industry:
Salim and Ali, in 2011 [43] used Peano-fractal type second iteration in designing
a new dual-band internal printed monopole antenna. This design provided more
compact design than the traditional one with the same efficiency. Furthermore,
pre-fractals have also been used in the observation of a material microstructure,
see Ozaki and Nishigori, in 1988 [44] (see Figure 2.1). Designing a more efficient
radiator is presented by Rozanova et al. [45], in 2012, who found that using
irregular shapes for heat diffusers allowed them to increase heat transfer, but the
efficiency decreased with time. Figure 2.2 shows the pre-fractal shape used in
Rozanova’s study, which is a type of the Peano-fractal. This work showed that
radiators with irregular surfaces permit an increase in the cooling of pulsed heat
sources. In the end, different work has been performed by Blyth and Pozrikidis
[10], in 2003, to improve the 2-D solutions of a heat conduction equation of
irregular surfaces of Von Koch pre-fractals, which are similar to a real snowflake
shape.

Lastly, in 2016, [46] researchers found that fractal zone plates offer much
improvement in performance when it comes to chromatic aberration and depth
of field over Fresnel lenses. A zone plate consists of a set of radially symmetric
rings, known as Fresnel zone plates (FZP), which alternate between opaque and
transparent. Light hitting the zone plate will diffract around the opaque zones.
The zones can be spaced so that the diffracted light constructively interferes at
the desired focus, creating an image (see Figure 2.3).
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Figure 2.1: SEI (secondary electron images) observed on the TGS plate [44].

Figure 2.2: Experimental visualisation of heat propagation in 2-D radiator [45].
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Figure 2.3: Schematic section diagram of the generation for a Fresnel zone plate
[46].

2.3.3 Pre-fractal applications in mechanics

Some of the work that can be related to the pre-fractal in solid mechanics is that
by Katlia and Haldar in 2015 [29]. A 2-D plate with a central cut-out can be
considered as the first pre-fractal structure. The researchers used a nine-node
isoperimetric plate element3 in conjunction with first-order shear deformation
theory4 for free vibration analysis of rectangular plates. More extensive study
on thin and thick plates including a Sierpinski Carpet of the first set as structure
by considering different aspect ratio was performed. The researcher found that
rotary inertia has a significant effect on thick plate analysis, while this effect
can be ignored in a thin plate. Moreover, increasing the thickness ratio faces a
decrease in frequency. Besides this, when the researchers increased the cut-out
area, they found that it affected the fundamental frequency and forced it to
increase, too. Finally, the natural frequency is lowest when an edge is kept free,
followed by a simply supported edge and at a maximum for a clamped edge, i.e.
natural frequencies will increase if constraints at the boundary are also increased.
Due to the fact that Euclidean space deals with regular geometries and it is not
suited for describing irregular objects such as those in nature, where stochastic
models5 are taken into account, Tarasov in 2005 [7] provided an alternative
approach to describe fractals by using the concept of fractional integration to
represent the mass of a fractal structure. These integrals were used to describe

3Isoperimetric structure having equal perimeters, this term is used particularly for geometrical figures
4mainly this theory implies a linear displacement variation through the thickness
5 Stochastic model is a tool for determine probability distributions of potential outcomes by qualify a

random variation in one or more inputs.
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the dynamical rules in the fractal media. This led to a better description of
the physics in fractal media; the author suggested that fractal dimension can
be best calculated by the box-counting method6. Moreover, he considered a
fractional generalisation of the Navier-Stokes7 and Euler-Bernoulli equations by
considering sound waves in fractal structures.
Furthermore, Starzeski [47] derived a formulation of the second law of thermo-
dynamics for mass density media, which has a fractal structure. The derivation
hinges on the concept of internal (kinematic) variables and internal stresses,
as well as the split of the total stress into its quasi-conservative and dissipa-
tive components. The dissipation function is recognised to be functional in
fractional-type rates of strain and internal variables. Postulating the thermody-
namic orthogonality on any length scale allowed derivation of constitutive laws
of elastic-dissipative fractal media involving generalised derivatives of strain and
stress [48]. They tested some basic methods in thermodynamics, some of which
were found not to match their results. They ended with an note that Ziegler’s
electro-mechanics is very suitable for creating a random media precisely, which
is an approach that scale-dependent homogenisation of elastic/dissipative media,
because it enable an elastic dissipative of a media by allowing a scale-dependent
homogenisation this is the core of the Hill condition, where there are two ap-
proaches for solutions, the first is either by considering the stress and strain are
the same or considering the energy / power is equivalence between the smooth
continuum and the heterogeneous. Another contracting note is found, which is
thermo-mechanics of Truesdell’s is not follow the Hill condition. This is because
that the stress has the main focus compared to the energy .
Butera and Paola, in 2014 [9] were able to fill the gap between fractals and frac-
tional calculus, based on the relationship established between power laws and
fractal geometries. They tested their theory of a viscous fluid seeping through a
porous medium that they modelled as a fractal-shaped hollowed brick. Fractal
theory in the vibration field is generally found in literature reviews through its
implementation in condition monitoring for milling tool wear [49-52]. All the

6box-counting method is used for gathering data or analysing complex patterns by breaking them into
smaller dataset or object. Then analysing the pieces at each smaller scale. This method can be represented
by the zooming in or out the studied models.

7Navier-Stokes method describes the motion of viscous fluid substances by applying the second law
of Isaac Newton to fluid in motion.
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listed researches are describing the complexity of running the analysis on the
pre-fractal space. And the only method used to analyses geometries with the
same shapes as the pre-fractal has been implemented by the FEM and the FDM
and presented for simple cases only.

2.4 Tessellation
Fractals allow the representation of complex self-similar geometries, but their
application is found with difficulties, which stand from an inability to define
traditionally derived physical quantities such as length to stress. Due to the wide
range of pre-fractal’s application, this project is focusing on such structures. In
particular, this project is interested in driving a general transport approach for
pre-fractals. This is completed by using a specific type of perforated plates that
can rearranged into a continuum one by utilising a hole-fill map concept. The
hole-fill maps is a part of the fractal construction process.
The following section gives explanations of the novel TCM approach and its
successful development steps through the literature review:

2.4.1 Introduction

This project is based on replacing analysis of fractal structures by solving the
problems on the tessellation. Employing the TCM approach in predicting the
static and dynamic response of a complex perforated plate would overcome the
need to calculate the equivalent elastic properties (at least for dynamic analysis).
Quantities of singular interest in a vibrating system are displacement, momentum,
velocity, mechanical energy in the form of kinetic and strain energy, time, and
density. These must be linked between the pre-fractal and the tessellated space.
The derivatives of these links/rules are going to be explained in more detail in
Chapter Three.

2.4.2 Practical implementations of tessellation

The first work discussing the possibility of solving problems in the pre-fractal
domain was published in 2011 by Davey and Rasgado [15]. This work covered
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the possibility of calculating the analytical solution of static and dynamic anal-
ysis in a 1-D beam structure as pre-fractal. The results were remarkable when
tested for two different vibration conditions (longitudinal and lateral). Idealised
material properties were used. A symbol of the presented results are introduced
in Figure 2.4. In this concept, each region on the pre-fractals is matched with
contiguous regions on the continuum, by matching the strain and kinetic energy
on both regions. This paper is considered to be the first work to point to the
possibility of using the tessellated analysis but did not explain it clearly.
Later on, in 2013, Davey and Prosser, [11] tested the TCM theory by deter-

Figure 2.4: Truncated Fourier representation of initial beam displacement on Êk ,
where k = 0,1,3 , and 5 [15].

mining the analytical solutions for conductive heat transfer problems through
a binary composite consisting of two isotropic materials with extreme material
properties. The results showed that it is possible to determine finite temperature
and heat transfer rates on pre-fractal dust for a two-phase moving boundary prob-
lem. Moreover, they established a methodology for determining the analytical
heat transfer in temperature terms on fractal product dust. In this paper, the
concept of an equivalent continuum solution is established more clearly, where
the numbers of regions on the pre-fractal are matched with adjacent regions on
the continuum so that energy can be equally transferred between the regions.
Moreover, the transient behaviour is expressed in Figure 2.5 by using Fourier
series (Fs) and FE. Moreover, another pre-fractal structure is tested, such as a
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Cantor-dust, see Figure 2.6.
Further investigation was made by Davey et al. in 2015 [53], where more

Figure 2.5: Temporal temperature response by Fourier series (Fs) and FE at
different positions along the rod for Ê4 [11].

Figure 2.6: Pre-fractals of different Êk type Cantor Dust product [11].

complicated pre-fractal shapes such as Sierpinski gasket, Sierpinski Carpet and
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Figure 2.7: Rotated Cantor-dust pre-fractals and their corresponding continua
[53].
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Rotated Cantor-Dust, see Figure 2.7, were studied. The authors introduced a
novel procedure to create hole-fill maps, which provides a direct way to generate
the corresponding tessellated structure from its pre-fractal counterpart. The
tessellated continuum is constructed in a process that essentially mirrors the
pre-fractal construction process itself. They suggested two methods for hole-fill
maps. The first is by using function compositions. The second is by linking
the elements of a fractal with the corresponding elements on the tessellated
continua by using the formula of function gradient (as will be discussed in detail
in Chapter Three). For analytical analysis, the former approach is more suitable,
since the requirement for the precise form of the governing partial differential
equations can be elegantly established using the hole-fill maps and the integral
transport equations. However, the weighted forms in the numerical analysis for
the transport equations can be established and immediately applied using the
second approach. Besides, they have presented the transport equation to link the
physical properties on fractal to tessellation in both spaces. However, the authors
had some restriction regarding choosing the fluid conductivity and the inability
of their model to represent temperature differences perpendicular to the direction
of the flow.
Davey et al., in 2016 [54], proposed a form of TCM theory coupled with the
Galerkin finite element method to test the analysis of heat transfer on cellular
structures. These structures are pre-fractals with increasing complexity. The
results showed that the suggested method gave high accuracy convergence, but
it required high heat transfer coefficients. The researchers also improved the
hole-fill map equations and made them finer, see Figure 2.8 compared to the
analysis run in reference [11]. The authors also found that the results were
significantly improved.

Another approach is implemented by Jiang et al., in 2016 [55], where they
tested the possibility of applying a discontinuity network (DN) with the Galerkin
finite elements in the tessellated space. The discontinuity network is about
creating a network of lines/surfaces where discontinuous behaviour is possi-
ble. The discontinuity network can be simultaneously established during the
formation of the fractal and associated tessellation, resulting in an elegant pro-
cedure controlled through a relatively small number of maps. The physics of
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Figure 2.8: University of Manchester FE code represent the contour plot for
temperature on Ê3 and T̂3 with different meshes [54].
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the tessellations/pre-fractals is represented using weighted transport equations,
which can be formulated directly without recourse to partial differential equations
(PDEs). These techniques will be discussed in detail later in section 3.6. In par-
allel with the development of the tessellated theory, a related activity concerned
with scaling has appeared in the open literature. The scaling work is founded
on the idea that scaling can be achieved through the expansion/contraction of
space itself. The first application of the concept was in metal-forming processes
[56-58]. More recently the same method has been validated in bio-mechanical
experimentation under isotropic scaling [59] and in the scaling of the powder
compaction process [60]. More importantly the rule of finite similitude is found
in [61].

2.5 Summary
The principal points found in the literature review are set out in brief below:

1. The only types of perforated plates that are studied in the literature are
uniform perforated plates with simple shapes of holes (such as square, and
circle).

2. Researchers typically use equivalent plate properties to investigate the
static and dynamic plate behaviour, and this method has shown a deviation
from the experimental results.

3. Using a model-updating technique to predict the dynamical elasticity of a
perforated plate is an impractical approach and it is time-consuming.

4. Fractal geometry is an efficient tool to represent the surfaces or bodies that
the classical method failed to represent.

5. Researchers have extended the capability of pre-fractal science to not
only presenting shapes of objects but also using it as models in physical
analysis.

6. Different types of pre-fractal were used in the literature to represent the
physical behaviour of systems.
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7. The governing equations are much simplified when using pre-fractals
rather than using fractal where the solution are simplified to some extent
the analysis.

8. One of the earliest papers that deals with pre-fractal solution as a contin-
uum is found to ignore the discontinuity in lateral deflection in beams as
in reference [15] where it deals with it as continuous.

9. A mathematical approach began to arise in fractal analysis in 2013, which
is the TCM method.

10. Some limitations regarding the TCM were raised in reference [53], where
the researcher had to be restricted in using a particular fluid conductivity.

11. A more developed hole-filling map technique is found in reference [15]
for the TCM.

12. The idea of the discontinuity network (DN) in TCM is first implemented in
reference [50] for matching the physics on both pre-fractal and tessellated
spaces.

13. Since 2013 and till the current time the TCM theory has been tested and
developed in different aspects such as in references [11, 53-61].

The gaps that are going to be tested in this work are in points 1,5, 8 and 12, 9,
10, and 13.
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Chapter 3

Tessellated Theory in Continuum

Mechanics

3.1 Introduction
The transport method has proven its capability in matching the physics of com-
plex structures as presented in [11, 15, 53-61] and as stated in the literature
review. The general laws of physics are illustrated extensively in Section 3.2,
which introduces the Finite Similitude method (FS). This method is founded on
the idea of proportional transport equations representing the governing physics
in the pre-fractal and tessellated spaces. The transport form of the governing
equations is ideal for representing the discontinuous physics preserve in pre-
fractal geometries and to capture all conservative and non-conservative physical
laws.
Defining the tessellated structure in more specific mathematical forms and
demonstrates the generation of the principal rules of connecting both spaces
(pre-fractal and tessellated) are illustrated in this chapter. Conveniently, and
efficiently, it is possible for both the pre-fractal and the tessellation aspects to be
generated using a recursive method. The derivative of the main scalar constants
are briefed, while a verification to the theory by linking the strain energy and
calculating one of the most critical aspects in this work which is by finding the
link between the elasticities are presented.
The following sections are all related in explaining the general headlines of the
developed theory from previous works. It is necessary to present the theoretical
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background in such method/style because in each chapter there will be a fill
separated explanation to how apply the general theory (listed here) to on the stud-
ied problems according to the analysis type (the project work on the theoretical
section are explained in the following chapters).
The main theory concepts are presented in Sections 3.3, and 3.4 which are con-
cerned with explaining the hole-fill maps, the linear mapping function for wave
theory, and the discontinuity network (DN) on the tessellated space. Finally,
Section 3.5 is presenting the general theme of implementing the TCM theory in
1-D and 2-D applications.

3.2 Background theory
To perform analysis on discontinuous pre-fractal-like physical structures, a partial
non-integral derivative is invariably needed. The solutions of such problems
are implemented with vast difficulty, and the connection to physical systems
is presently not fully understood. In an attempt to bypass these practical and
conceptual difficulties, the tessellated continuum method was introduced. The
approach involves the creation of a tessellated structure whose elements are in
one-to-one correspondence with elements on the pre-fractal representing the
physical perforated geometry. Both pre-fractals and tessellations are created
recursively, and the map that relates their elements is termed as a hole-fill map
because it has the function of closing holes when applied to the pre-fractal. Finite
similitude [56] and [61] is used to relate the physics in corresponding spaces
occupied by different spaces let assumed in this case to be tessellated and pre-
fractal elements. Finite similitude exists when spatial transformations are linear,
which can readily be achieved with the use of simple spatial elements (line,
triangles, tetrahedrons etc.). Figure 1.5 illustrates how to relate the pre-fractal
and tessellated spaces. Two basic maps are needed; a direct map (the hole-fill
map) and its inverse, which serves to lift results from the tessellation to the
pre-fractal. The tessellated space being continuous permits classical analysis and
numerical tools such as the finite element method to be applied. The tessellations
and pre-fractal are separately created by means of iterated function systems
(IFS) but involve the same number of contraction and expansion maps for the
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pre-fractal and tessellation [53]. The tiles on the tessellation can also double up
as a finite element mesh in any numerical analysis. The notation representing
the pre-fractal structure is Êk , where k is the number of iterations used to create
the pre-fractal using an iterated function system. Similarly, to generate the
tessellation T̂k the exact same numbers of expansion maps are involved. The
hole-fill map can be formed directly by identifying corresponding elements in
pre-fractals and tessellations or indirectly by means of function composition of
the contraction and expansion maps and their inverses. The latter approach is
more amenable to numerical analysis. Figure 3.1 illustrates the pre-fractal Cantor
set and the corresponding tessellated structures, while Figure 3.2 to Figure 3.4
show the Sierpinski Carpet for different complexity; while Figure 3.5 to Figure
3.7 present the Vicsek fractal with their corresponding tessellated models. To
accommodate discontinuous physics pervasive to pre-fractal geometries, it is
advantageous to use weak forms of the governing equations. To this end the
weak-continuum equation [62]:

D⇤

D⇤t

Z

W⇤
rydV ⇤+

Z

G⇤
ry(v� v⇤) ·ndG⇤=�

Z

G⇤
Jy ·ndG⇤+

Z

W⇤
rb⇤dV ⇤ (3.1)

It is sufficiently generic to capture all conservative and non-conservative physical
laws.

Here W⇤ is a control volume (CV) in the form of a continuous open set of points
and surrounded by an orientable boundary G⇤. Moreover, y is a specific field
variable; r is material density; while v is the material velocity; v⇤ is the CV
velocity; n is an outward pointing unit normal vector, Jy is a source term and
b⇤ is a flux. The time derivative used in Equation (3.1) is connected to the CV
velocity v⇤ through the identity D⇤/Dt⇤ = ∂/∂ t⇤ = v⇤ ·— [63], where — is the
traditional gradient operator. To develop the tessellated space, it is important
to explain the transport equation on both spaces separately. In more details, the
five transport equations on the pre-fractal space of concern here are those for
space, mass, momentum, movement and energy. Explicitly stated the transport
equations are:
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Figure 3.1: The Cantor set of pre-fractal Êk and its corresponding Tessellated T̂k
structure in x, y [11].

Figure 3.2: Sierpinski Carpet Ê1 and its corresponding Tessellated T̂1 structure
with the discontinuity networks.
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Figure 3.3: Sierpinski Carpet Ê2 and its corresponding Tessellated T̂2 structure
with the discontinuity networks.

Figure 3.4: Sierpinski Carpet Ê3 and its corresponding Tessellated T̂3 structure
with the discontinuity networks.

54



Figure 3.5: Vicsek pre-fractal Ê1 and it’s corresponding tessellated structures T̂1
with the discontinuity networks.

Figure 3.6: Vicsek pre-fractal Ê2 and it’s corresponding tessellated structures T̂2
with the discontinuity networks.
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Figure 3.7: Vicsek pre-fractal Ê3 and it’s corresponding tessellated structures T̂3
with the discontinuity networks.
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where u is displacement; s is the Cauchy stress tensor [64]; e = u + 0.5v · v
where u is the specific internal energy. On the other hand, the equation on the
tessellated space can be represented by the following equations:
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Again all these equations are applied to both pre-fractal and tessellated spaces
separately. The subscripts ps and ts are used to identify pre-fractal and tessellated
spaces, respectively. Although Equation (3.2) to (3.11) can be applied to W⇤

ps

and W⇤
ts there presently exists no relationship between the physics in the two

spaces, yet.

3.3 The Hole-fill maps
The theory developed in this work are not clear towards the finite similitude
approach and if it can be applied on the whole physical space or some portion of
it. This abstraction is crystallised in this section where similitude is restricted
between portions of the physical space and tiles in a tessellation. By forming a
tessellation, i.e. a collection of tiles, finite similitude can be established between
the selected region in the physical space and the tessellation. The physical space
are formed by using the pure IFS function listed in Appendix A [65]. In the
same manner, the tessellated space is created by using the IFS for fractals with
the hole-filing maps.
Going through the procedure of constructing the pre-fractal and its corresponding
tessellated structure is essential because constructing the hole-fill map techniques
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will be iterated in a similar method. Application of tessellated continuum me-
chanics to plate vibration involves the representation of the plate by a pre-fractal
Êk. The physics on Êk is transferred to a tessellation T̂k and represented exactly
at least down to the smallest element/domain considered. The construction of
Êk involves the recursive application (k times) of a relatively small number of
contraction maps Si and the procedure is referred to as an IFS [5]. The recursive
procedure starting from an initial domain Êo is described by the relationship
Êk =

S
i=1 Si(Êk�1). An initial tessellation is placed on Êo and has two functions,

i.e. to form a kernel for the final mesh and to provide a mechanism for producing
what is termed a hole-fill map. Prior to discussing these aspects however, it is
necessary to understand how a tessellation is produced. This involves a process
almost identical to that used for pre-fractal formation, i.e. starting from T̂o = Êo

(again ensconced with the same initial tessellation) the recursive relationship
T̂k =

S
i=1 Pi(T̂k�1) is applied. In this case, however, Pi are affine expansion

maps and by design, an identical number of expansion and contraction maps
are employed. As a consequence, the number of tiles in the tessellation T̂k is
identical to the number of pre-fractal elements in T̂k. In this way, a one-to-one
correspondence is made between tiles and pre-fractal elements, which means
that vibration analysis results performed on a tessellation. T̂k can be lifted and
returned to the corresponding pre-fractal Êk.
Typical tessellations for some classical fractals are depicted in Figure 3.1 with
affine contraction. In this figure the pre-fractal are constructed from one contract-
ing maps that will form its whole geometry. This geometry mapping is presented
by the following equation S = (1/3)k. On the other hand, the hole filling maps
that created the tessellated geometry for the Cantor set type of pre-fractal are
equal to P = (1/2)k and the relation between the models is presented by the
F-Function, which is equal to F = (3/2)k.
For 2-D models, the initial domain Ê1 has eight tiles for the pre-fractals in
Figure 3.2 and eight for those in the tessellated structure of T̂1, and each tile is
purposely triangular. The creation of pre-fractals and tessellations is achieved
independently using the recursive application of maps given in Appendix A for
the pre-fractal. A hole-fill map has the function of closing holes and producing
the corresponding tessellation. The independent creation of pre-fractals and tiles
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means that triangular elements in each domain is a one-to-one relationship. This
relationship is shown explicitly in Figure 3.2 by means of arrows connecting
selection of tiles in each domain. A hole-fill map for a tile is a linear relation-
ship which maps element from a pre-fractal domain into a different element
in the tessellated space; the map is linear as a consequence of the triangular
fields involved. The definition of F is achievable with the concept of a hole-fill
map introduced in reference [53] advanced by Davey et al. [54]. Basically, the
hole-fill map is a geometrical linear scaling procedure that is used to close the
holes in the pre-fractal space and mirror it to create the tessellated space. In
the hypothetical space, this procedure is used to stitch the structure, makes it
continuous, and defines its characteristics. All this can be done by using linear
scaling constant value, but it also could be done by using different linear scaling
values for different parts in the same structure. The only case that is tested here
is the constant scaling function known as local mapping. In general, the coordi-
nates/length on the pre-fractal is expressed by xps and it is xps 2 Êk, while the
tessellated coordinate is defined by xts which is represented by xts 2 T̂k ⇢ Êk. On
the other hand, the relation between the coordinates of both spaces is represented
by xts : Êo = Êk

S
(Êo/Êk)! T̂k, and this is what we call it the local hole filling

maps. These maps are a continuous, surjective but not injective function. Due to
the fact that the Cantor set is a theoretical structure, the authors found that the
best method to close the holes is to maintain the same initial length in 1-D and
2-D problems, which is (`o) that created the pre-fractal by using the iteration
function system (IFS); and use equivalent values for the local scaling; then by
using a Nanson’s identity ( dV ⇤

ts = JdV ⇤
ps and dG⇤

ps = JdG⇤
ts ·F�1 [66] ) for 1-D

and 2-D models, for more details see the following section:

3.3.1 Linear mapping function

The core of continuum mechanics is displacement and deformation. Furthermore,
the centre of this core is the deformation gradient. The deformation gradient
illustrates the type of deformation that is applied to the objects. In general, there
are two main types of deformations the rigid body translation and rotations or
combinations of both. This is the main principle that is used to describe any
process in physics at any time of that process. By following the same principle,

59



the direct relationship between the references can be created. And to give a
better demonstration to this process, the following example is showing how
the linear link is created. A vector X is used to define the coordinates of the
undeformed reference, and x is a vector that is used to define the coordinates of
the deformed reference. The deformation gradient denoted by F

x⇤ps
x⇤ts

, is considered
as the derivative of each element of the distorted vector with respect x to the
undistorted vector X , where x = x(X). So for the models in 1-D to find the
geometrical relation that relates both spaces, the scaling function is simply
expressed by [66]:

| F
x⇤ps
x⇤ts

|= ∂xi

∂Xj
=

`ts

`ps
= (

`o/2
`o/3

)k (3.12)

On the other hand, the F-function for a 2-D function is created by relating the
geometry of any two sides of the linear, triangular shapes through using the same
concept of the Nanson’s identities. Due to the complexity of the 2-D structure,
this procedure is repeated for all the local initial meshes of the interested models.
For this reason, a Python code is used for this task, see Appendix C. From these
transportations, we can create the linear mapping tensor function | Fs⇤

x⇤ | that
controls the geometry [66]: Thus

| F
x⇤ps
x⇤ts

|= ∂xi

∂Xj
=

2

664

∂x1
∂X1

∂x1
∂X2

∂x1
∂X3

∂x2
∂X1

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

∂x3
∂X2

∂x3
∂X3

3

775 (3.13)

Alternatively, Equation (3.13) must be translated into Python code to find the
exact values of the second order matrix of size (3⇥ 3). This is illustrated in
more details in Appendix C. The deformation gradient is found to be the link
that relates details on the pre-fractal space with its corresponding trials on the
tessellated space.

3.4 The Discontinuity Network (DN)
An another aspect also discussed in reference [55] is the concept of discontinu-
ity networks (DN) mathematically denoted by Dk. A tessellation is absent of
holes but a hole-fill map applied to a pre-fractal closes the holes, so the internal
boundaries of the closed holes that form the tessellation are applied to the DN.
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These boundaries are termed as a discontinuity network and like Êk and T̂k a dis-
continuity network Dk is created recursively and satisfies Dk = D1

S
i=1 Pi(Dk�1)

for k � 2. The DN are also labelled in 2-D models as in Figure 3.2 to Figure
3.7 by the red lines. Implementing the DN on a 1-D structure is essential to
link the structure in 1-D for pre-fractal type a Cantor set (see Figure 3.1), where
this is not a physical structure. For this reason, it needed a sort of connection.
These connections are in the form of a linear equation. These equations are
also needed to be mapped into the tessellated space. More information on the
scaling procedure can be found in the next Chapters. Finally, the ability to create
pre-fractals, tessellations and discontinuity networks recursively is an attractive
feature.

3.5 Procedural considerations
This section is concerned with listing the main procedure for initiating, testing
and verifying the Tessellated Continuum Mechanics (TCM) approach. This
is achieved through the direct application of mechanics principles to physical
structures represented by pre-fractals and on contrasting with results from the
tessellated approach. Verification is first performed on a 1-D structure repre-
sented by pre-fractals for the Cantor Set. Testing a 1-D structure is beneficial
as its simplicity enables the theory to be readily understood and appreciated
which would not be the case for more complex structures. Presented in brief, the
procedural steps for implementation of the tessellated approach with an outline
of the TCM method are as follow.

3.5.1 Step 1: Tessellation formation

Recall from Section 2 that although pre-fractals and tessellations are created inde-
pendently using iterated function schemes (IFS) the contraction maps involved in
the tessellations are constructed to close holes on the pre-fractal Ê1 =

S
1 Si(Êo)

[67]. This involves placing an initial triangular mesh on the tessellation on
Êo = T̂o followed by forming Ê1 =

S
1 Si(Êo), which includes a scaled replica

of the initial tessellation on each pre-fractal element of Ê1, i.e. on Si(Êo). The
initial mesh on Êo = T̂o although not unique, which can also be used as a means
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of mesh refinement in any finite element analysis, must have sufficient elements
to enable holes to be closed on Ê1 to form T̂1. The procedure is illustrated in
Figure 3.2 and can be imagined to involve the morphing of Ê1 into T̂1 by means
of tile distortion where selected triangular tiles are stretched linearly in order to
close the holes in Ê1. Once T̂1 is established and recognising that the number
of tiles on Si and Pi are identical it is then possible to form the maps to satisfy
the relationship T̂1 =

S
i Pi(T̂o). Note that each contraction map Pi is formed by a

collection of linear sub-maps each designed to map a tile in T̂o to a corresponding
tile in T̂1. Once the maps Pi are known it is then a matter of simple recursion to
create T̂k, see Appendix A.

3.5.2 Step 2: Direct mapping

Once Êk and T̂k are known and appreciating that each has the exact same number
of linear tiles it becomes possible to form the hole-fill map. As mentioned in
Section 3.3 for numerical work, a direct procedure of identifying corresponding
elements in Êk and T̂k is preferred. For any two corresponding elements, a
linear map taking points between them can be readily obtained. Under the finite
similitude theory, a map taking points in an element in Êk to a corresponding
element in T̂k is viewed as space distortion. Invariably elements in T̂k are bigger
or equal to corresponding elements in Êk, so the imagined distortion process
is one of local piecewise expansion. A spatial increment in the physical space
(where the pre-fractal resides) is related to an increment in the tessellated space
(where the tessellation resides) by the relationship dxts = F

x⇤ps
x⇤ts

·dxps [66], where

F
x⇤ps
x⇤ts

is the hole-fill map and plays a pivotal role in the similitude theory as
discussed in Section 3.3.

3.5.3 Step 3: Material properties

This section will be discussed separately in each chapter according to the type
of analysis. But an overall view can be briefed here. The theory outlined in
Section 3.2 incorporates a number of scaling parameters that must be set prior to
application of the method, i.e. ar ,au,av and ae but this has not been possible
to be discussed yet. However, some of these constants are either dependent
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or independent values. The tessellated approach has a peculiar advantage in
that analysis results for the physical space (where the pre-fractal resides) is
invariable of principal interest in any investigation. This means that the obtained
results/ response on the tessellation space are only use as a tool that have no
physical meaning at all but lead to the correct results once it is been lifted into
the pre-fractal space. This means that the scaling parameters ar , au and av

can be set to any arbitrary value without affecting the results in the physical
space. This can be contrasted against the typical setting for the finite-similitude
theory applied to scaled experimentation; in this case results in the physical
and scaled experiment have significance and constrain the parameters involved.
Although the parameters au and av can be arbitrary, it is of interest to select
these to imbue the tessellated space with physical attributes. Note here that
the hole-fill map F

x⇤ps
x⇤ts

varies spatially in a piecewise manner and consequen-
tially, in general, due to the fact that those constants mainly depend on the
hole-fill maps. These scalars can also take up different values on each tile in a
tessellation. A slightly more common alternative when dealing with fractals is
mass conservation, since mass is matched with tessellation, which in this case
applies to the whole tessellation. These choices control the ar , which have a
consequential impact on the choices for the other parameters, if similitude is
to be enforced, which means ar takes up the values J or 1, where J = |F |. A
feature of the finite similitude is the matching of important material properties
and Young’s modulus and Poisson ratio play a critical part in plate deformation
[68] and the relationship (check the next chapters to drive the constant scale) [69]:

Ci jnp
ts = aua�va�rhb�2J�1Fi

kF j
l Cklrw

ps Fn
r F p

w (3.14)

where Ci jnp
ts is the fourth order stiffness tensor [70]. This equation is arises from

the energy equation as will be discussed later; a i where i = u,v,r is a constant
scaling factor; F is the second order scaling tensor.

3.5.4 Step 4: Boundary conditions

In order to perform an analysis on the tessellated plate, it is necessary to apply
the appropriate boundary conditions. The boundary conditions are those on
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the pre-fractal but transferred to the tessellation under the scaling identities.
Displacement is transferred under a specific relationship ups, where for example
a fixed boundary displacement constraint on a pre-fractal immediately transfers
as a fixed displacement constraint on the tessellation. Similarly for stress (i.e.
s

ps
), which confirms that free-stress boundary conditions match in each space.

This is particularly pertinent for holes, which are stress-free in the physical space
and must, therefore, remain stress-free in the tessellated space despite no gaps
appearing at element edges in a tessellation.

3.5.5 Step 5: Analysis and post-processing

Following the creation of a tessellated structure and following application of the
same boundary conditions (which can involve free stress on some inner element
edges) it is a simple matter to run a traditional finite element analysis. All fields
on a tessellation can subsequently be lifted back to the pre-fractal using the
reverse-scaling identities, and more details will be provided later.
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Chapter 4

Static Analysis of TCM

4.1 Introduction
This chapter is concerned with testing the Tessellated Continuum Mechanics
(TCM) method in a 1-D and 2-D fractal as a holey-structure in static analysis.
This is accomplished by demonstrating how the TCM approach can be applied
to achieve very precise predictions of a pre-fractal-beam and pre-fractal-holey-
plate response. This work involves the construction of the pre-fractal holey
structure and its corresponding tessellated structure. Relating the pre-fractal
structure to its corresponding tessellated structure as it is shown to be possible
for static analysis in this chapter. This approach enables well known analytical
and numerical approaches to be lifted from continuous beams to be applied in
any corresponding pre-fractal beam. The analysis is based on matching physics
on locally scaled spaces and investigating the effect of applying different scaling
functions to create the tessellated continuum; isotropic and anisotropic scaling
options are considered here.
This chapter is divided into: An introduction to the fundamental concept of the
TCM theory for the static analysis is presented in Section 4.2. Then in sections
4.3 and 4.5 the main aspects of the theory are derived. Finite element (FE)
analysis on 1-D structures is demonstrated in Section 4.6, while section 4.7 is
concerned with the 2-D numerical analysis. Mainly this Chapter is focused
in investigating the static analysis. Besides, isotropic and anisotropic scaling
procedures to create a non-physical space (tessellated) is indicated. These
structures are tested only by static analysis for 1-D and 2-D models. In the static

65



analysis perception, the structure will endure different types of excitation, then
the beam’s deformation is examined by means of displacement and displacement
gradient.

4.2 Finite similitude: theoretical background in
statics

The concept of finite similitude has appeared in the recent literature [56] and
is concerned with the matching of continuum physics in two spaces. With this
approach one of the spaces (the trial space) can be viewed as a distorted version
of the physical space making it particularly useful for scaled experimentation.
Finite similitude applies to the whole region of space, so it is not immediately
transferable to tessellated continuum mechanics. However, the existence of a
hole-fill map raises the possibility that the physics on pre-fractals and tessel-
lations can be related through the mechanism of local space distortion. Each
element in a pre-fractal is related in a one-to-one correspondence to an element
in a tessellation (see Section 3.3) and therefore the physics between the two
corresponding elements can in principle be matched locally according to the
rules of finite similitude theory. The theory requires that the space-distortion
map is an affine map and indeed this is the case here for the hole-fill map as
confirmed by Equation (3.12). Since finite similitude is concerned with regions
of space it naturally gives rise to the control volume concept. Finite similitude for
tessellated continuum mechanics is therefore founded on the idea of proportional
transport equations representing the governing physics in pre-fractal and tessel-
lated elements. The transport form of the governing equations is suitable also for
representing the discontinuous physics pervasive to pre-fractal and tessellated
geometries and for the capture of all conservative and non-conservative physical
laws. The focus in this chapter, being on the static behaviour of continuum
mechanical structures, can be described by equations of the type:

�
Z

G⇤
i

Jy
i ·nidG⇤

i +
Z

W⇤
i

rib
y
i dV ⇤

i = 0 (4.1)

where W⇤
i is a control volume (CV) in the form of a continuous open set of points

surrounded by an orientable boundary G⇤
i and the subscript i refers to the ith
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element (either pre-fractal or tessellation). Furthermore, y is a field variable, r
is material density, ni is a unit normal vector pointing outward, by

i is a source
term and Ji ·ni is a flux.
Equation (4.1) is a general form that can be used to capture the conservative
and non-conservative quasi-static processes, which are assumed to be applicable
on both spaces. It is convenient to drop the subscript i from Equation (4.1) at
this point and relate two arbitrary corresponding elements in the pre-fractal and
tessellation by the differential dxts = F

x⇤ps
x⇤ts

·dxps [66]. Here also the subscripts

ps and ts denote pre-fractal and tessellated spaces, respectively and F
x⇤ps
x⇤ts

is the
hole-fill map that is fully described in Section 3.3, with all subscripts dropped
for convenience and clarity. The relationship dxts = F ·dxps enables Nanson’s
identities [71] to be applied to relate incremental volumes and areas, i.e. dV ⇤

ts =

JdV ⇤
ps and dG⇤

ts = JdG⇤
ps ·F�1 where J = det(F), dG⇤

ts = ntsdG⇤
ts and dG⇤

ps =

npsdG⇤
ps. Armed with these identities Equation (4.1) provides three equations,

as:
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where on multiplication of the last equation with ay > 0 (since seeking pro-
portional physics) and contrasting with the first provides the general scaling
relationships

rpsb
y
ps = ayJrtsb

y
ts (4.5)

and
Jy

ps = ayJF�1Jy
ts (4.6)

or alternatively for vector equations

rpsb
y
ps = ayJrtsGy ·by

ts (4.7)

and
Jy

ps = ayJGy · Jy
ts ·F�T (4.8)
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where Gy is an invertible scaling matrix.
It should be noted that non-degeneracy of the inner product facilitates the absence
of the unit normal nps from Equations (4.6) and (4.8) (since nps can point in any
direction) and symmetry of the tensor (Jy

ps and Jy
ts) immediately infers that G is

a function of F with scaling accounted for by ay in Equation (4.8).

4.3 Mechanical relationships
This section is concerned with the practical implementation of the general scaling
equation theory presented in the previous Section. This involves the application
of particular equations pertinent to elasto-static problems. Consider first mass
conservation, which in the two spaces means that Mps and Mts are constant where

Mps =
Z

rpsdV ⇤
ps,Mts =

Z
rtsdV ⇤

ts (4.9)

which on the substitution of the Nanson identity dV ⇤
ts = JdV ⇤

ps and multiplication
by a scalar ar > 0 (giving Mps = arMts), provides the relationship:

rps = arJrts (4.10)

which ensures mass in the two spaces is proportional, where ar is called the
density scaling factor. Consider further momentum conservation which being
a vector equation means that Equations (4.7) and (4.8) are applicable with
Gy = F�1, which provides the stress tensor identity

s
ps
= avJF�1 ·s

ts
·F�T (4.11)

where, as mentioned above, because of symmetric considerations Gy = F�1,
and body forces are related by rpsb

y
ps = avJrtsF�1 ·by

ts or in view of Equation
(4.10) this reduces to arbps = avF�1 ·by

ts .
Consider further movement, which was defined by Davey et al. [56], which in
the two spaces means that Mps and Mts are constant where

Mps =
Z

W⇤
ps

rpsupsdV ⇤
ps,Mts =

Z

W⇤
ps

rtsutsdV ⇤
ts (4.12)
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which on the substitution of Nanson’s identity (dV ⇤
ts = JdV ⇤

ps) and multiplication
by scalar auF�1 (giving Mps = auF�1Mts ), provides the relationship

rpsups = auJrtsF�1 ·uts (4.13)

but in view of Equation (4.10) reduces to arups = auF�1 ·uts, where the choice
Gy = F�1 follows from the relationship dxts = F ·dxps.
The final equation of interest is energy and for elasto-statics, strain energy is of
principal interest and in a control volume setting in the two spaces means that
Nps and Nts are constant where

Nps =
1
2

Z

W⇤
ps

s
ps

: e
ps

dV ⇤
ps,Nts =

1
2

Z

W⇤
ts

s
ts

: e
ts

dV ⇤
ts (4.14)

where e is a strain tensor and again on the substitution of Nanson’s identity
dV ⇤

ts = JdV ⇤
ps and multiplication by a scalar ae > 0 (giving N ps = aeNts ),

provides the relationship

s
ps

: e
ps
= aeJs

ts
: e

ts
(4.15)

Thus, relationships between the tessellated and fractal spaces have been estab-
lished for density, stress, displacement, force and strain energy but in order to
form a closed system of equations, a constitutive law is required relating stress
to strain.

4.4 Strain and constitutive relationships
The work here is limited to small deflection theory, so strain in the pre-fractal and
tessellated spaces is the symmetric part of (∂ui/∂x j)ps and (∂ui/∂x j)ts , respec-
tively. A certain degree of care is required with regard to the position of subscripts
and superscripts as distortion of space can lead to non-orthogonal coordinate sys-
tems. Therefore, in line with convention, upper scripts (superscripts) are termed
contravariant with lower scripts (subscripts) being covariant. ( Both vectors are
used to give a different physical presentation to a physical quantity, for example
stress must use the contravariant component while the strain uses the covariant
component) The coordinate functions, displacement vectors and stress tensors in-
troduced in Section 4.3 are all contravariant. Thus in suffix terms dxts = F ·dxps,
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avJs
ts
= F ·s

ps
·F�T and auuts = arF ·ups, which are derivable from Equa-

tions (4.10), (4.11) and (4.13), are dxi
ts = Fi

jdx j
ps, avJs i j

ts
= Fi

m ·sml
ps
·F j

l and

auui
ts = arFi

j ·u
j
ps. Strain however (i.e. (ei j)ps and (ei j)ts) is required to be con-

jugate to stress and consequently must be covariant (since stress is contravariant)
and hence the reason for the subscripts but note also that this requires the use of
a covariant component of displacement with a subscript. Note further that the
derivatives ∂/∂x j

ps and ∂/∂x j
ts are contravariant and are related via the chain rule

∂/∂x j
ps = Fi

j∂/∂x j
ts in view of the expression dxi

ts = Fi
jdx j

ps. It can be readily
be deduced from auui

ts = arFi
j ·u

j
ps that similarly covector coefficients for dis-

placement are related via arui,ps = aub�1F j
i ·u j,ts , where J = b 3. To show this

consider first the application of the chain rule ∂/∂x j
ps = Fi

j∂/∂xi
ts, which gives

ar∂ui,ps/∂x j
ps = aub�1Fm

j Fk
l ∂uk,ts/∂xm

ts. Note further that Equation (4.15) in
suffix notation gives:

s
ps

: e
ps
= (s i j : e

i j
)ps = s i j

ps

∂uips

∂x j
ps

= aeJ(s : e)ps =

aeJ(s i je
i j
)ts = aeJs i j

ts

∂uits

∂x j
ts

(4.16)

which on substitution of s i j
ps
=avJF�i

m sml
ts

F� j
l and ar∂uips/∂x j

ps = b�1auFm
j Fk

i

x ∂ukts/∂xm
ts into the left hand side gives:

s i j
ps

∂uips

∂x j
ps

= a�ravaub�1J(F�i
m sml

ts
F� j

l )(Fn
j Fk

i
∂ukts

∂xn
ts

= a�ravaub�1J(Fk
i F�i

m )(Fn
j F� j

l )sml
ts

∂ukts

∂xn
ts

= a�ravaub�1J(d k
m)(d n

l )

sml
ts

∂ukts

∂xn
ts

= a�ravaub�1Jsml
ts

∂umts

∂xl
ts

(4.17)

which matches the right hand side of Equation (4.16) on setting ae =a�ravaub�1.

4.5 Constitutive relationships in both spaces
The scaling relationships considered thus far make no recourse to constitutive
laws (although Equations (4.11) and (4.15) provide some constraint) and also
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only connect a single triangular tile in a tessellation to a corresponding triangular
element in the pre-fractal. To proceed further, it is necessary to find a general
elasticity relationship that applies in the tessellated space. The relationship
between stress and strain in the physical space is assumed linear and takes the
form s

ps
= C

ps
e

ps
, where C

ps
is the fourth-order stiffness tensor. In suffix

notation, this relationship is of the form s i j
ps = Cps : eps,km [70], where for an

isotropic material (see reference [68]),

Ci jkm
ps = Kgi j

psg
km
ps +µ(gik

psg
jm
ps +gim

psg
jk
ps �

2
3

gi j
psg

km
ps ) (4.18)

where K and µ are the bulk and shear modulus, which in terms of Poisson’s
ratio v, Young’s modulus E are related by the identities 3K = E/(1�2v) and
2µ = E/(1+ v)).
The symbol gi j

ps appearing in Equation (4.18) is a 2nd-order metric tensor [71],
which for an orthogonal coordinate system equates to the Kroneckal delta symbol
d i j. The metric tensor is symmetric (i.e. gi j

ps = g ji
ps) and it can be seen on

inspection of Equation (4.18) that the stiffness tensor is also symmetric in the
following sense: Ci jkm

ps = C jikm
ps = Ci jmk

ps = Ckmi j
ps [69]. With the constitutive

behaviour defined on the physical space, it is now possible through the scaling
identities to determine the required law for the tessellated space. This involves
the substitution of the relationships s i j

ps = Ci jkm
ps eps,km and ar∂ui,ps/∂x j

ps =

aub�1Fm
j Fk

l ∂uk,ts/∂xm
ts into avJs i j

ts = Fi
msml

ps F j
l to give:

s pq
ts = a�vJ�1F p

i s i j
psF

q
j = a�vJ�1F p

i (C
i jkm
ps eps,km)F

q
j =

a�vJ�1F p
i (C

i jkm
ps

∂ukps

∂xm
ps
)Fq

j = a�vJ�1F p
i (C

i jkm
ps a�raub�1Fl

mFn
k )

∂ults

∂xn
ts

Fq
j =

(a�vJ�1F p
i Fq

j a�raub�1Ci jkm
ps Fl

mFn
k )

∂ults

∂xn
ts

=Cpqnl
ts

∂ults

∂xn
ts

=Cpqnl
ts ets,nl (4.19)

where it can be deduced that Cpqnl
ts possesses the same symmetric properties

associated with Ci jkm
ps alluded to above.

4.6 Case Studies in 1-D
It is of interest to examine the TCM theory application in a 1-D setting as
this reduces the relative complexity of the theory and allows both numerical
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and analytical investigations to be investigated. The pre-fractals considered
are those applied in the construction of the classical Cantor set fractal. One
of the difficulties with holey 1-D constructions is that they do not form load-
bearing structures and consequentially can not withstand load. To rectify this
rigid elements are assumed to occupy the holes in the pre-fractals. Although
somewhat artificial this assumption is particularly convenient for the tessellation
as it immediately means slopes match for elements in the discontinuity network
(see Figure 3.1). The 1-D models are built according to the procedure outlined
in Section 3.5. The material properties along with geometrical features of the
pre-fractal and tessellated models used in this study are depicted in Table 4.1.
Both the pre-fractal and tessellated geometry are created by the application of
contraction maps given in Section 3.3. Three levels of complexity are tested
with analysis for the pre-fractals Ê1, Ê2 and Ê3 performed on the tessellations T̂1,
T̂2 and T̂3 identified in Table 4.1 under the headings k = 1,2 and 3. In addition,
isotropic and anisotropic scaling is tested, distinguished by their hole-fill maps,
which are:

Fk = bk

2

64
1 0 0
0 1 0
0 0 1

3

75 ,Fk =

2

64
bk 0 0
0 1 0
0 0 bk

3

75 ,Fk =

2

64
bk 0 0
0 b 0.5

k 0
0 0 b 2

k

3

75 (4.20)

where bk = (3/2)k and Fk is the hole-fill map connecting Êk to T̂k.
The hole-fill maps in Equation (4.20) are uniform and when applied to Êk have
the effect of closing the holes whilst at same time maintaining the overall initial
length of the structure. The material properties for the tessellation are determined
using Equations (4.10) and (3.14) or (4.19), which are presented in Table 4.1
along with associated properties for the pre-fractal. The scaling factors ar ,au

and av affect the predictions on the pre-fractals and are listed in Table 4.1 and
Table 4.2.
All numerical analysis performed is done with commercial FE software ABAQUS
(version 6.13), using a linear beam elements type B32 [72] for both pre-fractal
and tessellated structures.
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Table 4.1: Material properties and dimensions for 1-D pre-fractal and isotropic
scaling tessellated cases.

k 1 2 3

Scalar Constant
au 1.000 1.000 1.000
av 1.500 2.25 3.375
h 1.000 1.000 1.000

Pre-fractal
Lps (m) 0.3333 0.1111 0.0370

rps (kg/m3) 1.000 1.000 1.000
Eps(kg/m2) 1.000 1.000 1.000

Tessellated
Lts (m) 0.5000 0.2500 0.1250

rts (kg/m3) 0.2700 0.0878 0.0026
Ets(kg/m2) 0.6666 0.4444 0.2963

Table 4.2: Material properties and dimensions for 1-D pre-fractal and anisotropic
tessellated scaling cases.

Properties Case 1 Case 2
Pre-fractal Lps (m) 0.037 0.037

Scalar Constant

ar 1.000 1.000
au 3.375 11.39069
av 3.375 11.39069
h 1.000 1.000

Tessellated

Lts (m) 0.125 0.125
Wts (m) 0.02 0.037
T hts (m) 0.06750 0.228

rts (kg/m3) 0.088 0.0142
E11 (N/m2) 8.64976 18.076
E22 (N/m2) 0.759375 1.789
E33 (N/m2) 1.120 1.500
G11 (N/m2) 1.28145 2.587
G12 (N/m2) 49.2631 57.246
G23 (N/m2) 14.5965 16.586
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4.6.1 Analytical verification

In order to test the efficiency of the ABAQUS numerical model, comparison
is made against a general analytical derived solution for Êk with bk = (3/2)k.
A Bernoulli cantilever beam (i.e. a beam with clamped-free (CF) boundary
conditions) is considered with a lateral load of magnitude applied to the free
end. The equivalent tessellated model is correspondingly a CF beam, but in this
case, the covariant displacement is required to satisfy the relationship arups =

auF�1 ·uts, which for ar = au = 1 and with F = Fk taking any of the forms in
Equation (4.20) gives wps = bF�1

33 wts for lateral displacement in the z-direction,
where F33 = bk or F33 = b 2

k . Both beams are presented in Figure 4.1 on Ê1

for the pre-fractal and on T̂1 for the tessellation with the material properties
presented in Table 4.1.
Each Cantor set structure Êk consists of 2k deformable parts of equal length

and for k > 1 includes 2k �1 rigid segments (holes) as depicted in Figure 3.1.
Enumerating nodes from left to right (starting from i = 1 ) results in a segment
placed between coordinates xi

ps and xi+1
ps being rigid for even i and deformable if

i is odd. The Bernoulli cantilever beam requires a solution to w
00
ps = Mx,ps/EpsIps,

where Mx,ps = Qps(`o � xps), Eps is Young’s modulus, Ips is the second moment
of area and `o is the beam length. Thus deformation in any deformable segment
is a cubic polynomial and takes the general form [71]:

wps(x̂ps) =
Qps`3

o
EpsIps

(
(x̂ps � x̂i

ps)
2

2
�
(x̂ps � x̂i

ps)
3

6
)+

dwps

dx̂ps
|xi

ps
(x̂ps � x̂i

ps)+wps|xi
ps

(4.21)
where x̂ps = xps/lo and xi

ps  xps  xi+1
ps . A rigid element satisfies the equation

w
00
ps = 0 and takes the form

wps(x̂ps) =
dwps

dx̂ps
|xi

ps
(x̂ps � x̂i

ps)+wps|xi
ps

(4.22)

which is readily obtained from Equation (4.21) in the limit Eps ! • ( A sample
of the analytical results is introduced in Appendix B for k = 3 ).
The presented solutions for the general model are shown in Figure 4.2. These
solutions for displacement and slope for different pre-fractals are presented in
Figure 4.3 and Figure 4.4. Included in the figures are ABAQUS predictions,
which provide almost exact replication of the analytical output. An alternative
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Figure 4.1: Pre-fractal and tessellated cantilever beams for k = 1.

Figure 4.2: Pre-fractal and tessellated cantilever beams for k = 3.

route to analytical solutions on Êk is via the similitude theory and the lifting
of these from T̂k. This can be achieved by first determining the solution to
w

00
ts = Mx,ts/EtsIts, where Mx,ts = Qts(`o� xts), Ets is the Young’s modulus; Its is

the second moment of area and `o is the beam length. The tessellated beam is
absent of rigid segments (as these appear as discontinuities) and the deformable
segments are described by an equation similar in form to (4.21), i.e.

wts(x̂ts) =
Qts`3

o
EtsIts

(
(x̂ts � x̂i

ts)
2

2
� (x̂ts � x̂i

ts)
3

6
)+

dwts

dx̂ts
|xi

ts
(x̂ts� x̂i

ts)+wts|xi
ts

(4.23)
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where x̂ts = xts/lo and xi
ts  xts  xi+1

ts .
The lifting of Equation (4.21) to arrive at Equation (4.23) is achieved on sub-
stitution of the following maps and identities: Qts = a�vF33Qps = b�1F33Qps ,
Its = F22F3

33Ips , x̂ts � x̂i
ts , x̂ps � x̂i

ps , wts = bF�1
33 wps , and from Equation (3.14)

Ets = b�2J�1F4
11Eps = b�2F3

11F�1
22 F�1

33 Eps, since J = b 3 = F11F22F33.
An alternative approach to confirm Equation (4.21) and (4.19) or (3.14) are
related is directly form the governing equation w

00
ts = Mx,ts/EtsIts and w

00
ps =

Mx,ps/EpsIps, which on substitution of pertinent identities takes the form [73]:

d2wts

dx2
ts

=
b

F2
11F33

d2wps

dx2
ps

=

Mx,ts

EtsIts
=

b�1F11F33Mx,ps

(b�2F3
11F�1

22 F�1
33 Eps)(F22F3

33Ips)
=

b
F2

11F33

Mx,ps

EpsIps
(4.24)

where use is made of the identity Mx,ts = b�1F11F33Mx,ps [74], which confirms
that with similitude the solution to w

00
ts = Mx,ts/EtsIts is also a solution to w

00
ps =

Mx,ps/EpsIps and vice versa.
ABAQUS results for the tessellation for different values of k are depicted in
Figure 4.5 and Figure 4.6. It is clear from the figures (including Figure 4.3
and Figure 4.4) that very precise predictions are achievable with ABAQUS
on both pre-fractals and tessellations. Now that the tessellated approach has
been confirmed analytically for a simple cantilever beam and the accuracy of
the ABAQUS models confirmed it remains to test the lifting process for both
isotropic and anisotropic cases in Equation (4.21).

4.6.2 Isotropic lifting process

The beam depicted in Figure 4.2 is reanalysed numerically for isotropic scaling
to test the lifting of results. The results on a pre-fractal can be obtained by two
independent routes, i.e. by means of direct analysis and indirectly by lifting
results from the tessellation. The lifting process is of principal interest here to
illustrate how it is possible to achieve results of high accuracy on a continuum.
However, the fact that two routes of analysis are possible provides a direct means
for checking accuracy even when analytical solutions are unavailable although
in this particular instance these are presented in Figure 4.7 and Figure 4.8. The
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Figure 4.3: Analytical and FE predictions of deflection on different pre-fractal
cantilevers

Figure 4.4: Analytical and FE predictions of slope on different Cantor pre-fractal
cantilevers.
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Figure 4.5: Analytical and FE predictions of deflection on different Cantor
tessellated cantilevers.

Figure 4.6: Analytical and FE predictions of slope on different tessellated
cantilevers.
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Figure 4.7: Direct numerical and lifted tessellated deflections for cantilever
pre-fractals.

Figure 4.8: Direct numerical and lifted tessellated slope predictions for cantilever
pre-fractals.
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lifted and direct numerical predictions are provided in Figure 4.7 and Figure
4.8 on Êk for k = 1 : 3. Note from Figure 4.7 and Figure 4.8 that the maximum
absolute errors involved are extremely small but it is important to appreciate that
numerical predictions are being contrasted against numerical predictions. Thus,
some care is required here because with similitude, and with the same number of
elements employed in both analyses, extremely small errors are anticipated yet
absolute errors can with a coarse mesh remain large [75]. The results of Figure
4.7 and Figure 4.8 confirm that absolute errors are small in this case also. The
tests confirm the equivalence of the direct and the tessellated approach.

4.6.3 Anisotropic lifting process

This section is concerned with anisotropic scaling of pre-fractal elements for the
formation of a tessellation for the determination of lateral beam deformation of
the CC beam depicted in Figure 4.2. The beam is loaded by an off-centre, point
load located at the left edge of the central rigid segment (hole). Note that the
central rigid segment (hole) is present for all Êk for all k � 1, so the load-point
position does not change with k. The two anisotropic hole-fill maps presented in
Equation (4.20) are applied. The tests are designed to illustrate that anisotropic
scaling is permissible and that predicted results on the pre-fractals (lifted from
a tessellation) do not depend on the form of the hole-fill map. The material
properties of the pre-fractal are identical to those used in Sections 4.6.1 and
4.6.2 and details are provided in Table 4.2. Note that Young’s modulus is for
convenience set to unity for the pre-fractal material since dimensionless outputs
are of principal interest. The density and elastic properties for the tessellated
material are determined using Equations (4.10) and (3.14), respectively and
are recorded in Table 4.2. The predictions for the tessellated beams on T̂3 are
presented in Figure 4.9 and Figure 4.10. It is apparent on examination of the
figures that both beams provide near identical outputs despite having different
widths and heights. Recall that each tessellated beam is created on application
of the anisotropic scaling maps in Equation (4.20) to the pre-fractal elements,
which has the effect of producing different lateral dimensions. The reason for the
near identical results in Figure 4.11 and Figure 4.12 is not because displacements
are identical but as a consequence of the dimensionless coordinates used on the
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axes of these figures. The displacement and slope of the pre-fractal CC beam
on Ê3 can be found in Figure 4.13 and Figure 4.14. Observe that three methods
of prediction are presented, i.e. the direct method, and the two lifted tessellated
results obtained on employing the two anisotropic maps in Equation (4.21).
All methods provide consistent results to very high accuracy and the source of
error can be associated with rounding errors in the numerical calculations. For
consistency the number of finite elements used in each deformable pre-fractal
segment (and tile) was set equal to 10 as this was found to provide good accuracy.
This number or elements was applied for the entire numerical analysis of the
beam structures.
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Figure 4.9: FE prediction of deflection on the tessellated CC beam Ê3.

Figure 4.10: FE prediction of slope on the tessellated CC beam T̂3.

82



Figure 4.11: Direct numerical and lifted tessellated deflection for the pre-fractal
CC beam Ê3.

Figure 4.12: Direct numerical and lifted tessellated slope for the pre-fractal CC
beam Ê3.
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4.7 Case Studies in 2-D
The main focus of this work is the analysis of 2-D pre-fractal plate structures
since these are found in engineering applications as discussed in the introduction.
The pre-fractals analysed here are employed in the construction of two well-
known traditional fractals, i.e. the Sierpinski Carpet and Vicsek fractal. Unlike
the 1-D models considered in Section 4.6 there is no need for the employment
of artificial rigid elements since holey plates are load-bearing structures. Three
different levels of complexity are analysed with the meshes employed in the
analysis of the Sierpinski carpet found in Figure 3.2, Figure 3.3 and Figure 3.4
for both pre-fractals and tessellations. Figure 3.5, Figure 3.6 and Figure 3.7
illustrated the Vicsek fractal for the first three complexities. Material properties
and dimensions are presented in Table 4.3, with both the Sierpinski and Vicsek
sharing the same material properties and overall dimensions. It is important to
appreciate that the meshes depicted in these figures are generated as part of the
recursive procedure for the generation of pre-fractals and tessellations. In this
case an initial tessellation consisting of eight elements was placed on Êo and T̂o.
The number of elements on Ê1 and T̂1 is correspondingly equal to the number of
elements on Êo multiplied by the number of contraction maps used in the IFS,
which for the Sierpinski carpet is eight. The numbers of elements employed in
the analysis of both the Sierpinski and Vicsek pre-fractals are given in Table
4.4. The contraction maps employed are listed in Appendix A for the Sierpinski
Carpet and Vicsek fractal, respectively. Likewise the contraction maps used to
create corresponding tessellated models for both structures are also provided
in Appendix A. Note that both pre-fractals and tessellations involve the same
number of contraction maps. The hole-fill maps for the 2-D plates generally
involve off-diagonal terms to account for shear and take the form [66]:

Fk = bk

2

64
bk,11 bk,12 0
bk,21 bk,22 0

0 0 1

3

75 (4.25)

where unlike the 1-D cases considered in Section 4.6, Fk is seldom uniform as
hole-filling is not a spatially uniform process.
The determination of the hole-fill maps is achieved using the object-oriented
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Table 4.3: Material properties and dimensions for the 2-D pre-fractal models.

Properties Values
Length (m) 0.900
Width (m) 0.900

T hickness (m) 0.010
Density (kg/m3) 2698.8

Elasticity (GN/m2) 68.900
Poisson’s ratio 0.300

Table 4.4: Number of elements on pre-fractal and tessellated for the 2-D models.

Structure Type k = 1 k = 2 k = 3
Sierpinski Carpet 64 512 4096

Vicsek fractal 40 200 1000

programming language Python, which facilitates the transfer of data to the
ABAQUS software (check Appendix C for more information about how to
implement this code to create the 2-D models). Unlike the 1-D analysis analytical
solutions are unavailable, so the tessellated lifted solutions are contrasted against
direct numerical analysis performed in the commercial FE software ABAQUS.
Shell elements of type SR8 [72] are used to model the structures in both the
tessellated and pre-fractal spaces.

4.7.1 Numerical verification of Sierpinski Carpet

The Sierpinski Carpet pre-fractals presented in Figure 3.2, Figure 3.3 and Fig-
ure 3.4 are considered as holey-plates with CCCC boundary conditions subject
to lateral pressure of magnitude Rps. The corresponding tessellated structure
possesses identical boundary conditions but a pressure of magnitude Rts, which
varies over the surface of the tessellation determined by Equation (4.11) with F
substituted by Fk of Equation (4.25). Although the density of the plate plays no
significant part in the static analysis it is nonetheless determined using Equation
(4.10). Equation (3.14) plays a critical role in determining the elastic properties
of the tiles in the tessellation. The distributions of the normal values of Young’s
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moduli on the tessellation, as determined by Equation (4.11), are presented in
Figure 4.13 to Figure 4.17. The figure reveals just how geometric complex-
ity from a pre-fractal is transferred into material complexity on a tessellation.
Structural responses of the plates are calculated numerically by using ABAQUS
(version 6.13) and SR8 shell elements were found to give the best results on both
pre-fractal and tessellated spaces. Although a uniform pressure is applied on
the pre-fractal plate the pressure over the tessellated plate as calculated using
Equation (4.11) takes on a more complex pattern as apparent on examination
of Figure 4.14. Confirmation of the validity of the approach is achieved by
comparing of the results between the pre-fractal responses in terms of lateral
deformation contrasted to the lifted response from the tessellated plate. These
results are presented in Figure 4.15 and Figure 4.16, where the lifted results
are almost identical to the direct pre-fractal predictions within the bounds of
rounding errors in the numerical calculations. An overall picture of the lateral
behaviour of the tessellated and pre-fractal plates is presented in Figure 4.17.

4.7.2 Processing time analysis on Sierpinski Carpet

Although the prime focus of the work is to determine whether it is possible to
analysis holey-plates to high accuracy it is interest to investigate the extent of
processing and computing time discrepancies between the two approaches. The
processing times required to build the pre-fractals and corresponding tessella-
tions are presented in Figure 4.18. Not too unexpectedly processing time for
model construction for the tessellated structures is slightly longer than the direct
approach due to the time required determining the element stiffness matrices.
Note however that corresponding pre-fractals and tessellations have identical
numbers of unknowns and equations [75].

4.7.3 Numerical Verification of Vicsek fractal

The Vicsek pre-fractals presented in Figure 3.5 to Figure 3.7 are selected to
provide a significant challenge for the tessellated approach. These pre-fractals
are significantly different in form from a continuous square plate structure and
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Figure 4.13: Normalised Young’s moduli for E11/E11,max on Sierpinski Carpet
tessellation T̂3.

Figure 4.14: Normalised pressure distribution for Rts/Rts,max on Sierpinski
Carpet tessellation T̂3.
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Figure 4.19: Direct numerical and lifted tessellated deflection for the Sierpinski
carpet pre-fractal CCCC plate subjected to pressure loading.

Figure 4.20: Direct numerical and lifted tessellated slope ( qps = ∂wps/∂xps) for
the Sierpinski carpet pre-fractal CCCC plate subjected to pressure loading.
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Figure 4.17: Overall response of CCCC plates Ê3 and T̂3 for the Sierpinski
Carpet subjected to pressure loading.

at first glance it might be considered impractical if not impossible to analyse
these types of structure on a square plate. However, the tessellated approach is
able to achieve this to very high accuracy. The meshes used in the analysis are
depicted in Figure 3.5 to Figure 3.7, which are generated by the recursive process
with again an initial tessellation of 8 tiles on Êo and T̂o. Note the severity of
the skewed elements that appear on the tessellations. Numerical issues typically
associated with skewed elements do not arise with the tessellated approach
because skewness and deviation in material properties counteract each other to
represent the behaviour on the pre-fractals. Both the pre-fractals and tessellation
are under CCCC boundary conditions although only the four outermost edges
of the pre-fractals are clamped. A displacement boundary condition has been
applied on the centre of each model of arbitrary magnitude. Contour plots for
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Figure 4.18: Normalised computational requirements for building pre-fractal
and tessellation models.

pre-fractal structure Ê3 with its corresponding tessellation T̂3, are represented
in Figure 4.19 for lateral deformation and slope. The structures’ deformations
are captured in Figure 4.20 and Figure 4.21 in terms of out of plane deformation
and slope. It is evident from these figures that high accuracy is achievable with
the tessellated approach. Note that the contour plot in the tessellated space
(Figure 4.19) has similarities with contours on the associated pre-fractals, since
the latter is obtained by the lifting process. However, recall that the out-of-
plane displacement suffers no scaling so pre-fractals and tessellations have
near-identical values on corresponding elements.

90



Figure 4.19: Overall response of CCCC plates Ê3 and T̂3 for the Vicsek fractal
subjected to a centrally loaded deflection.
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Figure 4.20: Displacement (wps ) on the CCCC tessellated Vicsek plate subjected
to a centrally loaded deflection.

Figure 4.21: Slope (qps = ∂wps/∂xps) on the CCCC tessellated Vicsek plates
subjected to a centrally loaded deflection.
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4.8 Summary
The main points found in this chapter can be briefed as follow:

1. Implement the transport equations which include using the conserved
continuum laws on the pre-fractal space for 1-D and 2-D are achieved in
this chapter.

2. The TCM theory has successfully presented 1-D and 2-D pre-fractal mod-
els statically with negligible error.

3. The TCM theory is found completely able to represent two different
boundary conditions for the 1-D models in isotropic and anisotropic scaled
models, see Figures 4.9 to 4.14.

4. The TCM theory is found to control the mesh distribution on the 2-D
studied models, while it has no effect once and for all at the 1-D models.

5. The DN can be seen clearly in the lateral displacement in shape of jumps
while for the slope response has no effect see Figures 4.11 and 4.12.

6. Time required to built the tessellated model by Python are found to be a
little higher compared with the time required to build the same pre-fractal
models although the differences disappears while building higher order
models, see Figure 4.22.

7. The TCM theory has proven its ability in duplicating extreme models
geometries such as the Vicsek fractal with a very high accuracy as in
Figures 4.23.

8. An interesting observation can be made from the analysis run on the 2-D
models, which is the mesh sensitivity towards the lower studied models
(k), where the accuracy has been reduced. This effect is improved when
testing higher models (k).
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Chapter 5

Dynamic 1-D Analysis of TCM

5.1 Introduction
This chapter is concerned with the development and application of tessellated
continuum mechanics for the dynamic analysis of holey-structural vibration
problems. There presently exists no means of performing vibration analysis of
holey structures represented in literature as pre-fractals in a continuum. This
chapter demonstrates how the tessellated approach can be applied to achieve very
precise predictions for holey-pre-fractal structure with a special concentration on
applying the theory to 1-D models as a case study. The next chapter is devoted
in applying the theory developed in this chapter to 2-D models. Tessellated
continuum mechanics involves the creation of pre-fractal holey structures and
corresponding tessellated continua with contraction maps. The recursive applica-
tion of contraction maps for the creation of the structure and tessellation provides
for the efficient creation and linking of holey structures to continua. Relating the
behaviour of holey structures to tessellated continua is shown to be possible in
this work for classical beam theory. The approach enables known analytical and
numerical approaches to be lifted from continuous beams to any corresponding
fractal beam. The theory is founded on matching physics on locally scaled spaces
and investigated in this work is the effect of applying different scaling factors
to create the tessellated continuum; isotropic and anisotropic scaling options
are investigated. The tessellated approach is tested in this chapter for vibration
analysis on pre-fractals for the well-known pre-fractal of the Cantor set. Two
different modes of vibration along with the effects of using different boundary
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conditions and excitation options are examined. To cater for discontinuous
physics, discontinuity networks are incorporated providing good results for the
cases studied. High accuracy is reported in this work along with measurable
vibratory responses on fractal arrangements, along with finite measures of tran-
sient structural response and energy. The background theory underpinning all
the main general concepts of the tessellated approach is presented in Section 5.2.
Section 5.3 introduces the finite similitude concept, which contrasts the physics
on two moving control volumes. The impact of small deflection theory is also
examined along with its effect on constitutive laws in Section 5.4. Section 5.5
presents the covariant and contravariant definitions of objects in space. While
the most significant part is Section 5.6 where the scaling constitutive relation
are listed. The basic presentation of the main concept are briefed in Section 5.7.
Analytical study and numerical studies are verified in Section 5.8. This chapter
is ending with a conclusion in Section 5.9.

5.2 Background theory for dynamic analysis
Pre-fractals and tessellations are created recursively, and the map that relates
elements is termed a hole-fill map because it has the function of closing holes
when applied to the pre-fractal (as described in Chapter Three, Section 3). Finite
similitude [56] is used to relate the physics in corresponding spaces occupied
by tessellated and pre-fractal elements. Finite similitude exists when spatial
transformations are linear, which can readily be achieved with the use of simple
spatial elements (line, triangles, tetrahedrons etc.). Figure 1.5 illustrates how to
relate the pre-fractal and tessellated spaces by general mappings. Two basics
maps are needed; a direct map (the hole-fill map) and its inverse, which serves
to lift results from the tessellation to the pre-fractal. The tessellated space being
continuous permits classical analysis and numerical tools such as the finite
element method can be applied. The tessellations and pre-fractal are created
separately by means of iterated function systems (IFS) but involve the exact same
number of contraction and expansion maps for the pre-fractal and tessellation,
respectively [2]. The tiles on the tessellation can also double up as a finite
element mesh in any numerical analysis. The notation representing the pre-
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fractal structure is Êk, where k is the number of iterations used to create the
pre-fractal using an iterated function system [67]. Similarly, to generate the
tessellation T̂k the exact same number of expansion maps are involved. The
hole-fill map can be formed directed by identifying corresponding elements in
pre-fractals and tessellations or indirectly by means of function composition of
the contraction maps and their inverses. The former approach is more amenable
to numerical analysis. Figure 3.1 illustrates the pre-fractal Cantor set and its
corresponding tessellated structures. To accommodate discontinuous physics
pervasive to pre-fractal geometries, it is advantageous to use weak forms of the
governing equations. To this end the weak-continuum equation as in Equation
(3.1) is sufficiently generic to capture all conservative and non-conservative
physical laws.

5.3 Continuum mechanics in two spaces
This section reintroduces the governing equations pertinent to continuum me-
chanics and hence beam-vibration. A general approach is taken at this stage
to satisfy the requirements of finite similitude, which unlike other approaches,
applies to the whole of continuum mechanics to establish the required scaling
identities. Consider then the nine transport equations pertinent to vibration
and similitude, which constrain the behaviour of volume, mass, momentum,
movement (see reference [76]) and energy; and explicitly take the form of the
equations stated in Chapter Three. Those equations can be used to describe
the physics on both pre-fractal control volumes as in Equations (3.2 to 3.6) and
tessellated control volumes as in Equations (3.7 to 3.11).
Again all these equations are applied to both pre-fractal and tessellated spaces
separately. Although Equations (3.2) to (3.11) are applied to W⇤

ps and W⇤
ts there

presently exists no connection between the physics in the two spaces for dy-
namic analysis. To establish a link, it is first necessary to link both time and
space through two separate maps (for non-relativistic physics). The spatial map
takes a point x⇤ps 2 W⇤

ps and relates it to a point x⇤ts 2 W⇤
ts, whilst a temporal map

relates timescales tps and tts . In differential form, these two maps for synchro-
nised control volumes (see reference [76] for details) dx⇤ts = F ·dx⇤ps [66] and
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dtps = hdtts, where h is a positive scalar and F can be viewed as a spatial defor-
mation gradient with components Fi

j = ∂xi⇤
ts/∂x j⇤

ps. It is essential to appreciate
that the map x⇤ts(x

⇤
ps) defines a relationship between points in control volumes

and does not at this stage relate material points in pre-fractals and tessellations.
The assumed existence of F enables relationships between elemental volumes
and areas through Nanson’s identities dV ⇤

ts = JdV ⇤
ps and dG⇤

ts = JdG⇤
ps ·F�1

[76], where J = det|F |, with the control volumes W⇤
ps and W⇤

ts, the temporal
relationship dtps = hdtts along with Nanson’s identities, Equation (3.1) adopts
five forms (similarly for Equations (3.2) to (3.6)), i.e.

D⇤

D⇤tps

Z

W⇤
ps

rpsypsdV ⇤
ps +

Z

G⇤
ps

rpsyps(vps � v⇤ps) ·npsdG⇤
ps =

�
Z

G⇤
ps

Jy
ps ·npsdG⇤

ps +
Z

W⇤
ps

rpsb⇤psdV ⇤
ps (5.1)

and
D⇤

D⇤tts

Z

W⇤
ts

rtsytsdV ⇤
ts +

Z

G⇤
ts

rtsyts(vts � v⇤ts) ·ntsdG⇤
ts =

�
Z

G⇤
ts

Jy
ts ·ntsdG⇤

ts +
Z

W⇤
ts

rtsb⇤tsdV ⇤
ts (5.2)

moreover, on applying dV ⇤
ts = JdV ⇤

ps, dG⇤
ts = JdG⇤

ps ·F�1 , and dtps = hdtts to
Equation (5.2) gives

D⇤

D⇤tps

Z

W⇤
ps

rtsJytsdV ⇤
ps +

Z

G⇤
ps

rtsh�1Jyts(F�1 · (vts � v⇤ts)) ·npsdG⇤
ps =

�
Z

G⇤
ps

h�1JJy
ts · (F�T ·nts)dG⇤

ps +
Z

W⇤
ps

h�1rtsb⇤tsdV ⇤
ps (5.3)

The contrasting of Equations (5.1) and (5.3) provides a means for comparing the
physics in each space.

5.4 Small deflection Similitude
The identities provided by Equations (5.3) must be satisfied for all Equations
(3.2) to (3.11). This procedure was first performed in reference [77], so it
serves no purpose to repeat this here. However, with the assumption of small
deflection theory a simplification occurs in (vts�v⇤ts) = hF(vps�v⇤ps) [76]. This
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equation reduces to v⇤ts = hF�1v⇤ps (see Table 5.1) as a consequence of the loss
of the material convection terms from Equations (3.3) to (3.11). The governing
transport equation for solid mechanics reduces to

D⇤

D⇤t

Z

W⇤
rydV ⇤ �

Z

G⇤
ryv⇤ ·ndG⇤ =�

Z

G⇤
Jy ·ndG⇤+

Z

W⇤
rb⇤dV ⇤ (5.4)

which applies approximately for the case v = 0. The key to Similitude is the suc-
cessful application of Equation (5.1) and (5.3) to each of the transport equations
pertinent to continuum mechanics [48]. This is illustrated in Table 5.1.

5.4.1 Volume Similitude

The following two equations must match for volume Similitude:

D⇤

D⇤tps

Z

W⇤
ps

dV ⇤
ps �

Z

G⇤
ps

v⇤ps ·npsdG⇤ = 0 (5.5)

D⇤

D⇤tps

Z

W⇤
ps

aJdV ⇤
ps �

Z

G⇤
ps

ah�1J(F�1 · v⇤)ts ·npsdG⇤
ps = 0 (5.6)

which are Equation (5.1) and Equation (5.3) multiplied by a , with y = r�1,
Jy = 0 and b = 0.
It is evident that these two equations are equal if and only if their corresponding
integrands match, i.e. aJ = 1 and v⇤ps = ah�1J(F�1 · v⇤ts), where this latter
equation reduces to

v⇤ts = hFv⇤ps (5.7)

Note that condition aJ = 1 confirms that J can take up any value since a is
arbitrary, and v⇤ts = hFv⇤ps reveals that motion of a control volume in one space
is not too surprisingly connected to the motion in another.

5.4.2 Mass Similitude

The following two equations must match for mass Similitude:

D⇤

D⇤tps

Z

W⇤
ps

rpsdV ⇤
ps �

Z

G⇤
ps

rpsv⇤ps ·npsdG⇤
ps = 0 (5.8)

D⇤

D⇤tps

Z

W⇤
ps

arJrtsdV ⇤
ps �

Z

G⇤
ps

arrtsh�1J(F�1 · v⇤ts) ·npsdG⇤
ps = 0 (5.9)
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which are Equation (5.1) and Equation (5.3) multiplied by ar , with y = 1,
Jr = 0 and br = 0.
These two equations are equal if and only if their corresponding integrands
match, i.e. arrtsJ = rps and v⇤psrps = arrtsh�1J(F�1 · v⇤ts), where this latter
equation is now automatically satisfied by the identity v⇤ts = hFv⇤ps obtained with
volume Similitude. The field identity

rps = arJrts (5.10)

provides a means of matching densities by the appropriate selection of the scalar
ar .

5.4.3 Momentum Similitude

The following two equations must match for momentum Similitude:
D⇤

D⇤tps

Z

W⇤
ps

rpsvpsdV ⇤
ps �

Z

G⇤
ps

rpsvps(v
⇤
ps ·nps)dG⇤

ps =

�
Z

G⇤
ps

sps ·npsdG⇤
ps +

Z

W⇤
ps

rpsb⇤psdV ⇤
ps (5.11)

D⇤

D⇤tps

Z

W⇤
ps

avrtsJF�1 · vtsdV ⇤
ps �

Z

G⇤
ps

avrtsh�1JF�1 · vts(F
�1v⇤ts) ·npsdG⇤

ps =

�
Z

G⇤
ps

avJh�1(F�1 ·sts ·F�T ) ·npsdG⇤
ps+

Z

W⇤
ps

rtsavJh�1F�1 ·b⇤tsdV ⇤
ps (5.12)

which are Equation (5.1) and Equation (5.3) multiplied by avF�1, with y = v
,Jy =�s and by = b.
Following the identical approach to volume and mass, it is evident that these
two equations are equal if and only if their corresponding integrands match. The
first integrand on the left-hand side of Equation (5.11) and Equation (5.12) gives
avrtsJF�1 · vts = rtsvps, which reduces to

avvts = arF · vps (5.13)

on substitution of rps = arJrts.
The second integrand is automatically by Equation (5.18) and v⇤ts = hF · v⇤ps ,
whilst the third provides the identity

s
ps
= avh�1JF�1 ·s

ts
·F�T (5.14)
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which as required provides an identity for symmetric tensors.
The forth integrand in Equation (5.11) and Equation(5.12) provides the identity
rpsbps = rtsavJh�1F�1 ·bts but on substitution of rps = arJrts gives

arbps = avh�1F�1 ·bts (5.15)

providing a relationship for body forces in the two spaces.

5.4.4 Movement Similitude

The following two equations must match for movement Similitude:

D⇤

D⇤tps

Z

W⇤
ps

rpsupsdV ⇤
ps �

Z

G⇤
ps

rpsups(v
⇤
ps ·nps)dG⇤

ps =
Z

W⇤
ps

rpsv⇤psdV ⇤
ps (5.16)

D⇤

D⇤tps

Z

W⇤
ps

aurtsJF�1 ·utsdV ⇤
ps �

Z

G⇤
ps

aurtsh�1JF�1 ·uts(F
�1v⇤ts) ·npsdG⇤

ps =

Z

W⇤
ps

rtsauJF�1h�1 · v⇤tsdV ⇤
ps (5.17)

which are Equation (5.1) and Equation (5.3) multiplied by avF�1, with y = u ,
Jv = 0 and by = v.
Similarly to momentum these two equations are equal if and only if their corre-
sponding integrands match. The first integrand on the left-hand side of Equation
(5.16) and Equation (5.17) gives aurtsJF�1 ·uts = rpsups , which reduces to

auuts = arF ·ups (5.18)

on substitution of rps = arJ ·rts.
The second integrand is automatically by substituting of Equation (5.13) and
v⇤ts = hFv⇤ps , whilst the forth (the third being identical zero) gives v⇤psrps =

rpsauh�1JF�1v⇤ts , which reduces to

v⇤ps = a�rauh�1JF�1 · v⇤ts (5.19)

on substitution of arrtsJ = rps.
Comparison of Equations (5.18) and (5.13) reveals that the scalars au and av

must be related by the identity au = hav. This relationship arises from the
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connection that velocity has with displacement being equal the rate of change
of displacement. Differentiation of Equation (5.16) and Equation (5.17) with
respect to time must provide Equations (5.13) and (5.18) but note account must
be made of the different time scales, i.e. dtps = hdtts so that auDuts/Dtts =
arhF ·Dups/Dtps.

5.4.5 Energy Similitude

The following two equations must match for energy similitude:
D⇤

D⇤tps

Z

W⇤
ps

rpsepsdV ⇤
ps �

Z

G⇤
ps

rpseps(v⇤ps ·nps)dG⇤
ps =

Z

W⇤
ps

nps ·s ps
· vpsdV ⇤

ps +
Z

W⇤
ps

rpsbps ·npsdV ⇤
ps (5.20)

D⇤

D⇤tps

Z

W⇤
ps

aertsJetsdV ⇤
ps �

Z

G⇤
ps

aertsh�1Jets(F�1 · v⇤ts) ·npsdG⇤
ps =

�
Z

G⇤
ps

aeJh�1(F�T ·nps) · (s ts
· vts)dG⇤

ps +
Z

W⇤
ps

rtsavJh�1bts · vtsdV ⇤
ps (5.21)

which are Equation (5.1) and Equation (5.3) multiplied by ae , with y = e ,
Jy =�s · v and be = b · v, where e = 1

2v · v [78].
Equation (5.20) and Equation (5.21) provides a description for mechanical
energy in the two domains and as such does not provide any additional constraint
over and above the momentum equations but is useful nonetheless. It follows
the previous case where the two equations in Equation (5.20) and Equation
(5.21) are equal if and only if their corresponding integrands match. The first
integrand on the left-hand side of Equation (5.20) and Equation (5.21) gives
aertsJets = rpseps, which reduces to

aevts · vts = arvps · vps. (5.22)

on substitution of rps = arJrts, which appears to be false on consideration of
the identity avvts = arF · vps , which provides the identity

(av)2vts · vts = (ar)2(F · vps) · (F · vps) = (ar)2vps · (FT ·F)vps (5.23)

This indicates, that an alternative viewpoint is required if the energy equations
are be matched. It is prudent at this point to consider first contravariant and
covariant terms prior to returning to energy similitude.
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5.5 Space deformation versus coordinate
transformation

Equation (5.23) at first sight provides a halt to the similitude process but is in
fact revealing an underlying phenomenon with space scaling, i.e. an attached
coordinate system within the distorted space will itself distort. A consequence of
skewing the coordinate system is a change in the metric [76], which is revealed
in Equation (5.23). Transport equations are coordinate independent however but
implicit in the application of Newtonian physics is inertial coordinate frames.
Note that all the transport equations (apart from energy presently) involve terms
that do not explicitly involve the metric, i.e. terms of the form v⇤ ·n and Jy ·n,
which in suffix notation are v⇤ini and Jyini, respectively and consequently do
not explicitly invoke the underlying metric. It is apparent therefore for similitude
of the energy equation it is necessary to ensure that the metric does not make
an appearance. This is achieved with kinetic energy and Equation (5.22) by the
identity

aevts · vts = aevi
ts · vtsi = arvps · vps = arvi

ps · vpsi (5.24)

with no appearance of the coordinate-system metrics.
The incorporation of covariant terms in the definition of kinetic energy (lower
index) adds a degree of flexibility and circumvents the difficultly associated with
Equation (5.24). To see this consider the substitution of the identity avvts =

arF · vps (i.e. av(F�1)i
jv

j
ts = arvi

ps ) into Equation (5.24) and assume for
definiteness that an orthonormal frame is adopted in the physical space so that
vps,i = di jv

j
ps [61]. Consequently

(ar)2vi
ps · vps,i = (ar)2vi

psdi jv j
ps = (ar)2vi

ps · vi
ps = (av)2v j

ts(F
�1)i

j(F
�1)i

kvk
ts

(5.25)
but similarly

araevts · vts = araev j
tsvts j = araev j

tsG jkvk
ts (5.26)

where G jk is some scalar multiple of the metric for the tessellated space and
according to Equation (5.23) this equation must match Equation (5.24).
Bearing in mind that the coordinate system metric has no connection to the
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scalars, which suggests that arae = (av)2 and G jk = (F�1)i
j(F

�1)i
k or G =

F�T ·F�1 as revealed in Equation (5.22). However, it is particularly convenient
for the metric to satisfy |G|= 1 as this ensures according to the Piola formula
( dVts = (|G|/|g|)0.5JdVps) [76], that Nanson’s identity remains applicable (i.e.
dVts = JdVps) since |g| = |G| = 1, where in this case g = I and J = det|F | . It
is convenient at this point to define the linear scalar b to satisfy b D = J = |F |,
where D is the topological dimension (typically D = 3 ) and set the metric equal
to G = b 2F�T ·F�1 , which ensures |G|= 1 and consequently

aear = (b�1av)2 (5.27)

providing an additional relationship between the scalars.
Armed with a metric for the tessellated space it is now possible to confirm simili-
tude for the energy transport equation. Recall that similitude for energy meant
the matching of the corresponding integrands in Equation (5.20) and Equation
(5.21) and presently with the correct interpretation placed on Equation (5.23) it
has been confirmed that the first integrand matches. The second integrand auto-
matically matches with the matching of the first and the identity v⇤ts = hF · v⇤ps.
The third integrand provides

s
ps
·vps = s i j

ps ·vps j = aeh�1J(F�1s
ts
) ·vts = aeh�1J(F�1)i

js
jk

ts ·vts,k (5.28)

where it is recognised that a covariant representation of the velocities is required
and since the metric is known it follows that vtsk = Gk jv

j
ts and consequently the

contravariant identity avvts = arF · vps (which equals) av(b 2F�T ·F�1) · vts =

arb 2F�T · vps transforms into the covariant form avvts = arb 2F�T · vps (or
avFT · vts = arb 2vps ), which on substitution in Equation (5.28) gives

s
ps
· vps = aeh�1J(F�1 ·s

ts
·F�T ) · (FT · vts) =

(av)�1arb 2aeh�1J(F�1 ·s
ts
·F�T ) · vts (5.29)

But observe that Equation (5.14) gives s
ps
· vps = avh�1J(F�1 ·s

ts
·F�T ) · vps,

which matches if (av)�1arb 2ae = av but this is simply Equation (5.27).
The final requirement for energy similitude is the matching of the fourth integrand
in Equation (5.20) and Equation (5.21), which provides

rpsbps · vps = rtsavJh�1bts · vts (5.30)
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where again it is recognised that a covariant description of velocity is involved.
Incorporation of rps = arrtsJ, arbps = avh�1F�1 ·bts and avFT ·vts = arb 2 ·
vps into Equation (5.30) readily confirms, that with the correct interpretation,
energy similitude is obtained.

5.6 Finite Similitude and constitutive scaling
constants

The rules of similitude do not involve constitutive behaviour but these are re-
quired for closure of the governing transport equation and consequently the
effect of scaling on these needs to be understood. Small deflection theory is as-
sumed to apply and the strain tensors in the pre-fractal and tessellated spaces are
represented by the symmetric part of (∂ui/∂x j)ps and (∂ui/∂x j)ts , respectively.
The constitutive behaviour is assumed to be linear elastic and captured in the
physical space by the relationship s i j

ps =Ci jkm
ps epskm, which in tensorial form is

s
ps
=C

ps
: e

ps
. The fourth-order stiffness tensor [79] is represented in Equation

(4.18).
Before proceeding it is convenient at this point to establish an identity for strain,
which requires a covariant relationship for displacement. This is readily deduced
from the covariant expression for velocity (i.e. avvts = arb 2F�T · vps) which
suggests auuts = arb 2F�T ·ups. More rigorously is the application of the met-
rics G�1 = b�2F ·FT (or (G�1)i j = b�2Fi

kF j
k ) and I (or d i j ) to Equation (5.18)

(i.e. auuts = arF ·ups), which yields

arui
ps = ard i jups j = arups,i = au(F�1)i

ju
j
ts = au(F�1)i

jG
jkuts,k

= aub�2(F�1)i
jF

i
l Fk

l utsk = aub�2d i
l Fk

l utsk = aub�2Fk
i uts,k (5.31)

which in vectorial terms returns as expected auuts = arb 2F�T ·ups.
In view of the differential relationship dxts =F ·dxps (or dxi

ts =Fi
jdx j

ps) it follows
from the chain rule that ∂/∂x j

ps = Fm
j ∂/∂xm

ts and consequently applying this to
a�uupsi = a�rb�2Fk

i uts,k gives

a�u∂ups,i/∂x j
ps = a�rb�2Fk

i Fm
j ∂uts,k/∂xm

ts (5.32)
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and in view of the identity s i j
ts =Ci jkm

ps eps,km =Ci jkm
ps (∂ups,k/∂xm

ps) along with
the stress identity s i j

ts = a�vhJ�1Fi
ks kl

psF
j

l it follows that

s i j
ts = a�vhJ�1Fi

kF j
l Cklrw

ps
∂upsr

∂xw
ps

=

aua�va�rhb�2J�1Fi
kF j

l Cklrw
ps Fn

r F p
w

∂ups,n

∂xp
ps

(5.33)

which is s i j
ts =Ci jnp

ts ets,np, where [80]:

Ci jnp
ts = aua�va�rhb�2J�1Fi

kF j
l Cklrw

ps Fn
r F p

w (5.34)

confirming a linear-elastic orthotropic constitutive law for the tessellated material,
and similar to the Equation (4.19) driven in the previous chapter.
For convenience all the similitude identities are tabulated in Table 5.2 where
both contravariant and covariant identities are presented along with relationships
between scaling factors.
Another way, to find the general scaling rules is by rewriting the scaling equation

Table 5.2: Scaling relationships for contravaiant and covariant components.

Physical Field Contravariant Rules Covariant Rules
r rps = arJrts rps = arJrts
s s

ps
= avh�1JF�1 ·s

ts
·F�T —

u auuts = arF ·ups auuts = arb 2F�T ·ups
v avvts = arF · vps avvts = arb 2F�T · vps

in the following form from Equation (3.1). This gives rise to the identities [77]:

rpsb
y
ps = ayh�1Jrtsb

y
ts

or
rpsb

y
ps = ayh�1JrtsGy ·by

ts (5.35)

Jy
ps = ayh�1JF�1 · Jy

ts

or
Jy

ps = ayh�1JGy · Jy
ts ·F�T (5.36)
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rpsyps = ayJrtsyts

or
rpsyps = ayJrtsGy ·yts (5.37)

along with
(vts � v⇤ts) = hF · (vps � v⇤ps) (5.38)

5.7 Analytical studies
A particular advantage of the tessellated approach is that a known analytical
solution on a continuum can be immediately lifted to the holey beam by means
of Finite Similitude. The focus on beams reduces the relative complexity of the
tessellated theory and allows both numerical and analytical investigations to be
readily performed. The pre-fractals considered are restricted to the Cantor dust
fractal and classical slender and thick beams are the focus of the analytical work.
One of the difficulties with holey beam constructions is that they do not form
load-bearing structures, which is rectified here by the insertion of rigid elements
in places where the holes in the pre-fractals are located. This assumption is
convenient albeit somewhat artificial as it has the advantage that slopes match
for elements in the discontinuity network on a tessellation (see Figure 5.1).
The geometrical features along with material properties of the pre-fractal and
tessellated models used in this work are presented in Table 4.1. The contraction
maps given in Section 3.3 are applied to create both the pre-fractal and tessellated
geometry. A number of levels of complexity are tested with a particular focus
on the pre-fractals Ê1, Ê2 and Ê3 with analysis performed on the tessellations
T̂1, T̂2 and T̂3. Isotropic and anisotropic scaling is tested (similar to the previous
chapter) distinguished by the following hole-fill maps as in Equation (4.20), and
repeated here as:

Fk = bk

2

64
1 0 0
0 1 0
0 0 1

3

75 ,Fk =

2

64
bk 0 0
0 1 0
0 0 bk

3

75 ,Fk =

2

64
bk 0 0
0 b 0.5

k 0
0 0 b 2

k

3

75 (5.39)

where bk = (3/2)k and Fk is the hole-fill map connecting Êk to T̂k.
The hole-fill maps in Equation (5.39) are uniform and when applied to Êk have
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Figure 5.1: Pre-fractal Cantor set and tessellation with DN of the third set under
lateral force excitation.

the effect of closing the holes whilst and applies a one-to-one correspondence
between corresponding elements. The anisotropic geometrical features along
with material properties of the pre-fractal and tessellated models used in this
work are presented in Table 4.2. The focus here is principally on a beam model
of length `o with k set equal to 3, consisting of 8 deformable segments of a length
Lps = `o/33. The pre-fractal beam has seven holes of different lengths, i.e. four
of length `o/33, two of length `o/32, and one of length `o/3 (see Figure 5.1).
The corresponding tessellated beam is a continuous structure that is consists of 8
tiles of length Lts = `o/23.
The analytical study performed here also serves the purpose of testing the numer-
ical models founded on the commercial FE software ABAQUS (version 6.13).
Linear beam elements of type B32 [72] are adopted for both pre-fractal and
tessellated structures.

5.7.1 Thick beams temporal response

Thick beams provide the simplest system and two different beam systems are
considered with one dominated by shear and negligible rotational inertia and the
other dominated by bending and rotational inertia with negligible lateral inertia.
The governing equations in the tessellated space for these two cases are [81]:

rtsAts
∂ 2wts

∂ t2
ts

= KtsGtsAts
∂ 2wts

∂x2
ts
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or
∂ 2wts

∂ t2
ts

= c2
ts

∂ 2wts

∂x2
ts

(5.40)

and

rtskts
∂ 2qts

∂ t2
ts

= Etskts
∂ 2qts

∂x2
ts

or
∂ 2qts

∂ t2
ts

=C2
ts

∂ 2qts

∂x2
ts

(5.41)

where q = ∂wts/∂xts, kts = (Its/Ats)0.5 , Ats is cross sectional area, Its is second
moment of area about the neutral axis, Gts and Ets are shear and Young’s modulus,
respectively.
The hyperbolic Equation (5.40) is arrived at in the limit Ats ! • (i.e. large cross
sectional area) and similarly Equation (5.41) involves the limit kts !• (i.e. large
moment of inertia). The signal velocities in Equations (5.40) and (5.41) take the
form cts = (KtsGts/rts)0.5 and Cts = (Ets/rts)0.5. Equations (5.40) and (5.41) are
separable and consequently when a beam (governed by one of these equations)
is released from a stationary-deformed state it has an analytical solution of the
form (for Equation (5.40)) [82]:

wts(xts, tts) =
•
Â

m=1
bm cos(wmtts)sin(

wm

cts
xts) (5.42)

where m is equal to infinity, also the initial condition w̄(xts) is representable by a
Fourier series [83], arrived at by setting tts = 0, i.e.

w̄ts(xts) = wts(xts,0) =
•
Â

m=1
bm sin(

wm

cts
xts) =

•
Â

m=1
bm sin(

(2m�1)p
2

x̂ts) (5.43)

with wm = (2m�1)p
2`o

[83] , x̂ts = xts/`o and Euler coefficients bm = 2
R `o

0 w̄ts(x̂ts )

sin((2m�1)p
2 x̂ts)dx̂ts, and for the assumed initial deflection w̄ts(x̂ts) =Uox̂ts equals

bm = (
2Uo

(2m�1)p
)2[sin(

(2m�1)p
2

)� (2m�1)p
2

cos(
(2m�1)p

2
)] (5.44)

It is important to appreciate that Equations (5.40) and (5.41) arise from the
momentum equation with particular assumptions in force, so it is important to
identity what is contravariant and what is covariant when relating these equations
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to the physical space despite these being identical in an orthonormal frame. With
this in mind the analytical solution on Êk can be immediately lifted from T̂k (i.e.
Equation (5.42)) via the Similitude theory as simply requires the application of
the contravariant identity wps(xps, tps) = a�rauF�1

33 wts(x̂ps`o,h�1tps) , where
(x̂)ts ! (x̂)ps with x̂ts = xts/`o and x̂ps = xps/`o.
An alternative means of checking the form of the solution in the physical space
is by means of direct substitution of the appropriate identities into Equations
(5.40) and (5.41). Note that Ats = F22F33Aps, and from Equation (5.34) it can
be deduced that Ets = a�rb�2h2J�1F4

11Eps = a�rb�2h2F3
11F�1

22 F�1
33 Eps and

Gts = a�rb�2h2J�1F2
11F2

33Gps = a�rb�2h2F11F�1
22 F33Gps since the Jacobian

J = b 3 = F11F22F33. Note in addition that the covariant form of displacement is
required on the right-hand side of Equations (5.40) and (5.41), since this arises
out of the constitutive equation, which from Table 5.2 is auuts = arb 2F�T ·ups

and consequently auwts = arb 2F�1
33 wps, from which it can be deduced that

auqts = arb 2F�1
33 F�1

11 · qps (since qts = ∂wts/∂xts). On the left-hand side of
Equations (5.40) and (5.41) are contravariant displacement, which again form
Table 5.2, and consequently auwts = arF33wps , auuts = arF ·ups and auqts =

arF�1
33 F11 ·qps (arising out of xtsqts =�uts). Armed with this information the

left hand side of Equation (5.40) transforms in the following manner [84]

rtsAts
∂ 2wts
∂ t2

ts
= (J�1a�rrps)(F22F33Aps)(a�uarF33h2)

∂ 2wps

∂ t2
ps

=

a�uh2rpsApsF�1
11 F33

∂ 2wps

∂ t2
ps

(5.45)

and similarly for the right hand side

KtsGtsAts
∂ 2wts

∂x2
ts

=

Kps(a�rb�2J�1h2F2
11F2

33Gps)(F22F33Aps)(a�uarb 2F�2
11 F�1

33 )
∂ 2wps

∂x2
ps

=

a�uh2KpsApsGpsF�1
11 F33

∂ 2wps

∂x2
ps

(5.46)

which on equating gives the expected equation in the physical space.
The clamped-free beam on T̂3 is subjected to an initial point shear load at the
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free end of the beam; the load is released and the beam allowed to vibrate freely.
The analytical solution on T̂3 for this behaviour is described by Equation (5.42)
with coefficients provided by Equation (5.44) for the first three terms. The beam
is initially displaced at its free end and released to vibrate freely (a numerical
comparison between the pre-fractal and the tessellated behaviour are presented
subsequently in Section 5.8). This response is recorded at the deforming point.
In order to confirm the expected response, the analytical solution represented by
Equation (5.42) is compared against results obtained from ABAQUS, employing
beam elements of type B32 [72]. Despite increasing the cross-sectional area, the
ABAQUS model suffers to a small extent from bending. This is reflected in the
results shown in Figure 5.2, where although a perfect match is not obtained the
agreement between analytical and numerical results is very good [75].

Figure 5.2: Transient lateral shear response for a thick beam on T̂3 measured at
the free end.

5.7.2 Slender beams temporal response

Slender beams are dominated by bending and two equations of classical interest
are the Euler-Bernoulli beam and the Rayleigh beam for uniform thickness and
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no viscous damping, which take the form [82]:

rtsAts
∂ 2wts

∂ t2
ts

=� ∂ 2

∂x2
ts
(EtsIts

∂ 2wts

∂x2
ts
) (5.47)

rtsAts
∂ 2wts

∂ t2
ts

� ∂
∂xts

(rtsIts
∂ 2q
∂ t2

ts
) =� ∂ 2

∂x2
ts
(EtsIts

∂ 2wts

∂x2
ts
) (5.48)

It is of interest to repeat the exercise in Section 5.7.1 to ascertain the form of the
governing equations in the physical space. The first term on the left-hand side of
Equations (5.47) and (5.48), is done above as in equation (5.40) and transforms
as described by Equation (5.45). The right-hand side of Equation (5.47) requires
the identity Its = F22F3

33Ips and for a prismatic beam takes the form [75]

EtsIts
∂ 4wts

∂x4
ts

=(a�rb�2h2F3
11F�1

22 F�1
33 Eps)(F22F3

33Ips)(ara�ub 2F�1
33 F�4

11 )
∂ 4wps

∂x4
ps

= a�uh2F�1
11 F33EpsIps

∂ 4wps

∂x4
ps

(5.49)

which on equating with Equation (5.45) provides the equation expected as the
term a�uh2F�1

11 F33 simply cancels from both sides.
Consider now the second term on the left-hand side of Equation (5.48) with
insertion of the contravariant form auqts = arF11F�1

33 qps for a prismatic bar of
invariant density gives

rtsIts
∂ 3qts

∂xts∂ t2
ts
= (J�1a�rrts)(F22F3

33Ips)(F�1
11 h2)(a�uarF�1

33 F11)
∂ 3qps

∂xps∂ t2
ps

=

a�uh2F�1
11 F33rpsIps

∂qps

∂xps∂ t2
ps

(5.50)

and since the other terms are common to Equation (5.49) it follows on division
by a�uh2F�1

11 F33 that the expected equation is returned.
Unlike the thick shear beam, solutions to Equations (5.47) and (5.48) on a tes-
sellation has discontinuities present at the discontinuity network and as such
standard analytical solutions are not available. However, for the sake of compari-
son it is possible to confine the behaviour of the tessellated beam to be continuous.
This restriction has the effect of limiting the response of the pre-fractal with
kinks appearing at the connections between rigid and pliable elements. Although
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somewhat non-physical this limitation does allow for the application of analytical
solutions and for the further testing of the theoretical constructs.
Consider then a pinned-pinned beam under a force applied at the centre of
the span and in static equilibrium; the force is removed and the beam is al-
lowed to vibrate freely. The analytical solution for this case is again described
by Equation (5.42) but with wave number (w/cts)m = (mp/`o) [85], where
in this case cts is the frequency-dependent bending wave propagation (phase)
speed, which satisfies c2

ts = (EtsIts/rtsAts)0.5w . The material properties used
in this section are for aluminium with density of 2698.8 (kg/m3) and Young
modulus of 68.9⇥ 109 (N/m2) and a comparison between analytical and nu-
merical frequencies values are presented in Table 5.3 with percentage error
defined by |wanalytical �wnumerical|/wanalytical ⇥100%. The initial deflection of
the beam w̄ts(xts) is equal to w̄ts(x̂ts) =

Qtsl3
o

48EtsIts
(3x̂ts � 4x̂3

ts) for 0 � x̂ts � 1
2 and

w̄ts(1� x̂ts) for 1
2 � x̂ts � 1; and consequently, the Euler coefficients obtained

from bm = 2
R 1

0 w̄ts(x̂ts)sin(mp x̂ts)dx̂ts are [81] or [83]

bm = (
Qts

20m3p3EtsIts
)((

1
2
� m2p2

25
)cos(

mp
2

)) (5.51)

Finally, the analytical solution represented by Equation (5.42) is compared

Table 5.3: Differences in the natural frequencies: analytical vs numerical.

Mode n
Analytical Numerical Error %

wana
n (rad/sec) wnum

n (rad/sec) |w
ana
n �wnum

n
wana

n
|⇥100%

1 46.17 46.15 0.04
2 184.70 184.40 0.16
3 415.59 414.02 0.37
4 738.83 733.89 0.66

with numerical results on produced by ABAQUS using beam elements type B32
[72]. The results are presented in Figure 5.3, where an almost perfect match is
achieved.
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Figure 5.3: Transient lateral bending response for a slender beam on T̂3 measured
at the mid point.

5.8 Numerical studies
This section is concerned with further testing tessellated continuum mechanics
for beams involving both isotropic and anisotropic scaling along with changes
in boundary and loading conditions. Both force and displacement loading are
investigated in the dynamic analysis of the beams. The beam models considered
in the physical space are formed from pre-fractals of the Cantor set of different
levels of complexity as indicated by the index k , where k is set equal to 1, 2, or
3. As mentioned in Section 5.7, holey beams are not load bearing but are made
so by the insertion of light rigid sections. This has the effect of introducing a
discontinuity network into the corresponding tessellation as discussed in Section
3.4. This concept was first introduced by Jiang et al. [55] to extend the types
of analysis that could be performed on tessellations although the work was
limited to heat transfer problems. Although the approach allows discontinuities
to appear at the edges of tiles in a tessellation, these are not arbitrary and are
constrained by the physical behaviour of the pre-fractal. For holey beams the
rigid-body motion of the connecting elements constrains the jump behaviour on
a tessellation at a discontinuity so that slope matches across any jump. Unlike
the analytical approach in Section 5.7, where known continuous solutions are
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lifted to the pre-fractal the absence of such solutions means that it is necessary
to lift projected numerical solutions from the tessellations. An example of the
situation is presented in Figure 5.1 where a cantilever beam is subjected to a
lateral load magnitude of Qps at its free end. The corresponding tessellated
cantilever model is also presented in sub Figure 5.1 but in this case the loading
conditions and constraints are set by the contravariant identities presented in
Table 5.2. Introduced in section 5.4 are the rules for the creation of the tessellated
model accounting for both its geometry and material behaviour, mirroring to a
large extent the pre-fractal model. Unless otherwise stated the pre-fractal models
are bestowed with the material properties and the dimensions (segment lengths)
presented in Table 4.1.
Examined here is the application of isotropic and anisotropic scaling as dictated
by the matrix (tensor) F , which is set equal to Fk in Equation (5.39) and consists
of diagonal coefficients with b = bk = (3/2)k. Since the segments of any of the
pre-fractals under consideration are equal in length it allows F to be uniformly
applied over the whole beam, which is a convenient simplification. Isotropic
scaling occurs when all the diagonal terms in F are equal and it has the effect
of changing not only the length of any pre-fractal beam but also its thickness
and height. This affects the second moment of area in the following manner
Its = b 4Ips. Bearing in mind that hole-fill maps are expansive this invariably
means that b > 1 (e.g. b = (3/2)k) and consequently isotropic scaling contrasts
the behaviours of beams of different cross sectional areas. However, a particular
peculiarity of the scaling theory is that it also features anisotropic scaling and
two such examples are provided in Equation (5.39). The middle example has the
effect of leaving the height of the beam unchanged but alters the thickness and
gives the relationship Its = b 3Ips . The last example in Equation (5.39) changes
dimensions in a non-linear manner and provides the identity Its = b 13/2Ips. It is
evident that the scaling theory provides relationships between beams of different
sizes and it is of some interest to investigate and test the concepts involved here.
A manifestation of anisotropic scaling however is anisotropic material properties
as revealed by Equation (5.34) and particular properties are found in Table 4.2.
The numerical analysis presented here is performed with the commercial FE
software package ABAQUS (version 6.13). Linear beam element type B32 [72]
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is applied for analysis of beams in both pre-fractal and tessellated spaces. For
consistency the number of finite elements used in each deformable pre-fractal
segment (and tile) was set equal to 10 as this was found to provide converged
results to high accuracy. This number or elements was applied for the entire
numerical analysis of the beam structures with identical numbers of elements in
corresponding pre-fractals and tessellations. Two analysis types are considered
in both spaces, which are frequency and dynamic analysis. Although analytical
results are not available for comparison the results in the physical space can be
determined both directly and indirectly and therefore can be contrasted. The
direct results are obtained with ABAQUS but do not involve the scaling theory
whilst the lifted results are also obtained with ABAQUS but in this case the
analysis is performed on the tessellation with tiles doubling up as elements. The
aim here is to show that analysis on a continuum is possible for holey beams.

5.8.1 Frequency analysis

Determining natural frequencies and mode shapes is a good first step, since this
can be done for both spaces and they underpin the characteristic behaviour of
both pre-fractal and tessellated beams. Two cases are compared in this section
for the purpose of initial verification of the tessellated approach. The models
considered are two pre-fractal beams. The first is a built-in beam with k = 1 and
the other a cantilever beam with k = 2. Material properties for both beams are
listed in Table 4.1 with isotropic scaling applied in the scaling process. Although
all frequencies can be determined numerically with ABAQUS the following
formula [81, 85 and 86]

fi,ts =
l 2

i

2pL2
ts
(

EtsIts
rtsAts

)0.5 (5.52)

provides a good approximation in the tessellated space, where li is a dimension-
less parameter whose value is dependent on the boundary conditions. Formula
(5.52) has another form fi,ps in the physical space that is readily related through
the mappings to confirm that fi,ps and fi,ts are algebraically connected.
The frequencies and mode shapes obtained via ABAQUS are presented in Tables
5.4 to 5.7. Observe in those tables that the pre-fractal elements are linked by
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means of rigid elements to provide a load bearing structure as mentioned above
in Section 5.7. With h = 1 it is anticipated that the frequencies in the two spaces
match; within the bounds of numerical accuracy the results in the tables confirm
that this is indeed the case. The lowest accuracy in the natural frequencies is to
equal 4.63⇥10�2 rad/sec at the first mode (with k = 1) and the least absolute
relative error of 4.54⇥ 10�2 rad/sec occurs at the fourth mode (for k = 2).

Table 5.4: Differences in the natural frequencies for CC beam on Ê1 and T̂1.

Mode
Physical- Tessellated- Absolute relative

natural frequency natural frequency error
n wnum

n,ps (rad/sec) wnum
n,ts (rad/sec) |w

num
n,ps�wnum

n,ts
wnum

n,ps
|

1 4.60⇥10�2 4.82⇥10�2 4.63⇥10�2

2 7.39⇥10�2 7.50⇥10�2 1.42⇥10�2

3 2.44⇥10�2 2.55⇥10�2 4.35⇥10�2

4 2.79⇥10�2 2.87⇥10�2 2.91⇥10�2

Furthermore, the frequency analysis is also repeated for the anisotropic scaling
cases for the tessellated models. The two anisotropic scaling cases listed in
Equation (5.39) are used to create tessellated geometries. A frequency analysis
is run and the results are presented in Tables 5.8 and 5.9. This case study is run
for pre-fractal of the third complexity under a boundary conditions of clamped-
clamped represented by (CC). The material properties for the anisotropic cases
are listed in Table 4.2. The natural frequencies are presented in Table 5.8, while
the mode shapes are presented in Table 5.9. The maximum error is found for the
second scaling case at the third mode shape with value of 0.282 relative error.

5.8.2 Free vibration analysis

In this section, the transient response of pre-fractal beams is tested by six different
vibration analyses. Presented in Table 5.10 are the seven test cases considered
to assess the tessellated theory. Different boundary conditions and excitation
sources are applied along with isotropic and anisotropic scaling for the creation
of the tessellated beams.
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Table 5.5: Mode shapes for CC beam with isotropic scaling of Ê1.
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Table 5.6: Differences in the natural frequencies for built in beam on Ê2 and T̂2.

Mode Physical- Tessellated- Absolute relative
natural frequency natural frequency error

n wnum
n,ps (rad/sec) wnum

n,ts (rad/sec) |w
num
n,ps�wnum

n,ts
wnum

n,ps
|

1 6.19⇥10�2 5.90⇥10�2 4.54⇥10�2

2 5.43⇥10�2 5.43⇥10�2 1.22⇥10�4

3 9.94⇥10�2 9.55⇥10�2 3.90⇥10�2

4 4.77⇥10�2 4.77⇥10�2 4.61⇥10�4

Table 5.7: Mode shapes for CF beam with isotropic scaling of Ê2.
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Table 5.9: Mode shapes for CC beam with anisotropic scaling of Ê3.
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5.8.2.1. Isotropic scaling of a thick beam

This test is focussed on the application of the tessellated theory to a thick beam
with view to examining how rotary inertia is accommodated by the theory. The
influence of rotary inertial is recognised to be small during the flexural deflection
of a thin beam and consequently is often neglected. It is accounted for in
Timoshenko beam theory but its influence on natural frequencies for any shear
deformation mode is known to be limited [84]. The ability of the tessellated
approach to predict the dynamical behaviour of a thick beam is therefore of some
interest. The case study presented in section 5.7.1 is illustrated in Table 5.10
known as Case I which is represented in this section for further analysis to verify
the TCM theory. The studied model is a Cantor set of the third complexity and
under the boundary condition of clamped-free denoted by CF and under a shear
concentrated load. A shear deformation is achievable by applying a shear force
to the structure in the lateral direction that cause the beam to deflect by means of
+wps to deform the structure by applying a pure shear component, then allowing
it to vibrate freely; In the same way, +wts is achieved on the tessellated space by
applying the Equation Qts = b�1F33Qps.
The lifted results in Figure 5.4 and Figure 5.5 are compared with the pre-fractal

space models, and they give an indication that the analysis of a thick beam
structure is predicted perfectly through comparing the displacement and slope
variation with time. Furthermore, the instantaneous response is also plotted in
Figure 5.4 to confirm the static deflection of the beam at 0.56 unit of time. By
doing so the numerical results has proved its efficiency in predicting the results
on the pre-fractal space.

5.8.2.2. Isotropic scaling of thin beam

For the next cases, the studied models testing the most widely used structures in
engineering applications, which are beams in static lateral loading and lateral
vibration. Due to the importance of such models, it is found necessary to un-
derstand the ability and the limitation of the TCM theory in analysing different
boundary conditions (BC) and load cases. For example and in this analysis, the
structure is tested under four different combinations of boundary conditions (BC)
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Table 5.10: Studied case for pre-fractal and tessellated beams on Ê3 and T̂3.
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Figure 5.4: Transient displacement response on Ê3 compared to lifted results
from T̂3 for a cantilever beam at the free end.

Figure 5.5: Transient slope response on Ê3 compared to lifted results from T̂3 for
a cantilever beam at the free end.
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such as: Clamped-Free (CF); and Clamped-Pinned (CP); excitations sources at
different applied location; with two cases of different lateral disturbance sources:
Displacement (w), and Concentrated Force (Q); with different locations of ap-
plying the deforming sources. All the studied models in this section are chosen
to have k = 3. All the studied models in this section use the isotropic scaling
process to create the tessellated space and consequent models. So basically, this
section is more concerned with understanding the possibility of applying differ-
ent combinations of boundary conditions (BC) and sources of initial loading.
Furthermore, a forced vibration case is also been considered.

5.8.2.2.1. Symmetric pinned-pinned BC under initial displacement

The model presented in section 5.7.2 is represented here to validate the TCM
theory numerically. This model illustrates an isotropic scaling of a beam under a
pinned (PP) boundary condition as indicated in Table 5.10, Case II. The structure
is initially deformed by an arbitrary displacement in the lateral direction then it
is left to vibrate freely. Since the scaling map is isotropic then the material of
the tessellated models remains isotropic as listed in Table 4.1. The transient FE
analysis took place on the pre-fractal and the tessellated space correspondingly.
The results of lateral deflection versus time for both pre-fractal and the tessellated
models are depicted in Figure 5.6. The temporal variation of the velocity of the
structure at the place of the applied initial displacement is presented in Figure
5.7.

5.8.2.2.2. Unsymmetric clamped-free BC under initial displacement

The model is under CF boundary conditions and lateral displacement of an
arbitrary magnitude, see Table 5.10, Case III. The isotropic tessellated model is
built by using the same procedure mentioned earlier, and its material properties
are listed in Table 4.1. It is essential to investigate more the effect of boundary
condition (BC) on the frequency analysis which is influence clearly the transient
response.
The transient response is presented in Figures 5.8 and 5.9. These figures show the
transient responses in measures of displacement and slope on the pre-fractal space
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Figure 5.6: Transient displacement response on Ê3 compared to lifted results
from T̂3 for a pinned beam measured at the point of initial displacement.

Figure 5.7: Transient velocity response on Ê3 compared to lifted results from T̂3
for a pinned beam measured at the point of initial displacement.
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and the reversed tessellated responses. The time unit is been normalised through
the final maximum time on both models, which is denoted by t f . This analysis
proves that the tessellated space has shown a significant agreement in predicting
the response on the pre-fractal space, while testing different BC combinations.
Furthermore, the instantaneous beam responses plotted and compared at 0.04
unit of time, with a perfect match on both spaces achieved in terms of lateral
deflection.

5.8.2.2.3. Unsymmetric clamped-pinned BC under initial displacement

To test further an unsymmetrical boundary condition such as a clamped pinned
case, this is denoted by (CP). Case IV in Table 5.10, is gives an excellent
demonstration to apply of unsymmetric boundary conditions for an isotropic
tessellated model. Displacement of an arbitrary magnitude of a unit length is
applied on the left edge of the main hole see Case IV, Table 5.10. Then by using
Equation (5.18) the excitation magnitude and direction are calculated on the
tessellated space.
Then by removing the excitation and allowing the structure to vibrate freely, the
transient response can be measured and is plotted in Figure 5.10 at the mid-left
edge of both structures. As mentioned earlier the reversed tessellate results,
which are obtained by using equation dxts = F11 ·dxps. and Equation (5.10), and
Equation (5.34) are presented in Figures 5.10 to 5.12. This proves that the TCM
theory managed to get a perfectly match to the pre-fractal results whose error can
be considered as a numerical accumulative error. Similar to the previous sections,
the instantaneous beam lateral deflection at (1) normalised unit of time is plotted
and compared with the reverse tessellated response. The results showed a good
match on both spaces as in Figure 5.10.

Furthermore, the modal energy is also been investigated numerically. At 1
unit of time, the changes in kinetic energy (H) with time is been studied and
compared on both spaces. Similarly to the strain energy (M) is also recorded
and compared on both spaces. Figure 5.13 demonstrates the relation between
the kinetic and the strain energy for both models. The kinetic energy is found
to follow Hts = 0.5

R
mtsv2

tsdxts and by using a contravariant relationship Hts =

a�ra�2vF11F33Hps. This is equal to Hts = a�rb�2F11F33Hps. And the results
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Figure 5.8: Transient lateral response by displacement unit on Ê3 compared to
lifted results from T̂3 for a cantilever beam measured at the free end.

Figure 5.9: Transient velocity response on Ê3 compared to lifted results from T̂3
for a cantilever beam measured at the free end.
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Figure 5.10: Transient lateral response by displacement unit on Ê3 compared to
the lifted T̂3 under clamped-pinned boundary conditions measured at point of
applied displacement.

Figure 5.11: Transient lateral response by slope unit on Ê3 compared to the lifted
T̂3 under clamped-pinned boundary conditions measured at point of applied
displacement.
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Figure 5.12: Transient lateral response by velocity unit on Ê3 compared to the
lifted T̂3 under clamped-pinned boundary conditions measured at point of applied
displacement.

have proved to follow equation Hts = Hps and similarly the strain energy Mts =

Mps. This proves the point that kinetic and strain energy are scalable.

5.8.2.2.4. Symmetric clamped BC under initial force

In this case study, the structure is under a CC boundary condition while a force of
arbitrary magnitude ( Qps) displaces the pre-fractal model. Force scaling should
follow Qts = b�1F33Qps. Qts is the magnitude of the force which is applied on
the isotropic tessellated model [77], see Case V in Table 5.10. The structure is
deformed by utilising a concentrated force in the lateral direction at the left edge
of the middle-main hole. The analysis is run on the two spaces separately and
the results are compared after using the tessellated reverse-results. The reversed
responses are plotted against the main real space results (pre-fractal) to check if
the TCM captured the real analysis. Figure 5.14 and Figure 5.15 demonstrate
the ability of the TCM method in predicting the pre-fractal results, while the
instantaneous beam lateral deflection is compared at the end of the analysis
and the results showed a great agreement with what expected. This analysis
demonstrates the possibility of using a concentrated load as the initial cause of
deflection to the studied structure.
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Figure 5.13: The change in the kinetic energy and the strain energy with the
time, for the whole model on Ê3 compared with its reversed T̂3 structure.

5.8.2.2.5. Anisotropic scaling of thin beam

In this case study, two approaches are used to create two different tessellated
spaces. This is completed by using the anisotropic scaling function, see Equation
(5.39), where F11 = (3/2)3. So, by using a different combination of linear scaling
tensor mappings, different tessellated models can be built, but it is important
to maintain the same rules of closing the holes in the axial directions, which
in this case are use F11 = (3/2)3. The material properties and dimensions are
listed in Table 4.2. Most interestingly the constant scalars used in this study are
illustrated in the same table. Two cases are listed in this analysis as follows.

5.8.2.2.6. Symmetric clamped BC under initial displacement

The boundary condition for this case is CC, where a displacement of an arbitrary
unit of length is applied at the main-left hole’s edge (see Table 5.10 for Case VI).
In this case study, two approaches are used to create two different tessellated
spaces. All three models are under CC boundary condition with displacement as
a deforming source is applied on the pre-fractal and mapped into the tessellated
space by using Equation (5.18), but for this case, it is essential to use F33 , which
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Figure 5.14: Transient lateral response by displacement unit on Ê3 compared to
the lifted results on T̂3 for a clamped-clamped boundary conditions measured at
the point of applied force.

Figure 5.15: Transient lateral response by velocity unit on Ê3 compared to the
lifted results on T̂3 for a clamped-clamped boundary conditions measured at the
point of applied force.
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is entirely different for each scaled case. Similar to the previous cases the results
are shown in Figures 5.16 and 5.17, which expand the sense of using the TCM
in anisotropic scaling cases, which is investigated in this form for the first time
in literature. The instantaneous lateral deformation is also tested at 0.2 unit of
normalised time, see Figure 5.16.

5.8.2.2.7. Symmetric pinned BC under initial displacement

Table 5.10 Case VII illustrates the final case study in this work for free vibration.
A similar initial deflection is applied inn this case study. The analysis is carried
out by using one of the choices of the hole-fill maps. The tessellated model
is built by using the first choice in Equation (5.39). The structures are under
a PP boundary condition with a lateral displacement as mentioned earlier, this
is shown in Figures 5.18 and 5.19. In this analysis all the possible transient
responses are investigated in this work and plotted in Figure 5.18 in terms of
lateral displacement, slope and velocity varied with time. It can be seen that
the analysis after a period of time accumulates more error and this is due to the
numerical solver.
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Figure 5.16: Transient lateral response by displacement unit on Ê3 compared
to the lifted results on the anisotropic T̂3 for a clamped-clamped boundary
conditions measured at the point of applied displacement.

Figure 5.17: Transient lateral response by velocity unit on Ê3 compared to the
lifted results on the anisotropic T̂3 for a clamped-clamped boundary conditions
measured at the point of applied displacement.
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Figure 5.18: Transient lateral response by displacement unit on Ê3 compared to
the lifted results on the anisotropic T̂3 for a pinned-pinned boundary conditions
measured at the point of applied displacement.

Figure 5.19: Transient lateral response by velocity unit on Ê3 compared to the
lifted results on the anisotropic T̂3 for a pinned-pinned boundary conditions
measured at the point of applied displacement.
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5.9 Forced vibration analysis
The forced vibration analysis for isotropic scaling cases can be found in reference
[77], where an isotropic tessellated model has shown a great ability in replicating
the real (pre-fractal) model. In this case study two anisotropic scaling cases are
investigated. Those cases are defined by Equation (5.39). Similar to the previous
section where a separate analysis is carried out on each space separately then the
results are compared on the pre-fractal model.
So, the last case study is a beam under a clamped-pinned boundary condition
as indicated in Table 5.12 /Case IV, but with a forced vibration. The structure
is tested by applying a force of arbitrary magnitude in the lateral direction at
the second natural frequency for each model. The 2nd natural frequency is
found numerically equal to 0.1317 (rad/ sec) for the pre-fractal model. On
the other hand, the natural frequencies are 0.13204 and 0.13098 (rad/sec) for
the tessellated models for Case I and Case II correspondingly. The harmonic
forces are expressed as Qts = Acos(w2,tstts)+Bsin(w2,tstts) where A= B/2. The
results are taken at the right edge of the hole and they are listed in Figures 5.20
and 5.21 in terms of lateral displacement and velocity where a near perfect match
is achieved. The DN is a mathematical mapping to the pre-fractal hole-behaviour.
It is fallow the mapping of a liner equations only.
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Figure 5.20: Transient lateral response by displacement unit on Ê3 compared to
the lifted results on the anisotropic T̂3 for a clamped-pinned boundary conditions
for forced vibration measured at the point of applied force.

Figure 5.21: Transient lateral response by velocity unit on Ê3 compared to the
lifted results on the anisotropic T̂3 for a clamped-pinned boundary conditions for
forced vibration measured at the point of applied force.
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5.10 Conclusions
All the presented figures proved that the TCM succeeded in capturing the physics.
This is done with the following remarks:

1. Deriving transport equations and implementing the conserved continuum
laws for general dynamic analysis are achieved in this chapter. This is
accomplished by creating the rules of direct and reverse maps.

2. Using the discontinuity network, to overcome a problem that could not
be solved in [15] where the response in the tessellated space is found to
have a linear jumps in the lateral deflection that would effects the studied
models. This is shown in the instantaneous response in Figures 5.8, 5.10,
5.14, 5.16, and 5.18.

3. The analytical analysis is used to test the tessellated models when com-
pared to the numerical analysis with a very good accuracy.

4. Frequency analysis for the isotropic and the anisotropic cases are found
matching on both spaces with very acceptable results.

5. The flexibility of the TCM theory to run different BC is remarkable even
when tested for different scaled spaces.

6. The transient and instantaneous beam deflections for wider options of BC
are matched for real cases with an acceptable accuracy.

7. Using anisotropic scaling factors shows excellent results in matching the
physics of a discrete system; this is presented by using different random
values of F .
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Chapter 6

Dynamic 2-D Analysis of TCM

6.1 Introduction
This chapter answers the main question of this project, can the TCM theory can
be used to replace the dynamic analysis of 2-D discontinuous problems in pre-
fractal space by creating a hypothetical continuous space named as tessellation?
This assumption is also involves solving the problem in the hypothetical contin-
uum space independently from the original one. The outcomes of this analysis
can be related through implementing a reverse rule to give the continuum results
a physical meaning .
The main reason for choosing the TCM method in creating an entire environment
to support the implementation of analytical and numerical approaches, is to re-
place the analysis on the pre-fractal space. But due to the fact that 2-D structures
in vibration analysis rarely have an analytical solution, the analytical solution
will not be considered in this chapter, unlike the previous ones, and the main
focus remains on the numerical calculations. All this is possible by using the
commercial FE software ABAQUS.
The creation of the chosen pre-fractal type in this work always considers the
use of the iterated function system (IFS). This process is also used in creating
the tessellated models, and includes creating its geometry accompanied by the
hole-fill maps that will close the holes on the tessellated models. Meanwhile,
forming the tessellation space is neither arbitrary nor unique. A detailed discus-
sion on this topic is given in Chapter Three, Section 3.2. Due to the complexity
of the used models a Python code is used to build those geometries in Ê and T̂
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space. The Python programming language also includes the implementation of
the mathematical calculations for the studied 2-D cases for models type k = 3.
It is also still important to mention that this work is still in the early stages of
verification. For this reason, it is crucial to run the analysis independently on
the pre-fractal space as well as running the analysis on the tessellated, then
comparing the results afterward through implementing a reverse scaling rule.
From the previous chapters, the TCM theory is developed and verified to test
static case studies for one-dimensional (1-D) and two-dimensional (2-D) struc-
tures; and through dynamic cases for 1-D structures in solid mechanics analysis.
In this chapter the framework for applying the TCM theory in testing 2-D holey
structures such as the pre-fractal models is introduced and verified. Through
tracking the development of this theory, it is found that many techniques such as
the hole fill-map techniques, discontinuity network, and the reverse mapping is
well established at this point and are therefore ready to be tested. This is crucial
to assist running the analysis on the hypothetical space.
This work tests the frame procedure derived in Chapter 5, where the dynamical
analysis of 1-D pre-fractal structure known as the Cantor set is tested by the
TCM theory, and a small strain theory is applied for a holey structure that follows
the Euler-Bernoulli and Rayleigh beam theories. It is also worth mentioning
that the approach developed in chapter 5 and tested in this chapter is been up-
dated further in next chapter. This updated methodology is found to predicted
the natural frequency at higher accuracy than the one used in this section with
some limitation. This method is include scaling the density by considering the
momentum equations.
Similar analysis is carried out in this chapter for the 2-D pre-fractal model known
as the Sierpinski Carpet. Also a small strain theory is applied for a holey structure
that follows the Mindlin-plate theory. The results confirm the statement that the
TCM theory can be used as an alternative approach for analysing the pre-fractal
models without the need to deal with their space complexity. This statement
is achieved in this chapter. Section 6.2 introduces the general procedure to
implement the TCM. It is followed by Section 6.3, which presents the numerical
method and the case studies. The chapter ends with conclusions in Section 6.4.
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6.2 The general procedure to implement TCM in
2-D pre-fractal models

One of the challenges that faced the previous work in this field is the complexity
of dealing with the studied models such as the Sierpinski Capet after mapping it
into the tessellated space as in [54]. This chapter takes the work a step further
from where it started, it enable the users to use an automatic code to create the
hypothetical models. So, in order to deal with such models, Python code is
used to handle the TCM calculations and the procedure steps, from building
the interested model’s geometries to calculating the corresponding material
properties and finding the scaled relations between both models. And the reason
behind using Python as the constructing language is because Python has shown
great ability in dealing with the iterated function system (IFS), which in principal
are sets of equations that can be used to create both models. Those mathematical
equations are presented in Appendix A. It is found that creating the models on
the pre-fractal space is much easier than on the tessellated one. For example,
the equations listed in Appendix A, Table A-1 are applied directly through eight
lines of codes. On the other hand, the tessellated models are built by applying
the concept of the hole-fill maps beside the IFS. This will lead to apply the
equation listed in Appendix A, Table 1. Those equations are completely different
form the equations listed in Appendix A, Table A-2 because they depends on the
(x,y) coordinates (see Appendix C). For this reason, constructing the tessellated
geometry can be considered harder than creating the pre-fractal one, from a
programming perspective.
Moreover, through linking the relations between the deformed and the real
geometries the F-function can be calculated. More information about the hole-
fill maps is discussed later in this work. Finding the values of these functions is
essential to link the material properties and the boundary condition and later to
find the reverse-maps for the tessellated results to be compared with the results of
the real space. At the end, it is crucial to illustrate the problem size that Python
is dealing with for the selected case studies. For example, for the case of k = 1
Python code has to assign the material properties and dimensions for 64 parts.
This number is applicable to both models, although for the tessellated model the

141



material properties are anisotropic and completely different from one case to
another. So it is irrelevant to mention all the material properties here. Besides,
this difficulty becomes greater when dealing with structures such as T̂2. This
model has 512 parts, and the number of elements on the studied models reaches
to 4096 for T̂3. The TCM theory can be applied in five steps. These steps are
used to create the tessellated models, which are extensively listed in reference
[77] and in Chapter 3, where the work mainly consists of applying four steps
to construct these models. But they are briefly mentioned here and extended to
cope with using the Python code:

6.2.1 Step I: Model geometries

This step is concerned with building the models in the pre-fractal and in the
tessellated, but with more focus on how to construct the tessellated one. As
mentioned earlier, the pre-fractals and tessellation models are created separately
by relying on the iterated function schemes (IFS). Those systems of equation
are listed in Appendix A for the Sierpinski Carpet. The contraction maps that
involve building the pre-fractal models as presented in Table A-1 in the same
appendix. In the same manner, the tessellated model is constructed through the
maps that are demonstrated in Table A-2. However, to understand the principles
behind creating these equations, a further step is needed, which is insertion of an
initial triangular meshes on the pre-fractal models as in Figure 6.1 (see Appendix
C). Then these models are allowed to undergo the IFS. Basically, these maps
are performed on the pre-fractal models first. For example, the maps that create
a model type k are presented as Êk =

S
i Si(Êk�1). Again, Si represents the IFS

functions that are presented in Appendix A, Table A-1. Moreover, it also can be
represented by Sk = Ak ·Ak+ck [6] (see the same appendix). In a similar manner,
the tessellated models, are presented mathematically by T̂k =

S
i Pi(T̂k�1), where

Pi produces the maps required to create the tessellated models by the IFS and the
hole-filling maps. These functions are contraction maps that involve in building
the tessellations through closing the holes in the pre-fractal models. These maps
are presented in Appendix A, Table A-2. Please note, that Ê0 = T̂0 and to create
T̂1 the equation T̂1 =

S
i Pi(T̂0) can be used. So this process always considers

applying the IFS mapping on the continuous model (closed hole model) from
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the previous iteration. This mean that the model of type (k� 1) must be run
on different (smalls) scale than the final model. And the concept of applying
the hole fill-map can be explained by identifying the centre of the pre-fractal’s
holes. Then following equation Fnew = (Fold �d tan(q))/a , which determine’s
the new coordinates for the tessellated model type (k� i), where i is iteration
number 0 � i � k , F is the model coordinates before and after the mapping; q
is the angle between the model’s lines before and after closing the holes; d is the
half hole length; and a is the number of elements that are going to be stretched
to fill the hole, see Figure 6.2.

Finally, it is crucial to mention here that by closing the holes on the tessel-

Figure 6.1: Basic mesh on the pre-fractal under different mesh type: (a)
considering the TCM techniques (b) FE square mesh pattern.

lated space the structure is going to have individual nodes that have the same
coordinates. And basically, this is the location that can be used to apply the
discontinuity network denoted by DN [55]. The DN is found to accommodate
the jumps in the field on the continuous space. This is highly dependent on the
case study that is being analysed. The tested models are presented in Figures
3.2 - 3.4. Furthermore, these figures are also illustrate the DN distributed on the
tessellated models and represented by red lines.
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Figure 6.2: The concept of using the hole-filling maps.

6.2.2 Step II: Direct mapping

The previous step is completed in such a way as to ensure the same numbers of
elements are produced after scaling the pre-fractal models into the tessellated
space. The most important section in this work is to find the geometrical links
between the deformed and the initial models. To create the 2-D models by
the direct mapping is found challenging due to the high numbers of elements
that are used in this case study. For this reason, Python code is found more
straightforward to deal automatically with the models’ coordinates on both
spaces, since the coordinates on the Êk and T̂k have the same number of elements
on each model. This stage links each tile on both models together, which is
possible by using Nanson’s identity. A spatial link in the physical space (where
the pre-fractal resides) is related to its corresponding tessellated space (where the
tessellation resides) by the relationship dxts = F ·dxps, where F is the hole-fill
map and plays a fundamental role in the Similitude theory as mentioned earlier.
Due to the complexity of the 2-D models, a Python code is used to implement
Nanson’s identity represented by dV ⇤

ts = JdV ⇤
ps and dG⇤

ts = JdG⇤
ps ·F�T [71], to
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calculate the F-Function or what is called the 2nd-order mapping tensor by using
the following equations:

2

66664

ats,1

bts,1

ats,2

bts,2

3

77775
=

2

66664

aps,1 bps,1 0 0
0 0 aps,1 bps,1

aps,2 bps,2 0 0
0 0 aps,2 bps,2

3

77775

2

66664

F11

F12

F21

F22

3

77775
(6.1)

where a is the x-axis component to the first chosen edge of the basic mesh on
either space, while b is the y-axis component of the chosen edge of the basic
mesh on either space, the subscript (1 or 2) in these variables indicates the first
and second chosen edges (remember in this study we are using a basic mesh
in the shape of triangular elements, so by relating any two edges to form the
F-function on both spaces, this is completely enough to establish the full link
between both spaces), while ps and ts are denote for the pre-fractal and the
tessellated space.
In general, the F-Function is a 2nd-order tensor that can be created directly
through equation (6.1) and takes the following shape [69]:

F =

2

64
F11 F12 F13

F21 F22 F23

F31 F32 F33

3

75 (6.2)

For the current study, the structure is scaled in 2-D space. This means F13,F23,F31

and F32 = 0. This is unlike the approach considered for 1-D structures [77] and
[80], where the model had the same F-Function.
As mentioned earlier, the 2-D models are divided into eight segments that are
distributed evenly on the whole studied model. So, for example, for the geometry
of k = 1 there are around 64 elements; and each element has its own mapping
functions. The F-Function is defined correspondingly. For this reason, it is found,
and very essential to use an orientable programming language such as Python.

6.2.3 Step III: Material properties

The second most crucial reason behind using Python code is to calculate the
material properties and assign them into their correct location. Calculating the
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material properties and assigning them into the correct location is highly linked
with calculation of the corresponding F-functions and geometrical coordinates.
So after finding the values of the F-function, it is possible now to apply the
rules that are outlined in Chapter 5 which include the use of the scaling rules by
paying extra attention to the constant scalar. So, two main equations are used
in this section after calculating the F-Function tensors, which are the density
and the elasticity equations represented by Equation (5.10) and (5.34). The
constant values are discussed in Chapter 5. For a demonstration of how the
material properties are created on the tessellated space, Figures 4.13 is showing
the normalised principle of Young’s modulus which is calculated by Equation
(5.34). This is demonstrated on the tessellated models of the third complexity.
For this reason, the material properties of models tested on T̂ space could not be
presented in this work.
It is also worth mentioning that these constant mappings incorporated some
scaling limitations that are chosen to fit the TCM method for this cases of
analysis, which is also found to match the chosen values during the static analysis,
i.e. ar ,au,av and ae are following the values listed in Table 6.1. From the
previous analysis to the model, its found that the ar does not affect the results
since it is concerned with scaling structure density. For this reason, it is chosen
to have a unit value, see Table 6.1. On the other hand, au and av are found to
have the same magnitude, but av incorporates the time scaling factor while au,
which is concerned with the displacement, is not. For this reason the relationship
between the displacement factor is selected to follow au = b and velocity
constant au = h�1av. The time scaling factor is represented by h. For more
details about how to find these constant, see reference [77] Also the material
properties provided for the tessellated space of an isotropic material and their
values can be fed into the numerical solver with the aid of reference [85 and 86].

6.2.4 Step IV: Boundary conditions

In order to create the same space that mimics the pre-fractal space, the same
boundary condition must be used in this type of analysis. And depending on
the studied cases, the boundary must be scaled from the pre-fractal space. For
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Table 6.1: Scaling constant values.

Equation needed Contravariant and Covariant Rules
Volume ar

Displacement au

Velocity av = hb�1

Time h = 1
Energy ae = a�r(b�1av)2

example, in the case of applying a displacement as an initial boundary condition
or as a source of deforming the models, these values must be scaled by following
the relationship aru = auF�1 · uts. And due to the fact that the 2-D models
consist of different scaled parts, extra care must be taken for this case while
assigning the applied deforming source, because the F values are functions of
the coordinates in the (x,y) system.
Using a clamped or fixed boundary condition where all six degrees of freedom
for a node are constrained gives the same constrained boundary conditions on
the tessellation.
Similarly, for stress constrains Equation (5.14) applies (i.e. s

ps
= avJF�1 ·

s
ts
·F�T ), which approves that free-stress boundary conditions are must be

identical on each space. A comparable approach can be held for the stress at the
hole’s edges on the pre-fractal space. This is must be maintained the same, while
closing the hole’s edges on the tessellated space.
Finally, after creating the tessellated geometry and in order to maintain applying
the same boundary conditions on the closed holes, it is found that it is necessary
to match the boundary conditions that are used on the pre-fractal and especially
the one that is used around the closed holes [55].

6.2.5 Step V: Analysis and post-processing

This is the second main step of applying the TCM theory in analysing the
pre-fractal models. Reaching this step declares that the tested models on the
pre-fractal and the tessellated spaces are ready for further analysis by any solver.
Even though the fact that the tessellation models are considered as a replica to
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the real model, their response still lacks the physical meaning. This means that it
is necessary to use the reversed mapped rules that were mentioned earlier. This
process is equal in importance to the step of creating the models in the first place.
So, to apply the reverse maps of Equation (5.13) and Equation (5.18) is essential
and depends on which response we are after, It also might need Equation (5.14)
with the aid of Equation (4.25); this purely depends on the tested cases. This is
true for all fields on tessellation which can subsequently be lifted back to the
pre-fractal using the scaling identities.

6.3 Numerical analysis and verification
This study is concerned with testing the pre-fractal structure known as a Sier-
pinski Carpet for three different geometries, where k = 1,2, and 3 . All these
geometries with their corresponding tessellated structures are presented in Fig-
ures (3.2, 3.3 and 3.4). Due to the fact that analytical solutions for a 2-D plate
with perforation is hardly exist in the engineering fields. This analysis is carried
out with the concept of using a relative error. So by using the same tool to
analyse the studied models and using the exact same type of procedure with
the same mesh types, and numbers of elements beside using the same time step
for the FE solver. All of this is necessary to reduce the differences between the
pre-fractal and the tessellated models. So, by carrying out such analysis, it can
be judged whether the solver is dealing with the same problem or not. For this
reason, the only verification that is needed in analysing 2-D models is a relative
error. This is the procedure that has been carried out through the work, which is
unlike the previous work that is presented earlier in Chapter 4 and Chapter 5.
All the cases presented in this study are built with the aid of using Python code.
Mainly, the analysis is run on the tessellated space, then the tessellated results are
compared with the pre-fractal results after being scaled back into the pre-fractal
space. This is done by using the reverse equations mentioned earlier in Section
6.2. A shell element is used to represent the 2-D models on both spaces, which
has general pre-fractal material properties and general geometrical features as
presented in Table 5.1.
First, to verify the tested models, a mesh study is found to be essential. In the
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following sections, it is found vital to run a mesh study first to find the best
elements and a minimum number of meshes to represent the studied models by
the numerical solver ABAQUS. Moreover, due to the fact, that these models are
constrained with a specific mesh type, it is also found necessary to compare the
results presented by a parametric mesh study with the results presented by the
TCM theory. Different geometries are tested under different boundary condi-
tions and different loading sources. Two main areas are investigated, frequency
analysis and dynamical response with time (for more details see Appendix C ):

6.3.1 Solver verification

It is important to mention that ABAQUS normally uses Mindlin-thick plate
theory to avoid the shear locking when using a shell element [85]. In this
analysis the eigenvalue problem to find the natural frequencies of small vibration
must be examined. The governing equation of motion listed in ABAQUS solver
is as follows [72]:

h2[M]+h [C]+ [K]f = 0 (6.3)

where [M] is the mass matrix; while, [C] is the damping matrix; [K] is the
stiffness matrix. Moreover, h is the eigenvalues, and {f} is the vibration mode
vector. A Lanczos eigen-solver is used in this study to solve the FE equations
for extracting the extreme eigenvalues and the corresponding eigenvectors of
a sparse symmetric generalised eigen-problem. Moreover, modal analysis is
used to find the structural responses at the first natural frequency. This type of
analysis provides a time history analysis for a linear system, where the model is
under a form of excitation during a specified time. Then the model is projected
onto the chosen eigen-modes used for the dynamic representations by using the
following equation [72]:

q̈i +Bi jq̇ j +w2
i qi = ( ft)i (6.4)

( ft)i = ft�Vt +
V f
Vt

Vt (6.5)

where i and j are the indices span of the eigenvalues; Bi j is the projected viscous
damping matrix; qi are the generalised coordinates of the chosen mode i (the
amplitude of the response in this mode); wi is the natural frequency of the

149



undamped mode which is equal to wi = (ki/mi)0.5 [81] and [83] and must be
calculated by a previous frequency analysis step; Finally ( ft)i is the magnitude
of the force applied to the system at that selected mode.
More importantly to mention, from all the numerical analysis executed by the
commercial FE software ABAQUS (version 6.13), using shell elements, it is
found that the best element is SR8 [72] for both pre-fractal and tessellated
structures. It is also imperative to investigate the accuracy of the used mesh
on both models. But it is not possible to apply a controlled mesh study on the
tessellated model and more importantly there are the restriction in using such a
basic mesh which is consists of 8 elements and is extremely linked to the mesh
chosen on the pre-fractal. For these reasons a mesh study could be performed by
running a mesh study on the pre-fractal models only. Then this is compared with
results on the tessellated space in terms of frequency analysis and mode shapes.
For this reason, a mesh study is found to be crucial in choosing the minimum
number of elements on the pre-fractal models to give the optimum results. This
study is essential to investigate the current limitation of considering the used
meshes for the TCM theory compared to the best performance on the pre-fractal
models that could be achieved.

6.3.1.1. Mesh sensitivity

A convergence study is always essential in numerical calculations especially in
the absence of experimental results. This study is vital to define the type and
number of elements that are going to be used in this study, which alternatively
defines the model size. In verifying the TCM for 2-D pre-fractal analysis, it
is important to ensure running the same type of analysis throughout the whole
study. So, in this work, a convergence study is carried out on the pre-fractal
models instead of testing the tessellated models. This is due to the limitation of
applying such techniques (mesh convergence study) on the tessellated model, due
to the shape of its geometry. Furthermore, the TCM theory has some limitations
towards the initial mesh conducted on the studied models. This mesh must follow
a certain pattern (i.e, as illustrated in Figure 3.2). By following this pattern, it
is found that the number of elements for each case study type k is limited to a
certain number of elements. These numbers of elements are illustrated in Table
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4.4. This table indicates that 64 elements are necessary to mesh the models for
the case k = 1, for both models the pre-fractal and tessellated. For the case of
k = 2 the models entail 512 elements on both spaces. Finally, 4096 is the total
number of elements used on k = 3. The mesh patterns used in verifying the TCM
theory are presented in Figure 6.1 a. This is important to be highlighted because
the conclusions are crucial for defining the next step.
The following analysis performs a convergence mesh study by using square mesh
patterns on the pre-fractal models as illustrated in Figure 6.1 b. This type of mesh
is widely used in the field. The analysis in this section is accomplished by testing
the pre-fractal models for three different geometries k = 1,2, and 3. This is done
by reviewing the first 4 natural frequencies of non-uniform perforated plates by
using the mesh illustrated in Figure 6.1 b. The studied models have shared the
material properties listed in Table 4.3 (A detailed mesh study is performed on
the Vicsek pre-fractal models and the results are recorded in Appendix D).
The numerical solver results show that the best element type for this study is
the SR8. This element gives the best results for all the tested models of the
pre-fractals. Furthermore, to find the minimum number of elements by testing
the stability of the calculated natural frequency while alternating the meshes size
is crucial to have solid results. This is performed through using 5 different sets of
mesh size for all the tested pre-fractal models. Figures 6.3, 6.4 and 6.5 show the
mesh study on different pre-fractal models. Except Figure 6.3 ignores the results
when the mesh size is 0.3 unit of length, for a better presentation to the results.
Therefore, Figures 6.3 to 6.5 clearly show that the minimum number of elements
that give a stable prediction of the interested frequencies for the first three pre-
fractal geometries are (0.037,0.025 and 0.00833) per unit of length. This would
create about (512,1024 and 8192) number of elements on each studied model
correspondingly. This obviously indicates that the minimum number of elements
needed to get a stable result on Ê1 is only 512, while the TCM theory limited
this number to only 64; While for the higher studied pre-fractal models such as
k = 3 the minimum number of elements that the theory allows are 4096 while
Figure 6.5 recommends to use 8192 number of elements. This is true for all the
studied models if compared with Table 4.4. So to understand the accuracy of the
current used mesh on the TCM theory, this is carried out in the next section.
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6.3.1.2. Mesh pattern accuracy

Moreover, as mentioned in the previous section it is almost impossible to have
consistency in the tested results if the mesh study is tested on the tessellated
models due to the complexity of their geometrical shapes and the difficulty of
controlling the mesh shapes. For this reason, the analysis in this section is also
centred on testing the pre-fractal models. Even though, running the analysis on
the pre-fractal models are a costly process compared to the problem size and it is
a time-consuming. However, this is necessary for the sake of verifying the tested
results’ accuracy.
The tested models are two cases of Sierpinski Carpet of the third complexity
under a Clamped-Clamped-Clamped-Clamped, which is denoted by a ’CCCC’
boundary condition. The material properties of the studied models are presented
in Table 4.3 with the thickness 0.05 unit of length. The numbers of elements on
the studied cases are 4096 for Case 1, while the number of elements in Case 2
is 8192. Case 1 represents the case of the basic mesh that is used to verify the
TCM theory, see Table 4.4, while Case 2 represents the standard mesh used in
the previous section. In general, Table 6.2 gives the natural frequencies for two
mesh’s patterns, also listing their absolute relative error. The mode shape of the
studied cases are following the legend in Figure 6.6 to indicate the normalised
deflection on the studied plates. The mode shapes are presented in Table 6.3,
where only the first three mode shapes are presented and compared. Table 6.3
obviously shows that even by using a small number of elements, the mode shape
can be obtained with a very good accuracy with a maximum absolute relative
error of 0.03 percentage.
To run a frequency analysis on 2-D models, it is important to mention the naming
system for these mode shapes. The mode shapes which have no nodal lines, for
example, the very first mode of vibration of plates is the first bending modes that
are represented by a dark line. The mode shapes which have only one nodal line
along the y-axis ( j = 1) would be the pure torsional modes. As the value of j
increases to 2 then two nodal lines are formed along the y-axis. Similarly, the
mode shapes which have only one nodal line along the x-axis (i = 1) would be
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Figure 6.3: Mesh sensitivity study for pre-fractal geometry Ê1.

Figure 6.4: Mesh sensitivity study for pre-fractal geometry Ê2.
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Figure 6.5: Mesh sensitivity study for pre-fractal geometry Ê2.

the pure bending modes. For example, mode 4 of the plate with aspect ratio 1 are
represent to model lines one parallel to the x-axis and the others are parallel to
the y-axis, this is identified as (1,1). When the value of i increases to 2 and 3, the
third and fourth pure bending modes, respectively, are formed. The mode shapes
which have combinations of both nodal lines are stated as composite modes. So
each mode of vibration can be represented by (i, j) to identify the plate’s modes
of vibration.
In Table 6.3 the mode shape which has no nodal line, for example, is the first
mode shape which represent the first bending mode and its signified by (0,0),
while the figures with only one nodal line present the pure modes of vibration
like (1,0) as in Table 6.3 the second mode which depends on the axis that the
nodal lines are parallel to. This is the naming system that is used to describe the
mode shapes in the following sections.

6.3.2 Theory verification

Based on the analysis run in the previous section, the dynamical models are
built and tested correspondingly. The studied models are shell 2-D models, for
the case of pre-fractal with overall dimensions of `o ⇥ `o = 0.9⇥ 0.9 per unit
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Figure 6.6: Displacement legend for frequency analysis

Table 6.2: Differences in the natural frequencies: analytical vs numerical.

Mode
Case I Case II Error

wnum
n,Case1 wnum

n,Case2 |w
ana
n,Case2�wnum

n,Case1
wana

n,Case2
|

Shape n (rad/sec) (rad/sec)
(0,0) 560.71 545.99 0.0269
(1,0) 828.65 802.32 0.0328
(1,1) 1229.9 1191.8 0.0319

of length while the rest of the material properties are indicated in Table 4.3.
This model is used in the tessellated but the geometry are continuous unlike the
pre-fractal model, see Figures 3.2 to 3.4.
The pre-fractal geometry is created by applying the IFS function that is men-
tioned earlier. On the other hand, the tessellated models are built by using
Equations (5.10) and (5.34) while the boundary conditions are kept the same as
the pre-fractal models and by using Equation (5.18) to duplicate the excitation or
deforming sources.
In the end, this section concentrates on comparing the relative response between
both spaces, so the results accuracy existed in the tested models remains relative.
Keeping this in mind, the analysis in this section is performed by testing different
boundary conditions as a combination of Clamped and Pinned boundary condi-
tions cases. Furthermore, two types of analysis are carried out, the frequency
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Table 6.3: Mode shape comparison for different mesh studied under an overall
material assignment.
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analysis and dynamic responses.

6.3.2.1. Frequency analysis

To ensure the integrity of any newly designed models, frequency analysis is the
first frontier to provide enough information about the of ability and the possible
problems. Moreover, as mentioned earlier, the pre-fractal models are relatively
new models that have been avoided in engineering designs due to the complexity
that is required to investigate their behaviour. So this is the third most important
section in this study because it shines the light on the possibilities to use such
structures. And most importantly, it is imperative to use this section to investigate
the possibility of using the TCM theory in mimicking the pre-fractal model’s
behaviour. For this reason, it is found necessary to test different pre-fractal
models under different boundary conditions.
The main three pre-fractal models are tested in this section, and each model
is tested for two different boundary conditions. This is due to the fact that the
natural frequency is dependent on the boundary conditions, and it is essential to
understand the trends of the TCM theory in predicting the pre-fractal model’s
responses due to the effect of changing the boundary condition while increasing
the studied model’s complexity. So, this analysis is focused on the models
presented in Figures 3.2, 3.3, and 3.4. The material properties and dimensions
for the tested models are listed in Table 4.3, this is for the pre-fractal models,
while the tessellated model is created by considering Equation (5.10) and (5.34)
with the aid of the hole fill-maps, as is widely discussed in Section 6.2 and in the
previous chapters. Three main cases are presented and as follow:

6.3.2.1.1. Case I: Structure type k = 1

Sierpinski Carpet of the first complexity is tested in this section. The pre-fractal
models and its corresponding tessellated models are presented in Figure 3.2. The
material properties are listed in Table 4.3. And due to the mentioned complexity
of the tessellated model, it is impractical to list the material properties which
consist of 64 different elements. Also, the model is under Clamped-Clamped-
Clamped-Clamped boundary condition denoted by CCCC. The clamped edges,
all the six degrees of freedom are constrained, three transition degrees of free-
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dom, and other three rotational components are equal to zeros at the constrained
edges. First, the frequency analysis is investigated for the first four natural
frequencies. The natural frequencies as listed in Table 6.4, and their mode shapes
are presented in Table 6.5. It is also found that the maximum absolute error at
the second natural frequency is 4.53⇥10�2 for the CCCC case. But it also noted
that the predicted mode shapes are a little shifted. This is due to the limited
number of element on both spaces. Despite this fact, the models’ results are
close, and this is the purpose of this study, which can be denoted as verified.
In a similar manner, the second boundary condition is CPCP, where ’P’ rep-

Table 6.4: The natural frequency comparison in both space for a structure type
k = 1 under CCCC BC

Mode
Physical- Tessellated- Absolute relative

natural frequency natural frequency error
n wnum

n,ps (rad/sec) wnum
n,ts (rad/sec) |w

num
n,ps�wnum

n,ts
wnum

n,ps
|

(0,0) 1257.80 1249.90 6.28⇥10�3

(1,0) 1880.50 1795.30 4.53⇥10�2

(0,1) 1874.00 1843.20 1.64⇥10�2

(1,1) 2489.90 2440.50 1.98⇥10�2

resents a pinned boundary condition. For the case of a pin the three-transition
degrees of freedom are constrained to be 0, for example (u,v, w) = 0. The natural
frequencies are presented in Table 6.6 and the mode shapes are presented in
Table 6.7 for the first four mode shapes. It is found that the highest absolute
relative percentage error is at the second natural frequency with 0.087 relative
error. And similar to the first tested cases in this section, it is found that the
tessellated mode shapes are worse than the case where all the edges are clamped
(CCCC). But both analyses gave good equivalent results when compared with
their original physical models.

6.3.2.1.2. Case II: Structure type k = 2

The second complexity of Sierpinski Carpet with its corresponding tessellated
models are tested here. The pre-fractal type k = 2 and the tessellated model are
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Table 6.5: Mode shapes of Sierpinski Carpet Ê1and its corresponding tessellated
under CCCC BC.
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Table 6.6: The natural frequency comparison in both spaces for a structure type
k = 1 under CPCP BC.

Mode
Physical- Tessellated- Absolute relative

natural frequency natural frequency error
n wnum

n,ps (rad/sec) wnum
n,ts (rad/sec) |w

num
n,ps�wnum

n,ts
wnum

n,ps
|

(0,0) 1337.60 1352.70 0.01129
(1,0) 1936.70 2104.90 0.08685
(0,1) 2453.70 2660.70 0.08436
(1,1) 3503.20 3591.00 0.02448

illustrated in Figure 3.3. Both models are constructed from 512 different tiles.
Testing a non uniform perforation can be noticed in this section as in Figure 3.3
a, where there are two different types of holes on the physical model. The first
has the dimension `o/3⇥ `o/3, while the second hole has `o/32⇥ `o/32. For the
case of pre-fractal model, the same material properties are assigned for each tile.
Those material properties are listed in Table 4.3. On the tessellated model, each
element of those 512 has different material and geometrical properties, as has
been discussed earlier.
Two different boundary conditions are tested in this case, too. The first is a
Clamped- Clamped-Clamped-Clamped boundary condition, while the second
boundary condition is pinned from all the edges, which is denoted by ’PPPP’.
The natural frequencies are presented for two different cases for a nonuniform
perforated structure as indicated by the Euclidean coordinate system. Table 6.8
and Table 6.9 are demonstrate the natural frequency and the mode shapes for the
CCCC case. In the same manner, the second case is tested under PPPP boundary
conditions, where the natural frequencies are presented in a unit of rad/sec as in
Table 6.10, and their mode shapes are presented in Table 6.11.
The results trending is in a quite interest, where It is found that the highest error
is at the fourth natural frequency for the CCCC cases, although the second case
is showing the highest error at the first natural frequency when the structure is
under PPPP case study. It is clearly that the highest absolute relative error is
0.00384 and 0.0164 at the fourth mode shapes for both models. And in the same
manner, the predicted mode shapes for both studied boundary condition cases
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Table 6.7: Mode shapes of Sierpinski Carpet Ê1and its corresponding tessellated
under CPCP BC.
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are improved than the previous case when k = 1 .

Table 6.8: The natural frequency comparison in both space for a structure type
k = 2 under CCCC BC

Mode
Physical- Tessellated- Absolute relative

natural frequency natural frequency error
n wnum

n,ps (rad/sec) wnum
n,ts (rad/sec) |w

num
n,ps�wnum

n,ts
wnum

n,ps
|

(0,0) 1105.90 1107.80 0.00172
(1,0) 1569.80 1567.70 0.001338
(0,1) 1570.60 1568.80 0.001146
(1,1) 2315.70 2306.90 0.00380

6.3.2.1.3. Case III: Structure type k = 3

The tessellated has shown very promising results when handling the random
perforated structure. This is proves its capability in mimicking the physical
structures with high efficiency. A further step can be taken to analysis a more
complicated model. A pre-fractal of the third complexity as indicated in Figure
3.4, presents a square plate with three different type of holes. These holes
dimension are `o/3k�i, where i = 0,1,2, ...,(k�1) with number of holes (1,8,
and 64) corresponding to i values. With testing two types of boundary conditions,
it is found necessary to carry out the same boundary conditions cases that are
investigated in Case II, to investigate the effect of running a higher model
complexity compared to the previous results.
So, the results for the CCCC boundary condition presented in Table 6.12 and
Table 6.13 in terms of natural frequency and mode shapes show a comparison
between the pre-fractal and the tessellated models. In the same manner, the
second tested set of boundary condition are illustrated in Table 6.14 and Table
6.15 . From the point of view of verifying the models in case of k = 3 it is found
that the maximum absolute relative errors between the predicted results from
both spaces, are found to be equal to 0.00604,0.016467 at the 2nd mode shape
for the CCCC and PPPP boundary conditions, in Table 6.12 and 6.14. On the
other hand, and to investigate the degree of the accuracy while testing higher
pre-fractal models, it is obvious as the degree of the model complexity increases

162



Table 6.9: Mode shapes of Sierpinski Carpet Ê2and its corresponding tessellated
under CCCC BC.
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Table 6.10: The natural frequency comparison in both space for a structure type
k = 2 under PPPP BC.

Mode
Physical- Tessellated- Absolute relative

natural frequency natural frequency error
n wnum

n,ps (rad/sec) wnum
n,ts (rad/sec) |w

num
n,ps�wnum

n,ts
wnum

n,ps
|

(0,0) 511.28 558.56 0.09247
(1,0) 1066.20 1067.70 0.00141
(0,1) 1066.30 1060.80 0.005158
(1,1) 1756.10 1784.90 0.01640

the predicted results improved significantly too if compared with the previous
two studied cases. This effect is also noticed while analysing pre-fractal models
especially when testing geometries higher than k = 2.

6.3.2.2. Dynamical analysis

After investigating the natural frequencies for different models and different
boundary conditions the next step remains less crucial since the static analysis
has been confirmed in Chapter 4 for the studied models. The frequency analysis
has also been verified in Section 6.3.2.1. So, the following step can be considered
minor in its importance to verify the TCM theory. Besides, numerical solvers
tend to accumulate error while calculating such models when testing the transient
response.
In this section, three different pre-fractal geometries of Sierpinski Carpet are
tested for their dynamical response. The general theme of the analysis in this
section, is done by examining the response on each space separately, then the
results are compared after reverse-mapping the tessellated transient responses
into the real space. The models are tested under transition base excitation; then
the structure response is recorded in terms of transit lateral deformation, velocity
and change of slope with time. The location of the recorded data is represented
by a green dot at the left edge of the main hole for all the studied cases.
The first studied model, in this section, is presented in Figure 3.2. This model
is considered to be a holey-structure under a CPCP boundary condition and a
lateral base excitation. In the same manner, it is corresponding tessellated model
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Table 6.11: Mode shapes of Sierpinski Carpet Ê2and its corresponding tessellated
under PPPP BC.
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Table 6.12: The natural frequency comparison in both space for a structure type
k = 3 under CCCC BC.

Mode
Physical- Tessellated- Absolute relative

natural frequency natural frequency error
n wnum

n,ps (rad/sec) wnum
n,ts (rad/sec) |w

num
n,ps�wnum

n,ts
wnum

n,ps
|

(0,0) 1006.90 1011.30 0.00437
(1,0) 1423.80 1432.40 0.00604
(0,1) 1423.90 1432.50 0.00604
(1,1) 2075.10 2078.90 0.00183

is presented in Figure 3.2. The tessellated model is under the same boundary
condition and excitation motion. By running the analysis on both spaces, the
structural response is compared in terms of lateral displacement, slope and finally
by velocity measures. The responses are demonstrated in Figures 6.6, 6.7 and
6.8 correspondingly, where an excellent match is achieved by comparing the
pre-fractal results with the reverse tessellated results. The reverse-tessellated
responses are calculated by using Equation (5.18) to scale the displacement and
by using the spatial derivative in Equation (5.18). And finally, by using Equation
(5.13), the velocity reverse-response is calculated.

Figure 6.7: Transient lateral response in terms of displacement on Ê1 compared
to T̂1 under CPCP boundary condition taken at the green spot.
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Table 6.13: Mode shapes of Sierpinski Carpet Ê3and its corresponding tessellated
under CCCC BC.
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Figure 6.8: Transient lateral response in terms of slope on Ê1 compared to T̂1
under CPCP boundary condition taken at the green spot.

Figure 6.9: Transient lateral response in terms of velocity on Ê1 compared to T̂1
under CPCP boundary condition taken at the green spot.
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Table 6.14: The natural frequency comparison in both space for a structure type
k = 3 under CPCP BC.

Mode
Physical- Tessellated- n Absolute relative

natural frequency natural frequency error
n wnum

n,ps (rad/sec) wnum
n,ts (rad/sec) |w

num
n,ps�wnum

n,ts
wnum

n,ps
|

(0,0) 452.67 450.40 0.005015
(1,0) 949.74 934.07 0.016499
(0,1) 949.75 934.11 0.016467
(1,1) 1544.3 1532.00 0.007965

Similar to the first studied model, Figure 3.3 presents the studied models in
this case. A Sierpinski Carpet of the second complexity is tested here. For this
case study, the structure is experiences a dynamical excitation in the form of
base motion. This is applicable to both models. The boundary condition, in this
case, is CCCC.
It is of interest to see the effects of the dynamical excitation on the structural
response of a pre-fractal, and how well the tessellated model captures the real
structure response. All the measured responses are collected at the left-edge-side
of the main hole of the studied models. And the transient response in terms
of lateral deformation are listed in Figure 6.10, which clearly shows that the
tessellated models succeed in capturing the pre-fractal model of type k = 2. And
in the same manner, the slope and the time integration to lateral displacement
are presented in Figures 6.11 and 6.12, correspondingly.
Furthermore, there is a shifting in the predicted results, and this shifting can be
identified as simply a numerical error.// Finally, the last studied model in this
work, is presented in Figure 3.4 with its tessellated model. It is interesting to
mention that the hole’s dimensions are (`o/3k�i ⇥ `o/3k�i), where k = 1,2, and
3 , while the number of holes are varied for each size. All this would increase
the level of complexity on both studied models. Dynamic model analysis is
performed on the studied structures. This is basically achieved by applying an
initial excitation to the structure boundary conditions. The measured results are
presented in Figures 6.13 to 6.15. Those Figures include the pre-fractal responses
plotted against the reversed tessellated results. The reversed tessellated results
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Table 6.15: Mode shapes of Sierpinski Carpet Ê3 and its corresponding tessel-
lated under CPCP BC.
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Figure 6.10: Transient lateral response in terms of displacement on Ê2 compared
to T̂2 under CCCC boundary condition taken at the green spot.

Figure 6.11: Transient lateral response in terms of slope on Ê2 compared to T̂2
under CCCC boundary condition taken at the green spot.
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Figure 6.12: Transient lateral response in terms of velocity on Ê2 compared to
Ê2 under CCCC boundary condition taken at the green spot.

are calculated by applying Equations (5.13), (5.18) and (4.25) with the aid of the
hole-filling maps dxts = F ·dxps.

Figure 6.13: Transient lateral response in terms of displacement on Ê3 compared
to T̂3 under CCCC boundary condition taken at the green spot.

Similar
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Figure 6.14: Transient lateral response in terms of slsope on Ê3 compared to T̂3
under CCCC boundary condition taken at the green spot.

Figure 6.15: Transient lateral response in terms of velocity on Ê3 compared to
T̂3 under CCCC boundary condition taken at the green spot.
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6.4 Summary
All the presented Figures proved that the TCM succeeded in capturing the physics
for the pre-fractal models. This is done with the following remarks:

1. Implement the transport equations which include using the conserved
continuum laws on the pre-fractal space to create the tessellated space for
dynamic analysis on 2-D models are achieved in this chapter. This leads
to creating direct mapping-rules that create the tessellated models; and the
reversed mapping-rules to transport the results from the tessellated space
into the pre-fractal space.

2. Applying local and anisotropic scaling maps to create an alternative space,
that simulates the original space, showed excellent results in matching the
physics of a discrete system. This approach is presented and verified for
the first time in literature.

3. Implementing a Python code has eased the process of creating the tested
models on both spaces and widen the horizon for a possible application.
Besides, implement Python to generate the hole-fill maps, can be consid-
ered on different geometries that are not systematically iterated as in the
pre-fractal models.

4. The basic mesh for the lower pre-fractal models is found to lack accuracy
due to the current limitation of the theory. The lack of accuracy disappears
when testing higher pre-fractal geometries such as k = 2 and 3.

5. The current limitation of the TCM method are tested regarding the number
of elements that are used to create the initial mesh on both models, pre-
fractal and tessellation. The triangular mesh elements is found to give a
very good result when compared with the results that are run on square
mesh type elements. Both analyses are run on the pre-fractal models with
almost half the number of elements for higher k , see Tables 6.2 and 6.3.

6. The TCM theory are controls the mesh number and distribution on the 2-D
models. Although a very good match between the results is achieved, this
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is found to limit the accuracy of the results on the real models for lower k
models as in Tables 6.4 to 6.7.

7. Running a dynamical analysis on the tessellated space has given promising
results when compared with the pre-fractal with a negligible error. So, the
TCM approach successfully predicted the dynamical analysis for the 2-D
pre-fractal models, as it shown in Figures 6.6 to 6.8.
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Chapter 7

Conclusion and Future Work

7.1 Introduction
This chapter presents the main conclusions that are drawn from testing the TCM
method’s accuracy in predicting the results of the pre-fractal space, where this
theory is constructed to replace the analysis run on the pre-fractal space. A
general introduction to the presented theory is stated briefly in section 7.2. This
is followed by listing the main points of essential conclusions of this research in
section 7.3. At the end of this chapter, a list of possible future works is presented.

7.2 Preface of TCM theory
This research offers an entirely new method to analyse vibration on pre-fractal
space without involving the complexity of the pre-fractal analysis. The TCM
method is built on the concept of creating an alternative space that can reflect
the pre-fractal model. This method creates a continuum model whose structural
geometry is fabricated by using hole-fill maps. This approach is used for the
first time. The material properties of the created structure are calculated by
applying transport equations that map the material properties of pre-fractal space
to create the tessellation. ABAQUS software is used in order to find the results
numerically on both spaces (pre-fractal and tessellated). The tested 2-D model’s
geometry is prepared by using Python. Moreover, implementing the required
equations to calculate the mapped material properties is also executed using
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Python code.
Another approach is also implemented in this study and for the first time in
the literature, which is the Discontinuity Network (DN). The TCM approach
results confirm that the tessellated approach has successfully managed to find
the correct pre-fractal responses on different dimensions, and under different
boundary conditions and deforming sources.

7.3 Conclusions
The transport theory is a general theory that is applied to different aspects in
engineering, as was concluded in Chapter Two, but this is the first time that the
transport theory has been considered on a local scaling process. This is known
as the tessellated continuum mechanics (TCM) theory.
The claim of this work is centred on the concept of replacing the analysis of a
porous structure, known as the pre-fractal, by creating an equivalent continuum
model known as tessellated structure. This claim is established in 1-D and 2-D
structures. The achieved results are found to give a good prove that the TCM is
an excellent alternative approach to analyse the pre-a fractal models. To verify
the TCM theory, this analysis is carried out by running a detailed analysis on the
tessellated continuum models. Then, at the same time similar analysis is had
to be carried out on the pre-fractal models. At the end the results are compared
after A pre-fractal structure in 1-D space is known as a Cantor set. The Cantor
set is a non-physical structure that needs to be linked in a specific way to force
the structure to behave as a physical structure. This issue is overcome when
analysing a 2-D structure. All this achieved with the following conclusions:

1. Testing the isotropic and the anisotropic scaling for 1-D structures is found
to give the same results with minor differences that have no effect on
the solution, while on the 2-D space the structure must be mapped only
by using an anisotropic linear scaling function on a local basis. This is
demonstrates the beauty of creating the tessellated structure, which uses a
non-unique local expansion is used. This would enable researchers to use
any possible shapes that would force the studied structure geometries to
be continuous.
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2. Applying the DN in 1-D models is proven to give accurate results while
testing the lateral vibration analysis. This overcomes the difficulties that
were faced in the first work prepared in this field for a Cantor set under
cantilevered boundary conditions [15]. Unlike the 2-D models where the
structure can have the DN or not, this only depends on the studied cases.
To reframe this "The jump condition represented by the DN is found to
give a perfect match on 1-D pre-fractal structures, but has a minor effect on
2-D structures". As matter of fact it is found that the DN is no more than
applying similar boundary conditions to those applied on the pre-fractal
structure.

3. One of the bigger difficulties that face researchers when running analysis
on the tessellated space has been easily overcome in this work. This is
achieved by applying a local scaling on each tile of the pre-fractal model.
This is done manually for the 1-D models. But for the 2-D models, a
Python code eases this process significantly by applying the TCM rules
directly at the first stage of designing the program. So, based on the
transport theory, the transport equation derives the main rules to create
the tessellated space. For example, the density scaling rules are listed in
Equation (5.10). Material properties represented as Young’s modulus of
elasticity are given by Equation (5.34). Each segment on the tessellated
structure has its own density, and Young’s modulus values which are
completely dependent on the geometrical mapping of the structure.

4. A parametric study on the pre-fractal space is performed. It is demon-
strated that the SR8 element is the best to represent the studied models,
with minimum numbers of element for the first three pre-fractal models
as (512,1024 and 8192) with a unit length of mesh (0.037,0.025 and
0.00833) for model types k = 1,2 and 3. It is also shown that at the higher
pre-fractal structures, there is no need to use a higher density mesh to
capture all the selected mode shapes. Using a mesh size of the dimension
of the smallest hole size can give very stable results compared with the
lower pre-fractal structure in the 2-D analysis.

5. Applying a higher mesh on the basic meshed elements on pre-fractal space
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is found to be effective, although this can be improved to use higher mesh
densities before creating the tessellated structure. Increasing the mesh on
the pre-fractal space is accomplished by increasing the number of tiles.
Then, these tiles can be mapped to create the tessellated space perfectly.
This would create numbers of mesh for the first three pre-fractal models
(64,512 and 4096). These values are proven to give better results than the
one mentioned earlier in point 4 (this demonstrated in 6.3.1.2).
In all the tested cases, linear vibration analysis for analytical and numerical
analysis is carried out by the ABAQUS software. Two different pre-fractals
are tested in this work. For 1-D space, a pre-fractal of type Cantor Set is
tested. On the other hand, in 2-D space, a pre-fractal known as a Sierpinski
Carpet is been tested.
Furthermore, in the case of the 2-D cases, a thin plate with a linear small
deformation theory is implemented. Most of the studied cases are tested
under free vibration analysis. Furthermore, a forced vibration is found to
give good results when tested by the TCM theory [77] and in Section 5.9.

6. Different tessellation geometries are numerically proven to give a better
demonstration to the studied cases under different boundary conditions
and excitation sources. The deformation distribution on the pre-fractal
space is a cubic function, while the DN is represented by a linear equation.
Its shown that the continuity in the tessellated has no effects on the re-
sponse. The continuity on the tessellated space is enforced by deformation
measures. The deformation difference between both spaces is proportional,
and it is shown to be scalable. This is known as the DN, which is used to
link the pre-fractal in 1-D space.

7. The analytical solution on 1-D pre-fractal Cantor Set is driven from the
governing partial differential equation on the pre-fractal space, where the
results showed a good matching with the numerical results.

8. On the other hand, the investigation of the lateral vibration case study
is expanded to test different boundary conditions. Clamped-Clamped
(CC), Clamped-Pinned (CP), and Clamped-Free (CF) (at both ends) are
studied. The author founds that the tessellated structure has successfully
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demonstrated the pre-fractal response under displacement excitation and
forced excitation with an accurate range. However, the only error found
was due to the accumulated numerical errors.

9. Similarity, the investigation of the lateral vibration case study for 2-D
is expanded to test different boundary conditions. Clamped-Clamped
(CCCC), Clamped-Pinned (PPPP), or Clamped-Free (CPCP) are studied.
It is also found that the tessellated structure has successfully predicted the
pre-fractal response under displacement and pressure excitation with an
accurate range. Also, the only error was due to accumulated numerical
errors.

10. Moreover, three types of analysis are carried out, the static deformation,
dynamic, and frequency. These responses are tested and compared by
running the same scaled analysis on the pre-fractal and the tessellated
spaces separately. The compared results in the static analysis are shown to
match perfectly, while a minor error is found while running the dynamical
analysis. Finally, frequency analysis results also follows the same error
range as the dynamical analysis.

11. The TCM is found to have a less accuracy when dealing with lower pre-
fractal complexity. This is shown obviously in the static and in the dynamic
analysis for model type K=1.
Also the number of mesh on the tessellated is completely depends on the
initial mesh that is been set on the pre-fractal.

7.4 Future work
Some possible work that can be done in this area is listed in details as follow:

1. Three-dimensional (3-D) model can be built up by using a programming
language; Python code is the easiest method for solving the problem of
implementing the iterated function system. An example for a 3-D model
is shown in Figure 1.3. This can be done by the following:
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- Modifying hole-fill maps to create the tessellated geometry in 3-D,
where it will be represented by the following equation :

F =

2

64
F11 F12 F13

F21 F22 F23

F31 F32 F33

3

75 (7.1)

In this case the shear F-Function components are no longer equal to zero.

- Studying the effect of scaling the thickness in the 3-D model rather
than a shell structure.

- Applying the theory to different analysis types such as structures
under shear forces, for analysis in different applications.

- Testing the theory to different hole-fill maps shapes on the tessellated
space. For example Figure 7.1 shows the basis mesh on the pre-fractal
space. The hole-fill maps in Figure 7.1 (b) is different than the Figure 7.1
(c ) (notice the middle centre shifting. Figure 7.1 (d) is showing a scaling
in the thickness.

Figure 7.1: Choosing different Hole-Fill maps options.

2. Testing if the theory can be implemented in geometries that are not related
to pre-fractals models. For a simple case study see Figure 7.2. This can be
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advanced by finding a different approach for creating the hole-filling map
techniques (the author suggests using artificial intelligent techniques (AI)
to fill the holes). This is important because there is one rule that controls
the formation of the new geometry which maintains triangular shapes of
the tiles for the reasons of maintaining a linear mapping. This can be
challenging unless using AI techniques.

Figure 7.2: Applying the TCM theory on uniform plate perforation

3. Different pre-fractal structures can be implemented that do not following
the IFS pre-fractals, such as the work done using the Vicsek fractal. In
more detail for the 1-D models, a Von Koch fractal can be used to modify
the hole-fill maps to cope with a pre-fractal behaving as a beam structure
that is created in (x, y) space rather than the Cantor set which is created by
alternating the beam length in one direction (x-axis). Another geometry
that can also be tested is listed in the following figure:

Figure 7.3: Testing the 2-D hole fill map for a T-fractal geometry
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4. In this work, the frequency results predicted by ABAQUS is found to
be limited for the first few natural frequencies (these frequencies are the
most important one because these frequencies are most likely to be tested
during operation). The natural frequency range can be increased by using
a second approach that is also gives a better accuracy. This approach is
considering the momentum scaling equations to find an alternative scaling
rules for density. And the author did not use the momentum equation
in this thesis but can be found in [97]. Although this work is still under
progress, it is found to be best to mention here for further improvement.

5. Non-linear vibration analysis can be tested for example by changing the
structure thickness for each tile on the pre-fractal space, or by using high
elastic material properties.
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Appendix A 
Per-fractal IFS Equations 

A.1. Maps for the Sierpinski Carpet 

The mapping results on the pre-fractal and the tessellated space should be used 

the mapping listed in Table 1 and Table 2. For each table, the x and y are denoting 

to the dimensionless coordinates, where 0/x X= and in a similar way 0/y Y= . 

Table A-1. Scaling maps for Sierpinski Carpet [55]. 
 

 

Table A-2. Scaling maps for the tessellated geometry mirrored the Sierpinski 

Carpet [55]. 
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A.2. Maps for the Vicsek Fractal 

The Vicsek Fractal is constructed by the five affine contraction maps in the 

following Table. For each table, the x and y are denoting to the dimensionless 

coordinates, where 0/x X= and in a similar way 0/y Y= . 

Table A-3 Contraction maps for Vicsek Fractal [55]. 
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Two sets of expansion maps termed (a) and (b) are defined in Tables 25 and 26, 

respectively. The effect of these maps is shown visually in Figures 22 and 23, 

where disparate tessellations are displayed. 

Table A-4. Expansion maps (a) for Vicsek Fractal [55]. 
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Appendix B 
Analytical Equation for Fractal Structures 

B.1. The Cantor Set type k=3 

The lateral deflection on the tessellated space of k=3 is represented by Equation 
(4.23). The following results are showing the lateral deflection for each segments 
(the even number of equations are explaining the linear behaviour of the holes): 
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Appendix C 
Python code in building the 2-D models 

C.1. Introduction  

This section explains the main features of the Python code used to create the 2-D 

models on the pre-fractal and tessellated space by applying the mathematical 

equations of TCM theory. Dealing with 2-D models as a Sierpinski Carpet by 

Python codes is found to be essential due to the complexity of the models studied. 

In this section, two Python codes are presented. The first is to build the pre-fractal 

models and the second is to build the tessellated models: 

C.2. Programming languages 

Python was first released in 1991 by Guido van Rossum [88]. Python is a high-

level open-source1 programming language. It is mainly used for Rapid 

Application Development and as an application extension language (glue 

language2). It also supports object-oriented programming (most programs work 

on the basis of logic; on the other hand, object-oriented programming is 

concentrated on the object that concerns the programmers rather than the logic) 

with classes. 

One of the most interesting features in Python is that it has a polymorphic list 3 

[89] beside its dictionary types; all this enables Python to have rich syntactic 

support, such that it adds up to a language that is considered straightforward for 

developing a prototype and other ad-hoc programming tasks4, without 

undermining maintainability. Python is always compared to the interpreted 

                                                             
1 Open-source language refers to a programming language that falls within the parameters of open-source protocol. 
This basically means that the language is not proprietary, and with certain provisions (depending on the open-
source license), can be modified or built upon in a manner that is open to the public. 
2Glue Language refers to a language that has been designed to write and manage programs and code that link two 
different software components. It does not add any functional value to the core software. Examples include 
VBScript, Ruby, Perl, and PHP besides Python. 
3 Polymorphic list: are the well-defined lists with the ability to use different variables of different types. 
4 Ad-hoc programming tasks: this a Latin phrase that means a programming tasks that is just relevant to a specific 
task with a special situation to solve a problem, as a systematic approach. 
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languages such as Java, JavaScript, Perl, Tcl, and Scheme [90-95]. A comparisons 

to C++, Common Lisp, and Ruby. For example, Python runs slower than JAVA, 

but its code is 3-5 times shorter than JAVA (a low-level implementation language) 

and 5-10 times shorter the C++ code. More favourably, it does not need to declare 

its variables or arguments type. Most of all, it does not need great efforts to track 

its code because it uses a rich syntax which is built directly into the code. For all 

the reasons mentioned, Python is better for use as a glue language compared to 

other programming languages. 

Moreover, Python is designed to support common programming methodologies, 

such as data structure design and object-oriented programming. This would 

expedite the tasks to the programmer to correct errors or develop the code himself 

without destroying its maintainability [96]. Python is like the Tcl programming 

language in its availability as a glue programming language, but Python can be 

considered stronger on data structures and faster in executing codes. Finally, it 

can be run on different software very easily such as Mac OS X, Windows, Linux, 

and Unix. 

C.3. Creating the pre-fractal models  

Python is a user-friendly language that is straightforward to use; as well as easy 

error tracking due to the fact that the language is an object-oriented language and 

polymorphic (which refers to a well-defined list with the ability to use different 

variables of different types).  Python was released in 1991 [88] (as mentioned in 

Chapter 2). It is considered a high-level programming language; open source; with 

limitless application. (Section 2.5 lists a more detailed comparison between the 

main programming languages and Python).  

Sierpinski Carpet is indicated in Figures C-1,a to C-3,a for 1: 3k = , with material 

properties shown in Table C-1. These structures are created by defining two main 

factors, the Sierpinski Carpet length and the level of complexity ( k ), where k  is 

a value that indicates the increase in number of a pre-fractal complexity. In order 
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to handle the geometrical complexity of such behaviour, it found that the best way 

to carry out the work is using Python. Besides all the previously listed advantages, 

the main reason for using a programming language in this study is that 

implementing the Iteration Function System (IFS) in creating pre-fractal is easy 

to be handled by Python. In this section, Python code is developed to build pre-

fractal models in ABAQUS through the following steps: 

C.3.1. Generating the Coordinates  

To create a pre-fractal geometry eight main contracting mapping equations [55] 

are listed in Appendix A Table A-1, which is used to generate the Sierpinski 

Carpet geometry.  These equations are defined in Python in the form of functions 

as follows: 

def S1x(x):return ((x/3.)) 
def S1y(y):return ((y/3.)) 
def S2x(x):return ((Length/3.)+(x/3.)) 
def S2y(y):return ((y/3.)) 
def S3x(x):return ((Length*(2./3.))+(x/3.)) 
def S3y(y):return ((y/3.)) 
def S4x(x):return ((x/3.)) 
def S4y(y):return ((Length/3.)+(y/3.)) 
def S5x(x):return ((Length*(2./3.))+(x/3.)) 
def S5y(y):return ((Length/3.)+(y/3.)) 
def S6x(x):return ((x/3.)) 
def S6y(y):return (((Length*(2./3.))+y/3.)) 
def S7x(x):return ((Length/3.)+(x/3.)) 
def S7y(y):return ((Length*(2./3.))+(y/3.)) 
def S8x(x):return ((Length*(2./3.))+(x/3.)) 
def S8y(y):return ((Length*(2./3.))+(y/3.)) 
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 (a) 1Ê      (b) 1̂T  

Figure C-1. Sierpinski Carpet case study of 1k = .  

 

  

 (a) 2Ê      (b) 2̂T  

Figure C-2. Sierpinski Carpet case study of 2k = .  

x 

y 

x 

y 

x 

y 

x 

y 



209 
 

 

(a) 3Ê  (b) 3̂T  

Figure C-3.  Sierpinski Carpet case study of 3k = . 

 

Table C-1. Material properties and dimensions for Sierpinski Carpet 

Properties Values 

Length (m) 0.9 

Width (m) 0.9 

Thickness (m)  (0.001-0.1) 

Density (kg/m3) 2698.8 

Elasticity (N/m2) 68.9× 109 

Poisson’s ratio 0.3 

 
The coordinates of the main holes are recorded in matrix form, named as (E1x) 

and (E1y). These matrices list the hole edge coordinates and are used by the 

following codes: 

i=1 
for ii in range(8): 
   E2x.append(list(map((globals()['S'+str(ii+1)+'x']), 
      (globals()['E1x'])))) 
    E2y.append(list(map((globals()['S'+str(ii+1)+'y']), 

x 

y 

x 

y 
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      (globals()['E1y'])))) 
XX12=[] 
YY12=[] 
for ii in range (N+1-1): 
 XX12.append(globals()['E'+str(ii)+'x']) 
 YY12.append(globals()['E'+str(ii)+'y'])  
XX1=XX12+E2x 
YY1=YY12+E2y 
 

The first two main lines call the function listed earlier, while the last two main 

lines group the newly generated coordinates in final matrices named as XX1 and 

YY1. These matrices list the coordinates of the holes.  These lines can be repeated 

according to the level of complexity k . All these new matrices are added up to 

generate the new holes.  

Creating the matrix in this form would ease its plotting by the sketching command 

in ABAQUS Python. (The full code is listed in Appendix D.) 

C.3.2. Sketching the model 
The Sierpinski Carpet is shown in Figure C.1. It is constructed by plotting a main 

square shell shape with dimensions of ( o ou ), followed by plotting the other 

holes’ square coordinates. Step one has provided the coordinates of the square 

holes in the form of five separated (x, y) coordinate groups. These coordinates 

beside the coordinates of the basic square of dimensions ( / 3 / 3k k
o ou ) are 

calculated in matrix XX1 and YY1. These coordinates are plotted through 

employing the following lines of codes in Python: 

mdb.models['Model-1'].ConstrainedSketch(name='__profile__', 
sheetSize=2.0) 
for e in range(len(XX1)): 

XX=XX1[e-1] 
YY=YY1[e-1] 
for q in range(len(XX)): 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=(XX[q-
1],YY[q-1]), point2=(XX[q],YY[q] )) 
mdb.models['Model-1'].Part(dimensionality=THREE_D, name='Carpet-1', 
type=DEFORMABLE_BODY) 
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mdb.models['Model-1'].parts['Carpet-
1'].BaseShell(sketch=mdb.models['Model-1'].sketches['__profile__']) 
 

These lines create all the 2-D shell base deformable structures. The command 

(mdb.models['Model-1'].sketches['__profile__'].Line(point1=(XX[q-1], 

YY[q-1]), point2=(XX[q],YY[q] ))) plots the hole coordinates provided in Step 

1. In this step, five straight lines are drawn to create each hole. Finally, the 

structure is created by a final line and the model name is set as “Carpet-1”. 

C.3.3. Assembly 
 In the pre-fractal structure, the code assembles one structure only; this is 

performed by the following code: 

mdb.models['Model-1'].rootAssembly.DatumCsysByDefault CARTESIAN) 
mdb.models['Model-1'].rootAssembly.Instance(dependent=ON, name='Carpet-
1', part= mdb.models['Model-1'].parts['Carpet-1']) 

C.3.4. Assign material properties 
The material properties and cross-sectional area are assigned in this step. The 

material properties, in the form of elasticity and density units, are assigned to the 

required section directly through the computer-aided environment (CAE) 

window. Then, assigning the created section to the model “Carpet-1”, (Check 

Appendix D). 

C.3.5. Setting analysis steps 
Any analysis steps are created directly in the computer-aided environment (CAE) 

in ABAQUS.  

C.3.6. Meshing 
The initial mesh on the pre-fractal structure is necessary because it is considered 

the initial step to create the tessellated geometry, as in Appendix E. Due to the 

discontinuity of the model, the partition function is needed to accomplish this task, 

where it is used directly in CAE in ABAQUS.  

Further, the mesh code is listed below and can be run inside loops:  
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 name='T'+str(BB_forw[ii])+'_'+str(iRow)+'_'+str(jCol)+'_'+str(i)+'_'+str(j) 
 mdb.models['Model-1'].parts[name].deleteMesh() 
mdb.models['Model-1'].parts[name].seedPart(deviationFactor=0.1,  
minSizeFactor=0.1, size=0.1) 
mdb.models['Model-1'].parts[name].generatemesh()  

C.4. Tessellated models 

The main reason behind using Python as a programming language is that it can 

implement the IFS to create pre-fractal geometries in a more comfortable and 

more compact way. The main focus of this work is to create a tessellated model 

which includes the geometry and calculate the equivalent material properties of 

these models. This is accomplished by executing nine steps to build a complete 

Python code that shapes any tessellated geometry, which is accomplished in this 

work throughout the following steps: 

C.4.1. Creating the coordinates (Hole-filling map structure) 

This is the most challenging part of the work; no one has ever previously come 

up with an approach to create such a structure (tessellated) using code. One of the 

critical elements of this approach is using the IFS, that is, creating the geometrical 

shape of the pre-fractal. Then, we vary the current geometry through using the 

hole-fill maps to fill the holes. In order to make the structure continuous, the hole-

fill map is built through the following steps:  

1- Mesh the structure into a triangular shape and list the coordinates. 

2- Identify the centre coordinates. 

3- Deform the meshed area around the holes, using hole-fill maps, which is 

mainly through the use of trigonometric equations. 

4- After closing the holes, and applying the same boundary condition, it is 

also possible to use the discontinuity network DN on the closed holes.  

5- Arrange the coordinates in order to input them into ABAQUS for the 

drawing section. 
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All these steps are mathematically developed in Chapter Three and 

implemented mainly in Python. All the listed steps are constructed in Python 

code for the pre-fractal: 

1-    Calculating the pre-fractal coordinates (as mentioned in Section 2).  

2-    After preparing the coordinates of the initial pre-fractal 1Ê , this step is 

always followed by applying the hole-fill map to create the next model, which, 

in this case, is a 1̂T . This model is a continuous structure, see Figure C-1 (b), 

that is created from Figure C-1 (a). Alternatively, this procedure can be 

described as deforming the triangular elements of the pre-fractal while 

keeping the elements’ thickness the same. This is true for 1Ê , but to create the 

next 1̂T  as in Figure C-2 or for 1̂T  as in Figure C-3, the structure must be 

mapped according to the same 1Ê  mappings, while the next mapping step must 

be followed to fill the hole existing in the current 1Ê  geometry, by following 

the block diagram plotted in Figure C-4. This is can be completed by 

identifying the holes’ coordinates. On the other hand, it is important to 

mention that the basic mesh generated on the pre-fractal models, which is 

mapped to create the tessellated models, is named as the basic shape and 

illustrated in Figure C-5. Furthermore, this figure illustrates the initial mesh 

that was recommended in reference [54]. Also, this figure is represented in a 

matrix form as in Figure C-6 

Figure C-6. For example, the coordinates of Figure C-6 belong to pre-fractal 

type 1k = . The hole centres are indicated by the centre of the shape which is (

2/o , 2/o ). 

For higher-order structures such as 1k  , the hole-fill maps are calculated 

through applying trigonometric equations, where it i essential to calculate the 

number of nodes in a direction normal to the hole’s stretched edges. This 

depends on using the following equation to find the newly deformed 
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coordinates ( tan( )) /new oldY Y   = − . This equation can simply express the 

relationship between the new and the old coordinates (before and after 

applying the hole-fill maps), where newY  are the new coordinates to be 

calculated; oldY   are the old coordinates (normally those representing the 

tessellated structure of ( 1k − ); is the half-length of the hole that needs to be 

covered;  , is the angle between the old and new stretched edges (for 

Sierpinski Carpet, this is always 450) ; and finally,  is the number of elements 

that are going to be stretched to cover the hole. 

. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C-4. Block Diagram of how to create the coordinates matrix 
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Figure C-5. Basic mesh shape on any structure k 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C-6. Tessellated coordinates after applying the hole-fill map 
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Now, the explanation above can be repe]ated in code language. So, to create 

pre-fractal coordinates base on the initial mesh presented in Figure C-5, a 

defined function in Python can be used. The function name is 

(PSCoordinatedMatrixGeneratr). The brief code of the function is illustrated 

below, see Figure C-7:  

def PSCoordinatedMatrixGeneratr(Lengthx,Lengthy,N): 
 # N==1 
 lsx=Lengthx/(3.)**N 
 lsy=Lengthy/(3.)**N  
MP1x0=np.array([[0.0,lsx/2.,lsx],[0.0,lsx/2.,lsx],[0.0,lsx/2.,lsx]]) 
#MT1[i,j]=[((lsx*i)for i in range(3))*(3*j) for j  in range(3))] 
 MP1y0=np.array([[0.0]*3,[lsx/2.0]*3,[lsx]*3])  
MPx=[[MP1x0,MP1x0+lsx,MP1x0+(lsx*2)],[MP1x0,np.zeros((3,3)),MP1x
0+(lsx*2)],[MP1x0,MP1x0+lsx,MP1x0+(lsx*2)]] 
MPy=[[MP1y0,MP1y0,MP1y0],[MP1y0+(lsy),np.zeros((3,3)),MP1y0+(lsy)
],[MP1y0+(2*lsy),MP1y0+(2*lsy),MP1y0+(2*lsy)]] 
 MPx1=np.array(MPx) 
 MPy1=MPy  
return(MPx,MPy)  
 

 

 

 

Figure C-7. Block diagram explaining the use of the 
PSCoordinatedMatrixGeneratr function 

where k  is the pre-fractal level of complexity; Lengthx and Lengthy are the 

dimensions of the basic shape that are created on the pre-fractal structure (see 

Figure C-1). 

Figure C-7 shows the inputs and the outputs of the Function being discussed. 

By way of further explanation, this function creates the matrices MPx and 

MPy. These matrices are of 3*3*3*3 dimension. For example, the coordinates 

in the shape of (x, y) for the 1Ê in a matrix form are presented in Figure C-6. 

PSCoordinatedMatrixGeneratr 
Input Output 

Lengthx 

Lengthy 

 

MPx 

MPy 
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Figure C-1 can be built through calculating the coordinates of the pre-fractal 

structure using the following automatic code; this code can work for any value 

of k : 

#1-Basic Shape 
BB_inv=[(N-i)for i in range(N)] 
BB_forw=[(i+1)for i in range(N)] 
if N==1: 
 lsx=Lengthx 
 lsy=Lengthy 
 fg=PSCoordinatedMatrixGeneratr(lsx,lsy,BB_forw[i])     
 MPSx=fg[0] 
 MPSy=fg[1] 
else: 
 i=0 
 lsx=(Lengthx/(3.**(BB_forw[i]))) 
 lsy=(Lengthy/(3.**(BB_forw[i]))) 
 fg=PSCoordinatedMatrixGeneratr(lsx,lsy,BB_inv[i]) 
 MPSx=fg[0]  
 MPSy=fg[1] 

On the other hand, to create the tessellated structure basically uses the initial 

coordinates on the pre-fractal (provided from function 

PSCoordinatedMatrixGeneratr). For a better illustration of using the hole-fill 

maps, see Figure C-8. This diagram shows the steps to create a tessellated 

structure for 2k = , which is represented by the dashed green lines in Figure 

C-6. This is managed by following the next chart: 
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Figure C-8. Block diagram representing the steps of applying the hole-filling 
maps method 

 

where WI is the length of holes at each section.  

At this stage, the coordinates of the pre-fractal are obtained in the form of two 

matrices named as (MPSx, MPSy), using the steps established in Figure C-8 

in relation to how to use the hole-fill maps techniques to obtain the tessellated 

coordinates named by (MTx, MTy). Again, the minimum lengths of the basic 

mesh are (lsx, lsy), and the original Sierpinski Carpet model lengths are 

 Measuring the WI at each Columns 

Changing the (3*3*3*3) Matrix into 
(9*9) 

Distinguishing the sides of Matrix 
according to columns: 

Jo=1,-1, theta=theta1, theta2 

Distinguishing the rows will determine 
percentage of extension at each point  

Implementing the HFM at the Holes 
centres 

Applying a rotation function to create the 
other matrix diagonal 

Rearranging the Matrix into sets of (3*3) 

Adding Up the Whole New Matrix 
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(Lengthx, Lengthy); finally, the level of complexity is k . This function is 

represented in Figure C-9: 

 

 

 

 

Figure C-9. Block diagram explaining the use of the HFM_AlL function 

C.4.2. Sketching the models 
This section concerns plotting the model; defining the element types and 

dimensions; and setting the parts’ names. In order to do this, the coordinates 

of the generated tessellated structure should be changed into vectors. 

“MattoVect” is the function that is used to rearrange the coordinates 

correspondingly (Figure C-10). This is important in order to draw eight 

straight lines to create the small parts that will compose the whole structure. 

This is shown clearly in the function block diagram and the following code: 

 

 

 

Figure C-10. Block diagram explaining the use of the MattoVect function 

where M_T_x and M_T_y are the tessellated coordinates of matrix ( 3 3u ) 

after they have been changed into matrices of vectors, for example, the 

matrix in Figure C-6 Figure C-6/ Equation (1), the MT1x[0][0] would 

become as M_T_x[0][0]=[0,0.15,0.3,0.3,0.3,0.15,0,0,0] while M_T_y[0][0] 

=[0,0,0,0.15,0.3,0.3,0.3,0.15,0]. Finally, by using the following command 

inside loops depending on the level of complexities, the structure can be 

plotted: 
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ii=0      
Ni=1 
MT1x=MTx 
MT1y=MTy 
for i in range(3): 
 for j in range(3): 
  if i==1 and j==1: 
   pass 
  else: 
   XX=M_T_x[i][j]       
  YY=M_T_y[i][j] 
   M_T_x_c[i][j] 
   M_T_y_c[i][j] 
   #To build the Outer diameter  
   w=j 
   mdb.models['Model-
1'].ConstrainedSketch(name='__profile__', sheetSize=(Lengthx*2.0)) 
   for q in range(len(XX)): 
    mdb.models['Model-
1'].sketches['__profile__'].Line(point1=(XX[q-1],YY[q-1]), 
point2=(XX[q],YY[q] ))  
   Name='T'+str(BB_forw[ii])+'_'+str(i)+'_'+str(j) 
   mdb.models['Model-1'].Part(dimensionality=THREE_D, 
name= Name, type=DEFORMABLE_BODY) 
   mdb.models['Model-
1'].parts[Name].BaseShell(sketch=mdb.models['Model-
1'].sketches['__profile__']) 
   mdb.models['Model-
1'].rootAssembly.DatumCsysByDefault(CARTESIAN) 
   mdb.models['Model-
1'].rootAssembly.Instance(dependent=ON, name=Name, 
part=mdb.models['Model-1'].parts[Name]) 

C.4.3. Partitioning 
This part is vital to create the initial mesh on each segment of the tessellated 

structure. Due to the hole-fill maps, each part in the diagonal needs to be 

stretched differently from every other. The partitioning creates the eight parts 

on each tessellated tail, where these parts will have different material 

properties. ABAQUS needs Parts Names, Parts Centres, Right Edge Datum 

and surroundings points to sketch the geometry.  
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For example, to create a part name matrix, the following line must be inside 

loops which depend on the number of complexities: 

Name='T2'_'+str(iRow)+'_'+str(jCol)+'_'+str(i)+'_'+str(j) 

where iRow,  jCol, i , and j are indices referring to the loops used. The datum 

point at each part to partition the structure is created by selecting points on the 

right-hand side of each part via the following lines: 

mdb.models['Model-1'].parts[Name].DatumPointByCoordinate(coords= 
(M_T_x[iRow][jCol][i][j][2], M_T_y[iRow][jCol][i][j][2], 0.0)) 
mdb.models['Model-1'].parts[Name].DatumPointByCoordinate(coords= 
(M_T_x[iRow][jCol][i][j][2],M_T_y[iRow][jCol][i][j][4], 0.0)) 
mdb.models['Model-1'].parts[Name].DatumAxisByTwoPoint(point1 
=mdb.models['Model- 1'].parts[Name].datums[2],point2=mdb.models 
['Model-1'] .parts[Name] . datums[3]) 

After selecting the part name, by picking the centre of each part and creating 

the datum, sketching a sequence of lines to create the partitioning is completed 

through the following lines of code: 

mdb.models['Model-1'].parts[Name].projectReferencesOntoSketch    
   (filter=COPLANAR_EDGES, sketch=mdb.models['Model-1'] .      
    sketches['__profile__'])    
for q in range(len(M_T_x[iRow][jCol][i][j])):  
                mdb.models['Model-1'].sketches['__profile__'].Line(point1= 
                  (M_T_x[iRow][jCol][i][j][q-1], M_T_y[iRow][jCol][i][j][q-1]),                 
                  point2= (M_T_x_c[iRow][jCol][i][j],   
                  M_T_y_c[iRow][jCol][i][j])) 

C.4.4. Calculating F_function “F” 
This is the most important part that forces the researcher to use Python in order 

to create the structure and use the TCM theory to implement the mathematical 

formulas directly to find the scaled material properties and other factors.  

In this section, the link between the physical part and the hypothetical one is 

created by using the theory illustrated in Chapter 3. 

Preparing the coordinates for the initial mesh on the pre-fractal structure is 

essential. This is completed by using the previous code of 
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(PSCoordinatedMatrixGeneratr). The pre-fractal coordinate is created by 

using the contraction and shifting methods, while the Tessellated coordinated 

created by applying the hole-fill map on its pre-fractal model as mentioned 

earlier. 

The main links between both spaces are by the F_Function, which is a second-

order tensor that is used to scale the discrete parts of the pre-fractal structure 

linearly into the continuous model of the tessellated. This is completed by 

finding the following matrix:  

11 12 13

21 22 23

31 32 33

F F F

F F F F

F F F

 
 =  
  

 
                        

(C-1) 

For the current study, the structure is scaled in two dimensions. This means 

, ,13 23 31F F F  and 32 0F = . For this reason, the F_Function equation is reduced to the 

following configurations: 

11

12

21

22

,1 ,1 ,1

,1 ,1 ,1

,2 ,2 ,2

,2 ,2 ,2

0 0
0 0

0 0
0 0

xts xps yps

yts xps yps

xts xps yps

yts xps yps

F

F

F

F

  
  
  
  

     
     
     =
     
     

    

                 (C-2) 

where ,1xps  is the x-axial coordinates for the pre-fractal structure for the basic 

shape of mesh from Figure C-5. ,1yts is the y-axial coordinates for the 

tessellated structure for the basic shape of mesh from Figure C-5. 11 22F F−  are 

the linear scaling functions. 

The equation above in effect calculates the changes in the length differences 

between two shapes, as in Figure C-5. This is represented by the triangular 

edges S1 and S2 in the same Figure. The only constraint is the order in which 

a side is chosen to relate to the other space where the same rules must be 

preserved. Other than this, any side of any of the triangular segments that form 

the basic shape can be chosen.  
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The flowcharts in Figure C-11 explain the translation by two matrices. The 

first is describing the x-axis and the second one defines the y-axis coordinates 

in the following form for 1Ê : 

For illustration, the coordinates of the structure basic mesh area represented 

in Figure C-1 is presented in Equation (C-3).  

    

(𝑥, 𝑦) =

(

 
 

[
 
 
 
 0 0 /6 0 /3

0 0 /6 0 /3

0 0 /6 0 /3]
 
 
 
 

,

[
 
 
 

0 0 0

0 /6 0 /6 0 /6

0 /3 0 /3 0 /3]
 
 
 

)

 
 

 

                (C-3) 

This Equation forms a matrix of order 3 3u , which must be changed into vector 

x_Vectoru  y_Vector, which are 9 9u  elements, by using the following 

symbolic code: 

x_Vector=[x[0][0], x[0][1], x[0][2], 
x[1][2],x[2][2],x[2][1],x[2][0],x[1][0],x[0][0]]  
y_Vector=[y[0][0], y[0][1], y[0][2], y[1][2], y[2][2], y[2][1], y[2][0], 
y[1][0], y[0][0]] 
cx_Center=[x[1][1]] 
cy_Center=[y[1][1]] 
 
 

 

 

 

 

 

 

Figure C-11. Block diagram explaining the use of the FFunctionAny 
function 

This code can be used inside a loop; see the main code in Appendix D to see 

how to make the code automatic through selecting the right order of the 

meshed triangular points to find the axial length of each triangular side. This 

is achieved by the following lines: 

 Vector of 9 Elements 

Selecting the Points (i,i+1,C) 

Calculating Length of S1 and S2 

Calculating the axial x and y 
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Dis1=((Point20_x-Point10_x)**2+(Point20_y-Point10_y)**2)**0.5 

  Dis2=((Point30_x-Point20_x)**2+(Point30_y-Point20_y)  **2)   
                  **0.5 
  x_Comp1=(Point20_x-Point10_x) 
  y_Comp1=(Point20_y-Point10_y)  
  th1=TheetaCalculation(x_Comp1,y_Comp1) 
  Alfax1_0=Dis1*(math.cos((th1))) 
  Betay1_0=Dis1*(math.sin((th1)))   
def TheetaCalculation (x,y): 
 x_Comp=x 
 y_Comp=y 
 if (y_Comp==0.)or(x_Comp==0.): 
   #Finding Theeta on the normal plans 
  if (y_Comp==0.) and (x_Comp==0.): 
   th_Deg=0.0 
  elif (y_Comp==0.) and (x_Comp>0.): 
   th_Deg=0.0 
  elif (y_Comp>0.) and (x_Comp==0.): 
   th_Deg=90. 
  elif (y_Comp==0.) and (x_Comp<0.): 
   th_Deg=180. 
  elif (y_Comp<0.) and (x_Comp==0.): 
   th_Deg=270. 
  th_Rad_New=math.radians(th_Deg) 
 else: 
   #Correcting theeta on the any quarters 
  th_Deg=math.degrees(math.atan(y_Comp/x_Comp)) 
  if (y_Comp>0) and (x_Comp>0): 
   th_Deg_New=th_Deg 
  elif (y_Comp>0) and (x_Comp<0): 
   th_Deg_New=180.0+th_Deg 
  elif (y_Comp<0) and (x_Comp<0): 
   th_Deg_New=th_Deg+180. 
  elif (y_Comp<0) and (x_Comp>0): 
   th_Deg_New=th_Deg+360. 
  th_Rad_New=math.radians(th_Deg_New) 
 return(th_Rad_New) 

Finally, we use Equation (C-5) in the function FFunctionAll2. The following 

lines show how to use both functions to create the F_Function or the hole-fill 

maps: 
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F_BSAll=[] 
 F1=[]#For Test Only for T1 Here 
 for iRow in [0,1,2]: 
      for iCol in [0,1,2]: 
            if iRow==1 and iCol==1: 
       pass 
            else: 
             F_BS=FFunctionAny(MPSx[iRow][iCol],MPSy[iRow][iCol])  
             F_Str=FFunctionAny(MT1x[iRow][iCol],MT1y[iRow][iCol])    
             F0=FFunctionAll2(F_BS,F_Str)  

                   F1.append(F0) 

The previous lines of the code call the two main defined F-functions, which 

are: FFunctionAny and FFunctionAll2. 

The first function is used to find the normal component for shapes (meshes) 

in each space as can be seen in Figure C-12. The last function performs two 

main purposes. The first purpose is to arrange and apply Equation                         

(C-3). This is illustrated in Figure C-13. 

 

 

 

 

 

 

 

 

 

Figure C-12. Block diagram explaining the use of the FFunctionAll2 
function. 

 
 

 

Figure C-13. Block diagram explaining the use of the 
PSCoordinatedMatrixGeneratr function. 
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C.4.5. Assigning the material properties  

This section requires dealing with calculating the material properties and 

thickness mathematically, while the second section is concerned with 

preparing and setting the material name with its coordinates. This is illustrated 

by the following block diagram in Figure C-14. 

 

 

 

 

Figure C-14. Block diagram explaining the main material assigning function. 

The scaling equations that are derived in the previous chapter, such as 

Equations (5.10), (5.34), and (4.25) are implemented here to automate the 

procedure to find the density and material elasticity properties from the 

material properties of the pre-fractal structure, see Figure C-15:  

 

 

Figure C-15. Block diagram explaining the use of the MatProp function. 

where Roa-Ps is pre-fractal density; E-Ps is the elasticity of the pre-fractal. 

On the other hand, the function outputs are Roa_Ts and Cts_66, which are the 

density and the [ 3 3u ] Elasticity anisotropic matrix that describe the tessellated 

structure. Finally, Cts_66_ABAQUS are the elasticity matrices that can be 

used as input for ABAQUS directly where only the 21 values are needed, see 

the following Figure:  

Material 
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 F 

Roa_Ts       
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Figure C-16. Elasticity matrix as it been defined in ABAQUS manual [72] 

The second section requires the tessellated matrix of form [ 3 3 3 3   ], exactly 

as for the coordinates of the tessellated structure of complexity 1k = . This 

section also provides the user with the possibility of changing the tessellation 

thickness, where th_Ps is the thickness of the pre-fractal structure, by using 

tessellated theory geometry mapping. However, for the present time, the 

thickness is kept the same to maintain the continuity of the structure. The 

second section also prepares the centre coordinates of the triangular shapes of 

the meshed parts on the tessellated space; this is represented by 

Traingul10_Center_x and Traingul10_Center_x matrices. This is 

accomplished by using the area function, which is illustrated in Figure C-17: 

 

 

 

Figure C-17. Block diagram explaining the use of the area function. 

 

The code in Figure C-17 is presented by the following lines: 

g=AreaFunction(MTx,MTy,th_Ps,k) 

th_Ts=g[2] 

Traingul10_Center_x=g[3] 

Traingul10_Center_y=g[4] 
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Then this is followed by defining the sets naming and assigned it to the correct 
coordinates by the following codes 

For ii in range (3): 
      For iRow in range (3): 
         For jCol in range (3): 
Name='T'+str(BB_forw[ii])+'_'+str(iRow)+'_'+str(jCol) 
Mat_Name.append(Name) 

mdb.models['Model-1'].parts[Name_All[ielemnet]].Set(faces= 
mdb.models['Model-
1'].parts[Name_All[ielemnet]].faces.findAt(((np.float64(Traingul10_Center_
x[ielemnet][q]), np.float64(Traingul10_Center_y[ielemnet][q]), 0.0), )), 
name='Set-'+str(q)) 
mdb.models['Model-
1'].parts[Name_All[ielemnet]].SectionAssignment(offset=0.0, offsetField='', 
offsetType=MIDDLE_SURFACE,  region=mdb.models['Model-
1'].parts[Name_All[ielemnet]].sets['Set-'+str(q)],  
sectionName='Sec_'+Mat_Name 
[ielemnet][q],thicknessAssignment=FROM_SECTION)  

At this point the material assigning can be used by: 

mdb.models['Model-1'].Material(name='Mat_'+Mat_Name[ielemnet][q]) 

mdb.models['Model-1'].materials['Mat_'+Mat_Name[ielemnet][q]]. 
Density(table= ((Roa_Ts[ielemnet][q], ), )) 

mdb.models['Model-1'].materials['Mat_'+Mat_Name[ielemnet][q]]. 
Elastic(table=(Cts_66_ABAQUS [ielemnet][q], ), type=ANISOTROPIC) 

mdb.models['Model-1'].HomogeneousShellSection(idealization= 
NO_IDEALIZATION, integrationRule=SIMPSON, material='Mat_'+Mat_ 
Name[ielemnet][q], name='Sec_'+Mat_Name[ielemnet][q], numIntPts=5, 
poissonDefinition=DEFAULT, preIntegrate=OFF, temperature= 
GRADIENT, thickness= np.float64 (th_Ts[q]), thicknessField='', 
thicknessModulus=None, thicknessType=UNIFORM, useDensity=OFF) 

C.4.6. Tying interaction 

For tying, the user needs to provide 2 types of surface (Master and Slave). 

This can be done by providing the part names and their corresponding 

coordinates. Moreover, since this work requires many of tying commands, the 

author found that the structure can be tied through following anti clock-wise 
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procedure to tie the structure (see Figure C-18). The following Figure shows 

the master surfaces and the slave denoted by the blue line and the red lines 

respectively. Starting from parts 0 (P0) through to 7 (P7), this procedure is 

found to be the most straightforward and easiest to use inside automatic loops, 

see Figure C-19: 

 

 

 

 

 

 

 

 

 

Figure C-18. Symbolic sketch showing the directions of assigning the tying 

function in ABAQUS  

 

 

 

Figure C-19. Block diagram explaining the use of the 

CenterLineCoordinatesGeneral function 

where cx[i][j] are the coordinate matrix and tx, ty are the edges coordinates 

to be tied. 
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C.4.7. Meshing 
By reaching this step, the coordinates of the tessellated structure as an x-axis 

matrix and y-axis matrix are completed. At this step, the tessellated structure 

is created easily by running two programs, where the main program holds the 

main equations. The second parts encompass all the functions used to carry 

out the work.  

Remarks: 

One of the issues with tying, especially, when using the “find” function to find 

a surface, is that it is found to have an exact value of the coordinates with 

accuracy of 1×10-6. This case has failed with higher tessellated complexity. 

For this reason, the code needed to be updated. In order to use the code to 

create higher tessellated geometry, different methods (such as the Boolean, 

get Box Function command in ABAQUS) must be used. This problem arose 

when k=3, but for the present, it is fixed manually. 
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Appendix D 
2-D Pre-fractal analysis as Structures 

 

D.1 Vicsek fractal models 

The Vicsek fractal has many names, such as the Vicesk snowflake or the Vicsek 

or box fractal. It is suggested by Tamas Vicsek. It is in the shape of 5 squares 

linked by each other as shown in Figure D-1. And similar to the Sierpinski Carpet, 

the structure is created by 5 different maps see Appendix A Table (A-3 and A-4). 

Figure D-1 shows different pre-fractal structures of Vicsek fractal type. Vicsek is 

an interesting geometry that can be used in multi-engineering applications. For 

example, it can be used as antennas and in heat exchange configuration. Although 

this work is concentrated on studying perforated structure, but studying the Vicsek 

fractal can form a challenge to the TCM theory. For these reasons, it is essential 

to understand, its dynamical characteristic. This is possible by using commercial 

FE software. A mesh study is implemented to find the best shell element type that 

is going to represent the models with the minimum number of elements in order 

to minimise the analysis size and reduce the time cost. Moreover, the dynamical 

characteristic of the fractal structure is investigated by running a frequency 

analysis. This is accomplished by the following sections: 

D.1.1. Element and mesh study sensitivity 
The first five natural frequencies are selected to test the best element types that 

needs the minimum number of elements. This analysis is run on different pre-

fractal structures like k=1, 2 and 3 as in Figures D-1, while the material properties 

are listed in Table D-1. The best element type for  is a shell element type 

STRI65 with a minimum element size of 0.075 per unit length [72] and the reuslts 

did not included there. The rest four tested cases (S3, S3R, STRI3, and STRI65) 

of the pre-fractal models type k=2 and 3 are listed in Figure D-3 -D-10. In similar 

way a pre-fractal of type  is sufficicantly represented by a shell element of 

1k =

2k =
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type STRI65 with minimum element length of 0.0225 (see Figure D-3). Finally, 

the last Vicsek pre-fractal of the third complexity is illustrated in Figure D-10, 

with element length 0.03 for the Element type STRI65 are 0.03.  

 

  

(a)      (b)  

 

(c)  

Figure D-1. Vicsek fractal for three different geometries k 
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Table D-1.  Material properties and the dimensions for Vicsek fractal 

Properties Values 

Length (m) 0.9 × k 

Width (m) 0.9 × k 

Thickness (m) 0.01 

Density (kg/m3) 2698.8 

Elasticity (N/m2) 68.9× 109 

Poisson’s ratio 0.3 

 

Figure D-3. Meshes sizes study for ps geometry using element type S3 
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Figure D-4. Meshes sizes study for ps geometry using element type S3R 
 

 

Figure D-5. Meshes sizes study for ps geometry using element type STRI3 
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Figure D-6. Meshes sizes study for ps geometry using element type STRI65 
 

 

Figure D-7. Meshes sizes study for ps geometry using element type S3 
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Figure D-8. Meshes sizes study for ps geometry using element type STRI3 
 

 

Figure D-9. Meshes sizes study for ps geometry using element type S3R 
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Figure D-10. Meshes sizes study for ps geometry using element type STRI65 

D.1.2. Thickness Sensitivity 
It is necessary to understand the frequency tends when changing the thickness of 

the Vicsek pre-fractal. The frequency analysis for the first pre-fractal structure is 

found to increase while increasing the thickness of the structure this true for the 

all studied cases and for all the frequencies. The trends of the increase are a non-

linear way (see Figure D-11-Figure D-13). Except in the higher cases such as 

when and .  
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Figure D-11. Structure thickness study for ps geometry  
 

 

Figure D-12. Structure thickness study for ps geometry  
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Figure D-13. Structure thickness study for pre-fractal geometry  
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