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Abstract

This thesis proposes novel reconstruction schemes for low frequency near-�eld electro-
magnetic imaging of high-contrast conductivity distributions enclosed inside shielded

regions, using Maxwell’s equations in 3D. Our focus lies in the estimation of conductivity
value or shape enclosed in shielded regions from electromagnetic data measured externally,
for one low frequency. We are interested in regions which are roughly equivalent in size to
small rooms or medium-sized containers, though the reconstruction schemes proposed here
can easily be adjusted to imaging situations at larger or smaller scale.

The novel regularization techniques proposed here are based on a sparsity promoting
regularization scheme on the one hand, and level set based shape evolution techniques on
the other. For estimating the conductivity pro�le enclosed inside these shielded regions, we
introduce a sparsity regularization scheme and compare its result to the shape-based schemes
developed here and a traditional L2−based approach. In the shape-based regime, we in-
troduce single and color level set regularization schemes which are designed to reconstruct
binary and multi-phase material respectively. Alongside color level set regularization, we in-
troduce a topological perturbation scheme which is designed to avoid a certain type of local
minima that is characteristic to simultaneous multi-value shape-based reconstruction. In
each reconstruction scheme, Landweber-Kaczmarz iterations are employed for the optimiz-
ation process, with suitable tailor-made line search techniques designed accordingly.

In our numerical simulations, we perform 3D reconstructions from noisy simulated data
and compare the results with those obtained from a standard L2−based approach. Our
results suggest, in the applications considered here, that the proposed novel schemes are able
to yield signi�cantly improved reconstructions when compared with traditional techniques.
We end with using convolutional neural networks to classify electromagnetic images that
result from the reconstruction schemes.
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CHAPTER 1

Introduction

Magnetic Induction Tomography (MIT) is a technique which is used to image the
electromagnetic properties of an object, using the eddy current e�ect. Passing an al-

ternating current through an excitation coil generates a primary magnetic �eld, which in-
duces an electric �eld that is detectable by a receiver coil. This allows us to infer information
about the object from electromagnetic quantities measured at the receiver coil. Using this
imaging modality, we design schemes which recover information about objects inside boxes
or containers from electromagnetic data measured at locations external to the boxes or con-
tainers under inspection (non-destructive testing).

MIT has not received much attention when compared to alternative electromagnetic
techniques. Some of these alternatives include: ground-penetrating radar, synthetic aperture
radar, x-ray tomography, microwave imaging, amongst others [90]. Admittedly, designing
tailor-made algorithms to infer material properties from electromagnetic data is a di�cult
task in MIT. Typically, one has access to limited data and, frequently, a partial view of the
imaging domain. Moreover, the corresponding imaging task usually requires solutions to
Maxwell’s equations which for a long time was severely limited by the capabilities of stand-
ard computer systems. In applications of security screening, where the imaging domain is
typically surrounded by a electromagnetic cage (e.g. cargo container), further di�culties
arise. The cages act as electromagnetic shields, meaning high frequency electromagnetic
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waves have di�culty penetrating. To avoid these problems, low frequency electromagnetic
waves are employed to avoid the skin e�ect phenomenon (a reduction of electromagnetic
wave penetration depth inside the metallic cage). In other words, at higher frequencies, in-
formation about the contents does not reach the receivers. This results in poor reconstruc-
tion of the imaging domain as it cannot be probed at high frequencies. The employment of
low frequency electromagnetic waves comes with a penalty; it reduces resolution capabilities
of algorithms designed to reconstruct objects inside these cages.

Despite the di�culties described above, MIT has been used in many applications, in-
cluding: nondestructive testing [58], geophysics [36], brain imaging [116, 117], amongst oth-
ers. The motivation of our imaging task, which will be introduced in section 1.2, is from
experimental research carried out in [29, 30, 133]. In those works, it is demonstrated that ex-
tracting information about objects lying beneath electromagnetic shields is possible. In par-
ticular, information about the location of objects is found using di�erence imaging and low
frequency electromagnetic waves. This is encouraging, as these results can be improved by
developing algorithms which combine both electromagnetic data and mathematical models
of electromagnetism.

The use of relatively low frequencies in such near-�eld electromagnetic imaging applic-
ations make it more di�cult to obtain high resolution reconstructions, and the design of
e�cient antennas is challenging. However, over the years a number of interesting and prac-
tical applications have evolved where the use of relatively low frequencies comes with great
advantages, such as: increased penetration depth through materials, a reduced risk of multi-
pathing, and avoidance of certain local minima when solving the underlying optimization
problem. These applications include geophysical imaging [1, 35, 36, 50, 104, 137], near �eld
sensing and tracking [106, 129], and the non-destructive testing of materials [29, 80, 133].
The ongoing interest in these and other �elds is continuously refuelled by improvements in
computer technology and progress in the construction of e�cient antenna systems, which
addresses some of the above mentioned di�culties. However, it still remains challenging to
design e�cient tailor-made reconstruction algorithms which are able to convert the meas-
ured electromagnetic signals into useful 3D images. Typically, these images show electromag-
netic properties of the imaging domain or make use of them for the localization or tracking
of objects.

This thesis proposes novel reconstruction algorithms for near-�eld electromagnetic ima-
ging of high-contrast conductivity distributions enclosed in shielded 3D regions. We intro-
duce new reconstruction schemes in both pixel-based and shape-based regimes, where ‘pixel-
based’ refers to the challenge of recovering a material parameter value and ‘shape-based’ refers



24

to when a material parameter value is a priori known but its shape is not. We follow nota-
tion from the classical (mainly 2D) literature here, even though in this 3D imaging task voxels
are assigned values not pixels. The low probing frequencies considered here, coupled with
the conductivity values used for the shielded walls and container contents in the numerical
experiments, allow us to consider reconstruction of the conductivity only, with the other
usually important material parameters magnetic permeability and electric permittivity as-
suming their free space values.

Across both regimes, we propose a number of new reconstruction schemes, including
one based on sparsity regularization and others based on level set shape evolution, and com-
pare their performances with a more traditional pixel-based reconstruction scheme employ-
ing standard Tikhonov-Philips regularization. We will show our novel approaches have the
potential to provide signi�cantly improved reconstructions over pixel-based imaging schemes
in situations where sharp interfaces and signi�cant contrasts between materials are present
in the imaging domain.

Sparsity promoting regularization has received worthy attention in recent years as an al-
ternative to L2−based minimization schemes. This technique has been applied to both lin-
ear inverse problems [31, 45] and also, more recently, to nonlinear inverse problems [8, 11, 100].
It is well-known that standard Tikhonov-Philips regularized L2−based schemes tend to
provide oversmoothed reconstructions from low frequency electromagnetic data, even when
the true pro�les contain shapes with sharp boundaries. Sparsity promoting regularization
schemes have recently been shown to mitigate this smoothing tendency by providing more
compact shapes against an approximately known background [68, 69, 100].

Whilst sparsity promoting schemes provide more compact shapes than traditional L2-
based techniques, level set reconstruction schemes are designed explicitly to provide compact
shapes with sharp boundaries against the background pro�le. For more information on level
set methods see chapter 2, 4 and [16, 39, 41, 42, 66, 75, 78].

Level set regularization schemes have become a popular methodology when interested
in solving shape-based inverse problems. For example, single level set inversion schemes have
been designed for a multitude of applications. Some include: di�use optical tomography
[43, 100], non-destructive testing [38, 58], reservoir imaging [48, 127], medical imaging [40],
geophysical prospecting [35], amongst others. Its extension, a multi level set regime or so-
called color level sets, have also proven to be useful as they often depict more realistic scen-
arios. For example, a structural color level set method was developed in [65] to detect tu-
mours in breast tissue and schemes have been developed in the history matching of petro-
leum reservoirs [44]. In addition, color level set methods have also been used in electrical
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capacitance tomography (ECT) to image permittivity [3].

We formulate both sparsity and level set based regularization schemes for a new and
highly challenging imaging situation where a 3D Maxwell model is required as a forward
solver. Even though the numerical experiments demonstrated here have been chosen to im-
age boxes or medium-sized containers with shielded walls (see section 1.2 and chapter 3), the
same techniques can be applied when imaging di�erent sized domains. These include, for
example, geophysical applications or the non-destructive testing of small specimens [35, 38].
Moreover, in addition to the well known and established geophysical applications of near-
�eld exploration and monitoring tools [1, 35, 36, 50, 104, 137], we want to highlight here sev-
eral interesting and promising new experimental veri�cations of low frequency screening
and imaging applications at the scale of boxes or medium-sized containers. Physical experi-
ments at similar scales have been addressed, for example, in [28, 29, 30, 133]. In those works,
the idea is to screen objects beneath electromagnetic shields using measured electromagnetic
data. The near-�eld electromagnetic imaging problem in this thesis is motivated by these
physical experiments.

Using MIT for security screening applications is challenging when trying to obtain high
resolution reconstructions, for reasons already mentioned above. However, it is even more
challenging when considering the inherent nature of security screening applications. Re-
gardless of the imaging modality used to probe contents of a package, box or container, the
end objective is to determine whether the content poses a hazard or threat. In general, re-
constructions which are obtained from various inversion schemes are analysed by an expert’s
eye. The expert is then typically guided by a data mis�t and/or its appearance in comparison
to the true phantom. Whilst in many applications qualitative analysis is su�cient or may
not be important, in security screening knowing what objects or shapes appear inside is im-
portant. Using an expert’s eye in such situations is time consuming and subjective, therefore
introducing an automaton which performs this process for us seems reasonable. This idea is
nothing new and has been used in other imaging modalities. For example, automatons are
being used to detect vertebrae fractures from computerized tomography reconstructions of
a patient [126]. The underlying problem of an automaton in our application, as well as in
detecting vertebrae fracture, is to classify a reconstruction into certain groups which are pre
de�ned. Initially, this may seem like a restriction on the automaton, but if certain objects
or shapes are sought after and known in advance (e.g. sharp objects in suitcases), then these
can be pre de�ned in the classi�cation scheme. The automaton can be used to determine
whether these objects or shapes are present. Appendix A introduces an automaton which is
applied to images resulting from shape-based reconstruction schemes (also introduced here).



26 1.1. MAXWELL’S EQUATIONS

Shape-based schemes lend themselves well to classi�cation tasks, as they segment the pixel-
based images, providing unambiguous shapes which honour the electromagnetic data. The
automaton or object/shape detection scheme developed here is independent to the inversion
process and only tells us what it observes in images provided to it. The goal here is to provide
an introduction into using machine learning techniques for post processing electromagnetic
images which result from the reconstruction schemes.

1.1
Maxwell’s equations

Maxwell’s equations are a mathematical model of how electromagnetism interacts with mat-
ter and are fundamental to our imaging problem. Our main objective is to reconstruct ma-
terial parameters, such as electrical conductivity or magnetic permeability, so that electro-
magnetic �eld solutions to Maxwell’s equations coincide with electromagnetic quantities
measured at speci�c locations. Inverting this electromagnetic data is the inverse problem we
are interested in.

Our approach involves solving Maxwell’s equations in the frequency domain, since this
form provides a convenient way of picking out certain low frequency contributions to the
time signal1. Solutions to Maxwell’s equations in the frequency domain are used as measure-
ments at speci�c locations, in order to generate electromagnetic data for when (1) the true
object is present and (2) an estimated object is present. This is known as the forward problem.
There are many methods available to solve this forward problem, therefore we must choose
one which is appropriate for the inverse problem considered here. An extensive literature
survey on this topic, including solving Maxwell’s equations in the time domain, is carried
out in section 3.1. Let us begin by introducing Maxwell’s equations in the time domain:

∇×E(x, t) = −∂tB(x, t); (1.1a)

∇×H (x, t)−∂tD(x, t) = J (x, t); (1.1b)

∇.D(x, t) = ρ(x, t); (1.1c)

∇.B(x, t) = 0, (1.1d)

where x ∈ R3, E is the electric �eld intensity, H is the magnetic �eld intensity, B is the

1Note that we could also solve an equivalent problem in the time domain by discarding higher frequency
contributions to the time signal.
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magnetic 
ux density, D is the electric 
ux density, J is the electric current density and ρ

is the electric charge density. This system governs electromagnetism, and is described by
the four �elds E ,H,B and D . Note that (1.1d) is a consequence of applying the divergence
operator to (1.1a). Hence, we have three linearly independent equations but four unknowns,
i.e. an under determined system. We impose an assumption of linearity between �elds to
alleviate this problem. Namely:

D(x, t) = ε(x)E(x, t); (1.2a)

B(x, t) = µ(x)H (x, t); (1.2b)

J (x, t) = σ(x)E(x, t)+ J e(x, t), (1.2c)

where ε(x) is the dielectric permittivity, µ(x) is the magnetic permeability, σ(x) is the electric
conductivity and J e(x, t) is the applied current density. The �rst component of J is known
as Ohm’s Law and describes an induced current within a conductor. These relationships
above are commonly called the constitutive relations, and describe the electromagnetic �elds
at the macroscopic level.

By substituting the constitutive relations de�ned in (1.2) into (1.1), we obtain

∇×E(x, t)+∂t(µ(x)H (x, t)) = 0; (1.3a)

∇×H (x, t)−∂t(ε(x)E(x, t)) = σ(x)E(x, t)+ J e(x, t); (1.3b)

∇.(ε(x)E(x, t)) = ρ(x, t); (1.3c)

∇.(µ(x)H (x, t)) = 0. (1.3d)

This is a linear, �rst order hyperbolic partial di�erential equation (PDE) system with un-
knowns E(x, t) and H (x, t). The constitutive relations are commonly used when model-
ling Maxwell’s equations, as they stop the Maxwell system from being under determined.
Therefore, they form the basis of most electromagnetic models [21, 35, 36, 37, 52].

Many di�erent variations of the system in (1.3) can be derived, subject to application.
Two, for example, are the electrostatic and magnetostatic systems which are derived by re-
moving the time derivative for the electric and magnetic �elds respectively. We consider the
frequency domain alternative of that in (1.3).

By the inverse Fourier transform, general solutions to Maxwell’s equations can be ob-
tained as a linear combination of single frequency contributions. The forward and inverse
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Fourier transform for a time dependent electromagnetic �eld are:

F[Y (x, t)] :=
ˆ

∞

−∞

Y (x, t)e−iωtdω; (1.4a)

F−1[Y(x,ω)] :=
1

2π

ˆ
∞

−∞

Y(x,ω)eiωtdt, (1.4b)

respectively, where F is the Fourier transform operator, ω = 2π f (ω ∈ R), and f is the
frequency. The �elds are assumed to admit a time dependence e−iωt :

Y (x, t) = Y(x)e−iωt ,

though eiωt is also possible. We use this dependency because it is standard and consistent
with the literature. This e�ectively yields the mapping

∂t
FD
�
TD
−iω, (1.5)

where FD and TD are acronyms for frequency domain and time domain respectively. Ap-
plying the mapping in (1.5) from left to right brings the system in (1.3) to the form

∇×E(x)− iωµ(x)H(x) = M(x); (1.6a)

∇×H(x)− (σ(x)− iωε(x))E(x) = J(x); (1.6b)

∇.(ε(x)E(x)) = ρ(x); (1.6c)

∇.(µ(x)H(x)) = 0, (1.6d)

where M(x) is an arti�cial addition, due to the symmetry of generating the electromagnetic
�elds. The electric 
ux quantity ρ(x) is assumed to be zero in our case.

1.2
The near-�eld electromagnetic imaging problem

Following the considerations in section 1.1, we model the propagation of electromagnetic
�elds by Maxwell’s equations in the frequency domain. We recast the system in (1.6) as:

∇×E j(x)−a(x)H j(x) = M j(x); (1.7a)

∇×H j(x)−b(x)E j(x) = J j(x), (1.7b)
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where E denotes the electric �eld, H the magnetic �eld, M the magnetic source and J the
electric source. The material parameters are

a(x) = iωµ(x) b(x) = σ(x)− iωε(x),

where σ(x) is the electrical conductivity, µ(x) is the magnetic permeability and ε(x) is the
electrical permittivity. The subscript j denotes that the jth source distribution is considered,
where j = 1, . . . ,ns, and ns is the total number of di�erent applied sources. These are mod-
elled as rectangular wire loops, and give rise to probing �elds E j and H j in (1.7) which are
then measured at receiver locations (also modelled as rectangular wire loops).

.

Shield σ = σs

Shield σ = σs

Sources

Receivers

Figure 1.1: Opposing arrays of sources and receivers with shielded container in between. The
sources and receivers are only located on top and bottom of the box, but other setups are also
possible. Left: Complete set up of imaging the contents of a shielded cage. Right: Schematic
of shielding in z direction. The domain of interest is between these shields in each direction.

A possible experimental setup of how the sources and receivers could be distributed is
shown in �gure 1.1. The domain of interest is represented by a cuboid-shaped domain Ω⊂
R3 surrounded by shielded walls. Sources and receivers are only located at the two opposing
in the xy plane (i.e. facing each other in the z direction), but other choices are possible. Here,
we consider no sources or receivers at the other four sides of the box. This particular setup has
interesting applications in the surveillance of activities behind walls, the screening of boxes or
containers at ports or airports, and the monitoring of processes inside regions which might
contain hazardous materials.

The imaging task is to invert electromagnetic data measured at receiver locations when a
box or container is present with unknown contents. We focus on estimating the pixel value
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or shape of the conductivity σ(x) inside the domain of interest (box or container contents)
from electromagnetic data measured outside of it. In our proof of concept style approach,
we assume that both electric permittivity and magnetic permeability remain constant and
take their respective values of free space (i.e. µ(x) = µ0 and ε(x) = ε0). At low probing fre-
quencies, these quantities are expected not to have signi�cant impact on the electromagnetic
data measurements. Nevertheless, a joint inversion of these parameters with the electrical
conductivity would be desirable.

In addition to the assumptions above, we assume some prior knowledge on the back-
ground electrical conductivity pro�le. In particular, that the shielded walls surround a re-
gion of interest �lled with air. Embedded in this region of interest are inclusion(s) with
unknown contrast, topology and shapes. These inclusions need to be reconstructed from
a limited amount of electromagnetic data at one single frequency. We assign a low value
σ ≈ 10−8 to the background representing the conductivity of air. The shielded walls, on
the other hand, are assumed to have a known topology and some moderate constant con-
ductivity value of σ = σs. It is possible to relax this assumption and also recover the shielded
walls, but we do not consider this. The conductivity values of the inclusions are assumed to
be higher than the background, but the values are unknown in the inverse problem and need
to be reconstructed together with their shapes and topology. We consider multiple scenarios
where the embedded inclusions admit various shapes, sizes and conductivity values. These
are considered in chapter 4.

1.3
Publications and conferences

This thesis contains works found in papers that have either been published or submitted.
These are:

1. A.J. Hiles and O. Dorn. Sparsity and level set regularization for near-�eld electromag-
netic imaging in 3D. Inverse Problems, 36(2):025012, 2020.

2. A.J. Hiles and O. Dorn. Colour level set regularization for the electromagnetic ima-
ging of highly discontinuous parameters in 3D. Submitted to Inverse Problems in Sci-
ence and Engineering, 2020.

Conferences that I have attended and given talks at during my PhD:

1. Electromagnetic Non-Destructive Evaluation XXI (2017) Saclay, France
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2. Invited talk at Atomic Weapons Establishment (AWE) Blacknest (2018) Aldermaston,
UK

3. Applied Inverse Problems (2019) Grenoble, France

4. 2nd IMA Conference On Inverse Problems (2019) London, UK

Chapters 2 and 4 present work which appear in the two articles mentioned above.

1.4
Thesis structure

Chapter 2 begins with a general introduction to the inverse problem under investigation.
Following that, novel reconstruction schemes and new line search criteria are developed in
section 2.1. The schemes are based on two main approaches: sparsity promoting and level set
shape-based evolution. In the latter approach, we introduce a stochastic seeding method. It
is used to try and avoid certain local minima, which have been observed in numerical exper-
iments when using these methods.

Chapter 3 provides a review of existing methods to solve Maxwell’s equations both ana-
lytically and numerically. In order to provide numerical experiments involving the recon-
struction schemes developed in chapter 2, we choose to use the �nite volume method on
a vector potential formulation of Maxwell’s equations. We brie
y outline the method in
section 3.2. The numerical implementation of the Maxwell solver, along with the novel re-
construction schemes, are implemented in the Python programming language. It is numer-
ically validated in section 3.5. The software package, which we have named “lsMax”, will be
available on GitHub soon.

Chapter 4 carries out numerical experiments for the near-�eld electromagnetic imaging
problem described in section 1.2. They involve comparisons between the new reconstruction
schemes and more traditional approaches. Subsets of these results are also described in the
publications listed in section 1.3.

Chapter 5 provides concluding remarks from the work and possible directions of future
research.

Appendix A introduces an object detection scheme using convolutional neural networks.
The scheme detects shapes in images which result from the new reconstruction schemes de-
scribed in chapter 2.



CHAPTER 2

Inverse Problem

Inverse Problems for Maxwell’s equations have been investigated for a long time in a vari-
ety of applications and settings. For recent overviews of available theoretical and compu-

tational results we refer to [23, 25, 137] and the references provided there. The important
questions of uniqueness and di�erentiability for related inverse problems are addressed for
example in [15, 20, 56, 96, 119]. For derivation of the algorithms in this thesis, we assume dif-
ferentiability (in properly chosen function spaces) of all forward mappings that arise here,
allowing us to adopt well-established expressions for the relevant derivatives (or sensitivities)
with respect to the unknown medium parameters [36, 37, 82, 118, 137]. Alternative techniques
for solving the inverse problem, which are not considered in this thesis, are polarization and
monotonicity based methods, amongst others. See [4, 54, 74, 122, 123, 124] for more details
on those.

In this chapter, we formulate various reconstruction schemes which are concerned with
estimating the value or shape of conductivity σ(x). For notational purposes, we reduce Max-
well’s equations described in (1.7a) and (1.7b) to the form

Λ(a0,b)u j = q j, (2.1)

32
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De�nition 2.1: Electrical Conductivity Inverse Problem

Assume that we have ns source distributions q j ( j = 1,2, . . . ,ns) located at s j such
that radiation from the source is propagated by the Maxwell model in (2.1). In addi-
tion, let there be nr receivers, where each of those are located at r jk(k = 1,2, . . . ,nr).
At these receiver locations, measure the electromagnetic �eld E when an unknown
object is present in our domain Ω. Hence, let

D j,k = E j(rk). k = 1,2, . . . ,ns, j

Then, the inverse problem is stated as follows: Find a parameter b∗ ∈ P such that the
solution Ê j of

Λ(a0,b∗)û j = q j

coincides with D j,k, where Λ(·, ·) is the Maxwell operator de�ned in (2.2).

where

Λ(a0,b) =

 −b ∇×
∇× a0

 , (2.2)

a0 denotes that we take the free space value of µ(x), u j = (E j H j)
T and q j = (J j M j)

T .

When the conductivity is everywhere positive, i.e. Re(b(x))> 0, (2.1) has a unique solu-
tion u ∈U for each source q, meaning it is well posed [37]. This notation allows us to separ-
ate operators and quantities in the Maxwell PDE system, which is useful when formulating
the inverse problem. De�nition 2.1 describes the inverse problem which this thesis addresses.
We develop novel schemes to solve this problem for the near-�eld electromagnetic imaging
problem described in section 1.2.

Let us denote P as the space of parameters b (which are assumed here for simplicity to be
isotropic together with µ0 and ε0), Z j the space of measurements D j and noiseless residuals
R j, U the spaces of states u and Y the space of sources. We assume these function spaces
are represented by Hilbert spaces consisting of L2- functions which carry a special physical
signi�cance. All these function spaces are then equipped with standard inner products in
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L2. They are de�ned as:

P := L2(Ω);

Z j :=


 η

ξ

 ,η,ξ ∈ (C3)ns, j

 ;

U :=


 E(x)

H(x)

 , E,H ∈
[
L2(Ω)

]3

 ;

Y :=


 J(x)

M(x)

 , J,M ∈
[
L2(Ω)

]3

 .

The inner products on these spaces are:

〈 E1(x)
H1(x)

 ,

 E2(x)
H2(x)

〉
U

=

ˆ
Ω

D2
EE1E2 dx+

ˆ
Ω

D2
HH1H2 dx;

〈 J1(x)
M1(x)

 ,

 J2(x)
M2(x)

〉
Y

=

ˆ
Ω

D2
J J1J2 dx+

ˆ
Ω

D2
MM1M2 dx;

〈m1,m2〉Z =
k

∑
n=1

∑
i=x,y,z

D2
Mmi

1,nm(i)
2,n;

< diag(b(x)1 ,b(y)1 ,b(z)1 ),diag(b(x)2 ,b(y)2 ,b(z)2 )>P =

ˆ
Ω

D2
b

 ∑
i=x,y,z

b(i)1 b(i)2

dx;

〈 f ,g〉L2(Ω) =

ˆ
Ω

f g dx,

where Dα = [α]−1 denotes the dimension of a physical quantity. The functions spaces and
their corresponding inner products are useful when insisting that solutions of the inverse
problem belong to certain function spaces.

In the following discussion, we assume additional regularity of the electromagnetic �elds
E and H such that point-wise evaluation is de�ned. This condition is for purposes of point-
wise measurement discussion only (which follows after introduction of the measurement
operator below), as in this thesis we actually use a di�erent form of the measurement oper-
ator which does not require this additional regularity condition.
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Let us now de�ne the measurement operator M j : U → Z j:

M ju j(x) :=
{ˆ

Ω

E j(x)δ(x− r j,k) dx
}

k=1,2,...,nr

. (2.4)

The form in (2.4) is a mathematical representation of measurement at a receiver location.
The measurement operator allows us to create a metric between measurements which are
implicitly generated by di�erent conductivities and those which are generated by the true
content. As mentioned above, we assume here that the electric and magnetic �elds have suf-
�cient regularity to justify such use of Dirac delta functions. In case of uncertainty, the Dirac
delta function can be replaced by a more realistic measurement functional that is tailored to
represent speci�c receiver pro�les. In fact, we use a di�erent form of the measurement op-
erator for the reconstruction schemes developed in this thesis - it amounts to taking wire
loop measurements rather than point-wise ones. Overall, the results of this thesis do not
depend signi�cantly on the choice of the measurement operator. In addition, the smooth
assumption does not hinder us in using L2-spaces (or related Sobolev spaces) to design in-
version algorithms, given those quantities are also well de�ned. For more details on how to
integrate di�erent function spaces in the shape reconstruction framework of low frequency
electromagnetics we refer to, for example, the work in [59], which uses the eddy current ap-
proximation for this purpose or [96] which uses the full Maxwell system for a similar setup.

This brings us to de�ne the residual operator R j : P→ Z j:

R j[b] = M ju j(x;b)−d j, (2.5)

where u(x;b) is a solution of (2.1) with parameter b and d j are data sets. The data sets d j

are generated when a box or container has unknown contents and are typically measured
at the same locations for all j, where their source patterns are distinct. The residual oper-
ator gives us a quantitative measure in data space Z j for the distance between an electromag-
netic �eld generated by a parameter distribution b and one which is generated by a value
in a small neighbourhood of the unknown parameter distribution b∗ (due to noise in the
physical measurement). The relation in (2.5) describes the data mismatch with respect to
the jth source, whereby a sum over j results in the total data mismatch R [b]. The goal is
to minimize this mismatch by some metric, such that we �nd the conductivity pro�le that
generated the true electromagnetic data d j. Let us now introduce a cost functional in terms
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of the residual operator described in (2.5):

J j[b] =
1
2
||R j[b]||2L2(Ω). (2.6)

Introduction of the residual operator and the cost functional in (2.6) allows us to rewrite
De�nition 2.1 in this new framework.

This thesis is concerned with a single parameter inversion involving the conductivity σ=

Re(b). As discussed in section 1.2, the other material parameters µ and ε assume their free
space values. Whilst we derive gradients with respect to the complex admittivity b in this
chapter, which could in theory be used for a joint inversion involving ε, we only update the
real component of b throughout this thesis.

De�nition 2.2: Electrical Conductivity Inverse Problem

Find a function b∗ such that

b∗ = argmin
b∈P

J [b], (2.7)

where
J [b] =

ns

∑
j=1

J j[b]. (2.8)

For simplifying notation in parts of this thesis, we also use b to denote conductivity. It
is clear from the context whether b is the complex admittivity or the conductivity. We use
this notation because the imaginary component is �xed and constant throughout this thesis.
Therefore, whenever we use a parameter b to minimize some form of the cost functional in
De�nition 2.2, the imaginary component is assumed to be ωε0.

A standard approach of minimizing the cost functional in (2.8) is to �nd a search dir-
ection δb such that b+ δb results in a reduction of J [b]. Therefore, consider the mapping
b 7→ b+δb. This results in:

J [b+δb] =
1
2
||R [b+δb]||2L2(Ω). (2.9)

By linearizing the nonlinear operator R , assuming R ′ exists and is well de�ned at b, we have
that

R [b+δb] = R [b]+R ′[b]δb+O(||δb||2P). (2.10)

We make no assumptions on the di�erentiability of R (i.e. whether it is Gateaux or Fréchet
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di�erentiable). We follow standard approaches when calculating gradients in MIT. For in-
formation on di�erentiability of related problems see [18, 59, 89, 120]. For the correction δb

to be a valid perturbation in the parameter space such that J is minimized, we require that
R [b+δb] = 0. And so,

R ′[b]δb =−R [b], (2.11)

or component wise
R ′j [b]δb =−R j[b] j = 1,2, . . . ,ns. (2.12)

Solving (2.12) is a highly ill-posed problem, as solutions δb are not necessarily unique [36].
Moreover, (2.12) is typically under determined (i.e. less data than unknowns). Therefore,
regularization is typically applied so that certain types of solutions are sought after. For ex-
ample, a popular choice is the minimal norm solution, i.e. δb∗ = min||δb||L2(Ω). We will
pay closer attention to regularization techniques when addressing the fully nonlinear inverse
problem later in this chapter.

Assuming that the system in (2.11) is under determined, which is the most realistic scen-
ario, we have that

δb∗ =−R ′[b]∗
(
R ′[b]R ′[b]∗

)−1 R [b], (2.13)

where R ′[b]∗ is the adjoint operator of R ′[b] with respect to P and Z. The argument of the
inverse operator in (2.13) requires regularization because it is highly ill-conditioned. Typic-
ally, one adds a constant λ to the diagonals of R ′[b]R ′[b]∗. For large λ, we obtain the descent
direction

δb =−R ′[b]∗R [b],

which is scaled with respect to λ [36]. Plugging (2.10) into (2.9) results in

J [b+κδb] = J [b]+κRe
〈
R ′[b]∗R [b],δb

〉
P +O(||κδb||2P),

which, using the descent direction, reduces to

J [b+κδb] = J [b]−κ||R ′[b]∗R [b]||2P +O(||κδb||2P),

meaning that δb reduces the cost functional because || · ||2P > 0 and κ is chosen positive. To
reduce J in practice, we must �nd an explicit form of R ′[b]∗R [b]. In the general setting,
we wish to �nd a representation of R ′[b]∗ξ for some ξ ∈ Z. The cost functional itself is an
implicit function of the conductivity through the residual operator, meaning any perturb-
ation in the cost functional results in a perturbation to the underlying Maxwell PDE. With
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this deduction, we can relate the linearized residual operator to a measure of the solution
to a perturbed Maxwell problem. We begin by perturbing the conductivity, which generates
secondary electromagnetic �elds as a result. A perturbation in parameter space leads to a per-
turbation in the state space, due to uniqueness of the Maxwell system, given that Re(b)> 0
[36]. Mathematically speaking

b 7→ b+δb, =⇒ E 7→ E+δE, H 7→H+δH.

Applying these mappings in (2.1) generates

Λ(a0,b+δb)(u j +δu j) = q j. (2.14)

We �rst linearize (2.14) and pick out quantities which are equivalent to the linearized residual
term. Without loss of generality, let us assume that a single source q located at s is given as

q =

 0
msδ(x− s)

 ,

where ms = ∑i=x,y,z aiei,ai ∈ C and let âi := DMai. Then, denote u to be the solution of
the forward problem

Λ(a0,b)u =

 0
msδ(x− s)

 . (2.15)

Linearizing the system in (2.15) results in

Λ(a0,b) [u+δu] =

 0
msδ(x− s)

+

 δbE
0

 . (2.16)

We know how the residual operator in (2.5) relates to the system in (2.1), so how does the
perturbed linearized residual operator relate to the expression in (2.16)? We can �nd out
by using Taylor’s Theorem to �nd an expression for the linearized residual operator. From
(2.10) and (2.16), we know that

R ′[b]δb = M δu, (2.17)

where δu solves

Λ(a0,b)δu =

 δbE
0

 . (2.18)
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Before we �nd a useful form of R ′[b]δb, we will �rstly have some discussion on M δu. By
linearity of Maxwell’s equations, we can say that

δu = ut(x;b+δb)−u(x;b),

where the subscript t denotes the total electromagnetic �eld. It follows that

R ′[b]δb = M (ut−u).

By linearity of the measurement operator, we obtain

M (ut−u) = M u(t)−M u. (2.19)

The relation in (2.19) gives us a better notion of the electromagnetic data. In particular, it
allows us to interpret the right hand side of (2.17) as a di�erence measurement. We can in-
terpret Mu as a measurement on a state u which is generated by a known parameter b. In
addition, Mu(t) can be interpreted as the measurement on a total state u(t) which is generated
by an unknown parameter distribution b+δb, i.e. a domain with an unknown conductivity
distribution. It follows then, that the di�erence between the two is a di�erence measurement
of the electromagnetic �elds. To demonstrate this interpretation, and without loss of gen-
erality (i.e. multiple sources and receivers), �gure 2.1 shows an example setup of one source
and receiver.

Ω1

q

Receiver at r1

Ω2

q

Receiver at r1

?

Figure 2.1: A qualitative description of measuring electromagnetic �elds on Ω with and
without an unknown object present.
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In particular, we have the following representation of the parameter distribution b:

b(x) =

b0(x) x ∈Ω1,

b0(x)+δb(x) x ∈Ω2.
(2.20)

Each value of b described in (2.20) generates an electromagnetic �eld solution in the Maxwell
PDE, whose state can then be realized at a receiver location by applying the measurement
operator. For example, we could take a pointwise measurement as follows:

M u =

ˆ
Ω1

H0(x)δ(x− r1) dx;

= H0(r1); (2.21a)

M u(t) =

ˆ
Ω2

H(x)δ(x− r1) dx;

= H(r1), (2.21b)

which generalizes to the following:

(M u(t)−M u)k =
(

H(t)(rk)−H(rk)
)

for k = 1,2, . . . ,nr,

where quantities H(t)(rk) can be interpreted as a realisation of the solution to (2.14) at x= rk,
whereas H(rk) can be viewed as a realisation of the solution to (2.15) at x = rk. Note that
the background conductivity b0 can take many forms, and is typically a known quantity.
For example, in applications such as cargo container screening, one envisages b = bcc ∈Ω1

being the conductivity for an empty cargo container, with b∗ = (bcc +δb) ∈Ω2 being the
conductivity of a cargo container with unknown contents. The measurement operator can
take many forms. For the numerical experiments considered in this thesis, we use a di�erent
form of M u. Instead, we use:

[
M ju j

]
k =

˛
Sk

E j ·θ dl, (2.22)

for k = 1, . . . ,nr, where E j ·θ is the tangential component of E j with respect to the closed
wire loop Sk. The surfaces Sk act as receivers and are modelled as rectangular loops in the dis-
crete setting. The measurement operator as de�ned in (2.22) represents the act of measuring
an electric current. Notice that the additional regularity on E j is no longer needed with this
measurement.

Whether we are interested in �nding b∗ for the linearized inverse problem of De�nition
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2.2 or a full nonlinear inversion, we require an explicit form of the linearized residual oper-
ator and its adjoint. This leads us to recall some theoretical results found in [36].

Theorem 1

Let

 δE
δH

,

 E
H

 ∈U , then

〈
Λ(a,b)

 δE
δH

 ,

 E
H

〉
L2(Ω)

=

〈 δE
δH

 ,Λ∗(a,b)

 E
H

〉
L2(Ω)

,

where Ω = R3.

Proof .Using Green’s formulas for an in�nite space, without boundary terms since Re(b)>
0, we have

ˆ
Ω

(∇×δE) ·E dx =

ˆ
Ω

δE · (∇×E) dx;
ˆ

Ω

(∇×δH) ·H dx =

ˆ
Ω

δH · (∇×H ) dx.

Then,〈
Λ(a,b)

 δE
δH

 ,

 E
H

〉
L2(Ω)

=

ˆ
Ω

DJDE(∇×δH−bδE) ·E dx

+

ˆ
Ω

DMDH(∇×δE+aδH) ·H dx;

=

ˆ
Ω

DJDEδE · (∇×H −bE) dx

+

ˆ
Ω

DMDHδH · (∇×E +aH ) dx;

=

〈 δE
δH

 ,Λ∗(a,b)

 E
H

〉
L2(Ω)

.�

From (2.17), we have that

(R ′[b]δb)k =

ˆ
Ω

δH(x)δ(x− rk) dx;

= δH(rk),
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with the de�nition of the measurement operator as in (2.4). Namely, R ′[b]δb∈ Z. By taking
an inner product in data space Z, we obtain

〈
R ′[b]δb,ξ

〉
Z = D2

H

nr

∑
k=1

∑
i=x,y,z

(ˆ
Ω

δH(x)δ(x− rk)dx
)

h(i)k ei;

=

ˆ
Ω

DHDMδH(x)

DHD−1
M

nr

∑
k=1

∑
i=x,y,z

h(i)k δ(x− rk)ei

dx,

where ξ =
(
h1, . . . ,hnr

)
and hk = (h(x)k ,h(y)k ,h(z)k ), with ĥ(i)k := DHh(i)k . The adjoint linear-

ized residual operator is formally de�ned by the identity

〈
R ′[b]δb,ξ

〉
Z =

〈
δb,R ′[b]∗ξ

〉
P . (2.24)

The expression in (2.24) describes the relationship between the data space Z and parameter
space P. Theorem 2 shows a decomposition of the quantities appearing in this expression,
which can then be readily computed for minimization of the cost functional in (2.8) and
regularized versions of it.

Theorem 2

Assume that we have some data ξ = (h1, . . . ,hk) ∈ Z where

hk = (h(x)k ,h(y)k ,h(z)k ) ∈ C3. Then we denote the solution

 E
H

 of

Λ
∗(a,b)

 E
H

=

 0
D−1

M ∑
nr
k=1 ∑i=x,y,z ĥ(i)k δ(x− rk)

 , (2.25)

as the adjoint solution, where

Λ
∗(a,b) =

 −b ∇×
∇× a

 . (2.26)

Then R ′[b]∗ξ ∈ F is given by

R ′[b]∗ξ(x) = D−1
b diag

(
E(x)E (x),E(y)E (y),E(z)E (z)

)
,

where E is a solution of (2.1).
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Proof . Given the result in Theorem 1, coupled with the identities in (2.24), we can say
that 〈

Λ(a,b)

 δE
δH

 ,

 E
H

〉
L2(Ω)

+
〈
R ′[b]δb,ξ

〉
Z =

〈 δE
δH

 ,Λ∗(a,b)

 E
H

〉
L2(Ω)

+
〈
R ′[b]δb,ξ

〉
Z . (2.27)

The second term on the left hand side cancels with the �rst time on the right in (2.27), given

that

 E
H

 solves (2.25). Therefore, we are left with

〈
Λ(a,b)

 δE
δH

 ,

 E
H

〉
L2(Ω)

=
〈
R ′[b]δb,ξ

〉
Z .

Given q ∈Y , b ∈ P and u ∈U , let u =

 E
H

 be a solution to the problem in (2.1), ignor-

ing the j subscript. Similarly, let δu =

 δE
δH

 be a solution to the perturbed problem in

(2.18). Hence, with (2.17) and (2.18), (2.27) becomes

〈
R ′[b]δb,ξ

〉
Z =

ˆ
Ω

DbD2
E

(
δb(x)E(x),δb(y),δb(z)E(z)

)
·E dx;

=

ˆ
Ω

DbD2
E

 ∑
i=x,y,z

δb(i)
(

E(i)E (i)
) dx;

=

〈
δb,D−1

b diag
(

E(x)E (x),E(y)E (y),E(z)E (z)
)〉

P
. (2.28)

Using the adjoint linearized operator identity de�ned in (2.24) results in

R ′[b]∗ξ(x) = D−1
b diag

(
E(x)E (x),E(y)E (y),E(z)E (z)

)
. [36]� (2.29)
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We can also consider the general form for our application:

〈 δbE j,m

0

 ,

 Ek,l

Hk,l

〉
L2(Ω)

=

〈 δE j,m

δH j,m

 ,

 0
D−1

M elδ(x− rk)

〉
L2(Ω)

(2.30)
whose quantities solve the following problems:

Λ(a0,b)

 δE j,m

δH j,m

 =

 δbE j,m

0

 ;

Λ
∗(a0,b)

 Ek,l

Hk,l

 =

 0
D−1

M elδ(x− rk)

 ;

Λ(a0,b)

 E j,m

H j,m

 =

 0
D−1

M emδ(x− s j)

 .

Then, (2.30) has the explicit form
ˆ

Ω

DbD2
EE j,m(x)δb(x)Ek,l(x) dx =

ˆ
Ω

DHDMδH j,m(x) ·D−1
M elδ(x− rk) dx. (2.32)

We know that
δH j(rk) = ∑

m=x,y,z
âmδH j,m(rk). (2.33)

Integrating the right hand side of (2.32) results in

DH ∑
m=x,y,z

âmδH j,m(rk) · el = DbD2
E ∑

m=x,y,z
âm

ˆ
Ω

E j,m(x)δb(x)Ek,l(x) dx.

And so, by (2.33), we have that

δHm(rk) = D−1
H DbD2

E ∑
l=x,y,z

(
∑

m=x,y,z
âm

ˆ
Ω

E j,m(x)δb(x)Ek,l(x) dx

)
el.

With (2.17), we conclude that

(R ′[b]δb)k = D−1
H DbD2

E ∑
l=x,y,z

(
∑

m=x,y,z
âm

ˆ
Ω

E j,m(x)δb(x)Ek,l(x) dx

)
el. (2.34)
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The relationship in (2.34) yields the decomposition of the linearized residual operator R ′[b]δb.
With the linearized residual operator explicitly de�ned in (2.34), we now formulate the cor-
responding linearized inverse problem.

Consider a domain Ω⊂ R3 with ns sources and nr receivers such that position s j is the
location of the jth source and rk is the location of the kth receiver, for j = 1,2, . . . ,ns and
k = 1,2, . . . ,nr. Then, ignoring dimension quantities, (2.34) takes the form

ns

∑
j=1

nr

∑
k=1

∑
m=x,y,z

∑
l=x,y,z

nv

∑
n=1

E j,m(xn)Ek,l(xn)δb(xn) = δH(rk),

where nv is the number of voxels in the discretized domain. This summation can be written
as Gδb = δH(rk) where G ∈ C9nsnr×nv , δb ∈ Cnv and δH(rk) ∈ C9nsnr :

∑
nv
n=1 Ex,1(xn)E1,x(xn)

∑
nv
n=1 Ex,1(xn)E1,y(xn)

∑
nv
n=1 Ex,1(xn)E1,z(xn)

∑
nv
n=1 Ey,1(xn)E1,x(xn)

...
∑

nv
n=1 Ex,1(xn)E2,x(xn)

...
∑

nv
n=1 Ez,1(xn)Enr,z(xn)

∑
nv
n=1 Ez,2(xn)E1,z(xn)

...
∑

nv
n=1 Ez,ns(xn)Enr,z(xn)





δb(x1)
...

...
δb(xp)

...

...
δb(xnv)



=



δH(x)
x,x,1(r1)

δH(y)
x,y,1(r1)

δH(z)
x,z,1(r1)

δH(x)
y,x,1(r1)
...

δH(x)
x,x,1(r2)
...

δH(z)
z,z,1(rnr)

δH(x)
x,x,2(r1)
...

δH(z)
z,z,ns(rnr)



.

A schematic of the matrix equation Gδb = δH(rk) shown above is for a discrete form of
the linearized inverse problem, where each source and receiver can be directed in all three
directions x,y,z. Size of the sensitivity matrix G is dictated by orientation and amount of
sources and receivers, as well as the number of pixels employed in the discrete domain.

The sensitivity matrix can be created using electromagnetic �eld solutions which cor-
respond to speci�c geometries or to the general problem as de�ned in this chapter. Some
analytical methods, for example, are found by assuming speci�c knowledge of the conduct-
ivity in the domain. Solutions to these methods can be used to create the sensitivity matrix
in the linearized inverse problem, though in an iterative nonlinear process where the con-
ductivity is updated more than once, these methods break down as assumptions to generate
the solutions are no longer valid.
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The physical experiments described in [29, 30, 133] can be viewed mathematically as tak-
ing the sensitivity matrix to be the Identity matrix, in the act of di�erence imaging. In theory,
using analytical methods which break down after one step, or numerical methods (which we
will consider), should improve the results as they incorporate known physics of the problem.
Whilst solving the linearized inverse problem could produce interesting results, we are more
interested with the fully nonlinear inverse problem. Provided we have access to a robust Max-
well solver with respect to the conductivity and other material parameters if possible, we can
iteratively solve the linearized inverse problem. This results in an nonlinear scheme which
we build reconstruction algorithms for in this thesis. Both analytical and numerical methods
for solving Maxwell’s equations in the frequency domain will be discussed in chapter 3.

2.1
Regularization schemes

The problem in De�nition 2.2 is the traditional L2-based conductivity inverse problem in
MIT and has been solved for various applications. One, for example, is geophysical pro-
specting, see [36, 37] for more detail. Minimizers b∗ of this traditional problem are L2, due
to the conductivity being composed of a summation of L2 gradients. The inverse problem
is highly ill-posed, meaning suitable regularization schemes need to be designed in order to
�nd stable solutions to the problem. This section investigates and proposes various regular-
ization schemes which address the challenging near-�eld electromagnetic imaging problem
described in section 1.2. In particular, we consider variants of the traditional L2-based con-
ductivity inverse problem which arise from applying certain regularization strategies. Whilst
additional terms in the cost functional or implicit constraints on the conductivity are used
to regularize the problem to try and capture desired properties or incorporate a priori know-
ledge into a minimizer, the original cost functional is also a form of regularization as we are
assuming the conductivity lives in the L2 space. This assumption is valid though, as many
physical phenomena have been observed to behave as L2 functions. The additional regular-
ization schemes considered here can be classi�ed into two distinct groups: ‘pixel-based’ and
‘shape-based’, as mentioned in chapter 1. These translate as explicit and implicit regulariza-
tion terms on the conductivity respectively.
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2.1.1
Sobolev smoothing

One smoothing tool, which we apply to all gradients arising from regularization schemes
considered in this thesis, is the use of tailor-made function spaces. Recall that the formula-
tion described in the adjoint problem maps into standard L2 spaces. This is su�cient and
convenient in general, but for the schemes considered here, it will be bene�cial to obtain
gradient directions in a subset of smoother functions. In particular, such smooth gradient
directions provide greater stability of the reconstruction schemes. Without loss of general-
ity, we will derive the smooth gradient with respect to parameter b. The same methodology
can be applied for gradients which result from di�erent inversion schemes. Let us begin by
introducing the following space:

W1(Ω) =

{
f : f ∈ L2(Ω),∇ f ∈ L2(Ω),

∂ f
∂n

= 0 on ∂Ω

}
,

with the equipped W1(Ω) weighted inner product

〈v,w〉W1(Ω) = α〈v,w〉L2(Ω)+β〈∇v.∇w〉L2(Ω) . (2.35)

Here α ≥ 1 and β > 0 are suitably chosen regularization parameters. In the following we
will derive a convenient mapping between the adjoint operator R ′j [b]∗ and a new adjoint
operator which is related to the space W1(Ω). For this purpose, let ξ j ∈ Z j and δb be a
perturbation of b ∈W1(Ω). Then we have the following adjoint property:〈

R ′j [b]δb,ξ j

〉
Z j
=
〈

δb,R ′j [b]∗ξ j

〉
P
. (2.36)

To map R ′j [b]∗ to a smoother space, we de�ne a new adjoint R̂ ′j [b] by〈
δb,R ′j [b]∗ξ j

〉
P
=
〈

δb, R̂ ′j [b]ξ j

〉
W1(Ω)

. (2.37)

We can expand the right hand side of (2.37) by using the weighted inner product de�ned in
(2.35), resulting in〈

δb, R̂ ′j [b]ξ j

〉
W1(Ω)

= α

〈
δb,R ′j [b]∗ξ j

〉
P
+β

〈
∇δb,∇R ′j [b]∗ξ j

〉
P
.
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By Green’s Identity, coupled with the Neumann boundary condition for W1(Ω) functions,〈
∇δb,∇R ′j [b]∗ξ j

〉
P
=−

〈
δb,∆R ′j [b]∗ξ j

〉
P
.

Therefore,〈
δb, R̂ ′j [b]ξ j

〉
W1(Ω)

= α

〈
δb,R ′j [b]∗ξ j

〉
P
−β

〈
δb,∆R ′j [b]∗ξ j

〉
P

;

=
〈

δb,(αI−β∆)R ′j [b]∗ξ j

〉
P
.

Choosing ξ j = R j[b] ∈ Z j gives us the formal gradient of the cost functional de�ned in
(2.6), obtaining

(αI−β∆)∇̂J j[b] = ∇J j[b] in Ω, (2.38)

where I and ∆ are the Identity and the Laplacian operator respectively, and the hat above
∇J j[b] denotes that it has been smoothed. The relationship in (2.38) allows us to compute a
smoothed gradient by a simple post-processing step after obtaining ∇J j[b]. This smoothed
gradient is also often referred to as a Sobolev gradient in the literature [91]. For more inform-
ation on practical ways of calculating this Sobolev gradient, we refer the reader to a discus-
sion in [48]. Across all regularization schemes, we project L2 gradients from the various cost
functionals considered here, towards the smoother space W1(Ω).

2.1.2
Pixel-based regularization

In this section, we develop two novel pixel-based reconstruction algorithms for the near-
�eld electromagnetic imaging problem described in section 1.2. One is a modi�cation of
the traditional L2-based conductivity reconstruction scheme, and the other is an explicit
modi�cation of the original cost functional to encourage sparsity in the conductivity pro�le.
In general, the pixel-based conductivity inverse problem can be written as:

b∗ = argmin
b∈P

J [b]+
1
2

n

∑
j=1

α jM j(b)

 , (2.39)

where α≥ 0 and M j(·) are regularization terms. The terms M j(b) are speci�c penalties on
the conductivity, whereas the �rst term is the data mis�t term. The scalars α j dictate how
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much weighting is given to a particular regularization term. Care must be taken upon choos-
ing this, since too little may still lead to similar problems as the original scheme without reg-
ularization whereas too much may be solving an entirely di�erent problem. Some popular
choices of these regularization terms include total variation, sparsity, multi-bang, Mumford-
Shah, Tikhonov, amongst many others. For more information on those regularization tech-
niques, see [60, 62, 87, 125].

2.1.2.1
Traditional L2-based regularization

Recall from De�nition 2.2 the traditional conductivity inverse problem:

b∗ = argmin
b∈P

J [b]. (2.40)

This section derives an algorithm to solve (2.40). Recall that

J [b] =
ns

∑
j=1

J j[b]; J j[b] :=
1
2
||R j[b]||2L2(Ω), (2.41)

where we now rede�ne R j[b] as:

R j[b] = F j[b]−d j,

where F j are de�ned as forward operators

F j[b] = M ju j(x;b).

The cost functional J [b] is useful for monitoring progress of any iterative estimation tech-
nique and for the design of suitable reconstruction schemes. Many popular minimization
schemes use the formal gradient of (2.41):

∇J [b] =
ns

∑
j=1

∇J j[b], (2.42)

which can be calculated e�ciently by the adjoint scheme described at the start of this chapter.
Assuming su�cient regularity of R j[b] in the chosen function spaces P and Z j, let us denote
the linearized residual operator by R ′j [b] and its adjoint operator with respect to these func-
tion spaces by R ′j [b]∗. Let us choose some data ξ j = R j[b] ∈ Z j, b ∈ P and let (E j,H j)

T be
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the solution of the adjoint Maxwell problem: −b ∇×
∇× a

 E j

H j

=

 0
M ∗

j R j[b]

 ,

where the overline denotes complex conjugate and M ∗
j is the formal adjoint of the measure-

ment operator. Its application amounts to putting the residuals as arti�cial adjoint sources
at the receiver locations. Then,

∇J j[b] = R ′j [b]∗ξ j = R ′j [b]∗R j[b] (2.43)

is given by [
R ′j [b]∗R j[b]

]
(x) = E j(x) ·E j(x), (2.44)

as analogously derived in (2.29). The interpretation of R j[b] as an arti�cial adjoint source,
upon which R ′j [b]∗ is acting on in (2.44), gives rise to the interpretation of back-projecting
the residual data to their (secondary) source.

The nonlinear inverse problem is of large scale in 3D. Numerically speaking, iterative
techniques are employed to �nd solutions, requiring repeated calculation of descent dir-
ections to J [b] in (2.41). Most standard schemes require calculation of the full gradient
∇J [b] in (2.42). Depending on the available forward solver this might consume consider-
able resources and processing time in each iteration. Therefore, alternative techniques have
been developed in order to speed up the inversion process. One of those is the nonlinear
Landweber-Kaczmarz (LK) scheme, which we employ here. The technique cycles over indi-
vidual source positions in some order and only requires to calculate gradients of partial data
sets in each step, which can be done e�ciently with the adjoint method as outlined in this
chapter. One complete cycle of the gradient set is called a sweep. With this scheme it is no
longer the primary goal to directly reduce the data mis�t to J [b], shown in (2.41), in each
individual step. Instead, in each iteration, we reduce the data mis�t J j[b] with respect to the
jth source only. In more detail, we use the single-step update formula

bk+1 = bk− τRe
{

∇̂J[k][bk]
}
, (2.45)

where we follow, for simplicity, a sequential rule [k] := (k modulo ns) ∈ {0,1, . . . ,ns−1}
and the hat above the gradient term denotes that the original L2 gradient has been projec-
ted into W1(Ω) using (2.38). Alternative approaches, such as using a random selection of
sources, are possible as well. Note that similar ‘Stochastic Gradient Methods’ have become
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popular in several large scale data sciences applications, which have attracted a lot of interest
recently [13, 49]. We do not deal with random selection of gradient updates in this thesis,
partly because we have small gradient sets (lowers the appeal of stochastic methods).

2.1.2.2
Pixel-based line search strategy for Kaczmarc iterations

This section introduces a new line search criteria which stops the iteration formula in (2.45)
from over �tting to cost functionals J j[b]. Whereas in standard gradient based optimization
schemes a line search is computed following well established rules and criteria [94], the task
of �nding an optimal step size in each step of Kaczmarz type approaches is not yet well un-
derstood. The reason being is that only part of the data is involved, such that large step sizes
in this partial gradient direction might severely deteriorate the data mis�t which has been
achieved by previous updates from di�erent parts of the data set. Therefore, one must be
careful when choosing τ as this parameter dictates how much we reduce the cost functional
with respect to one source only. Some standard choices include:

τ = c
||bk||22

||∇J[k][bk]||22
;

τ = c,

where c ∈ R+.

In this thesis, we insist that τ = τk, i.e. a function of the iteration number. Here, we
propose a novel line search strategy for the pixel-based regularization schemes. The criteria
is split into two parts; the �rst is used for estimating how the initial step size should be chosen,
and the second is used for how the step size should be updated in subsequent iterations.

To start with, we consider a preprocessing step (involving a su�ciently large subset of
the entire data set) which gives us a rough estimate of how τ0, denoted as the initial step
size, should be chosen. Then, we dynamically update τk in the following sweeps using a
di�erent criteria. For this purpose, we choose to calculate n0 gradients when b = b0, n0

su�ciently large (1 ≤ n0 ≤ ns), and do a partial line search to �nd τ0. Calculating these
gradients involves solving Maxwell’s equations 2n0 times (one forward and one adjoint solve
per gradient). This is the computational cost for computing ∇J n0[b0], which is de�ned as:

∇J (n0)[b0] = ∑
j∈J={ j1, j2,..., jn0}

∇J j[b0].
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Whereas the succeeding Kaczmarz type approach in (2.45) usually only uses information
from one single source position in one update, the �rst step in our scheme uses a subset of
n0 sources. The idea is to combine information from a signi�cant subset of source posi-
tions to calculate a more reliable estimate of the gradient ∇J [b0], resulting in a more reliable
initial step size τ0. We usually would choose a quarter or half of all available sources, but
we could use more or less if it seems reasonable. The choice of source indices can follow
a random rule (as it is done here and is often done in stochastic gradient schemes [49]) or
alternatively we can select source indices following a more systematic way. Once we have cal-
culated ∇J (n0)[b0], we devise a method for computing τ0 as follows. Instead of considering
the cost functional that incorporates the entire data set, we consider in the initial step a re-
duced cost functional S0 which only considers the chosen subset of n0 source positions. In
our line search we monitor behaviour of the cost with respect to various choices of τ. The
cost function is de�ned as:

S0(τ) = ||R (n0)[b(τ)]||2L2(Ω), (2.46)

where

R (n0)[b(τ)] = ∑
j∈J

R j[b(τ)] and b(τ) = b0− τRe
{

∇̂Jn0 [b0]
}
.

We now follow a variant of the so-called Brent method [99], which we adjust to the Kaczmarz
type scheme. Let us de�ne Iτ = [τmin,τmax] and denote τ∗ ∈ Iτ the minimizer of S0(τ) (as-
suming that there is only one in the given interval). We choose here

τmax = c1
||b0||22

||∇Jn0[b0]||22
, τmin = c1τmax, (2.47)

where c1 ∈ (0,a),a ∈R+, but other choices are possible. Typically, a is chosen to be much
less than unity so that we don’t promote large τ (as this might cause problems in a Kaczmarz
type scheme). Note that choosing n = ns retains our original cost functional and performs a
traditional line search in this �rst step. In practice, a small fraction of ns sources are su�cient
for choosing τ0. With the two step size quantities in (2.47) and an additional term τmid

(de�ned as the middle point of the interval Iτ), we evaluate (2.46) for each value of τ and
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choose which to use in the initial inversion step by the criterion in (2.48):

τ0 =



τmin if S0(τmin)< S0(τmid) and S0(τmax).

τ
q
mid if S0(τmid)< S0(τmin) and S0(τmax) where

τ
q
mid is the minimizer of a quadratic polynomial

φq(τ) = aτ2 +bτ+ c �tted to τmin,τmid,τmax.

τmax if S0(τmax)< S0(τmin) and S0(τmid).

(2.48)

Once τ0 has been chosen, we proceed with the iteration formula and update the step size
dynamically after each sweep. It is updated in the following way:

τs =

τs−1 i f J [bs−1]− J [bs−2]< 0;

(1− c1)τs−1 i f J [bs−1]− J [bs−2]> 0,
(2.49)

where in this case τs denotes the step size to be used for sweep s, such that s ≥ 2, τ1 = τ0

and c1 ∈ [0.5,1). For example, with this notation, J [b1] represents the cost quantity which
is calculated after updating the conductivity using each gradient once. This dynamic correc-
tion helps the algorithm stabilize as it tries to stop the reconstruction scheme from overes-
timating. Practically, we approximate the cost; as will be discussed in chapter 4. Algorithm
1 presents the complete L2-based conductivity reconstruction scheme with the novel line
search criteria and Sobolev smoothing. We will demonstrate this scheme in practice when
we compute numerical experiments in chapter 4.
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Algorithm 1 Pixel-based LK reconstruction with dynamic line search and Sobolev smooth-
ing

1: procedure Initialization
2: Choose ns,nr, f ,S, source vectors q j and b0

3: Collect ∇J (n0)[b0] = ∑ j∈{ j1, j2,..., jn0}
∇J j[b0]

4: Initial Line Search Scheme as outlined in section 2.1.2.2:
5: Calculate τmin,τmid,τmax using (2.47)
6: Compute b1(τ) for τ = τmin,τmid,τmax using (2.45)
7: Choose τ0 using (2.48)
8: End of Initial Line Search
9: procedure LKReconstruction

10: for k = 0 : Sns−1 do
11: Calculate ∇J[k][bk] using (2.43)
12: Compute smoothed gradient ∇̂J[k][bk] by solving (2.38)
13: Update bk+1← bk− τkRe

{
∇̂J[k][bk]

}
14: If applicable, update step size for next sweep using criteria in (2.49)

2.1.2.3
Sparsity promoting regularization

The traditional L2-based scheme shown in algorithm 1 assumes the minimizer belongs in
L2 and also employs implicit regularization through Sobolev smoothing, such that the min-
imizer is projected towards W1(Ω). This results in a solution to the corresponding optim-
ization problem which is smoother, since updating the conductivity pro�le involves sub-
tracting some multiple of these smoothed gradients. Whereas this helps stabilizing the in-
version process, it also tends to deliver quite oversmoothed conductivity pro�les. This over-
smoothing property of pixel-based inversion schemes has also been observed when not using
Sobolev gradients, but standard L2 gradients for the inversion [36, 37]. Therefore, in situ-
ations where it is known or expected that the unknown part of the conductivity distribution
has compact support, the traditional L2-based approach does not seem to be optimal. In-
stead, one can try incorporate a priori knowledge on expected discontinuities of medium
parameters into the inversion model. Recently, a sparsity promoting regularization scheme
has been suggested for similar situations using other imaging modalities such as electrical im-
pedance tomography or optical tomography, see for example [67, 68, 100]. We will develop a
sparsity promoting scheme for the challenging near-�eld electromagnetic imaging problem
described in section 1.2.

In the sparsity promoting regularization scheme we modify the standard cost functional
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from (2.41) by adding an additional term in the form of an l1 penalty, such that contribu-
tions in the parameter space, which are considered small in a prede�ned sense, are penal-
ized. Sparsity can be considered in several ways, with respect to a variety of basis systems
or over-complete dictionaries. We will consider sparsity with respect to the standard voxel
basis, which favours reconstructions with compact support. Such a process can be computed
practically by using so-called shrinkage operators [31].

Let us decompose b = b0 + εb where b0 denotes an approximately known background
and εb the unknown inclusions. The sparsity inverse problem can then be written as follows:

b∗ = argmin
b

Ĵ [b],

where
Ĵ [b] = J [b]+

α

2
||εb||1 (2.50)

with an assumption that
||εb||1 = ∑

k
| 〈εb,ψk〉 |,

and {ψk} is assumed to be an orthonormal basis, but in other applications it could be an
over-complete dictionary. Due to the ||εb||1 term, the cost functional in (2.50) is no longer
di�erentiable. Following suggestions in [31, 67, 68] and results shown in [100], we perform
the following steps to promote sparsity in the conductivity reconstruction:

1. Compute gradient ∇J [bk];

2. Using step 1 and (2.38) to calculate ∇̂J [bk];

3. Apply shrinkage on εbk+1 = εbk− τRe
{

∇̂J [bk]
}

.

These three steps can be combined to write

εbk+1 = Sτkγ

(
εbk− τRe

{
∇̂J [bk]

)}
,

where

Sτγ(x)i =

(|xi|− τγ)sign(xi) if |xi|> τγ

0 otherwise.
(2.51)

The sparsity promotion is therefore embedded in the shrinkage operator, as this in
uences
how the gradient descent behaves in the next iteration. Whilst we could follow steps (1-3)
above with access to the full gradient, we instead consider sparsity with respect to each entry
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of the full gradient; such that it is in line with the LK scheme. When initializing τ, we per-
form the same line search technique as that in section 2.1.2.2. In contrast to the traditional
L2-based inversion, however, we now incorporate the thresholding parameter Λ= τγ, which
is de�ned in (2.51). This parameter controls the intended sparsity level of the conductivity
reconstruction. Here, we choose

Λ = d1max(|εb1 |), (2.52)

although other choices such as Λ = Λ(k) are possible. Note that

εb1 = εb0− τ0Re
{

∇̂J0[b0]
}

(2.53)

and d1 ∈ (0,y2), where y2 is typically unity, but other choices are possible. Our assumption
on the thresholding term is that the maximum value of εb1 has a similar order of magnitude
as εbk , for k > 1. Furthermore, d1 can be interpreted as a parameter that chooses the level of
zero �lling in the reconstruction.

Algorithm 2 Pixel-based LK-Sparsity reconstruction with dynamic line search and Sobolev
smoothing

1: procedure Initialization
2: Choose ns,nr, f ,S, source vectors q j and b0
3: Choose τ0 using (2.48)
4: procedure LK-Sparsity Reconstruction
5: for k = 0 : Sns−1 do
6: Calculate ∇J[k][bk] using (2.43)
7: Compute smoothed gradient ∇̂J[k][bk] by solving (2.38)
8: if k = 0 then
9: Compute εb1 using (2.53)

10: Choose Λ using (2.52) and use for k > 1

11: Compute εbk+1 = Sτ0Λ

(
εbk− τ0Re

{
∇̂J[k][bk]

})
12: Update bk+1← bk + εbk+1

The complete sparsity reconstruction scheme using the LK optimizer with Sobolev smooth-
ing and the novel line search criteria is presented in algorithm 2. We demonstrate this scheme
in practice when computing numerical experiments in chapter 4.
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2.1.3
Shape-based regularization

The sparsity promoting scheme proposed in the previous section is useful when inclusions
with compact support or speci�c shape embedded in some approximately known background
are sought after. A similar e�ect has been observed in a variety of applications using a level
set based approach, which directly uses a shape-based model for the unknown inclusions.
Originally, level set methods were developed by Osher and Sethian as a means for tracking
propagation of interfaces in image processing and computational physics [97, 107]. This led
to Santosa applying their ideas in the arena of Inverse Problems [105]. Since then, level set
methods for nonlinear inverse problems have been applied across a whole range of imaging
modalities, see [17, 39, 41] for recent reviews.

The key di�erence between the level set shape-based approach and the pixel-based schemes
described in algorithms 1 and 2 is that some estimate of the true conductivity value is assumed
known a priori in the level set shape-based approach. Whilst it is true that the sparsity reg-
ularizer looks for sparse solutions, it does not have information on conductivities present
when the true electromagnetic data measurements are taken; it looks for a solution that �ts
the data in a certain form. Shape-based schemes are distinctly di�erent however, as they alter
the problem from being one of recovering pixel value to assuming the pixel value but not
how it is distributed in the imaging domain. As anticipated, the additional information sig-
ni�cantly improves the reconstruction of topology and shape of unknown inclusions in this
low frequency regime. This is even the case when a priori information on the conductiv-
ity is over or under estimated [58] (also shown in chapter 4). Therefore, in many practical
applications, shape-based methods are a useful approach when interested in detecting and
estimating general shapes of unknown inclusions from few data. Moreover, if required, es-
timation of internal parameter values can be made part of the optimization problem such
that incorrect a priori information can be corrected during the optimization procedure. We
do not include such an additional optimization loop in the algorithm proposed here, but in-
stead will test the shape-based algorithms against incorrectly estimated internal conductivity
values. This will be discussed in greater detail in chapter 4.

The set of problems in (2.39) do not adequately describe the shape-based inversion under
discussion here, as these shape-based problems have a priori assumptions on b from the out-
set, rather than incorporating information into explicit regularization terms, which through
certain optimization techniques recover speci�c conductivity pro�les. Instead, we introduce
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a new set of problems which we wish to solve. These are:

Φ
∗ = argmin

Φ

J [b(Φ)]+
1
2

n

∑
j=1

α jM j(Φ)

 , (2.54)

where Φ can be a vector of level set functions, depending on the assumptions made on b. The
shape-based approach will become clear as we discuss the algorithms used to solve speci�c
forms of (2.54).

2.1.3.1
Single level set regularization

In this section, we introduce a level set representation for a shape-based inversion approach
where the conductivity pro�le is assumed to be composed of two known values. Through-
out this section and subsequent sections of the shape-based approaches, we consider no ex-
plicit regularization terms. We focus on implicit regularization terms which result from a
priori information on the conductivity pro�le. Therefore, we are interested in solving prob-
lems of the form:

φ
∗ = argmin

φ

J [b(φ)].

To discuss the technical implications of such a level set based shape evolution approach, let
us begin by introducing a su�ciently smooth level set function φ : Ω→ R, which de�nes a
shape S by

b(φ)(x) =

bi(x) in S where φ(x)≤ 0

be(x) in Ω\S where φ(x)> 0,
(2.55)



2.1. REGULARIZATION SCHEMES 59

Figure 2.2: Visualization of the single level set representation de�ned in (2.55).

where bi and be are the interior and exterior conductivities respectively, and are either
constant or smoothly varying. We note again that the imaginary component of b is constant
throughout the region, hence its omission. The boundary ∂S is given by the zero level set
∂S = {x ∈ Ω : φ(x) = 0}. The representation in (2.55) can be written in the convenient
form

b(φ) = bi(1−H(φ))+beH(φ),

where H is the Heaviside function. In level set inversion, we are interested in �nding a suit-
able φ such that the data mis�t is minimized. For mathematical ease, we rede�ne the cost
functional for this shape-based approach. Therefore, we let

T [φ] = R [b(φ)] , J [φ] = ||T [φ]||2L2(Ω),

which yields the formal gradient

∇J [φ] =
ns

∑
j=1

∇J j[φ].

From (2.43, 2.44) we obtain the analog

∇J j[φ](x) = T ′j [φ]∗T j[φ](x) = Re{b′(φ)E j(x) ·E j(x)}, (2.56)

where
b′(φ) = (be−bi)δ(φ)
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and δ(·) is the Dirac Delta distribution. In the advent of numerical experiments, such a
distribution has to be approximated by a function in a suitable space. Therefore, we choose
a narrowband function [97, 107], such that δ(φ)≈ χBd(Γ), where

Bd(Γ) = {x : ||x−Γ||22 ≤ d/2},

d > 0 and χD is the characteristic function. In general, we assume that boundaries of ob-
jects are smooth. Therefore, like the pixel-based algorithms, one can map the gradient to
a smoother space using Sobolev projection. In the level set reconstruction scheme, we also
employ the LK optimizer for minimization. It follows that

φk+1 = φk− τ∇̂J[k][φk], (2.57)

where τ is a step size to be discussed. The initial level set function φ0 is typically chosen to
be a signed distance function, representing some arbitrary initial shape. Typically, a level
set representation of an ellipsoid or sphere in the centre of Ω su�ces in simple geometries,
such as those considered here. Once this initial shape has been assigned, we can proceed
with the iterative scheme in (2.57) for k ≥ 1. Better adapted initial guesses can speed up the
reconstruction, though, and for that reason should be used whenever available. It is possible,
for instance, that performing a few steps of algorithms 1 or 2 may given some indication on
where to place our initial guess.
... As in the two LK pixel-based reconstruction schemes, an e�cient line search is vital for
success in this shape-based scheme. It turns out that for shape-based schemes a simple yet
e�cient line search can be designed which does not require any additional forward solves.
The line search scheme, as presented in section 2.1.3.2, is used for both single and multi-level
set inversion, where the latter is introduced in section 2.1.3.3.

2.1.3.2
Level set line search criteria for Kaczmarz iterations

In shape-based inversion, choosing the step size τ is tricky. It is currently not understood
how exactly the number of voxels that change per update relates to the cost functional. Nev-
ertheless, we can make assumptions on how the level set should evolve. As in the pixel-based
schemes, we must choose the step size su�ciently small such that large updates are not made
with respect to individual sources as we don’t want to over�t. Whilst ideas of the step size
criterion in section 2.1.2.2 could still apply here, we choose the step size by a di�erent metric.

Unlike pixel-based methods, from one iteration to the next, a �nite amount of voxels
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change hands from interior to exterior conductivity values, and vice-versa, in these shape-
based regimes. Here we create a criteria which keeps track of the number of voxels which
change hands and adjust the step size accordingly, such that a smooth evolution of the level
set function is guaranteed. We introduce the line search criteria for color level set inversion
(involving multiple level set functions) so that it is compatible for both single and multi level
set inversion. The scheme is used to choose a step size vector τs = [τ1

s ,τ
2
s , . . . ,τ

N
s ] in the

update formula
Φ

s
j+1 = Φ

s
j− τs ◦∇J j[Φ

s
j], (2.58)

where s denotes the sweep number. We choose the step size vector in (2.58) to have the form

τs = f(ws ◦ τ0),

where f(·) is the vector-valued form of the backtracking scheme given in algorithm 3, ws =

[w1
s ,w

2
s , . . . ,w

N
s ] is a vector of scalars which are adjusted at the end of each sweep and τ0 is a

vector of initialized step sizes for each level set function in Φ. Hence, we arrive at the update
formula:

Φ
s
j+1 = Φ

s
j− f(ws ◦ τ0)◦∇J j[Φ

s
j]. (2.59)

The step size in (2.59) has two components: the �rst is applied every update (f) and the

Algorithm 3 Backtracking algorithm for one level set function
1: procedure f(τ,φ, g,Nsup)
2: Initialize m ∈ (0,1) and I ∈ Z>1

3: for i = 0 : I−1 do
4: τ = mτ

5: φt = φ− τg
6: Count voxel change V in x = φt−φ

7: if V < Nsup then
8: return τ

9: return 0

second is a dynamic scheme which alters the input of f at the end of each sweep.
To begin, we discuss the �rst component of the line search scheme. Here, the idea is to

choose each entry in τs such that Nm
j (the number of voxels that change per jth source for

the mth level set function, j = 0,1, . . . ,ns− 1) is contained in an interval deemed suitable
for the shape associated with the mth level set function to evolve smoothly. The relation-
ship between Nm

j and the data mis�t is of interest, but as of present is unclear. Although
the relationship is unknown, intuition tells us that if we only allow a small amount of voxels
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to change per update, then we ensure a smooth evolution of the shape which hopefully in-
duces a smooth evolution of the cost. We choose Nm

j ∈ Im
target , where Im

target = [Nm
in f ,N

m
sup]

is chosen appropriately. Typically, Nm
in f = 0 and Nm

sup is chosen as a small percentage of the
total number of voxels in the domain. This quantity is a metric on how much each level
set function evolves per sweep. Although the backtracking line search ensures updates are
only made if Nm

j ∈ Im
target , it does not ensure an unequal weighting to each sensitivity pattern

generated by the jth source. Ideally, we would like to give greater weighting to those sources
which capture objects present in their sensitivity patterns. For example, if we initialize the
pth entry in τs such that an update to the pth level set function is large, we will consistently
accept a voxel change just below N p

sup for all sources. This introduces two problems; the �rst
is that more iterations of the backtracking scheme will have to be computed in order to re-
duce τ0

p such that N p
sup ∈ Ip

target and the second is that we will give equal weighting to ‘bad
updates’ in the Kaczmarz scheme. To alleviate this problem, we design criteria involving the
quantity Nm

j . Once a sweep is complete (i.e. we make an Kaczmarz update for each source),
we compute the average number of voxels that have changed for that sweep. Mathematically
speaking

Nm
=

1
ns

ns

∑
j=1

Nm
j . (2.60)

This brings us to the second component of the line search criteria. We adjust the input space
of f by using a weighting vector ws, which is chosen by a criterion involving (2.60). Let us
now introduce the subinterval I′mtarget =

[
Nm

low,N
m
high

]
, whose bounds are de�ned as:

Nm
high = (1−dm)Nm

sup; (2.61)

Nm
low = dmNsup, (2.62)

where dm ∈
(

0, 1
2

)
. These will be included in the criteria for updating entries in ws. From

this, we can deduce that
Nm

in f < Nm
low < Nm

high < Nm
sup.

We adjust each entry in ws according to a criterion involving (2.60, 2.61, 2.62). For brevity,
we show how the pth component of ws is updated per sweep:

wp
s =


kp,1

s wp
s−1 if N p

s−1 > N p
high where kp,1

s ∈ [0.5,1)

kp,2
s wp

s−1 if N p
s−1 < N p

low where kp,2
s ∈ (1,2]

wp
s−1 if N p

low ≤ N p
s−1 ≤ N p

high,

(2.63)
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where s denotes the quantity for sweep number s, s ≥ 1. In other words, if the step size
associated with the pth level set function is too large with respect to the average voxel count,
then the input to f for this particular level set function will be reduced by a factor kp,1

s in the
next sweep. Likewise, if the step size is too small, the input to f will be increased by a factor
kp,2

s . If the updates are neither too small or too large, we retain the same input to f in the
next sweep. Of course, if entries are extremely large or small, then a scalar multiplier in the
intervals given may be insu�cient. Nonetheless, the scheme performs reasonably well in the
application considered here.

Note that up until now, both intervals Im
target and I′mtarget have constant lower and up-

per bounds. These can be generalized to include bounds which are decreasing linear lines
dependent on the sweep number. This is not arbitrary, as we expect diminishing returns
of gradient descent methods as the sweep number increases. Insisting on the same amount
of voxels to be altered later in the algorithm is likely to lead to artefacts in the reconstruc-
tion, as the data mis�t reduces slower in later iterations. The proportion between Nm

j and

Algorithm 4 Line search criteria for one sweep in shape-based LK-Level sets
1: procedure Initial Conditions
2: Choose Nm

in f , Nm
sup,dm,ηm,τ0,w0,S

3: Determine Nm
low and Nm

high using (2.61) and (2.62)
4: Initialize w0 ◦ τ0 so that Nm ∈ Im

target for �rst sweep
5: procedure Line search criteria for a sweep
6: Compute N̂m

low(s,ηm) and N̂m
high(s,ηm) using (2.64, 2.65)

7: Use interval Î′mtarget(s,ηm) = [N̂m
low, N̂high] to determine ws from criterion in (2.63)

8: Use interval Îm
target(s,ηm) = [N̂m

in f , N̂
m
sup] for backtracking scheme in algorithm 3

data mis�t should remain the same, which is what these dynamic intervals hope to cap-
ture. Therefore, we introduce a dynamic interval Îm

target = Îm
target(s,ηm), which induces

Î′mtarget = Î′mtarget(s,ηm). We choose the bounds of Î′mtarget to behave linearly as a function of
the sweep number s:

N̂m
low(s,ηm) = −1

S
Nm

lowηms+Nm
low; (2.64)

N̂m
high(s,ηm) =

1
S
(Nm

low−Nm
high)ηms+Nm

high, (2.65)

where ηm ∈ [0,1]. A recipe de�ning the line search criteria for one sweep in level set inversion
is shown in algorithm 4. The complete LK-Single level set reconstruction scheme with the
novel line search criteria and Sobolev smoothing is described in algorithm 5. We will perform
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numerical experiments using this algorithm in chapter 4.

Algorithm 5 Shape-based LK-Single level set reconstruction with dynamic backtracking
line search and Sobolev smoothing

1: procedure Initialization
2: Choose ns,nr, f ,S,b0 and I j for j = 1,2, . . . ,ns.
3: Initialize level set function as a signed distance function φ0

4: Apply initial conditions in algorithm 4 for line search criteria
5: procedure LK-Single level set Reconstruction
6: for s = 0 : S−1 do (loop over sweeps)
7: Follow steps in algorithm 4 when applicable
8: for j = 0 : ns−1 do (loop over sources)
9: Calculate ∇J j[φ

s
j] using (2.56)

10: Compute smoothed gradient ∇̂J j[φ
s
j] by solving (2.38)

11: Compute step size τs = f (wsτ0) [ f (·) is the backtracking function]
12: Update level set function: φs

j+1 = φs
j− τs∇̂J s

j [φ
s
j]

13: Rescale φs
j+1 7→ ξφs

j+1 with scaling parameter ξ ∈ R+.

14: Set φ
s+1
0 = φs

ns

2.1.3.3
Color level set regularization

It is natural to extend the single level set approach in the previous section to include more
than two conductivity domains. Since we cannot uniquely de�ne these domains with one
level set function, we must introduce more level set functions. We require N level set func-
tions to characterize 2N conductivity domains uniquely.

In this section, we will consider two level set formulations; the �rst considers three con-
ductivity domains and the second considers four conductivity domains. We will provide the
general algorithm at the end of the section for both of these formulations, as one is a small
extension of the other.

As discussed, level set methods provide additional regularization to the inverse problem
as they assume a priori knowledge on the conductivity value. Single level set methods, which
assume the domain is composed of two parameter values, have been shown to perform well
in electromagnetic inverse problems [39, 41, 58]. However, in more realistic scenarios, such
as multiple conductivity values present in the domain, single level set methods su�er. This
is especially if the parameter values di�er in several orders of magnitude (high contrast), as
will be observed in chapter 4. In such scenarios, color level set methods can be applied in an
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attempt to deal with these new challenging problems. Color level set inversion has received
limited attention when compared with single level set inversion. But for recent applications,
including breast cancer screening, crack detection and multi-phase permittivity imaging, see
[3, 39, 41, 65] for more details.

We begin by introducing two su�ciently smooth level set functions φ1,2 :R3→R, such
that

b(Φ)(x) =


b1(x) in S1 where φ1(x)≤ 0

b2(x) in S2 where φ1(x)> 0 and φ2(x)≤ 0

b3(x) in S3 = Ω\(S1∪S2) where φ1(x)> 0 and φ2(x)> 0,

(2.66)

where Φ = (φ1,φ2) and we label (b1,b2) and b3 as the interior and exterior conductivities
respectively. As in single level set inversion, b1,b2 and b3 can be smoothly varying or con-
stant.

Figure 2.3: 2D Visualization of color level set representation de�ned in (2.66).

An alternative equality of the conductivity, which will help us when deriving the gradi-
ent scheme, is

b(Φ) = b1(1−H(φ1))+b2H(φ1)[1−H(φ2)]+b3H(φ1)H(φ2),

where H(·) is the Heaviside function. With the color level set representation of the conduct-
ivity pro�le formally de�ned, we now introduce the relevant data mis�t and cost functional:

T [Φ] = R [b(Φ)], J [Φ] = ||T [Φ]||2L2(Ω). (2.67)
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We wish to minimize the cost J in (2.67) such that a suitable Φ is found. Using (2.43) and
(2.44) we obtain the formal gradient

∇J [Φ] =
ns

∑
j=1

∇J j[Φ] =
ns

∑
j=1

T ′j [Φ]∗T j[Φ], (2.68)

where

T ′j [Φ]∗T j[Φ] = Re

 bφ1(Φ)R ′j [b]∗R j[b]

bφ2(Φ)R ′j [b]∗R j[b]

 , (2.69)

and

bφ1(Φ) = [(b2−b1)+(b3−b2)H(φ2)]δ(φ1);

bφ2(Φ) = [(b3−b2)H(φ1)]δ(φ2),

where the subscript in b refers to the partial derivative with respect to that quantity and
δ(·) is the Dirac Delta distribution. Analogous to the single level set case, δ(φi) has to be
approximated by a function in a suitable space in the advent of numerical experiments, since
it is unde�ned at the zeros of φi. Therefore, we choose to use a narrowband function as an
approximation [97, 107], such that δ(φi)≈ χBd(Γi), where

Bdi(Γi) = {x : ||x−Γi||22 ≤ di/2},

di > 0 and χD is the characteristic function. In the general case, we assume that boundaries
of objects are smooth. Therefore, each component in the gradient from (2.69) is projected
to a smoother space using the equality in (2.38). As in the single level set scheme, we use the
LK optimizer for updating the level set vector:

Φ
s
j+1 = Φ

s
j− τs ◦ ̂∇J[s][Φs

j],

where τs = [τ1
s ,τ

2
s ]

T is chosen by the line search criteria developed in section 2.1.3.2 and ◦
is the Hadamard product. Before introducing the color level set reconstruction scheme in
full, we will brie
y mention another formulation which assumes a slightly more complic-
ated structure of the conductivity pro�le. Let us consider three su�ciently smooth level set
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functions φ1,2,3 : R3 7→ R such that

b(Φ)(x)=



b1(x) in S1 where φ1(x)≤ 0

b2(x) in S2 where φ1(x)> 0 and φ2(x)≤ 0

b3(x) in S3 where φ1(x)> 0, φ2(x)> 0 and φ3(x)≤ 0

b4(x) in S4 = Ω\(S1∪S2∪S3) where φ1(x)> 0, φ2(x)> 0 and φ3(x)> 0,
(2.70)

where b1,2,3,4 are constant or smoothly varying in S1,2,3,4. Though unless otherwise stated,
we assume they are constant. The representation in (2.70) can be conveniently written as

b(Φ) = b1(1−H(φ1))+H(φ1)
[
b2(1−H(φ2))+H(φ2)(b3(1−H(φ3))+b4H(φ3))

]
,

where H(·) is the Heaviside function. In this case, the gradient vector is:

T ′j [Φ]∗T j[Φ] = Re

 bφ1(Φ)R ′j [b]∗R j[b]

bφ2(Φ)R ′j [b]∗R j[b]

bφ3(Φ)R ′j [b]∗R j[b]

 ,
where

bφ1(Φ) =
[
(b2−b1)+(b3−b2)H(φ2)+(b4−b3)H(φ2)H(φ3)

]
δ(φ1);

bφ2(Φ) =
[
(b3−b2)H(φ1)+(b4−b3)H(φ1)H(φ3)

]
δ(φ2);

bφ3(Φ) =
[
(b4−b3)H(φ1)H(φ2)

]
δ(φ3).

The two level set formulations described in (2.66) and (2.70) adopt a hierarchical structure
for de�ning the conductivities. Notice, for example, that b1 only depends one sign of one
level set function. We consider the hierarchical structure throughout this thesis, though
other level set formulations are possible and could be explored.
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Figure 2.4: 2D Visualization of color level set representation de�ned in (2.66).

Figure 2.4 shows a visualization of the conductivity formulation described in (2.70).
Whilst increasing complexity of the conductivity pro�le is appealing, since it re
ect more
complicated scenarios, color level set inversion encounters new problems. Sometimes, in
single level set inversion, the algorithm cannot recover the main characteristics of the true
content inside boxes or containers. For example, only one of two objects which are present
in the content may be recovered. Furthermore, if a priori information is incorrect, either by
underestimating or overestimating the value of conductivity, the corresponding reconstruc-
tion either grows and shrinks the domain with respect to what it sees in the data. Whilst
incorrect a priori information seems to show stability of the single level set regime, it may
lead to new problems in the color level set regime.

Flexibility of the reconstruction with respect to the a priori information �lters into the
color level set regime. In particular, this behaviour can lead to unwanted ambiguous recon-
structions. For example, depending on where the initial guess is placed, the reconstruction
may lead to correct conductivity domains from the a priori information, but incorrect loca-
tions. We can summarize two main problems from this discussion: the �rst is not identifying
all objects present in the box or container and the second is incorrect location of reconstruc-
ted objects. This leads us to introduce a method which in some situations alleviates these
problems.
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2.1.3.4
A stochastic seeding process

Unlike single level set methods, when the color level set scheme converges to local minima,
it may �nd the correct location of an object but it may also incorrectly classify the wrong
conductivity at that location. We can verify this behaviour when we have access to the true
content of the box or container, however in practice this is not the case. Though improving
this unwanted behaviour whilst knowing the true content can only improve con�dence in
the reconstruction, however. To address this issue, we introduce a technique to avoid these
unwanted local minima.

Topological perturbations have been used when recovering lithofacies in reservoir ima-
ging [44, 127]. Typically, arti�cial objects are placed inside the imaging domain, resulting
in an alteration to the level set function. Then, the reconstruction algorithm proceeds and
either grows or shrinks these seed objects depending on what it sees in the data. This method
is particularly useful in low sensitivity regions, as shown in [127], where they successfully re-
cover other lithofacie of the same value in regions where no objects were reconstructed with
the standard algorithm. With its omission, arti�cial objects have been observed to aid single
level set inversion in �nding other objects present in the imaging domain which were other-
wise not found by the standard single level set inversion in this application. The intention
here is to use this method for a slightly di�erent purpose. Rather, we would like to resolve
incorrect classi�cation of objects. We intend to alter both level set functions such that seed
objects are created inside the imaging domain, where the term seed objects refers to the ob-
jects being arti�cially placed. It is intended that the arti�cial objects grow or shrink in the
optimization process, depending on what it sees in the data.

Let us assume that we want to place an object centred in Ω2 ⊂Ω. Without loss of gen-
erality, we consider this for one level set function. Placing an object in this region amounts
to lowering the level set function until it is negative in Ω2. Since numerical experiments will
have coarse grids for computational reasons, we only consider two regions: Ω1 and Ω2, such
that Ω = Ω1∪Ω2 where Ω2 is the domain containing a seed object and Ω1 is that without.
Whilst a interim region of smoothing the level set function between Ω1 and Ω2 would be
useful, in this application we will not consider this smoothing. A smoothing region will
have marginal e�ect on how discontinuous the level set function is, as we only have a small
amount of grid cells. Using a �ne grid in this challenging 3D imaging modality is computa-
tionally demanding and would be currently infeasible. To create seed objects let us introduce
a cost function:

K (Ψ) =
a
2
||χ1(Ψ−φ)||2 + b

2
||χ2(Ψ−µ)||2, (2.71)
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where a,b > 0 are weighted parameters, µ < 0 and

χk(x) =

1 in Ωk;

0 in Ω\Ωk,

which is the characteristic function. The �rst term in (2.71) is a penalty on the distance
between new and old level set functions in the domain outside the seed region (Ω1) and
the second penalizes distance between the desired minimizer Ψ and some negative µ inside
Ω2. The new level set function φnew, which is created upon minimization of (2.71), replaces
the old level set function φold . Mathematically speaking

φnew = argmin
Ψ

K (Ψ) =
α1

2
||(Ψ−φold)χ1||2 +

α2

2
||(Ψ−µ)χ2||2. (2.72)

In the numerical experiments considered here, the minimization of (2.71) takes place dur-
ing a period of iterations in the level set inversion routine, which we de�ne as the seeding
phase. This process is disjoint to the level set inversion routine and can be seen as a pre or
post processing step to the updates of Φ. We prefer a pre processing step as it creates more
opportunity for the algorithm to populate the imaging domain and decide what to grow and
shrink. In the context of the level set functions themselves, all we want to do is make them
have the value µ inside Ω2.

To solve the minimization problem in (2.72), we employ a gradient descent method. The
iteration formula for �nding a minimizer of (2.71) can be found by perturbing the input
space of the cost to �nd an expression for the gradient. Following that, we can use standard
gradient descent methods to �nd a minimizer. Perturbing the cost function results in

K (Ψ+h) = K (Ψ)+α1
〈
χ1(Ψ−φ),h

〉
+α2

〈
χ2(Ψ−µ),h

〉
+O(||h||2);

= K (Ψ)+
〈
K ′(Ψ),h

〉
+O(||h||2),

where
K ′(Ψ) = α1χ1(Ψ−φ)+α2χ2(Ψ−µ).

In its discrete form, this yields the iteration formula:

Ψ
(0) = φ

Ψ
(n+1) = Ψ

(n)−κ
[
α1χ1(Ψ−φ)+α2χ2(Ψ−µ)

]
(2.73)
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where n = 1,2, . . . ,M.

Algorithm 6 Shape-based LK-Color Level set reconstruction with dynamic backtracking
line search, Sobolev smoothing and optional seeding phase

1: procedure Initialization
2: Choose ns,nr, f ,γ,M,S and I j for j = 0,1, . . . ,ns−1
3: Initialize level set vector Φ0 = (φ0

1,φ
0
2), where each entry in Φ0

4: are signed distance functions representing ellipsoids
5: Apply initial conditions shown in algorithm 4
6: If seeding choose γ ∈ N else choose γ < 0

7: procedure LK-Color level set Reconstruction
8: for s = 0 : S−1 do (loop over sweeps)
9: Follow steps in algorithm 4 when applicable

10: if 0≤ s < γ then
11: procedure Seeding Phase
12: for each entry in Φs do
13: Choose Ω2 by random selection (without replacement)
14: Perform M iterations of (2.73)

15: for j = 0 : ns−1 do (loop over sources)
16: Calculate ∇J j[Φ

s
j] using (2.68)

17: Compute ∇̂J j[Φ
s
j] using (2.38)

18: Compute step size τs = f(ws◦τ0) [f(·) is the vector backtracking function]
19: Update level set vector: Φs

j+1 = Φs
j− τs ◦ ∇̂J j[Φ

s
j]

20: Rescale Φs
j+1 7→ ξΦs

j+1 with scaling parameter ξ ∈ R+.

21: Set Φ
s+1
0 = Φs

ns

The seeding phase is 
exible and can be administered at any stage of the inversion routine.
In [127], they decide to seed in various cycles. We decide to have an initial ‘burn-in’ phase,
whereby we seed Φ at the beginning of each sweep s for 0 ≤ s < γ < S. This amounts to
solving γ minimization problems of (2.71) in the burn-in phase for each level set function
1. This decision arises from the observation that once level set functions in the color level
set regime have converged, it tends to be di�cult for the shapes to be 
ipped in value by
seeding. Therefore, the seeding phase can be viewed as a dynamic initial guess scheme to

1Note that the seeding can be carried out in both single and color level set regimes. The vector quantity Φ

can have multiple entries which are altered via the cost function in (2.71)
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encourage the minimization process to leave the vicinity of a local minimizer resembling
incorrect classi�cation, or at least a method to collect distinct local minima. The LK-Color
level set algorithm with an optional seeding phase, novel line search criteria and Sobolev
smoothing is shown in algorithm 6. Note that an equivalent algorithm with inclusion of the
seeding phase can be made for the single level set case shown in algorithm 5.

Notice we have used notation b to de�ne the conductivity in parts of this chapter. To be
clear, we refer to conductivity as simply ‘b’ in these cases as the imaginary component in this
thesis does not change. Though it must be said that the gradient calculations in the pixel-
based regimes (also projected into shape-based) are with respect to the complex admittivity,
even if the imaginary component is eventually made redundant in the update.



CHAPTER 3

Forward Problem Review

The inverse problem associated with the near-�eld electromagnetic imaging problem,
described in section 1.2, requires solutions to a mathematical model of electromagnet-

ism in the form of Maxwell’s equations. This chapter provides a review of existing methods
which solve Maxwell’s equations, as described in section 1.1, both analytically and numeric-
ally.

All regularization schemes in chapter 2 use the adjoint �eld method, whether that be
used directly in the pixel-based regime or projected, as in the shape-based regime. Both types
require repeated calculation of electromagnetic �eld solutions to Maxwell’s equations for
newly updated conductivity pro�les resulting from the nonlinear LK optimizer. This allows
us to calculate new electromagnetic data measured at the receiver locations, which can then
be used to calculate the next gradient for the next iteration in the optimization process. In
fact, any gradient-based optimizer for this inverse problem requires repeated calculation of
electromagnetic �eld solutions using Maxwell’s equations. In one step of a LK iteration we
require access to a solution from both forward and adjoint problems, which plainly speak-
ing involves two solutions to Maxwell’s equations. Therefore, in order to solve the inverse
problem practically, we must have a method of solving Maxwell’s equations that is compu-
tationally inexpensive and reliable when the conductivity pro�le is highly discontinuous (as
would be anticipated when scanning boxes or containers). For example, a typical box may

73
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have a background conductivity of air against some embedded highly conductive material.
In a numerical setting, this would mean that the conductivity varies over several orders of
magnitude from one cell to the next. We would ideally have access to a numerical scheme
which lends itself well to these dramatic changes.

3.1
Literature survey

This section is devoted to reviewing literature surrounding numerical and analytical solu-
tions to Maxwell’s equations. The two main choices for computational electromagnetic
(CEM) modelling are those based on di�erential equations (DE) and integral equations (IE).
For integral equation methods we approximate integrals as �nite sums and for di�erential
equation methods we approximate derivatives as �nite di�erences [32]; both leading to a lin-
ear system of equations. In general, DE methods generate sparse matrices and IE methods
generate full matrices, relating to their di�erent connectivity structures (local vs global).

Due to its sparse structure, numerical techniques can be employed to make DE methods
more computationally e�cient. Furthermore, the complexity of DE methods is irrespective
to the type of material being modelled, whereas the complexity of IE methods vary depend-
ent upon the type of material (e.g. isotropic, anisotropic, inhomogeneous, homogeneous,
amongst others). However, IE solutions are generally more accurate and e�cient. For ex-
ample, spurious solutions exist in DE methods which do not in IE methods.

Since both methods have their bene�ts we discuss both, including: boundary element
method (BEM), �nite di�erence frequency/time domain methods (FDFD/FDTD), �nite
integration technique (FIT), �nite volume method (FVM) and the �nite element method
(FEM).

The FDFD method is a di�erential equation solver used to �nd numerical solutions to
Maxwell’s equations in the frequency domain, which are also sometimes called the time-
harmonic Maxwell equations. It is closely related to the FDTD method, which is an ana-
logous �nite di�erence scheme of the time domain system described in (1.3). The FDTD
acronym was �rst coined by Ta
ove in his 1980 paper describing solutions to sinuisodial
steady state electromagnetic penetration problems [121]. Nearly ten years later the FDFD
acronym appeared in Ling’s paper, which was on electromagnetic scattering problems [77].
The FDTD method discretizes Maxwell’s equations in the time domain, creating a time step-
ping algorithm in the process. The similarities between FDFD and FDTD arise because they
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follow similar techniques for discretization. Both methods discretize their respective systems
using the Yee grid, which is a orthogonal staggered Cartesian grid of the electric and mag-
netic �elds. The grid was devised by Kane Yee in his seminal paper [135], and is still widely
used due to its simplicity and computational inexpense [53]. The Yee grid was originally de-
veloped for the FDTD method, but has since been adopted for the FDFD method. Like any
discretization, the Yee grid has numerical artefacts. The discretization comes with a staircase
approximation at the boundaries, which yields inaccuracies in the resolution. This is mainly
due to the Yee grid being rectangular, therefore complex geometries are not handled well.
Despite this, there have been techniques developed to improve the accuracy of this staircase
approximation. For example: local grid re�nements [85], locally conforming FDTD meth-
ods [61][46] and time-domain FVMs on fully unstructured grids [84, 136] have shown to
demonstrate higher accuracy, albeit more expensive [33]. Though in cases of simple geomet-
ries, such as those considered in this thesis, these inaccuracies are negligible.

The uses of both FDFD and FDTD are entirely dependent on the problem at hand; for
example, if we are interested in the scattering pattern that a broadband pulse of energy makes
from a particular scatterer or investigating transient states and dynamics, then we could con-
sider a FDTD numerical solution [112]. Similarly, if we are interested in an steady state solu-
tion then we may choose to use the FDFD method because it treats steady states accurately
[64]. It is important to not overstate this though, as we would anticipate that we would get
similar results when using either the FDFD or FDTD method.

We are interested in solving Maxwell’s equations in the frequency domain. Our interest
lies here as we want to calculate low frequency contributions to the time signal. This means
much of the time signal in the FDTD solution would be discarded since electromagnetic
shielding stops high frequency electromagnetic waves from penetrating. However, we must
not dismiss research using the FDTD method, as many of the methods and analysis sur-
rounding it can be directly applied to the FDFD method (for reasons already discussed).
The FDFD method has a couple of notable advantages:

1. Allows simulation of the electric and magnetic �eld of nearly arbitrarily shaped struc-
tures;

2. Dispersive materials are trivial to implement.

However, some problems can occur:

1. Stair casing error due to grid discretization, meaning it doesn’t fare well with complex
geometries;
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2. FDFD method requires solving large sparse linear system, even for the simplest of
problems. Therefore, it is computationally expensive.

The FDFD method has proven highly useful within the geophysical community, which typ-
ically handle low frequency problems. A 3D FDFD method using a �nite-di�erence dis-
cretization scheme was developed in the paper [21] for an application in geophysics, and was
later used for an inversion routine which involved recovery of injected plumes of conducting
steam [36, 37].

The FIT is another di�erential equation solver, and was �rst introduced in Weiland’s
paper in 1977 [132]. The FIT method is similar to the FDTD method in its discretization
for homogeneous media. The di�erence is that the FIT method transforms the Maxwell
system from integral form into a linear system of equations. The FIT has a greater 
exib-
ility in modeling complex shapes, which is one of its strengths [102]. Like the FDFD and
FDTD methods, the FIT uses a Yee grid for its discretization. Analogous to FDTD research,
re�nements of the Yee discretization have been studied. For example, adaptive meshes, sub-
gridding [98], conformal FIT (CFIT) [26] and nonorthogonal grids have all been introduced
to try and overcome the Yee grid’s drawbacks. Improvements to the FIT follow suit with the
re�nements that have been made to the FDTD method; the computational cost increases.
However, Z.Rahimi’s thesis addresses these problems by extending the FIT, where he strikes
a balance between speed and accuracy of the FIT [102]. This di�erential equation solver
can be formulated in both time and frequency domains, which is convenient. The MAFIA
(solution of MAxwell’s Equations by the Finite Integration Algorithm) code, developed by
T.Weiland, is a software package that solves Maxwell’s equations on structured grids. It is an
internationally recognized package, with various solvers for di�erent problems. For example,
MAFIA contains a frequency domain solver in Cartesian and cylindrical coordinates and a
3D time domain solver in Cartesian coordinates, which may be useful for our problem.

The FEM is a computational method which subdivides the domain of interest into small
�nite-sized elements of geometrically simple shapes, such as triangles. The union of this
yields the �nite-element mesh. In general, a PDE is then applied to and formulated for each
element. The �elds of interest are approximated in each element as a simple function, such
as a quadratic polynomial. This typically reduces to a linear system of equations, which is
a shared property with FDFD/FDTD/FIT. Unlike the �nite di�erence schemes, the FEM
can deal with complex geometries well. Typically, this is done by using unstructured grid-
s/meshes. For example, unstructured meshes with tetrahedra allow for a good approximation
of curved objects [10]. Moreover, unstructured meshes allow for local re�nement where the
solution may have inaccuracies. Furthermore, the FEM produces a well de�ned solution
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function everywhere in the domain, making it possible to apply stability and convergence
analysis with relative ease [10].

For electromagnetic problems, the FEM has (mainly) two avenues [88]: nodal elements
and edge elements. If discontinuities in the electric and/or magnetic �eld arise, edge ele-
ments can resolve this problem, whereas nodal elements cannot, since they are automatically
continuous functions of the spatial variables. However, the computational cost of edge ele-
ments are over twice as much as nodal elements. The �rst reason is due to orthogonality of
the Cartesian directions used in nodal elements, rendering many matrix entries to zero and
thus allowing for code optimization. The second being that the continuity conditions at the
interfaces between edge elements increase connectivity of the matrix [88]. Although edge
elements may be more computationally expensive, the ability of being able to model discon-
tinuous media with accuracy allows us to model both homogeneous and inhomogeneous
media whereas nodal elements are largely restricted to the former [88]. Due to this restric-
tion, more consideration should be given to edge elements because we are largely interested
in inhomogeneous media.

The BEM is a di�erent technique to the others because it is derived from the integral
formulation of the quasi-static Maxwell system. One example of a BEM is the work done by
Misaki and Tsuboi [83]. The method is based on Green’s theorem. In their method, con-
ductor regions and boundaries of two materials are split into tetrahedra and triangular ele-
ments respectively. Furthermore, they assume unknown electric �eld vectors on the bound-
aries of the two materials and the conductor regions. In addition, they assume unknown
magnetic 
ux density vectors on the boundary of the two materials [83]. The problem is for-
mulated in terms of scalar and vector potentials with corresponding boundary conditions,
since the vector potential across the boundaries of the two materials must be consistent. The
BEM has many di�erent formulations for three dimensional eddy current problems. For ex-
ample, Mayergoyz [81] presents a boundary integral equation (BIE) formulation in terms of
the equivalent surface current and a magnetic charge. As discussed previously, Misaki and
Tsuboi [83] formulate the quasi-static Maxwell system in terms of the electric �eld vector and
the magnetic 
ux density. Another formulation is the A−Ω approach, where A is the mag-
netic vector potential in the conductor and the magnetic scalar potential in non-conductor
media, has been applied to low frequency eddy current problems [92, 109]. Furthermore,
a A,V −A formulation has been presented, where the magnetic vector potential is used in
both conducting and non-conducting regions as well as the electric scalar potential V being
used in the eddy current region for a 3D eddy current problem [103]. The BEM formu-
lations discussed are all discretized and reduce to a linear system of equations, which is a
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shared property with the other forward solvers discussed. The BEM formulations discussed
here are brief, however the purpose is to demonstrate that there exists multiple BEM which
are tailored for speci�c eddy current problems. Thus, for our problem, the A−Ω approach
may be worth considering since it has been applied to low frequency problems.

The FVM formulation devised in [50, 51, 52] is based on a staggered grid using a potential-
generalized current formulation (A,φ, Ĵ) coupled with the Coulomb gauge condition. The
discretization of the Maxwell system for this formulation is similar to the Yee grid, where
(A, Ĵ) is de�ned on the centre of each face on a cube volume. Haber and Ascher solve the full
Maxwell system including the displacement current term. To deal with highly discontinuous
conductive media, a harmonic averaging scheme of the conductivity is applied. This lends
itself well to the imaging problem considered here as we anticipate media to be highly discon-
tinuous conductivity-wise. Typically, Krylov space methods are employed to �nd solutions
for the resultant large linear sparse system. Once these solutions are found, the electric and
magnetic �elds are computed through post processing, since they are related to the general-
ized current and vector potential.

The forward problem, analytically, has been extensively researched for various eddy cur-
rent problems [34, 72] which involve solutions to Maxwell’s equations for speci�c setups.
In the Dodd and Deeds paper (see [34]), a multi layered structure of material is considered
where a coil, centred on the z axis, is excited. They reduce the quasi-static Maxwell system to
a scalar di�erential equation for the vector potential by assuming axial symmetry of the coil.
An analytical vector potential solution in each region is found in terms of Green’s functions.
Due to the many relationships between electromagnetic quantities found either empirically
or intrinsic to nature, we can also derive forward electromagnetic �eld solutions from vec-
tor potential, coil impedance and induced voltage analytical solutions. From the quasi-static
Maxwell system, we can �nd a linear relationship between the vector potential and the elec-
tric �eld in the frequency domain. Therefore, using Dodd and Deeds’ analytical vector po-
tential solutions, we can arrive at both forward and adjoint electric �eld solutions, which can
then be used to calculate gradients in the solution to our underlying inverse problem. Des-
pite these analytical forms, we must reduce the analytical expressions to semi-analytical, since
the integrand is di�cult to integrate and the integral is improper. Therefore, we truncate the
integral limits, whilst trying to maintain accuracy, and then employ numerical integration
accordingly.

The Dodd and Deeds analytical solutions assume the conductivity pro�le has a layered
form (not robust in our scenario). In the inverse problem introduced in chapter 2, when
updating the conductivity pro�le, the iteration scheme does not care about the form of the
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forward problem. In fact, it only cares about what it sees in the data. Therefore, we must
make sure that the forward solver is not violated with the newly updated conductivity pro-
�le. Given that we have access to limited data, it is unlikely that the updated conductivity
pro�le would exactly or approximately resemble a layered structure after even just one step of
the iteration process. Therefore, the Dodd and Deeds analytical solutions become unreliable
after just one iteration of updating the conductivity pro�le. Despite all of this, the Dodd and
Deeds formulation, and several other analytical forms, could be used in solving the linear-
ized inverse problem introduced in chapter 2. The linearized approach, for example, could
produce similar if not better results than di�erence imaging of the data.

The analytical solutions derived in the Dodd and Deeds paper has also been extended to
include a more general setting involving k conductor planes [72]. Using this method for the
forward problem, work has been done on a parameter inversion scheme assuming a 3 layered
structure; in particular, reconstruction of material depth and conductivity [14]. In addition,
reconstructing a unknown layer conductivity distribution and the shape of a crack have also
been treated, through use of coil impedance measurements [95]. However, an inverse crime
is committed due to the fact that Bowler and Norton use the same solver to generate the data
[14]. If one was to not use the same model for the data, then after one reconstruction (or one
iteration of the inversion algorithm) the analytical solutions would no longer be valid since it
is not guaranteed that a layered structure would still exist. This is where the method su�ers,
because it is severely restricted to its geometry.

In summary, we have discussed both analytical and numerical methods to solve Max-
well’s equations, and subsets of those, in both time and frequency domains. The numerical
methods discussed here are either derived from integral or di�erential forms of Maxwell’s
equations. Our application suggests that a numerical solver is certainly required, since it is
not guaranteed that the contents of a box or cargo container is layered or even approxim-
ately layered. The forward model must be robust and 
exible, meaning models which are
not too restricted to geometry or composition of material are preferred. The FVM for the
vector potential formulation of Maxwell’s equations, as developed in [50, 51, 52], provides
some stability if conductivities in neighbouring cells are highly discontinuous. Therefore,
when demonstrating the novel schemes introduced in chapter 2, we use this methodology
for as the Maxwell solver.

This survey is by no means a complete picture of available analytical or numerical meth-
ods of solution to Maxwell’s equations, but hopefully gives a 
avour of what is available for
various applications.
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3.2
Vector potential formulation

This section introduces a vector potential formulation of Maxwell’s equations for isotropic
inhomogeneous media. The work here closely follows that in [6, 50, 51, 52].

Let us �rstly reformulate (1.6a-1.6b) such that it is in second-order form. This is obtained
by eliminating one of the �elds. Hence,

∇× (µ−1
∇×E)− iωbE = iωJe +∇× (µ−1Jm); (3.1a)

∇× (b−1
∇×H)−aH = Jm +∇×b−1Je, (3.1b)

where we relabel the magnetic and electric sources as J with subscripts m and e respectively.
Choosing which equation to solve in (3.1) depends on the application. For the application
considered here, we solve (3.1a). This is due to the conductivity having a greater spatial in-
homogeneity when compared with the permeability. Moreover, conductivities in security
screening applications are likely to be highly discontinuous. Furthermore, the second or-
der term in equation (3.1b) is dominant and involves the spatially inhomogeneous complex
admittivity term b = b(σ, .). Hence, we introduce greater error into the model when dis-
cretizing in space. We assume that the electromagnetic �elds are su�ciently smooth so that
we can apply the operators in (3.1). Let us introduce the Helmholtz Decomposition:

E = A+∇φ, (3.2)

where A and φ are vector and scalar �elds respectively. The vector �eld A lies in the active
space of the curl operator, whereas ∇φ lies in the null space of the curl operator. By substi-
tution of (3.2) into (3.1a) we obtain

(iω)−1
∇×µ−1

∇×A−b(A+∇φ) = Je +(iω)−1
∇× (µ−1Jm).

And so, the unknown quantity E is mapped to A and φ. Thus, we have replaced three scalar
equations with four. Therefore, we introduce a gauge condition

∇ ·A = 0,

known as the Coulomb gauge condition. This condition yields a new PDE system in terms of
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the unknowns A and φ. Namely,

(iω)−1
∇×µ−1

∇×A−b(A+∇φ) = Je +(iω)−1
∇× (µ−1Jm); (3.3a)

∇ ·A = 0. (3.3b)

Let us now note that

∇×µ−1
∇×A = µ−1(∇(∇ ·A)−∇

2A) (3.4)

if and only if µ is constant. In this case, (3.4) reduces to

∇×∇×A =−∇
2A

by using the Coulomb gauge condition. However, when µ is inhomogeneous, this identity
no longer holds. Therefore, we must treat the null space of ∇×A di�erently for this case.
We begin by introducing the following Sobolev spaces

W(Ω) = {v ∈ [L2(Ω)]3;∇×v ∈ [L2(Ω)]3;∇ ·v ∈ L2(Ω)};
W0(Ω) = {v ∈W(Ω);∇ ·v|∂Ω = 0,∇×v×n|∂Ω = 0},

which are useful in Vector Identity 1.
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Vector Identity 1

For any u ∈W(Ω), v ∈W0(Ω), we have that〈
∇× (µ−1

∇×u),v
〉
[L2(Ω)]3

−
〈

∇(µ−1
∇ ·u),v

〉
[L2(Ω)]3

= µ−1
[
〈∇×u,∇×v〉[L2(Ω)]3 + 〈∇ ·u,∇ ·v〉L2(Ω)

]
.

Proof.
Using integration by parts:〈

∇(µ−1
∇ ·u),v)

〉
[L2(Ω)]3

=−µ−1 〈∇ ·u,∇ ·v〉L2(Ω) .

By Green’s formula for the curl operator:〈
∇× (µ−1

∇×u),v
〉
[L2(Ω)]3

= µ−1 〈∇×u,∇×v〉[L2(Ω)]3 .

And so, the vector identity above holds �.

With Vector Identity 1, we can stabilize the PDE system when µ is inhomogeneous. We
map the operator on the left hand side of (3.4) such that:

∇× (µ−1(∇× (·))) 7→ ∇× (µ−1(∇× (·)))−α∇(β∇ · (·)), (3.6)

where setting α = 1 and β = µ−1 reproduces (3.4) for constant µ. The new operator map-
ping in (3.6) doesn’t change the PDE system in (3.3). The new operator indirectly tries to
satisfy the identity in (3.4) by stabilizing the solution such that if the Coulomb gauge con-
dition doesn’t hold, we subtract the contribution it has in the PDE. We note that if µ is
inhomogeneous and the Coulomb gauge does not satisfy exactly, we get penalized twice.
For notational purposes, let us de�ne the new operator in (3.6) as:

∆µ := ∇× (µ−1(∇× (·)))−∇(µ−1
∇ · (·)).

Then, we obtain the following system:

(iω)−1
∆µA−b(A+∇φ) = Je +(iω)−1

∇× (µ−1Jm); (3.7a)

∇ ·A = 0. (3.7b)
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By taking the divergence of (3.7a), we obtain a new system:

(iω)−1
∆µA−b(A+∇φ) = Je +(iω)−1

∇× (µ−1Jm);

∇ · (b(A+∇φ)) = −∇ ·Je.

The system shown above can be reduced to the linear operator equation

Ax = b, (3.9)

where

A =

 (iω)−1∆µ−bI −b∇(·)
∇ · (bI) ∇ · (b∇(·))

 ,

x =

 A
φ


and

b =

 Je +(iω)−1∇× (µ−1Jm)

−∇ ·Je

 .

This is the PDE system which we want to solve numerically. Once x is obtained, the compon-
ents of this solution vector can be post processed to �nd electromagnetic quantities which
can then be used for solving the inverse problem de�ned in chapter 2. To �nd numerical
solutions, one must prescribe boundary conditions to the system so that the eventual discret-
ization on a bounded domain mimics electromagnetic wave propagation in an unbounded
domain. Let us begin by introducing an auxiliary variable

Ĵ :=−bE.

This yields the following boundary value problem:

(iω)−1
∇× (µ−1

∇×E)+ Ĵ = Y (x ∈Ω); (3.10a)

Ĵ+bE = 0 (x ∈Ω); (3.10b)

n×µ−1
∇×E = n×h (x ∈ ∂Ω), (3.10c)
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where the source and boundary terms are

h := µ−1Jm;

Y := Je +(iω)−1
∇×h.

The boundary condition is obtained by assuming that the boundary is a perfect magnetic
conductor (PMC). This yields the condition

n×H = 0 (x ∈ ∂Ω). (3.11)

To obtain that in (3.10c), we make H the subject in (1.6a) and substitute this quantity into
(3.11). Let us now recall the Helmholtz Decomposition de�ned in (3.2). For the components
that describe E in the Helmholtz Decomposition, we choose the following conditions:

n ·A = 0, (x ∈ ∂Ω), (3.12a)ˆ
Ω

φ dV = 0. (3.12b)

These conditions su�ce for the uniqueness of (3.2) [51]. Hence, the new boundary value
problem is:

(iω)−1
∇× (µ−1

∇×A)+ Ĵ = Y; (x ∈Ω) (3.13a)

∇ ·A = 0; (x ∈Ω) (3.13b)

Ĵ+b(A+∇φ) = 0; (x ∈Ω) (3.13c)

n× (µ−1
∇×A) = n×h (x ∈ ∂Ω), (3.13d)

n ·A = 0; (x ∈ ∂Ω) (3.13e)ˆ
Ω

φ dV = 0. (3.13f )

The boundary value problem shown in (3.10) is known to be well posed [12] and the Helm-
holtz Decomposition is unique given the conditions in (3.12a) and (3.12b). Thus, our bound-
ary value problem in (3.13) also has a unique solution [6]. From (3.6), we can express (3.13a)
as a stabilized PDE. Namely,

(iω)−1
∇× (µ−1

∇×A−∇ψ)+ Ĵ = Y (x ∈Ω), (3.14)
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where we de�ne the auxiliary variable

ψ := µ−1
∇ ·A. (3.15)

Note that applying the Coulomb gauge condition automatically results in ψ ≡ 0. Taking
the divergence of (3.14) results in:

∇ · Ĵ = ∇ ·Je.

This equality replaces the Coulomb gauge condition de�ned in (3.13b). To close the PDE
problem, we must derive an additional boundary condition. Assuming that the law in (1.6b)
holds on a surface S⊂ ∂Ω, then, integrating (1.6b) on S yields

ˆ
∂S

H ·n dl +
ˆ

S
n · Ĵ dS =

ˆ
S

n ·Je dS.

The boundary condition in (3.10) shows that ∂Ω is a PMC. Therefore, the �rst term above
vanishes and we can equate integrands to obtain

n · Ĵ = n ·Je (x ∈ ∂Ω).

This is an analog of a derivation for the pressure boundary condition for the pressure-Poisson
equation in [47]. We also integrate the stabilized PDE over the same surface S to obtain

ˆ
∂S

H ·n dl−
ˆ

S
n ·∇ψ dS+

ˆ
S

n · Ĵ dS =

ˆ
S

n ·Je dS,

therefore ˆ
S

n ·∇ψ dS = 0.

In other words, we satisfy the homogeneous Neumann boundary condition ∂ψ/∂n = 0
on ∂Ω. Integrating up yields ψ as constant across the domain Ω. However, to satisfy the
Coulomb gauge condition, we select ψ = 0 such that ψ is uniquely determined. And so,

ˆ
Ω

ψ dV = 0.

This closes the boundary value problem. By making A and φ the subject of our boundary
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value problem, we obtain the following:

(iω)−1(∇× (µ−1
∇×A)−∇(µ−1

∇ ·A))−b(A+∇φ) = Je,m; (3.16a)

∇ · (b(A+∇φ)) =−∇ ·Je, (3.16b)

with boundary conditions

n× (µ−1
∇×A) = n×h;

n ·A = 0;

n · [b(A+∇φ)] = n ·Je,

and constraints
ˆ

Ω

µ−1
∇ ·A dV = 0,
ˆ

Ω

φ dV = 0.

This is the boundary value problem we wish to solve.

3.3
Finite volume discretization

This section derives a �nite volume discretization of the vector potential formulation intro-
duced in section 3.2. We want to obtain discrete forms of this formulation so that we can
compute numerical solutions to the inverse problem de�ned in chapter 2.

3.3.1
Domain discretization

Let us assume that the domain Ω = (0,Hx)× (0,Hy)× (0,Hz)⊂ R3. We want to discret-
ize Ω by using a tensor product of Cartesian coordinates, which map to locations in space
at which discrete grid functions approximate the continuous functions in (3.16). Without
loss of generality, let us consider the x direction when deriving our rectangular grid. To dis-
cretize, we partition (0,Hx) into Nx pieces and Nx+1 vertices. Thus, we de�ne the following
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domains:

Ω
x :=

{
xi+ 1

2
: x1/2 < x3/2 < .. . < xNx+1/2, i = 0,1, . . . ,Nx

}
; (3.17a)

Ω
x′ := {xi : i = 0,1, . . . ,Nx+1} where

xi :=


x1/2 i = 0.
1
2(xi− 1

2
+ xi+ 1

2
) i = 1,2, . . . ,Nx.

xNx+1/2 i = Nx+1.

(3.17b)

The domains Ω
x and Ω

x′ are the primary and dual grids respectively. The former is a set of all
locations in x at the end points of each subinterval, whereas the latter is a set of all locations
in x at the centre of each subinterval. We can derive grids for the y and z directions but these
are omitted as they are identical. We denoteVi, j,k as the (i, j,k)th �nite volume whose length
scales

hx
i := xi+1/2− xi−1/2 i = 1,2, . . . ,Nx; (3.18a)

hy
j := y j+1/2− y j−1/2 j = 1,2, . . . ,Ny; (3.18b)

hz
k := zk+1/2− zk−1/2 k = 1,2, . . . ,Nz. (3.18c)

The length scales for the dual grid follow from (3.18), together with the coordinate de�n-
itions in (3.17). A qualitative description of cells Vi, j,k and Vi+1/2, j+1/2/k+1/2 is shown in
�gure 3.1. From (3.18), we then have

Vi, j,k := [xi−1/2,xi+1/2]× [y j−1/2,y j+1/2]× [zk−1/2,zk+1/2];

|Vi, j,k| := hx
i hy

jh
z
k i = 1,2, . . . ,Nx+1/2;

j = 1,2, . . . ,Ny+1/2;

k = 1,2, . . . ,Nz+1/2.

The spatial domain of discretization is then

Ω
h := Ω

x×Ω
y×Ω

z
.



88 3.3. FINITE VOLUME DISCRETIZATION

z

x

y

•
(xi,y j,zk)

•
(xi+ 1

2
,y j+ 1

2
,zk+ 1

2
)

Figure 3.1: A qualitative depiction of �nite volumesVi, j,k, Vi+ 1
2 , j+

1
2 ,k+

1
2

centred at (xi,y j,zk)

and
(

xi+ 1
2
,y j+ 1

2
,zk+ 1

2

)
respectively. The primary grid Ω

x is used on Vi, j,k and its dual grid

Ω
x′ is used on Vi+ 1

2 , j+
1
2 ,k+

1
2

.

The �nite volumeVi, j,k has corners (xi±1/2,y j±1/2,zk±1/2) and center (xi,y j,zk), where i=

1,2, . . . ,Nx, j = 1,2, . . . ,Ny and k = 1,2, . . . ,Nz
1. Within each Vi, j,k, we assume material

parameters to be constant. For example, σ = σi, j,k throughout Vi, j,k. Note that this allows
material parameters to be discontinuous across �nite volume interfaces. With respect to the
PDE system de�ned in (3.16), the �nite volumes are what the system is integrated over.

3.3.2
Yee discretization

In the previous section, we introduced a discretization of the spatial domain. Here we ex-
plore the placement of electromagnetic quantities on the �nite volumesVi, j,k. The basic idea
of the Yee Discretization is to centre the components of E and H so that E is surrounded by
four circulating components of H and vice-versa. We place components of the discrete mag-
netic �eld Hh on the edges of Vi, j,k, whereas components of the discrete electric �eld Eh are

1The primary and dual grids are rectangular grids that are centred about (xi,y j,zk) and
(xi+1/2,y j+1/2,zk+1/2) respectively, where i = 0,1, . . . ,Nx, j = 0,1, . . . ,Ny, k = 0,1, . . . ,Nz. These
grids are useful because of the interlaced behaviour between the electromagnetic �elds E and H; as will
become clear when we introduce the Yee Discretization.
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Figure 3.2: A qualitative depiction of the discrete electric �eld Hh onVi, j,k in the Yee scheme.

prescribed to the faces of Vi, j,k. This is known as a staggered grid, and ensures that the con-
servation laws of Maxwell’s equations hold in a discrete setting. See [135] for more details.
Mathematically, the electromagnetic �elds in the �nite volumes Vi, j,k are de�ned as:

Ex
i, j±1/2,k±1/2 ≈ Ex(xi,y j±1/2,zk±1/2);

Ey
i±1/2, j,k±1/2 ≈ Ey(xi±1/2,y j,zk±1/2);

Ez
i±1/2, j±1/2,k ≈ Ez(xi±1/2,y j±1/2,zk);

Hx
i±1/2, j,k ≈ Hx(xi±1/2,y j,zk);

Hy
i, j±1/2,k ≈ Hy(xi,y j±1/2,zk);

Hz
i, j,k±1/2 ≈ Hz(xi,y j,zk±1/2),

where i = 1,2, . . . ,Nx, j = 1,2, . . . ,Ny and k = 1,2, . . . ,Nz. A qualitative representation of
these discrete �elds can be seen in �gures 3.2 and 3.3.

The placement of electromagnetic �elds in our discrete domain Ωh is important as it
mimics the rotational behaviour between E and H and preserves vector identities in a discrete
setting [52]. In the discretization considered here, we exchange the placements of E and
H. This exchange means that the electric �eld E is now multi-valued at the same spatial
location, since neighbouring cells share the same interface. Though this problem is solved
by the generalized current density.

The next step is to integrate the PDE system over these �nite volumes to obtain a discrete
set of equations. For reasons that will become clear, we decide to use the boundary value
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Figure 3.3: A qualitative depiction of the discrete electric �eld Eh on Vi, j,k in the Yee scheme.

problem in terms of the auxiliary variables ψ and Ĵ to integrate over. Therefore, we must
�rst decide the placement of (Ah, Ĵh,Hh,φh,ψh) in Ωh. We wish to derive a discrete system
for linear isotropic inhomogeneous media. We determine where to place the quantities by
using interface conditions between di�erent media, and the PDE system discussed in the
previous section. Interface conditions for the electromagnetic quantities are:

n1 · [A1−A2] = 0;

n1× [A1−A2] = 0;

n1 · [Ĵ1− Ĵ2] = 0;

n1× [H1−H2] = 0;

n1 · [∇φ
1−∇φ

2] = ρe/ε0,

where n1 is the outward normal vector from medium 1 [6]. The interface conditions imply
where to place the electromagnetic quantities in Vi, j,k, as they inform us which are discon-
tinuous across adjacent �nite volumes. Namely, Ah and Ĵh are prescribed to �nite volume
faces on the primary grid. This automatically places ∇ ·Ah at the centre inVi, j,k. Given (3.15),
ψh is placed the same location. Equivalently, φh is de�ned at the centre in Vi, j,k. Therefore,
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Figure 3.4: A qualitative depiction of the discrete magnetic �eld Hh on Vi, j,k.

we have the following discrete grid functions:

Hx
i, j±1/2,k±1/2 ≈ Hx(xi,y j±1/2,zk±1/2);

Hy
i±1/2, j,k±1/2 ≈ Hy(xi±1/2,y j,zk±1/2);

Hz
i±1/2, j±1/2,k ≈ Hz(xi±1/2,y j±1/2,zk);

Ax
i±1/2, j,k ≈ Ax(xi±1/2,y j,zk);

Ay
i, j±1/2,k ≈ Ay(xi,y j±1/2,zk);

Az
i, j,k±1/2 ≈ Az(xi,y j,zk±1/2);

Ĵx
i±1/2, j,k ≈ Ĵx(xi±1/2,y j,zk);

Ĵy
i, j±1/2,k ≈ Ĵy(xi,y j±1/2,zk);

Ĵz
i, j,k±1/2 ≈ Ĵz(xi,y j,zk±1/2),

φi, j,k ≈ φ(xi,y j,zk),

ψi, j,k ≈ ψ(xi,y j,zk),

where i = 1,2, . . . ,Nx, j = 1,2, . . . ,Ny and k = 1,2, . . . ,Nz. These discrete grid functions
automatically place the source �elds Je and Jm normal to Vi, j,k’s faces and edges respectively.
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Figure 3.5: A qualitative depiction of the discrete vector potential Ah and generalized current
density Ĵ on Vi, j,k.

Let us now recall the system we wish to integrate:

∇×H− (iω)−1
∇ψ+ Ĵ = Je; (3.21a)

∇ · Ĵ = ∇ ·Je; (3.21b)

µψ−∇ ·A = 0; (3.21c)

Ĵ+b(A+∇φ) = 0; (3.21d)

∇×A−aH = Jm. (3.21e)

We will integrate this system then �nd the discrete form of (3.9). Let us begin by integrating
(3.21a) over faces of the primary grid. Hence

ˆ
S
(∇×H) ·n dS− (iω)−1

ˆ
S

∇ψ ·n dS+
ˆ

S
Ĵ ·n dS =

ˆ
S

Je ·n dS, (3.22)

where S is one of the surfaces Sx
i−1/2, j,k, Sy

i, j−1/2,k and Sz
i, j,k−1/2. These are:

Sx
i−1/2, j,k =

{
xi−1/2

}
× (y j−1/2,y j+1/2)× (zk−1/2,zk+1/2);

Sy
i, j−1/2,k = (xi−1/2,xi+1/2)×

{
y j−1/2

}
× (zk−1/2,zk+1/2);

Sz
i, j,k−1/2 = (xi−1/2,xi+1/2)× (y j−1/2,y j+1/2)×{zk−1/2}.

The integral operator in (3.22) is computed for each of the surfaces de�ned above, yielding a
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discrete equation for each surface in the domain. We will consider one surface and state the
resultant discrete equations from the remaining surfaces. To be consistent, this will be done
for the remaining integration on the equations in (3.21).

Hence, let us choose S = Sx
i−1/2, j,k. Then, by Stokes’ Theorem, (3.22) becomes

˛
∂S

H ·n dl− (iω)−1
ˆ

S
∇ψ ·n dS+

ˆ
S

Ĵ ·n dS =

ˆ
S

Je ·n dS. (3.23)

By observation of the surface S in �gure 3.6, we have that

•
Ĵx

i−1/2, j,k

Jx
e i−1/2, j,k

∂xψ i−1/2, j,k

•
Hy

i−1/2, j,k+1/2

••Hz
i−1/2, j−1/2,k Hz

i−1/2, j+1/2,k

•
Hy

i−1/2, j,k−1/2

∂S1

∂S2

∂S3

∂S4

• •

• •

(y j−1/2,zk−1/2) (y j+1/2,zk−1/2)

(y j+1/2,zk+1/2)(y j−1/2,zk+1/2)

Figure 3.6: The surface S = Sx
i−1/2, j,k.

˛
∂S

H ·n dl =

˛
∂S1∪∂S2∪∂S3∪∂S4

H ·n dl;

=
4

∑
k=1

˛
∂Sk

H ·n dl.

The unit vector n traverses anti-clockwise on ∂S and picks out discrete grid functions on the
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boundary (which approximates the integral involving H in (3.23)). Therefore,

On ∂S1, n(t) = (0, t,0), n′(t) = (0,1,0), dl = dt; (3.24a)

On ∂S2, n(t) = (0,0, t), n′(t) = (0,0,1), dl = dt; (3.24b)

On ∂S3, n(t) = (0,−t,0), n′(t) = (0,−1,0), dl = dt; (3.24c)

On ∂S4, n(t) = (0,0,−t), n′(t) = (0,0,−1), dl = dt. (3.24d)

For example,

˛
∂S1

H ·n dl =

ˆ y j+1/2

y j−1/2

Hy
i−1/2, j,k−1/2 dt;

= Hy
i−1/2, j,k−1/2[t]

y j+1/2
y j−1/2;

= hy
jH

y
i−1/2, j,k−1/2.

Therefore,
˛

∂S
H ·n dl = hy

j(H
y
i−1/2, j,k−1/2−Hy

i−1/2, j,k+1/2)+hz
k(H

z
i−1/2, j+1/2,k−Hz

i−1/2, j−1/2,k).

Next, we compute the other integral terms on S in (3.23). We approximate the gradient of ψ

by a centred �nite di�erent method. Hence,

∂xψi−1/2, j,k ≈
ψi−1, j,k−ψi, j,k

hx
i−1/2

.

On S, the outward pointing normal vector n = (1,0,0). Therefore,

ˆ
S

∇ψ ·n dS ≈ ψi−1, j,k−ψi, j,k

hx
i−1/2

ˆ zk+1/2

zk−1/2

ˆ y j+1/2

y j−1/2

dydz;

=
ψi−1, j,k−ψi, j,k

hx
i−1/2

hy
jh

z
k.
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Similarly,

ˆ
S

Ĵ ·n dS =

ˆ zk+1/2

zk−1/2

ˆ y j+1/2

y j−1/2

Ĵx
i−1/2, j,k dydz;

= Ĵx
i−1/2, j,khy

jh
z
k.ˆ

S
Je ·n dS =

ˆ zk+1/2

zk−1/2

ˆ y j+1/2

y j−1/2

Jx
e i−1/2, j,k dydz;

= Jx
e i−1/2, j,khy

jh
z
k.

And so, for S = Sx
i−1/2, j,k, we have that

hy
j

(
Hy

i−1/2, j,k−1/2−Hy
−1/2, j,k+1/2

)
+hz

k

(
Hz

i−1/2, j+1/2,k−Hz
i−1/2, j−1/2,k

)
+hy

jh
z
k

(
ψi−1, j,k−ψi, j,k

iωhx
i−1/2

hy
jh

z
k + Ĵx

i−1/2, j,k

)
= hy

jh
z
kJx

e i−1/2, j,k.

Performing the same computation for S = Sy
i, j−1/2,k and S = Sz

i, j,k−1/2 results in:

hx
i

(
Hx

i, j−1/2,k+1/2−Hx
i, j−1/2,k−1/2

)
−hz

k

(
Hz

i+1/2, j−1/2,k−Hz
i−1/2, j−1/2,k

)
+hx

i hz
k

ψi, j,k−1−ψi, j,k

iωhy
j−1/2

+ Ĵy
i, j−1/2,k

= hx
i hz

kJy
e i, j−1/2,k.

hy
j

(
Hy

i+1/2, j,k−1/2−Hy
i−1/2, j,k−1/2

)
−hx

i

(
Hx

i, j+1/2,k−1/2−Hx
i, j−1/2,k−1/2

)
+hx

i hy
j

(
ψi, j,k−1−ψi, j,k

iωhz
k−1/2

+ Ĵz
i, j,k−1/2

)
= hx

i hy
jJ

z
e i, j,k−1/2,

respectively. The discrete equations in Ωh for (3.21a) have now been computed. Next, we
derive the discrete equations for (3.21b). Thus,

ˆ
V

∇ · Ĵ dV =

ˆ
V

∇ ·Je dV.

By Divergence Theorem, for any volume V ⊂Ω, we have that
˛

S
Ĵ ·n dS =

˛
S

Je ·n dS.
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Choosing V =Vi, j,k, we have the following surfaces to integrate over:

S = Sx
i±1/2, j,k,S

y
i, j±1/2,k,S

z
i, j,k±1/2. (3.25)

Then,
˛

Sx
i−1/2, j,k∪Sx

i+1/2, j,k∪...∪Sz
i, j,k+1/2

Ĵ ·n dS =

˛
Sx

i−1/2, j,k∪Sx
i+1/2, j,k∪...∪Sz

i, j,k+1/2

Je ·n dS.

Hence, we have the following:

On Sx
i−1/2, j,k, n = (−1,0,0), On Sx

i+1/2, j,k, n = (1,0,0);

On Sy
i, j−1/2,k, n = (0,−1,0), On Sy

i, j+1/2,k, n = (0,1,0);

On Sz
i, j,k−1/2, n = (0,0,−1), On Sz

i, j,k+1/2, n = (0,0,1).

For demonstration, let us choose the same surface as in �gure 3.6. Hence,

−
ˆ zk+1/2

zk−1/2

ˆ y j+1/2

y j−1/2

Jx
i−1/2, j,k dydz =−

ˆ zk+1/2

zk−1/2

ˆ y j+1/2

y j−1/2

Jx
e i−1/2, j,kdydz.

Thus,

hy
jh

z
k

(
Ĵx

i+1/2, j,k− Ĵx
i−1/2, j,k

)
+hx

i hz
k

(
Ĵy

i, j+1/2,k− Ĵy
i, j−1/2,k

)
+hx

i hy
j

(
Ĵz

i, j,k+1/2− Ĵz
i, j,k−1/2

)
= hy

jh
z
k

(
Jx

e i+1/2, j,k− Jx
e i−1/2, j,k

)
+hx

i hz
k

(
Jy

e i, j+1/2,k− Jy
e i, j−1/2,k

)
+hx

i hy
j

(
Jz

e i, j,k+1/2− Jz
e i, j,k−1/2

)
.

Now, let us consider (3.21c). For any volume V ⊂Ω, we have that
ˆ

V
µψ dV =

ˆ
V

∇ ·A dV.

By Divergence Theorem, ˆ
V

µψ dV =

˛
S

A ·n dS.
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As before, choose V =Vi, j,k and S as in (3.25) to yield

ψi, j,k = µ−1
i, j,k

[
hy

jh
z
k

(
Ax

i+1/2, j,k−Ax
i−1/2, j,k

)
+hx

i hz
k

(
Ay

i, j+1/2,k−Ay
i, j−1/2,k

)
+hx

i hy
j

(
Az

i, j,k+1/2−Az
i, j,k−1/2

)]
.

The �eld ∇φ is potentially not as smooth as b∇φ across an interface between adjacent Vi, j,k,
due to the interface conditions. Therefore, we divide (3.21d) by b. Then, for any pathC⊂Ω,
we have that ˆ

C
[b−1Ĵ+A+∇φ] ·n dl = 0.

Choosing C = lx
i−1/2, j,k := (xi−1,xi)× y j× zk, we have that

ˆ xi

xi−1

 Ĵx
i−1/2, j,k

bi−1/2, j,k
+Ax

i−1/2, j,k +
φi, j,k−φi−1, j,k

hx
i−1/2

= 0.

And so,

hx
i−1/2

(
Jx

i−1/2, j,k

bi−1/2, j,k
+Ax

i−1/2, j,k

)
+φi, j,k−φi−1, j,k = 0. (3.26)

Here we use a harmonic averaging scheme for the complex admittivity b. Since we have
chosen a line in x, we average the quantity b over adjacent cells Vi−1, j,k and Vi, j,k. Hence

bi+1/2, j,k := hx
i+1/2

(ˆ xi+1

xi

1
b(x,y j,zk)

dx

)−1

.

Assuming b is constant across each �nite volume, we have that

ˆ xi+1

xi

1
b(x,y j,zk)

dx =

ˆ xi+1

xi+1/2

1
b(x,y j,zk)

dx+
ˆ xi+1/2

xi

1
b(x,y j,zk)

dx;

= b−1
i+1, j,kxi+1−b−1

i+1/2, j,kxi+1/2 +b−1
i+1/2, j,kxi+1/2−b−1

i, j,kxi.

We know that b = bi, j,k and b = bi+1, j,k in Vi, j,k and Vi+1, j,k respectively. This is shown
qualitatively in �gure 3.7. Hence,

ˆ xi+1

xi

1
b(x,y j,zk)

dx = b−1
i+1, j,k

(
xi+1− xi+1/2

)
+b−1

i, j,k

(
xi+1/2− xi

)
.
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•
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•
xi+3/2

•
xi−1/2

•
xi+1

•
xi

Vi, j,k

b = bi, j,k b = bi+1, j,k

Vi+1, j,k

Figure 3.7: A depiction of C = lx
i−1/2, j,k.

It follows that

bi+1/2, j,k = hx
i+1/2

(
hx

i
2bi, j,k

+
hx

i+1

2bi+1, j,k

)−1

.

From (3.26), we obtain

Ĵx
i−1/2, j,k = bi−1/2, j,k

(
Ax

i−1/2, j,k +
φi−1, j,k−φi, j,k

hx
i−1/2

)
,

where

bi−1/2, j,k = hx
i−1/2

(
hx

i
2bi, j,k

+
hx

i−1

2bi−1, j,k

)−1

.

We use harmonic averaging instead of arithmetic averaging because it is more favourable
when dealing with quantities that varies over several orders of magnitude [52].

For any surface S⊂Ω, we have that
ˆ

S
(∇×A) ·n dS− iω

ˆ
S

µH ·n dS =

ˆ
S

Jm ·n dS.

By Stokes’ Theorem,
˛

∂S
A ·n dl− iω

ˆ
S

µH ·n dS =

ˆ
S

Jm ·n dS.

We follow the same approach as for (3.21a), except this integration is performed on the dual
grid. As before, we perform the integration for one surface and state the results for the other
surfaces. Thus, we choose S = Sx

i, j−1/2,k−1/2.
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Figure 3.8: The surface S = Sx
i, j−1/2,k−1/2.

And so, ˛
∂S

A ·n dl =
˛

∂S1∪...∪∂S4

A ·n dl.

With (3.24), we have that
˛

∂S
A ·n dl = hz

k−1/2

(
Az

i, j,k−1/2−Az
i, j−1,k−1/2

)
−hy

j−1/2

(
Ay

i, j−1/2,k−Ay
i, j−1/2,k−1

)
.

In addition,

iω
ˆ

S
µH ·n dS = iω

ˆ y j

y j−1

ˆ zk

zk−1

µi, j−1/2,k−1/2Hx
i, j−1/2,k−1/2 dzdy;

= iωhy
j−1/2hz

k−1/2µi, j−1/2,k−1/2Hx
i, j−1/2,k−1/2.ˆ

S
Jm ·n dS =

ˆ y j

y j−1

ˆ zk

zk−1

Jx
m i, j−1/2,k−1/2;

= hy
j−1/2hz

k−1/2Jx
m i, j−1/2,k−1/2.

Therefore, we have that

iωhy
j−1/2hz

k−1/2µi, j−1/2,k−1/2Hx
i, j−1/2,k−1/2 =−hy

j−1/2hz
k−1/2Jx

m i, j−1/2,k−1/2

+hz
k−1/2

(
Az

i, j,k−1/2−Az
i, j−1,k−1/2

)
−hy

j−1/2

(
Ay

i, j−1/2,k−Ay
i, j−1/2,k−1

)
.
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Similarly, for S = Sy
i−1/2, j,k−1/2 and S = Sz

i−1/2, j−1/2,k, we have that

iωhz
k−1/2hx

i−1/2µi−1/2, j,k−1/2Hy
i−1/2, j,k−1/2 =−hz

k−1/2hx
i−1/2Jy

m i−1/2, j,k−1/2

+hz
k−1/2

(
Az

i, j,k−1/2−Az
i−1, j,k−1/2

)
−hx

i−1/2

(
Ax

i−1/2, j,k−Ax
i−1/2, j,k−1

)
;

iωhx
i−1/2hy

j−1/2µi−1/2, j−1/2,kHz
i−1/2, j−1/2,k =−hy

j−1/2hx
i−1/2Jz

m i−1/2, j−1/2,k

+hy
j−1/2

(
Ay

i, j−1/2,k−Az
i−1, j−1/2,k

)
−hx

i−1/2

(
Ax

i−1/2, j,k−Ax
i−1/2, j−1,k

)
.

We have now derived all the discrete equations using �nite volume integration on (3.21a-
3.21e), with harmonic averaging on the complex admittivity b. The �nal step is to perform
the analog on the permeability µ. Since the magnitude of µ doesn’t vary extremely, we use
standard arithmetic averaging to determine µi, j−1/2,k−1/2,µi−1/2, j,k−1/2 and µi−1/2, j−1/2,k.
Without loss of generality, we consider the edge parallel to the x axis, de�ning

µi, j−1/2,k−1/2 :=
1

hy
j−1/2hz

k−1/2

ˆ
Sx

i, j−1/2,k−1/2

µ(xi,y,z) dydz;

=
1

hy
j−1/2hz

k−1/2

ˆ zk

zk−1

ˆ y j

y j−1

µ(xi,y,z) dydz.

By observation of �gure 3.9, we see that µi, j−1/2,k−1/2 shares an edge with four neighbouring
cells. Therefore, we consider averaging over these four cells. Coupled with the assumption
of µ being constant in each cell, we have that

µi, j−1/2,k−1/2 = (4hy
j−1/2hz

k−1/2)
−1

[ˆ zk−1/2

zk−1

ˆ y j−1/2

y j−1

µ(xi,y,z) dydz

+

ˆ zk

zk−1/2

ˆ y j−1/2

y j−1

µ(xi,y,z) dydz

+

ˆ zk

zk−1/2

ˆ y j

y j−1/2

µ(xi,y,z) dydz

+

ˆ zk−1/2

zk−1

ˆ y j

y j−1/2

µ(xi,y,z) dydz

]
.

And so,

µi, j−1/2,k−1/2 := (4hy
j−1/2hz

k−1/2)
−1
(

hy
j−1/2hz

k−1µi, j−1,k−1

+ hy
j−1hz

kµi, j−1,k +hy
jh

z
k−1µi, j,k−1 +hy

jh
z
kµi, j,k

)
.
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• •

•

(y j+1/2,zk−1/2)

(y j+1/2,zk+1/2)

(y j+1/2,zk−3/2)
••

(y j−1/2,zk−3/2)
•

(y j−3/2,zk−3/2)

(y j−3/2,zk−1/2)

(y j−3/2,zk+1/2)

hy
jhy

j−1

hz
k−1

hz
k

•

•

µi, j−1/2,k−1/2

µ = µi, j−1,k−1 µ = µi, j,k−1

µ = µi, j,kµ = µi, j−1,k

y

z

• •

• •

(y j−1,zk−1) (y j,zk−1)

(y j,zk)(y j−1,zk)

Figure 3.9: The surface S = Sx
i, j−1/2,k−1/2 and neighbouring surfaces.
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Similarly,

µi−1/2, j,k−1/2 :=
1

hx
i−1/2hz

k−1/2

ˆ
Sy

i−1/2, j,k−1/2

µ(xi,y,z) dydz;

= (4hx
i−1/2hz

k−1/2)
−1

∑
p,r=±1/2

hx
i−1/2+phz

k−1/2+rµi−1/2+p, j,k−1/2+r;

µi−1/2, j−1/2,k :=
1

hx
i−1/2hy

j−1/2

ˆ
Sz

i−1/2, j−1/2,k

µ(xi,y,z) dydz;

= (4hx
i−1/2hy

j−1/2)
−1

∑
p,r=±1/2

hx
i−1/2+phy

j−1/2+rµi−1/2+p, j−1/2+r,k.

A discretization of (3.21a-3.21e) has now be obtained, with appropriate averaging techniques
delegated to the discontinuous material coe�cients between cells. The discrete system is the
following:

∇
e
h×Hh− (iω)−1

∇hψ
h + Ĵh = Jh

e ;

∇h · Ĵh = ∇h ·Jh
e ;

µh
cψ

h−∇h ·Ah = 0h;

Ĵh +bh(Ah +∇hφ
h) = 0h;

∇
f
h ×Ah− iωµh

eHh = Jh
m.

We can arrive at the discrete analog of the boundary value problem in (3.16) by eliminating
(φh,ψh,Hh) from the discrete system above. Therefore, we obtain

Ahxh = bh, (3.28)

where

Ah :=

 (iω)−1∆
h
µ(·)−bh(·) −b∇h(·)

∇h · (bh(·)) ∇h · (b∇h(·))

 ;

∆
h
µ(·) := ∇

e
h× ((µh

e)
−1(∇

f
h × (·)))−∇h((µh

c)
−1

∇h · (·)),

xh := (Ah φh)T and bh represents the source distribution on Ωh. Solving the linear system
in (3.28) is implemented in the Python programming language and is the solver used in this
thesis for numerical experiments involving the reconstruction schemes described in chapter
2. The software package is called “lsMax” and includes the forward solver, reconstruction
schemes and line search criteria.
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3.4
Analytical solution of Maxwell’s equations

This section introduces an analytical method, with appropriate assumptions on the material
parameters, for solving a speci�c form of Maxwell’s equations. The analytical solution is used
for validation of numerical solutions to (3.28) from the previous section. The derivation here
closely follows that in [130].

The Python implementation for solving (3.28) has to be validated so that we are con-
�dent it is correctly implemented. In this section, we introduce an analytical solution that is
derived for a harmonic dipole source in a homogeneous medium. Following that, we present
numerical validation for the Python implementation using these analytical solutions. Recall
that

∇×E(x)−a(x)H(x) = −Jm(x); (3.29a)

∇×H(x)−b(x)E(x) = Je(x); (3.29b)

∇ · (εE) = ρ; (3.29c)

∇ · (µH) = 0, (3.29d)

where we relabel the magnetic and electric sources as J with subscripts m and e respectively.
Note that sign of the magnetic source is arbitrary. By linearity of Maxwell’s equations in
(3.29), we can decompose the total electromagnetic �elds as

E = Em +Ee;

H = Hm +He,

where superscripts m and e denote magnetic and electric induced �elds. Hence, for the pairs
[Ee,He], [Em,Hm] we have that Jm = 0 and Je = 0 respectively. Therefore, we obtain the
following set of equations:

∇×Em = −Jm−aHm; (3.31a)

∇×Hm = bEm; (3.31b)

∇×Ee = −aHe; (3.31c)

∇×He = Je +bEe. (3.31d)
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Applying the divergence operator to (3.31a - 3.31d) yields

∇ ·Hm = −b−1
∇ ·Jm; (3.32a)

∇ ·Em = 0; (3.32b)

∇ ·He = 0; (3.32c)

∇ ·Ee = −a−1
∇ ·Je. (3.32d)

The relationships in (3.32b -3.32c) suggest that Em and He lie in the null space of the diver-
gence operator. Therefore, we can let

Em = −∇×F; (3.33a)

He = ∇×A, (3.33b)

where F and A are vector functions. We can say this is true with arbitrary sign because the
curl operator lies in the null space of the divergence. These relationships can then be substi-
tuted into (3.31b - 3.31c) to obtain

∇×Hm = −b∇×F;

∇×Ee = a∇×A,

respectively. Since the curl operator also has a non-trivial null space, we can do more than
just equate both sides. Hence, we can introduce arbitrary scalar functionsU andV such that

Hm =−bF−∇U ; (3.35a)

Ee =−aA−∇V. (3.35b)

By substituting (3.33a), (3.33b), (3.35a), (3.35b) into (3.31a) and (3.31d), we obtain

∇×∇×F = Jm−baF−a∇U ;

∇×∇×A = Je−baA−b∇V.

Using the vector identity for the double curl operator, as described in (3.4), we obtain

∇(∇ ·F)−∇
2F = Jm−baF−a∇U ;

∇(∇ ·A)−∇
2A = Je−baA−b∇V.
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Recall that the scalar functions U and V are arbitrarily de�ned, therefore we can impose
conditions on the divergence of vector functions F and A. Thus, if we let

∇ ·F = −aU ;

∇ ·A = −bV,

then we obtain

∇
2F+ k2F = −Jm; (3.39a)

∇
2A+ k2A = −Je. (3.39b)

The relationships in (3.39a) and (3.39b) are the inhomogeneous Helmholtz equations for
vector functions F and A respectively. The analytical solution described here is for a har-
monic magnetic dipole source placed in an in�nite medium. This means that the electrically
induced �elds Ee and He are zero. Therefore, the total �elds are:

E = −∇×F; (3.40a)

H = −bF+a−1
∇(∇ ·F). (3.40b)

Let there be a small loop of current I at a source location xs =(xs,ys,zs), which is z-directed
(i.e. in the xy plane). This can be represented by an in�nitesimal magnetic dipole with a mo-
ment m = IdS where dS is the area of a small loop. Moreover, we choose the magnetization
vector to be given as

Z = mδ(xsc− xs)δ(ysc− ys)δ(zsc− zs)ez.

Then, we have the corresponding Helmholtz equation:

∇
2F+ k2F =−iωµZ =−Jm. (3.41a)

Since the magnetization vector has only a z component, this reduces (3.41a) to the Helmholtz
operator acting on a scalar �eld Fz:

∇
2Fz + k2Fz =−iωµmδ(xsc−xs), (3.42)

which can be written in the form HFz(xsc) = f (xsc), where H is the Helmholtz operator.
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Note that Fz can be found using Green’s functions (the impulse response of a inhomogen-
eous linear di�erential equation with given boundary conditions). In our case, this is the in-
homogeneous Helmholtz equation de�ned in an in�nite space. Hence, we can �nd a Green’s
function G and subsequently Fz by using linearity properties of the Green’s function.

Let us now de�ne the triple spatial Fourier transform mappings, which will help �nd Fz:

F[F(xsc,ysc,zsc)] = F̃(kx,ky,kz)

=

ˆ
∞

−∞

ˆ
∞

−∞

ˆ
∞

−∞

F(xsc,ysc,zsc)e−iqdxsc;

F−1[F̃(kx,ky,kz)] = F(x,y,z)

=
1

(2π)3

ˆ
∞

−∞

ˆ
∞

−∞

ˆ
∞

−∞

F̃(kx,ky,kz)eiqdk,

where q = kxx+kyy+kzz. Now, let us use these pairings to transform (3.41a). We know that

F[∇2F] = (F[∇2Fx],F[∇
2Fy],F[∇

2Fz])
T ,

where
Fk =

1
(2π)3

ˆ
∞

−∞

ˆ
∞

−∞

ˆ
∞

−∞

F[Fk]e−iqdxsc k = x,y,z.

Hence,
∂2Fk

∂x2 +
∂2Fk

∂y2 +
∂2Fk

∂z2 = (−k2
x − k2

y − k2
z )Fk.

It follows that
F[∇2Fk] = (−k2

x − k2
y − k2

z )F[Fk].

And so,
F[∇2F] = (−k2

x − k2
y − k2

z )F[F].

As a result, we arrive at the transformed equation:

F̃ = G̃J̃, (3.44)

where
G̃ =

1
(k2

x + k2
y + k2

z − k2)
. (3.45)

The function G̃ is the Fourier transform of G in (3.42). Since (3.44) is a product in the Fourier
space, it is a convolution in the inverse mapping; namely, the spatial domain. This is given
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by

F(xsc,ysc,zsc) =

ˆ
∞

−∞

ˆ
∞

−∞

ˆ
∞

−∞

G(xsc− x′,ysc− y′,zsc− z′)J(x′,y′,z′)dx′. (3.46)

Hence, if we can compute the Green’s function G, then we can obtain F given any source
distribution J. Thus, we evaluate (3.40a) and (3.40b) to obtain the electromagnetic �elds E
and H. From (3.45), we can say that

(−k2
x − k2

y − k2
z + k2)G̃ =−1.

Applying the inverse Fourier operator results in

(∇2 + k2)G =−δ(xsc−xs).

To �nd G, we evaluate the inverse Fourier operator so that

G(xsc,ysc,zsc) =
1

(2π)3

ˆ
∞

−∞

ˆ
∞

−∞

ˆ
∞

−∞

G̃eiqdk. (3.47)

Let us �rst consider the outermost integral, then we wish to compute

Ĝ =
1

2π

ˆ
∞

−∞

G̃eikzzdkz.

From [101],

Ĝ =
eu|z|

2u
,

where u = (k2
x + k2

y − k2)1/2. This brings (3.47) to the form

G(xsc,ysc,zsc) =
1

8π2

ˆ
∞

−∞

ˆ
∞

−∞

1
u

e−u|z|ei(kxx+kyy)dkxdky. (3.48)

Now, let us compute the following mappings:

kx = λcosψ, ky = λsinψ;

xsc = ρcosφ, ysc = ρsinφ.
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Then, since 0≤ r < ∞ and 0 < ψ≤ 2π, (3.48) becomes

G(ρ,φ,z) =
ˆ

∞

0

e−(λ
2−k2)1/2|z|

(λ2− k2)1/2

ˆ 2π

0
eiλρcos(ψ−φ)dψλdλ.

By using the integral representation in [131], we �nd that

ˆ 2π

0
eiλρcos(ψ−φ)dψ = 2πJ0(λρ).

Hence, for the integrand in (3.48), we obtain

G(ρ,z) = 2π

ˆ
∞

0

λe−(λ
2−k2)1/2|z|

(λ2− k2)1/2 J0(λρ)dλ,

where λ2 = k2
x + k2

y , ρ2 = x2
sc + y2

sc and J0 is the zeroth order Bessel function. From [101],
we �nd that

G(xsc) =
e−ikr

4πr
,

where r = |xsc|= [(xsc− xs)
2 +(ysc− ys)

2 +(zsc− zs)
2]1/2. Thus, (3.46) becomes

F(xsc) =

ˆ
V ′

e−ik(r−r′)

4π(r− r′)
J(x′,y′,z′)dx′.

From (3.42), we have that

J(xsc,xs) = iωµmδ(xsc−xs)ez.

It follows that

F(xsc) =

(
iωµm

ˆ
V ′

e−ik(r−r′)

4π(r− r′)
δ(x′−xs)dx′

)
ez.

With this de�nition, we can �nd F by using the sifting property of the Dirac Delta function:

F(xsc) = iωµm
e−ikr

4πr
ez.
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We then �nd E and H using the expressions in (3.40), resulting in:

E =
iωµm
4πr2 (ikr+1)e−ikr

(
z
r

ex−
y
r

ey

)
;

H =
m

4πr3 e−ikr

(xz
r2 ex +

yz
r2 ey +

z2

r2 ez

)
(−k2r2 +3ikr+3)+(k2r2− ikr−1)ez

 .
These electromagnetic solutions correspond to a isotropic homogeneous medium due to
a harmonic magnetic dipole. For more information on analytical solutions to Maxwell’s
equations, on this and others, see [130].

3.5
Validation of numerical implementation

This section shows validation of the Python implementation which solves (3.28) numeric-
ally. In particular, we provide a comparison between the Python solver and the analytical
solutions described in the previous section. We use the same grid for the analytical solution
so that we can compare pointwise with the numerical method. Here, we choose to have
an interior grid composed of 60×60×60 cells. To mimic an unbounded domain outside
this interior region, we apply a perfectly matched layer (PML) on its exterior. We use the
following cell widths for our comparison:

hx
i = 0.1[m];

hy
j = 0.05[m];

hz
k = 0.05[m],

for i, j,k = N(x,y,z),l
p + 1,Nx,y,z,l

p + 2, . . . , Ix,y,z, where Ix,y,z is the total number of interior
cells in the x,y,z directions and N(x,y,z),l

p denotes the total number of PML cells in the x,y,z

directions from the left. This grid size, 6(m)×3(m)×3(m), is chosen as it is a realistic spatial
domain for large boxes or cargo containers. For the exterior cells (i.e. inside the PML), we
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have that

hx
i =

(Nx,l
p +1− i)h i = 1,2, . . . ,Nx,l

p .

(i− Ix)h i = Ix +1, Ix +2, . . . ,Nx.
(3.50a)

hy
j =

(Ny,l
p +1− j)h j = 1,2, . . . ,Ny,l

p .

( j− Iy)h j = Iy +1, Iy +2, . . . ,Ny.
(3.50b)

hz
k =

(Nz,l
p +1− k)h k = 1,2, . . . ,Nz,l

p ,

(k− Iz)h k = Iz +1, Iz +2, . . . ,Nz.
(3.50c)

Here, we compute relative errors for the x,y components of the electric �eld E and the mag-
netic �eld H in the interior cells. We use standard arithmetic averages for the errors. There-
fore,

∆Ex =
1
nv

Iz

∑
k=Nz,l

p

Iy

∑
j=Ny,l

p

Ix

∑
i=Nx,l

p

||Ex,a
i−1/2, j,k−Ex,n

i−1/2, j,k||2
||Ex,n

i−1/2, j,k||2
; (3.51a)

∆Ey =
1
nv

Iz

∑
k=Nz,l

p

Iy

∑
j=Ny,l

p

Ix

∑
i=Nx,l

p

||Ey,a
i, j−1/2,k−Ey,n

i, j−1/2,k||2
||Ey,n

i, j−1/2,k||2
; (3.51b)

∆Hx =
1
nv

Iz

∑
k=Nz,l

p

Iy

∑
j=Ny,l

p

Ix

∑
i=Nx,l

p

||Hx,a
i, j−1/2,k−1/2−Hx,n

i, j−1/2,k−1/2||2
||Hx,n

i, j−1/2,k−1/2||2
; (3.51c)

∆Hy =
1
nv

Iz

∑
k=Nz,l

p

Iy

∑
j=Ny,l

p

Ix

∑
i=Nx,l

p

||Hy,a
i−1/2, j,k−1/2−Hy,n

i−1/2, j,k−1/2||2
||Hy,n

i−1/2, j,k−1/2||2
, (3.51d)

where superscripts a and n denote analytical and numerical solutions respectively and nv =

IxIyIz2. For the validation, we choose to have Nx,y,z,l,r
p = 10, f = 1kHz, σ = 0.1 and I =

0.1A. The PML used here makes cells progressively larger in the exterior cells to mimic the
in�nity limit in an unbounded domain. This is achieved by applying the length scales in
(3.50) to the PML cells.

Instead of computing those in (3.51), we compute a subset of them. We dismiss two cells
deep from the PML in our error estimate. These cells are irrelevant in our error estimate
because they will not be used to measure data. The di�erence in error with and without
these cells is marginal.

Let us now show a surface plot of the relative errors shown in (3.51), for all (i, j) with k

2Note that we have no error estimate for Ez due to this quantity being 0, since the source is z directed
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�xed. We �x k such that it is close to the source.
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Figure 3.10: Surface plots for error estimates ∆Ex,∆Ey,∆Hx and ∆Hy for i, j = Nx,y,l
p +

2, . . . ,Nx,y−2, k �xed.

Figure 3.10 shows the relative error for the electric and magnetic �elds. We see that the
relative error peaks at the centre of our grid. This is expected as the source location is placed at
the centre in (i, j), so we should obtain greater error in this location as we try to approximate
the dipole source by a small rectangular loop whose dimensions are hx

i ×hy
j. Therefore, we

expect that near the source the numerical method has inaccuracies. Even though this occurs
near the source, propagation of error for the rest of our domain is minimal; as can be observed
in the total relative error. In the numerical experiments, we apply a �lter nearby sources so
that these inaccuracies of the forward model do not penalize the inversion.
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Figure 3.11: Relative error plot showing signi�cant peak at source cell.

Figure 3.11 shows the middle row of the electric �eld for i= j and �xed k. We �nd that the
error begins to creep up at the boundaries due to the placement of a PML region outside the
interior cells. Explicitly, the PML discrete functions are coupled with some of the interior
ones, therefore the error propagates into the interior domain.

Quantity Percentage
∆Ex 2.149%

∆Ey 2.133%

∆Hx 8.632%

∆Hy 8.588%

∆Hz 13.803%

Table 3.1: Error percentages in electromagnetic quantities E and H.

Table 3.1 shows the total relative error across the entire grid. The relative error of our
numerical solution with the harmonic magnetic dipole analytical solution seems to be reas-
onable. The error percentages in the magnetic �eld are noticeably higher because they are
computed using numerical di�erentiation. This is because H is post processed using (1.6a).
Though all these errors in the table above can be improved upon by employing an adapt-
ive grid in the neighbourhood of source cells. We note here that accuracy of the forward
model is important in context of the inverse problem (discussed in chapter 2). In particu-
lar, the electromagnetic quantities measured at the receiver locations must be accurate, as
they underpin the gradient function (shown in 2.43). As discussed in chapter 2, the gradi-
ent function forms a crucial component in the optimization process for �nding solutions to
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the inverse problem described in this thesis. In our experiments we use electric �eld loops as
the electromagnetic measurements, meaning the post-processed H quantities are irrelevant
in context of the inverse problem considered here. We also note here that if a joint inver-
sion was to be considered as part of future work, involving both electrical conductivity and
magnetic permeability, then we would require greater accuracy in H, as it would form the
gradient function with respect to the magnetic permeability. For more information on error
convergence and analysis of the FVM presented in this chapter, see [52].



CHAPTER 4

Numerical Results

Following validation of the numerical solver for Maxwell’s equations in the frequency
domain, we are now in a position to �nd numerical solutions of the reconstruction

schemes described in chapter 2. This chapter provides new numerical results of the novel
reconstruction schemes described in chapter 2. The inversion routines are also written in
Python alongside the forward solver.

This chapter is split into two main components. The �rst, section 4.1, shows numeric-
als results for three inversions, each using di�erent regularization schemes from chapter 2.
These are: single level set inversion (algorithm 5), traditional L2-based inversion (algorithm
1) and sparsity regularized pixel-based inversion (algorithm 2). Some results in section 4.1 are
also found in the publication written in section 1.3. The second component, beginning in
section 4.2, shows results also for three inversions. These are: color level set inversion (al-
gorithm 6), single level set inversion (algorithm 5) and traditional L2-based inversion (al-
gorithm 1). Some of these results are also found in the submitted paper listed second in
section 1.3. All numerical experiments here are designed for the near-�eld electromagnetic
imaging problem described in section 1.2, though the reconstruction schemes themselves are
not restricted to this setup.

114
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4.1
Sparsity and single level set experiments

In this section, we describe the setup for numerical experiments involving algorithms 1, 2
and 5. We model a cube-shaped container by a domain Ωh = [3]× [3]× [3]m3. The domain
Ωh is divided into [20]× [20]× [20] uniform rectangular grid cells, each of them having
dimension [0.15]× [0.15]× [0.15]m3. Sources and receivers are located along two planes
with constant z coordinates, opposing each other at both sides of the box (see �gure 1.1).
There are no sources or receivers facing the other four sides of the domain. We equip Ωh

with a homogeneous background conductivity, shielded walls on all six sides, and some un-
known embedded object(s). The shielded walls have dimensions [3]× [3]× [0.30]m3 on
the two sides parallel to the xy plane, and the same but shifted dimensions for the corres-
ponding coordinates at the other four sides. These shielded walls are composed of material
with conductivity b = 0.1. We choose to use two distinct phantoms; the �rst consists of
two rectangular small cuboid inclusions embedded in the interior of our domain of interest,
and the second is a horizontal torus shaped inclusion. We choose both phantoms to be com-
posed of material with conductivity b = 0.5. The remaining space (not occupied by those
inclusions) is �lled with air, which is assumed here to have a homogeneous background con-
ductivity b0 = 1× 10−8. A summary of chosen conductivity values for these numerical
experiments is shown in Table 4.1.

Table 4.1: Conductivity parameters used for numerical experiments in section 4.1.

Domain Characteristic b

Background 1×10−8

Unknown Inclusions 0.5
Shields 0.1

Moreover, a single frequency f = 1MHz is used. We consider (ns,nr) = (16,100),
where the distribution of these sources and receivers follow that in �gure 1.1. Each source has
dimension [0.60]× [0.60]× [0.15]m3 and each receiver has dimension [0.15]× [0.15]×
[0.15]m3. Furthermore, we excite each source (electric wire loop) with an electric current
I j = I = 0.1A.

The discretization of the Maxwell model in (1.7a, 1.7b) follows the scheme described in
[6, 7, 51, 52] and is implemented in the programming language Python. See those references
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or the brief overview in chapter 3 for more details. The scheme discretizes a vector potential
formulation of (1.7a, 1.7b) and integrates over �nite volumes to �nd a discrete Maxwell sys-
tem. We then solve the discrete Maxwell system iteratively using the BiCGSTAB algorithm,
with tolerance 10−4. A simple post-processing step is then performed to obtain the electro-
magnetic �elds E and H from the vector potential.

In all numerical experiments considered here, including the next section, we use synthet-
ically generated data using the same forward modelling scheme, but add 1% white Gaussian
noise to the data before its use as data in the inversion process. Therefore, the true electro-
magnetic data d j admits a decomposition

d j = M jÊ j(x)
(
1+ cε j

)
,

where Ê j(x) is the electric �eld generated by the true phantom, ε j ∼ N (0,1), c ∈ R is
a scaling parameter that dictates the noise level and M j is de�ned in (2.22). The �rst set
of numerical experiments assume the computational setup described above, and should be
assumed for others unless otherwise stated. The numerical experiments in this section are
structured as follows:

1. LK-Single level set reconstructions using algorithm 5;

2. LK-Pixel (traditional L2-based) reconstructions using algorithm 1;

3. LK-Sparsity reconstructions using algorithm 2.

For the pixel-based reconstructions, we display cross-sections of the recovered conductivity.
For the level set reconstructions, we consider cross-sections and three-dimensional surface
plots. Such surface plots are available for this technique as the interior conductivity is single-
valued by de�nition of the level set method. Therefore, the recovered conductivity admits
two values; the background and target conductivity. We use the line search criteria for the
LK-Sparsity scheme once for each true phantom and use the resultant parameter τ0 for all
sparse reconstructions, with respect to each experiment. Moreover, we will show corres-
ponding plots for the evolution of the step sizes τs, N, if applicable, against the sweep num-
ber s and a pseudo cost measurement which we will discuss. We also provide comparisons
of the three methods afterwards.

In more technical aspects, for the single level set inversion, we have chosen in these nu-
merical experiments the intervals Itarget = [Nin f ,Nsup] where Nin f = 0 and Nsup = 25,
I′target = [N̂low, N̂high] where η = 1/5, S = 200, Nlow = 1

4Nsup and Nhigh =
3
4Nsup. These
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are our parameters for the dynamic intervals described in (2.64, 2.65). Bounds of the admiss-
ible interval range Itarget are displayed in block black lines and bounds of the desired region
I′target are shown with dashed green lines.

The level set representation does not include the shielded regions. These are added to the
conductivity pro�le once it has been de�ned by φ1, for both data generation and when the
level set functions are updated. We initialize φ1 as an ellipsoid in the centre of the domain.
This initial guess isn’t optimized, since using other inversion techniques may give inference
as to where initial guesses should be placed. But for our purpose, a centred initial guess for
φ1 su�ces. This setup also applies to each level set function in the color level set regime
described in section 4.2.1 onwards.

4.1.1
LK-Single level set reconstruction with correctly chosen

contrast value

Shown in �gure 4.1 are 2D slices of 3D LK-Single level set reconstructions for two separate
phantoms. The top two rows display the true phantom and the reconstructed image, where
the true phantom in this case resembles two isolated objects. The bottom two rows display
the same, but in this case the true phantom resembles a torus. By observation, the level set
scheme has managed to distinguish the two isolated objects and has recovered parts of the
torus, demonstrating that the level set method is successful in this scenario. This is more
apparent in the 3D surface plots shown in �gure 4.2.

Figure 4.3 shows evolution of the average number of voxels N that change per sweep and
its relationship with the step size τs, where in this case τs denotes the initial step size for the
input to the backtracking line search function for each source update in the sth sweep. The
algorithm attempts to keep N ∈ I′target for each sweep s by adjusting τs according to the line
search scheme discussed in section 2.1.3.2.

In the LK scheme considered here, we have immediate access to the residuals R j[b j]
s

where s denotes the quantity at sweep s. However, to calculate the true cost after one com-
plete LK sweep we need to compute ∑

ns
j=1 R j[bns]

s, meaning we would have to compute
ns− 1 additional forward solves. To avoid these computational costs, we approximate the
actual residual R [b]s with a pseudo-residual. Mathematically speaking

R [b]s =
ns

∑
j=1

R j[bns]
s ≈ R̃ [b]s =

ns

∑
j=1

R j[b j]
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Figure 4.1: 2D cross-sections through two types of 3D LK-Single level set reconstructions.
Top row: 2D cross-sections through �rst true phantom. Left z = 44, middle x = 17, right
y = 26.
Second row: The corresponding 2D cross-sections through the level set reconstructions at
sweep number s = 100.
Third row: 2D cross-sections through second true phantom. Left z = 40, middle x = 18,
right y = 17.
Fourth row: The corresponding 2D cross-sections through the level set reconstructions at
sweep number s = 100.
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Initial Shape s = 5 s = 10 s = 40

s = 80 s = 100 s = 150 True Phantom

Initial Shape s = 5 s = 10 s = 40

s = 80 s = 100 s = 150 True Phantom

Figure 4.2: Surface plots of 3D shape evolution. Shown are (from left to right) the initial
shape, snapshots at iteration numbers s = 5,10,40,80,100,150, and the true phantom.
Top two rows: for �rst true phantom; Bottom two rows: for second true phantom.
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Figure 4.3: Evolution of line search parameters N,Gτs (Giga τs) and of the pseudo-cost
mJ [b]s (part per thousand) against iteration number. Top: for true phantom (1); Bottom:
for true phantom (2).
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resulting in a pseudo-cost functional:

J̃ [b]s = ||R̃ [b]s||2L2(Ω). (4.1)

This cost be computed on the fly per sweep, and is used throughout the numerical experi-
ments as the cost measurement. From experiments, the true cost tends not to di�er signi-
�cantly to the quantity in (4.1) and can be viewed as a lagged cost measurement. For that
reason, we label the cost plot using J , when in reality we are actually computing that in (4.1).
By observation of �gure 4.3, we see that the pseudo-cost converges as the sweeps progress.

4.1.2
LK-Single level set reconstruction with incorrectly chosen

contrast value

In the �rst two numerical experiments described in �gures 4.1-4.3, the level set method per-
forms well in recovery of location and shape under the assumption that interior and exterior
values of conductivity are known. Let us now test how stable level set reconstructions are
when some a priori information is incorrect in this application. We consider a level set rep-
resentation of the conductivity whose contrast values are incorrectly prescribed. We model
this as:

b̃(φ)(x) = wbi(1−H(φ))+beH(φ), (4.2)

where w ∈R+ indicates the deviation factor from the correct value of the internal conduct-
ivity. Firstly, we generate electromagnetic data for the true phantom with conductivity bi for
objects and be for the background. Then, we apply the LK-Single level set algorithm with
an incorrectly chosen interior value wbi throughout the reconstruction. We refer to w > 1
and w < 1 as overestimating and underestimating respectively.

Figure 4.4 shows behaviour of the LK-Single level set scheme under an incorrectly chosen
interior value for both true phantoms considered in the previous section. For this experi-
ment, we choose the level set representation given in (4.2) with w = 1/2, to represent the
conductivity pro�le. By observation of this 3D surface plot representation of the conduct-
ivity shown in �gure 4.4 we see that the algorithm responds to the modelling error of un-
derestimating bi by recovering the inclusions with a similar shape as the correct one, but
slightly ‘in
ated’, i.e. covering a larger volume. This is still acceptable in situations where the
main goal is to identify and locate certain target objects, such as threats hidden in boxes or
containers or certain objects hidden in caves or rooms.
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Figure 4.5 show behaviour of the 3D LK-Single level set reconstruction scheme with an
overestimating parameter w = 2. By observation, we see a reversal of behaviour compared
with w = 1/2. In particular, the algorithm recovers smaller ‘de
ated’ objects in response
to an incorrectly overestimated interior conductivity value. Though the general location of
embedded objects were recovered correctly. However, due to smaller reconstructions and in
compensation to the incorrectly assumed higher internal conductivity value, much of the
shape (material) is missing.

In summary, the LK-Single level set algorithm performs well when the interior conduct-
ivity value is approximately consistent with that of the true phantoms. The location and
shape are reasonably accurate, given shielding and low frequency f . From this, it is clear that
the algorithm can detect enough information in the electromagnetic data to reconstruct such
images. We have demonstrated that it can reconstruct multiple objects with complex topo-
logies. Furthermore, the algorithm still performs well under slightly incorrect assumptions
on the interior conductivity values. The chosen scaling parameter w was small and constant
but it is encouraging that the algorithm has robustness in these situations. Whilst this is en-
couraging for stability in single level set reconstruction schemes, we demonstrate that this
behaviour can lead to further complications when considering a more realistic a priori con-
ductivity pro�le.
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Initial Shape s = 5 s = 10 s = 40

s = 80 s = 100 s = 150 True Phantom

Initial Shape s = 5 s = 10 s = 40

s = 80 s = 100 s = 150 True Phantom

Figure 4.4: Surface plots of 3D shape evolution with w= 0.5. Here the internal conductivity
value is assumed to be b = 0.25 during the reconstruction instead of the correct value b =
0.5. Shown are (from left to right) the initial shape, snapshots at iteration numbers s =
5,10,40,80,100,150, and the true phantom. Top two rows: �rst experiment; Bottom two
rows: second experiment.
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Initial Shape s = 5 s = 10 s = 40

s = 80 s = 100 s = 150 True Phantom

Initial Shape s = 5 s = 10 s = 40

s = 80 s = 100 s = 150 True Phantom

Figure 4.5: Surface plots of 3D shape evolution with w = 2. Here the internal conductivity
value is assumed to be b = 1.0 during the reconstruction instead of the correct value b =
0.5. Shown are (from left to right) the initial shape, snapshots at iteration numbers s =
5,10,40,80,100,150, and the true phantom. Top two rows: �rst true phantom; Bottom
two rows: second true phantom.
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4.1.3
Pixel-based L2-reconstruction of conductivity pro�le

Figures 4.6 and 4.7 show L2-based reconstructions of both true phantoms using algorithm
1. By observation, even though they provide some indication of the presence and location
of the two isolated objects in one of the experiments, the reconstructions are worse when
compared with the LK-Single level set reconstruction. However, the level set approach uses
stronger assumptions on the nature of conductivity pro�le inside the domain of interest,
which is rewarded with better estimates of shapes.

Figures 4.8 and 4.9 show LK-Sparsity reconstructions of both true phantoms using al-
gorithm 2. We note that the gradient of the conductivity between neighbouring cells in non
zero regions increases as one reduces the threshold parameter. This behaviour has its draw-
backs; as can be seen in the recovery of the torus. Due to compounded discardment of the
gradient, we see that topology of the reconstruction has changed (i.e. no holes). In both re-
constructions, as we reduce the thresholding term, the reconstructions become increasingly
similar to results of the standard L2-based approach (shown in �gure 4.6). This is to be
expected, as LK-Sparsity regularizes the pixel-based problem. Lowering the threshold para-
meter puts greater emphasis on minimizing the data mis�t term in the cost functional. Insist-
ing on a sparse conductivity pro�le can allow the recovered shape to be distorted, therefore
care must be taken when choosing the threshold parameter. Figure 4.10 shows two com-
parisons. The �rst is between the data mis�t and the sparsity level Λ and the second each
reconstruction scheme and their data mis�ts. As we reduce the sparsity thresholding term,
we see that the data mis�t is shifted by a factor downward. This is due to the scheme putting
less emphasis on minimizing the second term in the sparsity cost functional. In comparison
with the reconstructions in �gures 4.8 and 4.9, this is consistent; as increasing the threshold
resulted in the reconstruction resembling the true phantom less. As we lower the threshold
parameter, the cost curve shifts closer to the traditional L2-based cost.

The comparison between reconstruction schemes is interesting, as di�erent regulariza-
tion have produced similar data mis�t values. For example, LK-Single level set and LK-Pixel
have an almost identical data mis�t value for the torus, even though the techniques and re-
constructions are wildly di�erent.

At the bottom of �gure 4.10 shows a line plot of the diagonal in each reconstruction
at the stated z. It highlights the behaviour of each reconstruction scheme compared to the
true phantom. By observation of the line plots for the �rst true phantom, we can see peaks
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Figure 4.6: 2D cross-sections of 3D L2-based reconstructions for two true phantoms.
Top row: 2D cross-sections of �rst true phantom. Left z = 44, middle x = 18, right y = 27.
Second row: 2D cross-sections of L2-based 3D reconstruction for �rst true phantom, at
sweep s = 100.
Third row: 2D cross-sections of second true phantom. Left z = 40, middle x = 18, right
y = 17.
Fourth row: 2D cross-sections of L2-based 3D reconstruction for second true phantom, at
s = 100.
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Figure 4.7: Evolution of line-search parameter kτs (kilo τs) and the pseudo-cost mJ [b]s
against sweep number s for the L2-based reconstruction. Top: for �rst true phantom; Bot-
tom: for second true phantom.
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Figure 4.8: Top: 2D cross-sections of �rst true phantom. Left z = 44, middle x = 17, right
y = 26. Second - Fifth row: 2D cross-sections of a LK-Sparsity reconstruction, at s = 100
for various (τ,d1).
Second Row: (τ,d1) = (7.7413×105,1.20) Third Row: (τ,d1) = (7.7413×105,0.95)
Fourth Row: (τ,d1) = (7.7413×105,0.80) Fifth Row: (τ,d1) = (7.7413×105,0.60).
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Figure 4.9: Top: 2D cross-sections of second true phantom. Left z = 40, middle x = 18,
right y = 17. Second - Fifth row: 2D cross-sections of a LK-Sparsity reconstruction, at s =
100 for various (τ,d1).
Second Row: (τ,d1) = (8.1413×104,0.60) Third Row: (τ,d1) = (8.1413×104,0.40)
Fourth Row: (τ,d1) = (8.1413×104,0.20) Fifth Row: (τ,d1) = (8.1413×104,0.10).
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Figure 4.10: Comparison of LK-Single level set, LK-Pixel and LK-Sparsity methods.
Top Row: Evolution of the pseudo-cost for both experiments (Left: isolated objects, Right:
torus) with varied sparsity level d1.
Second Row: Evolution of the pseudo-cost for methods LK-Sparsity, LK-Single level set and
LK-Pixel for both true phantoms (Left: isolated objects, Right: torus).
Bottom Row: Line plots of the diagonal for constant z for both experiments (Left: isolated
objects (z = 44), Right: torus (z = 40).
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in the same region as the true phantom across all three reconstruction schemes, with LK-
Sparsity attempting to zero �ll where there is no object. The smooth behaviour of the LK-
Pixel scheme is also clear to see. Recovering the torus is more di�cult for all three recon-
struction schemes, with both LK-Pixel and LK-Sparsity struggling to recover where the true
object is located. We also see LK-Sparsity being strictly lower than LK-Pixel in this line plot.

In this section, we have shown two numerical experiments involving two new recon-
struction algorithms for imaging shielded containers using near-�eld electromagnetic data.
A comparison of the performance for our two proposed reconstruction schemes was made
with an established scheme. The �rst new algorithm solves a shape-based EM inverse prob-
lem by adapting general ideas described in [35, 39] for application in this new challenging
situation. The second one solves a pixel-based inverse problem but promotes sparsity in the
solution through regularization. The method used here follows that proposed in [100] (for a
di�erent 2D imaging modality) and extends it to 3D imaging from near-�eld electromagnetic
data.

The performances of all three algorithms are promising for constructing a general pur-
pose algorithm. However, when a priori knowledge is available, indicating that inclusions
with small compact support and signi�cantly higher internal conductivity value are present
in the domain of interest, then both the sparsity regularized and the level set based shape
evolution approach perform better than the standard L2-based scheme. This is true even
in situations where the L2-based scheme reduces the least squares data mis�t functional to
the same extent as the other two schemes. Due to the additional constraints included in the
sparsity and level set based algorithms, reconstructions are more likely to yield results which
are in agreement with such prior information.

4.2
Color level set experiments

The experiments outlined in the previous section are encouraging for building a general
purpose algorithm in this application aswell as motivating research into more complicated
scenarios. In this section, we perform numerical experiments using the novel reconstruction
scheme outlined in algorithm 6.

Here, we introduce the setup for numerical experiments involving the color level set re-
gime as introduced in chapter 2.We use the LK-Color level set scheme, as described in al-
gorithm 6, for the near-�eld electromagnetic imaging problem described in section 1.2. We
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choose to model such a region as cube-shaped by a domain Ωh = [3]× [3]× [3]m3. We then
divide this region into uniform rectangular cells; each with dimension [0.15]× [0.15]×
[0.075]m3. Sources and receivers are located in the same manner as the �rst set of numer-
ical experiments. Here we use algorithm 6 for two di�erent experiments, both of which
involve placing two objects with di�ering constant conductivities in a background conduct-
ivity pro�le resembling air. The �rst is an object embedded inside another, whereas the
second resembles two isolated objects. In both numerical experiments, we choose the un-
known inclusions to be shielded by a cage with conductivity b= 0.1. Moreover, we consider
ns = nr = 16 with the source and receiver distributions following the setup in �gure 1.1 and
a frequency f = 1MHz. Each source and receiver has dimension [0.6]× [0.6]× [0.075]m3,
with the sources being excited with an electric current I j = I = 0.1A. The conductivities
used in the two numerical experiments are shown in Table 4.2. In context of the imaging
problem, b3 is considered to represent conductivity of air and b1,b2 represent bodies of wa-
ter with di�ering conductivities. This particular setup, for example, could resemble soil and
biological material (e.g. meat) enclosed in wooden boxes. For other high-contrast situations,
such as in industrial process control, where you want to monitor pipes containing various li-
quids and gases with di�ering conductivities, color level set methods as introduced here can
be adapted to represent these situations. For more information on those applications, see
[79, 128].

Table 4.2: Conductivity parameters used for numerical experiments in section 4.2.

b1 b2 b3

Numerical Experiment 1 0.5 10.0 1×10−8

Numerical Experiment 2 0.5 1.0 1×10−8

The conductivity values shown in table 4.2, as well as those described in table 4.1, rep-
resent high-contrast conductivity values. Both scenarios are particularly challenging as the
high-contrast values distort the sensitivity functions. Moreover, due to the smooth beha-
viour of the L2−based gradient (which is composed of sensitivity functions), it is di�cult
to build a high-contrast interface with a �nite number of smooth updates. For further ana-
lysis, we refer to [37] and for other imaging applications involving color level set inversion
for high-contrast multi-phase materials see for example [3].
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4.2.1
LK-Color level set inversion for Numerical Experiment 1

In the �rst numerical experiment we have chosen Im
target = [0,26], and in the second Im

target =

[0,117]. Note that these numbers for Nm
sup are not arbitrary; they are chosen as a percent-

age of the total number of interior cells. Furthermore, we choose ηm = 1/5, S = 200 and
[Nm

low,N
m
high] = [1

4Nsup,
3
4Nsup] for both experiments. Note that these intervals are constant

with respect to m, but other choices are also possible. These are the parameters that de�ne
the dynamic intervals in (2.64, 2.65) for the line search criteria. Along with images of the
color level set reconstruction, we also display information on the line search criteria. We dis-
play the admissible interval range Îm

target as block black lines and bounds of the desired region
Î′mtarget are shown in dashed green lines. Figure 4.11 shows 2D cross-sections of a 3D LK-Color
level set inversion involving two level set functions for Numerical Experiment 1. Shown are
various snapshots of the shape evolution from the top (initial guess) to the bottom (true
phantom). In addition to �gure 4.11, �gure 4.12 shows a 3D view of the reconstruction at
various sweep snapshots. From both of these �gures, we observe that as the algorithm con-
verges (by the pseudo-cost metric), the reconstruction manages to capture the main topolo-
gical characteristics of the true phantom. This is quite impressive considering that each of
the three conductivities present in the true phantom are high-contrast with respect to each
other. Moreover, we have used a small amount of data in comparison to the grid size (the
number of data points is approximately 1% of the total number of unknowns), and only one
�xed frequency. This could possibly be improved by using information from a broadband
of frequencies for the reconstruction task. This would involve incorporating an additional
loop over a set of frequencies into the reconstruction schemes.

Figure 4.13 shows reconstruction information of Numerical Experiment 1. In the top
�gure, we observe the average number of voxels that change each sweep for both level set
functions (yellow dotted line: φ1, black dotted line : φ2). The top black line descends as the
algorithm progresses, making the admissible interval smaller. This induces Î′mtarget to also be
smaller, meaning acceptance of an update is more di�cult. We see that the average number
of voxels changing hands reduces over the lifespan of the reconstruction scheme. This is
a consequence from the descending linear lines which form from the dynamic acceptance
interval.
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Figure 4.11: 2D cross-sections through a 3D LK-Color level set reconstruction for Numerical
Experiment 1.
Each row: Left z = 25, middle x = 15, right y = 18.
1st row: Initial guess, 2nd row: s = 60 sweeps, 3rd row: s = 125 sweeps, 4th row: s = 500
sweeps and 5th row: true phantom.
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Analogous to that in (4.1), we use a pseudo-cost which is cheap to compute. The pseudo-
cost in the level set case is de�ned as

J̃ [Φ] =
ns−1

∑
j=0

J j[Φ j], J j[Φ] = ||T j(Φ)||2L2(Ω),

and can be viewed as a lagged cost. It is signi�cantly less expensive to compute than the actual
cost after each sweep, since it can be calculated during the inversion. Signi�cant di�erences
between the pseudo and true cost have not been observed in the level set regime when choos-
ing to calculate both in experiments. In this particular example, observing the middle �gure,
we see that the algorithm has managed to �nd a step size which allows Nm ∈ Î′mtarget for the
majority of sweeps. The bottom �gure shows the pseudo-cost each sweep, which decreases
as the algorithm progresses, meaning the error between data generated by the reconstructed
shape and the true shape is becoming smaller.
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Initial Shape s = 5 s = 25

s = 50 s = 100 s = 200

s = 400 s = 500 True Phantom

Figure 4.12: Surface plots of 3D shape evolution when using LK-Color level set reconstruc-
tion scheme with two level set functions for Numerical Experiment 1. Shown are the initial
shape, snapshots at sweep numbers s = 5,25,50,100,200,400,500 and the true phantom.
The colour red indicates the shape of the conductivity b2 and blue indicates the shape of the
conductivity b1.

It appears the level set inversion algorithms compensate for false interior values by grow-
ing or shrinking the corresponding interior shape, depending on whether the false values
were an under or over estimation of the true interior conductivity. The experiments in [58],
also presented in section 4.1.3, suggest that a small object with high conductivity is roughly
equivalent to a large object with low conductivity in the data mis�t. We will also observe this
behaviour when using the single level set inversion for Numerical Experiment 1. It is tricky
to say whether this occurs in the color level set regime since this scheme can adjust multiple
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domains to �t the data.

Figure 4.13: Line search analysis of LK-Color level set reconstruction for Numerical Exper-
iment 1. Top Row: Evolution of the average number of voxels N as a function of the sweep
number s. The dotted yellow line represents N1

s and the black line represents N2
s . Middle

Row: Evolution of the step sizes τ1
s and τ2

s each denoted by yellow and black dotted lines re-
spectively. Bottom Row: Evolution of pseudo-cost J̃ [Φ]s as a function of the sweep number
s.

Figure 4.14 shows surface plots from a LK-Color level set inversion involving three level
set functions for a slightly altered version of the true phantom in Numerical Experiment
1, where b1 = 0.5, b2 = 10.0, b3 = 50.0 and b4 = 1× 10−8. The level set formulation,
which in this case involves three level set functions, follows the setup described in (2.70). We
introduce an additional conductivity to make it more di�cult for the algorithm to recover
the present high contrast materials. From observation of the snapshots, the inversion scheme
manages to recover locations of b1, b2 and b4 reasonably well. However, b3 has shrunk signi-
�cantly in the �nal reconstruction. Whilst some of the shape is still present, b1 is larger than
in the true phantom therefore it could be that this has a similar mis�t to the data as having a
larger shape associated with b3, for reasons already discussed.
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Sweep s = 5 Sweep s = 5 Sweep s = 5

Sweep s = 100 Sweep s = 100 Sweep s = 100

Sweep s = 950 Sweep s = 950 Sweep s = 950

True Phantom True Phantom True Phantom

Figure 4.14: Surface plots of 3D shape evolution using LK-Color level set reconstruction
scheme with three level set functions for altered Numerical Experiment 1. Shown are sweep
snapshots at iteration numbers s= 5,100,950 and the true phantom, for three orientations.
The colour red indicates the shape of the conductivity b2, blue indicates the shape of the
conductivity b1 and yellow indicates the shape of the conductivity b3.
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4.2.2
Comparison of regularization schemes

Figure 4.15 shows a comparison of the color level set inversion scheme with other reconstruc-
tion algorithms for Numerical Experiment 1. In particular, we compare the LK-Color level
set scheme with two variants of a single level set inversion and a traditional L2-pixel based
scheme. The two single level set inversions di�er in their a priori information; the �rst as-
sumes that the interior conductivity value in the single level set inversion, which we label bi,
is an arithmetic average of the two present in the true phantom, whereas the second assumes
that bi = b2. The exterior background, be, is assumed to be equal to b3 in both these cases.

The traditional L2-based scheme performs reasonably well given that the true phantom
has relatively high contrast between conductivity domains. The scheme itself promotes smooth
conductivity pro�les whereas in contrast the level set inversion schemes promote non-smooth
conductivity pro�les with sharp edges. Given correct a priori information on the conduct-
ivity value, level set inversion can resolve shape more clearly. However, in this case, when
false a priori assumptions exist, the traditional L2-pixel scheme resolves shape better. This is
quite impressive considering that the a priori information given to the pixel-based schemes
assumes less than that of the level set inversion methods. In part, this happens because the
single level set inversion has been penalized with false assumptions on the interior conductiv-
ity values. More complicated scenarios such as the true phantom for Numerical Experiment
1 do not lend themselves well to the single level set inversion, since fundamentally the method
can only recover shape of two parameter domains. Therefore, we are forced to provide false
a priori information on the conductivity pro�le, since in some sense the single level set in-
version has incompatibility in these scenarios.

As shown in [58], and in section (4.1.1), level set inversion tends to grow and shrink do-
mains to �t the data depending on whether a priori information on the conductivity is lower
or higher than what is present in the true phantom. We observe this phenomenon again in
the LK-Single level set reconstruction displayed in 4.15. When we take the interior conductiv-
ity value to be an average of the two present in the true phantom, we observe an in
ated con-
ductivity pro�le as it is tries to grow the shape to �t the data. We can compare this situation
to the second scenario, whereby we take the interior conductivity value to be the highest in-
terior value present in the true phantom. In comparison, we observe a smaller interior shape
since the interior conductivity is almost double that of the averaged interior values.

The LK-Color level set inversion algorithm performs well in attempting to recover the
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Figure 4.15: 2D cross-sections through 3D reconstructions of di�erent regularization
schemes for Numerical Experiment 1.
Each row: Left z = 25, middle x = 15, right y = 18.
1st row: LK-Pixel , 2nd row: LK-Single level set bi = 1

2

(
b1 +b2

)
, 3rd row: LK-Single level

set bi = b2, 4th row: LK-Color level set and 5th row: true phantom.
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Figure 4.16: Pseudo-cost for four di�erent regularization schemes; LK-Color level set , two
variants of LK-Single level set, and a L2 pixel-based scheme.

true phantom, since the main characteristics of the true phantom are present in the recon-
struction. For example, the scheme has managed to recover a conductivity pro�le that has
the same distinctive separation features (i.e. a portion of b3 is trapped in between b1 and b2).
In comparison, the pixel-based scheme has recovered a smooth conductivity pro�le over the
entire domain, whereas the single level set scheme has recovered an in
ated shape of the true
phantom. The latter is partially due to an undershooting of the true conductivity pro�le in
the a priori information for single level set inversion and that it tends to struggle when trying
to recover more complicated phantoms.

Figure 4.16 shows a comparison of the pseudo-cost for each reconstruction scheme shown
in �gure 4.15. The traditional L2-pixel based scheme has the highest data mis�t value, whereas
the data mis�t of both single level set schemes are relatively close to the color level set scheme
despite a considerably worse reconstruction of the true phantom. The relatively high value
for the traditional L2-based scheme is a little bit surprising, but this could be due to slow
convergence of the LK scheme. Displayed is the pseudo-cost value after s = 500 sweeps,
therefore it is entirely possible that further reduction of this quantity could be achieved by
running the scheme for signi�cantly longer (which however would be impractical in real-
istic applications). Furthermore, it may also be due to the smoothing e�ect of the pixel-
based reconstruction schemes, which makes it di�cult to correctly �t data obtained with a
high contrast model from reconstructions of low contrast. The two-value level set approach
performs better here, but still cannot match the �nal cost value of the LK-Color level set re-
construction scheme in this example. This is certainly plausible, as the color level set model
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agrees best of all with the correct setup of the true phantom and incorporates optimally the
available prior information.

4.2.3
Variability in the true conductivity pro�le

We can test the numerical stability of the color level set regime by increasing the realism of the
true conductivity pro�le inside the container. In this case, we assume that the background
conductivity b1 (other than air which is b3) has some variability. Here, we assume that the
true conductivity pro�le admits the following decomposition:

b(Φ∗)(x) =


ξ(x) in S1 where φ∗1(x)≤ 0

b2 in S2 where φ∗1(x)> 0 and φ∗2(x)≤ 0

b3 in S3 = Ω\(S1∪S2) where φ∗1(x)> 0 and φ∗2(x)> 0.

(4.3)

where ξ(x) is drawn from a probability distribution and the ‘∗’ superscript denotes a level
set function which accurately depicts the true conductivity pro�le. Here we will consider a
comparison between two variations of a normal distribution N and a uniform distribution
U . Therefore, in the two cases, ξ(xi) admits the decompositions

ξ(xi) ∼ N(βb1,αb1); (4.4a)

ξ(xi) ∼ U(b1−δ,b1 +δ), (4.4b)

where α,β,δ ∈ R+ are chosen parameters. Note that the two normal distribution variants
considered here come from choosing two di�erent values of α.

Let us now apply the color level set inversion scheme to this new challenging situation
whereby the true phantom has greater non-triviality. Numerically speaking, we now assign
each cell in S1 to a single draw from a probability distribution without replacement. We
consider three examples; the �rst where ξ(x) is drawn from a normal distribution such that
the conductivity associated with S1 is now slowly varying around b1, the second where ξ(x)
is drawn from a uniform distribution whose mean is b1 and �nally where ξ(x) is drawn from
a normal distribution with mean 2b1.

Figures 4.17, 4.18 and 4.19 depict LK-Color level set reconstructions of a true phantom
where the true S1 is created by using draws from both normal and uniform distributions.
All three �gures show a LK-Color level set reconstruction of a true phantom whereby S1 has
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Figure 4.17: 2D cross-sections through a 3D LK-Color level set reconstruction for altered
Numerical Experiment 1 (using the formulation in (4.3) for the true phantom). Here, ξ(x)
is drawn from a normal distribution with parameters β = 1,α = 10.
Each row: Left z = 23, middle x = 15, right y = 18 Top: True Image, Bottom: LK-Color
level set reconstruction at sweep s = 1000.
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Figure 4.18: 2D cross-sections through a 3D LK-Color level set reconstruction for altered
Numerical Experiment 1 (using the formulation in (4.3) for the true phantom). Here, ξ(x)
is drawn from a uniform distribution with parameter δ = 0.3.
Each row: Left z = 23, middle x = 15, right y = 18 Top: True Image, Bottom: LK-Color
level set reconstruction at sweep s = 1000.
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Figure 4.19: 2D cross-sections through a 3D LK-Color level set reconstruction for altered
Numerical Experiment 1 (using the formulation in (4.3) for the true phantom). Here, ξ(x)
is drawn from a normal distribution with parameters β = 2,α = 2.
Each row: Left z = 23, middle x = 15, right y = 18 Top: True Image, Bottom: LK-Color
level set reconstruction at sweep s = 1000.

a small variability of conductivity associated with it. In comparison to the reconstructions
shown in �gures 4.12 and 4.15, we see that S3 is no longer between S1 and S2 (resembling a
hole in the true phantom). However, S2 still has resemblance with the true phantom and
most characteristics remain from the reconstruction. All three reconstructions are impress-
ive considering many of the conductivity values associated with S1 are not known a priori in
the LK-Color level set reconstruction scheme. Figure 4.19, for example, shows a LK-Color
level set reconstruction of a true phantom where the true conductivity pro�le associated with
S1 has large variability and has mean around twice the value used in the color level set inver-
sion. Although the reconstruction scheme has been heavily penalized with wrong a priori
information, the recovery is quite similar to the �rst two, which is impressive.

Figure 4.20 shows the samples which were generated for the conductivity associated with
S1 for the inversions depicted in �gures 4.17, 4.18 and 4.19, from left to right respectively. In
all three �gures, the red line denotes the value of conductivity b1 which is used in the color
level set inversion scheme. Note that the samples shown in the left and middle �gures do
not seem to inhibit the LK-Color level set inversion in its recovery of the shape, since values
in S1 fall either side of b1. One possibility of this behaviour is that the underestimation
and overestimation of the conductivity associated with S1 in the color level set inversion
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Figure 4.20: Left: Sample of conductivity pro�le in S1 using probability distribution
N(b1,0.05), Middle: Sample of conductivity pro�le in S1 using probability distribution
U(0.2,0.8), Right: Sample of conductivity pro�le in S1 using probability distribution
N(2b1,0.25).

e�ectively cancel each other out when observing the data (the growing and shrinking e�ect
as discussed earlier), since both these reconstructions are similar to that shown in �gure 4.12.

On the contrary, the conductivity values used for the color level set inversion in the right
subplot of �gure 4.20 does not capture the true values well. Impressively, the reconstruc-
tion overall captures the true behaviour of the conductivity pro�le almost as well as the
other two better informed inversions. Figure 4.21 shows a comparison of the pseudo-cost
for each sampling technique. Despite signi�cantly di�erent incorrect a priori information
in the color level set formulation for each inversion, all converge to similar data mis�t values.

Figure 4.21: Pseudo-cost comparison between di�erent sampling methods for creating con-
ductivity pro�le associated with S1.
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4.2.4
LK-Color level set inversion for Numerical Experiment 2

The top plot in �gure 4.22 shows various stages of a 3D LK-Color level set reconstruction
for Numerical Experiment 2. By observation, the algorithm performs well in �rstly locating
objects inside the imaging domain, but incorrectly classi�es the correct conductivity. This is
problematic as we are recovering the incorrect image. Also notice that incorrect classi�cation
has resulted in the algorithm providing compensation for the data mis�t by shrinking or
growing each conductivity domain. Also shown in �gure 4.22 is the line search data. Notice
how some spikes in the pseudo-code match with increases in the step sizes (though these
spikes are reduced in subsequent iterations).

Without showing its result, if the initial guess is 
ipped, in the sense that φ
(0)
1 was changed

to φ
(0)
2 and vice-versa, we recover correct classi�cation and location. Perhaps, this means that

di�erent initial guess’ in the color level set regime provide convergence towards, or in the
neighbourhood, of di�erent local minima.

Much like single level set inversion, color level set inversion also relies on a narrowband
approximation to the Dirac Delta function, meaning that the level set grows and shrinks loc-
ally. It appears that the LK descent directions send the level set functions towards a neigh-
bourhood of local minima that resemble the nearest objects in the mapping of level set func-
tion to conductivity. From observation, it appears that once φ1 and φ2 have converged in
the vicinity of a local minima, their zero level sets grow and shrink to try and compensate
for their incorrect classi�cations. Though this is also possible before convergence. Unfor-
tunately, it is di�cult to say whether correct or incorrect classi�cation is a better recovery,
since in practice we do not have access to the true phantom. Moreover, it appears the com-
pensation yields a similar data mis�t value, therefore trying to use the data mis�t term to see
this incorrect recovery in practice is not useful. However, improving this scenario would be
encouraging for future design of tailor-made algorithms where this same situation arises. We
see more on this in section 4.2.5.

Therefore, in an additional run for Numerical Experiment 2, we choose a portion of
the imaging domain to be randomly selected for placement of an arti�cial object. In this
numerical experiment, we choose each arti�cial object to have length 6 cells in each direction,
resembling a cube seed. This represents 3% of the container contents. To compare with
�gure 4.22, the same initial guess is used for this variant of a LK-Color level set inversion.
For theoretical details on arti�cially placing objects inside the imaging domain see section
2.1.3.4.
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The top plot in �gure 4.23 shows various stages of a 3D LK-Color level set reconstruc-
tion with an initial seeding phase, where γ = 15. The reconstruction is an improvement on
that in �gure 4.22, in both classi�cation and location. Although the seeding process has cor-
rected the reconstruction, it is not immediately clear how successful the process is, since it
is stochastic. Therefore, many simulations need to be performed to see its success (this will
be the focus of section 4.2.5). Performing topological perturbations between sweeps in the
inversion can be seen as a pseudo-initial guess and by experiment they seem to give the al-
gorithm greater chance of recovering conductivity in the correct location. In addition to its
use case in color level sets with classi�cation, we found that the seeding technique was also
useful in single level set inversion. Without going into details, we found the same behaviour
as that in [127]; the seeded single level set was able to recover additional objects that were
present in the true phantom which were otherwise not recovered in single level set inver-
sion without seeding. Figure 4.24 shows a pseudo-cost comparison between two color level
set inversions with and without seeding. Notice how the costs are indistinguishable even
though the reconstructions are di�erent. One has reconstructed conductivity in the correct
location and the other has not. This is problematic as in practice there is no way to decide
which is correct without having access to the true phantom. We discuss this in greater detail
in section 4.2.5. These experiments serve as a proof-of-concept style for the seeding process
as a valid tool to aid level set reconstruction schemes in recovering the correct conductivity
distribution, or at least collect a set of local minima for the inverse problem.
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Initial Shape s = 5 s = 25

s = 100 s = 500 True Phantom

Figure 4.22: Top: Surface plots of 3D shape evolution for Numerical Experiment 2. Shown
are the initial shape and snapshots at iteration numbers s = 5,25,100,500 and the true
phantom. The colour red indicates shape of the conductivity b2 and blue indicates shape
of the conductivity b1. Bottom: The top row shows evolution of N as a function of the
sweep number s. The dotted yellow line represents N1

s and the black line represents N2
s . The

middle row shows evolution of step sizes τ1
s and τ2

s each denoted by yellow and black dotted
lines. The bottom row shows evolution of J̃ [Φ]s as a function of the sweep number s.
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Initial Shape s = 5 s = 25

s = 100 s = 500 True Phantom

Figure 4.23: Top: Surface plots of 3D shape evolution for Numerical Experiment 2 with an
initial seeding phase where γ = 15. Shown are the initial shape and snapshots at iteration
numbers s = 5,25,100,500 and the true phantom. The colour red indicates shape of the
conductivity b2 and blue indicates shape of the conductivity b1. Bottom: The top row shows
evolution of N as a function of the sweep number s. The dotted yellow line represents N1

s

and the black line represents N2
s . The middle row shows evolution of step sizes τ1

s and τ2
s

each denoted by yellow and black dotted lines. The bottom row shows evolution of J̃ [Φ]s.
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Figure 4.24: Comparison of pseudo-cost J [Φ]s for LK-Color level set inversion with seeding
and LK-Color level set inversion with no seeding.

4.2.5
Seeding study

The results in the previous section suggest that it is possible to probe the imaging domain
with arti�cial objects in order to escape unwanted local minima. Since we are unaware of
what is contained in the imaging domain, locations for placing arti�cial objects must be
chosen according to some random rule.

In our setup, minimizing (2.71) is a stochastic process, as Ω2 is typically chosen at ran-
dom. Though if other information becomes available, suggesting that some locations are
more favourable, then those locations should be used. However, in general, the seeding pro-
cess is stochastic. The result in �gure 4.23 is encouraging, although we cannot expect to
recover this result for each instance of algorithm 6, given that γ > 0. To quantify how suc-
cessful the stochastic process is, we consider N samples of the color level inversion for the
true phantom in Numerical Experiment 2 with the same initial guess and γ = 15. As men-
tioned, it is not always guaranteed to �nd the correct classi�cation as in �gure 4.23. In fact,
we may end up with distinct reconstructions which resemble local minima of the cost func-
tional. We hope to capture this set of distinct local minima (i.e. those that give di�erent clas-
si�cations, locations, etc) such that we can infer from this information. Here we provide a
proof-of-concept study, where the true phantom is known and can be compared with the re-
constructions. We �rstly consider a stochastic sampling of the color level set inversion whose
initial guess was chosen such that it would incorrectly classify conductivity.
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As observed in �gure 4.24, the pseudo-costs associated with reconstructions with and
without seeding (i.e. correct vs incorrect classi�cation) are indistinguishable. It seems using
the pseudo-cost to determine whether a reconstruction has correct conductivity in the cor-
rect location is infeasible. We test this by considering multiple color level set inversions. We
introduce some measurements which help in the analysis. These are:

J̃ [Φ] =
1
S

S

∑
s=1

J̃[Φ]s;

Vs = g(bs−b∗), V =
1
S

S

∑
s=1

Vs,

where J̃ [Φ] is the average pseudo-cost of an inversion after S sweeps, bs is the conductivity
pro�le at sweep s, b∗ is the true conductivity and g(·) is a function which counts the number
of non zero entries in its input. Hence, Vs is the total number of incorrect voxels at sweep s

and V is the average incorrect voxel count of an inversion after S sweeps. We expect the aver-
age cost and the average incorrect voxel count to be positively correlated for obvious reasons.
Ideally, we can separate inversions into clusters resembling local minima and compare them
with another scenario which seems to arrive at a similar reconstruction each time - regardless
of stochastic seeding. Of those classi�ed into correct and incorrect reconstructions, the ideal
scenario is that the average average pseudo-cost is greater in the incorrect group than correct
group. If this proves to be incorrect then we can conclusively say that the problem cannot
distinguish between these minimizers, by experiment. On the other hand, if it is proved to
be correct, then we can conclude that there is scope for further analysis into why the pseudo-
cost is larger, possibly by collecting a bigger sample for greater con�dence in the result.

Let us begin with Numerical Experiment 2. We decide to compute N = 125 color level
set inversions with an initial seeding phase (γ = 15). Figure 4.25 shows some statistics of
the color level set inversions. The left subplot shows a frequency chart of the inversions and
their average incorrect voxel count. We see that the majority of inversions have above∼ 100
incorrect voxels on average. This is just as pronounced in the right subplot of �gure 4.25,
where we see a cluster of inversions to the right. Unfortunately, whilst the average pseudo-
cost and average incorrect voxel count are correlated, the spread of the cluster is large. In fact,
many of the inversions to the right (which we suspect to be incorrect reconstructions) have
an indistinguishable cost value when compared to those of less than∼ 100 incorrect voxels.

Employing an expert to classify the reconstructions as correct, ambiguous and incorrect
results in �gure 4.26. Those that were de�ned as mostly correct resembled the true phantom
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Figure 4.25: Left : Histogram plot of average incorrect voxels V .
Right : Relationship between pseudo-cost and V . Each point represents one inversion.

with possible minor defect contributions coming from the other internal conductivity, those
de�ned as mostly incorrect had conductivity domains that were mostly in the wrong place
and those de�ned as ambiguous had conductivity domains that were mixed together in both
locations. The classi�cation was performed by looking at one slice in the xy plane (generally
su�cient). Figure 4.27 shows examples of each classi�cation group.

Figure 4.26: Classifying LK-Single level set inversions with bias initial guesses.

As expected, there is a strong correlation between classi�cation and incorrect voxels.
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Figure 4.27: Some examples in each classi�cation group.
1st row: Classi�ed as mostly correct, 2nd row: Classi�ed as Ambiguous, 3rd row: Classi�ed
as mostly incorrect.

What is more interesting, however, is the ambiguity that some inversions provide. In this
problem, it seems that the majority of inversions converge to two distinct local minima (see
�gures 4.22 and 4.23). However, some fail to either grow or shrink the arti�cial objects
(which may be placed on top of each other). Subsequently, they join together forming am-
biguous results, with respect to the true phantom.

Figure 4.28 applies the same classi�cation as that in �gure 4.26, but this time with a non-
bias initial guess. In this case, rather than using the initial guess from Numerical Experiment
2, only the seeding phase is used as an initial guess. In comparison with the bias initial guess,
the non-bias case favours neither local minimum; hinting that the eventual reconstruction
is dependent on the initial guess in this scenario.

Figure 4.29 shows a joint plot of inversions for both bias and non bias initial guesses.
Note that those with the bias initial guess have on average a higher pseudo-cost than those
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which are random guesses.
Figure 4.30 shows a scatter plot of inversions for Numerical Experiment 1. The inver-

sions use random initial guesses generated from an initial seeding phase. A closer observa-
tion of the reconstructions themselves show they appear similar to those in �gures 4.11 and
4.12. This is also re
ected by the classi�cation in �gure 4.30, where the green colour denotes
mostly correct. In Numerical Experiment 1, the true phantom �lls the majority of the ima-
ging domain and is intertwined. Because of this scenario, it could be possible that no other
distinct minimizers in the color level set regime exist for this scenario. For example, the al-
gorithm may not be able to grow or shrink conductivity domains to arrive at a similar data
mis�t. Therefore, the data in this case may point to similar local minima in the color level
set regime.

Since level set approaches provide local updates in the corresponding minimization pro-
cess, it appears that when conductivity domains are not embedded with each other, then
possible ambiguities can occur and more than one distinct solution is common. This obser-
vation is based on the statistical data for both numerical experiments considered in this sec-
tion. The inversion related to the conductivity domains embedded within each other o�er a
similar form of solution when applying seeding from the onset. However the true phantom
in Numerical Experiment 2 o�ers several solutions which �t the data in the color level set
regime. We cannot be sure that topology of the true phantom is its causation, however it is
a reasonable possibility.

Figures 4.28 and 4.29 show no signi�cant distinction of the pseudo-cost for correctly
and incorrectly classi�ed reconstructions. To say with greater certainty, more samples need
to be collected. However, due to the computational expense of such inversions, this is deleg-
ated to future research. The idea of classifying reconstructions motivates the classi�cation
task in appendix A, which focuses on classi�cation of reconstructions using an autonom-
ous approach. The classi�cation employed in this section is an ad-hoc technique to try and
understand why some minimization problems behave di�erently to others.
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Figure 4.28: 2D plot of average residual mJ̃ [Φ] against average incorrect voxels V .

Figure 4.29: Joint 2D plot of average residual mJ̃ [Φ] against average incorrect voxels V for
bias and non bias initial guesses. Above dotted black line are bias inversions and below are
non bias.
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Figure 4.30: Relationship between pseudo-cost and average incorrect voxel count for Nu-
merical Experiment 1. Note that all these inversions have converged to similar conductivity
shapes and are not distinctly di�erent as in Numerical Experiment 2.



CHAPTER 5

Conclusion and Future Work

The main goal of this thesis was to design novel reconstruction schemes for screening
objects enclosed inside electromagnetic shields using electromagnetic data measured

externally. In these situations, high frequency electromagnetic waves cannot penetrate the
shields due to the skin depth. However, low frequency electromagnetic waves can, meaning
information about the contents can elude the shielding and appear in electromagnetic data
measured outside these enclosures.

Novel reconstruction schemes, as outlined in chapter 2, were designed to recover in-
formation about the conductivity pro�le inside the imaging domain (contents of electro-
magnetic enclosures) from electromagnetic data. These schemes were either pixel-based or
shape-based. The former meaning no assumptions were made on the conductivity pro�le,
whereas the latter assumed the conductivity pro�le was known but its shape not. Following
a review of existing methods to solve Maxwell’s equations in chapter 3, we provided numer-
ical results for all new algorithms and compared them against an existing pixel-based scheme.
Whilst low frequency electromagnetic waves can penetrate electromagnetic enclosures, res-
olution in the reconstruction images su�er. The pixel-based schemes, whilst providing some
information about location of objects and some characteristics, consistently underestimated
the conductivity value and the pro�le was typically smoothly splayed out in the imaging do-
main. On the other hand, the shape-based schemes generated impressive reconstructions for
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the situation, particularly when the true contents were chosen to be non-trivial. However,
some ambiguities arose in the shape-based regime. For example, in the single level set case,
where conductivity pro�les are composed of two known values, ambiguities arise when one
of the two values are slightly incorrect. The experiments in chapter 4 con�rm that in these
scenarios, the algorithm can still correct identify locations of objects, but the shape may be
‘de
ated’ or ‘in
ated’ based on whether the incorrect value is above or below the true value.
It seems this behaviour also �lters into the color level set regime. The general location of ob-
jects tend to be recovered with an appropriate initial guess, though the conductivity at some
or all locations can be incorrect and are clearly dependent on the initial guess (as discovered
in chapter 4). To improve this issue, a method which places arti�cial objects inside the ima-
ging domain was introduced. All these results are shown in chapter 4, some are published in
[58] and others are present in the submitted article listed in section 1.3.

The �rst new algorithm solves a shape-based electromagnetic inverse problem by adapt-
ing general ideas described in [35, 39] for application to this new challenging situation. The
second one solves a pixel-based electromagnetic inverse problem and promotes sparsity in the
solution through regularization. The method used here follows that proposed in [100] (for
a di�erent 2D imaging modality) and extends it to 3D imaging. When a priori knowledge is
available, indicating that inclusions with small compact support and signi�cantly higher in-
ternal conductivity value are present in the domain of interest, both sparsity regularized and
level set based approaches perform better than the standard L2-based scheme. This is true
even in situations where the L2-based scheme reduces the least squares data mis�t functional
to the same extent as the other two schemes. Due to the additional constraints included in
the sparsity and level set based algorithms, reconstructions are more likely to yield results
which are in agreement with such prior information.

The third new algorithm is the LK-Color level set reconstruction scheme. Shown in
chapter 4 is a comparison with alternative regularization schemes to see how well it fared
against other new schemes introduced here and existing methods. The scenario considered
in Numerical Experiment 1, as discussed in section 4.2, is more realistic and challenging than
those previously considered for this application (as in section 4.1). Increasing realism of the
problem by choosing a conductivity pro�le with more than two constant domains as the true
phantom, has led to improved results but also to additional challenges. In the LK-Color level
set regime, we found that the increased complexity of the model comes with some new types
of local minima. Some of those local minima resemble incorrect classi�cation of an object’s
conductivity when compared with the true phantom. Here, the seeding process can try to
circumvent some of those issues, or at least give a set of local minima to infer from by other
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means. On the other hand, the increased complexity of the color level set method, compared
to the single level set method, can provide improved results in situations where the correct
content of a shielded box contains multiple conductivity values, as shown in Numerical Ex-
periment 1. In fact, in such situations color level set methods seems to outperform both the
single level set approach and the traditional pixel-based approach. However, in situations
where two or more isolated objects have di�erent conductivity values and are located inside
the shielded box or container, the color level set method does not provide improved recon-
structions when compared with the other methods. Basic characteristics of the overall con-
tent can be inferred from all three of them, but what the color level set inversion converges to
depends greatly on the initial guess and the overall shape evolution. This may result in the �-
nal reconstruction being misleading. This behaviour is highlighted in section 4.2.4 when the
seeding process was employed to avoid local minima. However, even such a scheme is not
able to arrive at the correct �nal characteristics of the individual objects with signi�cantly
increased certainty.

Appendix A presents a methodology for classifying reconstructions generated from some
of the schemes presented in chapter 2. The scheme presented there is entirely disjoint to
the reconstruction schemes and can be seen as a post processing technique. The scheme is
trained using the EMNIST dataset, which is a large collection of images of handwritten di-
gits and letters [24]. The scheme is then applied to images which result from trying to recon-
struct 3D phantoms whose cross-sections resemble digits or letters. The results in appendix
A show that the scheme can correctly identify certain shapes inside the imaging domain and

ag them up as speci�c letters. This methodology can no doubt be extended to more realistic
scenarios where the task, for example, could be to identify sharp objects and/or dangerous
equipment. Since the technique is disjoint to the reconstruction scheme, the identi�cation
will become better as existing reconstruction schemes improve with time. The bottleneck for
correct identi�cation of objects is the reconstruction scheme rather than the trained model
for identi�cation, as the latter is dependent on the amount of data available in the training
set whereas the former is restricted to physics of the problem. As touched upon at the be-
ginning of appendix A, ideally we will move towards classifying electromagnetic data rather
than images which result from speci�c reconstruction algorithms.

There are many possible avenues of research which can follow from the work presented
in this thesis. The inverse problem described in chapter 2 is set up for a single parameter in-
version involving recovery of the conductivity pro�le inside the imaging domain from elec-
tromagnetic data. For a more realistic approach it would be bene�cial to develop a multi
inversion scheme which incorporates recovery of both magnetic permeability and electrical
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permittivity alongside conductivity, since in practice these characteristics may have an im-
pact on the electromagnetic data. Adjustments to the forward problem may need to be made
to incorporate inhomogeneous electrical permittivity, so a starting point may be a joint inver-
sion of conductivity and magnetic permeability as the �nite volume formulation accounts
for inhomogeneity in magnetic permeability. This is currently not a well explored topic and
it would be interesting to see results for a multi inversion in this application. Moreover, re-
gardless of whether the inversion is a single or multi parameter inversion, it would be bene�-
cial to research other regularization schemes which could be appropriate for this application.

Another possibility is to consider real data rather than synthetic data. This may be dif-
�cult, as the equipment and setup of the physical experiments has to have agreement with
the forward solver. Nevertheless, pursuing real data inversion is the gold standard in inverse
problems. The machine learning approach presented in appendix A has many future direc-
tions. One is to create 3D datasets for the training set in the classi�cation problem so that
3D objects can be identi�ed. Another is to use ML techniques to learn the forward/adjoint
operator to reduce computational expensive of solving Maxwell’s equations. Amongst the
lower hanging fruits, synthetic noise could be generated from alternative forward solvers,
di�erent source and receiver set ups could be chosen such that sensitivity functions inside
the imaging domain are optimized and synthetic data could be generated at di�erent grid
sizes to resemble more realistic electromagnetic data. The future research directions out-
lined above are by no means an exhausted list. The sheer amount of possible avenues are a
clear indication that the �eld is in its infancy as there are many things that can be done.



APPENDIX A

Object Classi�cation

In this appendix, we describe a classi�cation task for electromagnetic images which result
from some of the algorithms discussed in the main body of the thesis. This application

hopefully provides incentive for a classi�cation task which involves mapping electromag-
netic data to shapes in the classi�cation, as such a scheme would be signi�cant in the context
of screening applications.

Since the 1950s, a subset of Arti�cial Intelligence (AI), called Machine Learning (ML),
has revolutionized many �elds. This is particularly so in more recent years, as many ML prob-
lems are computationally expensive by design. But with the advent of improving computer
systems, these bottlenecks have reduced and an explosion of innovations have happened in
image classi�cation, object detection, speech recognition, medicine and biology, cancer de-
tection, self-driving cars, amongst many other �elds, see [9, 71, 86, 111] for more detail on
some of those. Another motivation of the increasing innovation in ML are pop culture sur-
rounding famous victories in iconic ancient games. For example, in 1997 the reigning chess
world champion, Garry Kasparov, was defeated by Deep Blue, an AI created by researchers
at IBM [19]. More recently, in 2016, an AI named AlphaGO, created by a team at Deep-
Mind, defeated the world champion Lee Sedol of the ancient chinese game GO. Famously,
one of the moves made by the AI, turn 37, was unexpected and by commentators was seen
to be novel, creative and innovative when observing the state of play retrospectively [113].
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In fact, this turn led many human players to change their strategies following this match.
Since then, DeepMind have gone one step further in 2018 and designed a new AI called Al-
phaGO Zero to compete against AlphaGO. The subtle di�erence between these AIs was
that AlphaGO learnt how to play GO through human players whereas AlphaGO Zero was
self-taught and based on AI play. AlphaGO Zero beat AlphaGO 100-0 in 100 games [114].
Many of these famous victories in iconic games, which require strategy and creativity rather
than brute force, have inspired the next generation of researchers to innovate further.

Here, we focus on one of these exciting applications. In particular, we use object detec-
tion algorithms to determine certain shapes which appear in images resulting from the novel
reconstruction schemes. These certain shapes can be separated into so-called classes, with the
goal being to train an AI to observe images and place them into their correct classes. This is
known as a classi�cation task, and many algorithms have been designed to address this prob-
lem. Some of the most popular methods include Support Vector Machines (SVMs) [63],
Neural Networks [73], Decision Trees [70], k-Nearest Neighbor [27], amongst others. We
use one of these methods for the classi�cation task.

Classifying images which result from solutions to inverse problems using ML is a relat-
ively recent approach, but it has been studied extensively in other imaging modalities, such as
medical imaging [86, 108, 111]. In that case, for example, one is interested in identifying pos-
sible tumours, fractures, damaged bones, amongst other conditions from the reconstructed
image. In the past and still prevalent today, experts observe data produced by an imaging
modality (whether that be x-ray imaging, ultrasound imaging, . . . ) and diagnose patients
based on what they observe. More recently, with the advancement of ML algorithms, this
process is becoming more automated. There has been alternative developments of ML al-
gorithms in inverse problems too. For example, there has been research into developing data-
driven forward operators [115], solving ill-posed inverse problems with neural networks [2]
and learning regularization terms [5]. We will not apply any of these in this thesis, but it
is useful to highlight what could be applied in future research. Here, we consider classify-
ing shapes which appear in electromagnetic images resulting from the novel reconstruction
schemes shown in chapter 2.

In chapter 4, we ‘classi�ed’ inversions using an ad-hoc method. Here, we would like to
demonstrate an automation of the expert observation. The utility of such a method is quite
clear for security screening applications. For example, if a certain shape was 
agged during
an inversion, then the container of interest could be inspected. Here, we develop a classi�ca-
tion scheme which is real time, in the sense that, we apply the classi�cation after each sweep
of the inversion process. In this way, we quantify the behaviour of each inversion technique
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Figure A.1: A schematic of pseudo-3D classi�cation approach. From left to right shows 3D
arrays Ik which are segmented by one axis such that the classi�cation operator C acts on a
slice-by-slice basis. Note that Ik is a function of some method P which generates the array at
sweep k.
Once the classi�cation of each slice has been computed, we then take the mode classi�er as
the resulting classi�cation of the 3D object. In this example, a number 5 has been found to
be the mode classi�er.

as they progress. Note that the classi�cation scheme introduced here is not restricted to the
inversion routines in this thesis. Success of the classi�cation is clearly dependent on the in-
version scheme as they dictate the input space of the classi�cation function. For example,
when developments of reconstruction schemes for low frequency electromagnetic inverse
problems occur, they can be used here. The same can be said for the classi�cation scheme.
Currently, rich datasets of 3D objects are not readily available, therefore we train a classi�c-
ation scheme with 2D images then apply a pseudo-3D classi�cation scheme which classi�es
images on a slice-by-slice basis. Figure A.1 shows a general outline of how we intend to classify
3D reconstructions of conductivity.
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A.1
Formulating the classi�cation task

This thesis has been concerned with recovering conductivity from electromagnetic data meas-
ured at receiver locations (see section 1.2 for the imaging problem and chapter 4 for numer-
ical results). Therefore, in this framework, we formulate a corresponding classi�cation task
which identi�es certain shapes in conductivity images which result from the reconstruction
schemes introduced in chapter 2. In general, the reconstruction task can be formulated as
follows:

P (D) = [σP ,1,σP ,2, . . . ,σP ,S ]
T (A.1)

where D is data measured at the receiver locations, P is the reconstruction scheme, whether
that be a level set, pixel-based or an unknown inversion method, and σP ,i is the correspond-
ing conductivity pro�le at the ith sweep which the reconstruction scheme P generates. We
design a classi�cation algorithm which applies itself to each entry of the vector in (A.1). The
classi�cation problem can be stated as follows:

Problem 1: Electrical Conductivity Classi�cation

Given the vector P (D), for some method P and data D, apply a trained classification
function C to each entry of P (D) such that C(σP ,i) = ci for i = 1,2, . . . ,S for some
class label ci.

Note that this problem has two interpretations; we can either apply the classi�er as entries
of P (D) are available (i.e. real time reconstruction) or the classi�er can be a post-processing
procedure. We solve Problem 1 for multiple methods P .

To solve Problem 1, we must be satis�ed with two components. The �rst is the recon-
struction task generating the vector in (A.1) and the second is building/training an algorithm
competent at classifying shapes. Generating the vector in (A.1) for various P has been the
main topic of the work here. For more details on the reconstruction methods see chapters 2
and 4. Here we assume that we already have access to P (D) and focus completely on creating
C.

Training the classi�cation functionC in our case involves minimizing the distance between
C(xi) and ci, where xi are inputs and ci are the correct classi�cation of those inputs. Having
classi�cation labels accompany inputs in the training set means that the training process is su-
pervised. Supervised learning forms one of the most common types of ML algorithms, as well
as unsupervised and reinforcement learning. We will only consider one supervised learning
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Figure A.2: Schematic of classi�cation function C.

algorithm here. For more information on the main di�erences between these methods see
[49]. Comparisons with other learning algorithms, as well as applying both reinforcement
and unsupervised learning methods are delegated to future research.

The framework of training C, as described here, follows that in [57]. To begin training a
classi�cation function, we need a training set X whose elements contain inputs xi and their
corresponding classi�cation labels ci

1. The set X is assumed to contain n elements, each
consisting of a 2-tuple; one input and one corresponding classi�cation label. Mathematically
speaking,

X =
{
(x1,c1),(x2,c2), . . . ,(xn,cn)

}
.

A reasonable condition on C is that it should be able to project inputs xi ∈ X towards their
corresponding classi�cation labels ci ∈ X , i.e. C(xi) ≈ ci. Figure A.2 shows a qualitative
view of the classi�cation process.

Within this framework, we seek to minimize the following cost:

L =
n

∑
j=1
||C(xi)− ci||2L2(Ω). (A.2)

Although minimizing the cost function in (A.2) seems reasonable, since we want our func-
tion C to create a valid input-classi�cation map of the set X , it does not generalize well. The
minimizer of (A.2) is quite clear, settingC(xi) = ci for each i yields the minimum of L. How-
ever, onceC observes other inputs not contained in the training set X , it will not perform well
as it’s over �tting to the training data. The idea of training a function C is so that if C evalu-
ates an input it hasn’t seen before, say x̂, which has the same classi�cation label as an input x,

1For example, the inputs could be images of dogs or cats and the classi�cation labels could be 0 = dog and
1 = cat.
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then C in most cases should output the same classi�cation label. In some cases, inputs may
be slightly ambiguous and be subsequently misclassi�ed, but in general they should output
the same result. For example, two images of the same digit with di�erent handwriting should
classify as the same digit, given that the classi�cation function has been trained to recognize
digits.

To �x the generalization problem, we restrict the choice of C to a family of functions
F which contains functions that are parameterized by weights. In particular, we choose a
nonlinear function parameterized by weights w such that its range is large with respect to
tuning of the weight parameters. We desire the range of the function to be large and the
input-output map to be nonlinear such that for some w∗, the function captures the correct
behaviour in our training set. Making the function have a large range gives the optimization
process a better chance of �nding a suitable solution. The new goal is to minimize:

L(w) =
n

∑
j=1
||C(xi;w)− ci||2L2(Ω). (A.3)

with respect to the weights w.

In general, once the classi�cation function has been adequately trained by minimizing
(A.3) using the training set X , accuracy of the function is measured by using inputs from a
test set X̂ where

X̂ =
{
(xn+1,cn+1),(xn+2,cn+2), . . . ,(xn+m,cn+m)

}
,

whose input-output pairs were not used in the training procedure. One must be cautious
in minimizing (A.3), as we do not want to over�t the data present in X . Our hope is that
minimizers of (A.3) work well for other datasets such as X̂ . Minimizing (A.3) with respect to
the data set X as much as possible will result in similar but less severe problems as minimizing
(A.2).

The conductivity pro�le σP ,i is a 3D array, therefore if we were to solve Problem 1 as
stated, we would have to train C on 3D images. Whilst this is achievable, 3D datasets are not
as readily available. However, we can employ a 2D classi�cation function on planar images
in σP ,i and take the mode classi�cation of these planes as the classi�er, invoking a pseudo-3D
technique (see �gure A.1).

As an example case, we use a dataset called ‘EMNIST’ to train our classi�cation func-
tion. The dataset consists of images which are handwritten upper-case letters, lower-case
letters and digits. Images from the EMNIST dataset will be used as the training set X . For
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more information on how the EMNIST dataset was created, see [24] for more details. Note
that using this dataset is without loss of generality for the classi�cation scheme and should
be viewed as a proof-of-concept.

A.2
Parametric form of the classi�cation function

Choosing the parametric form of the function C with respect to the weights is largely de-
termined by which classi�cation scheme is used. The focus here is to create an algorithm
capable of classifying planar images of entries in P (D). Whilst a comparison between classi-
�cation methods may provide insights into the algorithms themselves (which has also been
covered in the literature, see [76, 110] for more information) we choose a method which has
been shown to work well for our demonstrative purposes (see [93] for more details).

We choose to use Convolutional Neural Networks (CNNs) for parameterizing the clas-
si�cation function C. The inspiration and makeup of this parameterization comes from
the origin of the perceptron, whose model is based on connectivity of biological neurons in
the brain, forming a neural network. The models based on this are called arti�cial neural
networks (ANNs). An ANN is made up of multiple layers, which are connected through
weights and biases. In each layer, every neuron outputs a real number which is subsequently
fed into the next layer as an input. The output of each neuron is a composite function
of the previous input, weights and biases. Input from the previous layer undergoes an af-
�ne transformation using both weights and biases. The result is then fed into an ‘activa-
tion’ function, which generates a real number as output for that particular neuron. The
a�ne transformation component is linear, meaning if the nonlinear behaviour in the input-
output map is captured, the activation function must be nonlinear. Figure A.3 shows an
example of an ANN with three layers. The inputs xi and outputs ci in the training process
are known quantities, and the goal is to tweak the weights such that the composite function
of xi matches with its desired output. Each arrow in the �gure is a multiplier of the previous
input with a weight associated with that arrow. Each arrow pointing to a node is a weight
that contributes to the overall activation of that particular neuron. Each neuron shown in
�gure A.3 computes an a�ne transformation using the weights and inputs connected to that
particular neuron. An activation map is then applied to the a�ne transformation, resulting
in a real number as output for that neuron. The overall activation map of a general ANN
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Figure A.3: Example of an ANN with 3 layers.

involving L layers can be de�ned as:

a(1) = x ∈ Rn1;

a(l) = cl(W (l)a(l−1)+b(l)) ∈ Rnl for l = 2,3, . . . ,L,

which opens up as

C(x) = cL(W (L)(cL−1(W (L−1)(. . .c2(W 2x+b2)+b3)+b4) . . .+bL−1)+bL) ∈ R,

where the composite function C describes the entire network. Architecture of these net-
works are clearly vast, as there are many degrees of freedom. For example, cl can take many
forms, there is an in�nite amount of combinations of neurons allocated to each layer and the
number of outputs can be di�erent (to mention a few). The general idea in convolutional
neural networks are largely the same, and when originally developed were motivated by large
input spaces. If one has a fully connected network, meaning each neuron in the previous layer
passes information to every one in the next, then the order of magnitude of weights is large
when the input space grows. This is problematic when trying to train a model as the amount
of parameters which need to be tweaked is signi�cantly large. A standard large input space,
which we are interested in, are images. CNNs allow us to reduce dimensionality of these
inputs whilst also trying to preserve relationships between pixels in the images themselves.
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Figure A.4: CNN architecture used for EMNIST dataset. The labels ‘Conv’ represent a
convolution layer.

They allow us to build classi�cation functions for high resolution images which were other-
wise not as well suited with standard ANNs. CNNs can be thought of as a sparse ANN.

CNNs themselves have been shown to have outstanding performances in a multitude of
applications. Some of these include: image generation, semantic segmentation, image classi-
�cation, facial recognition, object detection, amongst others. See [55, 73, 134] for more detail
on some of those applications. Figure A.4 shows the CNN architecture which we use in our
classi�cation problem, it is a standard ‘o� the shelf’ algorithm. The convolution layer is a
stack of two-dimensional images which are created from applying filters over the input im-
ages. These are either trained or in-built into the function. For example, we could insist on
two �lters which when applied to the input images produce images which detect horizontal
and vertical edges. Typically though, these �lters form part of the optimization scheme when
training the model. Although convolution layers increase the number of dimensions in the
following layer, they reduce the number of pixels per stacked image. Applying further con-
volution layers and subsequently pooling layers, whose goal is to extract the most important
information from local regions, reduces dimensionality of the problem such that we arrive
in the end with a low dimensional fully-connected layer. A softmax function is then applied
on the outputs of this fully-connected layer, producing probabilities for each classi�cation
label. In the training procedure, the weights associated with these connections between each
layer’s input and output are then tweaked such that the classi�cation label associated with
inputs in the training set has the highest probability in the output of the softmax function in
the last layer. For the EMNIST dataset, the output in the network shown in �gure A.4 will
be a vector of probabilities whose entries are a probability between 0 and 1. A simple max-
imum function is then applied to the vector, taking the index of the vector with the largest
result as the correct classi�cation.
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Here, we assume that the trained function is su�ciently accurate. Accuracy of classi�c-
ation functions for problems such as digit or number plate recognition are already accurate
and can rival humans [22]. Whilst improving accuracy of classi�cation functions has utility
and should be done when possible, we do not actively seek marginal accuracy gains here since
it is not the main idea which we are presenting. A pseudo-code of our ‘on the 
y’ classi�ca-
tion is shown in algorithm 7. Note that algorithm 7 is written in general form, as the training

Algorithm 7 Reconstruction classi�er
1: procedure Offline Training
2: Choose training set X =

{
(x1,c1),(x2,c2), . . . ,(xn,cn)

}
3: Initialize total number of sweeps S and select method P , where Ps(·) computes

reconstruction using method P up to sweep s
4: Train classi�cation function C by minimizing a form of (A.3) such that C(xi)≈ ci

for i = 1,2, . . . ,n
5: procedure On the fly classification
6: for s = 0 : S−1 do (loop over sweeps)
7: σs = Ps(D)
8: classs = mode(σs)

set can be any form of classi�cation and the methods P can be either currently existing ones,
as shown in chapter 2, or other reconstruction schemes which haven’t been discussed.

A.3
Classi�cation experiments

In this section, we demonstrate algorithm 7 using two shape-based reconstruction schemes.
We let the training set X = XEMNIST, which consists of over 800,000 images of handwritten
lower/upper-case letters and digits. The corresponding classi�cation task is designed such
that the classi�cation function assigns the input images to a number between 0 and 61 (each
represents a lower/upper-case letter or single digit). In security screening applications, if
we wanted to look for a certain object or shape, we could design X and a corresponding
classi�cation task such that it spots dangerous equipment or sharp objects inside the contents
of a box or container.

Although the EMNIST dataset is designed for a 2D classi�cation task, since it contains
2D images, and the reconstruction task �nds 3D arrays represent the reconstructed conduct-
ivity pro�le, it is su�cient for the proof-of-concept style work considered here. In fact, there
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Class Digit/Character Class Character Class Character Class Character
0 0 16 G 32 W 48 m
1 1 17 H 33 X 49 n
2 2 18 I 34 Y 50 o
3 3 19 J 35 Z 51 p
4 4 20 K 36 a 52 q
5 5 21 L 37 b 53 r
6 6 22 M 38 c 54 s
7 7 23 N 39 d 55 t
8 8 24 O 40 e 56 u
9 9 25 P 41 f 57 v
10 A 26 Q 42 g 58 w
11 B 27 R 43 h 59 x
12 C 28 S 44 i 60 y
13 D 29 T 45 j 61 z
14 E 30 U 46 k
15 F 31 V 47 l

Table A.1: EMNIST classi�cation labels.

are many things that can be done in this area of work, and typical ML techniques have so far
not been applied in these types of situations.

We model a cube-shaped container by a domain Ωh = [3]× [3]× [3]m3. The domain Ωh

is divided into [35]× [35]× [20] uniform rectangular grid cells, each of them having dimen-
sions roughly equivalent to [0.085]× [0.085]× [0.15]m3. We choose ns = nr = 16 and the
shielded walls to be parallel to the xy plane, and the same but shifted dimensions for the other
sides of the container. The sources and receivers follow the distribution shown in �gure 1.1.
We follow the same setup for sources, receivers and thickness of electromagnetic shielding as
the numerical experiments shown in chapter 4 (see �gure 1.1). The true phantoms used here
resemble 3D capital letters, and are chosen such that they could be ambiguous with other
letters or digits. For example, a true phantom resembling a ‘P’ may actually classify as a ‘D’
from the reconstructed image. Figure A.5 shows a handful of example phantoms which re-
semble capital letters. As mentioned, the classi�cation problem is 2D. We place 3D capital
letters in the box/container such that it is invariant in the z direction, ready for the 2D classi-
�cation. In reality, objects present inside boxes or containers may not be parallel to the axis,
but it is su�cient in this proof-of-concept work.

Table A.1 shows class labels and their corresponding characters or digits in the classi�ca-
tion task. When showing numerical results, we will refer to these class labels whenC classi�es
images. Since the classi�cation problem is 2D, we classify each image in the xy plane, creating
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a vector of classi�cations.Therefore, we let

cs = [C(σs,1),C(σs,2), . . . ,C(σs,Nz)]
T

and
classs = mode(cs),

where σs,m is a 2D image at sweep s, at the mth cell in the z direction. The vector cs contains
outputs from classi�ed 2D images and the mode(·) operator outputs the most frequent class
label as sweep s’s classi�cation from the vector cs.

Here, we consider the shape-based schemes as the reconstruction methods. They seg-
ment the pixel-based schemes during the inversion scheme, and therefore lend themselves
well to classi�cation problems such as this one. We consider both single and color level set
regimes (de�ned in algorithms 5 and 6 respectively) for letters ‘L’, ‘O’ and ‘T’.

It is possible to consider pixel-based methods for these problems by using image segment-
ation, though we do not consider this.

Figure A.5: Some examples of 3D capital letter true phantoms which can be used to demon-
strate the classi�cation technique.
Top Row: ‘I’, ‘L’, ‘O’.
Bottom Row: ‘S’, ‘T’, ‘U’.

Figures A.6 - A.11 show reconstructions of true phantoms resembling ‘L’, ‘O’ and ‘T’
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using single and color level set methods and their real time classi�cation during the inver-
sion. We show both methods reconstructing each letter at a time, i.e. �gures A.6 and A.7
show single and color level set reconstructions for a letter ‘L’ respectively. Figure A.6 shows a
single level set inversion of a true phantom resembling a 3D capital ‘L’. In the top part of the
�gure, snapshots of the reconstructed shape are shown at di�erent sweep numbers. In the
bottom part of the �gure, information from the classi�cation algorithm is presented for the
full duration of the inversion. In this �gure, the top sub plot shows the mode classi�cation at
each sweep with the colour representing how many of the 2D slices take the mode classi�er.
The middle sub plot shows the pseudo-cost at each sweep number and the bottom sub plot
shows the top three classi�cations over the algorithm’s lifespan. Note that all three sub plots
have something in common; each settle down after a certain amount of iterations to a par-
ticular result. The classi�cation algorithm settles at the mode classi�cation being equal to 21,
which from observation of Table A.1, is the correct classi�cation. Moreover, the pseudo-cost
begins to converge toward a constant value and class label 21 begins to dominate in the top
three classi�er plot. The algorithm seems to converge in both the classi�cation and pseudo-
cost. In the early phases of the inversion, the classi�cation scheme is �ghting between class
labels 5, 16 and 21, which from observation of Table 4.2, refer to ‘6’, ‘G’ and ‘L’ respectively.
By observing the design of these letters, we can see why ambiguities could arise in the classi-
�cation. From observation of the inversion at sweep s = 5 we can see why this could classify
as ‘6’ or ‘G’ because of its banana-like appearance. These early stages can be seen as a ‘burn-in’
phase, since the shape associated with the level set function is likely to change dramatically
in subsequent iterations due to the cost minimization task. After roughly 50 iterations, the
pseudo-cost begins to reduce marginally and the class label 21 dominates in the classi�cation
task.

Figure A.7 shows a reconstruction of the same true phantom using the color level set
scheme. The color level set scheme in this case is penalized in its a priori information as we
guess a conductivity value twice what is present for one of the shapes. Although we have this
error, with holes in the shape appearing, the algorithm overall correctly classi�es the shape as
class label 21. Though in comparison with �gure A.6, the classi�cation is more erratic. This
is possibly due to holes appearing in the shape, a�ecting certain slices.

Figure A.8 shows a single level set reconstruction of a 3D ‘O’. By observation of the re-
constructed shape snapshots, the algorithm performs well in recovery of the hole and exterior
of the cylinder. Whilst we observe good recovery and convergence of the pseudo-cost, the
classi�cation task is unsure between class labels 13, 24 and 26 which from Table 4.2 represent
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‘D’, ‘O’ and ‘Q’ respectively. Just by observation of the appearance of these letters, ambi-
guities between all these can exist, therefore any artefacts which appear in the reconstructed
shape can throw the classi�cation task from the correct class label 24 to neighbouring clas-
si�ers 13 and 26. It is also evident from the snapshots why these class labels appear in the
classi�cation task, as there is a slight bulge of the shape in some of the sweep snapshots. Fig-
ure A.9 shows a color level set reconstruction for the same true phantom. Unlike in the ‘L’
reconstruction, the inversion su�ers heavily. Holes and gaps between the two shape domains
appear and it is no surprise then that the classi�cation algorithm generates no distinct class
label as the pseudo-cost lowers, with the algorithm �ghting between class labels 12, 16, 19 and
21 which from Table 4.2 resemble ‘C’, ‘G’, ‘J’ and ‘L’ respectively. From the reconstructed
shape snapshots, we can see why the classi�cation task favours these classi�ers. In particu-
lar, the reconstructed shape resembles a cylinder with holes which results in some 2D cross
sections resembling incomplete circles.

Figure A.10 shows a single level set reconstruction of a 3D ‘T’. From observation of the
snapshots, the algorithm performs well at locating the true shape and retains its main fea-
tures. This is to some degree also re
ected in the classi�cation scheme, though the algorithm
is unsure between class labels 15, 29 and 45 which from Table 4.2 resemble ‘F’, ‘T’ and ‘j’ re-
spectively. Just like the other experiments, it is evident from the class labels themselves why
the classi�cation process struggles. Figure A.11 shows a color level set reconstruction for the
same true phantom. Despite incorrect a priori information, the reconstructed shape appears
to resemble the true phantom. As typical to all color level set inversions in these experiments,
holes appear in the shapes. Results from the classi�cation task tell us that the reconstructed
shape is not the correct class label 29 (‘T’) but either class label 15, 18, 44 or 45 (‘F’,‘I’,‘i’ and
‘j’ respectively), which seem reasonable. In comparison to the other two color level set clas-
si�cations, this appears more uncertain than the others. This could be due to the fact that
‘T’ has a lot of similarity with other letters.

The classi�cation experiments described here show that it is achievable to correctly identify
shapes within enclosed containers or boxes using near-�eld electromagnetic imaging. In this
section, we have demonstrated algorithm 7 for a subset of methods P , which are strictly
shape-based and current state-of-the-art for our application. We predict that using pixel-
based reconstructions coupled with image segmentation in the classi�cation scheme could
result in quicker convergence to class label as pixel-based schemes update conductivity glob-
ally, therefore distinctive features of the true phantom are already present in the reconstruc-
ted conductivity pro�le after just one sweep.

Rich datasets for training 3D classi�cation algorithms are di�cult to obtain. In general,
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Initial Shape s = 5 s = 25

s = 100 s = 150 True Phantom

Figure A.6: Top: Surface plots of 3D shape evolution using LK-Single level set recon-
struction. Shown are the initial shape, snapshots at sweeps s = 5,25,100,150 and a true
phantom which resembles capital ‘L’.
Bottom: Results of applying classi�cation function C to individual 2D slices. First plot
shows the mode classi�er over the sweep number with a percentage attached to that mode.
Second plot shows the corresponding pseudo-cost and the third shows the top three classes
which are output from the classi�cation function C.
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Initial Shape s = 5 s = 25

s = 100 s = 150 True Phantom

Figure A.7: Top: Surface plots of 3D shape evolution using LK-Color level set reconstruc-
tion. Shown are the initial shape, snapshots at sweep numbers s = 5,25,100,150 and a true
phantom which resembles a capital ‘L’.
Bottom: Results of applying classi�cation function C to individual 2D slices. First plot
shows the mode classi�er over the sweep number with a percentage attached to that mode.
Second plot shows the corresponding pseudo-cost and the third shows the top three classes
which are output from the classi�cation function C.
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Initial Shape s = 5 s = 25

s = 100 s = 150 True Phantom

Figure A.8: Top: Surface plots of 3D shape evolution using LK-Single level set reconstruc-
tion. Shown are the initial shape, snapshots at sweep numbers s = 5,25,100,150 and a true
phantom which resembles a capital ‘O’.
Bottom: Results of applying classi�cation function C to individual 2D slices. First plot
shows the mode classi�er over the sweep number with a percentage attached to that mode.
Second plot shows the corresponding pseudo-cost and the third shows the top three classes
which are output from the classi�cation function C.
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Initial Shape s = 5 s = 25

s = 100 s = 150 True Phantom

Figure A.9: Top: Surfaces plots of 3D shape evolution using LK-Color level set reconstruc-
tion. Shown are the initial shape, snapshots at sweep numbers s = 5,25,100,150 and a true
phantom which resembles a capital ‘O’.
Bottom: Results of applying classi�cation function C to individual 2D slices. First plot
shows the mode classi�er over the sweep number with a percentage attached to that mode.
Second plot shows the corresponding pseudo-cost and the third shows the top three classes
which are output from the classi�cation function C.



A.3. CLASSIFICATION EXPERIMENTS 179

Initial Shape s = 5 s = 25

s = 100 s = 150 True Phantom

Figure A.10: Top: Surface plots of 3D shape evolution using LK-Single level set reconstruc-
tion. Shown are the initial shape, snapshots at sweep numbers s = 5,25,100,150 and a true
phantom which resembles a capital ‘T’.
Bottom: Results of applying classi�cation function C to individual 2D slices. First plot
shows the mode classi�er over the sweep number with a percentage attached to that mode.
Second plot shows the corresponding pseudo-cost and the third shows the top three classes
which are output from the classi�cation function C.
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Initial Shape s = 5 s = 25

s = 100 s = 150 True Phantom

Figure A.11: Top: Surface plots of 3D shape evolution using LK-Color level set reconstruc-
tion. Shown are the initial shape, snapshots at sweep numbers s = 5,25,100,150 and a true
phantom which resembles a capital ‘T’.
Bottom: Results of applying classi�cation function C to individual 2D slices. First plot
shows the mode classi�er over the sweep number with a percentage attached to that mode.
Second plot shows the corresponding pseudo-cost and the third shows the top three classes
which are output from the classi�cation function C.
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generating 3D datasets which result in a robust classi�cation algorithm after training is a dif-
�cult problem in its own right. In fact, in the ML community it is common to �nd papers on
how datasets were created [24]. Nevertheless, the pseudo-3D scheme demonstrates the idea
of classifying electromagnetic reconstructions of boxes and containers despite not using 3D
datasets for training. The di�culty of generating 3D datasets increases when the classi�ca-
tion task is of a sensitive nature, such as in security screening, since the resulting classi�cation
task must have integrity and be robust. In these applications, the classi�cation scheme could
be trained on images which resemble certain objects which would be 
agged up during a
security check, whether that be scanning a cargo container or luggage in an airport. How-
ever, the classi�cation algorithm is only as good what it sees in the training set, therefore this
would have to be vast and diverse to try and cover all possibilities, if it was to be put into
practice.

It is encouraging that in some situations the classi�cation scheme performs well, since
after all electromagnetic inversion schemes should improve over time. Furthermore, all re-
constructions shown are generated from access to limited data (approximately 1% of the
total number of unknowns), therefore reconstructions from current state-of-the-art meth-
ods could improve with access to more data, which may result in improvements to the clas-
si�cation.
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