
 

 

An investigation of functional brain 

networks in drug resistant and well-

controlled Idiopathic Generalised 

Epilepsy 
 

 

 

 

 

 

 

 

2021 

 

 

 

 

Emily J Pegg 

 

School of Biological Sciences 

 

 

 

 

 

A thesis submitted to the University of 

Manchester for the degree of Doctor 

of Philosophy in the Faculty of Biology, 

Medicine and Health 

 



2 
 

Contents 

 

List of tables……………………………………………………………………………….. 

List of figures………………………………………………………………………………. 

Abbreviations…………………………………………………………………………….... 

Abstract…………………………………………………………………………………….. 

Declaration…………………………………………………………………………………. 

Copyright statement……………………………………………………………………… 

Journal format statement………………………………………………………………... 

Statement of contributions to journal papers………………………………………... 

Preface…………………………………………………………………………………….... 

Acknowledgements……………………………………………………………………….. 

Chapter 1.  Introduction………………………………………………………………..... 

     1.1           Idiopathic Generalised Epilepsy (IGE)…………………………………………………………………… 

           1.1.1  Background……………………………………………………………………………………………………… 

           1.1.2  Clinical features of IGE……………………………………………………………………………………. 

           1.1.3  Diagnosing IGE……………………………………………………………………………………………….. 

           1.1.4  Pharmacological management of IGE…………………………………………………………….. 

      1.2          Drug resistant IGE…………………………………………………………………………………………………. 

          1.2.1          Background……………………………………………………………………………………………………… 

          1.2.2  Proposed mechanisms of drug resistance in epilepsy……………………………………... 

          1.2.3  Determinants of response to antiepileptic drugs……………………………………………. 

      1.3         Neuronal oscillations……………………………………………………………………………………………… 

          1.3.1         The role of neuronal oscillations…………………………………………………………………….. 

          1.3.2 Measuring neuronal oscillations…………………………………………………………………….. 

          1.3.3         Oscillatory amplitude, frequency and spectral analysis in epilepsy studies……. 

      1.4        Network analysis in the study of epilepsy……………………………………………………………… 

          1.4.1          Contextual overview………………………………………………………………………………………… 

          1.4.2  Scales of connectivity………………………………………………………………………………………. 

          1.4.3  Large-scale resting state network analysis………………………………………………………. 

6  

7 

9 

12 

14 

14 

15 

15 

16 

16 

17 

17 

17 

18 

19 

21 

22 

22 

23 

28 

29 

29 

30 

31 

33 

33 

34 

35 

 



3 
 

                 1.4.3.1         Overview…………………………………………………………………………………………………. 

     1.4.3.2        Connectivity subtypes…………………………………………………………………………….. 

     1.4.3.3        Neuroimaging modalities in global functional network analysis……………. 

     1.4.3.4        Inferring global resting state functional connectivity…………………………….. 

                 1.4.3.5        Evaluating connectivity in functional networks with graph theory……….. 

         1.4.4 Overview of interictal functional network literature in IGE…………………………….                

     1.5        Aims and objectives…………………………………………………………………………………………………. 

Chapter 2.  A spectral power investigation of the interictal EEG in drug resistant 

and well-controlled IGE…………………………………………………………………. 

     2.1        Authors……………………………………………………………………………………………………………………. 

     2.2        Abstract…………………………………………………………………………………………………………………… 

     2.3        Introduction……………………………………………………………………………………………………………. 

     2.4        Materials and methods……………………………………………………………………………………………. 

     2.5        Results…………………………………………………………………………………………………………………….. 

          2.5.1           Baseline demographics………………………………………………………………………………….. 

          2.5.2          Outcome measures………………………………………………………………………………………… 

     2.6        Discussion………………………………………………………………………………………………………………. 

     2.7        Conclusions…………………………………………………………………………………………………………….. 

     2.8        Acknowledgements………………………………………………………………………………………………… 

     2.9        Funding…………………………………………………………………………………………………………………… 

Chapter 3.  Interictal structural and functional connectivity in IGE:  A 

systematic review of graph theoretical studies……………………………………… 

     3.1        Authors…………………………………………………………………………………………………………………….  

     3.2        Abstract…………………………………………………………………………………………………………………… 

     3.3        Introduction…………………………………………………………………………………………………………….. 

          3.3.1           Background……………………………………………………………………………………………………. 

          3.3.2          Measuring connectivity in brain networks…………………………………………………….. 

          3.3.3          Aim of the review…………………………………………………………………………………………… 

     3.4        Methods…………………………………………………………………………………………………………………… 

          3.4.1          Search strategy………………………………………………………………………………………………... 

          3.4.2          Data extraction………………………………………………………………………………………………. 

     3.5        Results…………………………………………………………………………………………………………………….. 

          3.5.1          Participant demographics………………………………………………………………………………. 

                  3.5.1.1        Functional network studies…………………………………………………………………….. 

35 

36 

37 

38 

46 

50 

52 

 

 
54 

54 

54 

55  

57 

60 

60 

60 

63 

66 

66 

66 

72 

72 

72 

73 

73 

75 

80 

81 

81 

81 

82 

83 

83 

 



4 
 

                 3.5.1.2        Structural network studies……………………………………………………………………… 

          3.5.2          Data acquisition and network construction…………………………………………………… 

               3.5.2.1        Functional network studies………………………………………………………………………. 

               3.5.2.2        Structural network studies……………………………………………………………………….. 

          3.5.3          Statistical considerations……………………………………………………………………………….. 

     3.6        Study results……………………………………………………………………………………………………………. 

          3.6.1          Functional network studies……………………………………………………………………………. 

                 3.6.1.1        EEG/MEG studies……………………………………………………………………………………. 

                 3.6.1.2        fMRI studies…………………………………………………………………………………………….  

          3.6.2          Structural network studies…………………………………………………………………………….. 

     3.7        Discussion……………………………………………………………………………………………………………….. 

          3.7.1          Limitations of the review……………………………………………………………………………….. 

     3.8        Conclusions…………………………………………………………………………………………………………….. 

Chapter 4.  Interictal EEG functional network topology in drug resistant and well-

controlled IGE……………………………………………………………………………………. 

     4.1        Authors……………………………………………………………………………………………………………………. 

     4.2        Abstract…………………………………………………………………………………………………………………… 

     4.3        Introduction……………………………………………………………………………………………………………. 

     4.4        Methods…………………………………………………………………………………………………………………. 

     4.5        Results……………………………………………………………………………………………………………………. 

     4.6        Discussion……………………………………………………………………………………………………………… 

     4.7        Acknowledgements………………………………………………………………………………………………… 

     4.8        Funding………………………………………………………………………………………………………………….. 

     4.9        Appendix A- Supplementary data………………………………………………………………………….. 

Chapter 5.  Functional network topology in drug resistant and well-controlled 

Idiopathic Generalised Epilepsy:  A resting state fMRI study…………………… 

     5.1        Authors…………………………………………………………………………………………………………………… 

     5.2        Abstract………………………………………………………………………………………………………………….. 

     5.3        Introduction…………………………………………………………………………………………………………… 

     5.4        Materials and methods………………………………………………………………………………………….. 

     5.5        Results……………………………………………………………………………………………………………………. 

     5.6        Discussion……………………………………………………………………………………………………………… 

     5.7        Conclusions……………………………………………………………………………………………………………. 

     5.8        Funding………………………………………………………………………………………………………………….. 

84 

85 

85 

86 

87 

87 

87 

87 

90 

91 

93 

98 

98 

 

111 

111 

111 

112 

114 

121 

124 

127 

127 

133 

 

137 

137 

137 

138 

140 

146 

150 

152 

153 



5 
 

     5.9        Appendix B- Discussion of atlas choice…………………………………………………………………. 

     5.10       Appendix C- Supplementary data…………………………………………………………………………. 

          5.10.1          Supplementary data 1- Global outcome metric results………………………………… 

          5.10.2          Supplementary data 2- Nodal analyses results……………………………………………. 

Chapter 6.  General discussion……………………………………………………….. 

     6.1        Summary of experimental results………………………………………………………………………….. 

     6.2        Interpretation………………………………………………………………………………………………………… 

     6.3        General limitations……………………………………………………………………………………………….. 

     6.4        Future directions…………………………………………………………………………………………………… 

     6.5        Conclusions……………………………………………………………………………………………………………. 

References……………………………………………………………………………….. 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Word count: 44,681 

160 

166 

166 

169 

200 

200 

201 

208 

210 

213 

215 



6 
 

List of tables 

1a. Demographic and clinical details of participants with WC-IGE…………………………………………. 

1b. Demographic and clinical details of participants with DR-IGE…………………………………………. 

1c.  Demographic details of control participants……………………………………………………………………… 

2.  Commonly used measures in global network studies………………………………………………………… 

3. Demographics of participants in functional connectivity studies………………………………………… 

4. Demographics of participants included in structural connectivity studies………………………… 

5. Data acquisition and graph construction for structural studies using DTI ……………………….. 

6.  Recommendations and considerations for future graph theoretical studies of cerebral 

networks…………………………………………………………………………………………………………………………………. 

7.  Participant demographics (EEG graph theoretical study)…………………………….…………………… 

8. Commonly used graph theoretical terms and measures applied to epilepsy research……….. 

9.  Participant demographics (IGE group, fMRI study)………………………………………………………….. 

 

Appendix tables  

A-1. Descriptive statistics for outcome metrics in the 6-9 Hz frequency band………………………. 

A-2. Descriptive statistics for outcome metrics in the 10-12 Hz frequency band……………………. 

A-3. Outcome metrics compared at the three-group level……………………………………………………. 

A-4. Pairwise comparison tests of results that were significant at the three-group level……… 

C-1. Three-group comparison of networks constructed using absolute values of edges……….. 

C-2. Two-group comparison of network constructed using absolute values of edges …………. 

C-3. Three-group comparison of networks constructed using positively correlated edges…… 

C-4. Two-group comparison of networks constructed using positively correlated edges…….. 

C-5.  Statistical significance of difference in node strength between controls and people with 

IGE for each region …………………………………………………………………………………………………................169  

67 

69 

71 

99 

101 

104 

106 

 

 
107 

128 

154 

156 

 

 

 

 

 

133 

134 

135 

136 

166 

167 

167 

168 

 

169 

 



7 
 

C-6.  Statistical significance of difference in betweenness centrality between controls and 

people with IGE for each region………………………………………………………………………………………   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

180 



8 
 

List of figures 

1. Typical inter-ictal EEG features of IGE…………………………………………………………………………………. 

2. Example DTI image……………………………………………………………………………………………………………… 

3. Phase synchronisation and amplitude correlation………………………………………………………………. 

4. Schematic illustrating how PLV is determined……………………………………………………………………. 

5. Phase locking index……………………………………………………………………………………………………………… 

6. Example of a connectivity matrix derived from a 62 channel EEG……………………………………… 

7. A simple undirected graph…………………………………………………………………………………………………… 

8. ‘Rewiring’ of a regular network to form small-world and random networks………………………. 

9. Spectral power analysis………………………………………………………………………………………………………… 

10. Power spectra plotted for each group…………………………………………………………………………………. 

11. Power spectra for each group averaged within each frequency band…………………………………… 

12. Scalp topographical images of differences in spectral power between epilepsy groups and 

controls……………………………………………………………………………………………………………………………………. 

13. Summary of previous studies evaluating EEG /MEG spectral power in IGE………………………. 

14. Schematic overview of graph construction using diffusion MRI, fMRI, structural covariance 

and EEG…………………………………………………………………………………………………………………………………… 

15. Visual representation of different graph types according to edge features………………………… 

16. Example representations of regular, random and small-world networks…………………………… 

17. Study flow chart………………………………………………………………………………………………………………….. 

18. Result summary of clustering coefficient analyses in EEG/MEG studies…………………………… 

19. Result summary of path length analyses in EEG/MEG studies………………………………………….. 

20. Result summary of global efficiency analysis in EEG/MEG studies…………………………………… 

21. Visual summary of outcome measures from fMRI functional studies………………………………… 

22. Visual summary of outcome measures from structural connectivity studies…………………….. 

20 

36 

41 

42 

43 

46 

47 

49 

56 

61 

61 

 

 62 

63 

76 

78 

80 

83 

88 

89 

90 

91 

93 

 



9 
 

23. Schematic overview of study methodology……………………………………………………………………….. 

24. Outcome metrics plotted for each group………………………………………………………………………….. 

25. Schematic overview of study methodology……………………………………………………………………….. 

26. Global outcome metrics……………………………………………………………………………………………………. 

27. Nodal differences between IGE and controls……………………………………………………………………. 

28. 2D state-plane representations of oscillations in a normal brain and a brain with 

epilepsy………………………………………………………………………………………………………………………………….. 

29. A multifactorial network system model of antiepileptic drug resistance………………………… 

 

Appendix figures  

B-1 Illustration of the rendering of AICHA and the sulci used in anatomical labelling………... 

C-1 Frequency of hub nodes in frontal regions plotted for each group…………………………………. 

C-2 Frequency of hub nodes in temporal regions plotted for each group…………………………….. 

C-3 Frequency of hub nodes in parietal regions plotted for each group……………………………….. 

C-4 Frequency of hub nodes in occipital regions plotted for each group……………………………… 

C-5 Frequency of hub nodes in thalamic regions plotted for each group……………………………… 

  

 

 

 

 

 

 

 

115 

123 

141 

148 

149 

 

206 

207 

 

 

161 

197 

197 

198 

198 

199 

 



10 
 

Abbreviations 

AAL  automated anatomical labelling  

AED  antiepileptic drug  

AICHA  atlas of Intrinsic Connectivity of Homotopic Areas 

ANCOVA analysis of covariance 

ANOVA analysis of variance 

BBB  blood brain barrier 

BOLD  blood-oxygen-level-dependent 

C  clustering coefficient  

CAE  childhood absence epilepsy  

CONN   functional connectivity toolbox 

DMN  default mode network 

DRE  drug resistant epilepsy  

DR-IGE drug resistant Idiopathic Generalised Epilepsy  

DTI  diffusion tensor imaging  

EEG  electroencephalograph  

EGTCSA epilepsy with generalised tonic-clonic seizures alone 

EOG  electrooculography 

EPI   echo planar imaging  

FE  focal epilepsy  

fMRI  functional magnetic resonance imaging  

FDR  false discovery rate 

FOV  field of view  

FWE  family wide error 

GABA  gamma-aminobutyric acid 



11 
 

GTC  generalised tonic-clonic 

HCP  Human Connectome Project  

HFOs  high frequency oscillations 

HRA  Health Research Authority  

HRF  haemodynamic response function  

ICA  independent component analysis  

IEDs  interictal epileptiform discharges  

IGE  Idiopathic Generalised Epilepsy  

ILAE  International League Against Epilepsy  

JAE  juvenile absence epilepsy  

JME  juvenile myoclonic epilepsy  

L  characteristic path length  

MDR1  multidrug resistance mutation 1 

MEG  magnetoencephalography  

MNI   Montreal Neurological Institute 

MRI  magnetic resonance imaging  

NEAD  non-epileptic attack disorder  

P-gp  P-glycoprotein  

PLI  phase locking index 

PLV  phase locking value 

REC  Research Ethics Committee 

RSN  resting-state network  

SD  standard deviation  

SUDEP sudden unexplained death in epilepsy  

SWI  small world index  



12 
 

TE  echo time  

TR  repetition time  

UK  United Kingdom  

WCE  well-controlled epilepsy  

WC-IGE well-controlled Idiopathic Generalised Epilepsy  

3T  3 Tesla 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 
 

Abstract  

Epilepsy is one of the most common neurological disorders, estimated to affect 70 million 

people worldwide (Ngugi et al., 2010).  Around 20 % of people with Idiopathic Generalised 

Epilepsy (IGE) continue to have seizures despite treatment with antiepileptic medication 

(Brodie et al., 2012).  The mechanisms of epilepsy drug resistance remain poorly understood.  

Previous studies have primarily investigated potential cellular or genetic explanations for drug 

resistance. 

Epilepsy is regarded as a network disorder in which seizures arise via transient, abnormal, 

hypersynchronous activity of large-scale neuronal brain networks.  An increasing body of 

literature demonstrates that people with epilepsy have different resting state networks than 

people without epilepsy.  This thesis aims to investigate whether network alterations are also 

implicated in drug resistance.  

Resting state networks in people with well-controlled IGE, drug resistant IGE, and healthy 

controls were compared using spectral power analysis and graph theoretical analysis of data 

derived from EEG and fMRI.  Converging evidence from the results demonstrated large-scale 

network alterations in people with IGE compared to controls.  In particular, in IGE, there was 

a suggestion of greater cortical hyperexcitability and an alteration in the topology of the 

network, which had a more regular configuration.   One of the studies also suggested that 

network topology in well-controlled IGE differed from controls, but not between controls and 

drug resistant IGE.  We posit that this is due to a drug induced network alteration in people 

who respond to medication which stabilises the network, rendering it less susceptible to the 

seizure state.   

The cause of drug resistance in some people with IGE remains unknown, but may involve a 

complex interplay between multifarious brain networks, influenced by inherent epilepsy 

severity.  The results of this thesis are of potential importance in furthering knowledge of how 

drug resistance arises and as a possible basis for an epilepsy biomarker.  
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Chapter 1.  Introduction  

This thesis investigates well-controlled and drug resistant Idiopathic Generalised Epilepsy 

(IGE) using electroencephalograph (EEG) methods to evaluate oscillatory power and EEG and 

functional magnetic resonance imaging (fMRI) methods to examine large-scale resting state 

networks.  In the introduction, I will firstly review IGE and drug resistance in IGE.  Neuronal 

oscillations will then be discussed and previous studies that have evaluated oscillations in IGE 

will be summarised.  Next, resting state network analysis will be introduced, with a focus on 

graph theoretical analysis.  This will be followed by a discussion of the literature on graph 

theoretical analytical studies of IGE.  To conclude the introduction, the aims and objectives of 

the thesis will be presented.  

 

1.1 Idiopathic Generalised Epilepsy  

1.1.1 Background  

Epilepsy is a common neurological disorder in which seizures arise via transient, abnormal, 

hypersynchronous activity of large-scale neuronal brain networks.  It is conceptually defined 

as “a disorder of the brain characterized by an enduring predisposition to generate epileptic 

seizures, and by the neurobiologic, cognitive, psychological, and social consequences of this 

condition” (Fisher et al., 2005).  Epilepsy affects around 70 million people worldwide (Ngugi et 

al., 2010) and the estimated prevalence in the United Kingdom (UK) is 0.61- 0.76% (Thomas et 

al., 2012).  Around 15- 20% of people with epilepsy have IGE (Jallon and Latour, 2005).  

IGEs are a group of electro-clinical syndromes characterised by generalised seizures in the 

absence of structural brain lesions or neurodevelopmental abnormalities.  The EEG typically 

shows bilaterally synchronous, anteriorly dominant interictal discharges with a normal 

background.  The International League Against Epilepsy (ILAE) currently define generalised 

seizures as “originating at some point within, and rapidly engaging bilaterally distributed 

networks” in contrast to focal seizures, which are thought to evolve from networks within one 

cerebral hemisphere (Berg et al., 2010).  There is substantial evidence to suggest seizure 

genesis in IGE involves aberrations in the thalamocortical network, but evidence of the 

involvement of other networks, such as the default mode network (DMN) or large-scale 

‘global’ networks, is also reported.  This is discussed further in subsection 1.4.1.  Although the 

precise mechanisms of epilepsy have not been elucidated, it is widely accepted that epilepsy is 
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a network disorder and that seizures emerge from neuronal networks via complex dynamical 

interactions (Richardson, 2012b). 

It is presumed that IGE has an underlying genetic basis (Berg et al., 2010) but the exact nature 

of this has not been determined.  A number of genes have been implicated and inheritance 

patterns may be complex polygenic or Mendelian (Helbig, 2015).  In view of the presumed 

genetic basis of the pathophysiology of epilepsy, the ILAE have previously suggested ‘Genetic 

Generalised Epilepsy’ to be a more accurate description than IGE (Berg et al., 2010).  However, 

this term has not been universally accepted, partly because the term may be inappropriately 

synonymised with ‘inherited’ (Scheffer et al., 2017).    

 

1.1.2 Clinical features of IGE 

The IGE syndromes encompass Childhood Absence Epilepsy (CAE), Juvenile Absence Epilepsy 

(JAE), Juvenile Myoclonic Epilepsy (JME) and Epilepsy with Generalised Tonic-Clonic Seizures 

Alone (EGTCSA) (Scheffer et al., 2017).  Available evidence suggests common 

pathophysiological mechanisms and genetic relationships in IGEs (Helbig, 2015).    

Seizure types occurring within IGE are myoclonic seizures, typical absence seizures and 

generalised tonic-clonic (GTC) seizures.  These may occur individually or in different 

combinations depending upon the IGE sub-type.  Myoclonic seizures, or jerks, are muscular 

contractions lasting milliseconds, which often occur singly but can also occur successively. 

They are usually seen in limb muscles but can also occur in facial, neck and trunk muscles. 

Typical absence seizures cause an abrupt onset of decreased, or lost, awareness.  Impaired 

awareness may occur alone or may be accompanied by clonic movements of facial muscles or 

by oral and limb automatisms.  Typical absence seizures can be spontaneous or provoked, 

classically by hyperventilation or photo stimulation.  GTC seizures are usually symmetrical 

and bilateral causing increased muscle tone and rhythmic limb jerking.  They may occur 

without any clear trigger or may be precipitated by photic stimulation, sleep deprivation, or 

alcohol.  There is an association between timing of seizures in IGE and the sleep-wake cycle, 

with a tendency for seizures to occur after awakening (Andermann and Berkovic, 2001).   

CAE and JAE are characterised by absence seizures. CAE typically affects children aged 2-12 

years whereas JAE begins around the ages of 8-20 years (ILAE, 2020b).  Between the ages of 8-

12 years, seizure frequency can differentiate between JAE and CAE, with multiple daily 

absences occurring in CAE compared to less frequent absences in JAE (ILAE, 2018).  Some 
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cases of CAE evolve into JME (ILAE, 2020c).  In JME, myoclonic jerks and generalised 

convulsions occur.  Absence seizures may also be present.  The usual onset of JME is 12-18 

years.  EGTCSA is characterised by onset of GTC seizures alone between the ages of 5-40 years 

(peak 11-23 years) (ILAE, 2020a) .  There is a relationship between subtype and seizure 

remission rates; CAE is associated with seizure freedom by adulthood in as many as 93% of 

patients (Callenbach et al., 2009) whereas JME has a reported remission rate as low as 2.5% 

without medication to 58% with medication (Martínez-Juárez et al., 2006).  In JAE, the 

reported remission rate varies from 37-62% (Seneviratne et al., 2012, Trinka et al., 2004).  A 

positive family history of IGE is occasionally present in JME and JAE whereas in CAE there is 

an affected first degree relative in up to 20% of cases (ILAE, 2018). 

Epilepsy carries a higher risk of premature death compared to the general population with a 

standard mortality ratio of 1.66 in IGE (Neligan et al., 2011a).  Death may occur via seizure 

related accidents or status epilepticus (Tomson, 2000).  People with epilepsy are also at risk of 

sudden unexplained death in epilepsy (SUDEP) with reported rates varying from 0.35 per 1000 

person-years in a population-based study to 4.5 per 1000 person-years in drug resistant 

epilepsy (DRE) (Ficker et al., 1998, Annegers et al., 2000).  Alongside seizures, epilepsy also 

manifests in neuropsychological and social issues.  In IGE, impairment of working memory 

(Swartz et al., 1994) and prospective memory (Wandschneider et al., 2010) is described.  There 

is also converging evidence of executive dysfunction, particularly in JME (Wandschneider et 

al., 2012).  Together, impairments in these domains is suggestive of frontal lobe dysfunction in 

IGE (Wandschneider et al., 2012).  The potential social consequences of neuropsychological 

dysfunction in IGE include lower educational attainment and higher rates of unemployment 

(Iqbal et al., 2009).  Epilepsy is also associated with a higher risk of mental health problems 

including depression, anxiety (Piazzini et al., 2001), and suicide (Jones et al., 2003) compared 

with people without epilepsy.   

 

1.1.3 Diagnosing IGE 

The diagnosis of IGE is clinical and is based upon onset age, seizure types, 

neurodevelopmental history and family history, supported by EEG findings (Scheffer et al 

2017).  
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Figure 1. Typical interictal EEG features of IGE.  Bilaterally synchronous spike-wave complexes are 

seen in all channels.  The greatest amplitude is seen in the anterior channels. Such anteriorly 

dominant discharges occurring on a normal background EEG is the hallmark of Idiopathic 

Generalised Epilepsy syndromes.  Reprinted with permission from EEG made easy, Mohanraj et 

al., 2020. https://books.apple.com/gb/book/eeg-made-easy/id1506475821. Copyright Rajiv 

Mohanraj 2020.  

 

The characteristic interictal EEG abnormality in IGE is bilaterally synchronous, anteriorly 

dominant interictal discharges (IEDs) (including spike-wave complexes, spikes, and sharp 

waves) with a visually normal background rhythm (figure 1).  

 

 

 

 

During a myoclonic seizure, generalised spike-wave complexes or poly-spike waves are seen.  

The EEG correlate of typical absence seizures is rhythmic 3-4Hz generalised spike-waves. 

During a GTC seizure, the scalp EEG is generally dominated by artefact but when not 

concealed, shows generalised rhythmic spike-waves followed by bursts of spikes-and-slow 

waves.  Although the term ‘generalised’ relates to seizures that engage both hemispheres, 

asymmetrical and focal EEG changes are also well-described in IGE.  This includes inter-

hemispheric differences of 100-200 milliseconds at the onset of absence seizures and non-
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localised focal interictal discharges (Leutmezer et al., 2002).  However, these non-

characteristic features are not used to support a diagnosis of IGE.  

The presence of IEDs is determined by visual inspection.  As a result, EEGs are liable to 

overinterpretation (Benbadis and Tatum, 2003).  The yield of IEDs on a routine EEG following 

a first seizure is around 29% (Krumholz et al., 2007).  By a fourth recording, when combined 

with sleep deprivation, this increases to approximately 80% (Smith, 2005). Inpatient video-

EEG has a yield of 43.5 % for epileptic discharges and 43% for IEDs (Ghougassian et al., 2004), 

but its use in diagnosis is limited by cost and availability.  Conversely patients without 

epilepsy may have IEDs; the rate in a study of 13000 healthy males was 0.5%, of which 58% 

occurred only during photic stimulation (Gregory et al., 1993).    

Although the background EEG rhythm is said to be normal in IGE, it is important to note that 

this refers to interpretation via visual inspection.  With quantitative EEG analysis, differences 

in EEG power spectrum and connectivity features have been described compared to healthy 

controls.  This is discussed further in subsection 1.3.3.  However, currently none of these 

measures are validated for use in the diagnosis of epilepsy. The availability of an objective EEG 

biomarker would potentially improve the diagnostic yield of EEG and would also reduce the 

risk of bias due to overinterpretation that exists with expert visual EEG analysis (Benbadis and 

Tatum, 2003). 

 

1.1.4 Pharmacological management of IGE 

There is strong evidence that sodium valproate is the most effective drug in treating IGE 

(Marson et al., 2021).  However, owing to teratogenic effects, sodium valproate is avoided in 

females of childbearing potential (Tomson et al., 2015).  Other first line options include 

lamotrigine and levetiracetam.  A caveat with the use of lamotrigine is that in around 50% of 

patients, myoclonic jerks may worsen (Johannessen Landmark et al., 2019).  Ethosuximide is a 

suitable option for absence seizures.  If the first medication is inefficacious, a second 

medication may be trialled as monotherapy or as an add-on treatment.  Suitable second line 

treatments include topiramate, zonisamide, lacosamide, perampanel, clobazam and 

clonazepam.   

Antiepileptic drugs (AEDs) have various mechanisms of action but generally act by either 

modulating voltage-gated ion channels in the neuronal cell membrane, modulating 

neurotransmitter release by binding to synaptic vesicles, or by altering gamma-Aminobutyric 
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acid (GABA) or glutamate transmission at the synapses.  This has the effect of reducing 

excitation or increasing inhibition of neuronal activity thereby supressing seizures.  These 

effects are demonstrated in vitro, but how they exert their effects in the brain may be more 

complex (Sills, 2017).  For example, there is evidence that some AEDs have effects on the 

neuronal network structure (Haneef et al., 2015b, van Veenendaal et al., 2017) or on the 

strength of connections in the network (Routley et al., 2017). 

 

1.2 Drug resistant IGE 

1.2.1 Background 

Drug resistance is defined by the ILAE as “failure of adequate trials of two tolerated and 

appropriately chosen and used AED schedules (whether used as monotherapies or in 

combination) to achieve sustained seizure freedom” (Kwan et al., 2010).  Within this 

definition, seizure freedom is achieved after a period of 12 months without a seizure or after 

three times the longest pre-treatment inter-seizure interval, whichever is longer.   The 

definition of drug resistance reflects the fact that most people who become seizure free do so 

with the first or second AED (Mohanraj and Brodie, 2006, Chen et al., 2018).  The response 

rate with a third AED is less than 3% and decreases further with subsequent schedules 

(Mohanraj and Brodie, 2006).  

When patients meet the criteria for drug resistance, they should be referred to an epilepsy 

specialist for re-evaluation of diagnosis and assessment of suitability for advanced therapies.  

Confirmation of diagnosis involves exclusion of epilepsy mimics such as non-epileptic attack 

disorder (NEAD) and consideration of “pseudo-resistance”, for example due to medication 

non-concordance, alcohol use, or poor sleep  Vagal nerve stimulation may be considered, 

which results in around 50% seizure reduction in 50% of patients (Englot et al., 2011).  The 

support of an epilepsy specialist nurse is also reported to improve outcomes (Pfafflin et al., 

2016).   

Although numerous large-scale epilepsy prognosis studies exist, cohesively interpreting their 

findings is challenging owing to methodological heterogeneity and the risk of bias inherent to 

epidemiological studies (Seneviratne et al., 2012).  Notwithstanding this, it is reported that 

around 18% of people with IGE are resistant to medication (Semah et al., 1998, Brodie et al., 

2012).  IGE remission rates from 64% (Mohanraj and Brodie, 2007) to 82% (Kharazmi et al., 

2010) have been described and it is reported that the majority of those who achieve seizure 
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freedom, do so within five years (Sander, 2003).  However, some people develop a late 

response to treatment and approximately 16%-25% have a fluctuating course, characterised by 

periods of seizure freedom interspersed with seizures (Brodie et al., 2012, Neligan et al., 2011b).    

Intractable seizures are only one manifestation of DRE.  It is known that there is a higher rate 

of injury (Beghi et al., 2002) and premature death (Bell et al., 2016) in this patient group.  The 

most common cause of premature death in DRE is SUDEP, the risk of which may be 40 times 

higher in people with uncontrolled seizures compared to those who are seizure free (Tomson, 

2000).  Cognitive decline may be intensified due to frequent seizures (de Boer et al., 2008), 

and may be exacerbated by medication side effects and drug interactions (Wandschneider et 

al., 2012).  This is more likely to affect those with DRE since they are more likely to take 

polytherapy.  People with persistent seizures are also more likely to be single, unemployed, 

and live in an area of deprivation compared to the general population (Ridsdale et al., 2017).  

In addition, patients with DRE are unlikely to have a driving licence, which may further 

exacerbate social issues.  

A further consideration in DRE is the impact on the health care economy.  As epilepsy is a 

common and usually life-long condition, it already carries high health care costs (Dalic and 

Cook, 2016).  Furthermore, within epilepsy care, patients with DRE are the most expensive 

group after the initial costs of epilepsy surgery are excluded (Beghi et al., 2004).   

 

1.2.2 Proposed mechanisms of drug resistance in epilepsy  

A number of hypotheses exist to explain the mechanisms underlying drug resistance in 

epilepsy.  However, none have been universally proven.  The most widely studied are the drug 

transporter and drug target hypotheses (Tang et al., 2017).  Others include the intrinsic 

severity and neural network hypotheses, which are of particular relevance to this thesis.  

Drug transporter hypothesis 

This hypothesis, also known as the ‘pharmacokinetic hypothesis’, proposes that DRE is due to 

over-expression of adenosine triphosphate binding cassette (ABC) proteins, which are multi-

drug efflux transporters at the blood brain barrier (BBB). One of the most widely studied 

transporters is P-glycoprotein (P-gp) which prevents lipophilic substances crossing the BBB by 

restricting free diffusion (Miller, 2010). 
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The first study highlighting P-gp and its encoding gene, multidrug resistance gene-1 (MDR1) in 

DRE examined brain tissue samples of patients who had undergone epilepsy surgery 

compared to controls who had undergone surgery for arteriovenous malformations (Tishler et 

al., 1995).  Increased MDR1 was expressed in the DRE group and there was a corresponding 

increase in P-gp in BBB endothelial cells and in astrocytes.  Additionally, there was 

significantly decreased astrocyte phenytoin levels in MDR1 positive cells compared to MDR1 

negative cells suggesting that P-gp may reduce availability of AEDs to the brain.  This finding 

has been replicated in a number of  in vitro and in vivo studies (Hughes, 2008).  It has 

subsequently been shown that there a number of other efflux transporters at increased levels 

in the BBB and astrocytes of patients with DRE suggesting that they too could be involved in 

drug resistance (Löscher and Potschka, 2005). 

P-gp and other transporters are also present in the gastrointestinal tract, liver and kidneys 

(Schinkel, 1997) and it has been proposed that increased AED clearance by these transporters 

may also play a role in drug resistance (Lazarowski et al., 1999).  In support of this is evidence 

that patients who have well-controlled epilepsy on phenytoin have significantly higher mean 

free plasma phenytoin levels, independent of the phenytoin dose, than patients who have a 

‘partial response’ (Iwamoto et al., 2006).  In contrast, other studies evaluating plasma levels of 

AEDs in animal models have not found a significant difference in DRE (Brandt et al., 2006).  

Caution is warranted when assessing the role of peripheral P-gp expression in DRE because 

therapeutic ranges of AEDs vary depending on the individual and the pharmacokinetic 

properties of a particular drug, thus using plasma levels to explore this hypothesis is not 

straightforward (Tang et al., 2017).  

A widely studied genetic polymorphism in relation to drug resistance is in the MDR1 drug-

transporter encoding gene (C3435T).  At least two meta-analyses are in support of the 

association (Chouchi et al., 2017, Li et al., 2015c), the latter only reporting an association in 

Caucasian populations.    

A significant limitation of the drug transporter theory is that causality between increased 

efflux transporters and DRE has not been demonstrated.  Seizure frequency correlates with 

greater P-gp levels (Feldmann et al., 2013, Shin et al., 2016, Liu et al., 2012), indicating that 

upregulation may be a consequence of poorly controlled epilepsy itself (Tang et al., 2017).    

Over-expression of multidrug efflux proteins could also be a consequence of AED use (Tang et 

al., 2017).  Of further contradiction to the drug transporter hypothesis is that AEDs are 

generally considered to be weak substrates for efflux transporters (Zhang et al., 2012);  if 
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increased efflux transporter expression leads to drug resistance, the logical presumption is 

that efflux transporters should be robust substrates of AEDs (Loscher et al., 2011).  Overall, 

direct evidence in support of drug transporter over-expression causing DRE is limited.   

 

Target hypothesis 

The target hypothesis proposes that target molecules for drug ligands undergo modifications 

which render drugs ineffective at their target.  Much of this evidence pertains to genes that 

encode drug targets, where it may be described as the pharmacogenetic hypothesis of drug 

resistance.  

Evidence for this theory in DRE was first demonstrated in a study of the response of voltage 

gated sodium channels to carbamazepine in the hippocampal tissue of patients with temporal 

lobe epilepsy who had responded to carbamazepine, compared to carbamazepine resistant 

patients (Remy et al., 2003).  In the carbamazepine resistant group, it was found that blockage 

of sodium channels was not achieved by carbamazepine, rendering its key mechanism of 

action ineffective.  

In a genotyping study examining drug resistance across various types of epilepsy, a 

polymorphism in SCN2A, which encodes the alpha subunit of voltage gated sodium channel, 

(IVS7-32A>G) was associated with drug resistance (Loup et al., 2000).  However, it is not 

known whether this polymorphism is associated with reduced sensitivity of a particular drug 

(Loup et al., 2000).  There is also evidence of a significantly higher frequency of the AA 

genotype of SCN1A IVs5-91 G > A in patients resistant to carbamazepine compared to those 

responsive to carbamazepine (Abe et al., 2008).  Other alleles which have been reported to be 

associated with drug resistance include SCN2A IVS7-32A>G (Kwan et al., 2008) and SCN2A 

c.56 G >A allele A (Lakhan et al., 2009).  The SCN1A gene encodes voltage gated sodium 

channels which are a target for many AEDs including lamotrigine, carbamazepine, and 

phenytoin.  In Dravet’s syndrome, a mutation in the SCN1A gene results in a non-functioning 

sodium channel.  Patients with Dravet’s syndrome typically have refractory epilepsy and often 

seizures can be exacerbated by drugs acting on the sodium channel.  Therefore, it has been 

suggested that the same genetic variant causing Dravet’s syndrome may also be responsible for 

the lack of response to AEDs whose target is the voltage gated sodium channel (Sisodiya and 

Marini, 2009).  
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The target hypothesis is weakened by demonstrable lack of sensitivity to AEDs other than 

carbamazepine, including other voltage gated sodium channel blockers (Remy et al., 2003).  

Similarly, as most patients who have been diagnosed with DRE are generally resistant to all 

AEDs, and different AEDs act on different receptors, it would suggest that the mechanism of 

drug resistance is not specific to a particular receptor anomaly (Loscher and Potschka, 2002).   

In view of inconsistencies in genetic studies of drug resistance and the low frequency of alleles 

demonstrated to be associated with DRE, pharmacogenetic alterations alone do not currently 

sufficiently explain drug resistance (Tang et al., 2017). 

Intrinsic severity hypothesis 

In 2008, Johnson and Rogawski posited that exploring drug resistance from a molecular 

mechanism aspect was limited by not taking into account the fundamentals of epilepsy 

pathophysiology itself (Rogawski and Johnson, 2008).  They proposed the intrinsic severity 

hypothesis, where the inherent severity of epilepsy determines response to medication and as 

a result, more severe epilepsy is more difficult to treat.  Expanding on the framework of drug 

resistance as a physiological constraint, they suggested that if epilepsy severity is high, seizure 

prevention may not be possible with available AEDs without causing toxicity.  In support of 

this theory is epidemiological data demonstrating that frequent seizures in the early period of 

epilepsy are associated with poorer prognosis (Mohanraj and Brodie, 2006, MacDonald et al., 

2000).  In addition, a correlation between high seizure frequency in the early stages and a 

higher dose of AEDs required to achieve seizure freedom has been reported (Schmidt and 

Haenel, 1984) . 

Evidence against the intrinsic severity hypothesis is that some patients with ‘severe epilepsy’ 

respond to a new drug despite previous trials of a multitude of other drugs (Brodie et al., 

2012).  If the intrinsic severity of their epilepsy was the sole explanation for lack of medication 

response, the hypothesis does not explain why some drugs are an exception to the rule 

(Rogawski and Johnson, 2008).  Similarly, it is known that some patients shift in and out of 

seizure freedom (Brodie et al., 2012, Neligan et al., 2011b) which is not readily accounted for by 

this hypothesis (Rogawski and Johnson, 2008).  Further evidence that other factors are 

involved in DRE is provided by a large observational study of pharmacoresistance in 780 

patients with various epilepsy types (Hitiris et al., 2007).  In this study, it was found that drug 

resistance is not only associated with greater pre-treatment seizure frequency but also with 

family history of epilepsy, history of febrile convulsions, traumatic brain injury, recreational 

drug use, and depression. 
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In conclusion, while it is possible that intrinsic epilepsy severity may play a role in DRE it does 

not seem to account for the full mechanism.     

Neural network hypothesis 

The neural network hypothesis proposes that under the influence of genetic and 

‘microenvironmental’ abnormalities, seizure induced changes in brain plasticity cause 

alterations in the neural network.  This consequently prevents AEDs from exerting their 

effects, either by preventing their ability to act at the drug target or through decreased 

effectiveness of the brain’s inherent inhibitory mechanisms (Fang et al., 2011).  The precise 

mechanisms by which network alterations may result in these effects has not been theorised.  

Seizure induced changes that have been proposed as support for the neural network 

hypothesis include axonal and dendritic sprouting, neuronal loss (Cavazos and Sutula, 1990, 

Pitkänen et al., 2002), gliosis, and inflammation (Sperk et al., 2009, Fang et al., 2011).  Many of 

these factors are associated with increased seizure severity and display a kindling response, 

whereby repeated seizures are associated with increased microstructural alterations (Pitkänen 

and Sutula, 2002).  These changes may contribute to a progressive worsening of epilepsy 

(Pitkänen and Sutula, 2002), with the result that the more seizures a person has, the more 

likely they are to develop DRE.  This is concordant with the observation that high pre-

treatment seizure frequency is associated with a poor response to AEDs (Shinnar and Berg, 

1996). 

 A limitation of seizure induced microstructural changes as support for the neural network 

theory is that there is no direct quantitative evidence that network topology is consequently 

altered.  Moreover, causation has not been demonstrated (Fang et al., 2011) and as such, 

microstructural abnormalities may be a consequence of DRE rather than a cause.  The concept 

of kindling as inferred evidence for the theory is problematic since the notion that ‘seizures 

beget seizures’ (Gowers, 1881) is largely discounted (Berg and Shinnar, 1997).  This is due to a 

wealth of epidemiological evidence demonstrating a low incidence of recurrence of acute 

symptomatic seizures (Hesdorffer et al., 2009, Bentes et al., 2017, Bladin et al., 2000, Lin et al., 

2003, Ferro et al., 2003), resolution of some childhood epilepsies despite an association with 

frequent seizures (e.g. benign epilepsy with centro-temporal spikes and many cases of CAE), 

and evidence of spontaneous remission in over 20% of untreated people with epilepsy in 

resource-poor settings (Placencia et al., 1994, Shorvon and Luciano, 2007, Nicoletti et al., 

2009).  In addition, there is evidence that immediate treatment of epilepsy does not affect 

outcomes after the first two years of treatment (Marson et al., 2005).  Beyond these 
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limitations, the described mechanisms of neuronal reorganisation have been studied in focal 

epilepsies and in animal studies of focal seizures, and not in generalised epilepsies, and thus 

cannot necessarily be extrapolated to IGE.   

While there is no strong evidence to support the neural network hypothesis, proposed by 

Tang and colleagues, there is no evidence against the theory, to my knowledge.  Although the 

neural network theory remains unproven, given that epilepsy is a network disorder, it seems 

plausible that network aberrations may vary according to seizure control.  This would also be 

consistent with the intrinsic severity hypothesis of epilepsy and supports the notion of 

epilepsy drug resistance being multifactorial.   Investigating epilepsy drug resistance from a 

network perspective, rather than at a cellular level, is consistent with the current approach to 

studying epilepsy as a network disorder.  It may, therefore, generate a more satisfactory 

understanding of this issue.  This concept forms the rationale for this thesis.  

 

1.2.3 Determinants of response to anti-epileptic drugs   

Various factors have been associated with response rate of AEDs in epilepsy.  However, 

epidemiological studies exploring this area are prone to biases.  As such, evidence is often 

conflicting and generally not deemed to be strong (Mohanraj and Brodie, 2007, Mohanraj and 

Brodie, 2013).  One association for which there is strong evidence is early response to 

treatment (Mohanraj and Brodie, 2013).  In a study of newly diagnosed patients, the chance of 

seizure freedom significantly declined following the failure of two AEDs in the first one to two 

years following treatment initiation (Brodie et al., 2012).  

Other factors associated with a poor medication response in IGE, includes co-existent mental 

or psychological illness (Gelisse et al., 2001, Cutting et al., 2001), onset less than five years old 

(Nicolson et al., 2004), an ‘‘atypical’’ presentation (defined as atypical absences, myoclonic 

epilepsies, generalised tonic–clonic seizures with onset less than three years or 20 twenty 

years) (Nicolson et al., 2004),  EEG asymmetries (focal slowing, focal epileptiform discharges, 

asymmetric generalised spike-wave discharges (Szaflarski et al., 2010), history of febrile 

seizures (Mohanraj and Brodie, 2007), and the presence of multiple seizure types in JME 

(Gelisse et al., 2001). In epilepsy generally, other associations with poor response include high 

pre-treatment seizure frequency (Shinnar and Berg, 1996), neurological disability and epileptic 

encephalopathy syndromes (Berg et al., 2001, Ko and Holmes, 1999), and response to first AED 

(Kwan and Brodie, 2000, Sillanpaa, 1993).  With respect to non-seizure outcomes, a first 
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seizure at less than 18 years is reported to be a powerful predictor of neuropsychological 

impairment (Hessen et al., 2006). 

There are some studies which have described differences in neuroimaging features in people 

with drug resistant IGE or those with frequent seizures compared to those with well-

controlled epilepsy.  Such differences include alterations in EEG alpha frequency oscillations 

(Abela et al., 2019), altered connectivity in the DMN (Kay et al., 2013) and cerebellar networks 

(Kay et al., 2014), and greater atrophy on structural imaging (Bernhardt et al., 2009).  

However, it is not known whether these factors have arisen as a consequence of seizure 

burden or medication, or if they were present from the outset.  In order to clarify this, 

prospective studies are needed.  

Thus, the prediction of DRE remains a major challenge.  A reliable biomarker to identify drug 

resistant patients at an early stage would permit a more tailored treatment path.  

 

1.3 Neuronal oscillations 

1.3.1 The role of neuronal oscillations  

Brain function relies on interactions between populations of synchronised neuronal 

oscillations in functionally connected areas of the brain (Siegel et al., 2012) and it is from these 

background oscillations that the hypersynchronous seizure state is believed to arise 

(Richardson, 2012a).  Although it is not known what causes a transition from the normal state 

to the seizure state, there is evidence to support the influence of background oscillations in 

the temporal dynamics of neuronal excitation (Uhlhaas et al., 2009).  Examples of this include 

synchronisation of neuronal action potentials to background beta and gamma frequency 

oscillations (Gray and Singer, 1989) and alterations in the rate of neuronal discharges relating 

to the oscillation cycle (Fries et al., 2001).  Further indirect evidence of the role of oscillations 

in modulating neuronal excitation comes from studies that have demonstrated an alteration in 

oscillatory amplitude or frequency with drugs that alter GABAergic or glutamatergic synaptic 

transmission (Campbell et al., 2014, Saxena et al., 2013, Shaw et al., 2015).   

The coordinated neuronal populations involved in brain function are often frequency band 

specific (Siegel et al., 2012).  Thus, frequency band specific oscillations are postulated to be 

markers of underlying large-scale neuronal networks (Siegel et al., 2012). 
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The precise boundaries between traditionally defined frequency bands are debated, but are 

approximately as follows : delta < 3.5 Hz, theta 4-7.5 Hz, alpha 8-13 Hz, beta 14-30 Hz, gamma 

> 30 Hz (Schomer and Lopes da Silva, 2017).  These bands were established following visual 

inspection of EEG data, with Hans Berger first describing the alpha frequency band in 1929 

(Berger, 1929).  A criticism of using this classification in quantitative studies is that these 

bands may not accurately represent the oscillations involved in specific cortical processes 

(Donner and Siegel, 2011).  To address this potential limitation, frequency bands may be 

derived using spectral factor analytical methods (Andresen, 1993, Kubicki et al., 1979, 

Shackman et al., 2010), which determine the independent signals that best explain the 

variability in the data and thus represent a more data-driven alternative. Where frequency 

bands have been defined using this method, they are broadly similar to conventional bands 

but typically have a division of alpha rhythm into high and low bands.  For example, 

Shackman and colleagues define frequency bands as follows: delta 1–5 Hz, low-alpha 6–9 Hz, 

high-alpha 10–11 Hz, beta 12–19Hz, and gamma >21 Hz.   

Despite substantial literature implicating frequency band specific oscillations in various brain 

functions, their precise physiological functions have not been fully elucidated.  Alpha, the 

dominant resting state rhythm of the brain, is thought to have a role in attentional processes, 

mainly through active inhibition (Jensen and Mazaheri, 2010, Klimesch, 2012).  Beta, theta and 

gamma oscillations have been associated with a range of cognitive functions including 

memory (Düzel et al., 2010), perception, and motor control (Başar et al., 2000, Düzel et al., 

2010, Schnitzler and Gross, 2005).  Rather than each band having a specific function, it has 

been further suggested that the effects of various oscillations may be influenced by their 

associated characteristics (e.g., phase and amplitude) (Herrmann et al., 2016) and their 

synchronisation with oscillations of other frequencies.  For example, synchronisation between 

gamma and beta band oscillations has been demonstrated to be of importance in attention 

(Uhlhaas et al., 2009).  There is converging evidence to support a model of oscillatory 

interactions whereby gamma oscillations are involved in local interactions which govern 

encoding processes (such as motor planning) whereas low frequency oscillations are 

associated with top-down, long-range integrative processes (Donner and Siegel, 2011, von Stein 

and Sarnthein, 2000, Kopell et al., 2000).  The putative mechanisms underlying inter-

oscillatory interactions involve phase or amplitude coupling (Engel et al., 2013a).  This is 

discussed further in subsection 1.4.3.4.   There is also evidence that some brain processes occur 

across multiple frequency bands (Wilke et al., 2006) and that some functions arise within sub-

categories of conventional bands (Wyart and Tallon-Baudry, 2008). 
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1.3.2 Measuring neuronal oscillations  

Cortical oscillations are typically quantified using EEG /magnetoencephalography (MEG).  

These are suitable methods owing to their high temporal resolution (typically recorded at 250 

Hz to 2000 Hz) which permits sampling of the dynamic activity of coordinated neuronal 

populations (Abreu et al., 2018).  This is in contrast to fMRI, which has a temporal resolution 

of approximately 0.5-1.5 Hz and indirectly measures neuronal activity by using the 

haemodynamic response of blood oxygen dependent (BOLD) signal.  In studies combining 

fMRI with electrophysiological data, gamma frequency power is reported to be strongly linked 

to the BOLD signal, but there is also evidence that BOLD signal is influenced by lower 

frequencies (Magri et al., 2012).  As such, it is proposed that oscillations of various frequencies 

dynamically contribute to the BOLD signal.   The use of each of these modalities in the 

context of network analytical studies is further discussed in subsection 1.4.3.3. 

Oscillations are commonly characterised using spectral power analysis.  This decomposes 

signal in the time domain into its independent frequency components, typically via a Fourier 

Transform. The frequency content of the signal can then be quantified (i.e., the power in each 

frequency band) and statistically analysed.   The relationship between frequency and power is 

known to have a 1/f spectrum, where power has an inversely proportional relationship with 

frequency.  

 

1.3.3 Oscillatory amplitude, frequency, and spectral analysis in epilepsy studies 

Alterations in alpha rhythm have been reported in epilepsy since the 194os when slower alpha 

rhythm was noted on EEG  (Gibbs et al., 1943, Stoller, 1949).  Subsequently other alpha band 

abnormalities in epilepsy have been described including absent normal posterior alpha 

rhythm (Aich, 2014) and reduced peak alpha frequency with reduced alpha frequency 

variability (Larsson and Kostov, 2005).  Of particular note is a recent study which 

demonstrated a shift to lower peak alpha power in people with drug resistant IGE (DR-IGE) 

compared to well-controlled IGE (WC-IGE) (Abela et al., 2019).  There is increasing literature 

implicating high frequency oscillations (HFOs) (>80 Hz) in epilepsy, particularly in focal 

epilepsy (FE) suitable for epilepsy surgery where it is suggested that HFOs are a potential 

marker for epileptogenic tissue (Höller et al., 2015).    

Spectral analytical studies in IGE have reported greater spectral power in the interictal period 

in epilepsy in various frequency bands (Clemens et al., 2000, Elshahabi et al., 2015, Miyauchi et 
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al., 1991, Niso et al., 2015, Tikka et al., 2013, Willoughby et al., 2003, Routley et al., 2020), either 

globally or in spatially segregated scalp regions.  It is proposed that increased spectral power 

reflects greater neuronal synchronisation (Clemens et al., 2000, Michel et al., 1992) and 

therefore higher spectral power in IGE may reflect hyperexcitability of the cortex and a greater 

seizure susceptibility.  Similarly, increases in broadband spectral power immediately prior to a 

myoclonic seizure have been reported, followed by a large ictal drop in power (Sun et al., 

2016). 

In studies evaluating spectral entropy, where the spectral distribution of the EEG signal is 

determined via quantification of signal uncertainty (Powell and Percival, 1979), larger entropy 

values at 6.25 Hz-12.89 Hz have been reported in interictal EEGs containing IEDs compared 

with EEGs of people with epilepsy without IEDs, and compared to controls (Urigüen, 2017).  

The same study demonstrated an inverse relationship of spectral entropy with the time since 

the most recent seizure suggesting that when epilepsy is well-controlled, the EEG transforms 

to a similar state to that found in healthy controls.  Increased alpha frequency spectral entropy 

values in patients with temporal lobe and frontal lobe epilepsy compared with people with 

headaches and NEAD has also been described (Pyrzowski et al., 2015).  In the ictal state, lower 

spectral entropy has been reported at 8–15 Hz compared with the interictal state, and also 

compared with controls (Mirzaei et al., 2010). 

It is reported that AEDs may affect spectral power.  However, evidence for this is inconsistent 

(Holler et al., 2019).  Furthermore, in studies reporting a possible medication effect, the 

directionality of the change varies; whilst some studies report increased power in delta, theta, 

alpha and beta frequency bands (Willoughby et al., 2003, Wu and Xiao, 1997, Cho et al., 2012), 

others report decreased power in the same frequency bands (Clemens et al., 2007, Clemens, 

2008, Sannita et al., 1989, Wu and Xiao, 1997, Cho et al., 2012, Zhong et al., 2018).   However, in 

many studies the effects of medication on background rhythm cannot be differentiated from 

effects due to epilepsy owing to the study design.  In a spectral power study where it was 

possible to compare medicated with unmedicated participants, both groups were similar 

suggesting that the differences were due to epilepsy rather than medication (Miyauchi et al., 

1991).  However, in a similar comparison, a medication effect was reported at 2-4 Hz and 7-8 

Hz in medicated participants (Willoughby et al., 2003).    

It is suggested that spectral power analysis is conducted alongside network analysis in order to 

provide complementary information about brain networks (Niso et al., 2015, van Diessen et al., 

2014a) and to help extricate information regarding functional network topology from disease 
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specific spectral power changes (van Diessen et al., 2014a).   Similarly, because some methods 

of delineating functional connectivity are sensitive to spectral power (particularly amplitude-

based techniques), exploring connectivity at the spectral level permits insight into whether 

apparent changes in functional networks are driven by spectral power alterations.  

Furthermore, if there is a correlation between spectral power and functional connectivity in 

the same frequency band, it may suggest that connectivity findings have been influenced by 

volume conduction effects (Cohen and Grafman, 2014).  Volume conduction is discussed in 

subsection 1.4.3.3. 

 

1.4 Network analysis in the study of epilepsy  

1.4.1 Contextual overview 

Numerous cellular and molecular mechanisms have been demonstrated to play a role in 

seizure generation.  However, the precise mechanisms underlying epilepsy remain unknown.  

It is widely accepted that normal brain function is dependent on interconnected neuronal 

networks and that epilepsy is a network disorder.  We have defined a neuronal network as “a 

system of functionally or anatomically connected areas of the brain in which activity in one 

component can influence the activity of all other components and affect the system as a 

whole” (Pegg et al., 2020a).  The neuronal networks of the brain form a complex system.  A key 

characteristic of a complex system is that its behaviour cannot be anticipated from its 

individual components; this is because behaviours emerge from a system due to interactions 

between individual components.   This concept provides further rationale for examining 

epilepsy from a network perspective.  The mechanisms involved in seizure genesis are 

generated from the same mechanisms that are present in the brain during normal brain 

functioning and as such, under certain conditions, any brain can transition to a seizure state.   

This suggests that epilepsy is a problem emerging from the dynamic properties of the brain 

(Richardson, 2012b).  In view of this, it can be reasoned that elucidating the network 

properties of the brain in its resting state is the first step in understanding the complex 

dynamical network system from which seizures arise.    

The earliest concept of the brain functioning via a network is attributed to Ramon Y Cajal in 

1894 (Ramon Y Cajal, 1894), who formed the notion of a neuron and furthermore suggested 

that the organisation of neurones into circuits is a key principal in brain functioning (Lopez-

Munoz et al., 2006).  The term “synfire chains” was introduced as a concept for information 
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transmission along chains of connected neurones, whereby connected neurones fire 

synchronously when the chain is activated (Abeles, 1982).  The significance of connections 

between cortical and subcortical structures in the genesis of generalised seizures has been 

acknowledged since at least 1941 following an EEG-based study of absence seizures, which 

suggested that seizures originate subcortically in the thalamic intralaminar nucleus then 

diffusely project to the cortex (Jasper and Kershman, 1941).  This subsequently became known 

as the centrencephalic theory (Penfield, 1958).  It was later suggested that epileptic discharges 

arise following an initial cortical discharge (Bancaud, 1969).  At a similar time, the 

corticoreticular theory of seizure generation was suggested (Gloor, 1968).  This proposed that 

the reticular system of the brainstem and thalamus are involved in seizure pathogenesis, in 

addition to the cortex.  A later hypothesis, the thalamic clock theory, suggested that seizure 

generation occurs through “emergent network properties” in the thalamic and cortical 

network (Buzsaki, 1991).  According to this theory, abnormal rhythmic oscillations in the 

thalamic network increasingly project to the cortex, with the result that the entire network is 

affected.  Since the formation of these hypotheses, there has been further evidence of the 

involvement of the thalamic and thalamocortical networks in IGE (Bernhardt et al., 2009, 

Aghakhani et al., 2004, Gotman et al., 2005, Hamandi et al., 2006).  Reduced connectivity in 

the DMN has also been implicated in IGE, in addition to abnormal ‘global’ resting state 

networks (RSNs) (Bonilha et al., 2014, Chavez et al., 2010, Chowdhury et al., 2014, Elshahabi et 

al., 2015, Lee and Park, 2019, Liao et al., 2013, Niso et al., 2015, Zhang et al., 2011).  Abnormal 

RSNs have also been reported IGE related cognitive impairment (Li et al., 2015a, Li et al., 2017, 

Bonilha et al., 2014).  Altered resting state connectivity in IGE is further discussed in 

subsection 1.4.4. 

 

1.4.2 Scales of connectivity  

The human brain is estimated to comprise approximately 100 billion neurones with 100 trillion 

synapses (Fornito et al., 2016).  Characteristics of this complex system can be estimated at a 

range of scales.  Spatially, brain networks can be broadly characterised at micro, meso and 

macro scales (Bohland et al., 2009).  At the microscale, networks are formed by individual 

neurones and synapses. Mesoscale networks are also examined microscopically but focus on 

networks formed by populations of neurones that are functionally and spatially associated, for 

example groups of cytoarchitecturally similar neurones.  Evaluation of the brain at both meso 

and microscales is invasive and has limited applicability in analysing whole-brain networks 
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(Fornito et al., 2016).  Networks at the macroscale are less precise but can depict large-scale 

neuronal networks that represent whole-brain ‘global’ connectivity.  The temporal scales of 

neuronal networks are organised over frequencies ranging from 0.05 to 500 Hz (Fornito et al., 

2016) and may be delineated at scales spanning from milliseconds to years (Betzel and Bassett, 

2017).  

 

1.4.3 Large-scale resting state network analysis   

1.4.3.1 Overview  

Complex network systems are pervasive in the world around us and include social networks, 

ecological systems and the world economy.  Remarkably, these diverse systems share similar 

organisational characteristics (Barabási and Albert, 1999, Newman, 2003) and can be evaluated 

using network analysis.  Network analysis in epilepsy applies concepts from the field of 

connectomics in understanding how neuronal networks at multiple scales of time and space 

are organised and interact in the epileptic brain (Bullmore and Sporns, 2009). 

Approximately ten distinct resting state networks have been delineated.  These include 

networks that are associated with specific neuroanatomical systems, such as the ‘motor 

network’ or ‘visual network’, in addition to networks that represent less well-defined functions 

such as the ‘DMN’ and the ‘thalamocortical network’ (Biswal et al., 1995, Damoiseaux et al., 

2006, Beckmann et al., 2005, Buckner and Vincent, 2007, Fox et al., 2005, Greicius et al., 2003).  

Commonly used approaches to identify such networks include independent component 

analysis and seed-based correlation analysis (Biswal et al., 1995).   

In addition to examining the relationship between brain processes and specific networks, 

‘global’ large-scale RSNs may be investigated, where activity from neuronal populations 

spanning the cortex is captured (Schölvinck et al., 2010).  This seems a particularly suitable 

approach for exploratory studies of RSNs in epilepsy since it may capture alterations that 

could be overlooked by analysing specific networks and avoids assuming the relevance of a 

certain network in seizure susceptibility.  This is particularly relevant in IGE as it is a 

generalised brain disorder and it seems likely that activity in one network would influence all 

other networks within the complex system.   

Alterations in RSNs have been described in a wide range of central-nervous system disorders 

including schizophrenia (Liu et al., 2008, Micheloyannis et al., 2006, Rubinov and Bullmore, 

2013, Cui et al., 2019) and Alzheimer’s disease (Supekar et al., 2008, Stam et al., 2007a, He et 
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al., 2008, Dai et al., 2019), as well as epilepsy.  Where differences have been found in RSNs in 

disease states, it has been proposed that they could form the basis of a biomarker for that 

condition.  As such, the study of the interictal resting state in epilepsy is also of relevance in 

the search for a potential biomarker.   

 

1.4.3.2 Connectivity subtypes 

RSNs may be broadly evaluated from a structural or functional perspective.  Structural 

networks refer to anatomically connected regions of the brain.  Structural connectivity is 

typically delineated using Diffusion Tensor Imaging (DTI) which quantifies the diffusion 

properties of water molecules that are constrained by white matter tracts (Clayden, 2013) 

(figure 2). 

 

 

 

 

Figure 2.  Example of an image obtained with DTI. Fibre bundles are 

coloured according to their fractional anisotropy value. Reprinted from 

Journal of Psychiatric research, Vol 41, Kubicki et al, a review of 

diffusion tensor imaging in schizophrenia., Pages 15-30. Copyright 

2007, with permission from Elsevier.   
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Functional networks are inferred from statistically dependent correlations between spatially 

segregated neuronal populations or brain areas.  This can be derived from fMRI, EEG or MEG.  

Functional connectivity may be further evaluated from an ‘effective’ perspective. This 

determines the influence of one region over another and can be used to investigate causality 

(Friston, 2011, Aertsen et al., 1989).  This is particularly suited to the evaluation of the 

dynamics of epileptic discharges (Cadotte et al., 2009).    

It is suggested that functional connectivity is constrained by structural connectivity (Zhang et 

al., 2011). However, the precise relationship between functional and structural connectivity is 

complex and incompletely understood (Friston, 2011).  As such, the connectivity measures 

derived from each sub-type may not be directly comparable.  However, there is evidence that 

functional connectivity measures that are averaged over long time frames may map onto 

structural connectivity (Zalesky et al., 2012b), which perhaps reflects the dynamic nature of 

functional networks.   

 

1.4.3.3 Neuroimaging modalities in global functional network analysis  

Data may be obtained from fMRI or EEG/MEG.   

EEGs may be recorded from scalp or intracranial electrodes and measure the synchronised 

electrical activity of pyramidal cell dendrites.  EEG has high temporal resolution, with a typical 

sampling frequency from 500 Hz to 2000 Hz, which is commensurate with the speed of 

neuronal communication in the brain (Fornito et al., 2016).   A limitation of EEG is volume 

conduction (due to the conductive properties of the skull and scalp) and field spread, which 

may confound connectivity estimates.  This is discussed further in subsection 1.4.4.4.  A 

further limitation is that signal above 20-30 Hz is typically confounded by muscle artefact.  

Intracranial recordings attenuate these limitations.  However, the use of intracranial 

electrodes in a study setting is limited by cost and ethical considerations regarding participant 

risk.  In addition, intracranial recordings are spatially limited compared to the ‘whole brain’ 

recording capabilities of scalp EEG since they can only be taken from the relatively small area 

of exposed brain.  MEG measures the magnetic fields produced by populations of underlying 

neurones and similarly to EEG, has a time resolution of milliseconds.  An advantage of MEG 

compared to EEG is that the magnetic fields generated by the brain are less susceptible to 

volume conduction effects and also to muscle and eye movement artefacts (van den Broek et 

al., 1998).  Disadvantages of MEG relative to EEG is that it is expensive, it necessitates the use 
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of a magnetically shielded room (due to being sensitive to noise from nearby electromagnetic 

sources), it is susceptible to head movement artefact, it is insensitive to radial sources, and it 

does not account for different head shapes.  As a result, sensors may not be in the same 

location relative to the brain across subjects when the head moves relative to the sensors.  

Connectivity in fMRI data is determined by measuring alterations in the BOLD response 

which occur in association with neuronal activity.  It is, therefore, an indirect measure of 

neuronal activity.  The chief advantage of fMRI is high spatial resolution with 3-4mm voxels 

typically obtained (Glover, 2011), increasing to around 1.5mm with 7T scanners (De Martino et 

al., 2011).  However, it has poor temporal resolution relative to other modalities with a peak 

hemodynamic response function (HRF) of around six seconds and a typical sampling rate of 

0.5 Hz (repetition time of two seconds).  A further limitation of fMRI in epilepsy connectivity 

studies, is that the HRF may be confounded by the presence of epileptiform discharges (Bénar 

et al., 2002).  

Comparing connectivity derived from different modalities is limited by the fact that the 

methods used to determine connectivity typically diverge according to the modality used.  

Broadly, this is a consequence of differing sensitivities to time scales (Tracy, 2015).  In view of 

the complimentary information that may be gained from each modality, there is increasing 

interest in methodologies that simultaneously record EEG and fMRI data.  However, the 

optimal methods for this complex integration remain unknown (Abreu et al., 2018).  

Moreover, when both modalities are used concurrently, they introduce artefact in each other. 

 

1.4.3.4 Inferring global resting state functional connectivity  

To delineate a global neural network, neuroimaging data is parcellated to represent 

underlying neuronal assemblies from which signal has been generated.  Next, the extent of 

connectivity between each pair of elements is ascertained.  In graph theory, discussed in 

subsection 1.4.3.5 these network components are known as nodes and edges, respectively.  

Most methods of delineating connectivity between network elements are bivariate and as such 

infer the nature of a connection between two network elements.  Although the brain network 

is multivariate, models of multivariate connectivity in the brain are scarce and difficult to 

implement, interpret, and statistically analyse (Cohen and Grafman, 2014).  As such, bivariate 

connectivity is used in most brain network studies and will therefore be the focus of the 

discussion that follows.  
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Data parcellation in EEG /MEG studies 

In EEG and MEG studies, signal from separate network areas is detected by electrodes/sensors.  

Connectivity between each network element may subsequently be determined in the signal 

(sensor) space or the source space.  In the sensor space, neuronal activity is inferred directly 

from each scalp electrode/sensor.   A drawback of this technique is volume conduction and 

field spread, where signal arising from one distinct brain area is detected by two or more 

electrodes/sensors.  This can consequently confound connectivity measures between two 

electrode/sensor pairs.  To attenuate volume conduction effects, analysis may be performed in 

the source space, where signal is mapped back to the underlying source using biophysical 

models to take into account the effect of skull and scalp tissue conductivity.  However, there is 

no consensus on the optimal solution for this so-called inverse problem and assumptions must 

be applied when performing source localisation (Darvas et al., 2004), thus analysis in the 

source space may also introduce some bias (Fornito et al., 2016).  Moreover, it does not fully 

overcome potential issues of field spread because the separation of sources is never perfect 

(Schoffelen and Gross, 2009, Colclough et al., 2016).   

Data parcellation in fMRI analysis  

Parcellation of fMRI data refers to the partition and labelling of brain regions or networks.  

Detailed fMRI scanning creates around one million voxels; to treat each voxel as a single node 

would be computationally challenging, sensitive to noise (Craddock et al., 2012, Thirion et al., 

2014), and statistically problematic in view of the number of tests that would be required 

(Zalesky et al., 2012a).  In addition, the high dimensionality would render network analysis 

intractable (Thirion et al., 2014).  To decrease dimensionality, voxels are parcellated into larger 

regions.  

Numerous parcellation methods exist and there is no universally accepted optimal choice.  

One strategy is to parcellate data randomly.  However, in order that parcels more accurately 

represent underlying brain organisation, voxels with shared structural-anatomical properties 

or similar connectivity features may be grouped together (Fornito et al., 2016).  This may be 

determined at an individual level, or by applying a reference atlas.  For meaningful 

interpretation of results in functional connectivity analysis, components represented by nodes 

should share similar temporal activation patterns as these reflect functionally coherent areas 

(Shen et al., 2013, Finn et al., 2015).  Accordingly, methods of parcellation based upon 

connectivity information derived from the correlation of BOLD signals in the resting state are 

particularly suitable for functional connectivity studies (Finn et al., 2015, Eickhoff et al., 2018).  
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There is some evidence that functional connectivity derived parcels determined at an 

individual level may more accurately represent underlying functional connectivity than those 

defined with an atlas (Arslan et al., 2018).  However, the former is limited by being time 

consuming for large datasets and may limit comparisons at the group-level.  Therefore, 

applying an atlas is the more common approach for group-level analyses.  

At least seven atlases are in existence that use functional connectivity features to parcellate 

the whole brain or cortex (Bellec et al., 2010, Craddock et al., 2012, Glasser et al., 2016, Gordon 

et al., 2016, Joliot et al., 2015, Schaefer et al., 2018, Shen et al., 2013).  Each atlas varies in its 

design and there is no clear superior choice (Arslan et al., 2018).  This perhaps reflects the 

complexity of attempting to capture brain organisation across varying scales, together with 

individual neurobiological variances, within the constraint of a universal atlas (Eickhoff et al., 

2018).  Major differences between atlases include the clustering technique used to determine 

similarity between voxels, the total number of parcels, the extent of brain coverage, and the 

characteristics of subjects used to create the atlas.  Functional atlases are discussed further in 

Appendix 1 of Chapter 5.   

Inferring connections in EEG/ MEG studies 

The strength of the relationship between two network areas is ascertained according to the 

strength or consistency of synchronisation between two oscillating signals.  The 

synchronisation of two signals may occur via their phase or amplitude/power (figure 3).  

Numerous measures exist to measure this relationship, each with their own advantages and 

disadvantages.   
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Correlation, an amplitude-based measure, is derived from measuring the correlation of the 

‘amplitude envelopes’ between two signals (Brazier and Barlow, 1956).   Correlation produces 

both positive and negative edges, with positive values believed to represent integration 

between two network areas (Fornito et al., 2013).  There is debate as to whether pre-processing 

techniques significantly contribute to negative correlations (Fox et al., 2009, Saad et al., 2012).  

Often, only absolute or positively correlated values are considered (Fornito et al., 2013).  

However, this may overlook potentially important information about network structure 

relating to negative correlations, which have been proposed to represent network segregation 

(Fornito et al., 2013).  Phase coherence may be regarded as the frequency domain equivalent of 

correlation.  It is derived from the cross spectral density of two signals (this is typically 

computed using the Fourier transform or wavelet transform and is obtained from the product 

of the two transforms when one is ‘flipped’ in its sine phase).  As such, phase coherence 

incorporates both amplitude and phase (Adey et al., 1967).  For both correlation and phase 

Figure 3. Phase synchronisation and amplitude correlation. a) illustrates phase synchronisation 
where the consistency of the phase of two signals is quantified. Signals may have zero phase 
lag (left panel) or may be phase shifted (right panel).  b) amplitude correlation measures the 
correlation of the amplitude enveloped of two signals. Amplitude correlation can be 
determined for two signals of the same frequency (left panel) or different frequencies (right 
panel). Reprinted by permission from the licensor: Springer Nature, Nature Reviews 
Neuroscience, Spectral Fingerprints of Large-scale Neuronal Oscillations, Siegal et al. Copyright 
2012. 
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coherence, the intrinsic non-linearity of the neural signal is not considered and the measures 

are sensitive to volume conduction (van Diessen et al., 2014a).  Volume conduction effects can 

be attenuated by only using the imaginary part of coherency (Nolte et al., 2004), but this risks 

overlooking potentially important connections by excluding the real part of coherency (van 

Diessen et al., 2014a).  Due to disease specific spectral alterations, power and amplitude-based 

methods may be influenced by the underlying spectral profile of the signal (van Diessen et al., 

2014a, Donner and Siegel, 2011) and therefore methods unaffected by amplitude may be more 

suitable for deriving the strength of signal synchronisation. Such measures include phase 

locking value (PLV) and phase lag index (PLI).   

The PLV (Lachaux et al., 1999) assumes that when two oscillating signals are functionally 

connected, the differences in the instantaneous phase of the signals will be consistent.  A 

Hilbert transform is applied to the frequency domain signal and an average of the phase angle 

differences between two signals is computed over time (figure 4). 

 

 

 

 

 

 

The derived PLV lies between zero and one, where zero signifies no phase synchrony and one 

represents an identical phase between the signals.  When two signals have zero (or Pi) lag, it is 

important to consider that they may have arisen as a result of volume conduction or field 

spread.  The effect of these potential confounders on connectivity derived using PLV can be 

mitigated by excluding zero lagged data.  Alternatively, measures which are less sensitive to 

these effects such as PLI may be used.  The PLI (Stam et al., 2007b) is determined by the 

distribution of the phase angle differences between two signals.  If apparent connectivity is 

Figure 4. Schematic illustrating how PLV is determined between two simultaneously recorded 

signals.  The phase angle of the two signals at each time point is established (left panel). The 

differences in phase angles at each time point between the signals are then determined.   Where 

the phase angle differences are similar, there is a high PLV but when the differences are dissimilar, 

there is a low PLV (right panel). 
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due to volume conduction effects, the distribution will be around zero radians whereas for 

non-spurious interactions, the phase angle differences will be positive or negative with respect 

to the real horizontal axis (figure 5).  The PLI lies between zero and one, where zero signifies 

no instantaneous coupling and one indicates true lagged synchronisation.    

 

  

 

 

 

 

 

 

 

 

 

 

Using phase-based methods, the direction of information flow may also be inferred to form a 

directed graph by assessing whether the instantaneous phase of one signal is greater or less 

than the phase of another signal over time.  This is potentially more informative than an 

undirected graph since it contains more information about the interactions between nodes.       

Other methods exist that also incorporate estimates of the direction of information flow.  Such 

measures include Granger causality (Granger, 1969), directed coherence (Wang and Takigawa, 

1992), and directed transfer function (Kaminski and Blinowska, 1991).  Disadvantages of these 

methods are that nonlinearity is not considered and the first two examples are sensitive to 

volume conduction (van Diessen et al., 2014a).  These measures are typically used in effective 

connectivity studies, which seek to investigate the influence of one network region over 

another. 

 

Figure 5. Phase locking index. PLI is determined by the distribution of the phase angle 
differences between two signals.  a) If apparent connectivity is due to volume conduction 
effects, the distribution will be around zero radians.  b) for non-spurious interactions, the 
phase angle differences will be positive or negative with respect to the real horizontal 
axis. Reprinted from: Journal of Neuroscience Methods, Volume 250, Cohen M, Effects of 
time lag and frequency matching on phase-based connectivity, Pages 137-146, Copyright 
2015, with permission from Elsevier. 
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Inferring connections in fMRI studies 

Edges in fMRI data are inferred from the extent of similarity of BOLD signal from time series 

of two different brain regions.  The most common approach is to use the Pearson correlation 

coefficient to measure the correlations in signal amplitude fluctuations (Fornito et al., 2016).  

A drawback of this method is that it is sensitive to indirect connections whereby a spurious 

connection may be detected due to both regions being connected to an intermediary region.  

Using partial correlation may overcome this by regressing out the effects of other network 

nodes but may overcompensate thereby erroneously altering connectivity features (Smith, 

2012).  Furthermore, in a direct comparison of Pearson correlation and partial correlation, it 

was reported that there is a higher reliability when Pearson correlation is used (Liang et al., 

2012).  These linear methods assume that there is a temporally stable synchrony between 

functionally connected brain regions with zero-lag (Meszlényi et al., 2017).  As with EEG/MEG 

derived networks, coherence-based methods may also be used.  

In view of evidence that functional connectivity may comprise a more complex time lag-

structure, there is increasing interest in alternative measures that account for greater 

complexity such as Dynamic Time Warping (Meszlényi et al., 2017) and mutual information 

(Fraser and Swinney, 1986).   

Weighting and thresholding of connections  

After connections have been detected between pairs of signals, they may be given a binary or a 

weighted value (corresponding to the connectivity measure) to reflect the relevance of the 

connection.   A binary approach entails using a cut-off value to determine whether a 

connection is present or absent.  This has the advantage of being simpler but is limited by the 

arbitrary nature of the selection of the cut-off point, which when too high permits inclusion of 

non-relevant signal and when too low may neglect functionally important connections.  In 

weighted networks, a connection is given a value according to the strength of signal 

synchronisation.  This attenuates the impact of statistically non-significant connections, 

which are postulated to be less relevant physiologically (Rubinov and Sporns, 2010).    

In weighted networks, thresholding of edges is often performed with the aim of improving 

sensitivity to relevant connections by removing spurious connections and noise.  Global 

thresholding, where connections less than a certain value are ignored, is a common approach 

in correlation analyses (Finn et al., 2015).  A weakness of this method is that the threshold is 

arbitrary.  An alternative to global thresholding is to determine the relevance of connections 
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statistically, at the group level.  However, this may diminish the influence of important inter-

individual connections and exaggerate the influence of spurious group-level confounding 

signal (Fornito et al., 2016).  Whether weighted thresholding is performed with an arbitrary or 

statistical cut-off, networks with lower summed synchronisation values will become relatively 

less dense than networks with higher overall synchronisation values after thresholding  

(Fornito et al., 2013).  This is a potential limitation of this method since it is known that 

network density may affect some network metrics (particularly clustering coefficient and 

characteristic path length) (van Wijk et al., 2010) and therefore, thresholding in this manner 

may exaggerate such effects.  This issue could potentially be overcome by constructing 

matrices that have the same number of connections in each network.  However, this may 

mean that networks with overall low connectivity produce fewer significant connections and 

potentially important connections in higher density networks may be disregarded (van Wijk et 

al., 2010).  This issue may also be addressed with density-based thresholding where, for 

example, only those edges which form the highest 5% of the total number of connections 

between regions are included.  A weakness of this method is that network density may be 

altered in some conditions (Cohen, 2014), including in epilepsy (Schindler et al., 2007, Kramer 

et al., 2010).  Therefore, potentially important group differences may not be identified if this 

method is used.  

Another commonly used approach to improve sensitivity to important connections in EEG-

based studies is to construct ‘surrogate’ networks of the same density from the same time 

series (Schreiber and Schmitz, 2000, Schreiber and Schmitz, 1996).  This permits the testing of 

a general null hypothesis for example that connections may be described by linearly correlated 

Gaussian noise.  Connectivity values that do not exceed the statistical significance level of the 

distribution of the surrogate values are then discarded.  

The direction of information flow may also be considered to form a ‘directed network’.  

The connectome 

The information regarding connectivity between each region is contained within a 

connectivity matrix which represents the ‘connectome’ (Sporns et al., 2005) of the network 

(figure 6).  Within this, each brain region is represented by a separate row (i) and column (j) 

and each element at the intersection of i and j encodes information regarding the strength of 

connection between regions i and j. 
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Connectivity matrices can then be compared at the group level.  One method by which to 

perform group level comparisons is to statistically compare the presence or strength (for 

unweighted or weighted networks respectively) of connections between each brain region or 

within specific brain networks.  Alternatively, the network may be analysed according to its 

topology (network structure) using graph theory, as discussed in the following section.   

 

1.4.3.5 Evaluating connectivity in functional networks with graph theory  

Graph theory is an established mathematical method in which a network is represented as a 

graph.  The graph contains ‘nodes’ (or ‘vertices’) which represent brain areas and ‘edges’ which 

represent the connections between them (figure 7).  

 

Figure 6. Example of a connectivity matrix derived from a 62 channel 

EEG. Each channel is represented a separate row (i) and column (j). 

Each square within the matrix contains information regarding the 

presence and strength of connection between each electrode pair 

(i,j).  
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A graph is generated from a connectivity matrix whereby each row and column represent a 

node and each square within the matrix represents an edge.  Graph theory permits modelling 

and analysis of various network properties, from the relationship between two structures or 

two communities within it, to the functioning of the entire network. 

Graph theory has been widely advocated as a suitable tool for neuronal network analysis 

owing to its rigorously proven underlying mathematics and its generalisability to a wide range 

of complex systems.  

Graph theory metrics  

A set of definitions and statistical measures have been developed which can be used to 

objectively characterise various network features (Newman, 2008).  Principal measures 

include the mean degree, degree distribution, characteristic path length, clustering coefficient 

and centrality measures such as betweenness centrality (table 2, page 99).  At the nodal level, 

the degree of a node represents the number of connections that it has.  Nodes with a high 

degree are postulated to represent ‘hubs’ of information transfer within the network 

(Freeman, 1978).  It has been suggested that alteration of network hubs is a final common 

pathway in many neurological diseases (Stam, 2014).  The degree distribution provides 

information regarding the distribution of the number of connections of each node.  Nodes 

within the tail of a ‘long tailed distribution’ contain hub nodes and thus this measure provides 

insight into the balance of hub nodes and low degree nodes.  Betweenness centrality captures 

to what extent a node lies on a path between each pair of nodes in the network.  The mean 

betweenness centrality of the network can therefore be regarded as a measure of the extent of 

Figure 7.  A simple undirected graph.  Each network node is connected by an edge.  
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information flow within the network.  The average clustering coefficient measures the 

connection between spatial neighbours of a node and reflects local connectivity or network 

segregation.  Characteristic path length is the average distance between each pair of nodes in 

the network and is a measure of network integration.   The small-world index is calculated as a 

ratio of normalised clustering coefficient to characteristic path length.   Networks with a high 

small-world index are regarded as being efficient as they support both integration and 

segregation of network functions facilitating rapid transfer of information throughout the 

network (Bassett and Bullmore, 2006).  An overall network topology can be described using 

the average clustering coefficient, characteristic path length and small-world index; regular 

networks have a high average clustering coefficient and high characteristic path length 

whereas random networks have a low average clustering coefficient and low characteristic 

path length.  Small-world networks have high clustering with a low characteristic path length. 

This was first exemplified in seminal work by Watts and Strogatz who demonstrated that a 

small-world network is produced when a small number of connections in a regular graph are 

‘rewired’ to form ‘long-range’ connections (Watts and Strogatz, 1998).  This decreases the path 

length (i.e., improves integration) with little change in the average clustering coefficient (i.e., 

it remains strongly locally connected) (figure 8).  It has been demonstrated that many 

networks, including cerebral networks, exhibit small-world properties (Stephan et al., 2000, 

Sporns and Zwi, 2004, Shefi et al., 2002).  
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Figure 8.  ‘Rewiring’ of a regular network to form small-world and random networks. The 

illustration demonstrates that a small world network occurs when a small number of 

connections in a regular graph are ‘rewired’ to form ‘long-range’ connections.  With a 

probability p, an edge in a regular graph is reconnected to a randomly selected node. For 

intermediate values of p, the network has small-world features: high local clustering, as 

found in regular networks, and low characteristic path length, as found in random 

networks. Reprinted by permission from Springer Nature: Nature, Collective dynamics of 

‘small-world’ networks, Watts et al., 1998. Copyright 1998. 

 

 

 

 

 

 

 

 

In addition to small-world topology, there is also evidence that neuronal networks may have 

‘scale-free’ characteristics.  This concept was introduced as a generative model whereby new 

network nodes preferentially attach to existing nodes with a high number of connections 

following power-law scaling, which creates hub nodes (Barabási and Albert, 1999).  As with 

small-worldness this topology has been recognised in a range of complex systems including in 

the brain (Eguíluz et al., 2005), and it has been suggested that disruption of such hub nodes 

may improve outcomes in epilepsy surgery (Lopes et al., 2017).  However, the pervasiveness of 

this concept is disputed (Lima-Mendez and van Helden, 2009, Khanin and Wit, 2006).  For 

example, in an investigation of scale-free networks, it was reported that few studies in support 

of the validity of such networks compared the networks to alternative distributions (Broido 

and Clauset, 2019).  In this study, when 1000 different networks were examined, for most 

networks, log-normal distributions fitted the data as well as, or better than, scale-free 

distributions.   

A third established concept in network structure is hierarchical ‘modules’ where subnetworks 

within networks exist.  As with small-worldness and scale-free characteristics, modular 
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patterns have been reported across a range of networks.  In epilepsy, higher modularity has 

been reported compared to controls (Chavez et al., 2010, Vaessen et al., 2014).  

Since the important framework established by Watts and Strogatz (Watts and Strogatz, 1998), 

studies have increasingly focused on the interplay between network topology and disease 

(Stam and Reijneveld, 2007).  Of key interest in epileptology is the contribution of resting 

state network topology to the collective synchronised action of the network.   

 

1.4.4 Overview of interictal functional network literature in IGE  

There is substantial literature demonstrating that people with epilepsy have different interictal 

networks to those without, however there are inconsistencies in findings.  These differences 

may reflect the wide range of methodologies used, particularly differences in how the 

connectivity matrix was created (Pegg et al., 2020a). 

We have recently published a systematic review of graph theoretical global network studies of 

IGE (Pegg et al., 2020a), which can be found in Chapter 3.  In summary, the studies included in 

the review (Clemens et al., 2013, Chowdhury et al., 2014, Lee and Park, 2019, Elshahabi et al., 

2015, Niso et al., 2015, Zhang et al., 2012, Liao et al., 2013, Xue et al., 2014a, Caeyenberghs et al., 

2015, Qiu et al., 2017, Zhang et al., 2011) had mixed conclusions.  When EEG/MEG derived 

functional networks were compared separately to fMRI studies, there was greater consistency 

with a suggestion that, compared to controls, people with IGE have a network that is more 

locally clustered (i.e., more regular) with increased global efficiency (i.e., more integrated).  

The significant findings were in various frequency bands but with overlap within the alpha 

frequency band.  The two fMRI studies included in the review had diverging findings: one 

reported increased small-worldness in IGE whereas the other reported decreased small-

worldness.  In addition, structural network studies were evaluated, where a tendency to a 

decreased small-world network structure in IGE was found.  Inconsistent findings in both 

network types may have been influenced by methodological variations in individual studies 

including participant demographics, post-acquisition data handling and network 

construction.  The review paper concludes with a suggested standardised methodological 

framework for future studies.   

Other non-graph theoretic functional connectivity studies of IGE have focused on specific 

networks.  In a recent review of 24 fMRI studies with heterogenous study designs examining 

the DMN, overall there was reduced connectivity in the DMN and attention networks in IGE 
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compared to controls (Parsons et al., 2020).  A MEG-based study reported decreased 

sensorimotor connectivity in JME (in the 13-30 Hz band) and increased connectivity in 

posterior regions (4-8 Hz and 8-13 Hz) (Routley et al., 2020).  In contrast, an fMRI study 

reported increased sensorimotor connectivity as well as decreased connectivity in brain 

regions related to cognition (Zhong et al., 2018).  Decreased connectivity in fMRI-derived 

thalamocortical networks has also been described in IGE (Wang et al., 2012, Kim et al., 2014).   

Potentially relevant insights may be found in the FE network analysis literature and therefore 

merit discussion.  In a meta-analysis of 12 studies comparing global interictal graph theoretic 

measures in people with various causes of FE compared to healthy controls, a more regular 

network in people with FE was reported (van Diessen et al., 2014c).  In the EEG/MEG studies, 

only theta frequency band metrics were extracted as the authors deemed this to be the most 

relevant frequency band in focal epilepsy.  The boundaries of theta frequency band were not 

detailed.  The conclusions of this analysis should be interpreted with caution since it was 

based on combined data from EEG and fMRI studies, which as discussed in Section 6.2, is a 

complex reconciliation.  Since this meta-analysis, further studies examining network 

properties in patients with FE have been published and have yielded mixed findings (Chiang 

et al., 2014, Vytvarova et al., 2017, Jiang et al., 2017, Adebimpe et al., 2016).  

It is suggested that a more regular interictal network topology in epilepsy may reflect that the 

network is more liable to synchronisation (van Diessen et al., 2014b).  This is supported by 

evidence that during a seizure, the network structure becomes more regular in its organisation 

relative to the interictal state (Ponten et al., 2007, Ponten et al., 2009, Kramer et al., 2010). 

It is possible that where studies have not found differences in network topology in epilepsy, 

that failure to consider seizure control may be a factor.  For example, between group 

differences may be ‘cancelled out’ by each other.  There is evidence that connectivity in the 

DMN in DR-IGE compared with WC-IGE is reduced (Kay et al., 2013).  Similarly, decreased 

resting state cerebellar connectivity in those with uncontrolled seizures in IGE compared with 

WC-IGE has been reported (Kay et al., 2014).  To my knowledge, there is only one previous 

study that has compared global network differences in well-controlled epilepsy (WCE) and 

DRE (Kim et al., 2020).  In this study, graph theoretic metrics from adults and children with 

controlled JME were compared with drug resistant JME and controls.  Differences in global 

efficiency (the inverse of characteristic path length) and local efficiency between drug 

resistant participants and controls were found, with no differences in other group 

comparisons, and no differences in the other metrics used.  However, this study is significantly 
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limited by the fact that there were only four patients with DRE.  Furthermore, drug 

responsiveness was categorised after only one year of treatment and no information was 

provided regarding doses of medications reached.  This is a relatively short time period in 

which to assess the response of two tolerated AEDs and therefore raises the possibility of 

incorrect classification of drug resistance.  

Despite the increasing study of epileptogenesis from a network perspective, open questions 

include how seizures emerge from the complex network system of the brain, why the brains of 

people with epilepsy are particularly vulnerable to seizures, why certain conditions (such as 

sleep deprivation) lower the seizure threshold and why some people do not respond to 

antiepileptic medication.  The unifying explanation is likely to relate to complex dynamical 

interactions (Richardson, 2012b).  

 

1.5 Aims and objectives  

Despite increasing literature regarding network anomalies in IGE and an incomplete 

understanding of why some people with epilepsy do not respond to AEDs, drug resistance in 

IGE has been seldom evaluated from a network perspective.  Since seizures are an emergent 

phenomena arising from the same mechanisms that support normal brain functioning 

(Richardson, 2012b), investigating network features of the brain in its resting state may 

provide greater understanding of the complex dynamical network system that determines 

seizure susceptibility.     

The analysis of EEG and fMRI-derived neuronal signal using spectral power analysis and graph 

theory are suitable techniques by which to understand potential alterations of neuronal 

oscillations and functional network topology in relation to IGE and AED resistance.  Using 

these methods, the experimental chapters in this thesis (Chapters 2, 4, and 5) aim to evaluate 

network features in DR-IGE, WC-IGE and healthy controls with the intention of gaining 

further insight into epilepsy drug resistance.    

In Chapter 2, an EEG spectral power analysis of WC-IGE, DR-IGE, and controls is presented.   

In Chapter 3, our published systematic review of graph theoretical studies of resting state 

global functional networks in IGE is presented.  In Chapter 4, resting state functional network 

topology in WC-IGE, DR-IGE, and controls is evaluated using EEG and graph theory.  

Chapters 2 and 4 are based on a single EEG data set.  Chapter 5 comprises a functional resting 

state network topological study of WC-IGE, DR-IGE and controls using fMRI and graph 
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theory, in a different participant cohort.  Chapter 6 concludes this thesis with a synthesised 

discussion of the results of the analyses, including potential interpretations, limitations, and 

implications for further work. 
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Chapter 2.  A spectral power investigation of the 

interictal EEG in drug resistant and well-controlled 

IGE 

This manuscript is published in Epilepsy & Behavior (November 2020).  Footnotes in this 

chapter contain additional information regarding methodological considerations, which were 

not included in the published paper.  

 

2.1 Authors  

Emily J. Pegg1,2, Jason R. Taylor2,3, Rajiv Mohanraj1,2 

1 Department of Neurology, Manchester Centre for Clinical Neurosciences. 

2 Division of Neuroscience and Experimental Psychology, School of Biological Sciences, 

Faculty of Biology, Medicine and Health, University of Manchester. 

3 Manchester Academic Health Sciences Centre. 

 

2.2 Abstract 

Introduction 

Idiopathic generalised epilepsies (IGE) are characterised by generalised interictal epileptiform 

discharges (IEDs) on a normal background EEG.  However, the yield of IEDs can be low. 

Approximately 20% of patients with IGE do not gain seizure control with antiepileptic drug 

(AED) treatment.  Currently, there are no reliable prognostic markers for early identification 

of drug resistant epilepsy.  We examined spectral power of the interictal EEG background in 

patients with IGE and normal controls, to identify potential diagnostic and prognostic 

biomarkers of IGE.  

Methods 

A 64 channel EEG was recorded under standardised conditions in patients with well-

controlled IGE (WC-IGE, n=19), drug resistant IGE (DR-IGE, n=18) and age-matched controls 

(n=20).  After pre-processing, fast Fourier transform was performed to obtain 1D frequency 

spectra for each EEG channel.  1D spectra (averaged over channels) and 2D topographic maps 
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(averaged over canonical frequency bands) were computed for each participant.  Power 

spectra in the three cohorts were compared using one way analysis of variance (ANOVA), and 

power spectra images were compared using t contrast tests.  A post-hoc analysis compared 

peak alpha frequency between the groups.  

Results 

Compared to controls, participants with IGE had higher interictal EEG spectral power in the 

delta band in the midline central region, in the theta band in the midline, in the beta band 

over the left hemisphere, and in the gamma band over the right hemisphere and left central 

regions.  There were no differences in spectral power between the WC-IGE and DR-IGE 

cohorts.  Peak alpha frequency was lower in WC-IGE and DR-IGE than controls.  

Conclusions 

EEG spectral power analysis could form part of a clinically useful diagnostic biomarker for 

IGE; however, it did not correlate with response to AED in this study.    

 

2.3 Introduction 

Epileptic seizures are generated by hyper-synchronised activity of neuronal networks, which 

can be detected by electroencephalography (EEG) in the ictal and interictal states.  Idiopathic 

generalised epilepsies (IGE) comprise a group of electro-clinical syndromes including 

Childhood Absence Epilepsy (CAE), Juvenile Absence Epilepsy (JAE), Juvenile Myoclonic 

Epilepsy (JME) and Epilepsy with Generalised Tonic-Clonic Seizures Alone (EGTCSA), which 

are characterised by the occurrence of absence, myoclonic, and tonic–clonic seizures (Scheffer 

et al., 2017).  The hallmarks of IGE syndromes on conventional visual analysis of EEG are a 

normal background, and bilaterally synchronous interictal epileptiform discharges (IEDs) 

(Wolf and Beniczky, 2014).  Detection of IEDs on EEG can serve as a biomarker for epilepsy, 

and thus aid diagnosis and classification.  However, the yield of IEDs on routine EEG can be as 

low as 50% in adult patients with epilepsy (van Donselaar et al., 1992).  Ascertainment of IEDs 

by visual analysis of EEG is also limited by lack of objective definition of IEDs, resulting in 

high inter-observer variability, which can contribute to misdiagnosis of epilepsy (Benbadis and 

Tatum, 2003).  Therefore, identifying an objective EEG biomarker for IGE could improve the 

utility of EEG in the diagnosis of IGE.  
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Figure 9.  Spectral power analysis.  EEG signal in the time domain is decomposed into its 

oscillatory components and expressed in the frequency domain.   

 

While many IGE syndromes have a good prognosis with remission of seizures achieved in 64– 

82% with antiepileptic drug (AED) treatment, a significant number of patients do not become 

seizure free (Mohanraj and Brodie, 2007, Szaflarski et al., 2010).  Approximately 18% of 

patients with IGE do not achieve seizure control for one year with AED treatment (Brodie et 

al., 2012), and can be considered to have drug resistant epilepsy (DRE).  DRE leads to 

significant physical, psychological and socioeconomic consequences for patients, and 

represents a significant public health problem (Kwan et al., 2011).   Identifying patients at risk 

of developing DRE at an early stage may help to better target specialist services and non-

pharmacological treatments, and potentially reduce the incidence and consequences of DRE.  

Spectral power analysis is a method of decomposing EEG signal in the time domain, into its 

independent oscillatory components in the frequency domain (figure 9).  This permits 

quantification and comparison of the EEG signal across groups of subjects in terms of power in 

relevant frequency bands.  
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Previous studies of spectral power analysis of interictal EEG have found higher spectral power 

across the frequency bands, across several brain regions, in people with IGE compared to 

controls (Miyauchi et al., 1991, Tikka et al., 2013, Clemens et al., 2000, Elshahabi et al., 2015, 

Willoughby et al., 2003, Niso et al., 2015, Santiago-Rodríguez et al., 2008).  Findings from these 

studies, however, have been variable in terms of the frequency bands and scalp regions where 

differences were identified.  Some studies have examined the prognostic utility of EEG spectral 

power in IGE.  These have suggested that various features such as shift in alpha power from 

high to low alpha frequency band, (Abela et al., 2019) increase in interictal spectral entropy 

values (Urigüen, 2017) and increase in gamma power (Willoughby et al., 2003) as potential 

markers for DRE.  Another study has reported ‘normalisation’ of EEG spectral power with 

AEDs, which could indicate the likelihood of seizure control with a particular AED (Clemens 

et al., 2007).  These results suggest that EEG spectral power analysis could reveal potentially 

useful prognostic biomarkers. 

We compared interictal EEG spectral power in people with drug resistant IGE (DR-IGE), well-

controlled IGE (WC-IGE) and controls, to identify differences between patients with epilepsy 

compared to controls, and between DR-IGE and WC-IGE. 

 

2.4 Materials and Methods 

Participants 

Participants with epilepsy were recruited from epilepsy clinics at the Manchester Centre for 

Clinical Neurosciences, The Walton Centre, and general neurology clinics in the Greater 

Manchester area.  Controls were recruited via advertisements in Salford Royal Hospital, the 

University of Manchester and the Citizen Scientist website. 

All participants were over the age of 16 years.  Inclusion criteria for participants with IGE 

syndrome were a diagnosis of IGE and taking at least one AED.  IGE syndromes were classified 

by the authors based on age of onset, seizure types, neurodevelopmental history, EEG findings 

and family history of epilepsy, based on criteria set out by the ILAE Commission on 

Classification and Terminology (Scheffer et al., 2017).  The diagnosis was subsequently 

reviewed by a senior epileptologist not involved in the study, and patients who did not satisfy 

the diagnostic criteria were excluded from the analysis.  
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Exclusion criteria for all groups included a history of other neurological or developmental 

disorders and current or recent use of central nervous system acting drugs (other than AEDs).  

People with a vagal nerve stimulator were excluded.  The WC-IGE group had no seizures, 

including myoclonic jerks and absences, for a minimum period of one year.  To meet the study 

criteria for drug resistance, participants had continuing seizures despite having taken at least 

two appropriate AEDs for at least six months, one of which had to be sodium valproate, at a 

minimum dose of 1000 mg per day. 

In total, 60 participants were recruited comprising 20 with WC-IGE, 20 with DR-IGE and 20 

controls.  One participant in the group with WC-IGE was reclassified as probable focal 

epilepsy at diagnosis review and was, therefore, excluded from the analysis.  We excluded two 

participants with DR-IGE due to an abnormally slow background rhythm on the study EEG.  

Therefore, the total number of participants included in the analysis was 57 (WC-IGE n = 19, 

DR-IGE n = 18, controls n = 20). 

Data collection 

Each participant had a 12-minute 64 channel EEG recording in the 10-10 configuration using 

the Brain Vision system 1.  A 3-minute eyes closed sample was used for the analysis 2.  

Sampling rate was 1000 Hz.  The recording was carried out in a quiet, naturally lit room.  All 

participants were seated in a cushioned chair and wore passive ear defenders.  The impedance 

of the reference and ground electrode was always less than 10 kΩ.  An impedance of less than 

20 kΩ was aimed for with remaining electrodes. 

 

 

 

 

1 Inter-subject variability in resting state EEG data may arise through differences in both the 
subjective experience of the recording (Diaz et al., 2013) and the immediate pre-recording cognitive 
state (Lopez Zunini et al., 2013).  To create a similar pre-recording experience, all participants were 
given the same instruction “to sit and relax” and initially had their eyes open for three minutes, 
before the eye-closed recording began.  

2 Eyes closed data is more commonly used in spectral power analysis and is less likely to contain 
oculomotor artefact.  Although such artefacts can be removed, it is preferable to have as clean data 
as possible from the outset to reduce the chance of rejecting neural activity which is mixed with 
artefact.   
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EEG pre-processing 

Using EEGLAB (Delorme and Makeig, 2004), data were down-sampled to 250 Hz and 

referenced to the common average.  A 45-55 Hz notch filter was applied to attenuate 

contamination from mains electricity.  Independent Component Analysis (ICA) of 64 

components was carried out to detect artifact from oculomotor movements and muscle 

activity.  

This was carried out using SASICA software (Chaumon et al., 2015) and included ADJUST 

measurements (Mognon et al., 2011), which enable the identification of oculomotor 

movements in the absence of an electrooculography (EOG) channel.  In total, 7.95% of 

components were rejected, with no significant difference between groups.  Following removal 

of rejected components, data were referenced again to the common average and converted for 

analysis in SPM 12 (Penny et al., 2006).  Epochs containing epileptiform discharges were 

removed by setting a rejection threshold of 80 μV in channels Fp1, Fp2 and Fpz.  Using these 

automated artifact rejection methods, in some instances epochs without any obvious artifact 

were rejected.  However, the proportion of removed epochs was low (1.91% in total), which 

was felt to be acceptable.   

Data analysis  

Frequency spectra were calculated using fast Fourier transform with a Hanning window for 

each channel and epoch, resulting in power estimates at whole number frequencies between 1 

and 70Hz.  Power values were log-transformed and then averaged over epochs.  1D spectra 

were computed by averaging over all EEG channels, and topographic images were created to 

summarise the spatial distributions of log-transformed power in each standard frequency 

band (delta 1-3 Hz, theta 4-7 Hz, alpha 8-12 Hz, beta 13-30 Hz and gamma 31-70 Hz). 

A one-way ANOVA test was carried out in SPM to compare differences between the 1D power 

spectraof the three groups.  T contrast tests were used to compare the power at each 

frequency for 1) all participants with epilepsy with controls and 2) DRE-IGE with WC-IGE. 

Testing was corrected for multiple comparisons using a family-wise error (FWE) value of 0.05 

determined using random field theory (Kilner et al., 2005), which is less conservative than 

traditional correction (e.g. Bonferonni) as it takes into account the smoothness of the data 

(dependencies between neighbouring data points).  Masking was applied at 45-55 Hz where 

the data had been notch-filtered.  2D scalp images of power in each frequency band were 
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analysed using the same approach in order to evaluate the regions in which there is a 

significant difference in spectral power.  

Ethical approval 

This study has approval from the Health Research Authority (HRA), Research Ethics 

Committee (REC) and the hospital’s Research & Development department. 

 

2.5 Results 

2.5.1 Baseline demographics 

Demographic and clinical data of the three cohorts are presented in tables 1a-c, which can be 

found at the end of this chapter  (pages 67-71).  Where the diagnosis of an IGE syndrome had 

not been supported by a previous clinical EEG recording, the classification was based on other 

relevant clinical factors such as the presence of generalised seizure types (myoclonic and 

absence) appropriate age of onset, normal neurodevelopmental history and family history in 

first degree relatives.  The median age of all participants was 26 years (range: 17-57).  There 

were no differences between the groups in age (DR-IGE = 26.5 years, range: 18-57; WC-

IGE = 24 years, range: 17- 54; controls = 25 years, range: 19-57, Kruskal-Wallis H = 1.016, 

p = 0.602), or gender (52.6 % in total were female.  Chi-square = 0.7401 p=0.690).  The DR-IGE 

group had a mean epilepsy duration of 16.6 years (standard deviation 9.92) compared to 11.26 

years (standard deviation 9.1) in the WC-IGE group, but this difference was not statistically 

significant using a t test (t = -1.59, df =30 p= 0.12).  The DR-IGE group took more AEDs (mode 

= 2, range 1-4) compared to the WC-IGE group (mode = 1, range 1-3).  The majority of 

participants in both groups with epilepsy had JME.  This was evolved from CAE in one 

participant in each group.  Exceptions were two participants with WC-IGE and one participant 

with DR-IGE who had EGTCSA and two participants with WC-IGE with JAE.  No participant 

had a seizure in the 24 hours before the EEG recording. 

 

2.5.2 Outcome measures 

There was significantly higher (FWE <0.05) EEG spectral power in the IGE cohorts (DRE-IGE 

and WC-IGE combined) compared to controls at 4-8 Hz, 15-20 Hz, 25-31 Hz and 39-42 Hz 

(figures 10 and 11).   
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Figure 10.  Power spectra plotted for each group.  Log rescaled power 

spectra are plotted for each group, showing significant differences between 

the control group compared to the epilepsy group.  Circles indicate 

frequencies at which there was a significantly lower power (p< 0.05, 

corrected for all frequencies tested FWE < 0.05) in the controls compared 

to the epilepsy group as a whole.  Absent data at 45-55 Hz reflects notch 

filtering.   

 

Figure 11.   Power spectra for each group averaged within each frequency 

band.  Bars denote standard errors. 
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There was no difference in spectral power between WC-IGE and DR-IGE.  Analysis of scalp 

images found higher power in the delta band in a small central cluster in the epilepsy groups 

compared to normal controls.  In the theta band, increase in power was widespread, and 

predominantly along the midline and over the left hemisphere.  In the beta band, widespread, 

predominantly right sided higher power was seen in the epilepsy cohorts compared to 

controls, while in the gamma band, the difference was most marked over the right hemisphere 

and left central regions (figure 12).   No differences were found between scalp images in WC-

IGE and DR-IGE.  No differences in spectral power were found between the IGE groups and 

controls in the alpha band.  However, a post hoc analysis of individual alpha frequency 

revealed higher peak alpha frequency in the control group (10.15 Hz, SD 0.67) compared to 

WC-IGE (9.58 Hz, SD 0.96, p=0.004) and DR-IGE (9.33 Hz, SD 0.97, p = 0.037). 

 

 

 

 

 

Figure 12.  Scalp topographical images of differences in spectral power between 

epilepsy groups and controls. Images indicate the location of significantly different 

spectral power in the epilepsy group compared to controls for delta, theta, beta and 

gamma frequency bands (p < 0.05, FWE corrected).  Red = higher spectral power in 

epilepsy compared to controls. Green = no difference. Colour bar represents t-statistic 

at each pixel.  There were no significant differences in the alpha frequency band (not 

shown). 
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Figure 13. Summary of previous studies evaluating EEG/MEG spectral power in IGE. Orange = 
higher power in IGE compared with controls, averaged over frequency band subdivisions. 
Frequency band boundaries are indicated by dashed lines. Red = higher power in IGE compared to 
controls, tested in 1 or 2 Hz frequency increments. The dashed lines represent upper and lower 
frequencies tested.  Grey= no difference in spectral power between IGE and controls. 
 

2.6 Discussion  

Differences in EEG background have been described in patients with epilepsy since early EEG 

studies, when it was noted that patients with epilepsy have slower alpha activity than controls 

(Gibbs et al., 1943, Stoller, 1949).  We found significantly higher interictal EEG spectral power 

in the theta band (4-7 Hz) along the midline and left hemisphere, in the beta band (15-20 Hz 

and 25-31 Hz) over the right hemisphere, and gamma band (39-42 Hz) over the right 

hemisphere/left central regions in patients with IGE compared to controls. We did not find 

significant differences between IGE cohorts and controls in the alpha frequency band, but a 

post hoc analysis revealed significantly higher peak alpha frequency in the control subjects 

compared to the epilepsy cohorts.  There were no significant differences in spectral power 

between DR-IGE and WC-IGE.   

The finding of higher EEG interictal spectral power in IGE in this study is consistent with 

similar previous studies, albeit with some differences in the frequency bands and scalp regions 

with higher power (Clemens et al., 2000, Elshahabi et al., 2015, Miyauchi et al., 1991, Tikka et 

al., 2013, Willoughby et al., 2003, Niso et al., 2015, Santiago-Rodríguez et al., 2008) (figure 13). 

There are methodological differences in previous studies; in the modalities used (EEG or 

MEG), number of electrodes, number of participants, and IGE subtypes, which could account 

for some variation in the findings.  
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It has been proposed that increased spectral power observed in IGE reflects greater neuronal 

synchronisation (Clemens et al., 2000, Michel et al., 1992), occurring as a result of an altered 

neuronal extracellular ionic environment (Willoughby et al., 2003) leading to hyper-

excitability of the cortex.  Increase in power across all frequency bands has been observed 

immediately before myoclonic seizures, which supports the notion of higher spectral power 

indicating seizure susceptibility (Sun et al., 2016). 

The finding of spectral power differences in the interictal EEG in patients with IGE compared 

to controls may be of potential value in improving the diagnostic capability of EEG.  The 

clinical utility of such objective measures of EEG analysis is yet to be fully established.  In one 

study comparing three candidate interictal EEG biomarkers for the diagnosis of IGE (Schmidt 

et al., 2016), the sensitivity for two biomarkers (peak occipital alpha power and the mean 

degree- a functional network measure) was found to be very low.  In the same study, a 

computational local coupling measure based on a dynamic network model performed better, 

with 56.7% sensitivity for IGE.  Further work is therefore needed to develop clinically useful 

diagnostic EEG biomarkers in IGE.  

All participants with IGE in our study were taking an AED, and therefore it is possible that the 

effect of AEDs has confounded our results.  AEDs are reported to affect spectral power in some 

studies, but not in others (Holler et al., 2019).  In other similar studies of IGE, some 

participants were not taking an AED, thus enabling comparison between medicated and 

unmedicated patients with IGE.  In one such study, findings in the untreated group were 

similar to the treated group suggesting that differences were due to IGE itself rather than 

medication effects (Miyauchi et al., 1991).  Another study only found a medication effect at 2-

4Hz and at 7-8 Hz, with increased power in medicated compared to unmedicated participants 

with IGE (Willoughby et al., 2003).  Lamotrigine, sodium valproate and levetiracetam were the 

most commonly taken AEDs in our study cohorts.  Both lamotrigine and sodium valproate 

have been shown to reduce spectral power in the delta, theta, alpha and beta frequency bands 

(Clemens et al., 2007, Clemens, 2008, Sannita et al., 1989, Wu and Xiao, 1997).  Valproate has 

also been reported to increase upper alpha power in the occipital areas, with a decrease in beta 

power in another study (Wu and Xiao, 1997).  A study evaluating the effect of levetiracetam in 

patients before and after medication initiation reported a decrease in delta and theta and an 

increase in alpha and beta power (Cho et al., 2012).  Overall, evidence from the majority of 

studies of these three AEDs suggests that they result in a reduced spectral power in epilepsy in 

at least one frequency band, suggesting that the differences observed in our study are unlikely 

to be due to AED effects.   
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There were no differences in spectral power between the DR-IGE group and the WC-IGE 

group in this study.  Previous studies have identified a shift in alpha power from high to low 

alpha frequency band in patients with IGE, which was suggested to be a marker for DRE 

(Abela et al., 2019).  We obtained similar results in a post hoc analysis of individual alpha 

frequency, with significantly lower peak alpha frequency in people with IGE compared to 

controls, but there were no significant differences between DR-IGE and WC-IGE.  Another 

study reported greater interictal spectral entropy values in patients with IGE compared to 

controls, which had an inversely proportional relationship to the time since last seizure 

(Urigüen, 2017).  It has also been suggested that an increase in background EEG gamma power 

may have an inverse relationship with seizure control (Willoughby et al., 2003).  Potential 

differences in background rhythm between patients with DR-IGE compared to those with 

WC-IGE have only been previously explored within the alpha frequency band (Abela et al., 

2019), to the best of our knowledge.  In a study of focal and generalised epilepsy in children, 

relative power of delta and gamma (in addition to other quantitative EEG background 

parameters) were evaluated and alterations between WCE and DRE were described (Lin et al., 

2014).  If, as discussed above, increase in spectral power represents greater cortical excitability, 

the lack of difference between DR-IGE and WC-IGE cohorts in our study would suggest that 

the cortex remains hyperexcitable irrespective of seizure control in IGE.  However, it is 

possible that our study was underpowered to detect a difference between the two IGE groups.  

The DR-IGE group were taking more AEDs, therefore it is possible that this analysis was 

confounded by medication effects.  In addition, classification of seizure control can be 

challenging due to the natural history of epilepsy, as a proportion of patients may have a 

fluctuating course, with relapse of seizures following periods of seizure freedom (Brodie et al., 

2012).  Lack of concordance with prescription and co-existing non-epileptic attacks may also 

lead to inaccurate classification of DR-IGE.   

A further limitation of this study is its cross-sectional design, which does not permit solid 

conclusions regarding potential prognostic biomarkers to be drawn.  It is also important to 

note that our findings only apply to IGE.  Spectral power alterations have also been reported in 

focal epilepsies (Yaakub et al., 2020, Kim et al., 2002, Bettus et al., 2008, Díaz et al., 1998, 

Miyauchi et al., 1991); however, the directionality of alterations in these studies is inconsistent.  

A prospective study design, which also includes other types of epilepsy, would be informative 

and help overcome these limitations.  
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2.7 Conclusions 

People with IGE have higher EEG interictal spectral power than healthy controls across 

multiple scalp regions, with a lower peak alpha frequency.  These findings could be refined to 

develop an interictal biomarker for IGE, which could improve the speed and accuracy of 

diagnosis.  Future work should focus on evaluating the frequency bands and scalp regions 

which best capture interictal changes, independent of drug effects, which could then be 

prospectively tested in a prediction model.  The inclusion of a subgroup of patients with other 

types of epilepsy in such a study would broaden the generalisability of significant findings.  

We did not find significant differences in EEG spectral power between DR-IGE and WC-IGE. 

Mechanisms of action of AED at the cellular level, although well characterised, cannot predict 

clinical effect of AEDs in patients.  As seizures involve large-scale neuronal networks, the 

effects of AEDs should also be examined at the level of neuronal networks.  Further work, 

using EEG or MEG based techniques to study functional network effects of AEDs may be more 

successful in identifying potential prognostic biomarkers in IGE (Yaakub et al., 2020). 
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Table 1a. Demographic and clinical details of participants with WC-IGE   

Participant Age Sex Seizure 
types 

Age at 
onset  

Neuro-
developmental 
history  

EEG  Epilepsy in 
first degree 
relatives 

IGE subtype Current medication (total daily dose) 

W01 22 M GTC, Abs 13 Normal Typical  No JAE Valproate 2100mg, Levetiracetam 
500mg 

W02 21 F GTC, MJ 14 Normal Normal No JME Levetiracetam 1000mg 
 

W03 21 F GTC, MJ, 
Abs  

12 Normal Normal Mother JME Levetiracetam 1000mg 

W04 24 F Abs, GTC 18 Normal Typical  No JAE Valproate 1000mg, Lamotrigine 200mg, 
Levetiracetam 4000mg 

W05 37 F GTC, MJ 23 Normal NA  No JME Lamotrigine 250mg, Levetiracetam 
2500mg 

W06 21 F GTC, MJ 14 Normal Typical  Yes JME Lamotrigine 300mg 
  

W07 17 M GTC, MJ 15 Normal Typical  Father  JME Levetiracetam 1000mg 
 

W08 34 F GTC, MJ 14 Yes NA No JME Valproate 400mg, Levetiracetam 
3000mg 

W09 37 M GTC 13 Normal NA Brother EGTCSA Valproate 300mg, Lamotrigine 300mg 
 

W10 37  M GTC, MJ  16 Normal NA  Father JME Lamotrigine 400mg 
 

W11 28 F GTC, MJ  20 Normal Typical  Brother JME Levetiracetam 1000mg 
 

W12 20 M GTC, MJ, 
Abs 

5-10 Normal Typical  No CAE>JME  Valproate 1700mg Ethosuximide 500mg  

W13 28  F  GTC, MJ 18 Normal NA No JME Levetiracetam 1250mg  
 

W14 54 M  GTC, MJ 16 Normal NA  no JME Valproate 2200mg, Clonazepam 2mg, 
Lamotrigine 100mg 
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W15 23 M GTC 20 Normal Typical  No  EGTSCA Valproate 800mg  
 

W16 34 F GTC, MJ  15 Normal Normal  Mother JME Levetiracetam 1500mg 
 

W17 20 F GTC, MJ  16 Normal Typical  No  JME Levetiracetam 2000mg  
 

W19 50 M GTC, MJ  13 Normal Typical  No JME  Valproate 1000mg, Levetiracetam 
2000mg  

W20 21 M GTC, MJ  12 Normal Typical  No JME Valproate 1000mg  
 

 

 

 

 

 

 

 

 

 

 

 

W18 was excluded from the analysis following independent diagnosis review. F – female, M-male, GTC- generalised tonic-clonic, MJ- myoclonic jerk, 

Abs- absence, JAE- juvenile absence epilepsy, CAE- childhood absence epilepsy, JME- juvenile myoclonic epilepsy, EGTSCA- IGE with generalised tonic-

clonic seizures alone, NA - not available, typical - previous EEG recording showing bilaterally synchronous spike/polyspike wave discharges on normal 

background. 
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Table 1 b.  Demographic and clinical details of participants with DR-IGE 

Participant  
 
 

Age  Sex Seizure 
types 

Age at 
onset  

Neuro-
developmental 
history  

EEG Epilepsy 
in first 
degree 
relatives 

IGE 
subtype 

Current medication (total daily dose) 

R01 45 F GTC, 
MJ, Abs 

18 Normal Typical  No JME Perampanel 2mg, Brivaracetam 100mg 

R02 23 M GTC, MJ 16 Normal Typical  No JME Valproate 3000mg, Zonisamide 300mg, 
Levetiracetam 1000mg 

R04 57 F GTC, MJ 17 Normal Typical Un-
known 

JME Valproate 1000mg, Zonisamide 400mg, 
Clonazepam 1.5mg 

R05 32 F GTC, 
MJ, Abs 

11 Normal Typical No JME Levetiracetam 3000mg, Perampanel 6mg 

R06 22 M GTC, MJ 13 Normal Normal No JME Valproate 2000mg, Lamotrigine 150mg  
 

R07 20 F GTC, MJ 15 Normal Typical  Mother JME Valproate 1500mg, Levetiracetam 2500mg  
 

R08 36 M GTC, MJ <20 Normal N/A Un-
known 

JME Valproate 1800mg, Topiramate 100mg, 
clobazam 10mg PRN  

R09 43 M GTC, MJ 19 Normal N/A Sister  JME Valproate 2000 mg  
 

R10 23 M GTC, 
MJ, Abs 

19 Normal Typical  No JME Brivaracetam 100mg, Zonisamide 200mg 

R11 23 F GTC, MJ 10 Normal Typical  No JME Valproate 600mg, Levetiracetam 500mg, 
Lamotrigine 300mg 
 

R12 30 M  GTC 

11 

Memory and 
executive deficits on 
neuropsychological 
tests 

Typical  Brother  EGTCSA Lamotrigine 250mg, Valproate 1400mg, 
Clonazepam 0.5mg 

R13 24 F GTC, 
Abs 

4 Normal Typical  No CAE>JME Lamotrigine 450mg, Clobazam 10mg, 
Brivaracetam 100mg, Lacosamide 300mg 
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R14 26  M GTC, MJ 17 Normal Typical  No JME Levetiracetam 3000mg, Lamotrigine 450mg 
 

R15 27 F GTC, MJ 11 Normal Typical No JME Zonisamide 400mg, Clonazepam 1mg, 
Brivaracetam 150mg  

R16 34  F  GTC, MJ 24 Normal N/A   No JME Levetiracetam 3000mg, Clobazam 15mg, 
Gabapentin 300mg 

R17 37 F GTC, 
MJ, Abs 

17 Normal N/A   No JME Valproate 1500mg, Levetiracetam 1500mg 

R18 26 F GTC, 
MJ, Abs 

10 Normal Typical  No JME Valproate 1000mg, Clobazam 10mg  

R20 18 M  Abs 10 Normal Typical No JAE Valproate 2000mg, Ethosuximide 500mg  
 

*R03 and R19 excluded from analysis to slow background rhythm of EEG. F – female, M-male, GTC- generalised tonic-clonic, MJ- myoclonic jerk, Abs- 

absence, JAE- juvenile absence epilepsy, CAE- childhood absence epilepsy, JME- juvenile myoclonic epilepsy, EGTSCA- IGE with generalised tonic-clonic 

seizures alone, NA- not available, typical - previous EEG recording showing bilaterally synchronous spike/polyspike wave discharges on normal background. 
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Table 1 c. Demographic details of control participants  

Participant Age Sex 

C01 25 F 

C02 57 M 

C03 36 M 

C04 40 M 

C05 27 M 

C06 22 F 

C07 32 F 

C08 29 F 

C09 27 M 

C10 22 M 

C11 26 M 

C12 19 M 

C13 22 F 

C14 22 F 

C16 30 M 

C17 24 M 

C18 21 F 

C19 25 F 

C20  22 M 

C21 23 F  

M- male, F-female  
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Chapter 3.  Interictal structural and functional 

connectivity in IGE: A systematic review of graph 

theoretical studies 

This manuscript is published in Epilepsy & Behavior (March 2020).  
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3.2 Abstract 

The evaluation of the role of anomalous neuronal networks in epilepsy using a graph 

theoretical approach is of growing research interest.  There is currently no consensus on 

optimal methods for performing network analysis and it is possible that variations in study 

methodology account for diverging findings.  This review focuses on global functional and 

structural interictal network characteristics in people with Idiopathic Generalised Epilepsy 

(IGE) with the aim of appraising the methodological approaches used and assessing for 

meaningful consensus.   

Thirteen studies were included in the review.  Data were heterogenous and not suitable for 

meta-analysis.  Overall, there is a suggestion that the cerebral neuronal networks of people 

with IGE have different global structural and functional characteristics to people without 
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epilepsy.  However, the nature of the aberrations is inconsistent with some studies 

demonstrating a more regular network configuration in IGE, and some, a more random 

topology.  There is greater consistency when different data modalities and connectivity 

subtypes are compared separately, with a tendency towards increased small-worldness of 

networks in functional EEG/MEG studies and decreased small-worldness of networks in 

structural studies. 

Prominent variation in study design at all stages is likely to have contributed to differences in 

study outcomes.  Despite increasing literature surrounding neuronal network analysis, 

systematic methodological studies are lacking.  Absence of consensus in this area significantly 

limits comparison of results from different studies, and the ability to draw firm conclusions 

about network characteristics in IGE. 

 

3.3 Introduction  

3.3.1 Background 

Epilepsy is estimated to affect around 70 million people worldwide (Ngugi et al., 2010), 15- 20% 

of whom have Idiopathic Generalised Epilepsy (IGE) (Jallon and Latour, 2005).  IGE comprises 

a group of electro-clinical syndromes including Childhood Absence Epilepsy (CAE), Juvenile 

Absence Epilepsy (JAE), Juvenile Myoclonic Epilepsy (JME) and Epilepsy with Generalised 

Tonic-Clonic Seizures Alone (EGTCSA) (Scheffer et al., 2017).  The hallmark of IGE is the 

occurrence of bilateral symmetric and synchronous epileptiform discharges on 

electroencephalography (EEG) in the ictal and interictal states, which represents hyper-

synchronised activity of large-scale brain networks (Wolf and Beniczky, 2014).  It is likely that 

seizures occur as emergent phenomena from dynamics of brain networks (Richardson, 2012b).  

Elucidating the properties of interictal brain networks is therefore vital in understanding the 

complex dynamical system from which seizures arise.   

Brain networks have been described as “maps of structural or functional interactions (termed 

links) between brain regions (termed nodes)” (Rubinov and Bullmore, 2013).  Another, 

commonly quoted, definition of a neuronal network is a “functionally and anatomically 

connected, bilaterally represented, set of cortical and subcortical brain structures and regions 

in which activity in one part affects activity in all the others” (Spencer, 2002).  However, a 

cerebral neuronal network may not necessarily be bilaterally derived and can be delineated at 

the anatomical or functional level.   We suggest that a neuronal network be defined as ‘a 
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system of functionally or structurally connected areas of the brain in which activity in one 

component can influence the activity of all other components, and can affect the system as a 

whole’.  This definition also emphasises the concept of the brain functioning via a system 

comprising numerous, interacting networks. 

Since the corticoreticular theory of seizure generation was proposed (Gloor, 1968), evidence of 

the involvement of the thalamic and thalamocortical networks in IGE has accumulated 

(Bernhardt et al., 2009, Aghakhani et al., 2004, Gotman et al., 2005, Hamandi et al., 2006).  A 

recent review of 24 studies reported reduced connectivity in the Default Mode Network 

(DMN) across the IGE subtypes (Parsons et al., 2020).  Abnormal resting state networks are 

also associated with cognitive impairment in IGE (Li et al., 2015a, Li et al., 2017).  Unanswered 

questions include how the multifarious networks of the brain interact, how seizures emerge 

from these networks, and how certain influences (e.g., sleep deprivation) render networks 

vulnerable to seizures.  The answer to this is likely to involve complex dynamical interactions 

(Richardson, 2012b). 

Graph theory is a mathematical technique which generates representation of any complex 

system as a collection of nodes (vertices) and links (edges) between pairs of nodes. Graph 

theory-based methods are well established in analysing structural and functional brain 

networks (Sporns, 2018).  Using this framework, it may be ultimately possible to predict ictal 

onset or develop anti-epileptogenic (as opposed to anti-seizure) medication.  Graph 

theoretical analyses of neuroimaging data have the potential to identify objective biomarkers 

of epilepsy.  This could improve diagnostic utility of these modalities, compared to 

conventional visual analysis alone, and help reduce the rate of misdiagnosis of epilepsy (Smith 

et al., 1999, Benbadis and Allen Hauser, 2000).   Graph theory approaches may also aid 

syndromic classification of epilepsy, and serve as a prognostic biomarker of cognitive 

impairment and response to treatment (Tavakol et al., 2019).  In focal epilepsy, there is 

growing interest in the use of graph theory in the identification of surgical targets and in the 

prediction of post-surgical outcomes (Tavakol et al., 2019). 

Numerous studies suggest that people with epilepsy have different global interictal network 

characteristics to those without epilepsy (Chowdhury et al., 2014, Elshahabi et al., 2015, Chavez 

et al., 2010, Lee and Park, 2019, Liao et al., 2013, Zhang et al., 2011, Xue et al., 2014a, Qiu et al., 

2017, Bonilha et al., 2014).  In focal epilepsy, a meta-analysis of studies of global connectivity 

measures showed more segregated and more regular networks in patients compared to 

controls (van Diessen et al., 2014b).  However, similar studies in IGE show inconsistent results. 
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Studies have adopted a variety of approaches to network analysis, which may account for 

differences in observed results.  To our knowledge, there is no published review summarising 

global connectivity studies in IGE.  

 

3.3.2 Measuring connectivity in brain networks 

Types of connectivity  

Network studies may examine the global network, or specific networks (e.g., the 

thalamocortical network).  Structural connectivity refers to anatomical connections between 

spatially separate brain areas.  Functional networks are inferred connections between distinct 

brain areas, based on statistically correlated measures of neuronal activity (Friston, 2011).  

Effective connectivity measures the influence of activity in one area over another and is thus a 

dynamic measurement which may be used to examine causality (Friston, 2011, Aertsen et al., 

1989).  Most studies of IGE have examined structural or functional connectivity of brain 

networks. The relationship between structural and functional connectivity is unclear, and 

therefore the results from the two types of studies should not be interpreted in a combined 

fashion.  Functional networks derived from different techniques (EEG/ 

magnetoencephalography (MEG) versus functional magnetic resonance imaging (fMRI)) may 

also have different properties, due to differences in data acquisition, and therefore are not 

directly comparable.  

Data collection modalities 

Structural connectivity data can be acquired from structural magnetic resonance imaging 

(MRI) or from diffusion tensor imaging (DTI).  Using structural MRI, connections are derived 

from covariance patterns- i.e., morphologic correlations of structural anatomical features.  DTI 

relies on measuring diffusivity of water molecules, which is constrained by white matter tracts.  

From the unevenness of water diffusivity (the anisotropy), white matter tracts can be 

delineated (Clayden, 2013).   

Functional connectivity data may be obtained from fMRI using Blood Oxygen Level-

Dependent (BOLD) techniques, EEG, or MEG.  Compared to EEG and MEG, fMRI provides 

improved spatial resolution, although this may still be insufficient to detect all relevant 

connections (Engel et al., 2013b).  fMRI has poor temporal resolution relative to other 

modalities with a typical sampling rate of 0.5 Hz (repetition time of 2 seconds) and a peak 

haemodynamic response function of around 6 seconds.  EEG and MEG have superior temporal 
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resolution compared to fMRI with a typical sampling rate of 500-1000 Hz.  Both techniques, 

therefore, provide time resolution in the order of milliseconds, which reflects neuronal 

communication in real time (Fornito et al., 2016).  Both scalp EEG and MEG may be limited by 

‘field spread’, where numerous electrodes detect signal from a single source (Sarvas, 1987) and 

volume conduction – a “data blurring” effect caused by conduction properties of the skull and 

scalp (van den Broek et al., 1998). This particularly affects EEG and both factors can 

complicate connectivity analysis.  

Network construction and analysis 

(Figure 14) Graph theory offers a mathematical/computational framework for analysing 

networks. Within this construct, networks are represented as a graph, with brain areas 

represented by ‘nodes’ (or ‘vertices’) and the connections between them by ‘edges’.  A large 

number of different approaches have been employed in network construction in both 

structural and functional connectivity studies, the choice of which affects interpretation of 

network characteristics (Stanley et al., 2013, Butts, 2009).   

 

 

 

 

 

Figure 14. Schematic overview of graph construction using diffusion MRI, fMRI, 
structural covariance and EEG. a) Reproduced with permission from the publisher. 
Network analysis for a network disorder: The emerging role of graph theory in the 
study of epilepsy. Bernhardt et al. Epilepsy and Behavior, 2015. b) Figs. 1, 2, and 4 
reproduced from Wikimedia Commons. 
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.00578314* A 
separate graph for each frequency band is produced. 
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In network studies derived from MRI, a common approach to represent nodes is to parcellate 

co-registered anatomical MRI using a validated scheme. This includes schemes based on 

macroscopic landmarks, for example Automated Anatomical Labelling (Tzourio-Mazoyer et 

al., 2002) or FreeSurfer parcellation atlases (Fischl, 2012), or on cytoarchitecture, for example 

Brodmann areas.  These have the advantage of being standardised methods (Stanley et al., 

2013) but limitations are that nodes may not reflect meaningful separations of the brain at a 

functional level and bias may be introduced due to varying size of parcellation areas (Fornito 

et al., 2016).  The issue of unequal node sizes may be addressed by parcellating data into 

random, evenly sized parcels or by grouping together measurement points (i.e., voxels) based 

on shared connectivity features, which have been determined a priori (Fornito and Bullmore, 

2010, Zalesky et al., 2010, Hagmann et al., 2007).  Alternatively, each voxel can be treated as a 

node.  This has the advantage of being data-driven rather than being constrained by 

interpretation based on anatomical boundaries (Stanley et al., 2013).  Disadvantages of this 

approach are that data may be noisy (Stanley et al., 2013, Fornito et al., 2016), connections 

between neighbouring nodes may be spurious (Stanley et al., 2013) and it is computationally 

demanding.  In EEG and MEG studies, nodes are represented by electrodes, sensors, or 

sources.  

Edges in structural networks can be inferred from anatomical MRI alone, or more typically by 

combining MRI with DTI.  Using structural MRI alone, connections are derived from 

covariance patterns (i.e. morphologic correlations) of features such as cortical thickness or 

volume (Mechelli et al., 2005).  Such correlations suggest a functional-trophic connection, but 

do not correspond to a direct anatomical connection (Bernhardt et al., 2013).  Using DTI, 

estimates of structural connections can be derived using deterministic tractography, which 

relies on following the direction of water diffusion from a voxel seed location until a new 

measurement is reached, with the process continuing until all the DTI streamline has been 

outlined (Conturo et al., 1999, Mori et al., 1999).  However, the direction and distribution of 

diffusion at each measurement point is uncertain since each voxel contains many connections 

on a very small scale (Fornito et al., 2016).  Probabilistic tractography takes into account these 

uncertainties by producing estimates for each, and incorporating them into a model based on 

the likelihood of each estimate (Behrens et al., 2003).  This approach is reported to produce 

better sensitivity for determining connections (Behrens et al., 2007).   

In functional connectivity studies, edges are typically determined using correlation 

coefficients (or similar measures) in the time domain or coherence measures in the frequency 

domain (Fornito et al., 2016).  A binary approach means that a connection is determined as 
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either being absent or present using a selected threshold value.  An alternative is to weight 

edges according to the strength of the signal.  This reduces the influence of statistically non-

significant connections, which are postulated to be physiologically less important  (Rubinov 

and Sporns, 2010).  The directionality of a connection may also be incorporated to form a 

directed graph (Figure 15). 

 

 

 

  

 

 

 

 

 

 

Figure 15.  Visual representation of different graph types according to edge 

features. Images A–D depict graph types according to whether edges are binary or 

weighted and directed or undirected. The thickness of an edge represents the 

connection strength. 
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Figure 16.  Example representations of regular, random and small-world networks. 

Connections in a regular graph are ‘rewired’ to form ‘long-range’ connections resulting in a 

drop in path length with minimal change in clustering coefficient. This is a key feature of 

networks with small-world properties (Watts and Strogatz, 1998). 

 

 

Measures of network connectivity  

There are many graph theoretic metrics, each providing different characterisations of network 

organisation (for review see (Rubinov and Sporns, 2010)).  Principal measures in epilepsy 

network studies include clustering coefficient, path length, global efficiency, and centrality 

measures (table 2, page 99).  Clustering coefficient is a measure of connectivity between 

neighbours of a node and represents local network connectivity or segregation.  Mean path 

length is the average distance between each pair of nodes in the network and is a measure of 

network integration.  Regular networks are those which have a high clustering coefficient and 

high path length.  Conversely, random networks have a low clustering coefficient and low path 

length.  Global efficiency is the inverse of the mean path length, and is a measure of efficiency 

of information transfer.  Centrality measures evaluate the importance of particular nodes in 

networks.  Nodes with high centrality are believed to represent network hubs, which play an 

important role in the transfer of information through the network (Freeman, 1978).  It has 

been proposed that altered network topology, as a result of a change in network hubs, is the 

final common pathway in many neurological diseases (Stam, 2014). 

When a small number of connections in a regular graph are ‘rewired’ to form ‘long-range’ 

connections, there is a drop in path length with very little change in the clustering coefficient: 

this is a key feature of networks with small-world properties (figure 16).  
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In their seminal study, Watts and Strogatz (Watts and Strogatz, 1998) demonstrated small-

worldness to be a feature of the electrical grid of the USA, a network of film actors, and the 

whole neuronal network of the Caenorhabditis elegans worm.  Since then, small-worldness has 

been demonstrated to exist in various human cerebral cortical network studies at a 

macroscopic level (e.g., (Achard et al., 2006, He et al., 2007, Iturria-Medina et al., 2008)).  A 

small-world network is regarded to be efficient as it facilitates rapid transmission and 

integration of information throughout the network (Bassett and Bullmore, 2006).  

It is important to note that the number of nodes of a graph and the number of connections 

from each node (degree) affects connectivity measures (the node-degree dependency) (van 

Wijk et al., 2010).  This highlights the importance of the choice of node and edge 

representation but also makes comparison of networks of different sizes and densities 

challenging.  

 

3.3.3 Aim of the review  

The aim of this systematic review is to summarise the outcome measures of graph theoretical 

studies of global functional and structural interictal networks in IGE, to examine for 

meaningful consensus and to discuss potential methodological limitations in this research 

area.   

 

3.4 Methods 

3.4.1 Search strategy 

PRISMA guidelines were used to conduct the review (Moher et al., 2009).  Studies were 

identified following a PubMed search using the following search strategy: 

(Epilepsy[Text Word]) AND (((((((((((network analysis[Text Word]) OR network[Text Word]) 

OR graph theory[Text Word]) OR graph theoretical analysis[Text Word]) OR small 

world[Text Word]) OR path length[Text Word]) OR clustering coefficient[Text Word]) OR 

connectivity[Text Word] OR global efficiency[Text Word] OR hub nodes [Text word] or 

centrality [Text word]) Filters: Humans; English 

Study titles and abstracts were screened by me.  Studies were included that compared the 

networks of people with IGE to controls using measures of clustering coefficient, path length, 
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small-worldness, global efficiency or centrality measures.  These measures were selected as 

they are frequently used in network studies and provide broad representation of key network 

characteristics. Included IGE syndromes, or terms, were: Idiopathic Generalised Epilepsy 

(IGE), Idiopathic Generalised Epilepsy with generalised tonic-clonic seizures alone (EGTCSA), 

Idiopathic Generalised Epilepsy with generalised tonic-clonic seizures (IGE-GTCS), Juvenile 

Myoclonic Epilepsy (JME), Juvenile Absence Epilepsy (JAE), Childhood Absence Epilepsy 

(CAE), Jeavons syndrome, genetic generalised epilepsy, primary generalised epilepsy.  Reviews, 

focal epilepsy studies, animal studies, non-English language studies, studies which did not 

have a control group, and studies where results were obtained via visual inspection rather 

than statistical analysis were excluded.  There were some studies which included both focal 

epilepsy and IGE (Garcia-Ramos et al., 2017).  Where it was not possible to separate the results 

of the IGE group, or where it was not possible to separate IGE data from other generalised 

epilepsies (e.g., metabolic aetiologies (van Diessen et al., 2016)), data were not included.  The 

date of the last search was the 18th of July 2019.  

 

 

3.4.2 Data extraction 

The following aspects of each study were recorded: Data acquisition modality and parameters 

(e.g., number of EEG channels, field strength of MRI scanner, parcellation scheme), 

participant numbers, medication use, network construction, network metrics used and 

outcomes for each metric.  For the majority of studies, quantitative result data was not 

provided; rather comparative results were expressed e.g., an outcome measure was said to be 

higher to or lower than controls.  If relevant information was not explicit, the corresponding 

study author was contacted with the aim of obtaining it. 

 

3.5 Results 

(Figure 17) The search strategy identified 2728 papers.  After exclusion based on titles and 

abstracts, 30 potentially eligible full studies were reviewed and 13 met the eligibility criteria. 

These comprised seven structural connectivity analyses (Xue et al., 2014a, Bonilha et al., 2014, 

Qiu et al., 2017, Zhang et al., 2011, Caeyenberghs et al., 2015, Lee and Park, 2019, Liao et al., 

2013) and nine functional connectivity analyses (Clemens et al., 2013, Chowdhury et al., 2014, 



 
 

82 
 

Chavez et al., 2010, Elshahabi et al., 2015, Niso et al., 2015, Lee and Park, 2019, Wang et al., 2017, 

Liao et al., 2013, Zhang et al., 2011).  Three studies evaluated both functional and structural 

connectivity (Zhang et al., 2011, Lee and Park, 2019, Liao et al., 2013). 

Data has been presented separately for structural and functional studies because the precise 

relationship between structural and functional connectivity is not known, as discussed above. 

Furthermore, it has been demonstrated that there is uncoupling between functional and 

structural networks in epilepsy (Zhang et al., 2011).  Therefore, assimilating the results may not 

be appropriate.  Within the functional studies, EEG/MEG and fMRI outcome data has also 

been presented separately because reconciling outcomes using these two distinct methods is 

complex (Chowdhury et al., 2014) and therefore combined results may obscure any 

differences.  

 

 

 

 

 

 

Figure 17.  Review flow diagram  
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3.5.1 Participant demographics  

3.5.1.1 Functional network studies (table 3, page 101) 

MEG/EEG studies  

A total of 123 people with IGE were included (range n=5 to n=36) in the six studies of 

functional connectivity using EEG/MEG (Clemens et al., 2013, Chowdhury et al., 2014, 

Elshahabi et al., 2015, Niso et al., 2015, Chavez et al., 2010, Lee and Park, 2019, Liao et al., 2013).  

This group comprised the following IGE subtypes:  EGTCSA (n=17), JME (n=64), CAE (n=10), 

JAE (n=6), Jeavons syndrome (n=1), unclassified / unspecified (n=20), and absences (without 

further clarification) (n=5).  Average age of participants in each study ranged from 18.2 years to 

38.6 years.  One study did not report the age and sex of all five subjects included in that 

investigation (Elshahabi et al., 2015).  In the remaining studies, 61.9% (n=73) of participants 

were female.  Epilepsy duration was not reported in two studies (Niso et al., 2015, Chavez et 

al., 2010).  In one study the mean epilepsy duration was four months (range up to five years) 

(Clemens et al., 2013) and in the remaining, median duration ranged from 2.25 years to 21.5 

years.  Medication information was not provided for all five patients in one study (Elshahabi et 

al., 2015).  In two studies, no participants were taking medication on account of being newly 

diagnosed (Clemens et al., 2013, Lee and Park, 2019).  In the other studies, 12.3% (n=11) were 

not taking an AED, despite some having uncontrolled epilepsy. 

All studies had a similar number of participants in the control group.  In one study there was 

no demographic information regarding the controls (n=5) (Elshahabi et al., 2015).  In the 

remaining five studies, there was no significant difference in age or sex of controls compared 

to IGE groups.   

fMRI studies  

These three studies (Zhang et al., 2011, Wang et al., 2017, Liao et al., 2013) comprised a total of 

110 participants with IGE, of whom 85 (77.3 %) had EGTCSA (Zhang et al., 2011, Liao et al., 

2013) and 25 (22.3%) had CAE (Wang et al., 2017).  The same 26 participants took part in both 

the study by Zhang et al and by Liao et al.   Mean age was 24.12 years in the EGTCSA studies 

and 10.5 +/- 3.3 years in the CAE study.  In total, 44.5% (n=49) were female.  Mean epilepsy 

duration was 6.92 years in one EGTCSA study (Zhang et al., 2011), 7.83 years in another (Liao 

et al., 2013), and 3.7 years in the CAE study (Wang et al., 2017).  39% (n=43) of participants 

with epilepsy were not taking an AED.  There were an equal number of controls and they did 

not significantly differ from the IGE group in age or sex in any study.  
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3.5.1.2 Structural network studies (table 4, page 104)                                                                                                         

A total of 211 participants with IGE were included from seven studies (Zhang et al., 2011, Xue et 

al., 2014a, Bonilha et al., 2014, Qiu et al., 2017, Caeyenberghs et al., 2015, Lee and Park, 2019, 

Liao et al., 2013).  Thirty-eight (18%) were diagnosed with CAE, 70 (33%) with JME, 85 (40%) 

with IGE-GTCS and in 18 (8.5%) (Bonilha et al., 2014) the subtype was not specified.  Mean age 

ranged from 8.05 years to 26 years. It was not possible to combine age data due to lack of 

individual participant information in one study (Bonilha et al., 2014).  49.2% (n=104) of 

patients were female.  Median duration of epilepsy in each study ranged from less than one 

year (Bonilha et al., 2014, Qiu et al., 2017) to 16.1 years (Caeyenberghs et al., 2015).  In one 

study, it was not clear how many participants were taking an AED (Bonilha et al., 2014).  In 

one study no participant was taking an AED (Caeyenberghs et al., 2015) and in the others 

26.1% (n= 41) of patients were not taking an AED.  

One study used first cousins as controls (Bonilha et al., 2014).  There was no difference in age 

or sex between epilepsy groups and controls in any study.  

 

3.5.2 Data acquisition and network construction   

3.5.2.1 Functional network studies  

Data collection modalities comprised fMRI in three studies (Zhang et al., 2011, Liao et al., 2013, 

Wang et al., 2017), EEG in three (Clemens et al., 2013, Chowdhury et al., 2014, Lee and Park, 

2019) and MEG in three (Chavez et al., 2010, Elshahabi et al., 2015, Niso et al., 2015).  

EEG/MEG studies 

The number of electrodes in two EEG studies was 19 (Clemens et al., 2013, Chowdhury et al., 

2014) and in the other 18 (Lee and Park, 2019).  All used a 10-20 montage.  One MEG study 

used 151 axial gradiometer sensors (Chavez et al., 2010), one used 275 axial gradiometer sensors 

(Elshahabi et al., 2015) and the third used 306 channels (102 magnetometers and 204 planar 

gradiometers) (Niso et al., 2015).   All EEG/MEG studies used eyes-closed resting state data, 

except possibly in one where this information was not provided (Lee and Park, 2019).  Length 

of data used ranged from a total of 5 seconds to 300 seconds.  One EEG study re-referenced to 

the common average (Chowdhury et al., 2014), one used Fpz as an online reference then re-

referenced offline to linked earlobes (Clemens et al., 2013), and in the other the method of re-
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referencing is unclear (Lee and Park, 2019).  There were no studies where automated artefact 

removal was used, and in all instances artefact free epochs were chosen using ‘expert 

selection’.  Each EEG/MEG study used slightly different frequency bands (see figures 18-20) 

and in one study the frequency bands were not stated (Lee and Park, 2019).  Data were 

downsampled to between 200 Hz and 1250 Hz.  Bandpass filtering was inconsistent between 

studies with the narrowest range 0.7-70 Hz and the widest 0.1-330 Hz.  Synchronisation 

between nodes in the EEG/MEG studies was identified using phase-based methods in three 

studies (Elshahabi et al., 2015, Niso et al., 2015, Chowdhury et al., 2014).  One study used 

spectral coherence (Chavez et al., 2010), one used a power-based method (Lee and Park, 2019) 

and the remaining used spatial-temporal correlation coefficient of current source density 

(Clemens et al., 2013).  All created weighted networks. 

 

 

fMRI studies  

The fMRI study data were acquired using a 3 Tesla (3T) scanner whilst participants rested with 

eyes closed.  In two of the three studies, there were 250 whole-brain echo-planar image 

volumes (Zhang et al., 2011, Liao et al., 2013), and in the other 210 (Wang et al., 2017).  Data 

were parcellated into 210 regions in one study using a voxel-wise approach (Wang et al., 2017) 

and the other two used Automated anatomical labelling (AAL) (Tzourio-Mazoyer et al., 2002) 

with 90 and 1024 parcellations (Zhang et al., 2011, Liao et al., 2013).  In all, Pearson correlation 

coefficients between time courses were used to produce edges and a threshold applied to 

outcomes to produce weighted graphs. 

 

3.5.2.2 Structural network studies  

Four studies used DTI to acquire data (Xue et al., 2014a, Qiu et al., 2017, Zhang et al., 2011, 

Caeyenberghs et al., 2015) and three derived networks via structural covariance analysis using 

1.5 or 3T structural MRI (Bonilha et al., 2014, Lee and Park, 2019, Liao et al., 2013). 

DTI based studies (table 5, page 106) 

All four DTI-based studies used 3T MRI. The number of diffusion directions was 30 in three 

studies (Qiu et al., 2017, Zhang et al., 2011, Caeyenberghs et al., 2015) and 50 in the other (Xue 

et al., 2014a). Only one study stated the use of cardiac gating (Caeyenberghs et al., 2015).  
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Number of slices ranged from 45 to 60.  All four studies used AAL (Tzourio-Mazoyer et al., 

2002) to parcellate data.  Three studies used DTI deterministic tractography to define the 

network edges and one used probabilistic tractography (Qiu et al., 2017).  The scale of 

parcellation i.e., the number of nodes, was 116 in one study (Caeyenberghs et al., 2015). The 

other three studies all used 90 nodes (Xue et al., 2014b, Qiu et al., 2017) and one of these 

studies also constructed a ‘high density’ network comprising 1024 nodes (Zhang et al., 2011).  

The graph was weighted in three studies (Xue et al., 2014a, Qiu et al., 2017, Zhang et al., 2011) 

and unweighted in the other (Caeyenberghs et al., 2015). 

Structural covariance-based studies 

Of the three structural covariance studies, one used the AAL atlas to parcellate data into 90 

and 1024 nodes (Liao et al., 2013), another used the Destrieux atlas (Destrieux et al., 2010) with 

171 nodes (Bonilha et al., 2014) and the third parcellated data into 80 regions (Lee and Park, 

2019) using FreeSurfer (Fischl, 2012).  All created weighted graphs.   

 

3.5.3 Statistical considerations 

All EEG/MEG studies with significant results except one (Elshahabi et al., 2015) corrected for 

multiple comparisons for the frequency bands tested.  One functional study adjusted for age 

and sex of participants (Xue et al., 2014a).  The remaining studies did not control for these 

factors. 

 

3.6 Study Results  

Network measurements were not suitable for statistical meta-analysis because in most studies 

quantitative results were not provided.  Instead, results were generally expressed in terms of 

the IGE group relative to the control group.  Furthermore, there was heterogeneity in outcome 

measures used and how the measures were calculated i.e., whether mean or normalised values 

were used. 

For brevity, where the terms ‘increased’ and ‘decreased’ or ‘greater’ have been used in this 

section, it refers to the result of participants with IGE compared to controls.  In this section, 

clustering coefficient is abbreviated to C, and path length to L.  
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3.6.1 Functional network studies  

3.6.1.1 EEG/MEG studies 

a. Clustering coefficient (C) (figure 18) 

Four of six studies reported this outcome (Chowdhury et al., 2014, Lee and Park, 2019, Chavez 

et al., 2010, Elshahabi et al., 2015).  Two studies found an increase in C.  In one study this was 

found in the 6-9 Hz band (EEG study; no difference found at 1-5 Hz, 10-11 Hz, 12-19 Hz or 21-70 

Hz) (Chowdhury et al., 2014).  In the other study with increased C, this was found in the 5-14 

Hz band (MEG study; no difference found at <5 Hz, 15-24 Hz or 24 -35 Hz) (Chavez et al., 

2010).  The other two studies did not find a difference.  

 

 

 

b.  Characteristic path length (L) (figure 19) 

This was evaluated in three EEG/MEG studies (Chowdhury et al., 2014, Lee and Park, 2019, 

Elshahabi et al., 2015).  One study, using MEG, reported a decreased value in the 12-20 Hz 

Figure 18.  Result summary of clustering coefficient analyses in EEG/MEG studies.  Dotted line 

shows boundary lines for the frequency bands tested. ■ = Clustering coefficient not tested. 

 = No difference found between groups.  = Statistically significant greater value in IGE compared 

with controls. AG = axial gradiometer. n/a = not applicable. 
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band (no difference found at 0-4 Hz, 4-8 Hz, 8-12 Hz, 21-29 Hz or 35- 45 Hz) (Elshahabi et al., 

2015).  The other two studies (both EEG) did not find a difference between the groups. 

 

 

 

c. Small-worldness 

Only one EEG study (Lee and Park, 2019) reported this outcome and no difference was found. 

 

d. Global efficiency (figure 20) 

Four studies measured global efficiency. Two reported greater efficiency (both MEG).  In one 

the difference was found only in the 5-14 Hz frequency band (Chavez et al., 2010). (No 

difference found at <5 Hz, 15-24 Hz or 24 -35Hz). In the other study the difference was found 

at 12-20 Hz and 28-40 Hz (Niso et al., 2015). (No difference found at 0.1-4 Hz, 4-8 Hz, 8-12 Hz 

or 20-28 Hz).  In the remaining two studies (both EEG), there was no difference found.  

 

Figure 19.  Result summary of path length analyses in EEG/MEG studies.  Dotted line shows 

boundary lines for the frequency bands tested. ■ = Path length not tested.  = No difference 

found between groups.  = Statistically significant lower value in IGE compared with controls. 
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e. Centrality measures 

This was evaluated in one EEG study and increased betweenness centrality at the F8 and C4  

electrodes was found (Lee and Park, 2019). 

 

3.6.1.2 fMRI studies  

a. C, L, small-worldness and global efficiency (figure 21) 

Two fMRI functional connectivity studies measured C, L and small-worldness.  C was 

decreased in one study (90 nodes) (Zhang et al., 2011) with no difference in the other (Liao et 

al., 2013).  Small-worldness was decreased in one study (90 nodes) (Zhang et al., 2011) and 

increased in the other (1024 nodes) (Liao et al., 2013).  There was no difference in L in either 

Figure 20. Result summary of global efficiency analysis in EEG/MEG studies.  Dotted line shows 

boundary lines for the frequency bands tested. ■ = Global efficiency not tested.  = No difference 

found between groups.  = Statistically significant greater value in IGE compared with controls. 

AG = axial gradiometer. PG = planar gradiometer. M = magnetometer. 
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case.  Global efficiency was unchanged in one study (Liao et al., 2013) and not tested in the 

others. 

 

 

 

b. Centrality measures 

Two studies reported this outcome measure.  One reported decreased degree centrality in the 

following regions: Bilateral medial prefrontal cortex, left posterior cingulate gyrus, bilateral 

precuneus cortex, bilateral middle temporal cortex. Degree centrality was increased in the 

thalami bilaterally (Wang et al., 2017).  Another fMRI study found increased betweenness 

centrality in the left calcarine fissure and a decreased value in the left lingual gyrus and left 

Heschl’s gyrus (Zhang et al., 2011).   

 

 

 

3.6.2 Structural network studies (figure 22) 

a. Clustering coefficient (C) 

This was calculated in all seven studies. Three studies reported decreased C (Zhang et al., 2011, 

Xue et al., 2014a, Qiu et al., 2017). In one of the studies reporting a decreased mean C, there 

Figure 21. Visual summary of outcome measures from fMRI functional studies. This figure 

summarizes the results of the fMRI functional connectivity study for the following measures: 

Correlation coefficient (C) (mean and/or normalized value), path length (L) (mean and/or 

normalized value), small-worldness, and global efficiency.  = No significant difference 

between groups.  = Statistically significant lower value in the group with IGE relative to 

controls.  = Statistically significant higher value in group with IGE relative to controls. ■ = Not 

tested. 
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was no difference when normalised C was used (Xue et al., 2014a). In another of the studies 

reporting decreased C, this difference was only found in the lower density network (Zhang et 

al., 2011).  One study did not find a difference between the groups (Lee and Park, 2019) and 

two studies reported an increased C (Bonilha et al., 2014, Liao et al., 2013).  In the latter, this 

was in the lower density network only.   

b. Path length (L) 

This was evaluated in six studies.  Three studies reported no difference between groups 

(Zhang et al., 2011, Caeyenberghs et al., 2015, Liao et al., 2013) and three reported an increased 

L (Xue et al., 2014a, Qiu et al., 2017, Lee and Park, 2019).  Of the three reporting increased L,  

one study reported an increased mean L (Lee and Park, 2019), one reported no difference in 

normalised L but an increased mean L (Xue et al., 2014a),  and the other study reported an 

increased mean and normalised L (Qiu et al., 2017).  

c. Small-worldness 

This was evaluated directly in six studies.  Three reported no difference between the groups 

(Xue et al., 2014a, Caeyenberghs et al., 2015, Liao et al., 2013) and the other three found 

decreased small-worldness (Zhang et al., 2011, Qiu et al., 2017, Lee and Park, 2019).  In one 

study this was in the low-resolution network only (Zhang et al., 2011). 

d. Global efficiency  

This was measured in five studies. Four reported it to be decreased (Xue et al., 2014a, Qiu et 

al., 2017, Bonilha et al., 2014, Lee and Park, 2019).  In the remaining study, no difference 

between groups was found (Liao et al., 2013). 
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e. Centrality measures  

Two structural studies measured this.  One reported increased betweenness centrality in the 

following cortical areas:  left caudal anterior cingulate, left precentral, left superior parietal, 

right precentral, right superior frontal.  There was a decreased value in the left hippocampus 

(Lee and Park, 2019).  In the other study there was increased betweenness centrality in the left 

superior parietal gyrus, right orbital part of superior frontal gyrus, and the right middle 

temporal gyrus.  There was decreased centrality in the left cuneus, left superior occipital gyrus 

and right insula (Zhang et al., 2011). 

 

3.7 Discussion  

Most structural and functional connectivity studies in this review report altered connectivity 

in IGE.  However, the results are inconsistent, with a large proportion of outcomes showing no 

difference and one study in each subset reporting a conflicting finding to the others (Zhang et 

al., 2011, Bonilha et al., 2014, Liao et al., 2013).  Studies are notably heterogeneous in terms of 

sample size, participant demographics, data collection modalities, frequency bands used (for 

Figure 22.  Visual summary of outcome measures from structural connectivity studies. This 

figure summarizes the results of the structural connectivity studies for the following measures: 

Correlation coefficient (C) (mean and/or normalized value), path length (L) (mean and/or 

normalized value), small-worldness, and global efficiency.  = No significant difference between 

groups.  = Statistically significant lower value in group with IGE relative to controls. 

 = Statistically significant higher value in group with IGE relative to controls. ■ = Not tested. 
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EEG/MEG data), length of data used, scan acquisition parameters, post-acquisition data 

handling, graph construction, outcome metrics and statistical methods.  These factors limit 

comparability between studies and may explain the variation in findings.  Methodological 

studies to inform the various choices are currently lacking but would be of much benefit.  In 

the meantime, a standardised method of performing and reporting graph theoretical analysis 

in neuroscience studies would greatly improve study comparability.  In view of this, we have 

proposed a suggested framework for analysis and reporting of methods (table 6, page 107).  

In the functional EEG/MEG studies in which a difference was detected between groups, there 

was a higher clustering coefficient and higher global efficiency in the IGE group with some 

overlap in the frequencies at which this was detected (6-9 Hz for clustering coefficient and 12 

Hz for global efficiency).  This suggests that people with IGE have a functional network which 

is more locally clustered and more integrated i.e., more small-world. One fMRI study also 

reported greater small-worldness in the IGE group.  However, the other fMRI study reported a 

lower clustering coefficient and lower small-world value.  In the structural connectivity 

studies, there was generally lower local connectivity, lower global efficiency and a less small-

world network in IGE.   There were two exceptions to this, where a higher clustering 

coefficient was reported.  However, these two studies used a different parcellation scheme 

than the others.  There was some overlap in increased centrality measures in the following 

brain regions in two out of three structural studies: right superior frontal region, left superior 

parietal region and the precentral gyrus (left in one study and right in the other).  Similarly, in 

the functional EEG study measuring betweenness centrality, there were increased values at the 

F8 and C4 electrodes approximating to the right fronto-central area.  This suggests that these 

nodes function as hub nodes in IGE.  Differences in the study that did not find similar hub 

nodes are that the epilepsy group all had CAE (the other two were JME and IGE-GTCS) and a 

different centrality measure than the other two was used (degree centrality rather than 

betweenness centrality).  

Considered as a whole, studies to date suggest that basic IGE network topology differs 

depending on whether structural or functional networks are evaluated, with a tendency 

towards increased small-worldness of networks in functional EEG/MEG studies and decreased 

small-worldness of networks in structural studies.  However, the outcomes of the two fMRI 

functional studies were inconsistent with each other, thus adding to the complexity of 

synthesising results.  There was more consistency between functional and structural studies 

for centrality measures.  However, the low number of studies evaluating this caution against 

drawing firm conclusions.  
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fMRI and MEG/EEG connectivity data are not readily comparable, in part due to differing 

sensitivity of each modality to different time scales (Tracy, 2015, Singh, 2012).  EEG and MEG 

are typically recorded at sampling rates of 200-1000+ Hz, enabling the detection of neuronal 

oscillations from sub-1Hz to 100Hz or higher. By contrast, fMRI is typically sampled at a rate of 

0.5 Hz, corresponding to a repetition time (TR) of 2 seconds, and it is only indirectly sensitive 

to neuronal activity after convolution with the haemodynamic response function (HRF), 

which effectively low-pass filters the signal below about 0.1 Hz (Josephs and Henson, 1999).  

Both MEG and EEG have certain ‘blind spots’ – MEG has low sensitivity for deep sources and 

the sensitivity of both modalities is low for spherically arranged (therefore ‘self-cancelling’) 

sources such as the thalamus.  fMRI data may be confounded by the presence of epileptiform 

activity, which is associated with increased long-range connections and reduced small-

worldness (Lee et al., 2017).  It is therefore possible that inherent properties of the modalities 

used are responsible for the variation in findings.   

The relationship between functional and structural connectivity is not fully elucidated. The 

literature suggests that structural connectivity constrains functional connectivity, and that 

structural connectivity is more stable (Zhang et al., 2011).  In IGE studies which have examined 

both types of connectivity, decoupling between functional and structural connectivity was 

found in one fMRI and DTI study (Zhang et al., 2011), whereas increased correlation was 

reported in another (Liao et al., 2013).  However, these 2 studies used different methods to 

examine structural connectivity (DTI based and covariance methods respectively). It is 

possible that the contrasting outcomes between structural and functional studies, particularly 

when different data collection modalities are used, reflects failure to capture the complexity of 

the relationship. 

There is evidence that small-world topology is affected by epilepsy duration (Dyhrfjeld-

Johnsen et al., 2007, Haneef et al., 2015a).  However, no studies controlled for this.  Given the 

considerable range of epilepsy duration in the studies (from less than 1 year to 21.5 years), it is 

possible that this has confounded overall outcomes.  Age and sex of participants were similar 

in patients and controls in all studies where this information was provided. Controlling for age 

and sex is an important consideration in network studies as both have been demonstrated to 

affect connectivity (Sala-Llonch et al., 2015, Donishi et al., 2018). 

Antiepileptic medication is a potential confounder and is an issue inherent to studies of this 

nature.  In two studies (Clemens et al., 2013, Lee and Park, 2019) participants were not taking 

any medication and in both, there were no significant differences in the functional network 
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for most measures when the epilepsy group was compared to controls.  However, both studies 

reported greater connectivity in nodal measures in the epilepsy group and one study found 

differences in structural connectivity suggesting that network changes were not medication 

related. In the remaining studies (where relevant information was provided) overall, 28.8% of 

patients were not taking an AED yet a separate analysis of these patients was not reported in 

any of the relevant studies. The authors of one of the studies set in China (Xue et al., 2014a), 

noted that patients may have been taking traditional Chinese medication for epilepsy, which 

could also confound results.  Of note in the study by Chowdhury et al (Chowdhury et al., 

2014), is that network differences were also found between controls and relatives of people 

with epilepsy, which also goes against the results being due to medication. 

The number of participants in each study was typically low- one study had only 5 participants 

in each group.  Furthermore, none of the studies performed a power calculation.  This raises 

the possibility of a type 2 error in some studies.  Under-powering may also explain inter-study 

inconsistencies in the frequency bands where significant results were found.  There is no 

consensus for normal network characteristics, thus deciding upon a parameter to include in a 

power calculation is challenging.   

The patients in the IGE groups had a range of IGE subtypes.  In some studies, the IGE group 

had only one subtype whereas in another study the IGE group comprised five different 

subtypes.  None of the studies carried out sub-group comparative analyses, perhaps due to the 

number of participants being too low.  It is possible that IGE syndromes have differing 

pathophysiologies and some believe that they should be treated as separate conditions  

(Panayiotopoulos and Koutroumanidi, 2017).  Thus, analysing different subtypes together may 

complicate result interpretation.  However, it is generally accepted that seizure onset in the 

corticothalamic networks is common to all forms of generalised epilepsies (Gloor, 1968, Wolf 

and Beniczky, 2014), which provides justification for analysing IGE subtypes as one.  None of 

the studies controlled for seizure frequency, which varied from seizure freedom in some 

patients to multiple attacks in others.  This could introduce methodological error because 

seizure frequency may modify network properties (Douw et al., 2010, van Dellen et al., 2012). 

Artefact handling and data pre-processing (for example sampling rate and re-referencing of 

EEG/MEG) is a key methodological consideration in all connectivity studies and techniques 

varied between studies.  Pre-processing and artefact removal is not a standardised process and 

choices made at this stage may have a significant influence on the results (van Diessen et al., 
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2014a).  In most studies reviewed, justification for the steps used is not provided which further 

limits comparability and assessment of reliability.  

Differences in post-acquisition processing and network construction were particularly 

marked, including within studies using the same data modality. In the case of fMRI/DTI 

studies, differences in how data was parcellated is likely to be a consequence of the lack of 

consensus on how this should be performed to best reflect network nodes (Zalesky et al., 

2010).  Furthermore, within all study modalities, a wide range of scales were used.  The 

number of nodes used is a vital consideration when comparing study outcomes since it has 

been demonstrated that there is disproportionately higher clustering and small-worldness in 

larger networks (Zalesky et al., 2010). 

The method of graph construction also varied between studies. All graphs in the studies bar 

one were weighted; i.e., the strength of the communication between nodes was factored in. 

Weighting may result in a more realistic representation of a neuronal network than an 

unweighted graph and also removes the arbitrariness of threshold selection which occurs in 

unweighted network construction (van Diessen et al., 2014a).  Seven studies subsequently 

normalised the graphs, i.e., bootstrapped data from random graphs were used to normalise 

graph measures.  This approach is typically used to reduce the effect of node-degree 

dependency- an intrinsic characteristic of networks whereby estimates of topology are 

dependent upon the quantity of nodes and number of connections of each node (van Wijk et 

al., 2010).  Although normalised graphs may reduce sensitivity to degree distribution and 

number of nodes, it has been demonstrated that this dependence increases with more regular 

networks, particularly small networks (van Wijk et al., 2010).  This introduces the potential for 

further bias depending on overall network topology. Of note is that one study evaluated both 

mean and normalised values with different results for each approach, highlighting the 

importance of interpreting results in the context of the calculation method used.  

Finally, it should be noted that the physiological implications of altered measures of 

connectivity, and the directionality of these measures within the construct of a dynamical 

system, is not fully elucidated.  Interpretation of results may be limited by the reduction of a 

complex dynamical system to the few outcome measures used (Tracy, 2015).  As such, it is 

possible that conflicting study outcomes reflect dynamic alterations that are not yet 

understood. 
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3.7.1 Limitations of the review 

This review is limited by the fact that just one database was searched by one reviewer which 

increases the possibility of a relevant study not being identified.  Furthermore, it is possible 

that pertinent studies were excluded due to not being published in English. 

 

3.8 Conclusions 

Most studies included in this review suggest that interictal networks of people with IGE have 

different global structural and functional network characteristics to people without epilepsy.  

However, the nature of individual network parameter aberrations is inconsistent with some 

studies demonstrating a more regular topology and some a more random topology in IGE. 

There is more consistency between results when different data modalities and connectivity 

sub-types are compared separately.  EEG/MEG functional studies suggest that people with 

epilepsy have a network which is more locally clustered and more integrated i.e., more small-

world.  The fMRI study outcomes were inconsistent with each other.  In contrast to the 

functional studies, structural connectivity studies suggest lower local connectivity, lower 

global efficiency and a less small-world network in IGE.   This highlights the difficulty in 

reconciling results of studies using different analytical approaches.  In view of the reasons 

discussed above, we suggest that future meta-analyses also consider the results of structural 

and functional network studies separately.  Marked variations in data collection, post-

acquisition data handling, network construction, outcome measures and statistical analysis 

are also likely to have contributed to differences in study outcomes.  Studies to guide 

methodological choices are greatly needed.  Until then, a standardised methodological 

approach to network analysis, such as the framework suggested in this paper (table 5), would 

improve study comparability and enable better understanding of network aberrations in 

epilepsy. 
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Table 2.  Commonly used measures in global network studies 

Clustering coefficient (C) 
 
 
Mean clustering coefficient (Ci) 
 
 
 
Normalised clustering coefficient (Ĉ) 

The probability that the neighbouring nodes of 2 
given nodes are themselves connected. 
 
C is averaged to calculate the clustering 
coefficient of the whole graph.  (A measure of 
network segregation). 
 
Ĉ = C / CSurr  where CSurr is the mean C of X 
randomly generated networks 
This controls for differences in the number of 
nodes and number of nodal connections in the 
network. 

Path length (d) 
 
 
 
Mean path length (L) 
 
 
 
Normalised path length (  ) 

Minimum number of edges (or shortest path) 
connecting 2 nodes. 
 
 
Mean of the shortest path length between all 
pairs of network nodes (a measure of network 
integration). 
 

  = L / LSurr  where LSurr is the mean L of X 
randomly generated networks 
This controls for differences in the number of 
nodes and number of nodal connections in the 
network. 

Global efficiency  Inverse of characteristic path length. Used to 
analyse weighted graphs since the shortest path 
is not necessarily the path with the fewest edges, 

Small- worldness Ratio of mean clustering coefficient of the graph 
to the mean clustering coefficient of a similar size 
random graph as a proportion of the ratio of the 
characteristic path length of the graph compared 
to the path length of a random graph. 
                         
                         [C / C random] 
                         [P / P random] 
 
Small-world networks have higher than expected 
clustering coefficient with a characteristic path 
length of equal or lower value than a a random 
graph. 

Centrality measures 
 
e.g.: 
                                                                           
Degree centrality  
                                                                                 
 

Evaluate the importance of an individual node in 
information transfer in a network.                                                                   
 
                                                                          
Equivalent to the node degree- the assumption 
being that nodes with more connections are more 
important. 
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Betweenness centrality  The number of shortest paths between all 
network pairs that pass-through a given node. 
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Table 3. Demographics of participants in functional connectivity studies 

Study and 

modality 

Number of 

participants 

with epilepsy  

Number of 

controls 

IGE subtypes Mean or 

median age of 

epilepsy group 

(years) 

Sex of epilepsy 

group 

Difference in 

age or sex 

between 

controls and 

epilepsy group 

Number of 

epilepsy group 

not taking AED 

Median/ mean 

epilepsy 

duration  

Clemens et al. 

(Clemens et 

al., 2013) 

-EEG 

19  19  19 x JME 18.2  14 F (74%) 

5 M (26%) 

No 19 (100%) 4 months 

Chowdhury et 

al. 

(Chowdhury 

et al., 2014) 

 

 

 

-EEG 

35  

 

40 12 x EGTCSA  

6 x CAE 

4 x JAE  

8 x JME  

4 x UC  

1 x Jeavons 

34.4 21 F (60%) 

14 M (40%) 

No 10 (28.5%)  21.5 years 

Lee and Park. 

(Lee and Park, 

2019) 

 

36 39 36 x JME 22 +/-6.8 20 F (56%) 

16 M (44%) 

No 100%  2.25 years 
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-EEG 

Chavez et al. 

(Chavez et al., 

2010) 

 

-MEG 

5  5 Absences * Not stated  Not stated Not stated  Not stated  Not stated 

Elshahabi et 

al. (Elshahabi 

et al., 2015) 

 

 

-MEG 

13 19 5 x EGTCSA 

4 x CAE 

2 x JAE 

1x JME 

1 x UC 

38.6 9 F (69%) 

4 M (30%) 

No  1 (7.7%) 17 years 

Niso et al. 

(Niso et al., 

2015) 

-MEG 

15  

 

15 15 x “JME or 

presumed  

Genetic” 

24 +/- 6 9 F (60%) 

6 M (40%) 

 

No  0  Not stated 

Zhang et al. 

(Zhang et al., 

2011) 

-fMRI 

26 ** 

 

26 26 x EGTCSA 24.12 +/- 6.85  9 F (35%) 

17 M (65%) 

 

No 11 (42%) 6.92 +/- 5.8 

years 

Liao (Liao et 

al., 2013) 

59** 59 59 x EGTCSA 24.9 +/- 7.07 21 F (25.6%) 

38 M (64.4%) 

No 13 (22%) 7.83 +/- 7.51 

years 
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-fMRI 

Wang (Wang 

et al., 2017) 

-fMRI 

25 25 25 x CAE 10.5 +/-3.3 11 F (44%) 

14 M (56%) 

No 19 (76%) 3.6 years 

 

 

* Further information regarding epilepsy subtype not provided. ** 26 had participated in the Zhang et al study.  JME- Juvenile Myoclonic Epilepsy, EGTCSA- 

Idiopathic Generalised Epilepsy with generalised tonic-clonic seizures alone, CAE – Childhood Absence Epilepsy, JME- Juvenile Myoclonic Epilepsy, UC- 

unclassified, F- female, M - male.



 
 

103 
 

Table 4. Demographics of participants included in structural connectivity studies 

Study and 

modality 

Number of 

participants 

with epilepsy  

Number of 

controls 

IGE subtype Mean / median 

age of epilepsy 

group (years) 

Sex of 

epilepsy 

group 

Difference in age/ 

sex between 

epilepsy group and 

controls  

Number of 

participants 

with epilepsy 

not taking 

medication 

Median 

epilepsy 

duration 

(years) 

Xue et al. (Xue 

et al., 2014a) 

-DTI  

17  18 17 x CAE 8.9 +/- 1.8 8 F (44 %)** 

10M (56%)** 

No 13 (76%)  3 

Bonilha et al. 

(Bonilha et al., 

2014) 

- MRI (1.5T) 

18  

 

28 Subtype not 

stated 

15 +/- 3.3 11 F (61%) 

7 M (39%) 

No  

 

Not clear  Less than 1 

Qiu et al.(Qiu 

et al., 2017) 

-DTI 

21  24 21 x CAE Mean 8.05 +/- 

1.99 

11 F (52%) 

10 M (48%) 

No 4 (19%) 0.58  

Zhang et al. 

(Zhang et al., 

2011) 

-DTI 

26  26 26 x EGTCSA 24.12 +/- 6.85  9 F (35%) 

17 M (65%) 

No 11 (42%) 4.5 

Liao et al. (Liao 

et al., 2013) 

-MRI (3T) 

59 59 59 x EGTCSA 24.9 +/- 7.07 21 F (25.6%) 

38 M (64.4%) 

No 13 (22%) 7.83 +/- 7.51 

years 
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Caeyenberghs 

et al. 

(Caeyenberghs 

et al., 2015)      

-DTI      

34  34 34 x JME* 26 +/- 7.8 25 F (71%)** 

10 M (29%) 

No 0 16.1 

Lee and Park 

(Lee and Park, 

2019) 

-MRI (3T) 

36 30 26 x JME 22 +/- 6.8 20 F (56%) 

16 M (44%) 

Age- No difference 

Sex- yes (M 87%) 

0 2.25 

*6 did not have myoclonic jerks.  **Data from 1 participant excluded from analysis- demographics of the removed subject are unclear. JME- Juvenile 

Myoclonic Epilepsy, EGTCSA- Idiopathic Generalised Epilepsy with generalised tonic-clonic seizures alone, CAE – Childhood Absence Epilepsy, JME- Juvenile 

Myoclonic Epilepsy, UC- unclassified, F- female, M -male.  
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Table 5. Data acquisition and graph construction for structural studies using DTI  

Study   Number of 

diffusion 

directions 

Number of 

slices 

Slice thickness 

(mm) 

Parcellation 

scheme 

Tractography 

method 

Weighted or 

unweighted 

graph  

Scale 

(number of 

nodes) 

Xue et al. (Xue 

et al., 2014a) 

50 50 3 AAL Deterministic Weighted 90 

 

Qiu et al. 

(Qiu et al., 

2017) 

30 45 3 AAL Probabilistic Weighted 90 

Zhang et al. 

(Zhang et al., 

2011) 

30 45 Not stated AAL Deterministic Weighted 90 

1024 

Caeyenberghs 

et al. 

(Caeyenberghs 

et al., 2015) 

30 60 2.4 AAL Deterministic Unweighted 116 

AAL- automated anatomical labelling. 
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Table 6.  Recommendations and considerations for future graph theoretical studies of cerebral 
networks 

1. Reporting and pre-processing recommendations (general points for all modalities) 

 

• For neuroimaging studies across all modalities, it is important that data collection 

methods and pre-processing steps are explicit to enable interstudy comparability.  

 

• The minimum sample number to achieve an adequately powered graph theoretical study 

has not been elucidated. Reporting of mean / median results for each outcome metric 

(rather than only one group relative to another) along with effect sizes, would facilitate 

estimation of adequate power and permit meta-analyses.  

 

• A consensus on whether eyes-closed or eyes-open data should be used has not been 

established.  Differences in connectivity measures have been reported between the two 

states (Horstmann et al., 2010) and may depend on the network of interest (Agcaoglu et 

al., 2019).  For fMRI, eyes-open fixated data is commonly used whereas EEG/MEG data is 

often eyes-closed.  Performing analysis using data from both states would add further 

information to this area of uncertainty.  

 

1.1 EEG/ 

MEG 

• For EEG and MEG, general standards for recording and reporting have been 

previously recommended (Picton et al., 2000, Gross et al., 2013).  

 

• The common average is the most frequently used method of re-referencing 

and has been presented as the gold standard (Kayser and Tenke, 2010) *. 

 

• For study comparability, it is recommended that data is filtered into 

conventional frequency bands e.g., Delta 1-3 Hz, Theta 4-7 Hz, Alpha 8-12 Hz, 

Beta 13-30 Hz, Gamma 31-70 Hz. Further research should evaluate the use of 

bands identified by spectral factor analysis, which have been demonstrated 

to be robust to a range of measures (Shackman et al., 2010). 
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• A minimum duration of 12 seconds of data should be used.  Functional 

connectivity measures have been shown to stabilise at this duration 

(Fraschini et al., 2016). 

 

• The first artefact-free epochs should be used. The use of the earliest possible 

epochs decreases the risk of inclusion of data with reduced vigilance (which 

are more likely to occur later in the recording (Maltez et al., 2004)), and 

reduces risk of  selection bias (van Diessen et al., 2014a).  Epochs should be 

selected in a manner whereby the investigator is blinded to subject group.  

 

1.2 fMRI  

 

• The following information relating to data acquisition should be stated: 

o Manufacturer, model and field strength of scanner 

o Pulse sequence information  

o Duration of acquisition  

o Repetition time (TR), echo time (TE), flip angle data  

o Sequence / volume length 

o Slice thickness  

o Field of view 

o Data acquisition orientation 

 

• Optimum duration of acquisition is widely debated. The Human Connectome 

Project (HCP) acquires a total of 1 hour of data (4 x 15 minutes) (Smith et al., 

2013).  A long duration increases statistical sensitivity and permits analysis of 

a greater range of fluctuating resting states (Smith et al., 2013).  Whilst 

implementing the HCP protocol may not always be practicable, it is suggested 

that factors deviating from it are made explicit. 

 

• The following information relating to pre-processing should be stated as a 

minimum: 

o Order of pre-processing operations 

o Methods for slice time correction, motion correction and echo-planar 

imaging (EPI) distortion correction 

o Describe transformation model (linear/affine, nonlinear) or type of any 
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non-linear transformations (polynomial, discrete cosine basis) 

o Anatomical atlas information including total number of parcellations  

o Smoothing kernel size and type  

o Version number and date of last application for each piece of software 

used 

 

• The use of a particular atlas for node generation should be justified. Using a 

functional-based atlas may be preferential to a structural-based atlas for the 

analysis of the functional connectome (and vice versa) given the discordance 

between structural and functional connectomes (Yao et al., 2015)  

Furthermore, there is evidence for the superiority of fMRI-driven 

parcellations (Sala-Llonch et al., 2019). 

 

• In view of issues in comparing networks of different densities (van Wijk et al., 

2010), it is suggested that the analysis is repeated over different densities to 

support that any findings are stable.  

 

2. Graph Construction (general points for all modalities) 

 

• Weighting of connections should be carried out. This may reduce the influence of weak 

and physiologically insignificant connections (Rubinov and Sporns, 2010). 

 

• The construction of both normalised (via random graphs) and non-normalised graphs 

should be considered.   Normalisation may lessen the effect of node-degree dependency 

for some measures (but not others), which may reduce issues in  comparing of networks 

of different sizes  (van Wijk et al., 2010).  Further research is needed to optimise methods 

of reducing node-degree dependency. Reporting both measures would allow further 

evaluation of this.  

 

• The method of synchronisation identification should be specified.  For EEG /MEG, 

measures based on phase (e.g. phase locking) rather than power are less likely to be 

confounded by disease specific spectral differences (van Diessen et al., 2014a). 
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• As a minimum, the following metrics should be reported to facilitate study comparability: 

Mean clustering coefficient, mean path length (or global efficiency), small-world index, 

mean degree. 

 

*  There is some literature (Zheng et al., 2018, Chella et al., 2016) to suggest superiority of Reference 

Electrode Standardisation Technique (REST) (Yao, 2001) in network analysis. Further research is 

suggested to add further information to this area.  

AEDs - antiepileptic drugs, CNS - central nervous system  
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Chapter 4.  Interictal EEG functional network 

topology in drug resistant and well-controlled IGE 

This manuscript forming this chapter is published in Epilepsia (Pegg et al., 2021).  Since the 

publication of this paper, an error in the results has been discovered.  The error has been 

rectified in this chapter and an erratum for the paper has been requested.  The footnotes 

contain additional information providing justification for the some of the methodological 

choices which were not described in the paper due to the word count limit.  

 

4.1 Authors 

Emily J. Pegg1,2, Jason R. Taylor2,3, Petroula Laiou4, Mark Richardson5, Rajiv Mohanraj1,2 

1 Department of Neurology, Manchester Centre for Clinical Neurosciences. 

2 Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty 

of Biology, Medicine and Health, University of Manchester. 

3 Manchester Academic Health Sciences Centre. 

4 Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and 

Neuroscience, King’s College London, London, UK 

5Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and 

Neuroscience, King’s College London, London, UK 

 

4.2 Abstract 

Objective  

The study aim was to compare interictal encephalograph (EEG) functional network topology 

between people with well-controlled Idiopathic Generalised Epilepsy (WC-IGE) and drug 

resistant IGE (DR-IGE). 

Methods  

The data used in this chapter was the same as the data in chapter 2.  19 participants with WC-

IGE, 18 with DR-IGE and 20 controls underwent a resting state, 64 channel EEG.  An artefact 
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free epoch was bandpass filtered into the frequency range of high and low extended alpha. 

Weighted functional connectivity matrices were calculated. Mean degree, degree distribution 

variance, characteristic path length (L), clustering coefficient, small-world index (SWI), and 

betweenness centrality were measured.  A Kruskal-Wallis H test assessed effects across 

groups.  Where significant differences were found, Bonferroni corrected Mann-Whitney 

pairwise comparisons were calculated.  

Results 

There were no significant differences at the three-group level in the 6-9 Hz frequency band.  

Mean degree (p=0.031), degree distribution variance (p = 0.032), SWI (p = 0.023) differed 

across the three groups in the high alpha band (10-12 Hz).  Mean degree and degree 

distribution variance was lower in WC-IGE than controls (p = 0.029 for both) and SWI was 

higher in WC-IGE compared with controls (p = 0.038), with no differences in other pairwise 

comparisons.  

Significance 

. WC-IGE network topology is different from controls in the high alpha band.  This may reflect 

drug induced network changes that have stabilised the WC-IGE network by rendering it less 

likely to synchronise.  These results are of potential importance in advancing the 

understanding of mechanisms of epilepsy drug resistance and as a possible basis for a 

biomarker of DR-IGE.   

 

4.3 Introduction  

Idiopathic (or genetic) Generalised Epilepsies (IGEs) are a group of electro-clinical syndromes 

characterised by generalised seizures in the absence of structural brain lesions or 

neurodevelopmental abnormalities.  The electroencephalogram (EEG) in IGE syndromes 

characteristically shows a normal background, with bilaterally synchronous interictal and ictal 

discharges, which arise as a result of abnormal oscillatory activity in the thalamocortical 

system (Wolf and Beniczky, 2014).  Approximately 18% of people with IGE develop drug 

resistant epilepsy (DRE) (Brodie et al., 2012), defined by the ILAE as “failure of adequate trials 

of two tolerated and appropriately chosen and used Anti-Epileptic Drugs (AEDs) to achieve 

sustained seizure freedom” (Kwan et al., 2010).  Seizure freedom is defined as a period of 12 

months without a seizure, or after three times the longest pre-treatment inter-seizure interval, 

whichever is longer. DRE is associated with significant risk of psychosocial morbidity (Piazzini 
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et al., 2001) and increased mortality (Tomson, 2000). The reason for such variable response to 

AED treatment in this relatively homogenous group of electro-clinical syndromes is not clear.  

A number of potential cellular and genetic mechanisms for DRE have been investigated, but 

the neurobiology of DRE remains largely unexplained (Tang et al., 2017).   

Epilepsy is now understood as a disorder of rhythmic activity of brain networks, with epileptic 

seizures generated by hypersynchronous activity in large-scale neuronal networks 

(Richardson, 2012a). It is therefore appropriate to examine response to AED treatment from a 

global cerebral network perspective.  A number of studies have found alterations of global 

functional network structure and function in IGE (Xue et al., 2014b, Chowdhury et al., 2014, 

Zhang et al., 2011, Chavez et al., 2010, Elshahabi et al., 2015, Liao et al., 2013), some of which 

may also be important in determining response to treatment (Pegg et al., 2020a). Other 

studies have identified reduced functional connectivity in specific networks (cerebellar and 

default mode networks) in patients with drug resistant IGE (DR-IGE) compared to well-

controlled IGE (WC-IGE) (Kay et al., 2013, Kay et al., 2014). However, to our knowledge, no 

functional connectivity studies have investigated global network topology in DR-IGE.   

Structural and functional brain networks may be represented as a graph, in which brain areas 

are represented by ‘nodes’, which interact with each other via connections known as ‘edges’.  

In functional network studies using EEG, each electrode is considered a node in the graph, 

and connectivity between nodes is inferred from the quantification of synchronous oscillatory 

activity at each electrode, within a frequency band. The strength of functional connectivity 

may be incorporated into the graph by ‘weighting’ each connection according to the 

magnitude of the measure of synchronisation used.  Properties (metrics) of the graph may 

then be compared between cohorts under study. Graph theoretical metrics used in brain 

network studies include mean degree (average number of connections of nodes), degree 

distribution variance  (a measure of the variance of number of connections per node in the 

graph), centrality measures (a measure of ‘hub nodes’- those which transfer a high proportion 

of signal within the network), clustering coefficient (a measure of connectivity between 

neighbours of a node, an indicator of network segregation), characteristic path length (average 

distance between each pair of nodes in the network, an indicator of network integration) 

small-world index (a measure of network efficiency)  (Newman, 2008, Rubinov and Sporns, 

2010).  Networks which have a high clustering coefficient and high characteristic path length 

have a regular topology, whereas those with a low clustering coefficient and low path length 

have a ‘random’ topology.  Networks which are ‘small-world’ have a high clustering coefficient 
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and low characteristic path length, which represents high local connectivity in addition to 

strong integration of distant network regions (Watts and Strogatz, 1998).  

There is a suggestion that the extended alpha frequency band (6-12 Hz) is particularly 

important in IGE.  It is proposed that alpha rhythm arises through cortico-thalamic 

interactions and has roles in attention (Halgren et al., 2019) and functional inhibition (Jensen 

and Mazaheri, 2010).  Changes in alpha rhythm have been reported since early EEG studies 

when it was noted that people with epilepsy have slower alpha activity than controls (Gibbs et 

al., 1943).  Similarly, reduced peak alpha frequency (Larsson and Kostov, 2005, Pegg et al., 

2020b), lower alpha frequency variability (Larsson and Kostov, 2005), and increased alpha 

spectral power in IGE (Clemens et al., 2000, Miyauchi et al., 1991, Tikka et al., 2013) have been 

described.  Of further relevance are findings of a shift from 10-11 Hz to 6-9 Hz power in poorly 

controlled IGE (Abela et al., 2019), alterations in graph theoretical metrics within the alpha 

band in IGE (Chavez et al., 2010, Niso et al., 2015, Chowdhury et al., 2014) and coupling 

changes in the 6-9 Hz band in a dynamic modelling study of IGE (Schmidt et al., 2014).  

Considering the literature described above, the present study investigates network topology in 

the extended alpha frequency band in IGE, according to seizure control.    

Aims  

The aim of this study was to compare interictal functional network properties in the alpha 

frequency band, derived from graph theoretical analysis of EEG in people with DR-IGE, WC-

IGE and controls.   
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4.4 Methods  

(figure 23) 

 

 

 

 

Recruitment  

People with DR-IGE and WC-IGE were identified from an audit database of patients attending 

a tertiary epilepsy clinic at Salford Royal NHS Foundation Trust, general neurology clinics 

within Greater Manchester, and tertiary epilepsy clinics at The Walton Centre NHS 

Foundation Trust, Merseyside.   Controls were recruited via advertisements in the hospitals, 

the Citizen Scientist website and on a University of Manchester study volunteering webpage.   

The aim was to recruit 15-20 participants into each group.  Because normal values and effect 

sizes for differences between normal and epileptic networks have not been established, a 

meaningful a priori power calculation was not possible.  However, this sample number is 

   Figure 23. Schematic overview of study methodology 
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similar to, or greater than, previous studies which have reported significant results 

(Chowdhury et al., 2014, Chavez et al., 2010, Niso et al., 2015, Elshahabi et al., 2015).  

Inclusion and exclusion criteria  

All participants in the epilepsy groups were over 16 years old and had a diagnosis of IGE.  IGE 

syndrome was determined by an epilepsy specialist based on onset age, seizure types, 

neurodevelopmental history, family history, and EEG findings in accordance with ILAE criteria 

(Scheffer et al., 2017).  A diagnostic review was subsequently undertaken by a second 

epileptologist who was not part of the study team. Any participants not meeting the 

diagnostic criteria for IGE were not included in the analysis. All participants with IGE were 

taking at least one appropriate AED.  Participants in the WC-IGE group were seizure free, 

including from myoclonic jerks, for a minimum period of one year.  Participants in the DR-IGE 

group must have experienced myoclonus or generalised tonic-clonic seizures at least once per 

three months in the preceding 12-month period. 

Exclusion criteria in the groups with IGE included those who continue to have seizures whilst 

on AED treatment, but have not been treated with adequate doses of sodium valproate, either 

through patient - physician preference, or due to adverse reactions or intolerable side effects 

occurring at doses <1000mg per day.  Patients with ongoing seizures taking an AED known to 

worsen myoclonic epilepsies (phenytoin, carbamazepine, oxcarbazepine, eslicarbazepine, 

tiagabine, vigabatrin) were also excluded.  For patients taking lamotrigine, an investigator 

ascertained whether seizure aggravation had occurred from the history on a case-by-case 

basis.  Participants with a vagal nerve stimulator were excluded.    

Controls were all over 16 years old and were sex and age matched (+/-5 years) with 

participants with IGE, as these variables have been reported to affect connectivity (Sala-Llonch 

et al., 2015, Donishi et al., 2018). 

All participants with a history of a neurological disorder (other than epilepsy), or with recent 

use of brain active drugs (antipsychotics, antidepressants, sedative / hypnotic and recreational 

drugs), were excluded.  

Data acquisition  

A 64 channel EEG cap in the 10-10 configuration using the BrainVision system was used.  

Sampling rate was 1000 Hz. A twelve-minute resting state recording was undertaken. Six 

minutes of the recording was with eyes opened and six with eyes closed1.  To reduce the 

chance of drowsiness, this was done as four three-minute recordings. The recording was 
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carried out in a quiet, naturally lit room.  Participants were seated in a cushioned chair and 

wore passive ear defenders.  Participants were instructed to sit still with their eyes closed.  

Impedance was less than 10 kΩ in the reference and ground electrode.  An impedance of less 

than 20 kΩ was aimed for with remaining electrodes and was always under 30 kΩ.  

A 20 second2 eyes-closed3 epoch, free from artefact, signs of drowsiness or epileptiform 

discharges was selected by a trained member of the study team who was blinded to the study 

groups.  The first epoch of adequate quality was selected (van Diessen et al., 2014a) in order to 

reduce the risk of selection bias.  In 21 participants, one channel was faulty and was, therefore, 

removed from those datasets.  There was no difference between groups in the number of 

datasets this affected (controls n = 6, WC-IGE n = 7, DR-IGE n=10.  Chi squared = 2.72, p = 

0.26). 

1. Inter-subject variability in resting state EEG data may arise through differences in the subjective 
experience of the recording (Diaz et al., 2013) and the immediate pre-recording cognitive state 
(Lopez Zunini et al., 2013). These variables may affect connectivity measures.  All participants were 
given the same instructions and data collection began with the eyes opened for three minutes 
followed by the eyes being closed.  This was so that a similar experience was created in participants 
prior to the recording of the eyes closed data that was subsequently used in the analysis.  

2. A more regular network topology has been reported with the eyes closed in EEG and MEG studies 
(Horstmann et al., 2010, Tan et al., 2013, Jin et al., 2013).  Eyes closed data is more commonly used 
in EEG / MEG connectivity analysis and has the advantage of containing less oculomotor artefact and 
facilitates the selection of epochs without signs of drowsiness (since alpha rhythm is more 
pronounced).  

3. Epoch lengths in existing studies range from seconds to several hours (Chu et al., 2012).  At 12 
seconds, the phase locking index becomes stabilised across epochs (Fraschini et al., 2016).  It can 
therefore be reasoned that 12 seconds should be the minimum epoch duration for phase-based 
connectivity.  The use of a short epoch also reduces variance of vigilance, which is reported to 
increase with the length of the recording (Maltez et al., 2004).   In our study, in order to also provide 
consistency with similar studies, a 20 second epoch was used (Chowdhury et al., 2014, Schmidt et 
al., 2016). 

 

 

 

 

 

 



 
 

117 

 

Network construction 

A custom MATLAB (R2019a) script was applied each 20 second epoch.  Data were re-

referenced to the average4 and downsampled to 256 Hz.  Next, data were analysed into an 

extended high and low alpha band (10-12 Hz and 6-9 Hz respectively).  These frequency bands 

are based on a classification derived using Spectral Factor Analysis, and probably better reflect 

underlying neural generators than conventional frequency bands (Shackman et al., 2010).  

Subsequent steps were performed for both frequency bands. A fourth-order Butterworth filter 

with forward and backward filtering was applied to minimize phase distortions.  Weighted 

phase synchronization was calculated for each pair of electrodes using the phase locking value 

(PLV)5.  

 

 

 

 
 

4. Referencing can introduce spurious zero lagged connections and may create time varying activity 
at each electrode, both of which may potentially affect connectivity measures (Chella et al., 2016).  
In a study comparing the effect of four different references, a distortion of connectivity was found to 
be greatest for the Cz reference and became progressively less for the mean mastoids, average 
reference, and REST respectively (Chella et al., 2016).  This study also demonstrated that node 
degree and local efficiency are sensitive to the reference choice in relation to different parts of the 
scalp (higher values were seen occipitally using REST and average reference).  Mastoid references 
have been shown to have larger distortions in derived connectivity values than both the average 
reference and REST (Qin et al., 2017).  It has also been reported that small-world effects are more 
clearly seen using REST reference, compared to an average reference in 64 channel recordings 
(Zheng et al., 2018).  Reference-free techniques such as the surface Laplacian (Hjorth, 1975) may 
also be used, which have the advantage of not spuriously inflating connectivity.  However, it is 
limited by being insensitive to deep sources and distributed sources (Qin et al., 2017).  In view of its 
common usage and relatively strong performance in studies comparing different references, the 
average reference was used in this study.  Furthermore, it has been demonstrated that when the 
average reference is used in combination with phase- based connectivity measures (as used in our 
study), the risk of introducing erroneous connections is reduced (Stam et al., 2007b).   
 
5. There is no clear best measure of connectivity method (Cohen, 2014).  In our study, PLV with zero 
lagged data excluded was selected.   Advantages of this measure is that it mitigates the possible 
effects of disease specific spectral alterations, non-linearity of the neural signal is taken into account 
(David et al., 2004), and volume conduction effects are attenuated.  PLI has similar advantages 
however PLV has been used in similar studies (Chowdhury et al., 2014, Niso et al., 2015), thereby 
readily facilitating comparison.  
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2. 

In particular, electrodes were considered as nodes in the functional network and the phase 

locking values as connectivity weights (Lachaux et al., 1999).  For every pair of (𝑖, 𝑗) nodes we 

computed the 𝑃𝐿𝑉, 

𝑃𝐿𝑉𝑖,𝑗 =
1

𝑁
|∑ 𝑒𝑖Δ𝜙𝑖,𝑗(𝑡𝑘)

𝑁

𝑘=1

| 

 

where 𝑁 is the number of samples and Δ𝜙𝑖,𝑗(𝑡𝑘) is the instantaneous phase difference between 

the 𝑖, 𝑗 signals at time 𝑡𝑘. The phase differences were calculated using the Hilbert transform on 

the filtered signals.  

The time-lag, 𝜏𝑖,𝑗 , was also computed between the 𝑖, 𝑗 nodes in order to infer the direction of 

the functional network, where arg is the angle of the complex number that is inside the 

parenthesis (i.e., the mean of the phase difference). 

 

     

𝜏 𝑖, 𝑗 = arg (
1

𝑁
 ∑ 𝑒𝑖Δ𝜙𝑖,𝑗(𝑡𝑘)

𝑁

𝑘=1

) 

 

Connections at zero time-lag were discarded to account for possible effects from volume 

conduction (Bastos and Schoffelen, 2016).  In addition, for every (𝑖, 𝑗) pair of nodes, 99 pairs of 

surrogate signals using the iterative amplitude-adjusted Fourier transform (IAAFT) with 10 

iterations were computed (Schreiber and Schmitz, 1996). Connections between the (𝑖, 𝑗) pair 

of nodes were discarded if their 𝑃𝐿𝑉 values did not exceed the 95% significance level of the 

𝑃𝐿𝑉 values distribution of the surrogates (Schmidt et al., 2014)6. This reduces the probability 

of including connections that are due to chance. 

 

 

6 Each methodological option for network thresholding carries potential limitations.  The risk of 
concealing significant results with density thresholding, due to possible inter-group differences in 
network density, is an important consideration for this analysis and was therefore discounted as an 
option.   

 

1. 
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Graph theoretical analysis 

Directed, weighted graphs were constructed with electrodes representing nodes, and the 

edges weighted according to the connectivity matrix data.  Following this, global measures of 

mean degree, degree distribution variance, clustering coefficient (C), characteristic path 

length (L), small-world index (SWI) and betweenness centrality were calculated for the graph 

for each individual participant in each frequency band (Newman, 2008, Rubinov and Sporns, 

2010). These are commonly used metrics in graph theoretical analysis and were selected to 

provide representation of the global topological features of the network. Both C and L are 

sensitive to the number of network nodes. Therefore, normalised metrics for C and L (^C and 

^L respectively) were obtained by dividing C and L by the mean of the C and L distributions of 

500 surrogate networks respectively, which were produced by random shuffling of the edge 

weights (Stam et al., 2008, Stam et al., 2007a).   

Statistical analysis 

Statistical analysis was carried out in SPSS version 25 (IBM-Corp, 2017). After assessment of 

normality (evaluated using skewness, kurtosis, histograms and Q-Q plots), potential 

differences in baseline characteristics were tested using either a Kruskal-Wallis H test, Chi-

squared test or Mann-Whitney U test, as appropriate.  A Kruskal-Wallis H test was used to 

examine for potential differences in each metric across the three groups for each frequency 

band (2-sided, significance level p <0.05).  

For statistically significant results, effect sizes were calculated using Epsilon squared (ε2).  If 

results were significantly different at the three-group level, further analysis was performed to 

compare pairs of groups using the Mann-Whitney test.  This was Bonferroni corrected for 

between-group comparisons with a significance level of p < 0.05.  

Ethical considerations 

The study was conducted in accordance with Research Governance Framework (v.2, 2005).  

The study was approved by the Health Research Authority (HRA), Research Ethics Committee 

(REC) and local Research & Development department. 
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4.5 Results  

Participant demographics (table 7, page 128) 

In total, 60 participants were enrolled in the study (N= 20 in each group). Data were excluded 

from two participants with DR-IGE due to a slow background EEG rhythm (a presumed 

medication or post-ictal cause).  Data from one participant in the WC-IGE group were 

excluded due to reclassification of epilepsy type.  In the remaining 57 participants (WC-IGE 

=19, DR-IGE =18, Controls = 20), median age was 26 years and there was no difference between 

groups (DR-IGE = 26.5 years; WC-IGE = 24 years; Controls = 25 years.  Kruskal-Wallis H = 

1.016, p = 0.602).  50.8% of participants were female, with no differences between groups (DR-

IGE n = 10; WC-IGE n = 10; Controls n = 9, Chi-square = 0.7401, p = 0.690).  Mean epilepsy 

duration was higher in DR-IGE than WC-IGE but was not statistically different (DR-IGE = 15.8 

years, standard deviation (SD): 8.96; WC-IGE = 13 years, SD:10.2.  t = -0.89, df = 34.8, p = 0.38).  

Most participants in the epilepsy groups had Juvenile Myoclonic Epilepsy (JME).  In one in 

each group this had evolved from Childhood Absence Epilepsy (CAE).  Exceptions were three 

participants with IGE with Generalised Tonic-Clonic Seizures Alone (EGTCSA) (two in the 

WC-IGE group and one in the DR-IGE group), and two with well-controlled Juvenile Absence 

Epilepsy (JAE).   In the 24 hours prior to the EEG recording, no seizures were reported by 

participants.  The DR-IGE group took more AEDs (mode = 2, range 1-4) compared with the 

WC-IGE group (mode = 1, range 1-3, Mann-Whitney U = 276, p = 0.01). 

Outcome metrics 

(figure 24, page 123) 

There were no significant differences at the three-group level in the 6-9 Hz frequency band 

(tables A-1, A-3, A-4, section 4.9).  

In the 10-12 Hz band, there was a significant difference between the three groups in mean 

degree (Kruskal-Wallis H = 6.956, p=0.031, ε2 = 0.124), degree distribution variance (Kruskal-

Wallis H = 6.855, p=0.032, ε2= 0.122) and small-world index (Kruskal-Wallis H = 7.071, p=0.023, 

ε2 = 0.126).  Subsequent pairwise analyses found that mean degree and degree distribution was 

lower in WC-IGE than controls (p = 0.029 for both measures, Bonferroni corrected), with no 

difference in other pairwise comparisons.  Small-world index was higher in WC-IGE compared 

with controls (p = 0.038, Bonferroni corrected). There was no difference in betweenness 

centrality, characteristic path length, or clustering coefficient between groups in this band 

(tables A-2 to A-4, section 4.9).   
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A post-hoc analysis found that there was no correlation between epilepsy duration, or number 

of medications taken, and outcome metrics (using Pearson’s correlation, significant at p < 

0.05, uncorrected for multiple comparisons). 

Post-hoc analyses also compared outcome metrics between i) WC-IGE and DR-IGE and ii) 

Both IGE groups combined and controls.  Compared to DR-IGE, small-world index was higher 

in WC-IGE in the 10-12 Hz frequency band (Mann Whitney U = 106, p = 0.049) and 

characteristic path length was lower in the 10-12 Hz frequency band (Mann-Whitney U= 236, p 

= 0.046).   Compared with controls, mean degree and degree distribution variance were lower 

in the 10-12 Hz frequency band (Respectively: Mann-Whitney U = 490, p = 0.045; Mann-

Whitney U = 491, p = 0.043).  There were no other statistically significant results in the post-

hoc analyses.    
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Figure 24.  Outcome metrics plotted for each group (controls, well‐controlled idiopathic generalized 

epilepsy [WC‐IGE], drug‐resistant idiopathic generalized epilepsy [DR‐IGE]). Statistically significant 

results (p < .05) are indicated by *: mean degree 10–12 Hz controls–WC‐IGE p = .029; degree 

distribution variance 10–12 Hz controls–WC‐IGE p = .029; small world index controls–WC‐IGE p = .38 
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4.6 Discussion  

In contrast to the overall findings of our recent review of graph theoretical EEG-based graph 

theoretical studies in IGE (Pegg et al., 2020a), we did not find an alteration in network 

topology in the IGE group as a whole compared to controls.  However, it should be noted that 

findings in the literature at the level of specific metrics, rather than overall topological 

descriptions, are inconsistent.  This may reflect varying methodologies including different 

network sizes, different measures of connectivity and failure to consider seizure control (Pegg 

et al., 2020a).  

Interestingly, network topology in the high-alpha frequency band, differed between WC-IGE 

and controls, but not in other group comparisons.  Compared to controls, WC-IGE networks 

have a reduced number of connections (weighted mean degree), lower variation in the 

number of nodal connections (i.e., fewer network hubs, evidenced by a lower degree 

distribution) and a greater network efficiency (a higher small-world index (SWI)).  

Considering evidence that people with poorly controlled IGE may have more visually 

identifiable EEG anomalies than those with better controlled epilepsy (Seneviratne et al., 

2017), it may have been anticipated that the group with DR-IGE would have the most 

pronounced network abnormalities.  Instead, our results suggest that differences observed 

between WC-IGE and controls in this frequency band reflect specific drug induced topological 

changes in the WC-IGE group, that do not occur in the DR-IGE group.  It may be postulated 

that at the start of epilepsy, network topology is more regular compared to controls, but in 

those who respond to medication, the network becomes more small-world (i.e., less regular), 

and therefore less vulnerable to transitioning to a seizure state.  The fact that there was no 

significant difference in SWI between DR-IGE and controls may be consistent with this, in 

that healthy controls may have a network at the more random end of the spectrum and DR-

IGE at the more regular end of the spectrum, both of which may result in a low SWI (since 

SWI is a ratio of randomised clustering coefficient to characteristic path length, two networks 

may have a very different overall topology with a similar SWI).  It is also possible that there 

were differences between WC-IGE and DR-IGE but that this study was underpowered to 

detect them.  In support of this is that there was a significant difference in SWI between these 

two groups in the 10-12 Hz frequency band, but it did not survive correction for multiple 

comparisons.  Similarly, in the post-hoc comparison of DR-IGE and WC-IGE, there was a 

significant difference in SWI in both frequency bands, and in characteristic path length at 10-

12 Hz.   
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Mechanisms of action of AEDs are well characterised at a cellular level, but how those relate to 

anti-seizure effects is incompletely understood.  Our results support the notion of a common 

pathway of AED effects, arising through a large-scale network effect (Woldman et al., 2019).   

Studies in other epilepsy cohorts have reported changes in global efficiency (the inverse of 

path length) with topiramate but not with lamotrigine, levetiracetam or valproate (van 

Veenendaal et al., 2017).  Another study found altered betweenness centrality with 

carbamazepine (Haneef et al., 2015a).    

To our knowledge, this is the first study comparing global network connectivity in DR-IGE to 

WC-IGE using graph theory. Considering the results of the current study, it is possible that 

significant findings in the existing literature that compare IGE with controls, are driven by 

network features of WCE.  Similarly, where differences have not been found, this may be due 

to the network effects of drug responders ‘cancelling out’ the differences in DRE networks.  

This potential confounder is highlighted by the post hoc comparison of both IGE cohorts with 

controls where there was no difference in SWI, yet a difference was revealed between WC-IGE 

and controls.  This is a pertinent point for consideration in the design of future epilepsy 

network studies. 

A potential limitation of our study relates to challenges in classifying drug response.  Patients 

may not be concordant with AEDs and may, therefore, be inaccurately categorised as drug 

resistant.  This is an inherent difficulty in studies of drug resistance and there is no optimal 

solution.  It is possible that people with DRE are less likely to be taking their prescribed AEDs 

than those with WCE, although there is no literature to suggest this to our knowledge.  If this 

were the case, it is possible that the results reflect drug effects irrespective of seizure control.  

However, existing studies on network effects of AEDs, outlined above, do not provide evidence 

that AEDs commonly taken by participants in this study (levetiracetam, valproate, 

lamotrigine) directly explain the result.  A further limitation of our study is that the groups 

with IGE differed in terms of number of medications and epilepsy duration, although the 

latter did not reach statistical significance.  Both have been associated with changes in 

network metrics (Haneef et al., 2015a, van Veenendaal et al., 2017), but the fact that these 

variables were lower in the WC-IGE group (where the significant differences were found 

compared to controls), goes against the results being due to either of these factors.  

Additionally, the sample size was relatively small, which may introduce type one errors.   

However, the effect sizes of the significant results were medium or strong, which is in support 

of the findings not being due to statistical chance.   
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It should be noted that the physiological implications and directionality of network metrics 

within a complex dynamical system, are not fully understood (Tracy, 2015) and thus our 

interpretation of the results is necessarily speculative.  Longitudinal studies with large sample 

sizes are required to validate this finding in order to better understand dynamical network 

features in IGE and their relationship with seizure control. 

In conclusion, our results suggest that WC-IGE is associated with altered network features 

compared to controls. It is possible that large-scale network alterations arise as a downstream 

effect of AEDs, rendering the network less prone to synchronisation and therefore less 

susceptible to transitioning to the seizure state.  The results potentially demonstrate new 

insight into DRE and represent a possible avenue for the development of a biomarker of drug 

resistance.  This study also highlights that drug responsiveness should be taken into account 

in the design of future epilepsy network analytical studies. 

 

Key points 

1. WC-IGE is associated with altered network topology in the 10-12 Hz frequency band, 

compared to controls.  

2. The alterations in WC-IGE networks may arise as a downstream effect of AEDs, rendering 

the network more stable. 
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Table 7.  Participant demographics  

 

Participant Group Age Sex Seizure 

types 

Age at 

onset  

Neuro-

developmental 

history  

EEG  Epilepsy in 

first degree 

relatives 

IGE subtype Current medication (total daily 

dose) 

W01 WC-

IGE 

22 M GTC, 

Abs 

13 Normal Typical  No JAE Valproate 2100mg, 

Levetiracetam 500mg 

W02 WC-

IGE 

21 F GTC, MJ 14 Normal Normal No JME Levetiracetam 1000mg 

W03 WC-

IGE 

21 F GTC, MJ, 

Abs  

12 Normal Normal Mother JME Levetiracetam 1000mg 

W04 WC-

IGE 

24 F Abs, 

GTC 

18 Normal Typical  No JAE Valproate 1000mg, Lamotrigine 

200mg, Levetiracetam 4000mg 

W05 WC-

IGE 

37 F GTC, MJ 23 Normal NA  No JME Lamotrigine 250mg, 

Levetiracetam 2500mg 

W06 WC-

IGE 

21 F GTC, MJ 14 Normal Typical  Yes JME Lamotrigine 300mg,  

W07 WC-

IGE 

17 M GTC, MJ 15 Normal Typical  Father  JME Levetiracetam 1000mg 

W08 WC-

IGE 

34 F GTC, MJ 14 Yes NA No JME Valproate 400mg, Levetiracetam 

3000mg 

W09 WC-

IGE 

37 M GTC 13 Normal NA Brother EGTCSA Valproate 300mg, Lamotrigine 

300mg 
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W10 WC-

IGE 

37  M GTC, MJ  16 Normal NA  Father JME Lamotrigine 400mg 

W11 WC-

IGE 

28 F GTC, MJ  20 Normal Typical  Brother JME Levetiracetam 1000mg 

W12 WC-

IGE 

20 M GTC, MJ, 

Abs 

5-10 Normal Typical  No CAE>JME  Valproate 1700mg, Ethosuximide 

500mg  

W13 WC-

IGE 

28  F  GTC, MJ 18 Normal NA No JME Levetiracetam 1250mg  

W14 WC-

IGE 

54 M  GTC, MJ 16 Normal NA  no JME Valproate 2200mg, Clonazepam 

2mg, Lamotrigine 100mg 

W15 WC-

IGE 

23 M GTC 20 Normal Typical  No  IGE-GTSCA Valproate 800mg  

W16 WC-

IGE 

34 F GTC, MJ  15 Normal Normal  Mother JME Levetiracetam 1500mg 

W17 WC-

IGE 

20 F GTC, MJ  16 Normal Typical  No  JME Levetiracetam 2000mg  

W19 WC-

IGE 

50 M GTC, MJ  13 Normal Typical  No JME  Valproate 1000mg, 

Levetiracetam 2000mg  

W20 WC-

IGE 

21 M GTC, MJ  12 Normal Typical  No JME Valproate 1000mg  

R01 DR-

IGE 

45 F GTC, MJ, 

Abs 

18 Normal Typical  No JME Perampanel 2mg, Brivaracetam 

100mg 

R02 DR-

IGE 

23 M GTC, MJ 16 Normal Typical  No JME Valproate 3000 mg, Zonisamide 

300mg, Levetiracetam 1000mg 
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R04 DR-

IGE 

57 F GTC, MJ 17 Normal Typical unknown JME Valproate 1000mg, Zonisamide 

400mg, Clonazepam 1.5mg 

R05 DR-

IGE 

32 F GTC, MJ, 

Abs 

11 Normal Typical No JME Levetiracetam 3000 mg, 

Perampanel 6mg 

R06 DR-

IGE 

22 M GTC, MJ 13 Normal Normal No JME Valproate 2000 mg, Lamotrigine 

150mg  

R07 DR-

IGE 

20 F GTC, MJ 15 Normal Typical  Mother JME Valproate 1500mg, 

Levetiracetam 2500mg  

R08 DR-

IGE 

36 M GTC, MJ <20 Normal N/A unknown JME Valproate 1800mg, Topiramate 

100mg, clobazam 10mg PRN  

R09 DR-

IGE 

43 M GTC, MJ 19 Normal N/A Sister  JME Valproate 2000 mg  

R10 DR-

IGE 

23 M GTC, MJ, 

Abs 

19 Normal Typical  No JME Brivaracetam 100mg, Zonisamide 

200mg 

R11 DR-

IGE 

23 F GTC, MJ 10 Normal Typical  No JME Valproate 600mg, Levetiracetam 

500mg, Lamotrigine 300mg 

R12 DR-

IGE 

30 M  GTC 11 Memory, language 

and executive 

deficits on 

neuropsychological 

tests 

Typical  Brother  EGTCSA Lamotrigine 250mg, Valproate 

1400mg, Clonazepam 0.5mg 

R13 DR-

IGE 

24 F GTC, 

Abs 

4 Normal Typical  No CAE>JME Lamotrigine 450mg, Clobazam 

10mg, Brivaracetam 100mg, 

Lacosamide 300mg 
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R14 DR-

IGE 

26  M GTC, MJ 17 Normal Typical  No JME Levetiracetam 3000mg, 

Lamotrigine 450mg 

R15 DR-

IGE 

27 F GTC, MJ 11 Normal Typical No JME Zonisamide 400mg, Clonazepam 

1mg, Brivaracetam 150mg  

R16 DR-

IGE 

34  F  GTC, MJ 24 Normal N/A No JME Levetiracetam 3000mg, 

Clobazam 15mg, Gabapentin 

300mg 

R17 DR-

IGE 

37 F GTC, MJ, 

Abs 

17 Normal N/A   No JME Valproate 1500mg, 

Levetiracetam 1500mg 

R18 DR-

IGE 

26 F GTC, MJ, 

Abs 

10 Normal Typical  No JME Valproate 1000mg, Clobazam 

10mg  

R20 DR-

IGE 

18 M  Abs 10 Normal Typical No JAE Valproate 2000mg, Ethosuximide  

500mg  

C01 Con 25 F - - - - - - - 

C02 Con 57 M - - - - - - - 

C03 Con 36 M - - - - - - - 

C04 Con 40 M - - - - - - - 

C05 Con 27 M - - - - - - - 

C06 Con 22 F - - - - - - - 

C07 Con 32 F - - - - - - - 

C08 Con 29 F - - - - - - - 
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C09 Con 27 M - - - - - - - 

C10 Con 22 M - - - - - - - 

C11 Con 26 M - - - - - - - 

C12 Con 19 M - - - - - - - 

C13 Con 22 F - - - - - - - 

C14 Con 22 F - - - - - - - 

C15 Con 30 M - - - - - - - 

C16 Con 24 M - - - - - - - 

C17 Con 21 F - - - - - -- - 

C18 Con 25 F - - - - - - - 

C19  Con 22 M - - - - - - - 

C20  Con 23 F  - - - - - - - 

W18 was excluded from the analysis following independent diagnosis review. R03 and R19 were excluded from analysis to slow background rhythm of EEG. 

Abbreviations. WC-IGE = well-controlled Idiopathic Generalised Epilepsy, DR-IGE = drug resistant Idiopathic Generalised epilepsy, Con= control, F= female, 

M= male, GTC = Generalised tonic-clonic seizure, MJ = myoclonic jerk, Abs = absence seizure, IGE = Idiopathic Generalised Epilepsy, Con= Control, CAE = 

Childhood Absence Epilepsy, EGTCSA= IGE with generalised tonic-clonic seizures alone, JAE = Juvenile Absence Epilepsy, JME = Juvenile Myoclonic Epilepsy, 

N/A = not available. EEG findings were classified as typical if bilaterally synchronous spike/polyspike wave discharges on normal background were recorded 

previously.
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4.9 Appendix A- Supplementary data 

Table A-1.  Descriptive statistics for outcome metrics in the 6-9 Hz frequency band 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Group  Descriptive statistic Mean 
Degree 6-9 

Hz 

Degree 
variance 6-9 

Hz 

Clustering 
coefficient 

6-9 Hz 

Path length 
6-9 Hz 

Small world 
index 6-9 Hz 

Betweennes
s centrality 

6-9 Hz 

Control  Mean   49.90619 19.063225 1.02174 1.1175 0.914435 0.9573 

95% CI for 
Mean 

Lower 
Bound 48.124219 15.905231 1.01941 1.1106 0.908482 0.945741 

 

Upper 
Bound 51.688161 22.221219 1.02407 1.1245 0.920388 0.968859 

SE of mean   0.8513857 1.508819 0.0011133 0.0032 0.0028441 0.0055225 

Median   49.47055 18.03635 1.0213 1.1177 0.91315 0.9617 

Std. Deviation 3.8075126 6.7476437 0.0049789 0.1486 0.0127191 0.0246972 

WC-IGE Mean   50.262921 24.516716 1.021158 1.116100 0.915200 0.958589 

95% CI for 
Mean 

Lower 
Bound 48.541125 

18.737697 1.018932 1.105883 0.907872 0.946673 

 

Upper 
Bound 51.984717 

30.2957340 1.0233840 1.1263170 0.9225280 0.9705060 

SE of mean   0.819543 2.7507058 0.0010596 0.0048631 .0034881 0.0056719 

Median   49.873 21.1219 1.0216 1.1135 0.9160 0.9589 

Std. Deviation 3.572305 11.990049 0.004619 0.021198 0.015204 0.024723 

DR-IGE Mean   52.1049330 19.0126890 1.0193500 1.1250390 0.9062940 0.9466560 

95% CI for 
Mean 

Lower 
Bound 

50.3570500 16.2116930 1.0169310 1.1146000 0.8993050 0.9313610 

 

Upper 
Bound 

53.8528 21.8137 1.0218 1.1355 0.9133 0.9620 

SE of mean   0.8285 1.3276 0.0011 0.0049 0.0033 0.0072 

Median   51.354800 18.555000 1.019500 1.122000 0.907950 0.946600 

Std. Deviation 3.5148287 5.6325394 0.0048645 0.0209911 0.0140545 0.0307564 
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Table A-2.  Descriptive statistics for outcome metrics in the 10-12 Hz frequency band 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Group  Descriptive statistic Mean 
Degree 10-

12 Hz 

Degree 
variance 
10-12 Hz 

Clustering 
coefficient 
10-12 Hz 

Path 
length 10-

12 Hz 

Small 
world 

index 10-
12 Hz 

Between-
ness 

centrality 
10-12 Hz 

Control  Mean   49.847495 37.09385 1.02596 1.128485 0.909375 0.944265 

95% CI for 
Mean 

Lower 
Bound 48.498919 31.945553 1.023677 1.119512 0.902807 0.935454 

 

Upper 
Bound 51.196071 42.242147 1.028243 1.137458 0.915943 0.953076 

SE of mean   0.6443192 2.459741 0.001091 0.0042871 0.003138 0.0042095 

Median   50.3651 36.48975 1.02635 1.122 0.91125 0.94445 

Std. Deviation 2.8814832 11.0002964 0.004879 0.0191723 0.0140335 0.0188256 

WC-IGE Mean   47.061768 27.030211 1.025242 1.111174 0.922995 0.955711 

95% CI for 
Mean 

Lower 
Bound 

44.061828 20.352618 1.021031 1.099428 0.914807 0.942866 

 

Upper 
Bound 

50.0617080 33.7078030 1.0294530 1.1229190 0.9311830 0.9685550 

SE of mean   1.4279159 3.1784103 0.0020045 0.0055907 0.0038973 0.0061135 

Median   45.0476 22.9085 1.0266 1.1187 0.9177 0.9660 

Std. Deviation 6.224141 13.854369 0.008737 0.024369 0.016988 0.026648 

DR-IGE Mean   49.3082280 33.9993610 1.0247000 1.1253610 0.9109280 0.9506440 

95% CI for 
Mean 

Lower 
Bound 

47.2443040 26.1313650 1.0213850 1.1125560 0.9023510 0.9382550 

 

Upper 
Bound 

51.3722 41.8674 1.0280 1.1382 0.9195 0.9630 

SE of mean   0.9782 3.7292 0.0016 0.0061 0.0041 0.0059 

Median   48.176100 29.647300 1.026350 1.131600 0.908300 0.952500 

Std. Deviation 4.1503566 15.8217997 0.0066653 0.0257497 0.0172474 0.0249144 
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Table A-3.  Outcome metrics compared at the three-group level.  

 

Outcome metric H Sig. 

Mean degree 6-9 Hz 4.446 .108 

Degree distribution 6-9 Hz 3.409 .182 

Clustering coefficient 6-9 Hz 1.647 .439 

Characteristic path length 6-9 Hz 3.241 .198 

Small world index 6-9 Hz 5.043 .080 

Betweenness centrality 6-9 Hz 2.180 .336 

Degree distribution 10-12 Hz 6.855 .032* 

Clustering coefficient 10-12 Hz 0.04 .980 

Characteristic path length 10-12 Hz 5.097 .078 

Small world index 10-12 Hz 7.071  0.029* 

Betweenness centrality 10-12 Hz 3.193 .203 

Sig = significance level.   H = H statistic of Kruskal-Wallis test.  

* statistically significant at p < 0.05 level (2 sided).
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Table A-4.  Pairwise comparison tests of results that were significant at the three-group level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Statistically significant at p < 0.05, Bonferroni corrected 

 

 

 

  

 

Outcome 

metric  

Pairwise group 

comparisons  

Test 

statistic 

Standard 

error 

Significance  Adjusted 

significance 

(2-sided) 

Mean degree 

10-12 Hz 

WC-IGE DR-IGE -9.345 5.459 .087 .261 

WC-IGE Controls  13.789 5.317 .01 .029* 

  DR-IGE   Controls 4.444 5.393 .410 1 

Degree 

distribution 

10-12 Hz 

WC-IGE DR-IGE -9.073 5.459 .07 .290 

WC-IGE Controls  13.734 5.317 .01 .029* 

DR-IGE   Controls 4.661 5.393 .387 1 

Small world 

index 10-12 

Hz 

WC-IGE DR-IGE 11.212 5.459                 

.04 

.120 

 WC-IGE Controls  -12.234 5.317 .013 .038* 

DR-IGE  Controls -2.022 5.392 .708 1 

Characteristic 

path length  

6-9 Hz  

WC-IGE DR-IGE -6.058 5.459               

.267 

.801 

WC-IGE Controls  -25.553 -4.805 <0.0001* <0.0001* 

DR-IGE  Controls -31.611 5.393 <0.0001* <0.0001* 
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Chapter 5.  Functional network topology in drug 

resistant and well-controlled IGE: A resting state 

fMRI study 

This manuscript is submitted for publication to Brain Communications.  The footnotes within 

this chapter contain additional information regarding methodological choices, which were not 

discussed in the submitted paper.  Appendix B of this chapter (section 5.9) was not included in 

the paper and has been added to this thesis chapter to provide richer discussion of the choice 

of atlas.   

 

5.1 Authors 
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4 The Walton Centre NHS Foundation Trust, Liverpool.  

5 Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and 
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6 Manchester Academic Health Sciences Centre, University of Manchester.  

 

5.2 Abstract 

Despite an increasing number of drug treatment options for people with Idiopathic 

Generalised Epilepsy (IGE), drug resistance remains a significant issue and the mechanisms 
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underlying it remain poorly understood.  Previous studies have largely focused on potential 

cellular or genetic explanations for drug resistance.  However, epilepsy is understood to be a 

network disorder and there is a growing body of literature suggesting altered topology of 

large-scale resting networks in people with epilepsy compared to controls.  We hypothesise 

that network alterations may also play a role in seizure control.   

The study aim was to compare resting state functional network structure between well-

controlled IGE (WC-IGE), drug resistant IGE (DR-IGE), and healthy controls.   

Thirty-five participants with IGE (12 with WC-IGE and 23 with DR-IGE) and 34 controls were 

recruited.  Resting state functional MRI networks were reconstructed using the Functional 

Connectivity Toolbox (CONN).  Global graph theoretic network measures of average node 

strength (an equivalent measure to mean degree in a network that is fully connected), node 

strength distribution variance, characteristic path length, average clustering coefficient, small-

world index, and average betweenness centrality were computed. Graphs were constructed 

separately for positively weighted connections and for absolute values.  Individual nodal 

values of strength and betweenness centrality were also measured and ‘hub nodes’ were 

compared between groups.  Outcome measures were assessed across the three groups and 

between both groups with IGE and controls.   

The IGE group as a whole had a higher average node strength, characteristic path length, and 

average betweenness centrality, irrespective of seizure control.  Outcome metrics were 

sensitive to whether negatively correlated connections were included in network construction.  

There were no clear differences in the location of ‘hub nodes’ between groups.   

The results suggest that irrespective of seizure control, the IGE interictal network topology is 

more regular and has a higher global connectivity compared to controls, with no alteration in 

the location of hub nodes.   These alterations may produce a resting state network that is more 

vulnerable to transitioning to the seizure state.  It is also demonstrated that network 

topological features are influenced by the sign of connectivity weights and therefore future 

methodological work is warranted to account for anticorrelations in graph theoretic studies.  

 

5.3 Introduction 

Epilepsy affects around 70 million people worldwide (Ngugi et al., 2010), of whom 15-20% are 

estimated to have Idiopathic Generalised Epilepsy (IGE) (Jallon and Latour, 2005).  IGEs 

comprise a group of syndromes characterised by the occurrence of generalised seizures in the 
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absence of neurodevelopmental abnormalities or structural brain lesions (Scheffer et al., 2017).  

Approximately 18% of people with IGE do not become seizure free despite an adequate trial of 

at least two appropriate and tolerated antiepileptic drugs (AEDs) (Semah et al., 1998, Brodie et 

al., 2012).  Subsequent changes to drug regimens have a low chance of resulting in seizure 

freedom (Mohanraj and Brodie, 2006) and, therefore, such patients are considered to have 

drug resistant epilepsy (Kwan et al., 2010).  In addition to a high seizure burden, people with 

drug resistant epilepsy have a higher rate of injury (Beghi et al., 2002), sudden unexplained 

death in epilepsy (SUDEP) (Tomson, 2000), and social difficulties (Ridsdale et al., 2017), 

compared to those with controlled seizures.    

Traditionally, drug resistance in epilepsy has been examined from a cellular or genetic 

perspective.  However, such approaches have failed to fully explain the underlying 

mechanisms of drug resistance (Tang et al., 2017).  Since epilepsy is now understood to be a 

network disorder, in which seizures emerge from the dynamic resting state of the brain 

(Richardson, 2012b), investigating epilepsy drug resistance from a resting state network 

perspective may facilitate greater understanding of this important issue. 

Resting state brain networks may be examined using functional magnetic resonance imaging 

(fMRI), whereby blood oxygen level dependent (BOLD) signal is statistically analysed to 

establish the extent of connectivity between regions.  Graph theory provides a robust 

mathematical method to subsequently delineate and analyse network topology (structure).   

Within this framework, each brain area is termed a ‘node’ and the connections between nodes 

are termed ‘edges’.  Edges may be weighted according to the strength of correlation of BOLD 

signal between nodes.   Information regarding the presence and strength of pairs of 

connections within a network is contained within a connectivity matrix and from this, a range 

of network metrics and features can be determined (table 8, page 154) (Rubinov and Sporns, 

2010, Newman, 2008).  Overall evidence from graph theoretical studies derived from 

electroencephalography (EEG), magnetoencephalography (MEG) and MRI suggests that 

networks of people with focal epilepsy and IGE have a more regular topology compared to 

controls (van Diessen et al., 2014c, Pegg et al., 2020a).  It has been proposed that this regularity 

may render the network more likely to synchronise than a network that has a more random 

structure (van Diessen et al., 2014a).  However, there are inconsistencies within the literature, 

with some studies consistent with a more random network structure in epilepsy and others 

not identifying any differences in network regularity (Zhang et al., 2011, Lee and Park, 2019, 

Elshahabi et al., 2015).  
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To our knowledge, analysing fMRI-derived functional connectivity from a global network 

perspective in IGE according to seizure control has not previously been considered.  However, 

reduced connectivity in specific networks (cerebellar and default mode networks) in drug 

resistant IGE (DR-IGE) compared with well-controlled IGE (WC-IGE) has been described (Kay 

et al., 2013, Kay et al., 2014).  In an EEG topology study by our group, in a different patient 

cohort, differences were found between controls and WC-IGE in the 10-12 Hz frequency band 

(compared with controls, mean degree and degree distribution variance was lower in WC-IGE 

and SWI was higher) (Pegg et al., 2021).  This perhaps suggests that in people who respond to 

medication, drug induced alterations to the network render the network less susceptible to 

seizures.  

Considering that network topology may play a role in seizure control in IGE, and that 

diverging findings in the literature of IGE network topology may be influenced by a lack of 

evaluation according to seizure control (Pegg et al., 2020a), the aim of this study was to 

compare resting state global network topology in people with DR-IGE, WC-IGE, and controls, 

using fMRI.  Consistent with the intrinsic severity hypothesis of drug resistant epilepsy, where 

the inherent severity of epilepsy determines medication response (Rogawski and Johnson, 

2008), we hypothesise that network aberrations in epilepsy lie on a spectrum according to 

seizure control, with alterations in WC-IGE lying between those of DR-IGE and controls.  We 

also tested the hypothesis that specific nodes which play a prominent role in network 

integration (so called ‘hub nodes’), differ between people with IGE and controls (Frei et al., 

2010, Zhang et al., 2011).  The potential importance of hub nodes in seizure susceptibility in 

focal epilepsy is well described (Lopes et al., 2017, Lee et al., 2018), but hub nodes have been 

seldom explored in IGE.   
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Figure 25. Schematic overview of study methodology.  After data were 

collected and pre-processed, parcellation into network nodes was 

performed.  Connectivity matrices were constructed for each 

participant.  Graphs were created for each participant in each group, 

followed by group-level statistical analysis. 

5.4 Materials and methods  

 

 

 

 

 

 

 

 

 

 

 

Recruitment 

Thirty-five participants with IGE were recruited from the Walton Centre NHS Foundation 

Trust and from Salford Royal NHS Foundation Trust.  All participants with IGE had been 

diagnosed by an experienced epileptologist according to current ILAE criteria (Scheffer et al., 

2017) based on patient history, seizure semiology and EEG.  Two participants were 

subsequently excluded.  This was due to re-classification of epilepsy type in one case and in 

the other, there was an MRI finding of focal cortical dysplasia (this was an incidental finding, 

the syndromic classification of IGE remains following review of diagnosis).  Twenty-three 

participants had DR-IGE (persistent seizures despite AED treatment) and 10 were seizure free 

for at least one year and therefore were classified as having WC-IGE.  Thirty-four healthy 

controls were recruited.  Informed, written consent was obtained for all participants (UK 

Research Ethical Committee reference 14/NW/0332). 
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Data collection and pre-processing1  

3D T1 weighted and resting state fMRI images were obtained for each participant using a 3T 

GE Discovery MR 750 MR system.  Scanning was performed supine in the head-first 

orientation.  Participants were instructed to close their eyes2 and to remain awake.  T1-

weighted data was acquired using the following parameters: Pulse sequence = BRAVO; echo 

time (TE) = 3.22 ms; repetition time (TR) = 8.2 ms; field of view (FOV) = 24, TI = 450 ms; slice 

thickness = 1 mm; voxel size = 1 mm × 1 mm x 1 mm; 140 slices; flip angle = 12. RS-fMRI was 

obtained with a 6-minute3 T2*-weighted sequence with the following parameters: Pulse 

sequence = echo planar imaging (EPI) ; TE = 25 ms; TR = 2,000 ms; FOV= 24 cm; slice 

thickness = 2.4 mm; voxel size = 3mm x 3mm x 3mm; 180 volumes; 38 slices; flip angle = 75 

degrees. 

 

 

1 A number of artefacts may affect connectivity measures  including those from head movement and 
cardio-respiratory sources (Finn et al., 2015).  A variety of toolboxes exist to remove such artefacts 
as part of a pre-processing pipeline but there is no consensus on the optimal way in which to 
perform pre-processing.  Although many pre-processing pipelines contain broadly similar steps, it 
has been demonstrated that both the included steps, and the order in which they are performed 
may affect graph theoretical measures (Gargouri et al., 2018, Aurich et al., 2015).  In our study, pre-
processing was performed using the standard pipeline in SPM12 and the CONN toolbox (Whitfield-
Gabrieli and Nieto-Castanon, 2012).  Steps which are regarded as being standard, include slice timing 
correction, head movement correction, EPI distortion correction, spatial normalisation, smoothing, 
removal of noise from cardio-respiratory sources, and band pass filtering. Additional steps such as 
scrubbing or global signal regression were not implemented with the aim of preserving as much 
neuronal signal as possible.  

 2 Whether the eyes are closed or open (typically fixated) is reported to affect functional 
connectivity derived from fMRI, and there is no consensus on which should be used.  Several studies 
suggest that specific networks may be affected by this including the default node network, 
somatosensory network and visual networks (Jao et al., 2013, Liang et al., 2014, Yang et al., 2007, 
Marx et al., 2004). However, there are inconsistencies as to whether the networks are more or less 
connected in each state.  To my knowledge, there are no studies that have assessed whether the 
eyes being open or closed affects global connectivity analysed using graph theory.  One study 
suggested that there was greater variance in characteristic path length with the eyes closed in a 
range of specific networks, but with no difference in clustering coefficient or efficiency measures 
(Weng et al., 2020). From this, the authors postulated that eyes open state networks may be more 
stable.  Consistent with similar studies (Zhang et al., 2011, Liao et al., 2013), the eyes closed state 
was used in our study.  

3 The optimal duration of data acquisition is debated. Considerations include stability of networks 
over time, participant tolerability and a possible increased risk of drowsiness with longer recordings.  
A typical acquisition duration of many resting state fMRI connectivity studies is five to seven minutes 
(Birn et al., 2013), a range that has been demonstrated to provide stable estimates of networks  (van 
Wijk et al., 2010, Fox et al., 2005).  
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Spatial pre-processing was implemented in SPM12 using the standard SPM pipeline. Slice 

timing correction of the fMRI time series was performed using the first slice as the reference.  

Head motion and EPI distortion were corrected to the first functional volume.  The estimated 

movement parameters (3 translation; 3 rotation) were saved and later included as covariates 

for each subject in the first level analysis to produce the connectivity matrix.  Data were 

normalised into MNI (Montreal Neurological Institute) space using the ICBM 152 template of 

European brains (Mazziotta et al., 2001); the mean functional image was registered to the 

template image via a direct affine and interpolated into 2 x 2 x 2 mm voxel space using 4th 

degree B-Spline method.  The resulting warp parameter was then applied to all volumes.  

Gaussian kernel smoothing with an 8mm full width half-maximum Gaussian kernel was 

employed at each data point and neighbourhood voxel.  Tissue segmentation was performed 

using the SPM add-on CAT12 toolbox (http://www.neuro.uni-jena.de/cat/).  This spatially 

normalises the T1 weighted image into the MNI space then segments it into skull-stripped 

brain.  Following this, adaptive maximum a posteriori segmentation (AMAP) (Rajapakse et al., 

1997) was performed to quantify estimates of grey matter, white matter and cerebrospinal 

fluid present at each element.  An exclusion threshold for motion > 3mm translation and >1o 

rotation was set (Fallon et al., 2016).  

Spatially pre-processed data were next temporally pre-processed using the Functional 

Connectivity Toolbox (CONN) (Whitfield-Gabrieli and Nieto-Castanon, 2012).  Component-

based noise correction using the CompCor method (Behzadi et al., 2007) was performed to 

reduce voxel specific noise.  Potential confounds from white matter and cerebrospinal fluid 

(based on Principal Component Analysis (PCA) of the multivariate BOLD signal within masks 

produced from T1 weighted tissue segmentation for each subject) were added as co-variates in 

CONN.  Head motion effects that were detected in spatial pre-processing (6 estimated 

movement parameters per volume) were used as co-variates to further reduce noise.  These 

steps are reported to increase sensitivity of results of both correlated and anticorrelated 

networks (Whitfield-Gabrieli and Nieto-Castanon, 2012).  Bandpass filtering was also 

implemented to further remove physiological noise and to limit BOLD to between 0.01 and 

0.08 Hz.  Networks within this frequency range are widely reported to represent the resting 

state of the brain (Biswal et al., 1995, Buckner et al., 2008, Fox and Raichle, 2007, Whitfield-

Gabrieli and Nieto-Castanon, 2012). 
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Network construction  

Weighted functional connectivity matrices were constructed using the CONN functional 

connectivity toolbox.  Data were parcellated using AICHA (Atlas of Intrinsic Connectivity of 

Homotopic Areas) (Joliot et al., 2015).  This functional resting state connectivity atlas 

segregates data into 384 regions comprising 244 gyral regions, 100 sulcal regions and 40 grey 

matter nuclei.  Network edges were defined using a weighted least squares linear model, 

where Pearson’s correlation of average BOLD signal was determined between each pair of 

regions, with the strength of correlation forming the weight4.  This was Fisher transformed to 

provide normally distributed scores, producing Z, representing the weighted matrix of Fisher 

transformed correlation coefficients.   

Weighted, undirected, graphs were subsequently constructed using a custom script 

implemented in Matlab (R2019a). Thresholding was performed in order to improve sensitivity 

to physiologically relevant connections versus noise (Rubinov and Sporns, 2010), with 

connections with weights between -0.25 and + 0.25 excluded.  There is no universally agreed 

threshold value, with variations from r = 0.1 to r = 0.8 seen in the literature (Garrison et al., 

2015).  A threshold of r = 0.25 was selected as it is a commonly used threshold (Eickhoff et al., 

2015).  There is no optimal solution to handle negative values in graph theoretical analysis 

(Fornito et al., 2016); typically either positively correlated values or absolute values are used 

(Fornito et al., 2013).  The rationale for discarding negatively correlated edges comes from 

studies demonstrating that anticorrelated networks reflect artefact generated in pre-

processing (Murphy et al., 2009, Saad et al., 2012).  However, there is also evidence to suggest 

that anticorrelated networks have an important role in brain functioning (De Pisapia et al., 

2012, Kelly et al., 2008) and as such, relevant connectivity information may be overlooked if 

negative correlations are ignored (Fornito et al., 2016).  In view of this debate, and the fact that 

graph theoretic measures cannot account for signed weights, two separate analyses were 

performed for global metrics; one based on networks created from only positive correlations, 

and the other using absolute correlations. 

 

 

 

4 As there is no clear optimal approach to delineating network edges, correlation was selected as it 
is the most conventional technique in fMRI studies (Fornito et al., 2013, Sala-Llonch et al., 2019) and 
therefore facilitates comparison of results from similar studies. 
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Graph analysis 

Global measures of average node strength, node strength distribution variance, average 

clustering coefficient, characteristic path length, small-world index, and average betweenness 

centrality were calculated.  These metrics were chosen to provide a broad overview of network 

topology.  Because clustering coefficient and characteristic path length are sensitive to degree, 

normalised metrics were calculated for each by dividing average clustering coefficient and 

characteristic path length by the mean of the clustering coefficient and characteristic path 

length distributions of 500 surrogate random networks respectively (Stam et al., 2008, Stam et 

al., 2006).  

As a post hoc analysis, strength and betweenness centrality were also calculated for each node 

individually.  Subsequently, ‘hub nodes’ were identified for each participant.  Nodes were 

considered as hubs if both strength and betweenness centrality were greater than one 

standard deviation above the corresponding mean network value (He et al., 2009, Bernhardt et 

al., 2011, Tian et al., 2011).  The nodal metric analysis was carried out using absolute values 

only, and compared IGE with controls, in view of the results of the global network analysis.  

Statistical analysis 

Demographic and outcome metric results were firstly assessed for normality (by reviewing 

kurtosis, skewness, histograms and Q-Q plots).  Next, potential differences in demographics 

and outcome metrics between the three groups were evaluated using Kruskal-Wallis tests or 

one-way analysis of covariance (ANCOVA), as appropriate.  Age and epilepsy duration were 

included as co-variates. Where differences were found, pairwise comparisons were evaluated 

using a Mann-Whitney U or Tukey test.  This was Bonferroni corrected for multiple 

comparisons.  In addition, both groups with epilepsy were combined into one cohort and 

global outcome metrics were compared with controls using an independent t-test, controlled 

for participant age.    

Potential differences in connectivity between individual nodes in IGE compared to controls 

were evaluated by comparing the strength and betweenness centrality of each node, using a 

Mann-Whitney U test.  Correction for multiple comparisons was implemented using the False 

Discovery Rate (FDR) (Benjamini and Hochberg, 1995) with a q-value of 0.1.  Following the 

identification of hub nodes, the total number of times a node was considered a hub in each 



 
 

145 

 

group was calculated and displayed visually.  The number of hub nodes in each group was 

compared using a Kruskal-Wallis test.   

 

5.5 Results  

Participant demographics  

(Table 9, page 156) 

Median age significantly differed between groups (DR-IGE = 31 years; WC-IGE = 22.5 years; 

Controls = 32 years.  Kruskal-Wallis H = 8.02, p = 0.018).  Pairwise comparisons found a 

difference in age between WC-IGE and controls (p = 0.014), with no significant differences 

between WC-IGE and DR-IGE (p = 0.094), DR-IGE and controls (p = 1.00), or between both 

IGE groups (combined) and controls (p=0.066).  Females comprised 59.7% of participants, 

with no significant difference across groups (Pearson Chi-square = 0.84, p = 0.656).   Median 

duration of epilepsy was 14.5 years in DR-IGE and 6.5 years in WC-IGE.  This difference was 

not statistically significant (Kruskal-Wallis H = 2.715, p = 0.099).  The mean number of AEDs 

taken in the group with WC-IGE was 1.14 (range 1-2) and in the DR-IGE group was 1.9 (range 1-

4).  This difference was not statistically significant (Mann-Whitney U = 1.937, p = 0.524). 

Global outcome metrics 

(Figure 26, page1 48, and tables C-1 to C4, section 5.10.1).  In the graphs constructed using 

absolute values, there was a difference between the three groups in average betweenness 

centrality (one-way ANOVA F = 4.657, p = 0.013).  Pairwise comparisons identified a 

significantly higher average betweenness centrality in WC-IGE compared with controls (p = 

0.048) and a possible trend towards a significantly higher average betweenness centrality in 

DR-IGE compared with controls (p = 0.057), with no difference between WC-IGE and DR-IGE 

(p = 1).  There were no other differences in global metrics at the three-group level.  When both 

IGE groups (WC-IGE and DR-IGE combined) were compared with controls, a higher average 

node strength (figure 26 a) and average betweenness centrality (figure 26 f) were found in the 

group with IGE (respectively; t = 5.956, p =0.017; t = 8.963, p= 0.004).  A trend toward a 

significantly higher characteristic path length (figure 2d) and lower small-world index (figure 

26 e) was seen in IGE (respectively; t = 3.864, p = 0.054; t= 3.787, p = 0.056).  There were no 

differences in node strength distribution variance (figure 2b) or clustering coefficient (figure 26 

c) between the two groups.  
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In the graphs constructed using positively correlated edges only, there were no significant 

results at the three-group level.  A higher average node strength (figure 26 g) and greater 

characteristic path length (figure 26 j) was identified in IGE (WC-IGE and DR-IGE combined) 

compared to controls (respectively; t = 6.200, p = 0.015; t = 4.717 p = 0.034). The remaining 

outcome metrics did not significantly differ between the two groups (figure 26 h, j, k, l). 

There was no correlation between age or epilepsy duration with any outcome metric 

(Pearson’s correlation p > 0.05 in all comparisons).  
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Figure 26.  Global outcome metrics.  Data is plotted for IGE (both groups combined) and controls.  * = statistically significant difference between groups at p < 0.05. 
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Figure 27. Nodal differences between IGE and controls. This illustrates the location of nodes 

that have significantly different uncorrected outcome metrics. a) node strength b) 

betweenness centrality. Red dots indicate a higher value in IGE, blue dots represent a lower 

value in IGE.  L= left side of brain, R = right side of brain. This figure was created using 

BrainNet Viewer (Xia et al., 2013).  

 

Nodal outcome metrics 

Neither betweenness centrality nor node strength survived correction for multiple 

comparisons.  This was an exploratory study with 384 comparisons and therefore, results of 

uncorrected significant results, which may suggest a trend towards significance, are presented 

together with effect sizes (Althouse, 2016).  Uncorrected significant differences in betweenness 

centrality and node strength at the level of individual nodes between the IGE group and 

controls were found in 37 and 35 nodes respectively (tables C-5 and C-6 section 5.10.2).  Node 

strength was higher in IGE in each of the 35 nodes (figure 27 a), whereas there was a greater 

betweenness centrality at some of the 37 nodes in IGE and a lower value in others (figure 27 b).   

The median number of hub nodes in each group was 38 and there was no significant 

difference in the total number of hub nodes between each group, in either the three group or 

two group comparison (respectively; Kruskal Wallis U = 0.593, p = 0.743; Mann-Whitney U = 

617, p = 0.671).  On inspection of plots of the frequency of hub nodes at each location, there 

were no clear group differences between the location of hub nodes (table c-7, section 5.10.2 and 

figures C-1 to C-5, section 5.10.2). 
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5.6 Discussion  

This study investigated global resting state fMRI network features in people with drug 

resistant IGE, well-controlled IGE and healthy controls.  The results suggest that compared to 

controls, network topology in IGE is less integrated (as evidenced by a higher path length) and 

has a generally greater connectivity across the network nodes (demonstrated by a higher 

average node strength and average betweenness centrality), without a clear difference in the 

location of hub nodes.  Network topology did not vary according to seizure control.   

A higher characteristic path length results in a more regular network topology (Watts and 

Strogatz, 1998).  It has been suggested that a regular configuration may render a network more 

vulnerable to synchronisation (van Diessen et al., 2014b).  The finding of a higher 

characteristic path length in IGE, is consistent with the findings from a meta-analysis of 

functional connectivity studies in focal epilepsy using fMRI and EEG (van Diessen et al., 

2014c), and in structural studies in IGE (Xue et al., 2014a, Qiu et al., 2017, Lee and Park, 2019).  

However, in the two fMRI-derived functional connectivity studies (Zhang et al., 2011, Liao et 

al., 2013) identified in our systematic review (Pegg et al., 2020a), there was no difference in 

characteristic path length between people with IGE and controls.  However, in both previous 

studies, networks were constructed using absolute correlations whereas the finding of altered 

characteristic path length in the present study was in positively correlated networks.  In these 

same studies, also in contrast to the present study, one reported a lower clustering coefficient 

and small-world index in IGE (Zhang et al., 2011), and the other reported a higher small-world 

index in IGE (Liao et al., 2013).  Average betweenness centrality and average node strength 

were not considered in these two studies.  An important difference of our study compared to 

both of these studies is the method by which data were parcellated into nodes; in our study, a 

functional connectivity atlas was used, whereas the others used an anatomical atlas.  It is 

known that the technique of data parcellation may affect connectivity measures (Arslan et al., 

2018) and as such this is an important methodological decision.  In functionally derived data 

parcellation schemes, nodes comprise components with similar temporal activation patterns.  

As such, it is suggested that such atlases are particularly suitable for functional connectivity 

analysis as the nodes reflect functionally coherent areas (Finn et al., 2015, Eickhoff et al., 2018, 

Shen et al., 2013). 

The average node strength of a network reflects the strength of connections of each node 

across the network.  Therefore, networks which have a higher average node strength perhaps 

reflect networks with generally greater connectivity.  Similarly, networks with higher average 
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betweenness centrality (a measure of the extent of ‘information flow’ within a network), may 

also reflect a greater resting state hyperexcitability of the epileptic brain (Grobelny et al., 

2018).  There are limited studies within the IGE literature that have considered these metrics.  

Increased average betweenness centrality, average node strength, or mean degree have been 

reported in at least two EEG/MEG studies (Chavez et al., 2010, Chowdhury et al., 2014).  

However, other studies have reported no difference between groups (Caeyenberghs et al., 

2015), or a decreased value (Xue et al., 2014b).  It should be noted that the comparison 

between fMRI and EEG/MEG is challenging owing to their differing sensitivities to temporal 

and spatial resolution, which may account for diverging findings (Pegg et al., 2020a).  

Previous fMRI connectivity studies have reported widespread locations of specific nodes that 

display altered connectivity in IGE, with a similar location of hub nodes in IGE and controls 

(Zhang et al., 2011, Liao et al., 2013).  Both studies corrected for multiple comparisons using the 

FDR, but the threshold used is unclear.  In the Liao at al study, significance levels did not 

survive this correction.  Notwithstanding the fact that the individual nodal comparisons did 

not survive correction for multiple comparisons in our study, there is no suggestion from our 

study or from these previous studies, that there are specific regions of altered resting state 

connectivity in IGE.  Whilst corticothalamic regions have been implicated in seizure genesis, it 

is possible that in generalised seizure disorders, the precise area of network aberration from 

where a seizure is initiated may vary between, or within, individuals (Anderson and Hamandi, 

2011).    

The additional findings depending on whether negatively correlated edges were discarded 

highlights that network topology is sensitive to the sign of the edge.  As discussed above, the 

significance of anticorrelated networks and the extent to which they are influenced by pre-

processing techniques is not fully elucidated.  We suggest that by using absolute values, 

correlation values may be regarded as a reflection of the strength of neural connectivity, 

irrespective of the nature of the relationship.  The similarity of results of both analyses 

suggests that the results are not confounded by taking into account negative correlations and 

in fact, their inclusion may improve sensitivity to the detection of network differences.   How 

negative correlations may be mathematically accounted for in graph theoretic analysis is an 

important consideration for future graph theoretical studies.   

It is possible that differences in network features in the group with IGE compared to controls 

represent medication effects.  Previous studies have described alterations in global efficiency 

(inverse of characteristic path length) with topiramate, but not with valproate, lamotrigine or 
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levetiracetam (van Veenendaal et al., 2017).  Another study reported altered betweenness 

centrality (but not other network metrics) with carbamazepine, but not with other commonly 

used AEDs (Haneef et al., 2015b).  Therefore, overall, there is no strong evidence that 

medication effects directly explain the results.  The inclusion of a group with epilepsy not 

taking an AED would help clarify this, but this would be practically difficult since AEDs are 

typically started at diagnosis.  

This study did not find any differences in network topology dependent upon seizure control.   

One limitation of this interpretation is the small sample size of the WC-IGE group, which may 

have been underpowered to detect a possible difference.  The low number of participants 

recruited with WC-IGE reflects the fact that they are less likely to remain under long-term 

follow up.  Larger collaborations between institutions could help increase sample numbers 

(Whelan et al., 2018, Hatton et al., 2020).  The study groups also differed in terms of age and 

epilepsy duration (although the latter was not statistically significant).  The inclusion of these 

factors as covariates in the statistical analysis guards against confounding, however it remains 

possible that the results were influenced by these differences (Haneef et al., 2015a, Varangis et 

al., 2019).  A further potential limitation relates to the difficulties in classifying response to 

AEDs; Patients may not be concordant with their antiepileptic medication and therefore may 

be inaccurately categorised as drug resistant.  Alternatively, they may have unrecognised co-

existent non-epileptic attacks, which could result in a seemingly higher seizure frequency.  In 

addition, it is known that a proportion of patients follow a fluctuating course, shifting in and 

out of seizure control (Brodie et al., 2012).  A larger study may enable the inclusion of this 

subgroup as a third category.   

A further limitation of this study is that interictal epileptiform discharges (IEDs) in the group 

with IGE may have confounded the results. IEDs are associated with co-localised BOLD 

activation, in addition to BOLD activation in distant areas (Aghakhani et al., 2015).  A 

combined EEG-fMRI study could overcome this limitation.  

 

5.7 Conclusions 

In summary, this study demonstrates that the network structure in IGE is more regular and 

has higher global connectivity, with no evidence of systematic alteration in the location of 

nodes with high connectivity.  This was found to be the case irrespective of seizure control.  
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We suggest that examining drug resistance from a network perspective warrants further 

exploration in a larger, longitudinal, multimodal study.  
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Table 8. Commonly used graph theoretical terms and measures applied to epilepsy research 

Node (vertex) (n) The unit which forms a graph and represents an 
underlying brain region  
 

Edge 
 
Directed edge 
 
Undirected edge 
 
Weighted edge  
 

Connection between two nodes 
 
Information flows in one direction only 
 
Information flows in either direction 
 
A value given to an edge according to the 
strength of the connection 
 

Degree distribution variance / node strength 
distribution variance 

The variance of the node degree /node 
strength distribution  
 

Degree (k) 
 
Node strength 
 
 
 
 
 
Average node strength  
 

Number of connections of a node 
 
The summed strength of connections of a node  
 
Nodes with a high number of connections or a 
high connectivity strength may be regarded as 
‘hub nodes’ 
 
The mean value of the node strengths of all 
network nodes (this is an equivalent measure 
to mean degree in a network that is not fully 
connected) 
 

Clustering coefficient (C) 
 
 
Mean clustering coefficient (Ci) 
 

The probability that the neighbouring nodes of 
a given node are themselves connected 
 
C is averaged to calculate the clustering 
coefficient of the whole graph.  (A measure of 
network segregation) 
 

Path length (d) 
 
 
Characteristic path length (L) 

Minimum (or shortest) number of edges 
connecting 2 nodes  
 
Mean of the shortest path length between all 
pairs of network nodes (a measure of network 
integration) 
 

Small- worldness Ratio of average clustering coefficient of the 
graph to the mean clustering coefficient of a 
similar size random graph as a proportion of 
the ratio of the characteristic path length of the 
graph compared to the path length of a random 
graph 
  
                        [C / C random] 
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                         [P / P random] 
 
Small-world networks have higher than 
expected clustering coefficient with a 
characteristic path length of equal or lower 
value than a random graph 
 

Betweenness centrality  
 
 
 
 
 
 
 
 
Average betweenness centrality 

A measure of to what extent a node lies on all 
shortest paths between each pair of network 
nodes.   
 
A measure of the importance of a node within 
the network. Nodes with high betweenness 
centrality may be regarding as ‘hub nodes’ 
 
 
The mean value of the betweenness centrality 
values of all network nodes 
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Table 9.  Participant demographics (IGE group) 

ID  Group  Age (years) Gender  Onset age 
(years) 

Seizure 
types  

Antiepileptic medication  EEG findings  

4 WC-IGE 25 M 19 MJ  Levetiracetam 1500mg, 
valproate 1600mg 
 

Typical  

18 WC-IGE 24 F 16 Abs, GTCS Not known 
  
 

n/a  

23 WC-IGE 23 M 16 Abs, GTCS Not known 
 
 

n/a  

24 WC-IGE 19 F 13 GTCS Levetiracetam 3000mg 
 
  

n/a  

26 WC-IGE 18 F 15 Abs, eyelid 
myoclonus 

Levetiracetam 2000mg Typical  
 
 

27 WC-IGE 22 M 2 Abs, MJ  Valproate 1400mg 
 
 

n/a 

29 WC-IGE 56 F 3 Abs Valproate 1500mg 
 
  

n/a 

31 WC-IGE 33 M 7 Abs Valproate 1800mg 
 
  

Typical  

32 WC-IGE 19 F 14 Abs, MJ Levetiracetam 1000mg 
 
  

n/a 

34 WC-IGE 20 M 16 Abs Levetiracetam 2000mg 
 

n/a  
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1 DR-IGE 23 F 14 Abs, MJ Levetiracetam 3000mg, 
topiramate 300mg, 

clobazam 10mg  

Typical  

2 DR-IGE 19 M 16 IGE Valproate 1000mg 
 
 

Typical 

3 DR-IGE 19 F 8 GTCS, Abs Lamotrigine 200mg 
 
  

Normal  

5 DR-IGE 60 F 13 GTCS, Abs Valproate 2500mg 
 
  

Typical  

6 DR-IGE 24 M 15 GTC, MJ, 
abs 

Levetiracetam 3000mg, 
valproate 2500mg, 

carbamazepine 1000mg  

Typical  

7 DR-IGE 21 F 15 GTC, MJ, 
abs 

Levetiracetam 4000mg, 
valproate 2000mg 

 

Typical  

8 DR-IGE 32 F 23 GTC, MJ  Levetiracetam 3500mg, 
clobazam 15mg 

 

Normal  

9 DR-IGE 38 M 18 GTC, MJ Valproate 600mg, 
lamotrigine 50mg 

 

Typical  

10 DR-IGE 67 M 29 GTC, Abs Valproate 2000mg, 
lamotrigine 200mg, 

clobazam 10mg, 
phenobarbital 150mg 

n/a 

11 DR-IGE 46 F 7 Abs Valproate 1200mg, 
lamotrigine 200mg, 

levetiracetam 2500mg 

Normal  
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13 DR-IGE 20 M 8 GTC, Abs Valproate 2000mg 
 
 

Typical  

14 DR-IGE 24 F 13 GTC, MJ Topiramate 100mg 
 
  

n/a 

15 DR-IGE 35 M 6 GTC Levetiracetam 2000mg, 
valproate 2000mg 

  

Typical  

16 DR-IGE 18 M 14 GTC, Abs Valproate 1500mg, 
zonisamide 350mg 

  

Typical  

17 DR-IGE 39 M 17 GTC Lamotrigine 75mg  
 
 

Typical  

19 DR-IGE 21 M 16 GTC, abs, 
MJ 

Valproate 2400mg 
 
 

n/a 

20 DR-IGE 36 F 17 GTC Levetiracetam 1250mg, 
lamotrigine 75mg 

 

Typical  

21 DR-IGE 31 F 15 GTC Levetiracetam 2000mg, 
lamotrigine 400mg 

 

Normal  

22 DR-IGE 31 F 16 GTC, MJ, 
Abs 

Valproate 1500mg, 
levetiracetam 3500mg 

 

Typical 

25 DR-IGE 58 F 15 GTC, Abs Unknown 
 
 

n/a 

28 DR-IGE 24 M 13 MJ, abs Valproate 1700mg 
 
  

Typical  
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30 DR-IGE 57 F 7 GTC, abs Valproate 1200mg, 
carbamazepine 600mg 

 

Typical  

33 DR-IGE 57 F 7 GTC, abs Valproate 2000mg, 
lamotrigine 75mg 
 

Typical  

 

 

 

Table 9 displays participant information for the group with IGE.  WC-IGE = well-controlled IGE, DR-IGE = drug resistant IGE.  F = 

female, M = male, GTC = generalised tonic-clonic, MJ = myoclonic jerk, Abs = absence, typical= EEG findings in support of IGE, n/a 

= EEG not available. 
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5.9 Appendix B- Discussion of atlas choice  

Methods of fMRI data parcellation based upon connectivity derived from the correlation of 

BOLD signals in the resting state are particularly suitable for functional connectivity studies 

(Finn et al., 2015, Eickhoff et al., 2018).  This is because parcels share similar temporal 

activation patterns that are reflective of functionally coherent areas (Shen et al., 2013, Finn et 

al., 2015).  Such connectivity may be derived at an individual level; however, this is time 

consuming for large datasets and can limit group-level comparisons (Arslan et al., 2018).  

Therefore, typically, an atlas is applied to the dataset.  This integrates the dataset by aligning 

data from individual subjects to the atlas.  At least seven such atlases exist, (Bellec et al., 2010, 

Craddock et al., 2012, Glasser et al., 2016, Gordon et al., 2016, Joliot et al., 2015, Schaefer et al., 

2018, Shen et al., 2013) with no clear optimum choice.  Differences in the available atlases 

include the number of parcels, the characteristics of subjects used in the development of the 

atlas, the amount of brain covered, and how similarity between voxels is determined in order 

to segregate data into parcels.  

Data in our study were parcellated using AICHA (Joliot et al., 2015).  AICHA defines 384 

regions, delineated in the volumetric MNI space, comprising 244 gyral regions, 100 sulcal 

regions and 40 grey matter nuclei (figure B-1).  This functional resting state connectivity atlas 

accounts for brain homotopy - an aspect of brain organisation relating to the fact that each 

region in a cerebral hemisphere has a corresponding region in the other hemisphere, which 

has comparable anatomical and functional features (Fuster, 1998, Mesulam, 1990).  The 

rationale for selecting this atlas will be discussed herein.  
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Several clustering methods and algorithms exist to group data, each with their own 

advantages and biases (Eickhoff et al., 2015).  However, theoretical studies to evaluate the 

comparative merits of each are lacking (Eickhoff et al., 2018).  The construction of AICHA was 

based on k-means clustering, which is probably the most widely used approach in 

neuroimaging studies (Eickhoff et al., 2015).  A potential limitation of this and other clustering 

methods is that assumptions must be applied to initialise clustering and to select the final 

number of clusters.  Such assumptions can be avoided by using ‘data-driven’ or ‘factorisation’ 

techniques, where components are parcellated to best represent variations in data (for 

Figure B-1.  Illustration of the rendering of AICHA and the sulci used in 

anatomical labelling. Reprinted from Journal of Neuroscience Methods, 

Vol 254, Joliot et al, AICHA: An atlas of intrinsic connectivity of homotopic 

areas., Pages 46-59., Copyright 2015, with permission from Elsevier.   
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example, using principal component analysis or independent component analysis).  However, 

identified components are not always functionally relevant and may, for example, represent 

artifact (Finn et al., 2015).  Although artifact can be removed via manual evaluation of 

components, this could also introduce bias.   

An optimal number of parcellations has not been defined (Finn et al., 2015) and the scale of 

parcellations in available atlases ranges from seven (Yeo et al., 2011) to one-thousand 

(Craddock et al., 2012, Schaefer et al., 2018).  It has been suggested that there is no “correct” 

number because the brain has multi-level organisation and, therefore, representation at 

different scales of parcellation may best reflect this feature (Eickhoff et al., 2018, Bellec et al., 

2010, Yeo et al., 2011).  It has been demonstrated that parcellations of 200 areas provides 

reproducibility across subjects (Shen et al., 2013).  However, at more than 400 parcels 

reproducibility decreases (Shen et al., 2013).  Befittingly, AICHA contains 384 parcels. 

Atlases also vary according to whether they are constructed in the surface space (covering the 

cortex) or the volume space (providing coverage of the whole brain or parts of the whole 

brain).  Four out of seven of the aforementioned atlases are in the volume space, one of which 

is AICHA, which parcellates the cortex and grey matter nuclei.  A drawback of population-

averaged volumetric templates compared to surface templates is reduced alignment of cortical 

folding (Mangin et al., 2010).  This is of particular relevance for studies where greater cortical 

spatial localisation is of interest (Glasser et al., 2016).  A benefit of a volume space atlas, such 

as AICHA, in a study of connectivity in epilepsy is that it includes the thalami, which are 

widely regarded to be an important part of the seizure network.  

Whilst the optimal strategy to determine parcellation is debated, selecting an atlas that is 

generalisable to the study population seems more straightforward.  It has been suggested that 

this should include consideration of subject ages, sex, cognition, medical history and ethnicity 

(Dickie et al., 2017).  The first three of these factors, together with neurological and psychiatric 

conditions, have been reported to affect connectivity (Sala-Llonch et al., 2015, Donishi et al., 

2018).  However, to my knowledge, connectivity effects relating to ethnicity are not described 

and this detail has only been provided, to an extent, for one atlas where 63% of participants 

were described as white (Schaefer et al., 2018).  There is no agreement on how subjects should 

be selected for the purpose of atlas construction.  It has been proposed that the optimal 

solution is to create an atlas via random sampling of the general population (Joliot et al., 2015).  

However, a drawback of this approach is that it would result in the inclusion of people with 
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neurological or structural brain disorders (Joliot et al., 2015) and therefore would not be 

generalisable to healthy subjects.    

AICHA was constructed from a relatively large dataset derived from 281 healthy volunteers 

who were aged 18-57 years.  48.75% of subjects were female and 10% were left-handed.  There 

is wide variety in the number of individuals from whom atlases have been constructed, 

ranging from just one (Tzourio-Mazoyer et al., 2002, Destrieux et al., 2010, Power et al., 2011), 

to 1489 subjects (Schaefer et al., 2018).  Within the subcategory of functional connectivity 

atlases which parcellate cortical and subcortical regions, AICHA was derived from the largest 

dataset (others range from 41- 79 subjects).  The creators of AICHA state that the ages of the 

subjects had a “consistent range in variability”.  However, there is no explicit information on 

the age distribution of participants.  Younger subjects are typically more likely to be recruited 

into studies (Joliot et al., 2015), which may result in an atlas that is less generalisable to older 

subjects.  However, the age range of subjects used to construct AICHA (18 to 57), was 

comparable to the age range of participants in our study (18 to 67). As such, AICHA was a 

suitable choice with respect to age.  10% of subjects included in AICHA were left-handed.  

Since left-handedness is associated with organisational structures that differ from right- 

handedness, inclusion of subjects with left handedness at the prevalent general population 

level may also be regarded as a strength of AICHA.  Around 10% of subjects in the Schaefer 

atlas were also left-handed (Schaefer et al., 2018). However, this atlas only covers the cortex, 

which makes it a less preferable option for this study.  The handedness of subjects is reported 

in two other atlases (Shen et al., 2013, Gordon et al., 2016) but in these instances all are right-

handed.  Most atlases are balanced in terms of gender, including AICHA. This is reflective of 

our study participants, where there are similar numbers of male and female participants.   

A unique feature of AICHA is that it takes into account homotopy between cerebral 

hemispheres.  The existence of functional homotopy has been described in several studies  

(Van Den Heuvel and Pol, 2010, Jo et al., 2012, Beckmann et al., 2005, Yeo et al., 2011) and the 

connectivity between corresponding inter-hemispheric regions is demonstrated to be greater 

than between other inter or intra-hemispheric regions (Stark et al., 2008).   This highlights the 

importance of homotopy in functional organisation of the brain and provides further support 

for the use of AICHA.  

Each available atlas has been validated against alternatives (Arslan et al., 2018).  However, 

assessing the quality of different approaches is limited by the fact that there is no empirical 

evidence for parcellation definition, and consequently there is a lack of reference parcellation 



 
 

163 

 

scheme with which to make comparisons.  A widely accepted technique used to assess 

parcellation is to measure the homogeneity of parcels based upon the rationale that the more 

functionally similar parcellated brain regions are, the less homogenous intra-parcel 

connectivity will be.  This is of particular relevance for fMRI network analysis since nodes are 

averages of the BOLD signals within each parcel (Arslan et al., 2018).  Appraisal of 

homogeneity is commonly carried out using cluster validity analysis techniques, which assess 

the similarity of BOLD signal in voxels that have been parcelled together.  Based upon the 

premise that parcellations reflecting biological processes should be stable, the quality of an 

atlas may also be assessed via its reproducibility, where alignment between parcel boundaries 

is measured.  This can be performed across different acquisitions from the same subject, or by 

comparison with a different dataset.   

In the validation of AICHA, parcel homogeneity was compared to another functional atlas 

(Craddock et al., 2012), as well as two macroscopic anatomically-derived atlases (Tzourio-

Mazoyer et al., 2002, Desikan et al., 2006), and the Julich cytoarchitectonic atlas (Caspers et 

al., 2006). Both AICHA and Craddock atlases significantly outperformed the others, with 

greater homogeneity in the Craddock atlas than AICHA (0.18 and 0.2 respectively).  It is 

possible that the greater homogeneity of the Craddock atlas relates to the smaller size of 

parcellations, which were determined via normalised-cut spectral clustering (whereas in 

AICHA, k-means clustering was used) (Joliot et al., 2015) ; It has been demonstrated that 

homogeneity correlates with parcel size, with some random and subject-level parcellation 

schemes exceeding the performance of functionally derived atlases (Urchs et al., 2017).  

Although the compactness of parcels produced by the Craddock atlas may favour higher 

homogeneity than AICHA, a drawback of the parcellation technique used in the Craddock 

atlas is the assumption that functionally independent areas are constrained by the same 

geometric shape (Joliot et al., 2015).  In a review comparing 5 resting state fMRI derived atlases 

(Power et al., 2011, Yeo et al., 2011, Glasser et al., 2016, Shen et al., 2013, Gordon et al., 2016), 

alongside some structural atlases and subject-level parcellation methods, no clear method was 

consistently superior (Arslan et al., 2018);  Homogeneity was highest for subject-level k-means 

clustering and low for anatomical atlases, whereas anatomical parcellations correlated best 

with cytoarchitecture, and subject level parcellations tended towards poorer reproducibility.  

Importantly, this study also demonstrated that connectivity-derived atlases had superior 

agreement with graph theoretic measures of connectivity than other atlas categories.  

A key question for graph theoretical studies is how different parcellations may affect 

topological properties of the network.  Converging evidence suggests that overall network 
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structure, for example small-worldness and regularity, is relatively consistent across 

parcellation schemes (Hayasaka and Laurienti, 2010, Fornito et al., 2010, Zalesky et al., 2010, 

Wang et al., 2009).  However, quantitative measures pertaining to overall topology may vary 

(Fornito et al., 2016); increased n0rmalised clustering, path length and degree with increased 

parcellation resolution have been reported (Arslan et al., 2018).  This cautions against 

comparing the magnitude of alterations in network topology between studies when different 

atlases and different resolutions are used but suggests that choice of atlas does not affect 

overall conclusions regarding network topology.    

In summary, AICHA is a suitable atlas choice for parcellating the fMRI data used in our study 

as it is derived from functional connectivity, its coverage extends to the thalami, it has good 

homogeneity, and the number of nodes is within a range that has demonstrated 

reproducibility.  Although these features also apply to some other validated atlases (Bellec, 

Craddock, Shen), AICHA is generalisable to the characteristics of the study population and 

was constructed from the largest population. 
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5.10 Appendix C- Supplementary data  

 

 

Supplementary data 1 - Global outcome metric results 

 

 

 

 

 

 

 

 

 

 

  

 3 group comparison  Pairwise comparisons for statistically 
significant results  

F stat-
istic 

P value  
 

Partial Eta 
Squared  

Groups 
Compared  

P value  Std Error 

Average node 
strength 
 

2.97 0.059 0.086    

Node strength 
distribution 
variance 

.988 0.378 0.030    

Average 
clustering 
coefficient  

1.11 0.337 0.034    

Characteristic  
path length   
 

2.11 0.130 0.063    

Small-world 
index 
 

2.13 0.127 0.063    

Average 
betweenness 
centrality  

4.66 0.013 0.129 WC-IGE – Con 0.048 4.455 

DR-IGE – Con  0.057 3.288 

WC-IGE – DR-
IGE  

1.000 4.742 
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Table C-2. Two-group comparison of networks constructed using absolute values                                               

of edges (Both IGE groups combined / Controls)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 F statistic P value  
 

Partial Eta 
Squared  

Average node strength 
 

3.072 0.053 0.89 

Node strength distribution 
variance 

0.949 .392 0.029 

Average clustering 
coefficient  

1.815 .171 0.054 

Characteristic path length   
 

2.689 .076 0.079 

Small-world index 
 

1.587 .213 0.048 

Average betweenness 
centrality  

0.405 .669 0.013 

 F statistic P value  Partial Eta 
Squared  

Average node strength 
 

5.956 0.017 0.085 

Node strength distribution 
variance 

.995 0.332 0.015 

Average clustering 
coefficient  

2.216 0.142 0.033 

Characteristic path length   
 

3.864 0.054 0.057 

Small-world index 
 
 

3.787 0.056 0.056 

Average betweenness 
centrality  

8.963 0.004 0.123 

Table C-3.  Three-group comparison of networks constructed using positively 

correlated edges only (WC-IGE / DR- IGE / Controls) 
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Table C-4. Two-group comparison of networks constructed using positively correlated edges only 

(Both IGE groups combined / Controls)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 F statistic P value  Partial Eta 
Squared  

Average node strength 
 

6.200 0.015 0.088 

Node strength distribution 
variance 

1.425 0.237 0.022 

Average clustering 
coefficient  

2.725 0.104 0.041 

Characteristic path length   
 

4.717 0.034 0.069 

Small-world index 
 
 

2.827 0.098 0.042 

Average betweenness 
centrality  

0.039 .844 0.001  
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5.10.2 Supplementary data 2 - results of nodal analysis  

Table C-5.  Statistical significance of difference in node strength between IGE group (WC-IGE and DR-

IGE combined) and controls for each region  

AICHA 
region 

AICHA region name  P value 
(un-
corrected) 

Mann-
Whitney 
U 

IGE 
mean 
rank 

Control 
mean 
rank 

Effect 

size 

1 G_Frontal_Sup-1-L NS 
   

 

2 G_Frontal_Sup-1-R NS 
   

 

3 G_Frontal_Sup-2-L NS 
   

 

4 G_Frontal_Sup-2-R NS 
   

 

5 G_Frontal_Sup-3-L NS 
   

 

6 G_Frontal_Sup-3-R NS 
   

 

7 S_Sup_Frontal-1-L NS 
   

 

8 S_Sup_Frontal-1-R NS 
   

 

9 S_Sup_Frontal-2-L 0.009 352 40.33 27.85 -0.13 

10 S_Sup_Frontal-2-R NS 
   

 

11 S_Sup_Frontal-3-L 0.004 331 40.97 27.24 -0.15 

12 S_Sup_Frontal-3-R NS 
   

 

13 S_Sup_Frontal-4-L NS 
   

 

14 S_Sup_Frontal-4-R NS 
   

 

15 S_Sup_Frontal-5-L NS 
   

 

16 S_Sup_Frontal-5-R NS 
   

 

17 S_Sup_Frontal-6-L NS 
   

 

18 S_Sup_Frontal-6-R NS 
   

 

19 G_Frontal_Mid-1-L NS 
   

 

20 G_Frontal_Mid-1-R NS 
   

 

21 G_Frontal_Mid-2-L NS 
   

 

22 G_Frontal_Mid-2-R NS 
   

 

23 G_Frontal_Mid-3-L 0.014 365 39.94 28.24 -0.13 

24 G_Frontal_Mid-3-R NS 
   

 

25 G_Frontal_Mid-4-L NS 
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26 G_Frontal_Mid-4-R NS 
   

 

27 G_Frontal_Mid-5-L NS 
   

 

28 G_Frontal_Mid-5-R NS 
   

 

29 S_Inf_Frontal-1-L NS 
   

 

30 S_Inf_Frontal-1-R NS 
   

 

31 S_Inf_Frontal-2-L NS 
   

 

32 S_Inf_Frontal-2-R NS 
   

 

33 G_Frontal_Inf_Tri-1-L NS 
   

 

34 G_Frontal_Inf_Tri-1-R NS 
   

 

35 G_Frontal_Sup_Orb-1-L NS 
   

 

36 G_Frontal_Sup_Orb-1-R NS 
   

 

37 G_Frontal_Mid_Orb-1-L NS 
   

 

38 G_Frontal_Mid_Orb-1-R NS 
   

 

39 G_Frontal_Mid_Orb-2-L NS 
   

 

40 G_Frontal_Mid_Orb-2-R NS 
   

 

41 G_Frontal_Inf_Orb-1-L NS 
   

 

42 G_Frontal_Inf_Orb-1-R 4 NS 
   

 

43 G_Frontal_Inf_Orb-2-L NS 
   

 

44 G_Frontal_Inf_Orb-2-R NS 
   

 

45 S_Orbital-1-L NS 
   

 

46 S_Orbital-1-R NS 
   

 

47 S_Orbital-2-L NS 
   

 

48 S_Orbital-2-R NS 
   

 

49 S_Olfactory-1-L NS 
   

 

50 S_Olfactory-1-R NS 
   

 

51 S_Precentral-1-L NS 
   

 

52 S_Precentral-1-R NS 
   

 

53 S_Precentral-2-L NS 
   

 

54 S_Precentral-2-R   0.032 390 39.18 28.97 -0.11 

55 S_Precentral-3-L NS 
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56 S_Precentral-3-R 0.034 392 39.12 29.03 -0.11 

57 S_Precentral-4-L NS 
   

 

58 S_Precentral-4-R NS 
   

 

59 S_Precentral-5-L NS 
   

 

60 S_Precentral-5-R NS 
   

 

61 S_Precentral-6-L NS 
   

 

62 S_Precentral-6-R NS 
   

 

63 S_Rolando-1-L NS 
   

 

64 S_Rolando-1-R NS 
   

 

65 S_Rolando-2-L NS 
   

 

66 S_Rolando-2-R NS 
   

 

67 S_Rolando-3-L NS 
   

 

68 S_Rolando-3-R NS 
   

 

69 S_Rolando-4-L NS 
   

 

70 S_Rolando-4-R NS 
   

 

71 S_Postcentral-1-L NS 
   

 

72 S_Postcentral-1-R NS 
   

 

73 S_Postcentral-2-L NS 
   

 

74 S_Postcentral-2-R NS 
   

 

75 S_Postcentral-3-L NS 
   

 

76 S_Postcentral-3-R NS 
   

 

77 G_Parietal_Sup-1-L NS 
   

 

78 G_Parietal_Sup-1-R NS 
   

 

79 G_Parietal_Sup-2-L NS 
   

 

80 G_Parietal_Sup-2-R NS 
   

 

81 G_Parietal_Sup-3-L NS 
   

 

82 G_Parietal_Sup-3-R NS 
   

 

83 G_Parietal_Sup-4-L NS 
   

 

84 G_Parietal_Sup-4-R NS 
   

 

85 G_Parietal_Sup-5-L NS 
   

 

86 G_Parietal_Sup-5-R NS 
   

 

87 G_Supramarginal-1-L NS 
   

 

88 G_Supramarginal-1-R NS 
   

 

89 G_SupraMarginal-2-L NS 
   

 

90 G_SupraMarginal-2-R NS 
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91 G_Supramarginal-3-L NS 
   

 

92 G_Supramarginal-3-R NS 
   

 

93 G_Supramarginal-4-L NS 
   

 

94 G_Supramarginal-4-R NS 
   

 

95 G_SupraMarginal-5-L NS 
   

 

96 G_SupraMarginal-5-R NS 
   

 

97 G_SupraMarginal-6-L NS 
   

 

98 G_SupraMarginal-6-R NS 
   

 

99 G_SupraMarginal-7-L NS 
   

 

100 G_SupraMarginal-7-R NS 
   

 

101 G_Angular-1-L NS 
   

 

102 G_Angular-1-R NS 
   

 

103 G_Angular-2-L NS 
   

 

104 G_Angular-2-R NS 
   

 

105 G_Angular-3-L NS 
   

 

106 G_Angular-3-R NS 
   

 

107 G_Parietal_Inf-1-L NS 
   

 

108 G_Parietal_Inf-1-R NS 
   

 

109 S_Intraparietal-1-L NS 
   

 

110  S_Intraparietal-1-R NS 
   

 

111  S_Intraparietal-2-L NS 
   

 

112 S_Intraparietal-2-R 0.024 381 39.45 28.71 -0.12 

113 S_Intraparietal-3-L NS 
   

 

114  S_Intraparietal-3-R NS 
   

 

115 S_Intraoccipital-1-L NS 
   

 

116 S_Intraoccipital-1-R NS 
   

 

117 G_Occipital_Pole-1-L NS 
   

 

118 G_Occipital_Pole-1-R NS 
   

 

119 G_Occipital_Lat-1-L NS 
   

 

120 G_Occipital_Lat-1-R 0.026 384 39.36 28.79 -0.11 

121 G_Occipital_Lat-2-L NS 
   

 

122 G_Occipital_Lat-2-R NS 
   

 

123 G_Occipital_Lat-3-L NS 
   

 

124 G_Occipital_Lat-3-R NS 
   

 

125 G_Occipital_Lat-4-L NS 
   

 

126 G_Occipital_Lat-4-R NS 
   

 

127 G_Occipital_Lat-5-L NS 
   

 

128 G_Occipital_Lat-5-R NS 
   

 

129 G_Occipital_Sup-1-L NS 
   

 

130 G_Occipital_Sup-1-R NS 
   

 

131 G_Occipital_Sup-2-L NS 
   

 

132 G_Occipital_Sup-2-R NS 
   

 

133 G_Occipital_Mid-1-L NS 
   

 

134 G_Occipital_Mid-1-R NS 
   

 

135 G_Occipital_Mid-2-L NS 
   

 

136 G_Occipital_Mid-2-R NS 
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137 G_Occipital_Mid-3-L NS 
   

 

138 G_Occipital_Mid-3-R NS 
   

 

139 G_Occipital_Mid-4-L NS 
   

 

140 G_Occipital_Mid-4-R NS 
   

 

141 G_Occipital_Inf-1-L NS 
   

 

142 G_Occipital_Inf-1-R NS 
   

 

143 G_Occipital_Inf-2-L NS 
   

 

144 G_Occipital_Inf-2-R NS 
   

 

145 G_Insula-anterior-1-L 0.036 394 39.06 29.09 -0.11 

146 G_Insula-anterior-1-R NS 
   

 

147 G_Insula-anterior-2-L NS 
   

 

148 G_Insula-anterior-2-R NS 
   

 

149 G_Insula-anterior-3-L NS 
   

 

150 G_Insula-anterior-3-R 0.024 381 39.45 28.71 -0.12 

151 G_Insula-anterior-4-L NS 
   

 

152 G_Insula-anterior-4-R NS 
   

 

153 G_Insula-anterior-5-L NS 
   

 

154 G_Insula-anterior-5-R NS 
   

 

155 G_Insula-posterior-1-L NS 
   

 

156 G_Insula-posterior-1-R NS 
   

 

157 G_Rolandic_Oper-1-L NS 
   

 

158 G_Rolandic_Oper-1-R NS 
   

 

159 G_Rolandic_Oper-2-L NS 
   

 

160 G_Rolandic_Oper-2-R NS 
   

 

161 G_Temporal_Sup-1-L NS 
   

 

162 G_Temporal_Sup-1-R NS 
   

 

163 G_Temporal_Sup-2-L NS 
   

 

164 G_Temporal_Sup-2-R NS 
   

 

165 G_Temporal_Sup-3-L NS 
   

 

166 G_Temporal_Sup-3-R NS 
   

 

167 G_Temporal_Sup-4-L NS 
   

 

168 G_Temporal_Sup-4-R NS 
   

 

169 S_Sup_Temporal-1-L NS 
   

 

170 S_Sup_Temporal-1-R NS 
   

 

171 S_Sup_Temporal-2-L NS 
   

 

172 S_Sup_Temporal-2-R NS 
   

 

173 S_Sup_Temporal-3-L NS 
   

 

174 S_Sup_Temporal-3-R 0.021 377.5 39.56 28.6 -0.12 

175 S_Sup_Temporal-4-L NS 
   

 

176 S_Sup_Temporal-4-R NS 
   

 

177 S_Sup_Temporal-5-L NS 
   

 

178 S_Sup_Temporal-5-R NS 
   

 

179 G_Temporal_Mid-1-L NS 
   

 

180 G_Temporal_Mid-1-R NS 
   

 

181 G_Temporal_Mid-2-L NS 
   

 

182 G_Temporal_Mid-2-R NS 
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183 G_Temporal_Mid-3-L NS 
   

 

184 G_Temporal_Mid-3-R NS 
   

 

185 G_Temporal_Mid-4-L NS 
   

 

186 G_Temporal_Mid-4-R NS 
   

 

187 G_Temporal_Inf-1-L NS 
   

 

188 G_Temporal_Inf-1-R NS 
   

 

189 G_Temporal_Inf-2-L NS 
   

 

190 G_Temporal_Inf-2-R NS 
   

 

191 G_Temporal_Inf-3-L NS 
   

 

192 G_Temporal_Inf-3-R NS 
   

 

193 G_Temporal_Inf-4-L NS 
   

 

194 G_Temporal_Inf-4-R NS 
   

 

195 G_Temporal_Inf-5-L NS 
   

 

196 G_Temporal_Inf-5-R NS 
   

 

197 G_Temporal_Pole_Sup-1-L NS 
   

 

198 G_Temporal_Pole_Sup-1-
R 

NS 
   

 

199 G_Temporal_Pole_Sup-2-L NS 
   

 

200 G_Temporal_Pole_Sup-2-
R 

NS 
   

 

201 G_Temporal_Pole_Mid-1-
L 

NS 
   

 

202 G_Temporal_Pole_Mid-1-
R 

NS 
   

 

203 G_Temporal_Pole_Mid-2-
L 

NS 
   

 

204 G_Temporal_Pole_Mid-2-
R 

0.022 378 39.55 28.62 -0.12 

205 G_Temporal_Pole_Mid-3-
L 

NS 
   

 

206 G_Temporal_Pole_Mid-3-
R 

NS 
   

 

207 G_Frontal_Sup_Medial-1-
L 

NS 
   

 

208 G_Frontal_Sup_Medial-1-
R 

NS 
   

 

209 G_Frontal_Sup_Medial-2-
L 

NS 
   

 

210 G_Frontal_Sup_Medial-2-
R 

NS 
   

 

211 G_Frontal_Sup_Medial-3-
L 

NS 
   

 

212 G_Frontal_Sup_Medial-3-
R 

NS 393 39.09 29.06 -0.11 

213 S_Anterior_Rostral-1-L NS 
   

 

214 S_Anterior_Rostral-1-R NS 
   

 

215 G_Frontal_Med_Orb-1-L NS 
   

 

216 G_Frontal_Med_Orb-1-R NS 
   

 

217 G_Frontal_Med_Orb-2-L NS 
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218 G_Frontal_Med_Orb-2-R NS 
   

 

219 G_subcallosal-1-L NS 
   

 

220 G_subcallosal-1-R NS 
   

 

221 G_Supp_Motor_Area-1-L NS 
   

 

222 G_Supp_Motor_Area-1-R NS     

223 G_Supp_Motor_Area-2-L 0.031 389 39.21 28.94 -0.11 

224 G_Supp_Motor_Area-2-R 0.028 386 39.3 28.85 -0.11 

225 G_Supp_Motor_Area-3-L 0.001 302 41.85 26.38 -0.17 

226 G_Supp_Motor_Area-3-R NS 
   

 

227 S_Cingulate-1-L NS 
   

 

228 S_Cingulate-1-R NS 
   

 

229 S_Cingulate-2-L 0.039 396 39 29.15 -0.12 

230 S_Cingulate-2-R NS 
   

 

231 S_Cingulate-3-L NS 
   

 

232 S_Cingulate-3-R NS 
   

 

233 S_Cingulate-4-L NS 
   

 

234 S_Cingulate-4-R NS 
   

 

235 S_Cingulate-5-L 0.045 401 38.85 29.29 -0.10 

236 S_Cingulate-5-R NS 
   

 

237 S_Cingulate-6-L NS 
   

 

238 S_Cingulate-6-R NS 
   

 

239 S_Cingulate-7-L NS 
   

 

240 S_Cingulate-7-R NS 
   

 

241 G_Cingulum_Ant-1-L NS 
   

 

242 G_Cingulum_Ant-1-R NS 
   

 

243 G_Cingulum_Ant-2-L 0.029 387 39.27 28.88 -0.11 

244 G_Cingulum_Ant-2-R NS 
   

 

245 G_Cingulum_Mid-1-L NS 
   

 

246 G_Cingulum_Mid-1-R NS 
   

 

247 G_Cingulum_Mid-2-L NS 
   

 

248 G_Cingulum_Mid-2-R 0.022 378 39.55 28.62 -0.12 

249 G_Cingulum_Mid-3-L NS 
   

 

250 G_Cingulum_Mid-3-R NS 
   

 

251 G_Cingulum_Post-1-L NS 445 37.52 30.59 -0.14 

252 G_Cingulum_Post-1-R NS 
   

 

253 G_Cingulum_Post-2-L NS 
   

 

254 G_Cingulum_Post-2-R NS 
   

 

255 G_Cingulum_Post-3-L NS 
   

 

256 G_Cingulum_Post-3-R 0.008 350 40.39 27.79 -0.13 

257 G_Paracentral_Lobule-1-L NS 
   

 

258 G_Paracentral_Lobule-1-R NS 
   

 

259 G_Paracentral_Lobule-2-L NS 
   

 

260 G_Paracentral_Lobule-2-R NS 
   

 

261 G_Paracentral_Lobule-3-L NS 
   

 

262 G_Paracentral_Lobule-3-R NS 
   

 

263 G_Paracentral_Lobule-4-L NS 
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264 G_Paracentral_Lobule-4-R NS 
   

 

265 G_Precuneus-1-L NS 
   

 

266 G_Precuneus-1-R NS 
   

 

267 G_Precuneus-2-L NS 
   

 

268 G_Precuneus-2-R NS 
   

 

269 G_Precuneus-3-L NS 
   

 

270 G_Precuneus-3-R NS 
   

 

271 G_Precuneus-4-L NS 
   

 

272 G_Precuneus-4-R NS 
   

 

273 G_Precuneus-5-L NS 
   

 

274 G_Precuneus-5-R NS 
   

 

275 G_Precuneus-6-L NS 
   

 

276 G_Precuneus-6-R   NS 
   

 

277 G_Precuneus-7-L NS 
   

 

278 G_Precuneus-7-R NS 
   

 

279 G_Precuneus-8-L NS 
   

 

280 G_Precuneus-8-R NS 
   

 

281 G_Precuneus-9-L NS 
   

 

282 G_Precuneus-9-R NS 
   

 

283 S_Parietooccipital-1-L NS 
   

 

284 S_Parietooccipital-1-R 0.012 360 40.09 28.09 -0.14 

285 S_Parietooccipital-2-L NS 
   

 

286 S_Parietooccipital-2-R NS 
   

 

287 S_Parietooccipital-3-L NS 
   

 

288 S_Parietooccipital-3-R NS 
   

 

289 S_Parietooccipital-4-L NS 
   

 

290 S_Parietooccipital-4-R NS 
   

 

291 S_Parietooccipital-5-L NS 
   

 

292 S_Parietooccipital-5-R NS 
   

 

293 S_Parietooccipital-6-L NS 
   

 

294 S_Parietooccipital-6-R NS 
   

 

295 G_Cuneus-1-L NS 
   

 

296 G_Cuneus-1-R NS 
   

 

297  G_Cuneus-2-L NS 
   

 

298 G_Cuneus-2-R NS 
   

 

299 G_Calcarine-1-L NS 
   

 

300 G_Calcarine-1-R NS 
   

 

301 G_Calcarine-2-L NS 
   

 

302 G_Calcarine-2-R NS 
   

 

303 G_Calcarine-3-L 0.028 386 39.3 28.85 -0.11 

304 G_Calcarine-3-R 0.029 387 39.27 28.88 -0.11 

305 G_Lingual-1-L NS 
   

 

306 G_Lingual-1-R 0.017 371 39.76 28.41 -0.12 

307 G_Lingual-2-L NS 
   

 

308 G_Lingual-2-R NS 
   

 

309 G_Lingual-3-L NS 
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310 G_Lingual-3-R NS 
   

 

311 G_Lingual-4-L NS 
   

 

312 G_Lingual-4-R   NS 
   

 

313 G_Lingual-5-L NS 
   

 

314 G_Lingual-5-R 0.027 385 39.33 28.82 -0.11 

315 G_Lingual-6-L NS 
   

 

316 G_Lingual-6-R NS 
   

 

317 G_Hippocampus-1-L 0.005 337 40.79 27.41 -0.14 

318 G_Hippocampus-1-R NS 
   

 

319 G_Hippocampus-2-L NS 
   

 

320 G_Hippocampus-2-R 0.001 293 42.12 26.12 -0.17 

321 G_ParaHippocampal-1-L 0.024 381 39.45 28.71 -0.12 

322 G_ParaHippocampal-1-R NS 
   

 

323 G_ParaHippocampal-2-L NS 
   

 

324 G_ParaHippocampal-2-R NS 
   

 

325 G_ParaHippocampal-3-L NS 
   

 

326 G_ParaHippocampal-3-R NS 
   

 

327 G_ParaHippocampal-4-L 0.022 378 39.55 28.62 -0.12 

328 G_ParaHippocampal-4-R NS 
   

 

329 G_ParaHippocampal-5-L NS 
   

 

330 G_ParaHippocampal-5-R NS 
   

 

331 G_Fusiform-1-L NS 
   

 

332 G_Fusiform-1-R 0.01 356 40.21 27.97 -0.13 

333 G_Fusiform-2-L NS 
   

 

334 G_Fusiform-2-R NS 
   

 

335 G_Fusiform-3-L NS 
   

 

336 G_Fusiform-3-R NS 
   

 

337 G_Fusiform-4-L NS 
   

 

338 G_Fusiform-4-R NS 
   

 

339 G_Fusiform-5-L NS 
   

 

340 G_Fusiform-5-R 0.034 392 39.12 29.03 -0.11 

341 G_Fusiform-6-L NS 
   

 

342 G_Fusiform-6-R 0.022 378 39.55 28.62 -0.12 

343 G_Fusiform-7-L NS 
   

 

344 G_Fusiform-7-R   0.007 346 40.52 27.68 -0.14 

345 N_Amygdala-1-L NS 
   

 

346 N_Amygdala-1-R NS 
   

 

347 N_Caudate-1-L NS 
   

 

348 N_Caudate-1-R 0.006 341 40.67 27.53 -0.14 

349 N_Caudate-2-L NS 
   

 

350 N_Caudate-2-R 0.015 367 39.88 28.29 -0.12 

351 N_Caudate-3-L NS 
   

 

352 N_Caudate-3-R NS 
   

 

353 N_Caudate-4-L NS 
   

 

354 N_Caudate-4-R NS 
   

 

355 N_Caudate-5-L NS 
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356  N_Caudate-5-R NS 
   

 

357 N_Caudate-6-L NS 
   

 

358 N_Caudate-6-R NS 
   

 

359 N_Caudate-7-L   NS 
   

 

360 N_Caudate-7-R NS 
   

 

361 N_Pallidum-1-L NS 
   

 

362 N_Pallidum-1-R NS 
   

 

363 N_Putamen-2-L NS 
   

 

364 N_Putamen-2-R NS 
   

 

365 N_Putamen-3-L NS 
   

 

366 N_Putamen-3-R NS 
   

 

367 N_Thalamus-1-L NS 
   

 

368 N_Thalamus-1-R NS 
   

 

369 N_Thalamus-2-L NS 
   

 

370 N_Thalamus-2-R NS 
   

 

371 N_Thalamus-3-L NS 
   

 

372 N_Thalamus-3-R NS 
   

 

373 N_Thalamus-4-L 0.016 368 39.85 28.32 -0.12 

374 N_Thalamus-4-R NS 
   

 

375 N_Thalamus-5-L NS 
   

 

376 N_Thalamus-5-R NS 
   

 

377 N_Thalamus-6-L NS 
   

 

378 N_Thalamus-6-R NS 
   

 

379 N_Thalamus-7-L NS 
   

 

380 N_Thalamus-7-R NS 
   

 

381 N_Thalamus-8-L NS 
   

 

382 N_Thalamus-8-R NS 
   

 

383 N_Thalamus-9- L NS 
   

 

384 N_Thalamus-9-R NS 
   

 

NS = not significant at p < 0.05.   Effect size calculated as r=𝑍/√𝑁.  All results displayed to two     
decimal points. 
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Table C-6. Statistical significance of difference in betweenness centrality between controls and 

people with IGE for each region 

AICHA 
region  AICHA region name 

p value 
(uncorrected) 

Mann-
Whitney 
U  

IGE 
mean 
rank 

Control 
mean 
rank 

Effect 
size 

1 G_Frontal_Sup-1-L NS   

 
 

2 G_Frontal_Sup-1-R NS   

 
 

3 G_Frontal_Sup-2-L NS   

 
 

4 G_Frontal_Sup-2-R NS   

 
 

5 G_Frontal_Sup-3-L NS   

 
 

6 G_Frontal_Sup-3-R NS   

 
 

7 S_Sup_Frontal-1-L NS   

 
 

8 S_Sup_Frontal-1-R NS   

 
 

9 S_Sup_Frontal-2-L NS   

 
 

10 S_Sup_Frontal-2-R NS   

 
 

11 S_Sup_Frontal-3-L NS   

 
 

12 S_Sup_Frontal-3-R NS   

 
 

13 S_Sup_Frontal-4-L NS   

 
 

14 S_Sup_Frontal-4-R NS   

 
 

15 S_Sup_Frontal-5-L NS   

 
 

16 S_Sup_Frontal-5-R NS   

 
 

17 S_Sup_Frontal-6-L NS   

 
 

18 S_Sup_Frontal-6-R 0.005 339 40.73 28.32 -0.14 

19 G_Frontal_Mid-1-L NS   

 
 

20 G_Frontal_Mid-1-R NS   

 
 

21 G_Frontal_Mid-2-L NS   

 
 

22 G_Frontal_Mid-2-R NS   

 
 

23 G_Frontal_Mid-3-L NS   

 
 

24 G_Frontal_Mid-3-R NS   

 
 

25 G_Frontal_Mid-4-L NS   

 
 

26 G_Frontal_Mid-4-R NS   

 
 

27 G_Frontal_Mid-5-L NS   

 
 

28 G_Frontal_Mid-5-R NS   

 
 

29 S_Inf_Frontal-1-L NS   

 
 

30 S_Inf_Frontal-1-R NS   

 
 

31 S_Inf_Frontal-2-L NS   

 
 

32 S_Inf_Frontal-2-R NS   

 
 

33 G_Frontal_Inf_Tri-1-L NS   

 
 

34 G_Frontal_Inf_Tri-1-R NS   

 
 

35 G_Frontal_Sup_Orb-1-L NS   

 
 

36 G_Frontal_Sup_Orb-1-R NS   

 
 

37 G_Frontal_Mid_Orb-1-L NS   

 
 

38 G_Frontal_Mid_Orb-1-R NS   

 
 

39 G_Frontal_Mid_Orb-2-L 0.017 751 28.24 40.6 0.15 

40 G_Frontal_Mid_Orb-2-R NS   

 
 

41 G_Frontal_Inf_Orb-1-L NS   
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42 G_Frontal_Inf_Orb-1-R 4 NS   

 
 

43 G_Frontal_Inf_Orb-2-L NS   

 
 

44 G_Frontal_Inf_Orb-2-R NS   

 
 

45 S_Orbital-1-L NS   

 
 

46 S_Orbital-1-R NS   

 
 

47 S_Orbital-2-L NS   

 
 

48 S_Orbital-2-R NS   

 
 

49 S_Olfactory-1-L 0.031 733 28.97 39.56 0.11 

50 S_Olfactory-1-R NS   

 
 

51 S_Precentral-1-L NS   

 
 

52 S_Precentral-1-R 0.042 399 38.91 29.41 -0.10 

53 S_Precentral-2-L 0.027 284.5 39.35 29.75 -0.11 

54 S_Precentral-2-R   0.026 383 39.39 29 -0.11 

55 S_Precentral-3-L NS   

 
 

56 S_Precentral-3-R NS   

 
 

57 S_Precentral-4-L NS   

 
 

58 S_Precentral-4-R NS   

 
 

59 S_Precentral-5-L 0.046 720 29.18 36.68 0.10 

60 S_Precentral-5-R NS   

 
 

61 S_Precentral-6-L NS   

 
 

62 S_Precentral-6-R NS   

 
 

63 S_Rolando-1-L 0.008 771.5 27.62 40.25 0.13 

64 S_Rolando-1-R NS   

 
 

65 S_Rolando-2-L NS   

 
 

66 S_Rolando-2-R NS   

 
 

67 S_Rolando-3-L NS   

 
 

68 S_Rolando-3-R NS   

 
 

69 S_Rolando-4-L NS   

 
 

70 S_Rolando-4-R NS   

 
 

71 S_Postcentral-1-L NS   

 
 

72 S_Postcentral-1-R NS   

 
 

73 S_Postcentral-2-L 0.007 776.5 27.47 41.25 0.14 

74 S_Postcentral-2-R NS   

 
 

75 S_Postcentral-3-L 0.007 777 27.45 41.35 0.14 

76 S_Postcentral-3-R NS   

 
 

77 G_Parietal_Sup-1-L NS   

 
 

78 G_Parietal_Sup-1-R NS   

 
 

79 G_Parietal_Sup-2-L NS   

 
 

80 G_Parietal_Sup-2-R NS   

 
 

81 G_Parietal_Sup-3-L NS   

 
 

82 G_Parietal_Sup-3-R NS   

 
 

83 G_Parietal_Sup-4-L NS   

 
 

84 G_Parietal_Sup-4-R NS   

 
 

85 G_Parietal_Sup-5-L NS   

 
 

86 G_Parietal_Sup-5-R NS   

 
 

87 G_Supramarginal-1-L NS   
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88 G_Supramarginal-1-R NS   

 
 

89 G_SupraMarginal-2-L NS   

 
 

90 G_SupraMarginal-2-R NS   

 
 

91 G_Supramarginal-3-L NS   

 
 

92 G_Supramarginal-3-R NS   

 
 

93 G_Supramarginal-4-L NS   

 
 

94 G_Supramarginal-4-R NS   

 
 

95 G_SupraMarginal-5-L NS   

 
 

96 G_SupraMarginal-5-R NS   

 
 

97 G_SupraMarginal-6-L NS   

 
 

98 G_SupraMarginal-6-R NS   

 
 

99 G_SupraMarginal-7-L NS   

 
 

100 G_SupraMarginal-7-R NS   

 
 

101 G_Angular-1-L NS   

 
 

102 G_Angular-1-R 0.014 756.5 28.08 39.75 0.13 

103 G_Angular-2-L 0.04 724.5 29.05 39.72 0.10 

104 G_Angular-2-R NS   

 
 

105 G_Angular-3-L NS   

 
 

106 G_Angular-3-R NS   

 
 

107 G_Parietal_Inf-1-L NS   

 
 

108 G_Parietal_Inf-1-R NS   

 
 

109 S_Intraparietal-1-L NS   

 
 

110  S_Intraparietal-1-R NS   

 
 

111  S_Intraparietal-2-L NS   

 
 

112 S_Intraparietal-2-R NS   

 
 

113 S_Intraparietal-3-L NS   

 
 

114  S_Intraparietal-3-R NS   

 
 

115 S_Intraoccipital-1-L NS   

 
 

116 S_Intraoccipital-1-R NS   

 
 

117 G_Occipital_Pole-1-L NS   

 
 

118 G_Occipital_Pole-1-R NS   

 
 

119 G_Occipital_Lat-1-L NS   

 
 

120 G_Occipital_Lat-1-R NS   

 
 

121 G_Occipital_Lat-2-L NS   

 
 

122 G_Occipital_Lat-2-R NS   

 
 

123 G_Occipital_Lat-3-L NS   

 
 

124 G_Occipital_Lat-3-R NS   

 
 

125 G_Occipital_Lat-4-L NS   

 
 

126 G_Occipital_Lat-4-R NS   

 
 

127 G_Occipital_Lat-5-L NS   

 
 

128 G_Occipital_Lat-5-R NS   

 
 

129 G_Occipital_Sup-1-L 0.004 789 27.09 41.35 0.15 

130 G_Occipital_Sup-1-R NS   

 
 

131 G_Occipital_Sup-2-L NS   

 
 

132 G_Occipital_Sup-2-R NS   

 
 

133 G_Occipital_Mid-1-L NS   
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134 G_Occipital_Mid-1-R NS   

 
 

135 G_Occipital_Mid-2-L NS   

 
 

136 G_Occipital_Mid-2-R NS   

 
 

137 G_Occipital_Mid-3-L NS   

 
 

138 G_Occipital_Mid-3-R NS   

 
 

139 G_Occipital_Mid-4-L NS   

 
 

140 G_Occipital_Mid-4-R NS   

 
 

141 G_Occipital_Inf-1-L NS   

 
 

142 G_Occipital_Inf-1-R NS   

 
 

143 G_Occipital_Inf-2-L 0.023 742.5 28.5 39.34 0.12 

144 G_Occipital_Inf-2-R NS   

 
 

145 G_Insula-anterior-1-L NS   

 
 

146 G_Insula-anterior-1-R 0.017 750.5 28.26 39.57 0.12 

147 G_Insula-anterior-2-L NS   

 
 

148 G_Insula-anterior-2-R NS   

 
 

149 G_Insula-anterior-3-L NS   

 
 

150 G_Insula-anterior-3-R NS   

 
 

151 G_Insula-anterior-4-L NS   

 
 

152 G_Insula-anterior-4-R 0.043 399.5 38.89 29.25 -0.10 

153 G_Insula-anterior-5-L NS   

 
 

154 G_Insula-anterior-5-R NS   

 
 

155 G_Insula-posterior-1-L NS   

 
 

156 G_Insula-posterior-1-R NS   

 
 

157 G_Rolandic_Oper-1-L NS   

 
 

158 G_Rolandic_Oper-1-R 0.034 391.5 39.14 29.16 -0.11 

159 G_Rolandic_Oper-2-L NS   

 
 

160 G_Rolandic_Oper-2-R NS   

 
 

161 G_Temporal_Sup-1-L NS   

 
 

162 G_Temporal_Sup-1-R NS   

 
 

163 G_Temporal_Sup-2-L NS   

 
 

164 G_Temporal_Sup-2-R NS   

 
 

165 G_Temporal_Sup-3-L NS   

 
 

166 G_Temporal_Sup-3-R NS   

 
 

167 G_Temporal_Sup-4-L NS   

 
 

168 G_Temporal_Sup-4-R 0.048 403.5 38.77 29.72 -0.10 

169 S_Sup_Temporal-1-L NS   

 
 

170 S_Sup_Temporal-1-R NS   

 
 

171 S_Sup_Temporal-2-L NS   

 
 

172 S_Sup_Temporal-2-R NS   

 
 

173 S_Sup_Temporal-3-L NS   

 
 

174 S_Sup_Temporal-3-R NS   

 
 

175 S_Sup_Temporal-4-L NS   

 
 

176 S_Sup_Temporal-4-R NS   

 
 

177 S_Sup_Temporal-5-L NS   

 
 

178 S_Sup_Temporal-5-R NS   

 
 

179 G_Temporal_Mid-1-L NS   
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180 G_Temporal_Mid-1-R NS   

 
 

181 G_Temporal_Mid-2-L 0.012 761.5 27.92 40.09 0.13 

182 G_Temporal_Mid-2-R NS   

 
 

183 G_Temporal_Mid-3-L NS   

 
 

184 G_Temporal_Mid-3-R NS   

 
 

185 G_Temporal_Mid-4-L NS   

 
 

186 G_Temporal_Mid-4-R NS   

 
 

187 G_Temporal_Inf-1-L 0.042 723 29.09 39.65 0.10 

188 G_Temporal_Inf-1-R NS   

 
 

189 G_Temporal_Inf-2-L NS   

 
 

190 G_Temporal_Inf-2-R NS   

 
 

191 G_Temporal_Inf-3-L NS   

 
 

192 G_Temporal_Inf-3-R NS   

 
 

193 G_Temporal_Inf-4-L NS   

 
 

194 G_Temporal_Inf-4-R NS   

 
 

195 G_Temporal_Inf-5-L NS   

 
 

196 G_Temporal_Inf-5-R NS   

 
 

197 
G_Temporal_Pole_Sup-
1-L NS   

 
 

198 
G_Temporal_Pole_Sup-
1-R NS   

 
 

199 
G_Temporal_Pole_Sup-
2-L NS   

 
 

200 
G_Temporal_Pole_Sup-
2-R NS   

 
 

201 
G_Temporal_Pole_Mid-
1-L 0.035 729 28.91 

      
39.76 

          
0.11 

202 
G_Temporal_Pole_Mid-
1-R NS   

 
 

203 
G_Temporal_Pole_Mid-
2-L NS   

 
 

204 
G_Temporal_Pole_Mid-
2-R 0.005 337.5 40.77 

       
27.69 

                  
-0.14 

205 
G_Temporal_Pole_Mid-
3-L NS   

 
 

206 
G_Temporal_Pole_Mid-
3-R NS   

 
 

207 
G_Frontal_Sup_Medial-
1-L NS   

 
 

208 
G_Frontal_Sup_Medial-
1-R NS   

 
 

209 
G_Frontal_Sup_Medial-
2-L NS   

 
 

210 
G_Frontal_Sup_Medial-
2-R NS   

 
 

211 
G_Frontal_Sup_Medial-
3-L NS   

 
 

212 
G_Frontal_Sup_Medial-
3-R NS   
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213 S_Anterior_Rostral-1-L NS   

 
 

214 S_Anterior_Rostral-1-R NS   

 
 

215 G_Frontal_Med_Orb-1-L NS   

 
 

216 G_Frontal_Med_Orb-1-R NS   

 
 

217 G_Frontal_Med_Orb-2-L NS   

 
 

218 G_Frontal_Med_Orb-2-R NS   

 
 

219 G_subcallosal-1-L NS   

 
 

220 G_subcallosal-1-R NS   

 
 

221 G_Supp_Motor_Area-1-L NS   

 
 

222 
G_Supp_Motor_Area-1-
R NS   

 
 

223 G_Supp_Motor_Area-2-L NS   

 
 

224 
G_Supp_Motor_Area-2-
R NS   

 
 

225 G_Supp_Motor_Area-3-L NS   

 
 

226 
G_Supp_Motor_Area-3-
R NS   

 
 

227 S_Cingulate-1-L NS   

 
 

228 S_Cingulate-1-R NS   

 
 

229 S_Cingulate-2-L NS   

 
 

230 S_Cingulate-2-R NS   

 
 

231 S_Cingulate-3-L NS   

 
 

232 S_Cingulate-3-R NS   

 
 

233 S_Cingulate-4-L NS   

 
 

234 S_Cingulate-4-R NS   

 
 

235 S_Cingulate-5-L NS   

 
 

236 S_Cingulate-5-R 0.034 392 39.12 29.56 -0.11 

237 S_Cingulate-6-L NS   

 
 

238 S_Cingulate-6-R NS   

 
 

239 S_Cingulate-7-L NS   

 
 

240 S_Cingulate-7-R NS   

 
 

241 G_Cingulum_Ant-1-L NS   

 
 

242 G_Cingulum_Ant-1-R NS   

 
 

243 G_Cingulum_Ant-2-L NS   

 
 

244 G_Cingulum_Ant-2-R NS   

 
 

245 G_Cingulum_Mid-1-L 0.047 403 38.79 29.47 0.10 

246 G_Cingulum_Mid-1-R NS   

 
 

247 G_Cingulum_Mid-2-L NS   

 
 

248 G_Cingulum_Mid-2-R NS   

 
 

249 G_Cingulum_Mid-3-L NS   

 
 

250 G_Cingulum_Mid-3-R NS   

 
 

251 G_Cingulum_Post-1-L 0.009 354 40.27 28.29 -0.13 

252 G_Cingulum_Post-1-R NS   

 
 

253 G_Cingulum_Post-2-L NS   

 
 

254 G_Cingulum_Post-2-R NS   

 
 

255 G_Cingulum_Post-3-L NS   

 
 

256 G_Cingulum_Post-3-R NS   
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257 
G_Paracentral_Lobule-1-
L NS   

 
 

258 
G_Paracentral_Lobule-1-
R NS   

 
 

259 
G_Paracentral_Lobule-2-
L NS   

 
 

260 
G_Paracentral_Lobule-2-
R NS   

 
 

261 
G_Paracentral_Lobule-3-
L NS   

 
 

262 
G_Paracentral_Lobule-3-
R NS   

 
 

263 
G_Paracentral_Lobule-4-
L NS   

 
 

264 
G_Paracentral_Lobule-4-
R NS   

 
 

265 G_Precuneus-1-L NS   

 
 

266 G_Precuneus-1-R NS   

 
 

267 G_Precuneus-2-L 0.03 734 28.76 39.35 0.11 

268 G_Precuneus-2-R NS   

 
 

269 G_Precuneus-3-L NS   

 
 

270 G_Precuneus-3-R NS   

 
 

271 G_Precuneus-4-L NS   

 
 

272 G_Precuneus-4-R NS   

 
 

273 G_Precuneus-5-L NS   

 
 

274 G_Precuneus-5-R NS   

 
 

275 G_Precuneus-6-L NS   

 
 

276 G_Precuneus-6-R   NS   

 
 

277 G_Precuneus-7-L NS   

 
 

278 G_Precuneus-7-R NS   

 
 

279 G_Precuneus-8-L NS   

 
 

280 G_Precuneus-8-R NS   

 
 

281 G_Precuneus-9-L NS   

 
 

282 G_Precuneus-9-R NS   

 
 

283 S_Parietooccipital-1-L NS   

 
 

284 S_Parietooccipital-1-R NS   

 
 

285 S_Parietooccipital-2-L 0.036 632 31.85 36.09 -0.11 

286 S_Parietooccipital-2-R NS   

 
 

287 S_Parietooccipital-3-L NS   

 
 

288 S_Parietooccipital-3-R NS   

 
 

289 S_Parietooccipital-4-L NS   

 
 

290 S_Parietooccipital-4-R NS   

 
 

291 S_Parietooccipital-5-L NS   

 
 

292 S_Parietooccipital-5-R NS   

 
 

293 S_Parietooccipital-6-L NS   

 
 

294 S_Parietooccipital-6-R NS   

 
 

295 G_Cuneus-1-L NS   

 
 

296 G_Cuneus-1-R NS   

 
 



 
 

185 

 

297  G_Cuneus-2-L NS   

 
 

298 G_Cuneus-2-R NS   

 
 

299 G_Calcarine-1-L 0.037 727.5 28.95 38.9 0.11 

300 G_Calcarine-1-R NS   

 
 

301 G_Calcarine-2-L NS   

 
 

302 G_Calcarine-2-R NS   

 
 

303 G_Calcarine-3-L NS   

 
 

304 G_Calcarine-3-R NS   

 
 

305 G_Lingual-1-L 0.036 394 39.06 39.06 -0.11 

306 G_Lingual-1-R NS   

 
 

307 G_Lingual-2-L NS   

 
 

308 G_Lingual-2-R NS   

 
 

309 G_Lingual-3-L NS   

 
 

310 G_Lingual-3-R NS   

 
 

311 G_Lingual-4-L NS   

 
 

312 G_Lingual-4-R   NS   

 
 

313 G_Lingual-5-L NS   

 
 

314 G_Lingual-5-R NS   

 
 

315 G_Lingual-6-L NS   

 
 

316 G_Lingual-6-R NS   

 
 

317 G_Hippocampus-1-L 0.024 381.5 39.44 29.51 -0.11 

318 G_Hippocampus-1-R NS   

 
 

319 G_Hippocampus-2-L NS   

 
 

320 G_Hippocampus-2-R 0.032 390 39.18 29.03 -0.11 

321 G_ParaHippocampal-1-L NS   

 
 

322 G_ParaHippocampal-1-R NS   

 
 

323 G_ParaHippocampal-2-L NS   

 
 

324 G_ParaHippocampal-2-R NS   

 
 

325 G_ParaHippocampal-3-L NS   

 
 

326 G_ParaHippocampal-3-R NS   

 
 

327 G_ParaHippocampal-4-L NS   

 
 

328 G_ParaHippocampal-4-R NS   

 
 

329 G_ParaHippocampal-5-L NS   

 
 

330 G_ParaHippocampal-5-R NS   

 
 

331 G_Fusiform-1-L NS   

 
 

332 G_Fusiform-1-R NS   

 
 

333 G_Fusiform-2-L NS   

 
 

334 G_Fusiform-2-R NS   

 
 

335 G_Fusiform-3-L NS   

 
 

336 G_Fusiform-3-R NS   

 
 

337 G_Fusiform-4-L NS   

 
 

338 G_Fusiform-4-R NS   

 
 

339 G_Fusiform-5-L NS   

 
 

340 G_Fusiform-5-R 0.034 392 39.12 29.21 -0.11 

341 G_Fusiform-6-L NS   

 
 

342 G_Fusiform-6-R 0.04 397 38.97 29.79 -0.10 
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343 G_Fusiform-7-L NS   

 
 

344 G_Fusiform-7-R   0.008 348 40.75 28.53 -0.14 

345 N_Amygdala-1-L NS   

 
 

346 N_Amygdala-1-R NS   

 
 

347 N_Caudate-1-L NS   

 
 

348 N_Caudate-1-R NS   

 
 

349 N_Caudate-2-L NS   

 
 

350 N_Caudate-2-R NS   

 
 

351 N_Caudate-3-L NS   

 
 

352 N_Caudate-3-R NS   

 
 

353 N_Caudate-4-L NS   

 
 

354 N_Caudate-4-R NS   

 
 

355 N_Caudate-5-L NS   

 
 

356  N_Caudate-5-R NS   

 
 

357 N_Caudate-6-L NS   

 
 

358 N_Caudate-6-R NS   

 
 

359 N_Caudate-7-L   NS   

 
 

360 N_Caudate-7-R NS   

 
 

361 N_Pallidum-1-L NS   

 
 

362 N_Pallidum-1-R NS   

 
 

363 N_Putamen-2-L NS   

 
 

364 N_Putamen-2-R NS   

 
 

365 N_Putamen-3-L NS   

 
 

366 N_Putamen-3-R NS   

 
 

367 N_Thalamus-1-L NS   

 
 

368 N_Thalamus-1-R NS   

 
 

369 N_Thalamus-2-L NS   

 
 

370 N_Thalamus-2-R NS   

 
 

371 N_Thalamus-3-L NS   

 
 

372 N_Thalamus-3-R NS   

 
 

373 N_Thalamus-4-L NS   

 
 

374 N_Thalamus-4-R NS   

 
 

375 N_Thalamus-5-L NS   

 
 

376 N_Thalamus-5-R NS   

 
 

377 N_Thalamus-6-L NS   

 
 

378 N_Thalamus-6-R NS   

 
 

379 N_Thalamus-7-L NS   

 
 

380 N_Thalamus-7-R NS   

 
 

381 N_Thalamus-8-L NS   

 
 

382 N_Thalamus-8-R NS   

 
 

383 N_Thalamus-9- L NS   

 
 

384 N_Thalamus-9-R NS   

 
 

 NS = not significant at p < 0.05.  Effect size calculated as r = 𝑍/√𝑁.  All results displayed to two     
decimal points. 
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Table C-7.  Frequency of hub nodes in each region 

AICHA 
region  AICHA region name Controls 

IGE 
(both 
groups) WC-IGE DR-IGE 

1 G_Frontal_Sup-1-L 3 1 0 1 

2 G_Frontal_Sup-1-R 1 0 0 0 

3 G_Frontal_Sup-2-L 12 11 5 6 

4 G_Frontal_Sup-2-R 14 20 3 17 

5 G_Frontal_Sup-3-L 1 3 1 2 

6 G_Frontal_Sup-3-R 0 1 0 1 

7 S_Sup_Frontal-1-L 0 0 0 0 

8 S_Sup_Frontal-1-R 1 4 1 3 

9 S_Sup_Frontal-2-L 0 2 1 1 

10 S_Sup_Frontal-2-R 3 2 1 1 

11 S_Sup_Frontal-3-L 3 1 0 1 

12 S_Sup_Frontal-3-R 2 5 1 4 

13 S_Sup_Frontal-4-L 8 11 6 5 

14 S_Sup_Frontal-4-R 9 8 3 5 

15 S_Sup_Frontal-5-L 5 3 0 3 

16 S_Sup_Frontal-5-R 4 5 1 4 

17 S_Sup_Frontal-6-L 7 3 0 3 

18 S_Sup_Frontal-6-R 4 12 4 8 

19 G_Frontal_Mid-1-L 4 4 1 3 

20 G_Frontal_Mid-1-R 5 6 1 5 

21 G_Frontal_Mid-2-L 2 3 0 3 

22 G_Frontal_Mid-2-R 8 8 3 5 

23 G_Frontal_Mid-3-L 0 2 2 0 

24 G_Frontal_Mid-3-R 4 6 0 6 

25 G_Frontal_Mid-4-L 4 8 2 6 

26 G_Frontal_Mid-4-R 1 4 1 3 

27 G_Frontal_Mid-5-L 2 4 2 2 

28 G_Frontal_Mid-5-R 4 4 0 4 

29 S_Inf_Frontal-1-L 3 4 1 3 

30 S_Inf_Frontal-1-R 2 2 1 1 

31 S_Inf_Frontal-2-L 5 2 0 2 

32 S_Inf_Frontal-2-R 4 4 0 4 

33 G_Frontal_Inf_Tri-1-L 3 3 0 3 

34 G_Frontal_Inf_Tri-1-R 2 3 2 1 

35 G_Frontal_Sup_Orb-1-L 1 1 1 0 

36 G_Frontal_Sup_Orb-1-R 0 0 0 0 

37 G_Frontal_Mid_Orb-1-L 0 1 0 1 

38 G_Frontal_Mid_Orb-1-R 0 1 0 1 

39 G_Frontal_Mid_Orb-2-L 4 3 0 3 

40 G_Frontal_Mid_Orb-2-R 2 4 2 2 

41 G_Frontal_Inf_Orb-1-L 0 0 0 0 

42 G_Frontal_Inf_Orb-1-R 4 4 1 0 1 
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43 G_Frontal_Inf_Orb-2-L 0 0 0 0 

44 G_Frontal_Inf_Orb-2-R 1 0 0 0 

45 S_Orbital-1-L 1 0 0 1 

46 S_Orbital-1-R 1 1 0 0 

47 S_Orbital-2-L 0 0 0 0 

48 S_Orbital-2-R 1 0 0 4 

49 S_Olfactory-1-L 13 4 0 0 

50 S_Olfactory-1-R 0 0 1 2 

51 S_Precentral-1-L 3 3 3 6 

52 S_Precentral-1-R 4 9 0 0 

53 S_Precentral-2-L 0 0 0 2 

54 S_Precentral-2-R   0 2 1 0 

55 S_Precentral-3-L 0 1 1 0 

56 S_Precentral-3-R 2 1 0 2 

57 S_Precentral-4-L 2 2 1 5 

58 S_Precentral-4-R 7 6 0 1 

59 S_Precentral-5-L 2 1 1 3 

60 S_Precentral-5-R 1 4 0 1 

61 S_Precentral-6-L 0 1 1 1 

62 S_Precentral-6-R 0 2 0 0 

63 S_Rolando-1-L 1 0 1 3 

64 S_Rolando-1-R 4 4 1 2 

65 S_Rolando-2-L 2 3 0 2 

66 S_Rolando-2-R 2 2 1 2 

67 S_Rolando-3-L 3 3 1 4 

68 S_Rolando-3-R 4 5 1 7 

69 S_Rolando-4-L 7 8 1 3 

70 S_Rolando-4-R 7 4 1 1 

71 S_Postcentral-1-L 2 2 0 2 

72 S_Postcentral-1-R 2 2 0 6 

73 S_Postcentral-2-L 13 6 2 6 

74 S_Postcentral-2-R 5 8 0 4 

75 S_Postcentral-3-L 2 4 0 3 

76 S_Postcentral-3-R 6 3 1 0 

77 G_Parietal_Sup-1-L 2 1 1 1 

78 G_Parietal_Sup-1-R 1 2 1 3 

79 G_Parietal_Sup-2-L 7 4 4 3 

80 G_Parietal_Sup-2-R 7 7 1 5 

81 G_Parietal_Sup-3-L 8 6 0 5 

82 G_Parietal_Sup-3-R 6 5 1 3 

83 G_Parietal_Sup-4-L 7 4 1 3 

84 G_Parietal_Sup-4-R 4 4 1 6 

85 G_Parietal_Sup-5-L 9 7 1 4 

86 G_Parietal_Sup-5-R 10 5 3 4 

87 G_Supramarginal-1-L 11 7 2 6 

88 G_Supramarginal-1-R 7 8 1 6 
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89 G_SupraMarginal-2-L 6 7 1 8 

90 G_SupraMarginal-2-R 10 9 4 5 

91 G_Supramarginal-3-L 8 9 2 5 

92 G_Supramarginal-3-R 8 7 1 5 

93 G_Supramarginal-4-L 9 6 2 8 

94 G_Supramarginal-4-R 9 10 0 1 

95 G_SupraMarginal-5-L 1 1 1 3 

96 G_SupraMarginal-5-R 3 4 1 4 

97 G_SupraMarginal-6-L 1 5 1 3 

98 G_SupraMarginal-6-R 10 4 1 4 

99 G_SupraMarginal-7-L 4 5 0 1 

100 G_SupraMarginal-7-R 6 1 3 9 

101 G_Angular-1-L 18 12 3 6 

102 G_Angular-1-R 14 9 6 13 

103 G_Angular-2-L 23 19 6 13 

104 G_Angular-2-R 17 19 5 7 

105 G_Angular-3-L 14 12 3 7 

106 G_Angular-3-R 9 10 1 4 

107 G_Parietal_Inf-1-L 8 5 1 7 

108 G_Parietal_Inf-1-R 9 8 1 8 

109 S_Intraparietal-1-L 12 9 3 10 

110  S_Intraparietal-1-R 14 13 4 7 

111  S_Intraparietal-2-L 10 11 1 9 

112 S_Intraparietal-2-R 6 10 3 10 

113 S_Intraparietal-3-L 8 13 3 4 

114  S_Intraparietal-3-R 8 7 2 1 

115 S_Intraoccipital-1-L 0 3 1 0 

116 S_Intraoccipital-1-R 3 1 3 1 

117 G_Occipital_Pole-1-L 1 4 1 2 

118 G_Occipital_Pole-1-R 2 3 2 0 

119 G_Occipital_Lat-1-L 1 2 0 1 

120 G_Occipital_Lat-1-R 0 1 1 2 

121 G_Occipital_Lat-2-L 3 3 2 4 

122 G_Occipital_Lat-2-R 1 6 0 0 

123 G_Occipital_Lat-3-L 1 0 0 1 

124 G_Occipital_Lat-3-R 2 1 4 1 

125 G_Occipital_Lat-4-L 6 5 1 1 

126 G_Occipital_Lat-4-R 3 2 6 8 

127 G_Occipital_Lat-5-L 13 14 5 8 

128 G_Occipital_Lat-5-R 8 13 1 2 

129 G_Occipital_Sup-1-L 9 3 1 0 

130 G_Occipital_Sup-1-R 3 1 1 4 

131 G_Occipital_Sup-2-L 10 5 2 6 

132 G_Occipital_Sup-2-R 6 8 3 5 

133 G_Occipital_Mid-1-L 11 8 3 7 

134 G_Occipital_Mid-1-R 7 10 1 1 
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135 G_Occipital_Mid-2-L 5 2 1 2 

136 G_Occipital_Mid-2-R 3 3 1 4 

137 G_Occipital_Mid-3-L 3 5 4 4 

138 G_Occipital_Mid-3-R 2 8 3 5 

139 G_Occipital_Mid-4-L 6 8 3 5 

140 G_Occipital_Mid-4-R 4 8 0 1 

141 G_Occipital_Inf-1-L 1 1 2 2 

142 G_Occipital_Inf-1-R 2 4 0 3 

143 G_Occipital_Inf-2-L 6 3 2 4 

144 G_Occipital_Inf-2-R 3 6 0 2 

145 G_Insula-anterior-1-L 0 2 0 0 

146 G_Insula-anterior-1-R 1 0 0 0 

147 G_Insula-anterior-2-L 1 0 0 2 

148 G_Insula-anterior-2-R 1 2 1 0 

149 G_Insula-anterior-3-L 1 1 2 4 

150 G_Insula-anterior-3-R 4 6 3 3 

151 G_Insula-anterior-4-L 5 6 4 11 

152 G_Insula-anterior-4-R 9 15 1 0 

153 G_Insula-anterior-5-L 6 1 2 4 

154 G_Insula-anterior-5-R 10 6 1 2 

155 G_Insula-posterior-1-L 1 3 0 0 

156 G_Insula-posterior-1-R 2 0 6 4 

157 G_Rolandic_Oper-1-L 7 10 3 7 

158 G_Rolandic_Oper-1-R 4 10 3 3 

159 G_Rolandic_Oper-2-L 3 6 1 2 

160 G_Rolandic_Oper-2-R 2 3 1 2 

161 G_Temporal_Sup-1-L 6 3 1 5 

162 G_Temporal_Sup-1-R 2 6 0 1 

163 G_Temporal_Sup-2-L 0 1 1 0 

164 G_Temporal_Sup-2-R 1 1 1 3 

165 G_Temporal_Sup-3-L 8 4 4 4 

166 G_Temporal_Sup-3-R 7 8 0 3 

167 G_Temporal_Sup-4-L 4 3 1 0 

168 G_Temporal_Sup-4-R 2 1 0 0 

169 S_Sup_Temporal-1-L 3 0 0 1 

170 S_Sup_Temporal-1-R 1 1 0 1 

171 S_Sup_Temporal-2-L 1 1 2 6 

172 S_Sup_Temporal-2-R 5 8 1 2 

173 S_Sup_Temporal-3-L 0 3 2 1 

174 S_Sup_Temporal-3-R 1 3 1 1 

175 S_Sup_Temporal-4-L 1 2 1 2 

176 S_Sup_Temporal-4-R 3 3 6 11 

177 S_Sup_Temporal-5-L 17 17 4 11 

178 S_Sup_Temporal-5-R 14 15 3 3 

179 G_Temporal_Mid-1-L 5 6 1 6 

180 G_Temporal_Mid-1-R 3 7 2 2 
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181 G_Temporal_Mid-2-L 11 4 4 6 

182 G_Temporal_Mid-2-R 5 10 2 2 

183 G_Temporal_Mid-3-L 3 4 2 1 

184 G_Temporal_Mid-3-R 0 3 3 1 

185 G_Temporal_Mid-4-L 4 4 0 2 

186 G_Temporal_Mid-4-R 6 2 0 0 

187 G_Temporal_Inf-1-L 1 0 0 1 

188 G_Temporal_Inf-1-R 0 1 0 0 

189 G_Temporal_Inf-2-L 1 0 0 1 

190 G_Temporal_Inf-2-R 4 1 1 2 

191 G_Temporal_Inf-3-L 5 3 0 2 

192 G_Temporal_Inf-3-R 1 2 2 3 

193 G_Temporal_Inf-4-L 7 5 0 4 

194 G_Temporal_Inf-4-R 6 4 0 0 

195 G_Temporal_Inf-5-L 0 0 3 1 

196 G_Temporal_Inf-5-R 4 4 1 1 

197 
G_Temporal_Pole_Sup-
1-L 0 2 1 0 

198 
G_Temporal_Pole_Sup-
1-R 1 1 1 0 

199 
G_Temporal_Pole_Sup-
2-L 0 1 1 0 

200 
G_Temporal_Pole_Sup-
2-R 0 1 1 3 

201 
G_Temporal_Pole_Mid-
1-L 7 4 2 6 

202 
G_Temporal_Pole_Mid-
1-R 2 8 0 0 

203 
G_Temporal_Pole_Mid-
2-L 0 0 0 0 

204 
G_Temporal_Pole_Mid-
2-R 1 0 0 1 

205 
G_Temporal_Pole_Mid-
3-L 0 1 0 0 

206 
G_Temporal_Pole_Mid-
3-R 0 0 1 7 

207 
G_Frontal_Sup_Medial-
1-L 6 8 2 4 

208 
G_Frontal_Sup_Medial-
1-R 6 6 3 9 

209 
G_Frontal_Sup_Medial-
2-L 6 12 3 3 

210 
G_Frontal_Sup_Medial-
2-R 9 6 1 1 

211 
G_Frontal_Sup_Medial-
3-L 0 2 1 1 

212 
G_Frontal_Sup_Medial-
3-R 0 2 2 8 

213 S_Anterior_Rostral-1-L 12 10 1 3 
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214 S_Anterior_Rostral-1-R 7 4 1 4 

215 G_Frontal_Med_Orb-1-L 4 5 0 1 

216 G_Frontal_Med_Orb-1-R 4 1 1 11 

217 G_Frontal_Med_Orb-2-L 13 12 2 4 

218 G_Frontal_Med_Orb-2-R 3 6 1 0 

219 G_subcallosal-1-L 0 1 0 0 

220 G_subcallosal-1-R 0 0 0 0 

221 G_Supp_Motor_Area-1-L 0 0 0 1 

222 
G_Supp_Motor_Area-1-
R 2 1 0 2 

223 G_Supp_Motor_Area-2-L 2 2 0 1 

224 
G_Supp_Motor_Area-2-
R 0 1 1 1 

225 G_Supp_Motor_Area-3-L 0 2 0 3 

226 
G_Supp_Motor_Area-3-
R 2 3 0 1 

227 S_Cingulate-1-L 0 1 0 1 

228 S_Cingulate-1-R 2 1 0 1 

229 S_Cingulate-2-L 2 1 1 9 

230 S_Cingulate-2-R 5 10 0 2 

231 S_Cingulate-3-L 6 2 4 11 

232 S_Cingulate-3-R 10 15 1 4 

233 S_Cingulate-4-L 4 5 3 7 

234 S_Cingulate-4-R 9 10 0 1 

235 S_Cingulate-5-L 1 1 0 2 

236 S_Cingulate-5-R 0 2 1 2 

237 S_Cingulate-6-L 2 3 2 3 

238 S_Cingulate-6-R 6 5 1 1 

239 S_Cingulate-7-L 2 2 2 3 

240 S_Cingulate-7-R 3 5 0 2 

241 G_Cingulum_Ant-1-L 2 2 1 6 

242 G_Cingulum_Ant-1-R 6 7 0 0 

243 G_Cingulum_Ant-2-L 0 0 3 0 

244 G_Cingulum_Ant-2-R 1 3 0 0 

245 G_Cingulum_Mid-1-L 1 0 0 0 

246 G_Cingulum_Mid-1-R 1 0 0 0 

247 G_Cingulum_Mid-2-L 0 0 0 0 

248 G_Cingulum_Mid-2-R 0 0 1 1 

249 G_Cingulum_Mid-3-L 2 2 1 2 

250 G_Cingulum_Mid-3-R 2 3 1 0 

251 G_Cingulum_Post-1-L 0 1 1 1 

252 G_Cingulum_Post-1-R 0 2 1 4 

253 G_Cingulum_Post-2-L 1 5 4 5 

254 G_Cingulum_Post-2-R 4 9 1 3 

255 G_Cingulum_Post-3-L 0 4 0 4 

256 G_Cingulum_Post-3-R 1 4 0 1 

257 G_Paracentral_Lobule-1- 0 1 0 3 
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L 

258 
G_Paracentral_Lobule-1-
R 1 3 0 1 

259 
G_Paracentral_Lobule-2-
L 0 1 0 2 

260 
G_Paracentral_Lobule-2-
R 2 2 1 1 

261 
G_Paracentral_Lobule-3-
L 0 2 1 2 

262 
G_Paracentral_Lobule-3-
R 1 3 1 0 

263 
G_Paracentral_Lobule-4-
L 0 1 0 1 

264 
G_Paracentral_Lobule-4-
R 0 1 2 12 

265 G_Precuneus-1-L 9 14 4 5 

266 G_Precuneus-1-R 6 9 3 8 

267 G_Precuneus-2-L 14 11 4 7 

268 G_Precuneus-2-R 12 12 5 14 

269 G_Precuneus-3-L 17 19 6 10 

270 G_Precuneus-3-R 24 16 1 2 

271 G_Precuneus-4-L 2 3 1 7 

272 G_Precuneus-4-R 6 8 0 1 

273 G_Precuneus-5-L 4 1 1 2 

274 G_Precuneus-5-R 6 3 1 6 

275 G_Precuneus-6-L 6 7 1 6 

276 G_Precuneus-6-R   9 7 1 6 

277 G_Precuneus-7-L 9 7 2 6 

278 G_Precuneus-7-R 12 8 0 3 

279 G_Precuneus-8-L 4 3 3 9 

280 G_Precuneus-8-R 10 12 1 4 

281 G_Precuneus-9-L 5 5 4 3 

282 G_Precuneus-9-R 7 7 2 7 

283 S_Parietooccipital-1-L 5 9 4 7 

284 S_Parietooccipital-1-R 5 12 1 1 

285 S_Parietooccipital-2-L 1 2 1 2 

286 S_Parietooccipital-2-R 3 3 0 3 

287 S_Parietooccipital-3-L 7 3 1 5 

288 S_Parietooccipital-3-R 6 6 1 2 

289 S_Parietooccipital-4-L 3 3 1 1 

290 S_Parietooccipital-4-R 3 2 0 1 

291 S_Parietooccipital-5-L 1 1 0 2 

292 S_Parietooccipital-5-R 0 2 0 4 

293 S_Parietooccipital-6-L 4 4 0 1 

294 S_Parietooccipital-6-R 2 1 0 3 

295 G_Cuneus-1-L 6 3 1 1 

296 G_Cuneus-1-R 1 2 1 2 
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297  G_Cuneus-2-L 0 3 1 1 

298 G_Cuneus-2-R 1 2 1 3 

299 G_Calcarine-1-L 3 4 1 3 

300 G_Calcarine-1-R 1 4 0 5 

301 G_Calcarine-2-L 6 5 2 4 

302 G_Calcarine-2-R 5 6 0 4 

303 G_Calcarine-3-L 1 4 2 3 

304 G_Calcarine-3-R 2 5 0 1 

305 G_Lingual-1-L 0 1 0 1 

306 G_Lingual-1-R 1 1 1 1 

307 G_Lingual-2-L 3 2 0 1 

308 G_Lingual-2-R 1 1 2 1 

309 G_Lingual-3-L 1 3 1 1 

310 G_Lingual-3-R 3 2 0 1 

311 G_Lingual-4-L 2 1 0 0 

312 G_Lingual-4-R   1 0 0 0 

313 G_Lingual-5-L 1 0 0 1 

314 G_Lingual-5-R 1 1 0 1 

315 G_Lingual-6-L 0 1 0 2 

316 G_Lingual-6-R 0 2 0 0 

317 G_Hippocampus-1-L 0 0 0 2 

318 G_Hippocampus-1-R 0 2 0 0 

319 G_Hippocampus-2-L 1 0 0 0 

320 G_Hippocampus-2-R 1 0 0 1 

321 G_ParaHippocampal-1-L 1 1 0 0 

322 G_ParaHippocampal-1-R 0 0 0 1 

323 G_ParaHippocampal-2-L 1 1 0 1 

324 G_ParaHippocampal-2-R 1 1 0 1 

325 G_ParaHippocampal-3-L 0 1 0 1 

326 G_ParaHippocampal-3-R 0 1 0 1 

327 G_ParaHippocampal-4-L 0 1 1 0 

328 G_ParaHippocampal-4-R 4 1 0 0 

329 G_ParaHippocampal-5-L 3 0 0 2 

330 G_ParaHippocampal-5-R 1 2 1 1 

331 G_Fusiform-1-L 0 2 0 1 

332 G_Fusiform-1-R 0 1 0 1 

333 G_Fusiform-2-L 0 1 0 0 

334 G_Fusiform-2-R 0 0 0 0 

335 G_Fusiform-3-L 0 0 1 0 

336 G_Fusiform-3-R 0 2 0 0 

337 G_Fusiform-4-L 2 0 1 2 

338 G_Fusiform-4-R 0 3 0 0 

339 G_Fusiform-5-L 0 0 1 1 

340 G_Fusiform-5-R 0 2 1 1 

341 G_Fusiform-6-L 2 2 1 1 

342 G_Fusiform-6-R 1 2 0 0 
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343 G_Fusiform-7-L 1 0 2 1 

344 G_Fusiform-7-R   0 3 0 1 

345 N_Amygdala-1-L 0 1 0 0 

346 N_Amygdala-1-R 0 0 0 1 

347 N_Caudate-1-L 0 1 0 1 

348 N_Caudate-1-R 0 1 0 2 

349 N_Caudate-2-L 1 2 0 1 

350 N_Caudate-2-R 0 1 1 2 

351 N_Caudate-3-L 0 3 0 1 

352 N_Caudate-3-R 1 1 0 2 

353 N_Caudate-4-L 0 2 0 2 

354 N_Caudate-4-R 0 2 0 2 

355 N_Caudate-5-L 0 2 0 1 

356  N_Caudate-5-R 0 1 0 1 

357 N_Caudate-6-L 0 1 0 1 

358 N_Caudate-6-R 0 1 0 0 

359 N_Caudate-7-L   0 0 0 0 

360 N_Caudate-7-R 0 0 0 0 

361 N_Pallidum-1-L 0 0 0 0 

362 N_Pallidum-1-R 0 0 0 0 

363 N_Putamen-2-L 0 0 0 0 

364 N_Putamen-2-R 0 0 0 1 

365 N_Putamen-3-L 0 1 0 0 

366 N_Putamen-3-R 0 0 0 0 

367 N_Thalamus-1-L 0 0 0 0 

368 N_Thalamus-1-R 0 0 0 1 

369 N_Thalamus-2-L 1 1 0 0 

370 N_Thalamus-2-R 0 0 0 1 

371 N_Thalamus-3-L 0 1 0 0 

372 N_Thalamus-3-R 0 0 0 2 

373 N_Thalamus-4-L 0 2 0 2 

374 N_Thalamus-4-R 1 2 0 0 

375 N_Thalamus-5-L 0 0 0 0 

376 N_Thalamus-5-R 0 0 0 0 

377 N_Thalamus-6-L 0 0 0 0 

378 N_Thalamus-6-R 0 0 0 0 

379 N_Thalamus-7-L 0 0 0 0 

380 N_Thalamus-7-R 0 0 0 0 

381 N_Thalamus-8-L 0 0 0 0 

382 N_Thalamus-8-R 1 0 0 0 

383 N_Thalamus-9- L 0 0 0 0 

384 N_Thalamus-9-R 0 0 0 0 
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Figure C-1.  Frequency of hub nodes in the frontal regions plotted for controls and IGE group (WC-

IGE and DR-IGE combined).  Nodes are defined as network hubs if both the strength and 

betweenness centrality are greater than one standard deviation above corresponding mean 

network metric. 

 

 

 

Figure C-2.  Frequency of hub nodes in the temporal regions plotted for controls and IGE group 

(WC-IGE and DR-IGE combined). Nodes are defined as network hubs if both the strength and 

betweenness centrality are greater than one standard deviation above corresponding mean 

network metric. 
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Figure C-3.  Frequency of hub nodes in the parietal regions plotted for controls and IGE group 

(WC-IGE and DR-IGE combined). Nodes are defined as network hubs if both the strength and 

betweenness centrality are greater than one standard deviation above corresponding mean 

network metric. 

 

 

Figure C-4.  Frequency of hub nodes in the occipital regions plotted for controls and IGE group 

(WC-IGE and DR-IGE combined). Nodes are defined as network hubs if both the strength and 

betweenness centrality are greater than one standard deviation above corresponding mean 

network metric. 
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Figure C-5.  Frequency of hub nodes in the thalamic regions plotted for controls and IGE 

group (WC-IGE and DR-IGE combined). Nodes are defined as network hubs if both the 

strength and betweenness centrality are greater than one standard deviation above 

corresponding mean network metric. 
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Chapter 6.  General Discussion    

The aim of this thesis was to investigate the effect of seizure control on global interictal 

network features in IGE, with a focus on functional connectivity.  In conjunction, global 

network features in people with IGE compared to healthy controls were also examined.  Since 

seizures are believed to emerge from the same mechanisms that underlie normal brain 

function (Richardson, 2012b), it was postulated that the same network alterations underlying 

epilepsy are also implicated in drug resistance.  This envisages a spectrum of network 

abnormality, with healthy controls and DR-IGE at opposite ends of the spectrum, and WC-IGE 

positioned between them.   As such, it was hypothesised that any aberrations in network 

features would reflect this spectrum.  

 

6.1 Summary of experimental results  

I performed an EEG spectral power analysis to compare global network oscillatory activity 

between WC-IGE, DR-IGE and controls (Pegg et al., 2020b), presented in Chapter 2.  

Irrespective of seizure control, a higher spectral power in participants with IGE compared with 

controls at 4-8 Hz, 15–20 Hz, 25-31 Hz, and 39-42 Hz was found in widespread scalp regions, 

with a lower peak alpha frequency.  Topological features of networks derived from EEG in 

WC-IGE, DR-IGE and controls were investigated using graph theory in Chapter 4 (Pegg et al., 

2021).  Irrespective of seizure control, a more regular network topology (higher characteristic 

path length) in IGE was found in the 6-9 Hz frequency band in IGE, compared with controls.   

An altered network topology in WC-IGE compared with controls was found at 10-12 Hz; the 

group with WC-IGE had a more efficient network (greater small-world index) and a difference 

in hub node connectivity (lower mean degree and lower degree distribution variance).  A post 

hoc comparison also suggested a difference between WC-IGE and DR-IGE in the same 

frequency band with a higher small-world index and lower characteristic path length in WC-

IGE (consistent with a more efficient and less regular network).  I also investigated topological 

features of the global network derived from fMRI in WC-IGE, DR-IGE and controls with a 

different participant cohort.  This is presented in Chapter 5.   Compared with controls, the 

network structure in IGE was more regular (higher path length), with altered hub node 

connectivity (a higher average node strength and betweenness centrality).  These topological 

alterations were not related to treatment responsiveness.  The locations of ‘major hub nodes’ 



 
 

200 

 

and individual nodes exhibiting differences in connectivity between groups was explored, and 

there were no clear differences found.    

In the following sections, a synthesised discussion of the study results including their 

interpretation and limitations will be presented, followed by a discussion of implications for 

future work.  

 

6.2 Interpretation  

Converging evidence from each study suggests the global network is altered in IGE compared 

to controls.  In particular, the neuronal network in IGE has greater spectral power and a more 

regular network topology, with altered global nodal connectivity.  In addition, there was 

evidence of a relationship between seizure control and network topology in the graph 

theoretical EEG analysis.  The latter may reflect drug induced changes in people who respond 

to medication, which renders the network less susceptible to seizures.  

Altered neuronal networks in people with IGE compared to controls 

Greater spectral power across most of the frequency spectra in widespread scalp regions in the 

IGE cohorts compared to controls, may reflect a hyperexcitable cortex in the resting state due 

to greater neuronal synchronisation (Michel et al., 1992, Clemens et al., 2000).  This result is 

consistent with other similar studies (Miyauchi et al., 1991, Clemens et al., 2000, Willoughby et 

al., 2003, Santiago-Rodríguez et al., 2008, Elshahabi et al., 2015, Niso et al., 2015).  The notion 

that a hyperexcitable cortex increases seizure vulnerability is supported by the finding of 

elevated spectral power in the immediate pre-ictal period in myoclonic seizures (Sun et al., 

2016).  Further evidence of a relationship between alterations in spectral power and cortical 

hyperexcitability is demonstrated by spectral power investigations of AEDs that ostensibly act 

via reducing glutaminergic excitation (e.g., perampanel, lamotrigine), or by increasing 

GABAergic inhibition (e.g., valproate) (Routley et al., 2017, Wu and Xiao, 1997, Clemens, 2008, 

Clemens et al., 2007, Sannita et al., 1989).  Such studies all report decreases in spectral power.  

However, in the study of perampanel (Routley et al., 2017) and one study of valproate (Wu and 

Xiao, 1997), increased spectral power in some frequency bands was also reported.  Despite 

there being an overall increase in spectral power in IGE in our study, peak alpha frequency was 

lower.  Interpreted in the context of findings from other studies, our results suggest a complex 

relationship between neuronal oscillations, cortical excitability, and AED effects, with an 

implication that factors beyond an alteration in cortical hyperexcitability are involved in 
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seizure control.  The latter is supported by our finding of increased spectral power irrespective 

of seizure control, which is further discussed in the section below.  

Differences between IGE and controls were also found in both the EEG and fMRI-based graph 

theoretical studies of network topology, where a significantly greater characteristic path 

length in IGE was detected in the fMRI study and nodal metrics were altered in both 

instances.  

A greater characteristic path length reflects a less integrated network and is seen in networks 

tending toward a regular topology.  Since hypersynchrony of the network occurs during a 

seizure (Li et al., 2007, Wu et al., 2015), and network topology during a seizure becomes more 

regular in configuration (Ponten et al., 2007, Ponten et al., 2009, Kramer et al., 2010), a resting 

state network with a regular structure is postulated to make the network more liable to 

synchronise (van Diessen et al., 2014c).  Other IGE network studies have also demonstrated a 

more regular network in IGE compared to controls, where a higher average clustering 

coefficient has been found (Chowdhury et al., 2014, Chavez et al., 2010).  However, it should be 

noted that when the characteristic path length metric is considered in isolation, three 

previous EEG studies (Chowdhury et al., 2014, Lee and Park, 2019, Lee et al., 2020), in addition 

to our own, and two fMRI studies (Zhang et al., 2011, Liao et al., 2013) have not reported a 

difference between groups, and one MEG study reported a decreased characteristic path 

length in the 21–29 Hz frequency band (Elshahabi et al., 2015).  Direct comparability with these 

studies is limited by the use of different modalities, a smaller network in previous EEG studies 

(up to 23 nodes), and a larger network in the MEG study (275 nodes), which may alter 

sensitivity to outcomes (van Wijk et al., 2010).  Furthermore, the frequency bands in the 

MEG/EEG studies were defined differently.  Our finding of a higher characteristic path length 

in the group with epilepsy in the fMRI study is similar to a meta-analysis of focal epilepsy 

studies where functional networks derived from fMRI and EEG/MEG were evaluated in the 

theta frequency band (van Diessen et al., 2014b).  The authors did not detail the boundaries of 

this frequency band, but conventionally this would be regarded as 4-7 Hz and this, therefore, 

overlaps with our result.  A higher characteristic path length in IGE is also consistent with the 

significant results for this metric in the structural connectivity studies in our review paper 

(Xue et al., 2014a, Qiu et al., 2017, Lee and Park, 2019, Pegg et al., 2020a), in addition to a more 

recently published paper (Lee et al., 2020).  This is further consistent with a systematic review 

where a positively correlated relationship between structural and functional connectivity was 

described (Straathof et al., 2019).   
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Differences between IGE and controls in nodal metrics averaged across the network (average 

node strength/mean degree, or average betweenness centrality) were found in both the fMRI 

and EEG graph theoretic studies.  Interpreted together, these results suggest that there is 

altered connectivity of network nodes in IGE compared to controls.  However, there are 

differences in whether the average node strength/mean degree was higher or lower in IGE 

between the fMRI and EEG studies, which makes further interpretation at a physiological level 

challenging.  The picture does not become clearer when considering similar studies; contrary 

to our own EEG results, a greater mean degree in the 6-9 Hz frequency band has been 

previously reported (Chowdhury et al., 2014).  To my knowledge, nodal measures averaged 

across the network have not been previously described in fMRI studies of IGE.  It is important 

to note that outcomes between fMRI and EEG/MEG studies may not be directly comparable.  

This is owing to factors including differences in network density, extent of brain coverage and 

importantly, dissimilar sensitivities to temporal scale, which may mean that dynamical 

alterations are captured differently by each modality.  It is possible that characteristic path 

length alterations are temporally stable, whereas nodal metrics may be more influenced by 

dynamical factors.  Similarly, nodal connectivity may vary between or within individuals.  This 

is consistent with the finding of a lack of specific individual nodal regions of altered resting 

state connectivity in IGE identified in our fMRI study and similar studies (Zhang et al., 2011, 

Laiou et al., 2019).  Notably, each of our graph theoretic studies had different participants, 

with different proportions of those with WC-IGE (the study population with WC-IGE in the 

fMRI study comprised a lower proportion).  It is clear that the network alterations in the IGE 

cohort in our EEG analysis were driven by the group with WC-IGE.  Thus, results derived from 

cohorts with differing proportions of patients with WC-IGE may not be directly comparable.  

An alternative explanation for the difference in network features in people with IGE compared 

to controls, is that it represents direct drug effects regardless of epilepsy.  However, evidence 

from other studies in both the spectral power and graph theoretic literature contradicts this.  

As outlined in the preceding section, overall evidence pertaining to drug effects on spectral 

power suggests that it is reduced by commonly used AEDs.  Where spectral power in 

medicated and unmedicated individuals with IGE has been compared, one study reported no 

differences (Miyauchi et al., 1991) and another reported increased spectral power in medicated 

patients at 2-4 Hz and 7-8 Hz only (Willoughby et al., 2003).  Possible effects of specific AEDs 

were not addressed in these studies.  There are limited studies in the literature that have 

assessed drug effects on network topology.  An fMRI connectivity study reported alterations in 

global efficiency (the inverse of path length), but not clustering coefficient, with topiramate 



 
 

203 

 

but not lamotrigine, levetiracetam or valproate (van Veenendaal et al., 2017).  Another fMRI 

study found an alteration in average betweenness centrality, but not small-world index, with 

carbamazepine but not with other AEDs (Haneef et al., 2015b).  Thus, existing studies do not 

provide evidence that medication commonly taken by participants in our studies 

(levetiracetam, valproate, lamotrigine) directly explains the result.  It was not possible to 

perform sub-group analyses of individual AEDs in our study as the number of participants 

taking only one AED was low.  The inclusion of a cohort with IGE who are not taking an AED 

would clarify the possibility of some results being a drug effect but would be practically 

challenging because typically AED treatment is advised at the point of diagnosis.   

The relationship between seizure control and network features in IGE  

The main aim of this thesis was to explore a potential relationship between seizure control 

and global network features.  It was postulated that alterations in neuronal networks that 

underlie epilepsy may also be implicated in AED response.  Consistent with the intrinsic 

severity hypothesis of DRE, which posits that disease severity determines response to 

treatment (Rogawski and Johnson, 2008), such alterations may be present from the outset.  

Alternatively, seizure-induced brain plasticity could result in the development of abnormal 

networks, which inhibit the effect of AEDs and lead to DRE (Fang et al., 2011).  Both 

hypotheses suggest that network abnormalities are on a spectrum, with WC-IGE network 

anomalies lying between those of DR-IGE and controls.  

Evidence that seizure control has an influence on network topology was found in the EEG 

graph theoretic study only, where a difference in network topology between WC-IGE and 

controls in the 10-12 Hz frequency band was demonstrated, without significant differences in 

other group comparisons in the same frequency band.  Rather than revealing a spectrum of 

network abnormalities sensitive to seizure control, this raises the possibility that differences 

observed between WC-IGE and controls in this frequency band reflect specific drug induced 

topological changes occurring in the WC-IGE group.  These alterations comprise a shift away 

from a regular topology to a network with stronger small-world network features, and an 

alteration in network hubs.  This perhaps renders the network less vulnerable to seizures than 

a network that has not undergone drug induced modifications to its structure.  Similar 

findings have been recently reported in a study which assessed the effects of cannabidiol on 

network topology in patients with Dravet’s syndrome who were refractory to AEDs (Anderson 

et al., 2020).  Patients who responded to cannabidiol (defined as those who had a 70% or more 
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reduction in seizure frequency), exhibited a lower mean degree compared to non-responders 

in the beta frequency band (in addition to a higher global efficiency and higher modularity).  

Potential explanations for a lack of corresponding effect on topology according to seizure 

control in the fMRI study include that there were proportionally fewer patients with WC-IGE 

in the fMRI participant cohort, and that each modality potentially has a different sensitivity to 

capture any differences, as outlined in the preceding section.  

In our EEG spectral power study, no relationship with seizure control was identified.  This 

suggests that the cortex remains hyperexcitable in well-controlled epilepsy but that this has 

less influence on seizure likelihood than the overall network topology.  Another possibility is 

that the difference in AED burden between the two groups affected the results of this 

comparison.   

It would be simplistic to conclude that the identified network topological alterations in the 

WC-IGE group in our EEG study are alone responsible for reduced vulnerability to seizures.   

To illustrate this, in a study of network features in people with IGE and healthy first-degree 

relatives compared to controls (Chowdhury et al., 2014), the same network aberrations that 

were found in the group with IGE were also present in the first-degree relative group, thus 

demonstrating that factors beyond these network alterations are necessary for seizures to 

ensue.  Similarly, it is known that any brain, under certain conditions, can transition to a 

seizure state and therefore how the ‘non-epileptic’ network becomes vulnerable in such 

settings is an important consideration.  It is possible that the lack of significant difference in 

network topology in people with DR-IGE compared to controls may be explained by factors 

that are not considered in static connectivity measures.  

Unaccounted for connectivity measures are likely to include dynamic factors which are 

involved in determining transition to the seizure state (Woldman et al., 2019, Schmidt et al., 

2016).  In the hypothesis of epilepsy arising from a bi-stable state, it is proposed that the brain 

can exist in two network states (attractors) and can converge to and transition between the 

two states via a dynamical bifurcation (Lopes da Silva et al., 2003) (figure 28).  One state is the 

interictal resting state, and the other is the seizure state.  In a computer model of CAE, state-

plane representations of the two stable states using a stimulation of the thalamocortical 

network were created (Suffczynski et al., 2004); In the normal brain, it was demonstrated that 

the resting state was distinct from the seizure state, which meant that transition to the seizure 

state did not occur.  In the ‘epileptic brain’, there was a smaller distance between the two 

attractors which meant that any fluctuation could readily cause transition to the seizure state.  
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More recent modelling studies support the notion that the likelihood of transition to the 

seizure state depends on an interplay between network structure and the excitability of 

network nodes (Petkov et al., 2014, Lopes et al., 2020).  Incorporating our results into this 

framework, it is possible that in the epileptic brain which responds to medication, the resting 

state network topology becomes more stable which means that bifurcation to the seizure state 

is less likely to occur.  

 

 

 

 

 

 

 

 

 

 

The proposition that the network in people with DR-IGE does not gain adequate drug-induced 

topological stabilisation provides a different perspective on the network hypothesis of drug 

resistance.  It may also be consistent with a framework that incorporates the inherent severity 

hypothesis of drug resistant epilepsy.  Within this, people with severe epilepsy do not gain 

seizure control because the network abnormality is more pronounced and, therefore, the 

amount of medication required to effectively alter the network to a less vulnerable state may 

Brain with epilepsy  Healthy brain  

Figure 28.  2D state-plane representations of oscillations in a normal brain and a brain with 
epilepsy.  These were obtained via computer stimulations of the thalamocortical network. The 
normal resting state is the central cluster of oscillations and the seizure state is represented by 
the peripheral oscillations. The single thick elliptical shape represents the transition point, where 
dynamic bifurcation to the seizure state occurs.  In someone without epilepsy these two zones 
are separate from each other and therefore a transition to the seizure state will practically never 
occur (unless there are extreme alterations to the neuronal environment).  In a brain with 
epilepsy, the distance between the two attractors is much smaller, such that any fluctuation in 
the critical parameters, or the initial conditions, can give rise to a transition to the seizure state.  
Figure from F. H. L. da Silva, W. Blanes, S. N. Kalitzin, J. Parra, P. Suffczynski and D. N. Velis, 
"Dynamical diseases of brain systems: different routes to epileptic seizures," in IEEE Transactions 
on Biomedical Engineering, vol. 50, no. 5, pp. 540-548, May 2003. Copyright 2003 IEEE. 
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be too great without causing toxicity.  As with the original intrinsic severity hypothesis of 

epilepsy, this alone does not account for people who shift in and out of seizure control, or for 

people who have a high pre-treatment seizure burden (consistent with severe epilepsy) but 

who subsequently become seizure free with AEDs.  However, these scenarios could be 

accounted for in a broader network model of drug resistance that incorporates multiple, 

interactive, pharmacological and neurobiological dynamical factors that together influence the 

likelihood of the complex resting state network system transitioning to the seizure state 

(figure 29).  For example, a person with epilepsy may not have intrinsically severe network 

abnormalities but may have frequent seizures due to being sleep deprived and depressed, both 

of which are known to lower the seizure threshold.  However, when an AED is initiated, 

because that person does not have intrinsically severe epilepsy, the network alters enough to 

become less vulnerable to seizures and therefore that person become seizure free.  

 

  

 

Figure 29.  A multifactorial network system model of antiepileptic drug resistance.  This is a 

schematic representation of how multiple neurobiological networks may interact as part of 

the resting state system in epilepsy.  It is hypothesised that intrinsic resting state network 

topology (RSN) is largely determined by genetic factors and brain structure.  Pharmaco-

biologically influenced networks may modify the global resting state network and transition 

(represented by the dashed line) to the seizure state (represented by the light blue ovoid) 

may occur.  The likelihood of transition is dependent upon the extent of intrinsic network 

abnormality. 
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Direct AED effects may also be considered to explain the finding of a difference in WC-IGE in 

the EEG graph theoretic study.  However, in view of the lack of alteration in topology in DR-

IGE topology, this would imply that people with DR-IGE are less likely to take their prescribed 

AED.  Whilst medication concordance can be an issue in chronic illness, to my knowledge this 

is not any more likely to occur in those with DR-IGE than those with WC-IGE.   

In our patient sample, the question as to whether network alterations have evolved over time, 

or whether they were present from the outset, remains open.  In a recently published similar 

study, which included an EEG at the time of diagnosis and one year later, network alterations 

at onset were described (Kim et al., 2020).  In this study, graph theoretic metrics in people 

with controlled JME were compared with those in people with drug resistant JME and 

controls.  Differences in global efficiency and local efficiency between drug resistant 

participants and controls were reported, with no differences in other group comparisons, and 

no differences in the other metrics used (mean node strength, characteristic path length, 

clustering coefficient, small-world index).  There was no significant change in metrics between 

the first and second EEG.  Of further consideration is that these results are not consistent with 

our own.  However, the interpretation of this study is likely to be significantly limited by the 

fact that only four patients with drug resistant epilepsy were included, and outcomes were 

classified after only one year.  This represents a relatively short time period in which to assess 

the response to two tolerated AEDs and therefore raises concerns about the accuracy of 

classification of treatment response.  To further limit comparability with our own study, only 

16 EEG channels were used, data were not filtered into frequency bands, high frequency data 

was used (which is likely to contain myogenic artefact), some participants were children, and a 

comparison of graph theoretic metrics between groups for the second EEG was not presented.   

 

6.3 General Limitations   

A potential limitation of the analyses relates to the challenges of classifying a patient’s drug 

responsiveness.  This may occur due to the natural history of epilepsy whereby a proportion of 

patients follow a fluctuating course, shifting in and out of seizure control (Brodie et al., 2012).  

A larger study may allow for the inclusion of this subgroup as a third category.  A second 

potential issue in classifying drug responsiveness is that patients may not be concordant with 

their prescribed AED, thus they may be inaccurately categorised as drug resistant, when in 

fact they may have better control of seizures if they were to take an adequate dose of AED.  

This could potentially dilute potential differences between WC-IGE and DR-IGE and does not 



 
 

208 

 

have a clear solution.  Thirdly, it is possible that some participants have unrecognised co-

existent NEAD or have NEAD alone, without epilepsy.  NEAD is characterised by paroxysmal 

episodes that superficially resemble seizures but are not associated with electrophysiological 

abnormalities.  It is currently understood as a psychological disorder that may be explained by 

an ‘Integrative Cognitive Model’ (Reuber and Brown, 2017).  NEAD is estimated to be a co-

existent diagnosis in 10-50% of people with epilepsy (Benbadis et al., 2001) and misdiagnosis is 

reported to occur in up to 1 in 5 people diagnosed with epilepsy, some of whom have NEAD 

(Smith et al., 1999, Benbadis and Allen Hauser, 2000).  However, as NEAD typically has a 

poorer prognosis than epilepsy (Reuber and Elger, 2003), it could be reasoned that people with 

NEAD misdiagnosed as epilepsy may be more likely to be classified as having DR-IGE than 

WC-IGE.  Therefore, the significant results in the WC-IGE group in are less likely to be 

affected by this theoretical potential issue.  Furthermore, each participant’s diagnosis was 

reviewed independently by two epilepsy specialists, which is expected to mitigate the risk of 

misdiagnosis.   

The cerebral effects of epilepsy may arise through a complex interplay of seizures, cognitive 

issues, pharmacological side effects and depression.  In comparing brain network features in 

people with WCE to those with DRE, it is recognised that the aforementioned factors are more 

prominent in DRE and therefore potentially may confound results.  However, if these factors 

had affected our results, it seems likely that greater network alterations would have been 

identified in the DR-IGE group.  Collecting information on depression and cognitive ability in 

future studies could be considered.  However, disentangling these complex effects on brain 

networks is likely to require prospective longitudinal studies. 

Although there is convincing evidence to support the notion of shared pathophysiological and 

genetic relationships of the various IGE syndromes (Helbig, 2015), it is possible that 

connectivity features vary between subtypes and as such, our results may be affected by 

considering them a homogenous group of disorders.  However, the number of participants 

with certain subtypes in our study were too low to perform a meaningful comparison.  In a 

recent study comparing graph theoretic measures in IGE subtypes using EEG, some 

differences in graph theoretic metrics between absence epilepsy (JAE and CAE combined) and 

JME were reported, but not between JME and EGTCSA or between absence epilepsy and JME 

(Lee et al., 2020).  This study was potentially limited by only having 16 electrodes and not 

filtering data into frequency bands.  Nevertheless, it suggests that further studies with larger 

sample numbers are indicated to clarify if IGE subtypes have differing network features.   
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Another limitation relates to the relatively small sample sizes in the studies.  As such, it is 

possible that the studies were underpowered to detect differences between WC-IGE and DR-

IGE.  Small sample sizes also increase the probability of type 1 errors (Button et al., 2013).  

Normal values of network metrics in healthy controls have not been established thus 

performing a power calculation is limited by the lack of a meaningful parameter to include in 

such a calculation (Pegg et al., 2020a).  The reliability of our findings would be strengthened 

by reproducing the results in an independent dataset.   

The comparison of results between our two graph theoretic studies was limited by the fact 

that the participant cohorts were different.  Therefore, it is not possible to determine if the 

differences relating to the relative increase or decrease in mean degree/average node strength 

are due to interindividual differences between participants, or a reflection of differing 

properties captured by each imaging modality.  

A limitation specific to the fMRI analysis is that IEDs may have occurred during data 

collection.  In a study evaluating the effects of IEDs captured on intracranial electrodes on 

BOLD activation, IEDs have been described to alter both co-localised and distant BOLD signal 

(Aghakhani et al., 2015).  It is therefore possible that the presence of IEDs may confound 

connectivity measures.  A combined EEG-fMRI study may overcome this limitation. 

 

6.4 Future directions  

A network analysis of EEGs across time points in the natural history of epilepsy in a 

prospective study is a clear direction for future work.  This would clarify if network differences 

are present from the outset, or whether they subsequently develop, either as a result of 

medication or disease progression. Incorporating information relating to cognitive and mood 

issues would enhance insight into the complex relationship between these factors and cerebral 

function in epilepsy. 

Differences between network topology in the WC-IGE group demonstrate the importance of 

considering seizure control in the design of future studies that aim to evaluate network 

connectivity in people with epilepsy compared with controls.  This would reduce the 

possibility of a null effect resulting from counteracting network differences between well-

controlled epilepsy and drug resistant epilepsy.  

The suggestion of differences in the interictal EEG in people with IGE and WC-IGE compared 

with controls may be of potential clinical value as a basis to improve the diagnostic capability 
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of EEG.  Current use of routine EEG in the diagnosis of IGE is largely limited to syndromic 

classification and detection of photosensitivity.  It relies upon visual detection of interictal 

spike-wave discharges.  Routine EEG is not used as a diagnostic test because initially, up to 

around 50% of patients with epilepsy do not have any IEDs (van Donselaar et al., 1992), while 

false positives occur in around 2% of people without epilepsy (Zivin and Marsan, 1968).  

Furthermore, ‘overinterpretation’ of EEGs is not uncommon (Benbadis and Tatum, 2003).   In 

two UK based studies, prevalence rates of epilepsy misdiagnosis have been demonstrated to be 

around 20% (Scheepers et al., 1998, Leach et al., 2005).  A further benefit of the availability of 

an objectively defined biomarker of epilepsy would be in reducing misdiagnosis and in 

particular, distinguishing NEAD from epilepsy.  The current gold standard for the diagnosis of 

NEAD is inpatient video telemetry, the purpose of which is to evaluate for the presence of 

epileptiform discharges during a clinical episode.  This is costly, inconvenient to patients, and 

may be inconclusive (Lawley et al., 2015).  Thus, the availability of an interictal EEG biomarker 

of epilepsy would potentially also improve the care of patients with NEAD.  Whilst there are 

some studies to suggest a difference in network topology between people with NEAD and 

controls (van der Kruijs et al., 2014, Li et al., 2015b, Ding et al., 2013, Barzegaran et al., 2012), 

further work to explore network features in people with NEAD compared to those with 

epilepsy is required.  If EEG could also identify people with drug resistant epilepsy at an early 

stage, it would facilitate a more tailored management approach for this patient group.  In 

addition, it would provide a means to better characterise drug resistant cohorts for 

pharmacological and epidemiological studies.   

Though the results of the fMRI study also suggest potential promise to be developed as a 

biomarker of IGE, fMRI is perhaps less suitable than EEG at a practical level as it is not readily 

available and would place an extra, costly, demand on resources (an fMRI scan would be an 

additional investigation, whereas EEG is typically performed to support a diagnosis of IGE).  A 

further avenue for future consideration is a similar study using MEG.  Whilst more expensive 

and not as widely available as EEG, MEG has the advantage of being less influenced by volume 

conduction and is more suitable for source reconstruction, thus enabling superior spatial 

localisation (Brookes et al., 2011).  Evidence to support that differing connectivity features 

according to seizure control may be detected by MEG can be found in two studies which 

examined the ictal MEG in CAE.  Both reported spatial differences in connectivity strengths in 

those responding to AEDs compared with those who had no response to AEDs (Tenney et al., 

2018, Miao et al., 2019). 
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After potential biomarkers have been identified, an assessment of their ability to infer 

outcomes at an individual level is paramount.  In this regard, the search for clinically useful, 

interictal EEG features very much remains an area for development.  In a study comparing 

candidate biomarkers for the diagnosis of IGE (Schmidt et al., 2016), the sensitivity for peak 

occipital alpha power (8-13 Hz) and the mean degree in the 6-9 Hz frequency band was very 

low (0% and 15.8% respectively, with 100% specificity).  The low sensitivity is perhaps 

unsurprising given that these measures were selected based upon the outcome of just one 

previous study for each measure (Larsson and Kostov, 2005, Chowdhury et al., 2014).   A 

fundamental requirement in the search for a biomarker is that it must be reproducible in 

different patient cohorts.  As outlined in our review paper (Pegg et al., 2020a), the outcome of 

graph theoretic alterations demonstrated in the IGE literature is inconsistent, particularly for 

fMRI studies, which suggests low reproducibility.  However, at the current time, it is not 

known whether such inconsistencies reflect the limitations of using these methods to capture 

connectivity, or whether it is due to extensive variations in study methodology.  Such 

variations are discussed in our review and particularly relate to network size, data collection 

modality and the method of determining synchronisation between network areas.  Our own 

experimental results demonstrate that even subtle changes to the methodology (such as the 

inclusion of negatively correlated connections), may alter the results.  Not only does variation 

in methodology limit study comparability, but it also makes inferring results at a physiological 

level more challenging.  Our review paper concludes with a suggested methodological 

framework for future graph theoretical analyses, with the aim of improving standardisation.  

However, to optimally improve study comparability and reproducibility, methodological 

studies are required to systematically assess how the various choices affect outcome metrics, 

in addition to a consensus on the preferred methods. 

Relatively small sample sizes are likely to be contributing to inconsistent outcomes in the 

field, due to both an increased risk of type one error (Button et al., 2013) and potential 

underpowering (as discussed in the section above).  Multi-centre collaborations for epilepsy 

studies would help overcome the issue of small sample sizes.  At a larger scale, the Human 

Connectome Project (Van Essen et al., 2012) and the ENIGMA project (Whelan et al., 2018, 

Hatton et al., 2020, Sisodiya et al., 2020) provide examples of studies that will improve 

statistical power in neuroscience studies. 

A further implication of this work is the novel insight that it provides into potential 

mechanisms of AEDs.  Our results suggest that examining individual drug effects at the 

network level (rather than at a cellular level), in relation to seizure control, merits further 
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consideration.  Whilst there is some existing evidence of altered connectivity with certain 

AEDs (Haneef et al., 2015b, van Veenendaal et al., 2017, Routley et al., 2017), the relationship 

between network effects and seizure control has only been explored for ethosuximide and 

cannabidiol, to my knowledge (Anderson et al., 2020, Tenney et al., 2018, Miao et al., 2019).  As 

previously discussed, the number of participants taking monotherapy in our studies was low, 

which meant this could not be explored.  

Although there is converging evidence that phase synchronisation and correlation between 

signals reflects communication between regions (Canolty and Knight, 2010, Palva et al., 2005, 

Lachaux et al., 1999), it should be noted that diverse methods to measure coupling exist and 

the optimal method to capture this complex phenomenon has not been ascertained.  

Furthermore, assuming stationarity in connectivity analyses is likely to be an 

oversimplification (Manuca et al., 1998, Jones et al., 2012, Allen et al., 2014).  Crucially, how 

static network representations of resting state networks relate to the emergent dynamics of 

the complex system they are a part of is a fundamental consideration for further work.  It 

seems likely that the optimal way of capturing brain connectivity is through methods that 

incorporate the dynamical, multivariate interactions of the network.  This notion is supported 

by the biomarker study referred to above (Schmidt et al., 2016), where a third candidate 

biomarker derived from the coupling value of individual nodes in a dynamic network model 

had better sensitivity for IGE than the mean degree metric (57.6% with 100% specificity).  

Extending beyond the relationship between static measures and dynamic systems, how the 

multifarious brain networks interact across a range of spatial and temporal scales and 

influence seizure vulnerability is a compelling question for future research.  Relevant temporal 

scales may include those spanning circadian and multi-day periods, combined phase 

information from which has shown promise as a biomarker for seizure prediction (Baud et al., 

2018).  This suggests that abnormalities in these temporally diverse networks are also 

implicated in seizure susceptibility and warrant further attention in the context of epilepsy 

drug resistance.  

 

6.5 Conclusions 

This thesis explored interictal functional networks in IGE, and the relationship between AED 

responsiveness and network features.   Converging evidence from experimental data derived 

from fMRI and EEG, demonstrated large-scale network alterations in IGE compared to 

controls.  These alterations included a suggestion of greater cortical hyperexcitability, a more 
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regular network topology and an alteration in the connectivity of network hubs.  The 

relationship between global network features and seizure control in IGE using spectral power 

analysis and graph theoretical analysis is a relatively unexplored area that we hypothesised 

may provide further insight into network alterations.  Indeed, our results demonstrate that 

people with well-controlled IGE have networks that differ from controls.  We propose that this 

reflects AED induced network alterations in people who respond to medication, which renders 

the network less vulnerable to transitioning to the seizure state.  The reason as to why some 

individuals do not respond to AEDs remains unanswered but may involve complex dynamical 

interactions between numerous brain networks, influenced by inherent disease severity.   

These results are of potential importance in advancing the understanding of mechanisms of 

epilepsy drug resistance and as a possible basis for further investigation of a biomarker of IGE 

and DR-IGE.  The finding of altered network features according to drug responsiveness 

demonstrates the importance of considering the degree of seizure control in future studies.  

The literature as a whole suggests the interpretation of study outcomes in network analysis 

can be greatly influenced by methodological variations.  This highlights the need for 

consensus on optimal methodological strategies in order to develop this promising area of 

research into drug resistant epilepsy.  
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