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Abstract

Electrocardiograms (ECGs), which capture the electrical activity of the human heart,
are widely used in clinical practice for detecting cardiac pathologies, and notoriously
difficult to interpret. Many commonly prescribed medications, including antihistamines,
antibiotics and antidepressants, can produce a complication known as ‘drug-induced
long QT syndrome (diLQTS)’, characterised by a prolongation of the QT-interval on
the ECG. It is associated with a life-threatening arrhythmia known as Torsade de Points
(TdP)—the leading cause of sudden cardiac death in young, otherwise healthy peo-
ple. Self-monitoring for diLQTS could therefore save many lives, but detecting it on
the ECG is difficult, particularly at high and low heart rates, even for clinicians who
routinely read ECGs. Whilst there have been attempts to automate ECG interpreta-
tion for several decades, the accuracy of these methods remains limited. In particu-
lar, automated QT measurement algorithms have proved unsatisfactory for detecting
LQTS. A major challenge for automated QT algorithms is identifying the precise end
of the T-wave (the terminal point), especially when the T-wave’s morphology is ab-
normal. This thesis is the first work to examine the ability of laypeople to interpret
an ECG for drug-induced QT-prolongation monitoring, devise a novel ECG visualisa-
tion technique to enable them to interpret it accurately, and exploit an understanding
of the human visual perceptual process to improve automated QT-prolongation detec-
tion. The approach draws from the field of pre-attentive processing theory in human
vision, showing through several experiments that using pseudo-colour to expose QT-
interval duration on the ECG significantly improves laypeople’s accuracy in detecting
diLQTS at risk of TdP regardless of heart rate and T-wave morphology. An under-
standing of how humans use pseudo-colour to interpret ECG data is combined with
clinical knowledge that considers the morphology of the T-wave to develop a novel,
rule-based algorithm that reliably automates the detection of diLQTS, thus facilitating
an explainable, shared human-machine ECG interpretation.
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Chapter 1

Introduction

1.1 Research motivation

Sudden cardiac death in young, apparently healthy people is a catastrophic event—
often caused by a wide range of hidden asymptomatic diseases [Thi18]. Consider-
able research attention has been devoted to a specific cardiac disorder known as ‘long
QT syndrome’ (LQTS)—the leading cause of sudden cardiac death in young adults
[GEB18, SWA+19, Sch20]. LQTS is associated with a life-threatening arrhythmia
known as Torsades de Pointes (TdP), a form of polymorphic ventricular tachycardia
that is often precipitated by specific triggers including auditory stimuli (e.g. sudden
noise or alarm), a slow heart rate during sleep, stress-related emotions and strenuous
physical activity (notably swimming) [PK01, SWA+19, BSW14, VTVAV15]. Athletes
with LQTS are thus particularly at risk of TdP arrhythmia attacks and sudden cardiac
death [JA13, BSW14, GPR16, BP09].

LQTS can be congenital—a result of genetic mutations in cardiac ion channels
(channelopathies)—or acquired, resulting from the clinical administration of phar-
macological drugs [Sch20, YC03, CMY08, DAF+10, Tis16]. Whilst TdP can result
from both congenital and acquired LQTS, acquired drug-induced long QT syndrome
(diLQTS) is by far the most common cause of TdP [NAS12, YC03, CMY08, ESTB20,
WS20]. A steadily increasing number of commonly prescribed medications have been
reported to cause diLQTS, TdP and sudden cardiac death, even in people with a struc-
turally normal heart [Kha02, CMY08, ESTB20]. This, in turn, is a significant issue
for clinicians, the pharmaceutical industry and regulatory authorities, mainly because
many of these medications, including antihistamines, antibiotics, antidepressants and
antiarrhythmic drugs [WS20, CMY08, YC03], are widely used, often for self-limited
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Figure 1.1: An illustration of the electrocardiogram (ECG) waveform, the QT-interval
and QT-prolongation. Different ‘waves’ (peaks and troughs) are labelled with letters
and represent different stages of the heartbeat, known as the ‘ECG complex’. The
QT-interval is measured from the beginning of the Q-wave to the end of the T-wave.

diseases. A major difficulty with identifying LQTS (both congenital and acquired),
however, is that it is often asymptomatic; sudden cardiac death can be the first clinical
manifestation, and therefore it may go undiagnosed, or underdiagnosed, without an
electrocardiogram (ECG) [Kha02, SC08, RV05, CMY08].

The ECG, which represents the electrical activity of the human heart, is a power-
ful diagnostic tool widely used in clinical practice for assessing cardiac function and
detecting pathologies. Its result is displayed as a graphical signal, where the ‘waves’
(peaks and troughs) are labelled with letters and represent different stages of the heart-
beat, known as the ‘ECG complex’. LQTS is characterised by a prolongation of the
QT-interval on the ECG, representing a delay in the ventricular repolarisation activity
of the heart, as shown in Fig 1.1.

Clinical research has shown that even a small (≈ 10ms) QT-interval increase from
a drug-free ECG baseline is considered a significant side effect of a QT-prolonging
drug [RFF+09, Bre10, FDA+05], and the Committee for Proprietary Medicinal Prod-
ucts (CPMP) guidelines state that increases in the QT-interval greater than 60ms from
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the drug-free baseline should raise concerns about potential TdP [fPMP+97, CMY08].
Moreover, a single dose of a QT-prolonging drug could dramatically prolong the QT-
interval within 24 hours for some patients, with the risk of TdP increasing with con-
tinued use [LVL+18, JVM+14]. Recent innovations in healthcare wearable technolo-
gies have made it possible to record high-quality, clinically reliable ECG data outside
of the clinical environment [FBG+19, CKA18, SGH+17, SPS+19, WRY19, RFP19].
Self-monitoring ECGs for drug-induced QT-interval prolongation could therefore save
many lives, especially for people at high risk, including patients on a known QT-
prolonging drug and patients participating in a clinical trial testing a new drug [Sch20,
Sha02, KW12, DAF+10, NAS12]. However, there are currently a number of chal-
lenges that limit the potential of ECG self-monitoring of this critical condition:

1. To date, there is no evidence that it is possible for lay people to interpret an
ECG and detect QT-prolongation.

2. ECG interpretation is known to be complex, and LQTS detection is par-
ticularly difficult even for clinicians. Small drug-induced increases in the
QT-interval from a drug-free ECG baseline can be clinically significant but
are difficult to perceive visually without rigorous measurement.

Although the ECG test is cheap and easy to repeat—making it widely available
in clinical practice even outside of clinical cardiology specialisms, including in
general wards, in general practitioner (GP) surgeries, and in other clinical set-
tings [DS14]—its interpretation is known to be complex, and learning how to
accurately interpret it can take many years [WBA+14, OCT+09, SAW03]. De-
tecting LQTS, in particular, is known to be difficult, even for clinicians who
routinely read ECGs [VRS+05, STN08]. Research has shown that delayed diag-
nosis of LQTS is common, and LQTS patients are often misdiagnosed with other
conditions (particularly epilepsy or seizure disorder; in these cases ECGs were
frequently requested, but interpretation errors occurred) [MMC+09, SHL19, KK09,
OMK10, MBA14]. Small increases in the QT-interval can be clinically signifi-
cant but are difficult to perceive visually without precise measurement [CMY08].
From a perceptual-cognitive perspective, this may be related to the fact that peo-
ple are poor at perceiving quantity represented along a horizontal scale [LSZ+09,
WA84, PK11].
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3. Changes in the T-wave morphology and heart rate (often caused by QT-
prolonging drugs) are known to further complicate visual LQTS detection
and TdP risk assessment.

Research has also shown that changes in the T-wave morphology and artefacts in
the ECG signal can cause misinterpretation of the QT-interval length [CMY08,
GPAW14, Mor01]. The effect of heart rate on the QT-interval is another chal-
lenge, as it is the proportionate rather than absolute length that is important, and
it is common to misinterpret the QT-interval at heart rates that differ from the
‘standard’ 60 bpm [LMJM04, CMY08]. Accordingly, it is common in clinical
practice to apply a QT correction formula (QTc) to correct QT-interval to heart
rate, and then use a ‘cut off’ value to identify at-risk QT-prolongation. However,
recent research has shown that these correction formulae underestimate or over-
estimate QT-prolongation (depending on the formula used); and are thus inac-
curate in identifying patients at risk of drug-induced TdP for fast and slow heart
rates [DLD+03, LMJM04]. This is particularly problematic, as QT-prolonging
drugs often alter the heart rate and affect the morphology of the T-wave to a
greater extent, causing distorted and bizarre T-waves [VJM+15].

4. There are currently no reliable algorithms able to automate LQTS detec-
tion. Current automated approaches to ECG interpretation rely on recog-
nizing different ECG waves, identifying the beginning of the Q-wave and
the end of the T-wave to measure the QT-interval—a process that quickly
becomes challenging in the presence of anomalies, artefacts or non-standard
ECG waves.

Automated ECG interpretation methods were introduced in the 1950s to assist
clinicians who had less training in ECG interpretation [Rau07]. These meth-
ods can identify a normal sinus rhythm with reasonable accuracy but are much
poorer at reliably detecting abnormalities [SW17, EI13, RSG09]. Therefore,
whilst most modern ECG machines in hospitals provide an automated measure-
ment of the QT-interval, these automated QT values are usually correct only
for a noise-free, normal sinus rhythm, in which the ECG waveforms (particu-
larly the T-wave morphology) are well defined [SW17]. However, ECG wave
characteristics (i.e. the height and width of different waves) are known to dif-
fer substantially across individuals, and are affected by factors including age,
race, sex and health status [GMZ06, MMDY94, HST+16]. At present, there
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are no standard definitions for the ECG waves [Wil80, Par85, SW17]. As a re-
sult, differences in current signal processing measurements persist [SW17]. In
addition to the challenge of correctly recognising the different ECG waves, iden-
tifying the precise end of the T-wave (the terminal point) is particularly difficult
to make automatically, especially when the T-wave’s morphology is abnormal
[GPAW14, HC94, GMZ06, Mor01].

As long QT syndrome detection currently depends on accurate QT-interval
measurement, automated QT measurement algorithms have proved unsatisfac-
tory for detecting LQTS [KBD+18, TAS+15, EI13, GL13, TABW11, RSG09,
CMY08, MCbA01]. Garg and Lehmann [GL13] found that even a widely used
computerised ECG interpretation system was not able to detect QT-interval pro-
longation in 52.5% of patients affected. In a recent study, seven ECG interpreta-
tion programs commonly used in clinical practice were assessed for their accu-
racy in measuring different ECG intervals including the QT-interval [DBDM20].
The results showed that substantial differences in ECG interval measurements
were found between programs, and the largest differences were for the QT-
interval confirming previous research [DBDM20]. A major issue with under-
standing the limitations of automated QT-interval measurement algorithms is
that the majority are proprietary or unavailable, thus formally bench-marking the
performance of different algorithms, and hence advancing research in this area,
is not possible at present [DBDM20, SW17, VDPL+18, MSSS17, CMY08].

5. Drug-induced QT-prolongation, in particular, is known to invalidate auto-
mated QT-interval measurement algorithms due to the substantial changes
it causes to T-wave morphology and heart rate, thus causing underestima-
tion of the risk of TdP.

Research has shown that drug-induced long QT syndrome, in particular, can
be underestimated and under-reported by computerised methods in patients on
Methadone, a drug that is infamous for prolonging the QT-interval and increas-
ing the risk of TdP [TAS+15]. At present, clinicians do not regard automated
QT measurement algorithms as sufficiently reliable for use in the clinical TdP
risk assessment of a QT-prolonging drug [SW17, TAS+15, RSG09, CMY08,
TMH+13]. Accordingly, clinical recommendations state that QT-interval should
be measured and corrected to heart rate manually by a clinician specialising in
ECG interpretation [ITD+20, IP13, RSG09, CMY08, FDA+05].
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This thesis uses knowledge from human visual perception to re-visualise ECG data,
such that QT-interval prolongation can be easily perceived by laypeople, and uses this
same visualisation as the basis of an explainable, automated interpretation algorithm.
The rationale for using a science-of-perception-based approach to inform the design
and development of ECG self-monitoring interventions is as follows:

• Empirical evidence has demonstrated that accurate ECG interpretation depends
primarily on the human perceptual skill of pattern recognition [WBA+14], with
experts in ECG interpretation relying on this first, and resorting to a more sys-
tematic approach (i.e. measuring the duration and amplitude of different waves
and intervals precisely) if they run into barriers [DMH+19].

• Reasoning is often an interaction with cognitive tools including computer sys-
tems, a concept described as ‘distributed cognition’ emphasising that little intel-
lectual work is done with our eyes and ears closed [Hut00]. Data visualisation
techniques therefore have an important role to play in supporting rapid and accu-
rate interpretation of complex information [War12, HBE95, HBE96]. One of the
most powerful aspects of visualisation is that it exploits the highest bandwidth
channel between the computer and the human brain, as we acquire more infor-
mation through vision than through all of the other senses combined [War12].

• To support an intuitive ECG interpretation for laypeople, without extensive prior
training required, we need to understand how people perceive ECG data, and
the extent to which using knowledge of human perception in the design of ECG
visualisation techniques can aid the interpretation process and make it easier to
perceive clinically significant signal patterns.

• Using an understanding of human visual perception of the ECG as the basis
for machine interpretation has the potential to endow machines with a ‘human-
like’ perceptual ability to recognise clinically significant signal patterns, and thus
facilitate an explainable, shared human-machine ECG interpretation.
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1.2 Aim and research questions

The overarching aim of this research was to examine laypeople’s ability to perceive
drug-induced long QT syndrome (diLQTS) on the ECG and explore whether exploit-
ing knowledge of human visual perception to re-visualise the ECG signal could facil-
itate diLQTS detection by humans and machines simultaneously. Based on the afore-
mentioned research motivation and challenges, the specific research questions were as
follows:

1. Can laypeople identify a drug-induced QT-prolongation on the standard ECG
visualisation method? Does the presentation of the ECG signal trace (as a single
complex representing one heartbeat or a 10-second rhythm strip showing more
than one complex) affect this ability?

2. Can the use of science-of-perception-based visualisation techniques to re-visualise
the ECG signal improve laypeople’s ability to visually detect drug-induced QT-
interval increases from a drug-free ECG baseline at a regular heart rate?

3. Can the visualisation technique be developed to support laypeople in differen-
tiating between prolonged QT-intervals at risk of developing TdP and ‘normal’
QT-intervals showing no risk of TdP at varying heart rates, with the presence
of drug-induced T-wave morphological changes, and without comparison with a
drug-free ECG baseline?

4. Can the perceptual heuristics used by humans when interpreting the visualisation
be modeled to improve automated QT-prolongation detection algorithms?

5. Can the algorithm be developed to reliably detect drug-induced QT-prolongation
at risk of TdP regardless of heart rate and T-wave morphology across a wide
range of ECG cases?
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1.3 Overview of this thesis

This thesis is submitted, with permission from the supervisory team from the Faculty of
Science and Engineering, in the journal format (formerly known as alternative format).
The main chapters within the thesis (Chapter 4 to 8) are therefore in the form of re-
search papers. These chapters follow a sequential approach in addressing the research
questions, and the section titled ‘Thesis context’ at the beginning of each chapter is
dedicated to explain its unique contribution to the overall research problem the thesis
aims to address. The content of each chapter and the corresponding publication are
outlined below:

• Chapter 2 presents the theoretical and practical context of this research using
an interdisciplinary review approach—across the fields of cardiac physiology,
computer science and cognitive psychology—to gain a broader understanding
of the research problem, discuss the challenges of current ECG interpretation
approaches and suggest potential, science-of-perception-based solutions for de-
tecting long QT syndrome on the ECG.

• Chapter 3 summarises and appraises the published evidence on computer-based
ECG interpretation and visualisation methods proposed in the current literature
to support LQTS detection and/or risk assessment. It discusses recent advances
in and limitations of these methods and identifies the current knowledge gaps in
the field.

• Chapter 4 addresses the first research question through a psychophysical and
eye-tracking experiment that quantifies laypeople’s ability to detect drug-induced
QT-interval prolongation at a regular heart rate on the standard ECG, and deter-
mines whether the presentation of the ECG signal trace (as a single heartbeat or
ten second lead) affects this ability. The content of this chapter is adapted from:

Alaa Alahmadi, Alan Davies, Markel Vigo, and Caroline Jay. Can
lay people identify a drug-induced QT-interval prolongation? A psy-
chophysical and eye-tracking experiment examining the ability of non-
experts to interpret an ECG. Journal of the American Medical Infor-

matics Association, 2018.
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• Chapter 5 addresses the second research question with a psychophysical and
eye-tracking experiment that evaluates whether using a pseudo-colouring visu-
alisation technique to highlight QT-interval duration on different coordinate sys-
tems (Cartesian vs. Polar) can support laypeople in identifying increases in the
QT-interval from a drug-free ECG baseline at a regular heart rate. The content
of this chapter is adapted from:

Alaa Alahmadi, Alan Davies, Jennifer Royle, Markel Vigo, and Car-
oline Jay. Evaluating the impact of pseudo-colour and coordinate
system on the detection of medication-induced ECG changes. In Pro-

ceedings of the 2019 CHI Conference on Human Factors in Comput-

ing Systems, pages 1–13, 2019.

• Chapter 6 addresses the third research question with a multi-reader, multi-
case (MRMC) receiver operating characteristic (ROC), psychophysical and eye-
tracking experiment that evaluates whether using the pseudo-colouring visuali-
sation technique and changing the coordinate system (Cartesian vs. Polar) can
support laypeople in differentiating between prolonged QT-intervals at risk of
developing TdP and ‘normal’ QT-intervals showing no risk of TdP at varying
heart rates and across different QT-prolonging drugs affecting T-wave morphol-
ogy. The content of this chapter is adapted from:

Alaa Alahmadi, Alan Davies, Markel Vigo, and Caroline Jay. Pseudo-
colouring an ECG enables lay people to detect QT-interval prolonga-
tion regardless of heart rate. PLoS One, 15(8):e0237854, 2020.

• Chapter 7 addresses the fourth research question by exploring how modelling
the visual perceptual process—that we hypothesise the human is using to inter-
pret the pseudo-colouring visualisation—can be used as a basis for an automated
ECG interpretation algorithm. A pilot version of an explainable algorithm that
uses a ‘human-like’ signal representation approach is presented, where its accu-
racy is compared with human interpretation data and current signal processing
techniques in detecting QT-prolongation at risk of TdP across several heart rates
and QT-prolonging drugs. The content of this chapter is adapted from:

Alaa Alahmadi, Alan Davies, Katherine Dempsey, Markel Vigo, and
Caroline Jay. Human-machine perception of complex signal data. In
Human-Like Machine Intelligence. Oxford University Press, 2021.
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• Chapter 8 addresses the fifth research question and presents an enhanced ver-
sion of the explainable ‘human-like’ algorithm tested on a larger number of
ECGs (n = 5050) across four known QT-prolonging drugs and placebo. We
empirically compares two approaches to building the enhanced algorithm: a
manually-curated ‘expert’ algorithm that incorporates knowledge from the clin-
ical literature considering the T-wave morphology; and a statistical machine
learning decision tree, which automates the generation of the rules from the same
set of data. The effect of drug type on the algorithm’s sensitivity to increases in
the QT-interval was also modelled to evaluate the effectiveness of the algorithm.
The chapter also reports the results of two focus groups—one consisting of pa-
tients, the other of clinicians—which explored the relevance of our approach to
clinical practice. The content of this chapter is adapted from:

Alaa Alahmadi, Alan Davies, Jennifer Royle, Leanna Goodwin, Katharine
Cresswell, Zahra Arain, Markel Vigo, and Caroline Jay. An explain-
able algorithm for detecting drug-induced QT-prolongation at risk of
torsades de pointes (TdP) regardless of heart rate and T-wave mor-
phology. Computers in Biology and Medicine, 2021.

• Chapter 9 concludes by summarising and synthesising the main findings of this
thesis, and recommending directions for future work.
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1.4 Contributions

This research provides a new perspective on the challenging topic of electrocardiogram
(ECG) interpretation and drug-induced long QT syndrome detection. It is the first
work to examine the ability of laypeople to detect drug-induced QT-prolongation on
an ECG; devise a novel ECG visualisation technique to enable them to interpret it
accurately; and exploit an understanding of visual perception to improve automated
QT-prolongation detection—facilitating an explainable, shared human-machine ECG
interpretation. Empirically addressing the five research questions reported in Section
1.2 yielded the following contributions:

1. A demonstration that laypeople are able to detect drug-induced QT-prolongation
on the standard ECG, and that they are able to do this more reliably when
viewing multiple ECG complexes than when they are viewing a single com-
plex.

A psychophysical and eye-tracking study was used to quantify laypeople’s abil-
ity to detect QT-prolongation on the ECG, and demonstrated that the majority
of people can perceive a clinically significant difference in QT-interval length
(drug-induced QT > 500ms with a potential risk of TdP) when compared with a
‘normal’ drug-free ECG baseline, when both ECGs have a heart rate of 60 bpm.
The study also demonstrated that the rhythm strip, which shows ten seconds of
the ECG, and therefore more than one ECG complex/heartbeat, is a better form
of presentation than a single complex, as it is less likely to be misinterpreted
due to artefacts in the signal. This is the first study to examine the ability of
laypeople to detect QT-prolongation, and the results provide the evidence that
self-monitoring is possible.

2. A novel ECG visualisation technique that improves laypeople’s accuracy in
visually detecting small drug-induced increases in the QT-interval from a
drug-free ECG baseline at a regular heart rate—eliminating the need for
QT-interval measurement.

A novel ECG visualisation technique which uses pseudo-colour to highlight
QT-interval duration on the ECG was designed, implemented, and evaluated
using a science-of-perception-based design approach. To understand the im-
pact of the coordinate system on ECG data interpretation, presentation of the
ECG signal on Cartesian and Polar coordinates was compared with and without
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pseudo-colouring. Psychophysical and eye-tracking methods were used to sys-
tematically evaluate the technique, and the results demonstrated that introducing
pseudo-colour to the ECG significantly improves interpretation accuracy, and
that the coordinate system interacts with colour. Compared with the standard
ECG visualisation method, the pseudo-colour significantly improves people’s
ability to detect small increases in the QT-interval (≈ 19ms from a drug-free
baseline was estimated to be a noticeable increase for 75% of people) when the
ECG is displayed on a standard Cartesian coordinate system, but the greatest ac-
curacy is achieved when pseudo-colour is combined with Polar coordinates (≈
9ms QT-interval increase from a drug-free baseline was estimated to be a notice-
able increase for 75% of people). This shows that pseudo-colour can improve
sensitivity to QT-interval changes such that people can perceive increases that
are much smaller than a 1mm square on the standard ECG grid (which repre-
sents 40ms), even when T-wave morphology is abnormal.

3. An extension of the ECG visualisation technique that works at any heart
rate, and which improves laypeople’s accuracy in visually distinguishing
between ‘normal’ and prolonged QT-intervals at risk of TdP regardless of
heart rate and T-wave morphology—eliminating the need for QT-interval
measurement, heart rate correction and a drug-free baseline ECG compar-
ison.

We extended the development of pseudo-colouring technique to be automatically
adjusted according to heart rate using a clinically reliable TdP risk assessment
method known as the QT-nomogram [CIKD07]. We used a multi-reader, multi-
case (MRMC) receiver operating characteristic (ROC), psychophysical and eye-
tracking methods to systematically evaluate the technique, and we found that
applying pseudo-colouring to ECGs according to the QT-nomogram supports
laypeople in visually detecting QT-prolongation at risk of TdP, as well as iden-
tifying ‘normal’ QT-intervals showing no risk of TdP, regardless of heart rate,
T-wave morphology and coordinate system. The technique was tested with
QT-intervals across several heart rates for multiple patients on different QT-
prolonging drugs; no comparison baseline ECG was provided. Pseudo-colour
also helped reduce reaction times and increased satisfaction when reading the
ECGs. Eye movement analysis indicated that pseudo-colour helped to focus
visual attention on the areas of the ECG crucial to detecting QT-prolongation.
The results provide further evidence that self-monitoring ECGs for drug-induced
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LQTS is feasible.

4. An algorithm that exploits an understanding of the human perceptual pro-
cess to improve automated QT-prolongation detection without prior iden-
tification and detection of the Q-wave or T-wave—outperforming current
signal processing techniques.

We conduced an exploratory study modelled the visual perceptual process used
by humans when interpreting the pseudo-coloured ECG to develop a simple, ex-
plainable rule-based algorithm, which was compared with human interpretation
and current signal processing techniques used to measure the QT-interval. The
logic behind this novel human-like algorithm differs considerably from that used
by standard signal processing methods, as it takes a human-like perceptual per-
spective, calculating the percentage area of pseudo-colours under the ECG signal
curve, without prior identification and detection of the Q-wave or T-wave. The
results of this study demonstrate that a model of the human perceptual process
can be used as a basis for an automated interpretation algorithm, yielding more
accurate results than current signal processing techniques, and similar perfor-
mance to humans, which indicates that similar ‘human-like’ processes may be at
work.

5. An extension of the algorithm to incorporate clinical expertise about T-wave
morphology. This enhanced ‘expert’ algorithm can reliably detect drug-
induced QT-prolongation at risk of TdP regardless of heart rate and T-wave
morphology across a wide range of ECG cases—facilitating an explainable,
shared human-machine ECG interpretation.

We conducted an extended evaluation study introduced an enhanced version of
the explainable algorithm (called the ‘expert’ algorithm), which uses a ‘human-
like’ approach, where human perception of the pseudo-coloured ECG signal is
used to determine features, and diagnostic rules that are determined according
to the clinical literature. The study also explored whether the algorithm can
be improved by automating the rule-generation with a decision tree, and re-
ported the results of two focus group evaluations—one with patients and one
with clinicians—which explored the relevance of our approach to clinical prac-
tice.
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The results of the study showed that the ‘expert’ algorithm significantly improves
machine detection of drug-induced QT-prolongation at risk of TdP regardless of
heart rate and T-wave morphology, across a wide range of ECG cases. This
combined approach was more accurate than the averaged human participants.
Therefore, we hypothesise that a human-like approach to the development of di-
agnostic algorithms—incorporating both human pattern recognition ability and
clinical expertise—may have wide utility. Automating rule generation based on
these features has potential, but here it was not sufficient to produce a reliable,
trustable algorithm. A human-in-the-loop approach, where machine learning is
a tool used to surface potential rules, but these are validated empirically before
being implemented, maybe the best approach to use in clinical practice.

The focus group evaluations confirmed that the explainability of the algorithm is
important, supporting an ‘expert’ rule-based approach, rather than a fully auto-
mated approach. All patients and clinicians had a positive attitude towards using
the pseudo-colouring technique and perceived the explainable ‘expert’ algorithm
as a supportive tool that may help to overcome the potential challenges associ-
ated with human interpretation of the ECG. Clinicians commented that our ap-
proach would be particularly useful in reducing common errors associated with
manual QT-interval measurement, and in resolving issues with inter-observer
variability, particularly in clinical trial settings testing a new drug where accu-
rate, frequent QT-interval monitoring is crucial.

Overall, as well as having the potential to revolutionise self-monitoring ECGs for
LQTS (potentially saving many lives), this thesis lays the theoretical foundations for
how we can combine human perception and clinical knowledge to produce explainable
algorithms that are robust and transparent enough for use in clinical practice.
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1.5 External recognition of the contributions

• The work presented in Chapter 5 received the following awards:

– The University of Manchester Carole Goble Medal for outstanding doctoral
paper in computer science (2019).

– An excellence award of £1000 from Taibah University, Saudi Arabia (2019).

– It was Highly Commended in the The Institution of Engineering and Tech-
nology (IET) Healthcare Technologies Awards (2020).

• The work presented in Chapter 6 received an excellence award of £1000 from
Taibah University, Saudi Arabia (2020).

• The author was selected as the only Computer Science finalist in the Scien-
tific and Parliamentary Committee/Royal Academy of Engineering Exhibition
of STEM for BRITAIN for the work presented in Chapter 8 (2021). This work
also received an excellence award of £1000 from Taibah University, Saudi Ara-
bia (2021), and accordingly the author was awarded a congratulatory, distinction
certificate for receiving three consecutive excellence awards during her PhD.



Chapter 2

Background

2.1 Chapter overview

This chapter presents the theoretical and practical foundations of this research using an
interdisciplinary review approach—across the fields of cardiac physiology, computer
science and cognitive psychology—to gain a broader understanding of the research
problem, discuss the challenges of current ECG interpretation approaches and suggest
potential, science-of-perception-based solutions for detecting long QT syndrome on
the ECG.

To understand what an ECG represents, we begin with a brief introduction to the
basic physiological components of the normal and prolonged (during long QT syn-
drome) cardiac cycles and how they are reflected on the ECG. Next, the chapter pro-
vides an overview of the cellular action potential mechanism that drives the cardiac
cycle. This addresses critical questions relevant to this research including: How can
pharmacological drugs cause long QT syndrome (LQTS)?; What are the most signif-
icant drug-induced ECG changes (associated with LQTS) that could serve as major
risk predictors of Torsades de Pointes (TdP) arrhythmia and sudden cardiac death?
The chapter then introduces the standard ECG interpretation method currently used in
clinical practice, with the aim of understanding why LQTS, in particular, is difficult to
recognise clinically and computationally. The main challenges associated with human
and machine interpretation of LQTS reported in the literature are also summarised and
discussed.

One of the challenges associated with ECG interpretation is that it visualises the
raw signal of the heart electrical activity directly, which can be dynamic (where dif-
ferent cardiac pathologies interfere) and highly variable across individuals due to many
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factors—including age, gender and specific ethnic genes [GMZ06, MMDY94, HST+16]—
without any pre-processing of that visualised signal. This complicates the signal rep-
resentation in general and the perception of a difference or abnormal change within
the signal in particular. The human brain has the ability to filter the accumulated, vast
sensory information from the surrounding complex environment and process what is
important [War21]. Thus, to explore potential approaches to improving LQTS detec-
tion on the complex ECG signal, the chapter introduces a fundamental theory in human
vision known as pre-attentive processing. We describe how introducing pre-attentive
attributes such as colour (hue and intensity) to complex visual information can increase
stimulus salience and modulate visual processing speed in human perception. We then
discuss how such visual attributes can move from pre-attentive to attentive processing
when influenced by an individual’s intentions and visual task goals. 1

2.2 ECG interpretation of long QT syndrome: from
basic physiology to clinical practice

2.2.1 The cardiac cycle: structure and function of the heart

The heart is a vital organ responsible for pumping blood throughout the body, supply-
ing tissues with oxygen and nutrients, and removing carbon dioxide and other waste
products [Kat10, Opi04]. The internal cavity of the heart is divided into four functional
chambers: the left and right atrium for receiving blood and the left and right ventricle
for pumping it [Kat10, DS14].

A single cardiac cycle (i.e. one heartbeat) can be divided into two primary phases:
the diastole and the systole, which occur in the atria first and then in the ventricles
[Kat10, Opi04]. Initially, all the chambers of the heart are in the diastole phase, where
the atria and ventricles are relaxed (not contracting), allowing both atria to fill with
blood [DS14, Kat10]. The deoxygenated blood from the body is emptied into the right
atrium via the superior vena cava (SVC) and inferior vena cava (IVC) [DS14, Kat10].
The left atrium receives oxygenated blood from the lungs via four pulmonary veins.
Then, while the ventricles are still in the diastole phase, the atria systole phase begins
where both atria contract, allowing blood to flow passively from the left atrium and
right atrium into the left ventricle and right ventricle, respectively [DS14, Kat10]. The
mitral valve regulates the movement of blood from the left atrium to the left ventricle,

1The illustrations/figures in this chapter were created using BioRender.com.

https://biorender.com/
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Figure 2.1: An illustration of the heart’s chambers and vessels.

while the tricuspid valve allows blood to flow from the right atrium to the right ven-
tricle, preventing blood from flowing backwards [DLRH19]. The ventricular systole
phase then begins where both ventricles contract [DS14, Kat10]. The deoxygenated
blood in the right ventricle is pumped into the lungs through the pulmonary artery to
be oxygenated, while the oxygenated blood in the left ventricle is pumped into the
rest of the body via the aorta [DS14, Kat10]. Figure 2.1 shows an illustration of the
chambers and vessels of the heart.

How does the ECG relate to the cardiac cycle?

The cardiac cycle mechanism is regulated by an electrical conduction system that coor-
dinates the contraction of the four chambers of the heart and governs the rate at which
the heart beats [IMZ12, Kat10, Kha08, DS14]. This electrical conduction system con-
sists of several components that are responsible for generating electrical impulses and
passing them through the heart including (1) the sinoatrial node (SAN or SA node)
for generating the heart’s electrical impulses; (2) the atrioventricular node (AV node)
for intentionally delaying impulses from the atria giving the ventricles enough time to
finish filling with blood; (3) the bundle of His for allowing the impulses to travel from
the atria to the ventricles; and (4) the Purkinje fibres, which play a significant role in
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Figure 2.2: An illustration of the electrical conduction system of the heart.

activating the electrical conduction and impulse propagation during the ventricular sys-
tole phase [IMZ12, Kat10, Kha08, DS14]. Figure 2.2 illustrates the heart’s electrical
conduction system.

The heart’s electrical activity is measured and recorded by an electrocardiogra-
phy device using electrodes placed on the skin of the limbs and chest [Kha08, DS14,
CAM+06]. The result of this recording is shown on an electrocardiogram (ECG) as a
graphical signal consisting of different waves, which are labelled with letters to rep-
resent different stages of the cardiac cycle [Kha08, DS14, CAM+06], as shown in
Figure 2.3. A combination of these waves, representing a single cardiac cycle, is
known as an ‘ECG complex’ [DS14]. The heart’s electrical activity during the car-
diac cycle’s diastole and systole phases can be shown on the ECG, where the P-wave
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Figure 2.3: An illustration of how the diastole and systole phases of the cardiac cycle
are reflected on an electrocardiogram (ECG).

represents the atrial systole, while the Q through T waves represent the ventricles sys-
tole [IMZ12, Kha08, DS14, CAM+06]. Figure 2.3 illustrates the diastole and systole
phases during the cardiac cycle on the ECG.

Although the heart’s electrical activity signal displayed on the ECG may not reflect
all the cardiac cycle’s mechanical events [BNNK18, Opi04], changes in this signal can
be strong indicators of cardiac pathologies [TRB16, IMZ12, DS14]. Therefore, the
ECG is considered a useful tool in diagnosing and detecting many types of cardiovas-
cular disease (CVD) [Kha08, DS14, CAM+06], particularly in asymptomatic patients
who may suffer from a clinically silent cardiac conduction disorder or arrhythmia—an
abnormal heart rhythm caused by an irregular activity of the heart’s electrical signal
[TRB16, CMY08].
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Figure 2.4: An illustration of electrocardiogram (ECG) waveforms and the long QT-
interval. The RR-interval represents the time between heartbeats and is used to calcu-
late heart rate.

What happens to the cardiac cycle during long QT syndrome?

As shown in Figure 2.3, the ventricles systole occupies the largest part of the heart’s
electrical activity during the cardiac cycle [IMZ12]. This electrical activity coordinates
the contraction-relaxation cycle of the ventricles’ muscles, and its duration is measured
on the ECG from the onset of the Q-wave to the end of the T-wave, which is known
as the QT-interval [YC03, CMY08]. In long QT syndrome (LQTS), the ventricles’
electrical activity takes longer than normal to coordinate this cycle; thus, the heart is
not pumping enough blood [YC03, CMY08, BPR+17]. Such delay prolongs the QT-
interval on the ECG (as illustrated in Figure 2.4) and can result in syncope (fainting due
to the insufficient blood flow to the brain) and sudden cardiac death [TRB16]. LQTS
can be congenital (presented at birth and caused by specific genetic mutations) or ac-
quired as a result of taking commonly prescribed medications including antibiotics,
antidepressants, antihistamines and antiarrhythmic drugs [YC03, CMY08].
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2.2.2 Cellular mechanisms of cardiac electrical activity

One of the characteristic features of a living biological cell is the ability to conduct
electrical signals through the cell membrane [Spe12, LZ01]. The membrane potential,
or membrane voltage, is the difference in voltage between the interior and the exterior
of a biological cell [Spe12, LZ01]. This is accomplished by controlling the concentra-
tion of differently charged ions between the intracellular fluid within the cell, and the
extracellular fluid outside the cell [IMZ12, Spe12]. The membrane potential is a vital
aspect of the cardiac cycle and cell-to-cell electrical signalling, and ultimately the heart
function [IMZ12, Spe12]. This section describes the basic principles with respect to
ions and membranes’ electrical and chemical properties and how these forces combine
to induce the heart muscles to contract and relax during the cardiac cycle. These prin-
ciples are essential for interpreting the ECG, as well as understanding the causes and
mechanisms underlying drug-induced long QT syndrome, and sudden cardiac death
[B+18, TRB16].

Cardiac action potential

In physiology, an action potential is a mechanism by which certain types of body
cells, known as electrically excitable cells, rapidly change in voltage to propagate
an electrical signal [CAK07, Spe12, LZ01]. It induces the cell’s resting membrane
potential—where the voltage is mostly negative inside the cell—to depolarise and
become gradually more positively charged when triggered by external electrical im-
pulses [CAK07, Spe12, LZ01]. This process is accomplished by regulating the flow
of differently charged ions, particularly sodium (Na+), potassium (K+) and calcium
(Ca++), between the inside and outside of the cell, through proteins called ion chan-
nels [IMZ12, Spe12]. At the end of the depolarisation phase, a repolarisation phase
begins where the cell returns to its resting state (i.e. it becomes mostly negatively
charged again) following a brief recovery period [IMZ12, Spe12]. An action poten-
tial occurs in nerve cells to communicate and conduct information and in muscle cells
(also known as myocytes) to induce the contraction process [IMZ12, Spe12].

The heart is essentially a muscular organ that consists of cardiac muscle cells,
known as cardiomyocytes or contractile cells, and cardiac pacemaker cells [IMZ12,
Spe00, Spe12]. The cardiomyocytes make up the heart atria and ventricles [IMZ12,
DS14]. The cardiac pacemaker cells can spontaneously generate the heart’s intrinsic
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electrical activity, triggering the cardiac action potential mechanism in the cardiomy-
ocytes and causing the heart muscles to contract and pump blood during a heartbeat
[Spe00, IMZ12]. The sinoatrial node (SA node), atrioventricular node (AV node) and
the bundle of His are all types of cardiac pacemaker cells [Spe00, IMZ12, DS14] (Fig-
ure 2.2). The SA node is the primary pacemaker of the heart and has the highest rate
of spontaneous depolarisation electrical impulses [Spe00, IMZ12, DS14].

The action potential occurs in both the cardiomyocyte and the pacemaker cells
[Spe00, IMZ12, DS14]. The action potential in ventricular cardiomyocyte cells is
stronger and lasts longer than in the pacemaker cells [IMZ12, Spe00, Spe12]. It plays
a significant role in maintaining the function of the cardiac cycle, mainly at the stage
of pumping blood from the heart to the rest of the body [Kat10, Opi04]. It is gen-
erally divided into 5 stages (stages 0-4) [IMZ12, Spe00, Spe12]. Phase 4 acts as the
baseline at which membrane potential begins and ends. Phase 0 is the phase of fast de-
polarisation; Phase 1 to 3 are when repolarisation occurs; Phase 4 is the resting phase
[IMZ12, Spe00, Spe12, PTH07]. The action potential mechanism during each phase
is outlined below.

Phase 4 (Resting phase) When the heart ventricles are relaxed, the potential inside
the cardiomyocyte cell is negative compared with the outside, and the cell membrane
is at rest [PTH07, Spe12]. The ions outside the cell are primarily sodium (Na+) and
calcium (Ca++), whereas inside the cell they are mainly potassium (K+) [IMZ12,
Spe00, Spe12]. During this phase, the voltage inside the cell is more or less constant,
and it has a stable resting membrane potential of roughly -90 mV [PTH07, CMY08,
Spe12]. This is accomplished by maintaining the concentration gradient of K+ ions
across the cell membrane. [IMZ12, Spe00, Spe12].

Phase 0 (Fast depolarisation) The SA node cells generate a positive depolarisation
electrical impulse, which is typically fired at a rate of between 60 and 100 beats per
minute (BPM) [DS14]. This electrical impulse stimulates the resting membrane po-
tential to depolarise, by increasing the positive voltage within the cell slightly until it
reaches a certain threshold (roughly -70mv) [PTH07, CMY08, Spe12]. At this thresh-
old, membrane permeability to potassium decreases and fast sodium channels open,
causing a rapid influx of inward sodium currents (INa) to the cell, and a fast and steep
depolarisation in ventricular cells from -70mV to +30mV [PTH07, CMY08, Spe12],
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reflected on the ECG as a combination of Q, R and S waves, known as the QRS com-
plex (Figure 2.6).

Phase 1 (Notch, Early repolarisation) This phase begins by rapidly closing the
sodium channels such that they become inactivated. [IMZ12, Kat10]. This is com-
bined with rapidly opening and closing the potassium channels, allowing for a short
transient efflux of K+ [IMZ12, Kat10]. The decrease in sodium permeability makes
the membrane potential slightly more negative [IMZ12, Kat10]. The short diffusion of
outward potassium currents (Ito) leads to a partial repolarisation, known as ‘notch’ or
‘early repolarisation’ [PTH07, CMY08]. This phase is often very short and is included
in the depolarisation (The QRS complex) representation on the ECG [Kat10].

Phase 2 (Plateau) The calcium channel opens in this phase, allowing a greater in-
flux of inward L-Type Ca++ currents (ICa−L) to flow into the cell, which eventually
balances the efflux of K+ currents [IMZ12, Kat10]. This phase creates a constant volt-
age in the membrane potential, known as ‘plateau’ phase [PTH07, CMY08, KBM20],
reflected on the ECG as the ST-segment (Figure 2.6).

Phase 3 (Raid repolarisation) Rapid repolarisation follows in phase three, where
calcium channels close whilst potassium channels remain open, allowing for a more
rapid efflux of K+ [IMZ12, Kat10]. This rapid repolarisation requires more potassium
ions to flow out of the cell, driven predominately by the interaction of two types of
potassium ion channels: the rapid (IKr) and slow (IKs) outward currents of the delayed
rectifier potassium channels [PTH07, CMY08]. The IKr is activated before the IKs,
and both of them are crucial for ventricular repolarisation [GWY+11, CMY08]. This
phase is reflected on the ECG as the T-wave (Figure 2.6).

To summarise, the cellular action potential driving the cardiac cycle is regulated by
a specific series of depolarising and repolarising ion currents mediated by cardiac ion
channels. During the ventricles’ systole phase, the influx of sodium ions (INa inward
currents) are responsible for depolarising the cell, and the diffusion of potassium ions
out of the cell (including Ito, IKr and IKs outward currents) maintains the repolarisation
and prepares the ventricular muscles to relax for the subsequent diastole phase of the
cardiac cycle. The influx of calcium (ICa−L) ions helps balance the outward potassium
currents, regulating the repolarisation time. Figure 2.5 illustrates the cardiac ion mech-
anisms during the ventricular depolarisation and repolarisation cycle and how they are
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shown on the ECG. Figure 2.6 shows the reflection of each action potential phase on
the ECG.

Figure 2.5: An illustration of the cellular action potential mechanisms during the ven-
tricular depolarisation and repolarisation cycle. Depolarisation (represented on the
ECG by the QRS complex) is induced by the flow of Na+ ions into the cell, while
repolarisation (represented by the T-wave) is maintained by the diffusion of K+ ions
out of the cell—balanced by the influx of Ca++ ions.
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Figure 2.6: The depiction of each phase of the cardiac action potential on the ECG. INa

= inward sodium currents. ICa = inward calcium currents. Ito, IKr and IKs are types of
outward potassium currents.
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2.2.3 ‘Down the rabbit hole’: ion channelopathies, drug-induced
long QT syndrome and sudden cardiac death

Prolongation of the cardiac action potential—caused by alterations in the cardiac ion
channels—can lead to a life-threatening heterogeneous group of disorders known as
channelopathies [SWA+19]. These can be caused by genetic mutations or pharmaco-
logical drugs including ion channel blockers, which target one or more of the cardiac
ion channels to alter the flow of ions within the heart [CMY08, RV05]. For example,
people with high blood pressure can be treated with calcium channel blockers (CCBs)
to slow the flow of calcium ions and widen blood vessels, thereby increasing blood
flow [EBB04]. Research in precision medicine has shown that individuals may have
mutations in one or more of the genes known to cause channelopathies, but little or no
prolongation of the cardiac action potential at baseline (i.e. before taking the ion chan-
nel blocker) [Sch20, DDB+97, Sha81, ASS+99]. In these patients, the mutations of
the genes render certain ion channels more susceptible to ion channel blocking drugs
[CMY08, Sch20].

First-principles in the cardiac cellular mechanisms show that the potassium channel
mutations result in decreased outward currents, while the calcium and sodium chan-
nel mutations result in increased inward currents [Ant07, SWA+19, MK05]. Hence,
prolonging the cardiac action potential is caused by either an increase in sodium and
calcium inward currents or a reduction in the potassium outward currents [SWA+19,
MK05].

As described previously, the primary role of potassium channels during the cardiac
action potential is to repolarise the cardiac cells [PTH07, CMY08, Spe12]. A reduction
in the net outward potassium currents, particularly the rapid (IKr) and slow (IKs) cur-
rents, can therefore slow down the repolarisation process in the ventricular cells of the
heart [B+18, BPR+17]. This, in turn, prolongs the cardiac action potential and the QT-
interval on the ECG, which is clinically known as long QT syndrome (LQTS)(Figure
2.7). The human ethera-go-go-related gene (hERG), also known as KCNH2, encodes
the rapid IKr currents, whereas the KCNQ1 and KCNE1 genes together encode the
slow IKs currents [RV05, GWY+11]. These genes account for the majority of LQTS
cases [SWA+19]. However, LQTS has also been shown to be caused by mutations in
13 other different cardiac ion-channel genes including SCN5A (encodes for the sodium
channels) and ANK2 that encodes ankyrin-R protein affecting sodium channel activa-
tion [SWA+19, RV05]. Hence, each specific gene mutation leads to a particular type
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of LQTS [SWA+19, RV05, CMY08], which has a unique morphological signature on
the ECG [Zar06].

Figure 2.7: Blocking of the cardiac potassium channels (particularly IKr and IKs out-
ward currents) prolongs phase 3 of the cardiac action potential, which is reflected on
the ECG as a long QT-interval.
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The morphology of the QT-interval can thus help to determine the type of long
QT syndrome [CMY08, Zar06]. For example, long QT syndrome type 1 (where the
affected gene is KCNQ1, blocking IKs potassium currents) is shown on the ECG by
a broad T-wave; type 2 (where the affected gene is hERG, blocking IKr potassium
currents) is characterised by a notched T-wave; while type 3 (where the affected gene
is SCN5A, blocking INa sodium currents) is recognised by a peaked and delayed onset
T-wave [CMY08, Zar06]. Figure 2.8 shows these common types of long QT syndrome
distinguished on the ECG by the T-wave morphology.

Although long QT syndrome is often caused by genetic mutations, drugs that block
cardiac ion channels can also cause an acquired, drug-induced long QT syndrome in
healthy people without any genetic abnormality [NAS12, YC03, CMY08, ESTB20,
WS20]. The rapid (IKr) outward potassium current is most susceptible to pharma-
cological effect [CMY08]. Subsequently, drugs that block the human ether-a-go-go-
related gene (hERG) potassium channel are the most common cause of drug-induced
long QT syndrome (diLQTS) [TKK06, RPM+05, Bro04]. Since the mutation in this
gene (hERG or KCNH2) causes congenital long QT syndrome type 2 (LQTS2), the
drug-induced long QT syndrome shares very similar clinical characteristics to congen-
ital LQTS2. Examples include notched T-waves on the ECG, both may cause syncope,
or sudden cardiac death (often precipitated by auditory stimuli such as the ringing of
an alarm clock or a telephone) [CMY08, Bro04, SWA+19].

Figure 2.8: An illustration of three distinct common types of long QT syndrome
(LQTS) based on the T-wave morphology on the ECG.
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Figure 2.9: An illustration of drug-induced Torsades de Pointes (TdP) pattern on the
ECG.

How can long QT syndrome lead to sudden cardiac death?

A malfunction in cardiac ion channels delays cell-to-cell electrical signal transmission,
impairing the ventricular repolarisation phase during the cardiac cycle [SWA+19].
This delay can lead to electrical signal re-entry or abnormal automaticity into the sub-
sequent cardiac cycle, resulting in a rapid and abnormal heart rate known as ventricu-
lar tachycardia (VT), leading to syncope, dizziness, shortness of breath and chest pain
[TRB16, GEB18, Ant07, KS09]. If it is sustained (i.e. lasts longer than 30 seconds)
and untreated, it can lead to a life-threatening abnormal heart rhythm called ventricular
fibrillation (VF), which is commonly known as cardiac arrest [FA19b, CMY08, KS09].

The pattern of ventricular tachycardia (VT) on the ECG can be divided into two
types: monomorphic and polymorphic [FA19b]. Monomorphic VT shows symmetrical
cardiac cycle patterns, while polymorphic VT shows non-symmetrical cardiac cycle
patterns [FA19b]. A unique form of the polymorphic ventricular tachycardia (PVT)
that is associated with long QT syndrome is known as Torsades de Pointes (TdP)—
the leading cause of sudden cardiac death in young, apparently healthy people [YC03,
PK01, WS20]. In clinical practice, TdP is shown to be often short-lived and self-
terminating; however, it may degenerate into ventricular fibrillation (VF), and sudden
cardiac death [CMY08]. Figure 2.9 illustrates the drug-induced Torsades de Pointes
(TdP) pattern on the ECG.

Whilst TdP can be part of both congenital and acquired long QT syndrome (LQTS),
acquired LQTS caused by pharmacological drugs is by far the most common cause of
TdP [NAS12, YC03, CMY08, ESTB20, WS20]. Moreover, there is a clinically silent
type of long QT syndrome known as ‘forme-fruste LQTS’, in which individuals have
mutations in one of the cardiac ion channels genes but no QT-prolongation at their ECG



56 CHAPTER 2. BACKGROUND

baseline (i.e. prior to taking medication) [DDB+97, Sha81, ASS+99]. In these pa-
tients, undetected LQTS can manifest itself as drug-induced TdP and subsequent sud-
den cardiac death upon receiving the QT-prolonging drug [DDB+97, Sha81, CMY08].

The risk of drug-induced long QT syndrome is potentially high, and the TdP risk of
many widely used pharmacological drugs has only been recognised many years after
they were marketed [CMY08]. As such, a steadily increasing number of medications
are now being reported to cause drug-induced QT-prolongation, TdP and sudden car-
diac death [Kha02, CMY08, ESTB20]. This, in turn, has troubled both clinicians and
drug regulatory authorities, particularly because many of these QT-prolonging drugs
are commonly prescribed, often for self-limited diseases [YC03, WS20]. In recent
years, there has therefore been considerable renewed research in the risk assessment,
understanding, and prevention of drug-induced TdP [ESTB20, CMY08]. A particular
focus has been on understanding the role of cardiac ion channels in mediating ventric-
ular repolarisation and the pathogenesis of TdP that can be predicted from the ECG
[CNC15, SKQ+15, KFBW09, TRB16, RF18, GEB18, SWA+19].

Significant ECG risk predictors of sudden cardiac death associated with drug-
induced long QT syndrome

Pure hERG-blocking drugs and multi-channel blocking drugs (blocking the hERG
potassium channel with calcium or sodium channels) are strongly associated with
QT-interval prolongation [JVM+14, JG14, CMY08]. However, not all QT-prolonging
drugs cause TdP [BBH+84, CMY08, Tis16, KGS+12]. There is a whole spectrum
of pathological mechanisms (possibly sub-clinical genetic abnormalities in ventricu-
lar repolarisation) and drugs differing in their propensity to cause drug-induced TdP
and sudden cardiac death [CMY08, KGS+12, DAF+10]. The prolongation of the QT-
interval is thus a significant risk predictor of TdP, but it is not the sole or optimal
determinant, and recent research has shown that some morphological ECG changes
within the prolonged QT-interval can provide a more precise determination of the risk
of TdP [DAF+10, TRR+07, SKQ+15]. Thus, identifying the significant ECG markers
associated with drug-induced TdP arrhythmia attacks and sudden cardiac death may
help to better assess the TdP risk of different QT-prolonging drugs [ESTB20, JG14,
YC03, CMY08].

Several studies have linked specific T-wave morphological changes in patients with
long QT syndrome to certain abnormalities in ventricular repolarisation that can lead to
drug-induced TdP and sudden cardiac death [KFBW09, HES92, TRR+07, SKQ+15,
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CHA+15]. One of these ECG abnormalities is an increase in the T-wave duration,
particularly from its peak to its end (known as the T peak-T end interval, or the right
slope of the T-wave, as illustrated in Figure 2.10A) [SKQ+15, CNC15, Ant19]. It re-
flects a significant reduction in potassium outward currents, specifically in the rapid
IKr potassium currents during phase 3 of the cardiac action potential [Ant07]. Clin-
ical research has shown this ECG marker in particular to be a significant risk pre-
dictor of TdP [CZSZ08, JVM+14, KGS+12, BSR+16], and many sudden cardiac
death incidences have been reported where there is a prolonged T peak-T end interval
[CNC15, PRUE+11, XHC+19]. A notched T-wave (commonly caused by pure hERG-
blocking QT-prolonging drugs [VJM+15], and illustrated in Figure 2.10B) combined
with a prolonged QT-interval is also shown to increase the risk of TdP [TRR+07]. A
cardiac modelling simulation study revealed that the origins of notched T waves in pa-
tients with long QT syndrome are due to a defect in the potassium and sodium channels
in particular [SDPF+14]. The first and second peaks of a notched T-wave are due to
a decrease in the outward potassium currents, while the abnormal re-activation of the
inward sodium currents causes a ‘trough’ between the two T-wave peaks [SDPF+14].

In normal ECGs, a small wave known as the U-wave may appear after the T-wave,
which may represent the Purkinje fibers (shown in Figure 2.2) repolarisation [Wat75],
but this is not always observed because of its small size [DS14]. As such, another
TdP risk predictor is when the T-wave duration increases and merges with a promi-
nent U wave, forming either a partial or complete/giant T-U wave fusion (which can
be a positive or negative deflection) [KNK+10, NSK+12, KFBW09], as illustrated
in Figure 2.10C, D and E. This ECG abnormality is also known as the T-U complex
[vEPvH+07]. It reflects a very prolonged ventricular repolarisation duration, where
the T-wave has a slow-moving deflection that fails to return to the ECG baseline, fused
with an emerging prominent U-wave [CMY08, YA98, vEPvH+07]. The giant, com-
plete T-U wave fusion in particular is a critical marker on the ECG, as it has been shown
to precede TdP episodes directly [KFBW09, NSK+12]. Furthermore, ST-segment
elevation—a sign of myocardial infarction (MI) that can be caused by structural heart
disease or pharmacological drugs including chemotherapy [KBS+13, TBM+04]—is
also a critical risk predictor for sudden cardiac death when associated with drug-
induced QT prolongation [KE14, SWA+19]. In addition to the T-U wave morpho-
logical changes, bradycardia or bradyarrhythmias—a slow heart rate that is less than
60 beats per minute—also increases the risk of drug-induced TdP and sudden cardiac
death in patients with long QT syndrome [CNK+15, Nam10, TRR+07].
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Figure 2.10: An illustration of the ventricular repolarisation morphological changes as-
sociated with drug-induced QT-prolongation, acting as significant ECG risk predictors
of Torsades de Pointes (TdP) and sudden cardiac death.
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2.2.4 ECG interpretation of long QT syndrome in clinical practice

The ECG is one of the most important diagnostic tools widely used in clinical practice
to assess the heart function and detect cardiac pathologies [Kus20, DS14, Sch71]. It
is cheap and easy to repeat, making it widely available outside of clinical cardiology
areas including general wards, general practitioner (GP) surgeries, and other clinical
settings [DS14]. In addition, modern wearable technologies for cardiac monitoring
have made it possible to record and interpret an ECG outside the clinical environment
[Pod17, CKA18, FBG+19]. This wide availability of ECG technologies has the po-
tential to increase the rapid detection of drug-induced long QT syndrome and improve
assessment of Torsades de Pointes (TdP) risk, preventing sudden, unexpected cardiac
death. However, ECG interpretation is known to be complex, and long QT syndrome in
particular is regarded as difficult to detect, even for clinicians who routinely read ECGs
[VRS+05]. This section presents an overview of the current standard ECG interpre-
tation method and discusses the primary human and machine challenges associated
with interpreting long QT syndrome on the ECG in clinical practice, as reported in the
literature.

Overview of the standard method

In hospitals, clinicians commonly interpret a short (10-second strip) ECG via 12 leads,
where electrodes are placed in different positions on the human body to measure the di-
rection of the heart’s electrical activity from different views and angles [Kus20, DS14].
These electrodes detect the heart’s electrical depolarisation and repolarisation changes
on the patient’s skin during each heartbeat [DS14]. The 12 leads can be divided into
two categories: the chest leads (V1 to V6 leads where electrodes are placed on the
chest) and the limb leads (electrodes are placed on the wrists and legs) including lead
I, II, III, aVR, aVL and aVF [DS14]. These multiple leads provide the most compre-
hensive view of the heart, but useful ECG information can be obtained from a single
lead ‘view’ (often used by wearable ECG technologies) [CKA18, FBG+19]. Clini-
cally, lead II has conventionally been used to measure the QT-interval as the T-wave is
often clearly shown in this lead [CMY08]. However, if the T-wave is not visible in the
lead II, then lead V2 or V5 can be used instead [CMY08].
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The standard method for visualising the ECG signal is with a line graph showing
the voltage on the vertical Y-axis and time in milliseconds (ms) on the horizontal X-
axis [DS14, BPW+38]. This graphical representation of the signal is recorded on pre-
printed grid ECG paper consisting of small and large squares to support the reader in
measuring the ECG waveform characteristics and intervals [Kus20, DS14]. Each small
square is equal to 1 millimetre (mm) in height and width, representing 0.1 millivolts
(mV) along the Y-axis and 40 milliseconds (ms) along the X-axis; five small squares
represent a large square in a single dimension, which is thus equal to 0.5 mV along
the Y-axis and 200 milliseconds (ms) along the X-axis [DS14]. Figure 2.11 shows an
illustration of the 12-lead ECG and standard background grid.

Figure 2.11: An illustration of the standard 12-lead ECG and background grid.

The ECG waveform

As mentioned in Section 2.2.1, the ECG signal consists of different waves labelled
with letters which represent different stages of the heartbeat (Figure 2.3). This pattern
is known as the standard ECG waveform, shown in Figure 2.12, in which each wave has
specific ‘normal’ characteristics (i.e. amplitude and duration). The distance between
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waves—including the PR-interval, ST-segment and QT-interval—also has a specific
‘normal’ range used as a clinical reference to identify an abnormal range in the ECG
signal [Kus20, DS14, CAM+06]. Changes in the morphology or characteristics of
the standard ECG waveform can indicate the presence of a cardiac pathology [DS14].
As such, the standard background grid supports the ECG interpreter in measuring the
characteristics of these different waves and intervals [Kus20, DS14]. For example, an
increase in the amplitude of the ST-segment by one small square in a limb lead, or
two small squares in a chest lead, shows a condition known as ST-elevation, which
indicates a sign of myocardial infarction (MI) that could lead to a heart attack [DB14].

Figure 2.12: An illustration of the standard ECG waveform for a single heartbeat.

Measurement of the QT-interval

Clinical recommendations for standardizing and interpreting the ECG have indicated
that the QT-interval should be measured manually by a clinician with experience in
ECG interpretation [ITD+20, IP13, RSG09, CMY08, FDA+05], as current automated
QT measurements are not considered reliable for use in the clinical assessment of
the cardiac safety of a QT-prolonging drug [CMY08, SW17, TAS+15, RSG09]. The
reasons for this are many, and are discussed in detail in Section 2.2.4.
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In clinical practice, the traditional way to measure the QT-interval is to count the
small squares (each representing 40ms) on the standard ECG background grid, from
the beginning of the Q-wave to the end of the T-wave [Pri10, AAKR+02, GMZ06], as
shown in Figure 2.12. Whether or not the QT-interval is considered to be prolonged
depends on a number of factors, particularly heart rate, as the QT-interval varies in-
versely with heart rate [GMZ06, LMJM04, CMY08]. There are many ways to calcu-
late heart rate from the ECG [Dub00, DS14]. One common method is to measure the
RR-interval, the time elapsed between two successive R waves representing heartbeats
on the ECG (Figure 2.4), and then apply a formula to calculate beats per minute (bpm)
heart rate including:

HR =
60

RR− interval (seconds)
(2.1)

HR =
60,000

RR− interval (milliseconds)
(2.2)

Thus, it is common in clinical practice to correct the QT-interval to the heart rate
(according to the RR-interval) using a QT correction (QTc) formula, and then (de-
pending on the age and sex of the patient) use a ‘cut off’ value to identify QT-interval
prolongation [CMY08, Dub00, DS14]. Many QTc formulas have been suggested in
the past [CMY08], but the most widely used in clinical practice are Bazett’s square-
root formula and Fridericia’s cube-root formula [Sha02, LMJM04, CMY08], which
are described as follows:

Bazett (QT c) =
QT

RR− interval1/2 (2.3)

Fridericia(QT c) =
QT

RR− interval1/3 (2.4)

Table 2.1 shows the suggested clinical rating of QTc interval values (corrected with
Bazett’s formula) for normal, borderline, and prolonged QT-interval [GMZ06].
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Table 2.1: Suggested QTc interval values (corrected with Bazett’s formula) for diag-
nosing QT-prolongation [GMZ06].

Adult men Adult women Children (1-15 year)

Normal <430ms <450ms <440ms
Borderline 430 to 450ms 450 to 470ms 440 to 460ms
Prolonged >450ms >470ms >460ms

However, measuring the QT-interval is challenging, and the relationship of the
QT-interval to the RR-interval (QT dynamicity) is complicated, particularly when as-
sessing the effect of drugs on the QT-interval duration [VRS+05, STN08, CSDB+09,
DLD+03, CMY08].

Challenges associated with human interpretation

A numerous number of studies have shown that delayed diagnosis of long QT syn-
drome is frequent, and patients with long QT syndrome are commonly misdiagnosed
with other conditions (particularly epilepsy or seizure disorder) [MMC+09, SHL19,
KK09, OMK10, MBA14]. Khouzam et al. (2009) discuss the case of a 19-year-old
woman with long QT syndrome who was misdiagnosed with a seizure disorder for
eight years [KK09]. Another recent study showed similar errors in diagnosing LQTS
of a 17-year-old boy [SHL19]. Empirical evidence also appears to confirm the no-
tion that the majority of clinicians lack the skills to measure the QT-interval accurately
and recognise long QT syndrome [VRS+05, BY05, STN08], despite ongoing efforts to
improve training in and recommendations for ECG interpretation and QT-interval mea-
surement in clinical practice [OCT+09, RSG09, RHA+16, SPA19, ITD+20]. It should
be noted here that although a considerable body of research has focused on report-
ing long QT syndrome misdiagnosis [SHL19, KK09, MSC+91, MMC+09, OMK10,
MBA14], or highlighting issues with QT-interval measurement in clinical practice
[VRS+05, STN08, CSDB+09, DLD+03, CMY08, GPAW14, LPL04, IP13, LS52],
less attention has been paid to investigating why long QT syndrome is difficult to
recognise from a cognitive-perceptual perspective. Only a few studies have investi-
gated the perceptual-cognitive mechanisms underpinning ECG interpretation [Aug03,
WBA+14, BZF+14, DBV+16], and these have focused mainly on the interpretation
of generally common ECG abnormalities such as myocardial infarction, with scant
attention to long QT syndrome.
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The critical issues and proposed solutions to address them (if any) presented in the
literature regarding human recognition of long QT syndrome on the ECG are classified
and discussed below.

1. Difficulty with visual recognition of long QT syndrome

Some cardiac pathologies are reflected on the ECG by specific signal patterns,
which often act as unique ECG signatures that can be observed with the naked
eye [Kus20, DS14]. However, this is not the case with long QT syndrome, which
is characterised primarily by a prolongation of the QT-interval that varies in-
versely with heart rate (HR); this makes it difficult to identify visually without
actually measuring the interval and properly correcting it for heart rate [CMY08,
Kus20, DS14]. Because of the QT/HR relationship, the faster the heart rate, the
shorter the QT-interval, which is why recognising QT-prolongation is particu-
larly difficult at fast heart rates exceeding the ‘standard’ of 60 bpm [Mal01,
LPL04, LMJM04, MGH+19]. From a perceptual-cognitive perspective, diffi-
culties detecting the increased interval may be related to the fact that people
are poor at perceiving quantity represented along a horizontal scale [LSZ+09,
WA84, PK11]. This issue is discussed in detail in section 2.3.2.

2. Challenges associated with identifying the end of the T-wave

Accurate QT-interval measurement is currently viewed as crucial to recognis-
ing long QT syndrome in clinical practice [Kus20, ITD+20]. There appears to
be general agreement in the current literature that determining the beginning of
the Q-wave (or the R-wave if there is no Q-wave) is relatively easy, but iden-
tifying the end of the T-wave is the most challenging aspect of measuring the
QT-interval. [ITD+20, CMY08, LS52, LPL04, SPA19, Sch20]. This problem
is further complicated by morphological changes of the T-wave, the presence
of a U-wave and/or ECG baseline noise [Mor01, GMZ06, CMY08, GPAW14].
The greatest challenge lies in the fact that the morphology of the T-wave it-
self can be very variable across individuals in general, and may become dis-
torted and fail to end properly with drug-induced QT-prolongation in particular
[MMDY94, GMZ06, CMY08, HST+16].
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As described in section 2.2.2, the T-wave represents the ventricular repolari-
sation on the ECG [Kus20, DS14]. Since pharmacological drugs that prolong
the QT-interval often affect several cardiac ion channels, including potassium,
sodium and calcium, during the ventricular repolarisation phase, this causes se-
vere morphological changes in the T-wave [VJM+15, Kha02, CMY08, ESTB20].
These changes include flat, biphasic and notched T-waves, and the slow-moving
deflection of the T-wave end, which is the drug-induced T-wave change that is
most problematic for QT measurement, particularly if it is accompanied by a
prominent U-wave [VJM+15, CMY08], as illustrated in Figure 2.10C. These
morphological changes in the ECG may indicate an increased risk of develop-
ing TdP arrhythmia [DAF+10, TRR+07, SKQ+15], as shown in section 2.2.3
(Figure 2.10), and they also obscure the end of the T-wave, thus affecting the
accuracy of the QT-interval measurement [CMY08, LPL04]. This issue compli-
cates both manual and automated QT-interval measurement, and the best method
to use remains a subject of debate [CMY08, KOO+11, SW17].

Several approaches have been proposed to identify the end of the T-wave under
these circumstances [LS52, GMZ06, PDJVdBW08, CMY08, IP13, GPAW14,
PKN+09]. Among these the tangent and threshold methods are the most widely
used in clinical practice [PDJVdBW08], but all methods have shown to be as-
sociated with potential inaccuracies [CMY08, Mor01]. In the threshold method,
the end of the T-wave is the point where the descending limb of the T-wave meets
the isoelectric baseline; in the tangent method, the end of the T-wave is the inter-
ception point of a tangent line drawn at the maximum downslope of the T-wave
peak and the isoelectric baseline [PKN+09]. Figure 2.13 illustrates these meth-
ods under normal and abnormal T-wave morphology conditions. Recent research
has shown that the tangent method provides consistently shorter QT-interval re-
sults than the threshold method by up to 10 milliseconds [PKN+09].

3. Underestimation or overestimation of QT-prolongation caused by heart rate
correction

As the length of a normal QT-interval varies inversely with heart rate, it is com-
mon in clinical practice to apply a QT correction formula (QTc), and then use a
‘cut off’ value to identify at-risk QT-prolongation. Examples of QTc formulae
include Bazett’s, Fredericia’s, Framingham’s and Hodge’s [LMJM04]. How-
ever, recent research has shown that these correction formulae underestimate or
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Figure 2.13: An illustration of the tangent and threshold methods commonly used in
clinical practice to determine the end of the T-wave. In the tangent method, the end of
the T-wave is the interception point of a tangent line drawn at the maximum downslope
of the T-wave peak and isoelectric baseline. In the threshold method, the end of the
T-wave is the point where the descending limb of the T-wave meets the isoelectric
baseline.
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overestimate QT-prolongation (depending on the formula used); and are thus in-
accurate in identifying patients at risk of drug-induced TdP for fast and slow
heart rates [DLD+03, LMJM04]. This issue has been addressed with empirical
study of TdP risk, resulting in the ‘QT nomogram’, a risk assessment method de-
signed specifically for identifying patients at risk of drug-induced TdP according
to heart rate [FWM+05, CIKD07]. The nomogram plot can be seen in Figure
2.14.

It was developed after screening several ECG cases that reported drug-induced
TdP and comparing these with control cases (i.e. when no TdP was reported).
The actual QT-interval value (not the QTc) and the heart rate for each case were
plotted as coordinates on a graph; this produced a line showing the upper bound
of the QT-interval value at risk for TdP as a function of heart rate [CIKD07].
Evaluation of the QT nomogram demonstrated that it had higher sensitivity
and specificity than widely accepted QTc formulas [WGG+10]. Therefore, we
adopted the QT nomogram in our research as a reliable evidence-based TdP risk
assessment method and used it as a basis for designing and evaluating our pro-
posed solutions.

Figure 2.14: The QT-nomogram for identifying QT-prolongation at risk of TdP over
heart rate. If the QT/HR value falls on or above the risk line, the patient is at risk of
TdP; below the line the patient is not considered at risk of TdP [CIKD07].
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Challenges associated with machine interpretation

Automated ECG interpretation methods were introduced in the 1950s to assist clini-
cians who had less training in ECG interpretation [Rau07]. These methods can identify
a normal sinus rhythm with reasonable accuracy but are much poorer at reliably de-
tecting abnormalities [SW17, EI13, RSG09]. Therefore, whilst most modern ECG
machines in hospitals provide an automated measurement of the QT-interval, these
automated QT values are usually correct only for a noise-free, normal sinus rhythm,
in which the ECG waveforms (particularly the T-wave morphology) are well defined.
Changes in the ECG waveform characteristics (i.e. the height and width of differ-
ent waves), noise and artefacts in the signal, and changes in the T-wave morphology
can easily invalidate automated QT-interval measurement [SW17, CMY08]. As long
QT syndrome detection currently depends on accurate QT-interval measurement, au-
tomated QT measurement algorithms have proved unsatisfactory for detecting LQTS
[KBD+18, TAS+15, EI13, GL13, TABW11, RSG09, CMY08, MCbA01]. Garg and
Lehmann [GL13] found that even a widely used computerised ECG interpretation sys-
tem was not able to detect QT-interval prolongation in 52.5% of patients affected.
Research has also shown that drug-induced long QT syndrome in particular can be un-
derestimated and under-reported by computerised methods in patients on Methadone,
a drug that is infamous for prolonging the QT-interval and increasing the risk of TdP
[TAS+15].

At present, clinicians do not regard automated QT measurement algorithms as
sufficiently reliable for use in the clinical assessment of the cardiac safety of a QT-
prolonging drug [SW17, TAS+15, RSG09, CMY08, TMH+13]. Accordingly, clinical
recommendations state that QT-interval should be measured manually by a clinician
specialising in ECG interpretation [ITD+20, IP13, RSG09, CMY08, FDA+05].
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Automation has made great strides forward in terms of interpreting many kinds of
complex data, so one might expect similar progress to have been made with automated
QT-interval interpretation. The issues that make automated recognition of long QT
syndrome on the ECG particularly difficult, and the solutions proposed to address them
(if any) in the current literature regarding machine interpretation are classified and
discussed below.

1. Challenges in bench-marking QT-interval measurement algorithms

The majority of automated QT-interval measurement algorithms are proprietary
or unavailable, thus formally bench-marking the performance of different al-
gorithms, and hence advancing published research in this area, is not possible
at present [DBDM20, SW17, VDPL+18, MSSS17, CMY08]. Kligfield (2010)
pointed out that the field lacks a universally accepted definition of the end of
the T-wave, and QT-interval measurement algorithms have become proprietary
engineering solutions that vary substantially between core ECG laboratories and
algorithm developers.

2. Challenges in recognising different ECG waves

Automated QT-interval measurement algorithms are based on the precise deter-
mination of the onset and offset of the different waves and complexes (P-wave,
QRS complex, T-wave) [SW17]. This process is relatively straightforward if
the ECG signal has a normal sinus rhythm, but it quickly becomes challenging
in the presence of anomalies, artefacts, or non-standard ECG waves [SW17].
A major issues is that ECG wave characteristics are known to differ substan-
tially across individuals, and are affected by factors including age, ethnicity,
sex and health status [GMZ06, MMDY94, HST+16]. At present, there are no
standard definitions for the ECG waves [Wil80, Par85, SW17, CMY08], thus
differences in the automated QT measurement results between the algorithms
persist [EI13, HG06, SW17, CMY08].
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3. Challenges in identifying the end of the T-wave

Ample evidence exists to demonstrate that precise identification of the T-wave
end is frequently inaccurate when performed manually and particularly problem-
atic if supported by a computer [DBDM20, SW17, CMY08, TAS+15, TABW11].
Based on the two primary approaches used to identify the end of the T-wave in
clinical practice (discussed previously in section 2.2.4) automated measurement
algorithms in the literature fall into two categories: threshold-based methods and
slope-based methods [PKN+09, MCM96, MCM95b, CMY08].

Threshold-based methods identify the end of the T-wave based on threshold lev-
els, defined as a fraction ranging from 5% to 15% of the amplitude or differential
of the T-wave [Hun05, CMY08]. There are threshold levels because whilst it is
relatively easy for humans to perceive when the signal returns to the isoelectric
line (indicating the T-wave end based on the threshold method), it is actually
challenging to detect this automatically [CMY08]. This is because the ECG iso-
electric line is not constant in terms of voltage (i.e. the baseline can have any
random low voltage value approaching zero), and as such the end of the T-wave
by the automated threshold methods needs to be estimated as the time point of
proportionate signal amplitude to the T-wave amplitude [Hun05, CMY08].

In slope-based methods, the end of the T-wave is defined as the maximum T-
wave slope’s interception with the isoelectric line [HVB+17, Hun05, CMY08].
As the steepest part of the descending portion of the T-wave is affected by
changes to morphology, various methods have been proposed to identify the
maximum T-wave slope, including the tangent method, peak slope method, and
least-square fitting method [MCM96, MCM95b, Hun05, CMY08, WLX+16].
Generally, slope-based methods provide a better estimation of the QT-interval
than threshold-based methods, as the results of the latter vary according to the
threshold level and the T-wave morphology [HVB+17, XR98, CMY08]. How-
ever, the accuracy of slope-based methods can be significantly reduced when the
T-wave has a slow-moving deflection that fails to return to the ECG baseline,
making the steepest slope hard to define [CMY08]. In addition, these methods
depend on accurate identification of the isoelectric line, which is known to be in-
fluenced by noise and ECG baseline wander (a type of artifact) [SW17, CMY08].
Bizarre automated QT measurements are also sometimes reported, even for nor-
mal, noise-free ECGs [CMY08].
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4. Abstracting the QT-interval numerically risks masking other morphological
ECG predictors of TdP risk

Assessing the risk of drug-induced TdP also benefits from consideration of the
ventricular repolarisation morphology more generally [TRR+07, HES92]. As
such, abstracting the QT-interval numerically risks masking other potentially
clinically significant changes in ventricular repolarisation. As shown in Sec-
tion 2.2.3 and Figure 2.10, partial/complete T-U wave fusion, where the T and U
waves cannot be distinguished, are significant risk predictors of TdP [KNK+10,
KFBW09]. In most cases, this is shown to be, in fact, a prolonged biphasic,
or notched T-wave [YA98, VJM+15]. For certain T-U morphologies commonly
reported in drug-induced long QT syndrome, measuring the QT-interval as a sin-
gle value may lack diagnostic validity, and the presence of prolonged fused T-U
waves should be viewed as a more accurate predictor of TdP [CMY08, HES92].
As such the T-wave morphology continues to provide the richest information for
recognising LQTS [EI13, KBD+18, GL13, MCbA01, RSG09, TAS+15, SW17].
Recent research has therefore investigated how to apply computational analysis
to identify T-wave morphology changes when assessing the effects of drugs on
ventricular repolarisation [VJM+15, SNK+17]. These approaches are discussed
further in Chapter 3.

Consequently, in the last few years, researchers have become increasingly inter-
ested in exploring new computer-based approaches to improve LQTS detection and/or
risk assessment without relying solely on QT-interval measurement, which is discussed
in more detail in Chapter 3.



72 CHAPTER 2. BACKGROUND

2.3 Perception and pre-attentive processing in human
vision

2.3.1 Overview

Perception, broadly speaking, is the process of recognising and interpreting sensory
information [HW97]. It is generally agreed that human visual perception involves
complex parallel processing mechanisms, which have been studied across different sci-
entific disciplines including neuroscience, cognitive science and vision science [HE85,
War21, RFTT02]. Comprehensive theoretical foundations of human visual perception
can be found in [SW12, WFG+12, YA82, HE85].

In his 1979 study on the affordance theory, the great perception theorist Gibson J.J.
argues that humans perceive possibilities for action in order to operate in the environ-
ment [Gib79]. This theory is attractive from a data visualisation perspective, as the
goal of most data visualisation is decision-making [Kir16, DCKH+19, War21], and
as such considering visual perception as a process designed for action can support ac-
knowledging the fact that it has become an increasingly important part of designing and
evaluating data visualisations. For example, translating the affordance theory of visual
perception into the visualisation design, we might construct a science-of-perception-
based design principle stating that a good visualisation has affordances that make the
users’ task easy by intuitively showing the actions they can take. Great scholars who
incorporate visual perception knowledge with visualisation design include Colin Ware,
who explored in his book ‘Information Visualization: Perception for Design’ [War21]
the role of the science of perception and vision in establishing key design principles
for improving clarity, utility and persuasiveness of data visualisations.

Here we present an overview of visual perception and pre-attentive processing the-
ory in a human vision, considering ECG interpretation of LQTS and visualisation de-
sign as a theoretical lens. Methodological advances proposed in the current literature
for visualising the ECG signal data are discussed in Chapter 5, Section 5.2.2.
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2.3.2 Perceiving quantity represented along a horizontal scale

Several studies in human perception that have attempted to correlate the results of
behavioural science studies with neuroscience brain studies have found that whilst
the adult human brain can easily perceive quantity along a vertical scale, it is poor
at judging it along a horizontal scale [PK11, Lib91, WA84]. This may explain why
clinicians struggle to accurately perceive QT-interval increases along the horizontal
time scale of the standard ECG visualisation [VRS+05, STN08]. A natural question
arising here is how we can change the horizontal length visual encoding required for
LQTS detection to one that is more intuitive and easier to perceive.

Prior work seeking to establish a scientific foundation for graphical data visualisa-
tion showed that types of visual encoding involved in perceiving difference in quantity
include: (1) position along a common scale, (2) position along non-aligned scales,
(3) length, (4) area, (5) volume and curvature, and (6) shading and colour [CM84].
According to cognitive fit theory—which states that the correspondence between vi-
sual encoding type and task type results in superior task performance for humans
[VG91, Ves91]—determining how to improve LQTS detection via visual encoding
requires first defining the type of visual task underlying LQTS detection.

Cognitive fit theory:

“Internal perceptual representation of the problem + External, matched

visual representation of the problem−→ Superior task performance." [VG91,

Ves91].

Clinical research has shown that small increases in the QT-interval can be clinically
significant but are difficult to perceive visually without precise measurement [CMY08,
VRS+05, STN08]. As such, a science-of-perception-based approach may be more
appropriate to optimise the visual detection of small differences in the QT-interval
duration (i.e. few milliseconds), that exist in a large quantity scale within a single
heartbeat (≈ 400 to 600 milliseconds at 60 bpm for example). Thus, this type of visual
task requires encoding the differences in duration within the ECG signal data in a
manner that can be perceptually separated over a large horizontal scale.
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2.3.3 Perceiving quantity represented with Cartesian vs. Polar co-
ordinates

In geometry, a coordinate system is a graphical representation method that uses two
or more numerical dimensions to identify data points in a given space, such as Eu-
clidean space [GPS04]. Several types of coordinate systems have been used to rep-
resent quantitative data including Cartesian and Polar coordinates—the most common
coordinates for visualising time-series data representing changes in quantity over time
[Kir16, AJB16]. Figure 2.15 shows an illustrative example of representing different
time series data with Cartesian and Polar coordinates using a line graph and histogram.

Figure 2.15: An illustrative example of representing different time series data with
Cartesian and Polar coordinates using a line graph and histogram.
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An ECG signal can be described as a variable time series that presents changes in
the waveform over time [TLT+20]. The Cartesian coordinate system is the standard
means of presenting the ECG signal in clinical practice [DS14, BPW+38], and to date,
no study has specifically investigated the effect of different coordinate systems on ECG
interpretation of LQTS.

A number of studies have evaluated the effect of the coordinate system on the
perception of changes in quantity; some focused on comparing Cartesian with Polar
coordinates when representing nominal data (e.g. comparing bar charts with their polar
counterparts, pie charts) [SP08, CM86]; some focused on time-series data in particu-
lar [AJB16, FFM+13], while others focused on the technical aspects of developing
Cartesian vs. Polar visualisation tools rather than evaluating their impact on visual
perception [BBBD08, SCGM00].

Given that the human visual system is very sensitive to whether positions of visual
elements are in their exact location [GPBC10, SCGM00], one study evaluated the ef-
fect of Cartesian vs. Polar coordinates on human visual recognition memory [DBB10].
The results showed that people can memorise and relocate positions of visual elements
slightly better on Cartesian coordinates than Polar coordinates, with accuracy of 60%
and 55% for Cartesian and Polar coordinates respectively [DBB10].

Adnan et al. [AJB16] examined perception of quantity in time-series visualisa-
tions. They showed Cartesian coordinates to be most effective for detecting trends and
identifying maximum and minimum values when used with positional and colour vi-
sual encodings, and Polar coordinates to be most effective for finding minimum values
when using area visual encoding.

The circular layout used in the Polar coordinate system has also been employed to
expose changes in data collected over a long period of time. Page et al. [PSCA15,
PAS+16] proposed an ‘ECG Clock’ generator, to visualise the changes in QT-interval
values automatically generated by a 24-hour Holter ECG monitor. Circular layouts
have been also used to help with detection of symmetrical patterns in data [HGM+97]
and to measure symmetry in graphs [WK17].
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2.3.4 Visual perception in light of ECG interpretation

One of the challenges associated with ECG interpretation is that it visualises the raw
complex signal of the heart electrical activity directly, which can be dynamic (where
different cardiac pathologies interfere) [CMY08], and highly variable across individ-
uals due to many factors—including age, gender and specific ethnic genes [GMZ06,
MMDY94, HST+16]—without any pre-processing of that visualised signal. This com-
plicates the signal representation in general and the perception of a difference or ab-
normal change within the signal in particular. The human brain has the ability to filter
the accumulated, vast sensory information from the surrounding complex environment
and process what is important [War21]. This appears to be because of the massively
parallel visual processes whereby the brain segments the world into regions and finds
links and patterns within them (bottom-up processing), which is highly influenced by
what we are looking for (top-down processing) [War21, TOB10]. ECG interpretation
is thought to be dependent primarily on top-down processing, which uses contextual
medical knowledge to aid the perception of signal patterns [WBA+14, SW17]. From a
human perception perspective, re-visualising the ECG signal by harnessing bottom-up
processing has the potential to draw visual attention to the critical information con-
tained within the ECG signal without prior medical knowledge and extensive training.

The phenomenon of bottom-up processing first noted in the Gestalt principles of
visual perception, which articulate factors that regulate perceptual grouping, includ-
ing proximity, similarity, closure, continuation and symmetry [Wer23, Sta19, War21].
These primitive perceptual organisation processes derive relevant groupings and pat-
terns from an image or scene without prior knowledge of its contents [Low12, vdH17,
Sta19]. In addition, a more recent principle of bottom-up processing is the principle
of simplicity, which states that people tend to perceive the simplest possible interpre-
tation of any given visualised information [Fel16]. It is generally agreed that prior
low-level perceptual mechanisms relating to ease of search is first performed, where
the visual image is broken into pre-attentive elements of colour, form, and motion
[War21, WU19]. Zavagno et al. (2014) have shown that colour to be a relatively
strong grouping factor that functions according to the principles of Gestalt theory,
and can override other types of pre-attentive elements including form (shape and size)
[ZD14]. The research within this thesis focus on this fundamental theory in a hu-
man vision known as pre-attentive processing, which outlines a set of visual attributes
such as colour (hue and intensity) known to be detected rapidly and accurately by the
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human eye [Not93]. Introducing pre-attentive attributes to complex visual informa-
tion can increase stimulus salience and modulate visual processing speed in human
perception [War21, WU19, HBE96, HBE95, Not93, Tre85]. The process of using pre-
attentive attributes to visualise data is also known as sensory representation processing,
as these attributes are effective in stimulating early stages of the neural processing of
the human visual sensory system [War21]. That is, the pre-attentive attributes derive
their expressive power from their ability to use the perceptual organisation processing
power of the brain without prior learning, which can then move from pre-attentive to
attentive processing when influenced by an individual’s intentions and visual task goals
[The94, The95, EY97, AN09, TZGM10, TOB10, War21]. The pre-attentive process-
ing theory is discussed in more detail in the section below.

2.3.5 Pre-attentive processing and ease of visual search

Human vision and neuroscience studies that use direct psychophysical experiments—
studying human perceptual responses to physical stimuli by varying the properties of
a stimulus along one or more physical dimensions [Ste17]—-have established a theory
of pre-attentive processing that is fundamental to how we understand visual distinctive-
ness [Tre85]. This theory states that a particular set of visual properties are detected
rapidly and accurately by the human eye [War21, WU19, The13, Not93]. For instance,
to count the four digits shown in Figure 2.16A, we need to scan all numbers sequen-
tially, whereas in Figure 2.16B we only need to scan the red numbers. This is because
colour is pre-attentively processed [War21].

The theoretical perceptual mechanism underlying the ‘pop-out’ effect of colour
in separating the target pattern (number 4) from their surroundings was termed pre-
attentive processing, as early researchers believed that it must occur prior to conscious
attention [Tre85, Not93, HBE96]. Other examples of pre-attentive properties include
orientation, shape, size and spatial positioning, as illustrated in Figure 2.17.
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Figure 2.16: An example of a pre-attentive processing task. (A) To count the four
digits, we need to scan all numbers sequentially. (B) To count the four digits, we only
need to scan the red numbers, as they are pre-attentively processed due to the colour
pop-out effect.

Figure 2.17: Examples of pre-attentive properties.
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Empirical evidence appears to confirm the notion that a complex visual image is
deconstructed via a primitive perceptual grouping process into pre-attentive elements
of colour, form, and motion, and then a ‘searchlight’ model of visual attention is ap-
plied using eye movements to sweep for target patterns [War21]. It is generally agreed
that the visual search process requires obtaining information in bursts, i.e. a snapshot
of a stimulus per fixation [War21]. As such, a more complex image that contains non-
preattentive elements is scanned as a thread, one by one, at a rate of approximately 40
visible elements per second [War21]. This means that we can usually perceive between
three to six visible elements before the eye moves to another fixation [War21]. Colour
is a useful pre-attentive attribute that saves the observer from carrying out a continuous
jump in eye movements during visual search, thus helping to focus fixations and in-
crease the perceptual efficiency of visual elements [War21, GCC17, Hea96, PGLS95].

2.3.6 Colour perception: an overview of basic theories

Trichromacy theory

A number of theories have been proposed to explain how humans and some other
mammals have evolved to perceive colours. One of the earliest and most well-known
is trichromatic theory [Bow83, Mal11, War21]. This states that there are three dis-
tinct colour receptors in our retinas (known as ‘cones’), which are sensitive to different
wavelengths of light in the visible spectrum [Bow83]. One receptor is sensitive to blue
(short-wavelength cone sensitivity), the other to green (medium-wavelength cone sen-
sitivity), and the third to red (long-wavelength cone sensitivity) [Mal11, War21]. The
combinations of these three colours produce all the colours we can perceive [Mal11,
War21].

Figure 2.18 shows how different wavelengths of light are absorbed by the three dif-
ferent receptors. The short-wavelength cone sensitivity peaks at 450 nanometers, while
the medium and long wavelength cones overlap considerably and have a higher sensi-
tivity that peaks at 540 and 580 nanometers respectively [Bow83, Mal11, War21]. The
much lower sensitivity of the short-wavelength cone is why it is not recommended to
present text or other detailed information in pure blue on a black background [War21].
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Figure 2.18: Sensitivity of human vision cones.

Colour blindness

Colour blindness is caused by the lack of either the short wavelength-sensitive cones
(tritanopia, blue-blind), the medium-wavelength-sensitive cones (deuteranopia, green-
blind), or long-wavelength-sensitive cones (protanopia, red-blind) [War21, BELL17].
Tritanopia results in the inability to distinguish between blue and yellow, while protanopia
and deuteranopia, which are more common, result in the inability to distinguish be-
tween red and green [War21, BELL17]. Since colour-blind people can perceive colours
with a mixture of no more than two pure cones sensitive to the spectral wavelength,
their condition is called ‘dichromacy’ instead of ‘trichromacy’. The prevalence of
colour blindness is around 10% in males, while in females it is only 1% [War21].

Green is the most difficult colour to perceive by the majority of colour-blind in-
dividuals [HTWW07, War21]. A mixture of blue and orange/red variations, however,
can be distinguished by most colour-blind people; where tritanopia readers will per-
ceive it as teal and pink, deuteranopia readers will perceive it as blue and brown and
protanopia readers will perceive it as blue and olive [HTWW07], as illustrated in Fig-
ure 2.19.
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Figure 2.19: Perception of a spectrum-approximation colour sequence with normal
vision vs. colour blindness.

Any sequence of colours, apart from the green-to-red variations, are distinguishable
by most colour-blind people, including blue-to-yellow, blue-to-green, blue-to-red and
black-to-white variations [HTWW07]. Another solution is to vary colours by lightness
(adding white dimension) or contrast (adding black dimension), and the effect can be
tested on a gray-scale printout of the colours [War21]. As a rule of thumb, if colours
are distinguishable on a gray-scale variations, then they are more likely to be perceived
by colour-blind individuals [War21].

Computer simulation models are used to transform colour vectors of digital images
from normal vision spectrum into the spectrum of colour-blindness, based on previ-
ous physiological and psychological studies of colour vision [BVM97, MOF09]. This
can help to quantify and understand how colour-blind individuals will perceive certain
images [BVM97, MOF09]. Other researchers utilise similar simulation methods to im-
prove information presentation for colour-blind people, for example by automatically
adjusting colours according to the simulation results [KOF08].
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The role of colour in attracting attention and increasing visual salience

The attention process is centred around the fovea—a small depression in the retina
of the eye that is around 1.5mm in diameter corresponding to 5° of the visual field—
where vision is most acute [JBCW91, Hen92, FG01]. The ‘searchlight’ beam of eye
movements can be expanded and contracted based on the visual task type, the ob-
server’s stress level and the size of the search area [War21]. For instance, if the eye
is fixating a small search area, then the ‘searchlight’ beam is the size of the fovea,
but if it is fixating a larger search area, then the ‘searchlight’ beam expands. This
concept is known as the useful field of view (UFOV), which defines the visual search
area through which information can be perceived in a brief glance [WO14, War21].
The UFOV is considered particularly useful when presenting visual information for
observers working under extreme stress, who may experience a phenomenon known
as ‘tunnel vision’ [Dir83, War21]. Prior research shows that this phenomenon usually
occurs during a high cognitive load where the UFOV is narrowed; thus, only the most
prominent information is perceived, which is usually at the centre of the field of view
[Wil85, War21].

Colour, in particular, is known to aid and influence the attention process in the
fovea, as well as to some extent redirect the attention to the coloured objects that
are away from the fovea (i.e. within peripheral vision), thus expanding the UFOV
[Põd07, FG01, War21]. Figure 2.20 shows an illustration of how colour hue can help
attract attention within the UFOV and separate visual elements (represented by red
circles here) from their surroundings, thus increasing their salience so that they can be
perceived in foveal vision.

Most of the research on colour perception appears to support the notion that colour
can proceed from pre-attentive to attentive processing when influenced by an individ-
ual’s intentions and visual task goals [The94, The95, EY97, AN09, TZGM10, TOB10,
War21]—notably the change detection task [HCLF12, War21]. This usually occurs in-
terchangeably between bottom-up processing, which is driven by the pre-attentive at-
tribute known as ‘stimulus-driven capture’ [TOB10]; and top-down processing, where
the brain directs an individual’s attention towards the target pattern that fits in with
their task goal, a concept known as ‘contingent capture’ [TOB10, TZGM10].
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Figure 2.20: An illustration of how colour hue can help attract attention within the use-
ful field of view (UFOV) and separate visual elements (represented by red circles here)
from their surroundings, thus increasing their salience so that they can be perceived in
foveal vision.
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As such, we assume that colour can be used as an additional visual encoding to the
horizontal length to detect the change in the QT-interval. However, the question that
arises here is how to apply colour to large, continuously varying values along the ECG
horizontal scale. A useful technique is pseudo-colouring, which is commonly used to
represent continuously varying values using a gradient sequence of colours [War12].

2.3.7 Applications of pseudo-colouring

Colour vision exploits the highest bandwidth channel between the physical stimulus
and the human brain, as we acquire more information through vision than through all of
the other senses combined [War12]. Pseudo-colouring, also known as colour-mapping,
is the process of translating data values into colours to generate easily perceptible
patterns and visual elements within the data [ZH15, War88, War21]. It is widely used
in scientific visualisations including astronomical radiation charts and medical imaging
applications, as well as in many information visualisations such as geographic and time
series visualisations, where applications include encoding elevation in the data (e.g.

forecast temperatures) or showing changes over time [War21, SMY+05]. Pseudo-
colouring is also used in other computer science domains, including computer vision
and image processing, to support machine interpretation and classification of images
[GK13, RVL+07, KMS00].

The application of pseudo-colouring requires not only knowledge of the type and
nature of the data, but also an understanding of the task and the application domain
[ZH15, War88, War21]. When applied appropiately, pseudo-colour can reveal in-
sights from the data that may be difficult to obtain without colour [ZH15]. A good
example is the application of pseudo-colouring in medicine, where it is widely used to
support clinical diagnosis, for example of breast diseases [ZSST11], and to highlight
details in organs and bones structures that would otherwise be difficult to perceive
[Quw09, Sem18]. Figure 2.21 shows an example of using a spectrum-approximation
pseudo-colour sequence to support an inexperienced clinician in perceiving different
tissue types in the knee on an MRI scan result. We hypothesise that applying pseudo-
colouring to the ECG image has the potential to expose QT-interval duration changes,
thus supporting LQTS detection.
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Figure 2.21: An example of using the pseudo-colouring technique to support the dis-
tinction between different tissue types of a knee on an MRI scan result.
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Perceptual pseudo-colour spaces

Several studies have investigated what makes a pseudo-colouring sequence effective,
particularly when presented on a computer screen. Early research developed different
colour spaces, where each colour space represents an arrangement of colours in a three-
dimensional space, and evaluated their effect on human perception [Sto16, Wri67].
The basic colour space is the RGB space, which utilises the combination of the three
human vision cone channels (red, green and blue) to represent any colour [Sto16]. As
this space is limited to the primary RGB light wavelengths, it is unable to reproduce
colours from other lights such as yellow, blue, and purple [War21]. Cylindrical colour
spaces including hue, saturation and value (HSV) and hue, saturation and lightness
(HSL) have been developed to improve the perception of the basic RGB colour space
[ZH15]. The ‘Commission Internationale de l’Eclairage’ (CIE) colour space uses a set
of abstract human vision cones channels (labeled as as XYZ) to establish quantitative
links between wavelengths of colour light in the visible spectrum and physiologically
perceived colours in human vision [SG31]. More details on how this system works
can be found in [War21]. Many studies have shown that uniform colour spaces (first
proposed by Munsell [Mun15] to specify colours based on hue, intensity and lightness)
can be used to determine the degree of perceived difference between similar colour se-
quences (i.e. having similar wavelength frequencies on the electromagnetic spectrum)
[HLCL12, ZH15, War21].

Task-driven pseudo-colouring

A number of studies have explored pseudo-colour representation methods for specific
tasks. For example, one study proposed using the ‘task-colour-cube’ method, which
presents different pseudo-colouring scales (e.g. unsegmented and segmented colour
sequences) to support different tasks including comparison, localization, and identifi-
cation of data values [TFS08]. Figure 2.22 shows an example of this method.

Other research has investigated the effect of colour vs. no-colour on the perceptual
task of reading values and forms, comparing several pseudo-colour sequences with
greyscale [War88]. This work has provided evidence-based design guidelines for infor-
mation presentation and shown the spectrum-approximation pseudo-colour sequence
to be particularly effective in conveying form and value information, and the greyscale
sequence to be partially effective in conveying form (as shown in Figure 2.23) [War88].
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Figure 2.22: The task-colour-cube that spans along the pseudo-colouring scale (seg-
mented vs. unsegmented), as well as the task type (identification vs. localization, and
lookup vs. comparison) represented at each corner of the cube [TFS08]. Copyright
©2008, IEEE.
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Figure 2.23: A comparison of a spectrum-approximation pseudo-colour sequence vs.
grayscale sequence in showing form and value. The pseudo-colour improves the rep-
resentation of both form and value information, while the grayscale partially helps in
representing form [War88]. Copyright ©1988, IEEE.

2.3.8 Methods for measuring and modelling visual perception

In 1860, Gustav Theodor Fechner proposed the term ‘psychophysics’, a scientific
methodology for studying the relationship between the intensity of a physical stim-
ulus and human perception and sensation, by systematically varying the properties of
the stimulus along one or more physical dimensions [P+16]. In a classical psychophys-
ical experiment, the parameter of interest is typically the difference threshold, or the
just noticeable difference (JND), which estimates the smallest unit or change in a stim-
ulus a person can detect [P+16]. Psychophysics also refers to the general study of a
perceptual system, and as such it has widespread and significant theoretical and practi-
cal applications across different scientific disciplines, including cognitive science and
computer science [P+16]. Psychophysical methods are widely used to systematically
evaluate science-of-perception-based visualisations [War21] and human-like percep-
tual algorithms, which make the algorithms classification inference more explainable
(see examples in [RYKC+18, GJS+17, GWB13, ECS16, HSSB98]).

In conjunction with psychophysics, eye-tracking methodology is widely used to
quantify visual behavior when performing a given task, to understand differences in
locus and level of attention [Duc07]. In cardiology, eye-tracking has been used to
study the visual behavior of medical practitioners reading an ECG [AT06, DVHJ16,
DBV+16]. To date, studies have neither applied psychophysical methods to under-
stand ECG interpretation nor applied eye-tracking methods to investigate the ability of
laypeople to perceive differences in ECG morphology.
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2.4 Chapter summary

This chapter used an interdisciplinary review approach across the fields of cardiac
physiology, computer science and cognitive psychology to address important questions
related to the research problem. First, we investigated how pharmacological drugs
can induce LQTS, and found that drugs that mainly block the potassium ion chan-
nel can prolong the cardiac action potential leading to LQTS, and (hERG) potassium
blockers are the most common cause of drug-induced long QT syndrome (diLQTS).
We also found that some drugs could block multiple ion channels affecting different
phases of the cardiac action potential, which are reflected on the ECG by substantial T-
wave morphological changes that are commonly accompanied by additional changes
in the ST-segment and U-wave. We also identified the significant ECG risk predic-
tors of TdP arrhythmia attacks that are associated with diLQTS and sudden cardiac
death. We investigated why this critical condition (despite its clinical importance) is
currently challenging to recognise on the ECG clinically and computationally. We
found that prolonged, large and fused T-U wave morphology changes indicate an in-
creased risk of developing TdP arrhythmia, but they obscure the end of the T-wave and
affect the QT-interval measurement accuracy. This issue complicates both manual and
automated QT-interval measurement, and the best method to use remains a subject of
debate. Consequently, current methods used for detecting drug-induced LQTS on the
ECG are sub-optimal for both humans and machines, and investigating other potential
approaches to ECG interpretation may save many lives. The chapter finally introduced
a fundamental theory in a human vision known as pre-attentive processing, which out-
lines a set of pre-attentive attributes such as colour (hue and intensity) known to be
detected rapidly and accurately by the human eye. These attributes can proceed from
pre-attentive to attentive processing when influenced by an individual’s intentions and
visual task goals. Using these attributes in design can improve both the effectiveness
and efficiency of visualising complex data. Therefore, we hypothesise that introducing
a pseudo-colouring technique to the complex ECG image has the potential to expose
QT-interval duration changes, thus supporting LQTS detection intuitively.



Chapter 3

Computer-Based ECG Interpretation
and Visualisation Methods for
Supporting Long QT Syndrome
Detection and/or Risk Assessment: a
Summary and Appraisal of Published
Evidence

3.1 Chapter overview

Chapter 2 described how that measuring the QT-interval is a challenging task, as pre-
cise identification of the T-wave end is difficult, whether performed manually or auto-
matically. Over the last few years, research has thus increasingly focused on exploring
computer-based approaches to improving LQTS detection and/or risk assessment with-
out relying solely on QT-interval measurement. This chapter summarises and appraises
the published evidence on computer-based ECG interpretation and Visualisation meth-
ods proposed in the current literature for supporting LQTS detection and/or risk as-
sessment. It discusses recent advances and limitations of these methods, identifies the
current knowledge gaps in the field and formulates the research hypothesis.

90
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3.2 Review objectives

This review sought to explore computer-based methods reported in the current litera-
ture intended to support long QT syndrome (LQTS) detection or risk assessment on
the ECG, including both semi-automated and visualisation methods supporting hu-
man interpretation, and fully-automated ECG interpretation approaches. The review
addressed three questions as follows:

• RQ1: What kinds of computer-based approaches are used to support LQTS de-
tection and/or risk assessment on the ECG? How effective are they?

• RQ2: Do the approaches focus on congenital or drug-induced LQTS, or both?

• RQ3: Do the approaches support risk assessment of potential TdP?

3.3 Review method

3.3.1 Eligibility criteria

Study focus

Studies that focused primarily on the use of computer-based methods to support long
QT syndrome (LQTS) detection and/or risk assessment (whether congenital or ac-
quired LQTS) on the ECG were included. Studies that focused on other cardiac con-
ditions or focused only on QT-interval measurement without any particular focus on
detecting or assessing QT-prolongation or LQTS were excluded.

Populations

Only studies focusing on detecting/assessing LQTS in adult humans were included.
Studies that focused on detecting/assessing LQTS in children or animals were ex-
cluded.

Study design

Only empirical research studies that explored computer-based detection and/or assess-
ment methods were included. Clinical case reports or papers that did not report any
computer-based methodological contributions were excluded. Studies that reported the
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results of a proprietary commercial ECG analysis system without explicitly explaining
how the system works were excluded.

Publication type

Only full text, English language papers were included. Conference abstracts and non-
English papers were excluded.

3.3.2 Information sources

Four electronic databases— PubMed, Springer, Science Direct and IEEE—were searched
for relevant publications up to the end of January 2021. We also searched Google
Scholar to avoid bias in favour of any specific database.

3.3.3 Search query construction

The three key terms of this review are ‘computer-based’, ‘long QT syndrome’ and
‘ECG’. The search query was therefore constructed as (‘Long QT syndrome’ OR
‘Long QT’ OR ‘LQTS’ OR ‘QT-prolongation’ OR ‘QT-interval prolongation’ OR
‘Prolonged QT’) AND (‘Computer-based’ OR ‘Computer’ OR ‘Computerised’ OR
‘Computerized’ OR ‘Computational’ OR ‘Automated’ OR ‘Algorithm’ OR ‘Algo-
rithms’) AND (‘ECG’ OR ‘EKG’ OR ‘Electrocardiogram’).

3.3.4 Study selection process

The study selection process followed the guidelines in the PRISMA statement [LAT+09].
Search terms were entered into databases, and all studies captured by the search query
were first screened by title and abstract. Selected studies were then screened for inclu-
sion by reading the full-text.
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3.3.5 Quality appraisal

The selected papers were assessed for inclusion in the review using an adapted version
of the quality appraisal checklist for reporting research studies in the field of healthcare
intervention proposed by Downs Sara H and Nick Black [DB98], which is described
as follows:

Table 3.1: Criteria used for quality appraisal.

ECG sample

Q1: Does the study report the number of ECGs used
in evaluating the approach?

Q2: Does the study describe how the ECG sample was selected?
Q3: Does the ECG sample represent the target group

to which the results will be generalised?

Evaluation measures used

Q4: Does the study explain the proposed approach explicitly?
Q5: Does the study describe the main outcomes to be measured?

Q6: Is the method for analysing the results appropriate and sufficiently explained?

Two responses were used when scoring the criteria: ‘yes’ and ‘no’. Papers were
scored eligible if they addressed all criterion.

3.4 Results

The electronic database search retrieved 825 papers. These were initially screened by
title to remove duplicates, leading to 520 papers. The titles and abstracts were then
reviewed for relevance based on the inclusion criteria. This stage revealed that the vast
majority of work in this area has focused on using computer-based methods to anal-
yse phenotype and genotype differences in LQTS patients (%33 of the retrieved stud-
ies); predict potential drug-induced TdP from hERG inhibition or multiple ion channel
blocking drugs (%16 of the retrieved studies); manage QT-prolonging drug doses in a
clinical scenario (%14 of the retrieved studies); evaluate the effects of different drug
concentrations on QT-prolongation without any particular focus on ECG interpretation
(%7 of the retrieved studies); and model gender differences in LQTS patients (%3 of
the retrieved studies). The primary focus of these studies was not to assist in distin-
guishing LQTS patients from healthy control subjects based on ECG features, nor to
support LQTS detection or risk assessment on the ECG, but rather to analyse clinical
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and genetic LQTS characteristics independently of ECG features. Some studies were
completely irrelevant to the review objectives (%22 of the retrieved studies). Thus,
relatively few studies were found that have investigated the impact of using computer-
based ECG interpretation methods to support LQTS detection and/or risk assessment
(only %5 of the retrieved studies). These relevant papers (n = 26) were thoroughly
examined by reading the full-text, and the reference lists were manually searched for
further eligible papers. The final number of papers selected for inclusion in this review
was 10. Figure 3.1 illustrates the study selection process.

3.4.1 Overview of the characteristics of the included studies

Table 3.2 provides a summary of the included studies. The studies’ time frame ranges
from 2005 to 2020, with most of them (n = 7, 70%) conducted recently (2017-2020).
Most studies were empirical experiments that used ECGs of congenital LQTS patients
and healthy control subjects (n= 7), and relatively few studies (n= 3) used ECGs from
drug-induced LQTS patients without including healthy control ECGs.

Half of the studies focused on improving the detection of LQTS using ECG fea-
tures (particularly T-wave morphology). The other half focused on enhancing the risk
assessment of LQTS (one study was based on the QT/RR relationship, two studies
were based on T-wave morphology, one study was based on QTc values and one study
used a combination of clinical characteristics and multiple ECG features).

All studies described their computational approach explicitly, but only one study
made their software open source. Two studies reported the use of their own commercial
ECG analysis software but explained the computational methods involved sufficiently.

Five studies used all 12 leads of a 10-second ECG recording, then calculated the
average QT-interval from a number of manually selected heartbeats (also known as
representative heartbeats), while three studies selected only lead II data from a 12-lead
10-second ECG. Two studies used continuous ECG datasets (24-hour recording) from
a Holter monitor.
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Figure 3.1: The PRISMA flowchart for the study selection process.
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Table 3.2: Overview of the included studies characteristics.

Study Author, Study focus LQTS detection/ Approach type Availability Clinical implications
reference year risk assessment

[CZM05] Couderc et
al., 2005

Discriminating hERG
(LQTS2) carrier from
non-carrier on the
ECG.

Detection of con-
genital LQTS.

A fully-automated signal
processing approach and
logistic regression statistical
modelling.

Proprietary,
commercial
software.

T-wave morphology can
help detect the hERG mu-
tation in LQTS2 patients at
borderline QT-interval.

[CKH+07] Couderc et
al., 2007

Quantifying T-wave
morphology to identify
individuals who de-
veloped drug-induced
TdP.

Risk assessment
of drug-induced
LQTS.

A mixed approach of
fully-automated and semi-
automated signal processing
methods, along with lo-
gistic regression statistical
modelling.

Proprietary,
commercial
software.

The propensity of an indi-
vidual to drug-induced TdP
can be recognised from the
T-wave morphology on the
ECG baseline (before taking
the medication).

[PAS+16] Page et al.,
2016

Visualising the changes
in QT-interval values
automatically gen-
erated by a 24-hour
Holter ECG monitor.

Risk assessment of
congenital LQTS.

A QT clock visualisation
technique showing auto-
mated QTc values on a
circular plot representing a
24-hour clock.

Open source. The QT clock helps un-
cover dynamic QT-interval
changes during 24-hour
between different types of
LQTS, as well as between
men and women with
LQTS.

[PMX+17] Page et al.,
2017

Investigating beat-to-
beat QT-interval and
heart rate relationship
from Holter ECG
monitor.

Risk assessment of
congenital LQTS.

A web-based tool uses a
semi-automated QT mea-
surement approach and heat
map visualisation technique
showing the QT/RR changes
relationship.

Source-code
unavailable.

A heat map QT/RR visuali-
sation technique helps detect
if the QT is adapting to sud-
den heart rate changes.
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Table 3.2: Overview of the included studies characteristics.

Study Author, Study focus LQTS detection/ Approach type Availability Clinical implications
reference year risk assessment

[PSSH+17] Porta-
Sánchez
et al., 2017

Analysing the diag-
nostic accuracy of
automated, quantitative
analysis of T-wave
morphology to distin-
guish congenital LQTS
patients from healthy
control subjects.

Detection of con-
genital LQTS.

A fully automated sig-
nal processing approach
quantifying the T-wave mor-
phology including flatness,
asymmetry, and notching,
producing a morphology
combination score (MCS).

Proprietary,
commercial
software.

An automated, quantitative
analysis of T-wave morphol-
ogy helps detect congeni-
tal LQTS from healthy sub-
jects.

[HSB+18] Hermans et
al., 2018

Investigating the added
value of T-wave mor-
phology in the detec-
tion of LQTS patients
from healthy control
subjects.

Detection of con-
genital LQTS.

A mixed approach of fully
automated signal processing
and support vector machine
learning classifier using dif-
ferent ECG measurements
as inputs, including heart
rate, QT-interval and T-wave
morphology.

Source-code
unavailable.

A support vector machine
learning approach that adds
T-wave morphology to other
ECG measurements signifi-
cantly improves the detec-
tion of congenital LQTS.
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Table 3.2: Overview of the included studies characteristics.

Study Author, Study focus LQTS detection/ Approach type Availability Clinical implications
reference year risk assessment

[HRK19] Hajimolaho-
seini et al.,
2019

Examining the accu-
racy of a deep learning
approach using a con-
volutional neural net-
work (CNN) in clas-
sifying 12-lead ECGs
(each ECG image rep-
resents a single heart-
beat) as ‘normal’ or
LQTS.

Detection of con-
genital LQTS.

A mixed approach of signal
processing and deep learn-
ing CNN classifier. The 12-
lead ECGs were segmented
into individual heartbeats
using a signal processing
QRS peak detector.

Source-code
unavailable.

A deep learning approach
can improve detection of
congenital LQTS based on
the ECG morphology of a
single heartbeat.

[MPS+19] Morettini et
al., 2019

Examining the accu-
racy of an artificial
neural network (ANN)
in classifying the
hERG potassium-
channel block as
‘high block’ or ‘low
block’ based on the
T-wave morphology,
after a QT-prolonging
(dofetilide) administra-
tion.

Risk assessment
of drug-induced
LQTS.

A mixed approach of clini-
cal characteristics, manually
measured T-wave morphol-
ogy and artificial neural net-
work (ANN) classifier.

Source-code
unavailable.

An artificial neural network
(ANN) classifier that uses
manually measured T-wave
morphology characteristics
can help assess the risk
of hERG potassium-channel
block levels caused by a QT-
prolonging drug.
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Table 3.2: Overview of the included studies characteristics.

Study Author, Study focus LQTS detection/ Approach type Availability Clinical implications
reference year risk assessment

[CZY+20] Chen et al.,
2020

Predicating all-cause
mortality of drug-
induced long QT
syndrome based on
clinical and ECG
characteristics using
random survival forests
and non-negative
matrix factorisation.

Risk assessment
of drug-induced
LQTS.

Combined predictive mod-
elling statistical approaches
including random survival
forests (RSF) and non-
negative matrix factorisation
(NMF) that use clinical
characteristics and manually
measured ECG features as
inputs.

Source-code
unavailable.

A combined approach of
RSF-NMF statistical mod-
els can predict all-cause
mortality from drug-induced
LQTS including a prolonga-
tion of J–T peak interval cor-
rected to heart rate and QRS
complex on the ECG, along
with cancer, serum potas-
sium and calcium levels.

[HBV+20] Hermans et
al., 2020

Investigating the di-
agnostic accuracy of
T-wave morphology,
along with the cor-
rected QT-interval
(QTc), age and sex in
detecting LQTS.

Detection of con-
genital LQTS.

A mixed approach of signal
processing quantifying T-
wave morphology and mul-
tiple support vector machine
learning classifiers.

Source-code
unavailable.

Adding T-wave morphology
characteristics to age, sex,
and QTc features in a sup-
port vector machine model
improves LQTS detection.
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3.4.2 Synthesis of the studies’ findings

RQ1: What kinds of computer-based approaches are used to support LQTS de-
tection and/or risk assessment on the ECG? How effective are they? All studies
focused on LQTS detection or risk assessment, and no study focused on both. As such,
we divided the studies into these two broad categories: ‘LQTS detection’ and ‘LQTS
risk assessment’.

LQTS detection: All studies that aimed to improve LQTS detection using comput-
erised methods have relied mainly on statistical analysis approaches to predict the key
ECG features that differentiate LQTS patients from healthy control subjects (n = 5)
[CZM05, PSSH+17, HSB+18, HRK19, HBV+20]. In most of these studies signal pro-
cessing techniques have been used to measure ECG features automatically—notably
the T-wave morphology—and then use these automated numerical values as inputs to
train a machine learning model (n = 3) [CZM05, HSB+18, HBV+20] or to compute a
T-wave morphology combination score (MCS = 1.6 × flatness + asymmetry + notch)
(n = 1) [PSSH+17].

The study by Couderc et al. (2005) sought to detect LQTS as early as possible
(that is when the QT-interval is at the borderline level and not yet considered pro-
longed) [CZM05]. They focused their study on patients with congenital LQTS type
2, who have gene (hERG) mutation, and attempted to discriminate between hERG
mutation carriers from non-carriers based on the QT-interval, RR-interval and T-wave
morphology of 46 carriers and 49 non-carriers (total number of ECGs used = 1583)
[CZM05]. The ECG features were measured by an automated signal processing com-
mercial software application called ‘The COMPAS’ (University of Rochester Medical
Center, NY, USA) [CZM05]. After several experiments manipulating the inclusion
of these ECG features into a logistic regression model, they found that the ascending
slope of the T-wave morphology (clinically known as the J–T peak interval), along with
the QT-interval and RR-interval, can effectively distinguish the hERG mutation carrier
from non-carrier at a borderline QT-interval, with a sensitivity and specificity equal to
92.7% and 90% respectively [CZM05].

Two studies by the same authors investigated the effectiveness of a support vec-
tor machine learning (SVM) classifier in distinguishing LQTS patients from healthy
control subjects [HSB+18, HBV+20]. The first study empirically compared two mod-
els: a baseline model that included patient demographic characteristics and ECG fea-
tures including age, sex, RR-interval, QT-interval, and corrected QTc-interval, and an
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extended model that added T-wave morphology measurements to the same baseline
model’s inputs [HSB+18]. Using a total of 688 12-lead ECGs recorded from congen-
ital LQTS patients and healthy subjects, the results showed that the extended model
including T-wave morphology characteristics significantly improved the detection ac-
curacy of LQTS patients. The area under the receiver operating characteristic (ROC)
curve (AUC) for the comparison extended model was 0.901, while for the baseline
model it was 0.821 [HSB+18]. The second study used a similar approach, but com-
pared three SVM classifiers rather than two: a baseline model including age, gender
and corrected QTc-interval as inputs; a T-wave morphology model using pre-calculated
T-wave morphology characteristics measured by an automated signal morphology fit-
ting approach as inputs; a model combining the baseline and T-wave morphology mod-
els [HSB+18]. The ECG data used were from 333 patients with congenital LQTS and
345 healthy subjects. The results confirmed the results of the first study, showing that
the combined approach that added T-wave morphology characteristics to age, gender,
and QTc values as inputs improves LQTS detection, with an overall accuracy of 84%
[HBV+20].

A study by Porta-Sánchez et al. (2017) used a highly sophisticated signal pro-
cessing system— proprietary, commercial QT Guard Plus software (GE Healthcare,
Milwaukee, Wisconsin)—to measure different characteristics of T-wave morphology
including flatness, asymmetry, and notching [PSSH+17]. They assessed the overall
normality of the T-wave morphology using a combination score calculated as ‘MCS =
1.6× flatness + asymmetry + notch’, comparing 108 congenital LQTS patients and 45
healthy subjects [PSSH+17]. Taking one ECG for each patient at rest and automati-
cally calculating the MSC score, they found that the MCS results differed significantly
between LQTS patients (Mean = 117.8, SD = 57.4) and healthy control subjects (Mean
= 71.9, SD = 16.2)(p-value < 0.001), and showed that using the MCS score there-
fore has the potential to improve LQTS detection. They showed that using an MCS
threshold of 85 can distinguish LQTS patients from healthy control subjects with 79%
sensitivity and 82.6% specificity (ROC AUC = 0.878) [PSSH+17].

Although all these approaches have shown potential for improving LQTS detection,
they still rely on automated signal processing methods, the limitations of which were
previously discussed in detail in Section 2.2.4. In a sole departure from this, Hajimola-
hoseini et al. (2019) extracted signal features from ECG images using a convolutional
neural network (CNN) deep learning model [HRK19]. As deep learning model usually
requires large datasets to perform well [ERR+19, Top19a], they needed to segment the
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12-lead ECG image into individual heartbeats. This increased the number of images
used to train the CNN model, where each ECG image represents all 12-lead signals
of a single heartbeat. We hypothesise here that the reason behind including all 12
leads is to increase the number of features within a single ECG image. Their approach
provided high average accuracy results during cross-validation testing (Mean F1-score
= 93.26%), showing a new promising route to extracting ECG features automatically
without using signal processing measurement approaches [HRK19]. However, given
that this approach applied only on single heartbeats, it did not consider detecting LQTS
according to heart rate. As such, future work should investigate the potential of this ap-
proach in detecting LQTS across different heart rates. Another limitation of this study
is that they labelled the data based on genetic testing results (not QTc values), and
as such the primary purpose of their approach was to distinguish between genotype-
positive LQTS patients (congenital LQTS patients) and genotype-negative healthy peo-
ple based on ECG morphology only, without considering the QT-interval. Thus, it is
not clear whether this approach would generalise to the acquired, drug-induced LQTS,
where a genotype-negative healthy person can still develop LQTS as a result of taking
medications.

LQTS risk assessment: The risk of LQTS can be assessed in many ways, and stud-
ies have thus differed in their methodology for determining it. A study by Couderc et
al. (2007) aimed to determine the propensity of an individual with congenital LQTS
to develop drug-induced TdP based on ECG baseline characteristics, before taking
the QT-prolonging medication (Sotalol) [CKH+07]. They recorded a single drug-free
ECG baseline and a single follow-up drug-induced ECG for 34 patients with congenital
LQTS. Seventeen of these patients developed one or more drug-induced TdP episodes
as a result of taking the medication. The baseline ECGs were then divided into two
groups: patients with a history of drug-induced TdP and patients without. The ECG
features, including the QT-interval, RR-interval and T-wave morphology, were mea-
sured using a fully automated signal processing approach on all heartbeats to provide
overall averaged values, and a semi-automated signal processing approach where three
representative heartbeats were selected and a clinician manually adjusted the end of
the T-wave if needed. A logistic regression model was then used to determine the
baseline ECG features that identify individuals with a significant tendency to develop
drug-induced TdP. The results showed that the T-wave morphology—particularly the
early repolarisation duration (ERD) shown by the J–T peak interval on the ECG—is the
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strongest predictor of developing drug-induced TdP. They found that for each one mil-
lisecond increase in its duration, there was an 8.4% increased probability of developing
TdP [CKH+07].

Two studies have investigated the use of data visualisation techniques to assess the
risk of LQTS in different ways [PAS+16, PMX+17]. The first study by Page et al.
(2016) examined the use of a ‘QT clock’ visualisation technique to monitor dynamic
changes in heart rate corrected QT-interval (QTc) values automatically generated by a
24-hour Holter ECG monitor on a circular plot representing a 24-hour clock [PAS+16].
The clock’s radius represents the QTc-interval values varying from 300 to 600ms from
the centre to the perimeter. The Holter monitor recorded continuous ECGs over 24
hours, and the QTc-interval of each heartbeat was automatically measured using an
open source ECG analysis software developed by Chesnokov et al. [CNG06], and then
the percentage of prolonged QTc intervals within an hour was calculated. The QT
clock visualises the percentage of beats with QTc prolongation across 24 hours. They
examined the effectiveness of this visualisation for presenting periods of prolonged
QTc interval over 24 hours for a single patient, as well as in showing QTc-prolongation
period differences between patients across different LQTS types (202 LQTS type1, 89
type 2, and 14 type 3) in comparison with 200 healthy control subjects. The QT clock
helped uncover dynamic QT-interval changes over 24 hours between LQTS patients
type 1 and type 2; LQTS type 1 patients showed more frequent QTc prolongation
during the day than at night, while LQTS type 2 patients showed the opposed pattern
(p-value < 0.05) [PAS+16]. This provides evidence that the QT clock can be used
to assess the risk of QT-prolongation over 24 hours for an individual patient and a
multiple patient group.

The second study by Page et al. (2017) also used a 24-hour Holter ECG moni-
tor, this time with both fully-automated and semi-automated approaches to measuring
the QT-interval [PMX+17]. Automated QT measurements were taken for 192 healthy
subjects and manual QT measurements were taken by a clinician for LQTS patients
(138 LQTS type 1 and 97 LQTS type 2), who then calculated changes in QT and
RR intervals. Because the QT-interval changes inversely with heart rate (see Section
2.2.4), their study examined an experimental web-based tool that visualises QT/RR
interval changes using a heat map. The results showed that a simple heat map vi-
sualisation technique showing the correlation between QT and RR intervals changes
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helps detect whether the QT is adapting to sudden heart rate changes, thus support-
ing the detection of specific QT adaptation patterns indicating a higher risk for car-
diac events. They found that patients with cardiac events have large ∆ QT and ∆

RR interval variability, particularly when the heart rate is accelerating and the QT-
interval getting longer [PMX+17], although most clinical research in this area has
shown that cardiac events in LQTS patients are often correlated with a slow heart rate
[CNK+15, Nam10, TRR+07, CIKD07].

Morettini et al. (2019) aimed to assess the risk of drug-induced LQTS by using
an artificial neural network (ANN) to classify the degree of hERG potassium-channel
blocking as ‘high block’ or ‘low block’ based on T-wave morphology, after a QT-
prolonging (dofetilide) administration [MPS+19]. They used the manually measured
T-wave morphology characteristics of 22 healthy subjects receiving a single 500 µg
dose of dofetilide. Namely, they calculated the difference in the J–T peak and T peak-
T end intervals (the early and the late phases of repolarisation) between each follow-
up ECG and a drug-free ECG baseline. To train the ANN classifier, they used these
∆ JT and ∆ TP values as inputs and clinical blood test data showing the amount of
dofetilide plasma concentration indicating the hERG potassium-channel block level as
outputs. The dataset was split into training, validation, and test sets (114, 29, and 143,
respectively). The results showed that an ANN classifier, which uses changes in the
T-wave duration (i.e. the J–T peak and T peak-T end intervals) from a drug-free baseline
as features, accurately determines the risk of hERG potassium-channel block levels
caused by a QT-prolonging drug (ROC AUC = 0.91) [MPS+19].

Given that many cancer treatments including chemotherapy are known to cause an
acquired, drug-induced LQTS [KBS+13, TBM+04], a study by Chen et al. (2020)
sought to identify significant risk factors for all-cause mortality of acquired LQTS pa-
tients using statistical analysis methods including random survival forests (RSF) and
non-negative matrix factorisation (NMF) [CZY+20]. They used clinical characteris-
tics (including serum potassium and calcium levels and patient history of syncope and
severe arrhythmia) and manually measured ECG features (including the PR-interval,
QRS complex, QT-interval, J–T peak and T peak-T end intervals) for patients who died
with acquired LQTS, with or without cancer. Their study results showed that a com-
bined approach of RSF-NMF statistical models can predict all-cause mortality from
drug-induced LQTS including a prolongation of J–T peak interval corrected to heart
rate and QRS complex on the ECG, along with cancer, serum potassium and calcium
levels [CZY+20].
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RQ2: Do the approaches focus on congenital or drug-induced LQTS? or both?
Studies have focused either on congenital or drug-induced, but not both. Most of
the studies have focused primarily on congenital LQTS (n = 8). Only two studies
focused on acquired, drug-induced LQTS: one study has focused on patients receiving
anti-cancer medications, while the other study focused on healthy people at risk of
developing drug-induced LQTS [MPS+19].

RQ3: Do the approaches support risk assessment of potential TdP? Only two
studies have assessed the risk of potential TdP based on the T-wave morphology. One
study aimed to determine the propensity of an individual with congenital LQTS to de-
velop drug-induced TdP using a logistic regression prediction model [CKH+07]. This
found that the presence of a prolonged early repolarisation duration (represented on
the ECG by the J–T peak interval) in the ECG baseline can increase the risk of devel-
oping drug-induced TdP if a patient used a QT-prolonging drug [CKH+07]. The other
study sought to determine the risk of TdP based on the hERG potassium-channel block
level (i.e. they hypothesised that high hERG block level = high TdP risk) by using an
artificial neural network (ANN) classifier [MPS+19]. They showed that increases in
both the early and late repolarisation duration (represented by the J–T peak and T peak-
T end intervals of the T-wave) from a drug-free ECG baseline can increase the risk of
developing TdP [MPS+19].

3.5 Identifying knowledge gaps and formulating our re-
search hypothesis

Although computer-based ECG interpretation methods were introduced in the 1950s
[Rau07]–where numerous efforts have been made to to improve the accuracy of detec-
tion of many cardiac conditions (notably arrhythmias)[LL20, SW17]—long QT syn-
drome has received scant attention in this area of research. This literature review shows
that researchers recognised the difficulty of detecting LQTS based solely on measuring
the QT-interval, and most studies have attempted to explore alternative ECG features
to identify this critical condition. A considerable amount of research has focused on
extracting the T-wave morphology features from the ECG using either manual mea-
surements or automated signal processing measurements, then using these numerical
feature values as inputs to various computerised statistical analysis approaches to pre-
dict the ECG features of LQTS patients that differ from healthy subjects. To date, no
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study has investigated the impact of using computer-based methods to support visual
LQTS detection on the standard ECG directly.

Although an acquired, drug-induced LQTS caused by many commonly prescribed
medications is by far the most common cause of TdP arrhythmia attacks [NAS12,
YC03, CMY08, ESTB20, WS20], most studies focused on congenital LQTS and re-
markably few studies have investigated the impact of computer-based ECG interpre-
tation methods in supporting the assessment of drug-induced LQTS at risk of TdP.
This thesis seeks to bridge these gaps by exploring the potential impact that computer-
based ECG interpretation methods could have on enabling non-experts to interpret the
ECG. This could ultimately be used for improving primary and secondary prevention
of drug-induced LQTS, and ultimately save many lives. Such methods could help less-
experienced clinicians with ECG interpretation, particularly within emergency depart-
ments, to assess and monitor patients’ QT-intervals before or during the provision of
a QT-prolonging medication, and also support outpatients on a known QT-prolonging
drug to self-monitor their own ECGs. To the best of our knowledge, no study has fo-
cused on supporting non-experts in ECG interpretation to detect or assess drug-induced
LQTS and TdP by leveraging computer-based ECG interpretation approaches.

Research has shown that accurate human ECG interpretation depends on the per-
ceptual skill of pattern recognition [WBA+14, BZF+14, DBV+16], with experts using
this first, and resorting to a more systematic measurement approach of ECG features
if they run into barriers [DMH+19]. To date, no study has used knowledge of human
visual perception to enhance human-machine ECG interpretation. This thesis therefore
hypothesises that using a science-of-perception-based approach to optimise the recog-
nition of important signal patterns associated with LQTS could improve non-expert
ECG interpretation accuracy, and endow machines with a ‘human-like’ perceptual abil-
ity to recognise LQTS signal patterns, with the potential to facilitate an explainable,
shared human-machine ECG interpretation.
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3.6 Chapter summary

Critical analysis of the current literature on computer-based ECG interpretation meth-
ods proposed for detecting or assessing the risk of LQTS shows that researchers have
recognised the difficulty of detecting LQTS based solely on measuring the QT-interval,
and as such most studies have attempted to explore alternative ECG features to iden-
tify this critical condition automatically. The vast majority of the work in this area
has focused on extracting T-wave morphology features from the ECG using either
manual or automated signal processing measurements and using the resulting numer-
ical feature values as inputs to computerised statistical analysis approaches to predict
the ECG features that distinguish LQTS patients from healthy subjects. To date, no
study has investigated the impact of using computer-based methods to support visual
LQTS detection on the standard ECG directly. Also, although the drug-induced LQTS
caused by many commonly prescribed medications is by far the most common cause
of TdP arrhythmia and sudden cardiac death, most studies have focused on congenital
LQTS, and remarkably few studies have investigated the impact of using computer-
based ECG interpretation methods for supporting the risk assessment of potential TdP.
Moreover, although many QT-prolonging drugs are commonly prescribed (often for
self-limited diseases), no study has focused on using computer-based ECG interpreta-
tion approaches to support non-experts in ECG interpretation to detect or assess drug-
induced LQTS at risk of TdP.



Chapter 4

Can Laypeople Identify a
Drug-Induced QT-Interval
Prolongation? A Psychophysical and
Eye-Tracking Experiment Examining
the Ability of Non-Experts to Interpret
an ECG

4.0 Chapter overview

4.0.1 Thesis context

The research in this thesis is motivated by the idea that laypeople will ultimately be
able to self-monitor for LQTS at home. To date, no study has specifically investigated
the ability of laypeople to interpret ECGs in general or to determine QT-interval pro-
longation in particular, discussed in Chapter 1 as the first research challenge. This
chapter attempts to fill this gap by introducing a psychophysical and eye-tracking ex-
periment that quantifies laypeople’s ability to perceive drug-induced increases in the
QT-interval from a drug-free ‘normal’ QT-interval (baseline) on the standard ECG. As
a starting point, the investigation is limited to ECGs with a regular heart rate of 60
bpm. The reason behind this—given the fact that the QT-interval (QT) is the same
as the corrected QT-interval (QTc) at 60 bpm [LMJM04]—is to examine their ability

108
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to detect differences in the QT-interval length (between a drug-free ECG baseline and
a drug-induced comparison ECG) with no QT measurement or heart rate correction
required.

The results of this study show the potential for ECG self-monitoring, as the ma-
jority of laypeople were able to detect a clinically significant QT-prolongation (drug-
induced QT > 500ms, the difference from the baseline ≈ 88ms) at a low normal heart
rate. A number of research questions emerged from this work, including: (1) how to
support laypeople in detecting smaller increases in the QT-interval that may represent
a clinically significant side effect of a QT-prolonging drug, which was explored and
empirically studied in Chapter 5; and (2) how to further support them in perceiving
increases in the QT-interval at higher or lower heart rates, which has been investigated
in depth in Chapter 6.

The main content of this chapter is adapted from: Alaa Alahmadi, Alan Davies, Markel
Vigo, and Caroline Jay. Can lay people identify a drug-induced QT-interval prolon-
gation? A psychophysical and eye-tracking experiment examining the ability of non-
experts to interpret an ECG. Journal of the American Medical Informatics Association,
2018.

4.0.2 Author’s contributions

Alaa Alahmadi and Caroline Jay devised the idea for the work. Alaa Alahmadi de-
signed the study, carried out the data collection, analysed the results and wrote the
paper, with Alan Davies, Markel Vigo and Caroline Jay contributing significant ed-
its. Caroline Jay assisted with study design and analysis. Alan Davies acted as the
electrocardiogram domain expert throughout. Caroline Jay and Markel Vigo provided
continuous guidance and discussion.
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4.0.3 Published abstract

Objective: The study sought to quantify a layperson’s ability to detect drug-induced
QT-interval prolongation on an electrocardiogram (ECG) and determine whether the
presentation of the trace affects such detection.
Materials and methods: Thirty layperson participants took part in a psychophysical
and eye-tracking experiment. Following training, participants completed 21 exper-
imental trials, in which each trial consisted of 2 ECGs (a baseline and a comparison
stimulus, both with a heart rate of 60 bpm). The experiment used a 1 alternative forced-
choice paradigm, in which participants indicated whether or not they perceived a dif-
ference in the QT-interval length between the 2 ECGs. The ECG trace was presented
in 3 ways: a single complex with the signals aligned by the R wave, a single complex
without alignment, and a 10-second rhythm strip. Performance was analyzed using the
psychometric function to estimate the just noticeable difference threshold, along with
eye-tracking metrics.
Results: The just noticeable difference 50% and 75% thresholds were 30 and 88ms,
respectively, showing that the majority of laypeople were able to detect a clinically
significant QT-prolongation at a low normal heart rate. Eye movement data indicated
that people were more likely to appraise the rhythm strip stimulus systematically and
accurately.
Conclusions: People can quickly be trained to self-monitor, which may help with more
rapid identification of drug-induced long QT syndrome and prevent the development of
life-threatening complications. The rhythm strip is a better form of presentation than a
single complex, as it is less likely to be misinterpreted due to artefacts in the signal.

4.1 Background and significance

Drug-induced long QT syndrome (LQTS) is a cardiac abnormality that can increase the
risk of a life-threatening arrhythmia, known as torsades de pointes (TdP), which may
lead to syncope, drowning, and sudden cardiac death [GM08, AAKR+02, MSC+85].
LQTS is a side effect of more than 100 commonly prescribed QT-prolonging medi-
cations including antiarrhythmic drugs, antihistamines, and antidepressants [CMY08,
YC03]. People taking these medications may not experience any symptoms, and some-
times a prolonged QT-interval can only be detected by examining an electrocardiogram
(ECG) [Kha02, RV05, SC08].
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An ECG is a graphical representation of the electrical activity of the heart and is
widely applied in clinical practice to assess heart function and detect cardiac patholo-
gies [ATOP14]. The QT-interval represents the duration of time to complete the ven-
tricular depolarization and repolarization cycle and is measured in the ECG from the
beginning of the QRS complex to the end of the T wave [AAKR+02, GMZ06]. LQTS
occurs when the repolarization of the heart following a heartbeat is delayed and ap-
pears as an elongated QT-interval on the ECG [AAKR+02, GMZ06]. There is also
a congenital LQTS caused by mutations in certain genes. People with this disorder
might be excluded from using QT-prolonging drugs [SC08, CCDS08].

Frequent monitoring is advisable for people who are at high risk of acquiring LQTS
including patients who take prescribed QT-prolonging medications [KW12] or patients
participating in a clinical trial for a new drug [CSDB+09, Sha02]. Several studies
have investigated the effectiveness of utilizing ambulatory ECG devices to monitor
patients’ ECG remotely [Loc17, RKE+89], but this approach still relies on clinicians
being able to access and interpret the ECG. An additional complication is that health
status, age, sex, and ethnicity all influence a patient’s ECG in general and the QT-
interval specifically [GMZ06, MMDY94, HST+16]. It has been shown that there is
no ‘cutoff’ value for deciding whether, in isolation, the QT-interval is normal, short,
or prolonged [GMZ06]. A personalized monitoring solution that considers a patient’s
reading against their ‘normal’ baseline ECG has the potential to address some of these
issues.

While there are computerized methods for measuring QT-interval, the reliability of
these methods is limited [KBR+14, GL13, MCbA01, RSG09, EI13, HG06, TABW11,
TAS+15], and human visual validation is strongly recommended [MCbA01, EI13,
SW17]. In addition to this, the accuracy of automated ECG interpretation methods
is affected by several factors including the presence of abnormal sinus rhythm such as
atrial arrhythmias [HG06] or a poor-quality ECG signal [EI13, HG06, SW17]. More-
over, abstracting the ECG data purely into numbers also risks masking other potential
abnormal clinically significant changes in the ECG morphology. For instance, spe-
cific T-wave patterns can aid detection of LQTS [CHA+15], and large T-U waves are
known to precede TdP [KFBW09]. As such the ECG morphology still provides the
richest information for recognizing LQTS.

Studies have shown that clinicians find QT-prolongation detection difficult [BY05].
While QT experts achieve a high level of accuracy (96%), other clinicians, even those
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who routinely read ECGs, can perform poorly (< 25%) [VRS+05]. Training is im-
portant; in a study in which students were taught to use the tangent method, they per-
formed significantly better than arrhythmia experts and cardiologists [PDJVdBW08].

If patients or their carers or family members can use a clinically reliable ECG
monitoring device at home and receive the right training to detect specific types of
abnormality, this raises the possibility of self-monitoring outside of the clinical envi-
ronment. Self-care and self-monitoring have been shown to empower patients with
knowledge about their condition, which can reduce anxiety [LMG+16].

Psychophysical experiments are used to model a human’s ability to distinguish a
difference in physical stimuli [Ste57, P+16]. In a classical psychophysical experi-
ment, the parameter of interest is typically the difference threshold, which estimates
the smallest unit or change of a stimulus a person can detect [P+16].

In cardiology, eye-tracking research has been used to study the visual behavior of
medical practitioners reading an ECG [AT06, DVHJ16, DBV+16]. To date, studies
have neither applied psychophysical methods to understand ECG interpretation nor
investigated the ability of laypeople to perceive differences in ECG morphology.

4.2 Objective

The primary objective was to quantify a layperson’s ability to detect a clinically sig-
nificant drug-induced QT-interval prolongation when compared to a ‘normal’ ECG
(baseline). The secondary objective was to determine whether the presentation of the
ECG (as a single complex or a 10-second rhythm strip) affects this ability.

4.3 Materials and methods

4.3.1 Participants

Thirty participants (15 men and 15 women) with no experience in ECG interpretation
were recruited from a university campus (26 students and 4 staff). The mean age was
26∓6 years. Participants were asked to rate their knowledge of ECGs or ECG interpre-
tation; only people who identified as having no knowledge were included. Participants’
sight was normal or corrected-to-normal and they reported no motor or neurological
disorders.
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4.3.2 Stimuli design

The ECG stimuli were taken from a clinical study conducted to assess QT-interval
changes in healthy subjects receiving medication known to cause QT prolongation
[JVM+14]. As the study is motivated by the potential for self-monitoring, we se-
lected data from a single participant, whose QT-interval was seen to rise to prognos-
tically dangerous levels. The subject (a 35-year-old man) had normal QT-intervals
(QT-interval < 430ms) prior to taking the medication dofetilide (a class III antiarrhyth-
mic); he subsequently experienced a gradual increase in the QT-interval, and eventu-
ally reached very high QT prolongation (QT-interval= 579ms). The ECGs sampled all
had a heart rate of 60 bpm to ensure it was possible to compare QT-intervals without
having to apply a heart rate correction formula (QTc). The QT values used were 417,
421, 430, 441, 485, 537, and 579ms. It was not possible to select a fixed increase
of QT-interval for 2 reasons. First, the subject experienced a variable increase in the
QT-interval over 24 hours, after receiving a single dose of the medication. Second, as
we limited our selection to ECGs that have a heart rate of 60 bpm, only 7 ECGs were
available for this representative case. The dataset and its sources can be found in the
PhysioNet database [GAG+00], and the clinical trial study can be found in Johannesen
et al [JVM+14].

4.3.3 Study design

The experiment used a counterbalanced within-subjects design with 2 independent
variables:

• QT-interval difference (see Table 4.1), with 7 levels ranging from 0 (no differ-
ence) to 6 (highest difference);

• ECG signal presentation format (see Figure 4.1), with 3 versions, in which each
consisted of a baseline complex with a normal QT-interval and a comparison
complex with either a normal or prolonged QT-interval:

1. Two single ECG complexes without R-wave alignment.

2. Two single ECG complexes aligned on the R wave.

3. Two 10-second rhythm strips showing 10 complexes.
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Table 4.1: QT values acquired from the clinical trial between the baseline and the
comparison stimuli.

Trial Level of Difference QT Value of QT Value of the Value of Clinical
the Baseline ECG (ms) Comparison ECG (ms) QT Increase Rating

1 0 (no difference) 417 417 0 Normal
2 1 (smallest difference) 417 421 4 Normal
3 2 417 430 13 Borderline
4 3 417 441 24 Borderline
5 4 417 485 68 Prolonged
6 5 417 537 120 Very prolonged
7 6 (highest difference) 417 579 162 Very prolonged

Note: As the heart rate was 60 bpm, the QT is the same as the corrected QT-interval using
Bazett’s formula. The clinical rating was determined based on the suggested Bazett-corrected
QT-interval values for diagnosing QT prolongation in adult men [GMZ06, JA09].
ECG: electrocardiogram.

Figure 4.1: Example of the 3 presentation formats showing a baseline stimulus of
a normal QT-interval (QT-interval=417ms, heart rate=60 bpm) above a comparison
stimulus of a prolonged QT-interval (QT-interval=537ms, heart rate=60 bpm).
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Each participant completed 21 trials (7 for each presentation format). We used the
method of constant stimuli, in which the levels of QT-interval change in the comparison
stimulus are presented randomly and are not related from one trial to the next. This
reduces errors of habituation and expectation as the participant cannot predict the level
of the next stimulus [BHW09]. Participants completed all trials for one format before
moving to the next.

The order of presentation formats was counterbalanced using a balanced Latin
square by dividing the thirty participants into six groups of five. Considering (A) to
be the ‘single ECG complexes without R-wave alignment’, (B) to be the ‘single ECG
complexes aligned on the R-wave’ and (C) to be the ‘rhythm strip’, the counterbal-
anced order of presentation format for groups 1 to 6 respectively was as follows: A, B,
C; A, C, B; C, A, B; C, B, A; B, C, A; and B, A, C.

4.3.4 Apparatus

A Tobii X2–60 eye tracker and Tobii Studio 3.2 software were used to record eye gaze
with a sampling rate of 60Hz. Gaze coordinates were recorded every 16.7ms. Audio
was recorded to collect participants’ verbal answers.

4.3.5 Task and procedure

All participants were informed of the motivation for the work (the potential for laypeo-
ple to self-monitor LQTS at home), and were presented with a sample ECG and shown
how to identify the location of the QT-interval. Each participant then completed an
assessment task, in which they were asked to highlight the location of QT-intervals
visually on 3 different ECGs showing normal, borderline and prolonged QT-intervals.
Participants were also shown how to determine the interval length by counting the grid
squares between the beginning of the Q-wave and the end of the T-wave. People were
not asked to determine what a normal QT was, but rather to look for a change in its
length. This preparation session thus did not involve any medical terms, clinical meth-
ods or high-level training techniques typically associated with ECG interpretation. All
participants passed the assessment task, correctly identifing QT-intervals for all ECGs.
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The experiment used a classical psychophysical discrimination task known as 1-
alternative forced-choice same-different task, also occasionally known as 2IAX or
AX [P+16]. Participants were presented with 2 ECGs—a baseline stimulus in which
the QT-interval is normal (no QT-interval prolongation) above a comparison stimu-
lus that represents a change in the QT-interval—and they had to decide whether the
QT-intervals of the 2 stimuli were the same or different.

We presented the baseline stimulus above the comparison stimulus in all trials,
and the participants were aware that the ‘normal’ baseline was always positioned at
the top. One trial shows the same ECG for the baseline and the comparison stimuli.
Another 6 trials present the baseline as the ‘normal’ QT-interval (417ms), and the
comparison as ‘longer’ QT-interval of 421, 430, 441, 485, 537, or 579ms. Table 4.1
shows the difference between the 2 ECGs in each trial. The participants indicated
verbally whether there was a difference in the QT-intervals. There was no time limit
imposed. The answers were recorded on a paper sheet during the experiment by the
researcher and reviewed via the audio recording after the experiment.

4.3.6 Analysis

Two types of assessment were used to analyze participants’ responses.

Assessment 1

For the trial in which the QT-interval was the same for the baseline and comparison
stimuli (i.e. level 0) (Table 4.1), participants’ responses were assessed for detection
of negative findings measured as true negatives (i.e. correct reject) and false positives
(i.e. false alarm). A false alarm response is registered when there is no QT-interval
difference but participants report that there is, and a correct reject response is recorded
when they correctly identify the QT-intervals as the same.
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Assessment 2

For the 6 trials that showed increases in the QT-interval (i.e. levels 1–6) (Table 1), par-
ticipants’ responses were assessed for detection of positive findings as true positives
(i.e. when participants correctly perceived a difference in the QT-intervals) and false
negatives (i.e. when they did not perceive a difference in the QT-intervals when a dif-
ference was present). This assessment was carried out using the psychometric function,
an inferential model applied in psychophysical detection and discrimination tasks. It
was used to model the relationship between the gradual increase in the QT-interval and
the forced-choice responses of the participants. The psychometric function was plotted
as the proportion of correct responses as a function of QT-interval, and the just notice-
able difference (JND) threshold was estimated. In psychophysics, the JND is defined
as the minimum amount of change necessary in a stimulus to be just noticeable and
detectable [P+16]. In this study, we defined it as the minimum amount of QT-interval
change required to be just discriminable. We estimated the 50% and 75% JND thresh-
olds as the value of QT-interval in the comparison stimulus at which the proportion of
correct responses is equal to 0.5 and 0.75, respectively. These JND thresholds were
then used to determine the point at which participants were able to detect a clinically
relevant difference. The equations used for estimating the JND thresholds were defined
as follows:

JND(in ms) = QT value o f the comparison stimulus at 50% correct answers

− QT value o f the baseline stimulus

Equation 4.1: The just noticeable difference (50%) threshold estimation formula.

JND(in ms) = QT value o f the comparison stimulus at 75% correct answers

− QT value o f the baseline stimulus

Equation 4.2: The just noticeable difference (75%) threshold estimation formula.
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To facilitate the calculation of eye movement metrics, areas of interest (AOIs) were
created on the stimuli using Tobii studio software. For the single ECG complex pre-
sentation format—with or without signals alignment—2 areas of interest were created:
1 for the baseline stimulus and 1 for the comparison stimulus. For the rhythm strip pre-
sentation format, an AOI was created for each ECG complex, resulting in 10 AOIs for
the baseline stimulus and 10 AOIs for the comparison stimulus. Figure 4.2 illustrates
these areas of interest for the rhythm strip presentation format.

The eye-tracking metric total fixation duration, which indicates the total length of
time participants fixated on a given AOI, was calculated for the 3 presentation for-
mats (in the case of the rhythm strip stimulus, this was cumulative across all AOIs).
Additionally, the percentage fixated metric, which is the percentage of participants
who fixated at least once within an AOI, was calculated for each ECG complex in the
rhythm strip presentation format.

Figure 4.2: The areas of interest for the rhythm strip presentation format. Each area of
interest represents 1 electrocardiogram complex.



4.4. RESULTS 119

4.4 Results

4.4.1 Detection accuracy

Assessment 1: correct reject and false alarm For the trial which showed no prolon-
gation of QT-interval (i.e. the baseline and comparison were the same), the percentage
of correct reject responses was 93.33% and false alarm rate was 6.66% in the rhythm
strip presentation, demonstrating that only 2 participants of 30 incorrectly perceived a
difference in QT-interval in which no difference exists. In the case of the single com-
plex without signals alignment, correct reject rate was 90% and false alarm rate was
10%. In the condition with signals alignment, the correct reject rate was 100%.

Assessment 2: the psychometric function The psychometric function modeling
shows an incremental cumulative distribution curve in the rhythm strip presentation, in-
dicating that the proportion of people able to perceive the difference in the QT-interval
grew as the QT-interval increased. Data from the single ECG complex presentations,
both with and without signals alignment, showed a different pattern, as a large number
of people appeared able to detect the smallest possible difference. As it is unlikely that
a person can perceive a small increase in a stimulus level, but not perceive a higher in-
crease, this is likely to be due to an artifact in the particular complex used as a stimulus.
Figure 4.3 illustrates the psychometric function model for the 3 presentation formats.

Figure 4.3: The psychometric function plot showing the proportion of correct re-
sponses on the Y-axis as a function of QT-interval on the X-axis for the 3 presentation
formats. The error bars represent 95% confidence intervals.
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JND threshold

The JND was estimated only from the rhythm strip format as it showed the most reli-
able results. The 50% and 75% JND thresholds were 30ms (QT-interval=447ms) and
88ms (QT-interval=505ms), respectively, and were determined from fitting the psycho-
metric function using a logistic function with maximum likelihood estimation.

4.4.2 Total fixation duration

The mean of total fixation durations were 3.85∓ 5.21 seconds for the rhythm strip
presentation, 1.82∓ 2.21 seconds for the single complex with signal alignment and
1.62∓ 2.75 seconds for the single complex without signal alignment across all trials.
The mean of total fixation duration differs significantly between the 3 presentation
formats for all trials when compared with a Friedman test, χ2(2) = 0.20, p < 0.05, as
seen in Figure 4.4 and Table 4.2. This shows that people fixated significantly longer in
the rhythm strip condition than either of the single complex conditions.

Table 4.2: Results of the Friedman test comparing the mean of total fixation duration
across the 3 presentation formats.

Trial Level of Difference χ2 P-value

1 0 (no difference) 7.008 0.030
2 1 (smallest difference) 7.681 0.021
3 2 7.267 0.026
4 3 7.681 0.021
5 4 12.067 0.002
6 5 7.800 0.020
7 6 (highest difference) 14.467 0.001



4.4. RESULTS 121

Figure 4.4: Mean of total fixation duration in seconds for the 3 presentation formats as
a function of QT-interval difference across all trials. The error bars represent SEM.
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Figure 4.5: Percentage of people fixating on the areas of interest (AOIs) in the rhythm
strip presentation, averaged across all trials. Each AOI represents a single electrocar-
diogram complex.

4.4.3 Percentage fixated in the rhythm strip AOIs

The percentage of rhythm strip AOIs fixated was calculated to determine whether peo-
ple looked at more than 1 ECG complex before making their decision (see Figure 4.5).
In any given trial, participants fixated on average at least 4 ECG complexes for either
the baseline or the comparison stimulus before making their decision. Participants
looked at the first 5 ECG complexes (from left to right, i.e. the AOIs A–E in Figure
4.5) more than the other complexes. Heat maps of mean fixation frequency also show
this result (Figure 4.6C).
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Figure 4.6: A heatmap of mean fixation count for the 3 presentation formats of trial
number 1, showing the smallest difference in QT-interval. The presentation formats
are (A) single complex without signals alignment, (B) single complex with signals
alignment and (C) rhythm strip.
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4.5 Discussion

The study showed that laypeople can perceive a clinically significant prolongation of
the QT-interval at a low normal heart rate (60 bpm) with minimal training. The esti-
mated JND thresholds indicate that 50% of people perceived the difference when the
QT-interval was borderline (QT-interval=447ms and JND=30ms) and 75% of people
perceive an even longer difference (QT-interval=505ms, JND=88ms). This provides
evidence that people could be trained to self-monitor for LQTS. Although the QT-
prolongation above 500ms is considered a risk factor for TdP [Tis16], clinical research
has shown that even a small (≈ 10ms) QT-interval increase from the baseline is con-
sidered a significant side effect of a QT-prolonging drug [RFF+09, DNS06].

The analysis from both the psychometric function and eye-tracking data show that
the rhythm strip presentation is preferable to the single complex presentation, as it is
less susceptible to artefacts in the ECG morphology. The psychometric function model
showed that participants’ responses in the rhythm strip condition formed a linear curve
showing a proportional relationship between the perceived difference and the gradual
increase of QT-interval. This is in contrast with the single complex presentation, which
appeared to show that people were able to detect a very small difference more easily
than a longer one. This suggests that people need to view more than 1 ECG complex
to come to an accurate decision. The eye-tracking data supports this argument. People
looked on average at least 4 ECG complexes before making a decision (Figures 4.5
and 4.6C). Figure 4.6A and 4.6B show a heatmap of fixations in the single complex
presentation, in which the majority occurred on the end of the T-wave.

4.5.1 Study limitations and future work

This study only examined the perception of QT-interval prolongation and it is not clear
whether laypeople could identify other abnormalities, such as changes in ST-segment
elevation. The ECGs had a single, normal heart rate of 60 bpm. Detecting a difference
could be more difficult at higher or lower heart rates, and future work should investigate
this. Although detection rates in this study compared favorably to those of some clin-
icians [VRS+05], it should be noted that a different paradigm was used in the current
study (forced choice rather than classification), and as such the results are not directly
comparable. The study examined people’s ability to detect a QT prolongation in terms
of sensitivity (identifying true positives). Future work should also examine specificity
(identifying true negatives) as well as measuring the predictive positive value, which
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is the proportion of positive results reported by the participant that are truly positive.
This is important for understanding the practical aspects of self-monitoring.

The data used to design the stimuli were acquired from a 12-lead ECG, and not a
mobile monitoring device, in which the signal is likely to be less reliable and affected
by noise. The psychophysical task employed in this study can yield a biased response,
as people may be more inclined to respond by saying ‘different’ or ‘the same.’ A
2-alternative forced-choice task can guard against this, as it forces the participant to
choose the stimulus that has the longer QT-interval.

4.6 Conclusions

Laypeople can detect a clinically significant QT-interval prolongation in a standard
ECG signal presentation, when compared with a ‘normal’ ECG baseline. A rhythm
strip, which shows more than 1 ECG complex, is less likely to cause misperception of
the QT-interval. The results show the potential for training laypeople to self-monitor
their ECG outside of the clinical environment, which may help with more rapid iden-
tification of drug-induced LQTS, and enable treatment to be altered to prevent the
development of life threatening complications.



Chapter 5

Evaluating the Impact of
Pseudo-Colour and Coordinate
System on the Detection of
Medication-Induced ECG Changes

5.0 Chapter overview

5.0.1 Thesis context

The work presented in Chapter 4 shows the need to explore other approaches to ECG
interpretation that can support laypeople in detecting smaller, but clinically significant,
QT-interval increases from a drug-free QT baseline. These can be particularly dif-
ficult to perceive visually without precise QT-interval measurement, as discussed in
Chapter 1 as the second research challenge. This chapter therefore presents a study
evaluating a novel ECG visualisation technique that uses pseudo-colour to expose QT-
interval duration displayed on two popular coordinate systems (Cartesian vs. Polar),
eliminating the need to measure the QT-interval. The technique draws from the field
of pre-attentive processing theory in human vision, which is introduced in Chapter 2.
The Cartesian coordinate system is the standard means of presenting the ECG sig-
nal in clinical practice, and displaying pseudo-colour on Polar coordinates—which
are commonly used in time-series data visualisations to represent changes over time
[AJB16]—could improve people’s ability to detect small changes. The study used a

126
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‘two alternative forced choice’ (2AFC) psychophysical discrimination task to system-
atically vary the QT-interval increase at a regular heart rate of 60 bpm. Eye-tracking
was used to understand the locus of attention.

The results of this study show that using pseudo-colouring on the ECG signifi-
cantly improves laypeople’s visual sensitivity to drug-induced QT-prolongation from
a drug-free QT baseline. People can perceive increases that are much smaller than a
1mm square on the standard ECG grid (which represents 40ms), with the effect being
strongest for Polar coordinates, even when T-wave morphology is abnormal. These
promising results sparked our curiosity to further investigate the effectiveness of the
pseudo-colouring technique with the presence of other issues known to hinder QT-
prolongation detection, as extensively discussed in Chapter 2, particularly changing
heart rate. In addition, given the fact that the drug-free ECG baseline may not always
be available, not to mention that it would have to be adjusted according to heart rate;
thus, an additional research question has to do with whether laypeople can interpret a
pseudo-coloured ECG without comparing it to a drug-free ECG baseline. Therefore,
we designed and developed an enhanced version of the visualisation technique that
automatically adjusts the pseudo-colour according to heart rate based on a clinically
reliable TdP risk assessment method known as ‘QT-nomogram’ [CIKD07], enabling
laypeople to assess the QT-interval without having to compare it with a drug-free base-
line ECG. This was empirically evaluated in Chapter 6.

The main content of this chapter is adapted from: Alaa Alahmadi, Alan Davies, Jen-
nifer Royle, Markel Vigo, and Caroline Jay. Evaluating the impact of pseudo-colour
and coordinate system on the detection of medication-induced ECG changes. In Pro-

ceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pages
1–13, 2019.
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5.0.2 Author’s contributions

Alaa Alahmadi developed and evaluated the pseudo-colouring visualisation, designed
the study, carried out the data collection, analysed the results and wrote the paper, with
Alan Davies, Jennifer Royle, Markel Vigo and Caroline Jay contributing significant
edits. Jennifer Royle (patient-centricity senior program leader in the digitalECMT)
provided feedback about the initial idea of patient’s self-monitoring for QT-interval
changes, concept and direction of the research. Alan Davies acted as the electrocardio-
gram domain expert throughout. Caroline Jay and Markel Vigo provided continuous
guidance and discussion.

5.0.3 Published abstract

The electrocardiogram (ECG), a graphical representation of the heart’s electrical ac-
tivity, is used for detecting cardiac pathologies. Certain medications can produce a
complication known as ‘long QT syndrome’, shown on the ECG as an increased gap
between two parts of the waveform. Self-monitoring for this could be lifesaving, as the
syndrome can result in sudden death, but detecting it on the ECG is difficult. Here we
evaluate whether using pseudo-colour to highlight wave length and changing the coor-
dinate system can support lay people in identifying increases in the QT-interval. The
results show that introducing colour significantly improves accuracy, and that whilst it
is easier to detect a difference without colour with Cartesian coordinates, the greatest
accuracy is achieved when Polar coordinates are combined with colour. The results
show that applying simple visualisation techniques has the potential to improve ECG
interpretation accuracy, and support people in monitoring their own ECG.

5.1 Introduction

A side effect of commonly prescribed medications including antihistamines, antibi-
otics and antidepressants is prolongation of the QT-interval, or drug-induced Long QT
Syndrome (LQTS) [YC03, CMY08]. LQTS is a cardiac abnormality that can increase
the risk of the life-threatening arrhythmia torsades de pointes (TdP), which can lead to
loss of consciousness or sudden death in young, otherwise healthy people [AAKR+02,
MSC+91, GM08, YC03]. People may not experience symptoms and an electrocardio-
gram (ECG) is often the only way to identify LQTS [Kha02, SC08, RV05].
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ECGs are a graphical representation of the electrical activity of the heart, widely
used in clinical practice to assess heart function [SSS66]. ECG results are displayed
as a line on a graph-like trace, where the ‘waves’ (peaks and troughs) are labelled with
letters and represent different stages of the heartbeat. The duration of the QT-interval
(the time period between the ‘Q’ and ‘T’ waves) represents the activity of the heart
ventricles (Figure 5.1).

Figure 5.1: Measurement of the QT-interval on the ECG from the start of the Q-wave
to the end of the T-wave.

Frequent ECG monitoring is advised for people at high risk of acquiring medication-
induced LQTS [Sha02, KW12]. Recent technology innovations have made it possible
to monitor ECGs outside of the clinical environment [Pod17] but this approach still
relies on clinician interpretation [Loc17, AORD18]. This not only increases cost, but
also makes it difficult (and sometimes impossible) to manage everyone who is at high
risk. If lay people can interpret their own results, this may lead to a step-change in
the detection and management of this potentially critical condition. However, ECG
interpretation is known to be complex, even for clinicians [VRS+05, STN08], and as
such little work has examined self-monitoring.

Assessing the QT-interval, in particular, is known to be difficult [VRS+05, STN08],
and in a prior study the majority of clinicians were not able to recognise it [VRS+05].
This may be due to the fact that whilst people find it easy to perceive quantity on a
vertical scale, they are poor at judging it on a horizontal scale (see e.g. [LSZ+09,
WA84, Lib91, PK11]). Artefacts in the ECG signal can also cause misinterpretation of
QT-interval length [ADVJ18].

Visualisation techniques have the potential to help highlight abnormalities within
the ECG. Here we examine whether pseudo-colouring—representing continuously vary-
ing values using a sequence of colors [War12, SMY+05]—and changing the coordinate
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system can support lay people in identifying increases in the QT-interval. Using a psy-
chophysical paradigm and eye tracking to systematically examine the issue, we find
that:

1. Pseudo-colouring significantly increases lay individuals’ ability to identify in-
creases in the QT-interval, even when T-wave morphology is abnormal.

2. Coordinate system interacts with colour, such that people are most accurate in
the condition where the ECG is presented using polar coordinates and pseudo-
colour, and least accurate when presentation occurs with polar coordinates and
no colour.

3. According to eye tracking data, pseudo-colour helps to focus visual attention,
and people are most accurate when using the polar coordinates as this concen-
trates colour in the center of the screen.

4. People are significantly more satisfied when pseudo-colour is used.

5.2 Background

Previous research providing a foundation for the current study is described in this sec-
tion. This covers: (1) ECG interpretation; (2) ECG visualisation methods; and (3)
human perception of visualised data.

5.2.1 ECG interpretation

An ECG trace is a cyclic time series with each cycle representing a new heartbeat. The
electrical activity is detected via leads placed on the body, where each lead produces a
different electrical ‘view’ of heart activity. In hospital, clinicians commonly interpret
short (10 second) ECGs via 12-leads [NKM+04]. This is the most comprehensive
view, but useful ECG information can be gathered from a single lead ‘view’ (often used
by mobile technologies). LQTS is detected by measuring from the beginning of the
Q-wave to the end of the T-wave (identified using the tangent drawn at the maximum
downslope of the T-wave) [AAKR+02, GMZ06] as shown in Figure 5.1.

The standard method for visualising ECG data is a Cartesian line graph showing
the voltage of the heart on the Y-axis, and time in milliseconds (msec) on the X-axis
[BPW+38]. A background grid supports the reader in measuring duration. To mea-
sure the QT-interval, the interpreter counts the small squares (each representing 40
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msec) from the beginning of the Q-wave to the end of the T-wave [Pri10, AAKR+02,
GMZ06].

Automated ECG interpretation was introduced in the 1950s to assist clinicians who
had less training in ECG interpretation [Rau07]. It remains far from perfect, and even
the best computational methods can produce significant errors [HG06, SW17]. Re-
search has shown that QT-interval is underestimated or unreported by computational
methods [TAS+15, KBD+18, GL13, MCbA01, TABW11, RSG09]. The main chal-
lenge lies in identifying the end of the T-wave, especially when the morphology (shape)
of the T-wave is non-standard. [GPAW14, HC94, GMZ06, Mor01]. This is particularly
problematic, as QT-prolonging drugs often affect the morphology of the T-wave, with
some drugs (e.g. quinidine and ranolazine) causing large T-wave morphology changes
[VJM+15].

Each person has a unique baseline ECG that reflects their individual heart func-
tion: health status, age, gender and ethnicity all influence the ECG in general, and the
QT-interval in particular [GMZ06, MMDY94, HST+16]. This complicates population-
level computer-derived QT calculations. Abstracting the QT-interval numerically also
risks masking other potentially abnormal clinically significant changes in the ECG. For
instance, specific T-wave patterns can aid detection of drug-induced LQTS [CHA+15],
and large T-U waves are known to precede the life-threatening arrhythmia Torsades

de Pointes [KFBW09]. As such the ECG morphology continues to provide the rich-
est information for recognising LQTS. Current automated methods are thus a supple-
ment to, rather than a substitute for, the human eye, and a combination of computer-
visualisation methods with the gold-standard human interpretation remains the most
accurate and reliable method [EI13, KBD+18, GL13, MCbA01, RSG09, TAS+15,
SW17].

5.2.2 ECG visualisation

A number of studies have examined the effectiveness of visualisation techniques in
supporting clinician-interpretation of ECGs. Chiang et al. [CCCK01] integrated ECG
signals from the periodical and limb leads into two images of electrical heart func-
tion. This enabled clinicians to observe an overall integral heart view, which aided
interpretation when viewed alongside the 12-lead ECG. Kors et al. [KvH08] presented
a mirror image that converted the 12 leads to 24, and was shown to be effective in
improving the detection-rate of heart attacks. Madias et al. [Mad04] used a 13th,
multi-use lead, which provided a further ‘view’ of the heart. When exploring large
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Figure 5.2: Using pseudo-colouring to represent temperature in time series data over
the 12 months of the year [SMY+05].

scale ECG data, a glyph-based interactive system has been shown to be effective in
detecting arrhythmia [XGC+18]. Vectorial methods have been used to represent direc-
tion and magnitude data [NWM+11, Fra56] and spatial visualisations have presented
the ECG on a body surface potential map [Tac63, LSWA78]. As these methods provide
data with respect to further dimensions of the heart, they are useful as a supplement,
but do not replace the standard method [BFN+13]. Furthermore, previous work in this
area focused on aiding clinicians. Here, the aim is to help lay-people identify when
their ECG is different (i.e. has deviated) from their normal baseline, so they know
when to seek help.

5.2.3 Human perception of visualised data

Here, we consider the problem from the perspective of the lay interpreter, rather than
the data, using knowledge of visual perception to enhance the way the ECG is pre-
sented. In particular, we draw from the field of pre-attentive processing, which outlines
a set of visual properties known to be detected rapidly and accurately by the human
eye [Not93]. Examples of pre-attentive properties include colour, form, and spatial
positioning. Using these properties in design can improve both the effectiveness and
the efficiency of a visualisation [War12, HBE95, HBE96].

Colour is a pre-attentive attribute that is noticed without conscious effort [Not93,
GCC17]. Many studies have shown the effectiveness of using colour to separate visual
elements from their surroundings, saving the user from having to carry out a linear vi-
sual search [Hea96, War12, PGLS95]. A useful technique is pseudo-colouring, which
represents continuously varying values using a sequence of colors [War12]. Pseudo-
colouring is commonly used in geo- and time-series visualisations [War12, SMY+05].
Figure 5.2 shows an example of using pseudo-colouring to show changes in tempera-
ture over time.

Adnan et al. [AJB16] have examined perception of time-series visualisations. They
showed Cartesian coordinates to be most effective for detecting trends and identifying
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maximum and minimum values when used with positional and colour visual encod-
ings, and Polar coordinates to be most effective for finding minimum values when
using area visual encoding.

The circular layout used in the Polar coordinate system has also been employed
to perceive changes in data over time. Page et al. [PSCA15, PAS+16] proposed an
‘ECG Clock’ generator, to visualise the changes in QT-interval values automatically
generated by a 24-hour Holter ECG monitor. Circular layouts have been also used to
detect symmetrical patterns in data [HGM+97] and to measure symmetry in graphs
[WK17].

5.3 Method

5.3.1 Measuring visual perception

To systematically evaluate the effectiveness of pseudo-colour and coordinate system
in supporting lay people’s assessment of the QT-interval, we use methods from psy-
chophysics and eye-tracking research. Psychophysical experiments investigate the re-
lationship between physical stimuli and human perception, by varying the properties
of a stimulus along one or more physical dimensions [Ste17]. Eye-tracking is used to
quantify visual behavior when performing a given task, to understand differences in
locus and level of attention [Duc07].

5.3.2 ECG data acquisition

The ECG datasets were taken from a clinical trial that assessed the effect of known
QT-prolonging medication on healthy subjects [JVM+14]. As our work is motivated
by supporting self-monitoring, we selected data from a single participant, whose QT-
interval was seen to rise to clinically dangerous levels. The subject was a 35-year-old
male who had normal QT-intervals (<430 milliseconds) prior to taking the medication
‘Dofetilide’ (an antiarrhythmic drug); he subsequently experienced a gradual increase
in the QT-interval, which eventually reached very high levels (QT=579 milliseconds).
The ECGs sampled all have a regular heart rate (HR=60 bpm) and are from lead-II,
which is typically used to measure the QT-interval. The QT-values of the selected
ECGs were 417, 421, 441, 447, 455, 468, 485, 537, 565 and 579 milliseconds. We
categorised these values based on their clinical significance: normal (QT <430); bor-
derline (QT >430 and <470); prolonged (QT >470 and <500); very prolonged levels
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(QT >500) [JA09]. The open ECG dataset is available from the PhysioNet database
[GAG+00].

5.3.3 Visualisation design

We used a co-design approach, creating the visualisation techniques with an expert
in ECG interpretation (to ensure accuracy), and refining them with input from lay
people. As a first step, R-peaks were detected in the raw ECG datasets, and a dashed
vertical line used to show the halfway point of the R-R interval (Figure 5.1). This
helps to identify the area of interest containing the QT-interval. Note that it is easy to
detect the R wave in the vast majority of ECGs, as (unlike the other waveforms which
vary considerably) it consistently has the greatest amplitude. We then applied pseudo-
colouring, to shift the ‘work’ of QT-interval visual encoding from perceiving distance
between two waves, to perceiving colour in terms of hue and intensity.

As spectrum-approximation sequences in particular help with reading values [War88],
we used these as a foundation for the pseudo-colouring technique. Cool spectral colour
codes (purple to blue to green) were used to indicate normal QT-interval ranges, and
warm colours (yellow to orange to red) to show abnormal QT-interval ranges. We ap-
plied the pseudo-colouring sequence in the area between the 0 voltage baseline up to
(or down to) the signal, from the beginning of the R-wave to the R-R interval halfway
point (see e.g. Figures 5.3 and 5.4). The pseudo-colouring sequence was mapped to the
ECG signal such that the colour code changed every 40 milliseconds, which is equal
to a small square on the standard ECG background grid.

To understand the impact of coordinate system on ECG data interpretation, we dis-
played the ECG signals on Cartesian and Polar coordinates with and without pseudo-
colouring. We used R [IG96] with RStudio software version 1.1.447 to create the
visualisations. Figures 5.3 and 5.4 show ECGs with very prolonged and normal QT-
intervals with and without the pseudo-colouring sequence on Cartesian coordinates.
Figures 5.5 and 5.6 show the same ECGs, but on Polar coordinates. The ECGs are
reduced in size for inclusion in the paper. The full size images, along with the scripts
used to create them, can be found in the supplementary materials, and in our reposi-
tory1.

1https://github.com/mbchxaa6/ECG_QT_Visualisation.

https://github.com/mbchxaa6/ECG_QT_Visualisation
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Figure 5.3: ECGs with very prolonged QT-intervals (QT= 579ms) on Cartesian coordinates with (A) and without (B) pseudo-colour.
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Figure 5.4: ECGs with normal QT-intervals (QT= 417ms) on Cartesian coordinates with (A) and without (B) pseudo-colour.
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Figure 5.5: ECGs with normal (QT= 417ms) and very prolonged (QT= 579ms) QT-intervals on Polar coordinates with pseudo-colour.
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Figure 5.6: ECGs with normal (QT= 417ms) and very prolonged (QT= 579ms) QT-intervals on Polar coordinates without pseudo-
colour.
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5.3.4 Experiment design

We hypothesized that changes in the T-wave morphology (e.g. flattening of the wave,
which can be caused by QT-prolonging medication [VJM+15]) might cause misper-
ception of the QT-interval, and included this as a factor. The study thus used a coun-
terbalanced within-subjects design with three independent variables, each with two
levels:

1. Colour-coding: no colouring; pseudo-colouring.

2. Coordinate system: Cartesian; Polar.

3. The T-wave morphology: normal; abnormal.

The within-subjects factorial design yielded a total of 8 (2x2x2) experimental con-
ditions for each participant. We counterbalanced the order of visualisation presentation
using a balanced Latin square to minimize practice effects. The first forty participants
were divided into four groups of ten participants. The two remaining participants were
added to different groups at random. Considering (A) to be ‘Cartesian no-colouring’,
(B) to be ‘Cartesian pseudo-colouring’, (C) to be ‘Polar no-colouring’ and (D) to be
‘Polar pseudo-colouring’, the counterbalanced order of visualisation presentation for
group 1 to 4 respectively was as follows: A, B ,D, C; B, C, A, D; C, D, B, A; and D,
A, C, B.

We assessed the effects of T-wave morphology on two separate tasks (described
below). The order of the T-wave morphology condition (normal or abnormal) was
counterbalanced across participants by dividing them into two groups: one group was
presented with the normal T-wave condition first and the abnormal condition second;
this order was switched for the second group. The dependent variables were response
correctness, reaction time, fixation location, mean fixation duration, and satisfaction.
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5.3.5 Participants

Forty two participants (22 males and 20 females) were recruited from a university
campus. Eligibility for the study was determined by asking participants to rate their
knowledge of ECGs/ECG interpretation, and including only people who reported no
knowledge at all. Participants consisted of 34 students and 8 staff. The mean age was
30 (SD=7). The backgrounds of the participants were Computer Science (n=27), Edu-
cation (n=3), Chemical Engineering (n=3), Electrical Engineering (n=3), Mathematics
(n=4), History and Sociology (n=1) and Music/Violin Performance (n=1). Their sight
was normal or corrected-to-normal and they reported no motor or neurological disor-
ders.

5.3.6 Task and procedure

Participants completed a 10-minute training session where they were told about the
motivation for the research (the potential for self-monitoring ECGs for drug-induced
QT-prolongation), and shown how to identify the QT-interval using the standard ECG
signal representation and the different visualisation techniques. Each participant then
completed an assessment task to check that they understood how to perform the mea-
surement, where they were asked to highlight the start and end point of the QT-intervals
on two different ECGs—one with a normal QT-interval and the other with prolonged
QT-interval—using the four visualisation techniques (i.e. 2 ECGs × 4 visualisation
techniques = 8 stimuli). Participants were informed that the greater the amount of
warm colors within the T-wave area, the longer the QT-interval. All participants passed
the assessment task, correctly assessing the QT-intervals for all stimuli.

As the task requires differentiating between spectrum-approximation pseudo-colouring
sequences, only participants with normal vision were included in the experiment. Whilst
spectrum-approximation pseudo-colouring sequences presented in greyscale are po-
tentially readable by people with colour blindness, as long as they vary by lightness or
contrast, this would need further testing to ensure its efficacy [War21]. Another solu-
tion is to use a pseudo-colouring sequence that can be distinguished by most colour-
blind individuals such blue-to-yellow and blue-to-red variations [War21].
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The experiment used a ‘two alternative forced choice’ (2AFC) psychophysical
discrimination task [Ste17]. Within a trial, the participant was presented with two
ECG stimuli; a baseline showing no QT-prolongation and a comparator showing an in-
creased (or the same) QT-interval; the participant had to select the ECG that they per-
ceived to have the longer QT-interval using the left/right arrows in the Polar condition,
and up/down arrows in the Cartesian condition, according to the stimulus’ position
on the screen. Participants completed all trials for one visualisation technique before
moving to the next. The location of the ECG with the longer QT-interval (i.e. top/bot-
tom or left/right) was counterbalanced in the design; stimuli were then presented at
random. To determine the effects of T-wave morphology, we split the experiment into
two separate 2AFC tasks, as follows.

Normal-T-wave In this condition, participants completed a total of 20 experimental
trials. In each trial, two ECGs were presented; a baseline ECG showing a normal QT-
interval with a normal T-wave morphology and a comparator ECG. Two trials showed
exactly the same ECG for the baseline and the comparator stimuli, in order to test the
validity of our method (the probability of choosing each alternative should be equal to
0.5). The other 18 trials presented the same ECG baseline (QT = 417 msec), and an
ECG with a longer QT-interval that was selected from the following set of QT values,
where each value was presented twice: 421, 441, 447, 455, 468, 485, 537, 565, 579
milliseconds. Figures 5.5, 5.6, 5.3 and 5.4 show examples of the ECGs used in the
normal T-wave morphology condition.

Abnormal T-wave This condition was used to evaluate whether the visualisation
techniques can help people to perceive QT-prolongation regardless of the T-wave mor-
phology. To reduce potential fatigue, this condition contained only 8 trials. In each
trial, two ECGs were presented: a baseline ECG showing a borderline QT-interval with
an abnormal (flat) T-wave morphology and an ECG with an increased QT-interval. Par-
ticipants had to choose the ECG with the longer QT-interval. The borderline ECG had
a QT value of 447ms and the comparator ECG was selected from the following set of
QT values, which had either a normal or abnormal T-wave as indicated: 468 (abnor-
mal), 485 (normal), 565 (abnormal) and 579 (normal) milliseconds. Figures 5.7 and
5.8 show examples of the ECGs used in the abnormal T-wave morphology condition.
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Figure 5.7: ECGs with very prolonged QT-interval (QT= 565ms) and abnormal T-wave morphology on Polar coordinates with (A)
and without (B) pseudo-colour.
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Figure 5.8: ECGs with borderline QT-interval (QT= 447ms) and abnormal T-wave morphology on Polar coordinates with (A) and
without (B) pseudo-colour.
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5.3.7 Apparatus

A Tobii Pro Spectrum eye-tracker and Tobii Pro lab 1.95 software were used to record
eye gaze with a sampling rate of 600 HZ. Key press events were recorded to col-
lect participants responses. The study was performed on a 23.8 inch (diagonal) Tobii
Pro Spectrum eye-tracking monitor, with a resolution of 1920 x 1080 pixels. Each
Cartesian coordinate ECG stimulus was 32.31cm x 6.14cm, and each Polar coordinate
stimulus was 15.61cm x 12.93cm.

5.4 Results

All anonymised raw data, along with relevant R-scripts and SPSS outputs are available
in our Github repository2.

5.4.1 Accuracy

Psychometric function

We used a psychometric function, which is an inferential model employed in psy-
chophysical detection and discrimination tasks, to model the relationship between the
gradual increase in the QT-interval and the correctness of participants’ responses across
the four visualisation techniques. The psychometric function was plotted as the per-
centage of correct responses (trials where the longer QT-interval stimulus was correctly
identified) as a function of the QT-interval increase (Figure 5.9). The results show that
pseudo-colour significantly improves perception of QT-interval increases regardless
of the T-wave morphology, with people able to detect smaller increases with the Po-
lar coordinates than the Cartesian coordinates. This is important, as even these small
increases are clinically significant.

When pseudo-colour is not used, T-wave morphology interacts with coordinate
system in the detection of the QT-interval increases. When the T-wave morphology is
normal, people perform better with Cartesian coordinates (Figure 5.9 (A)). However,
when the T-wave morphology is abnormal (increased flattening of the T-wave), people
perform better with Polar coordinates (Figure 5.9 (B)).

2https://github.com/mbchxaa6/Data_Analysis.

https://github.com/mbchxaa6/Data_Analysis
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Figure 5.9: The psychometric function plot shows the percentage of correct responses
as a function of the QT-interval increase from the baseline with (A) Normal T-wave
morphology and (B) Abnormal T-wave morphology.

Just noticeable difference (JND) threshold

In psychophysics, the JND threshold is defined as the minimum amount of change in
a stimulus necessary for it to be ‘just noticeable’. In this study, we defined it as the
minimum increase in the QT-interval required for it to be detectable. We estimated the
75% JND threshold as the value of the QT-interval increase from the normal baseline
at which the percentage of correct responses is equal to 75%. Only the normal T-wave
morphology condition was used for estimating the JND, as the abnormal condition
contained insufficient trials for it to be fitted with this statistical model. The JND
thresholds, determined by fitting the psychometric function using a logistic function
with maximum likelihood estimation (MLE) (Figure 5.10), were 29, 19, 65 and 9 mil-
liseconds for Cartesian, Cartesian with pseudo-colour, Polar and Polar with pseudo-

colour respectively. Pseudo-colour thus reduces the JND in both co-ordinate systems,
with the effect being strongest for Polar co-ordinates.
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Figure 5.10: (A) The fitted psychometric function plot shows the proportion of correct responses as a function of the QT-interval
increase from the normal baseline. (B) The just noticeable difference (JND) thresholds plot. The error bars represent bootstrap
confidence intervals.
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5.4.2 Reaction time

We measured reaction time as the period between the appearance of the stimuli on
the screen and the key press event when people made their decision. As shown in
Figure 5.11, pseudo-colour reduced the reaction time as the QT-interval increased in
all conditions.

A Shapiro-Wilks test showed the reaction time data was not normally distributed
(p < 0.05). We thus used a non-parametric Friedman test to compare reaction times
across the four conditions. The test was conducted for each QT-interval increase and
under each condition of the T-wave morphology. For all QT-interval increases, there
was a statistically significant difference in reaction time according to visualisation
technique, under both conditions of the T-wave morphology (p < 0.05) (Table 5.1).

To examine where the differences actually occur, post hoc pairwise comparisons
were performed using a Wilcoxon signed-rank test with Bonferroni correction (α =

0.008). This showed that when the QT-interval was clinically prolonged (equal to
485 msec and increased from the baseline by 68 msec) or very prolonged (greater
than 500 msec and increased from the baseline by over 100 msec), reaction time was
significantly faster when pseudo-colour was used, for both types of coordinate system
(p < 0.008), regardless of T-wave morphology.

When the QT-interval was in the borderline range, the T-wave morphology and co-
ordinate system interacted with pseudo-colour. In the trial that shows a borderline QT-
interval (increased by 38 msec) with a normal T-wave morphology, reaction time when
pseudo-colour was used was significantly faster for Polar coordinates than Cartesian
coordinates (Z = −3.806, p < 0.008, Figure 5.11 (A)). However, in the trial showing
a borderline QT-interval (increased by 21 msec), but with an abnormal T-wave mor-
phology, there was the opposite effect, with people responding faster in the Cartesian
with pseudo-colouring condition than in the Polar with pseudo-colouring condition
(Z =−2.870, p < 0.008, Figure 5.11 (B)).

5.4.3 Eye-tracking metrics

To calculate eye movement metrics, Tobii Pro lab software was used to create two areas
of interest (AOIs) for each experimental trial: one for the baseline ECG stimulus, and
one for the comparator ECG stimulus.
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Figure 5.11: Mean reaction time in seconds over the QT-interval increases (msec) from
the baseline with (A) Normal T-wave morphology (B) Abnormal T-wave morphology.
Error bars represent 95% confidence intervals.
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Table 5.1: Results of the Friedman test comparing reaction times in the four visual-
isation conditions for all QT-interval increases, and in each condition of the T-wave
morphology. QT represents the value of the longer QT-interval in milliseconds. ∆ QT
represents the difference in milliseconds between the value of the longer QT-interval
and the baseline QT-interval (i.e. the amount of QT-interval increase).

T-wave QT ∆ QT Range χ2(3) P-value

Normal 421 4 Normal 9.543 p < 0.05
morphology 441 24 Borderline 68.100 p < 0.05

447 30 Borderline 13.443 p < 0.05
455 38 Borderline 101.954 p < 0.05
468 51 Borderline 41.471 p < 0.05
485 68 Prolonged 101.886 p < 0.05
537 120 Very prolonged 79.225 p < 0.05
565 148 Very prolonged 90.286 p < 0.05
579 162 Very prolonged 72.265 p < 0.05

Abnormal 468 21 Borderline 50.671 p < 0.05
morphology 485 38 Prolonged 114.783 p < 0.05

565 118 Very prolonged 138.529 p < 0.05
579 132 Very prolonged 94.409 p < 0.05

Mean fixation duration

The mean fixation duration metric, which is an indicator of cognitive load [HNA+11,
DVDL14], was used to understand whether the visualisation techniques helped people
to focus on the target ECG stimulus that had the longer QT-interval. As shown in
Figure 5.12, regardless of T-wave morphology and coordinate system, using pseudo-
colour results in longer fixations on the stimulus with the longer QT-interval, compared
with the baseline stimulus, and this effect becomes more pronounced as the QT-interval
increases.
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Figure 5.12: Mean fixation duration of the baseline and the comparator stimuli over the QT-interval increases (msec) with (A) Normal
T-wave morphology and (B) Abnormal T-wave morphology. The error bars represent 95% confidence intervals.



5.5. DISCUSSION 151

5.4.4 Satisfaction

Following the experiment, participants completed a five point Likert-type scale rang-
ing from ‘bad’ (1) to ‘good’ (5) to rate the effectiveness of each visualisation tech-
nique in supporting the detection of increases in the QT-interval. A Friedman test
showed there to be a statistically significant difference in satisfaction depending on
which visualisation technique was used (χ2(3) = 90.860, p < 0.05). A post-hoc anal-
ysis with a Wilcoxon signed-rank test utilising a Bonferroni correction (α = 0.008)
showed a significant preference for pseudo-colour (p < 0.008). However, although
people were faster and more accurate in the Polar coordinate condition when pseudo-
colour was used, there was no difference in people’s satisfaction for either coordinate
system (Z =−0.435, p = 0.664).

5.5 Discussion

Recognizing QT-interval prolongation on the standard ECG is difficult. Previous re-
search assessed the ability of medical professionals to recognise LQTS when presented
with four ECGs (two ECGs with LQTS patients and two ECGs of healthy subjects).
The results showed that accurate classification of all QT-intervals as either ‘prolonged’
or ‘normal’ was achieved by 96% of QT experts and 62% of arrhythmia experts, but
by less than 25% of cardiologists and noncardiologists [VRS+05]. The QT-interval
is also underestimated or unreported by computerised methods [TAS+15, KBD+18,
GL13, MCbA01, TABW11, RSG09], and as such, human visual validation is strongly
recommended [EI13, SW17]. To support lay people, who have no experience in ECG
interpretation, in detecting life-threatening changes in the ECG, we need to understand
how people perceive ECG data, and the extent to which visualisation techniques can
aid the interpretation process.

We used psychophysical methods to model lay people’s detection of QT-interval in-
creases when using four visualisation techniques. The results show that using pseudo-
colour to represent time significantly improves accuracy in detecting increases in the
QT-interval, for both coordinate systems. People are most accurate in detecting small,
but clinically significant increases in the QT-interval with Polar coordinates, regardless
of whether the T-wave morphology is normal or abnormal (Figure 5.9).

Clinical research has shown that even a small (≈ 10 msec) QT-interval increase
from the baseline is considered a significant side effect of a QT-prolonging drug [RFF+09,
Bre10, FDA+05]. When the T-wave morphology is normal, the 75% just noticeable
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difference (JND) thresholds were 29, 19, 65 and 9 milliseconds for Cartesian, Carte-

sian with pseudo-colour, Polar and Polar with pseudo-colour respectively. This shows
that using a combination of Polar coordinates and pseudo-colour has the potential to
support lay people in detecting the smallest clinically significant change. It also shows
that colour can improve sensitivity to changes such that people can perceive increases
that are much smaller than a 1mm square on the standard ECG grid (which represents
40 msec). As well as improving accuracy, using pseudo-colour reduced reaction times
and increased attention to the longer QT-interval stimulus. Eye-tracking data showed
that the average fixation duration increased more on the comparator stimulus, which
has the longer QT-interval, than the baseline stimulus, as the interval length increased
(Figure 5.12). Figures 5.13 and 5.14 show a heat map of absolute fixation duration
across all participants on Cartesian and Polar coordinates respectively, demonstrating
that even when the interval is borderline, rather than prolonged (QT = 455 msec, in-
creased by 38 msec), people still fixate longer on the comparator stimulus. This shows
the power of the colour codes used with the spectrum-approximation pseudo-colouring
sequence, where warmer colours including orange and red help to attract attention to
abnormal QT-interval levels.

5.5.1 Visualisation design implications

This study shows that colour as a pre-attentive attribute can support the detection of
small differences in time-series data represented along a continuous scale, that are
otherwise difficult to perceive. While people find it relatively easy to perceive quantity
along a vertical scale, they are known to be poor at judging size or quantity displayed
along a horizontal scale (see e.g. [LSZ+09, WA84, Lib91, PK11]). Time-series data
are conventionally displayed horizontally. Although this study focused on a specific
problem within ECG interpretation, the results may have a wider application to other
forms of time-series data, for example, in supporting detection of change in seasonality
in financial data, or follow-up months of survival rate among cancer treatments (e.g. in
Kaplan-Meier curves). People are able to detect the smallest differences when the ECG
is presented using Polar coordinates and pseudo-colour. Eye-tracking research has
shown that people’s initial eye movements are more commonly located in the center of
the screen [Bin10]. According to the study’s eye-tracking data, the warmer hues of the
pseudo-colour helped to focus visual attention; as Polar coordinates concentrate more
colour in the center of the screen than Cartesian coordinates, the increased salience
may be easier to perceive in foveal vision.
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Figure 5.13: Heatmap of absolute fixation duration for all participants on Cartesian coordinates. Fixation is longer on the borderline
QT-interval.
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Figure 5.14: Heatmap of absolute fixation duration for all participants on Polar coordinates. Fixation is longer on the borderline
QT-interval.
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5.5.2 Limitations and future work

Limitations of this study include: (1) we investigated detection of QT-interval pro-
longation, and it is not clear whether these techniques would generalise to interpre-
tation of other ECG abnormalities, such as changes in ST-segment elevation, or to
other signal/time-series data; (2) the data used to design the stimuli were from a high
quality signal with little noise; they were acquired from a 12-lead ECG, not a mobile
monitoring device, where the signal is much more likely to be affected by noise; (3)
we assessed an irregularity from the perspective of abnormal T-wave morphology, but
this, of course, is one of many; fast or slow heart rates, abnormalities in ST-T changes
and the presence of some common types of arrhythmia such as atrial fibrillation (AF)
can all affect QT-interval calculation; (4) in a self-monitoring situation people may
be using tablets or phones. We hypothesise that the visualisation techniques will still
be beneficial, but this will need to be confirmed in a further study examining the ef-
fects of screen size and lighting setting on the visualisation techniques; and (5) our
participants were highly educated, and we do not know whether the results would gen-
eralise to other demographics. Future work will include evaluating the visualisation
techniques with more diverse clinical populations, particularly with low-literacy and
low-income minority populations, who are taking medication that can lead to LQTS,
and are using a mobile device with a wearable ECG monitor.

5.6 Conclusion

This study shows that using simple visualisation techniques significantly improves
lay people’s ability to accurately measure the QT-interval. This may help with self-
monitoring drug-induced LQTS and enable treatment to be altered to prevent the de-
velopment of life threatening complications. Whilst using a pseudo-colour sequence
significantly improves people’s ability to detect increases in the QT-interval when the
ECG is displayed on a standard Cartesian coordinate system, the greatest accuracy is
achieved when pseudo-colour is combined with Polar coordinates.



Chapter 6

Pseudo-Colouring an ECG Enables
Laypeople to Detect QT-Interval
Prolongation Regardless of Heart Rate

6.0 Chapter overview

6.0.1 Thesis context

The study reported in Chapter 5 demonstrated the effectiveness of using pseudo-colouring
to support the detection of small increases in QT-interval at a regular heart rate of 60
bpm that are difficult to perceive without colour. Drug-induced changes in T-wave
morphology and heart rate are known to complicate visual LQTS detection and TdP
risk assessment. At present, the QT correction formulae (QTc) used in clinical practice
to correct QT-interval to heart rate are known to be poor at identifying patients at risk
of drug-induced TdP, particularly for fast and slow heart rates [DLD+03, LMJM04]
(discussed in Chapter 1 as the third research challenge). This chapter addresses this
issue with an empirical study that evaluates whether applying the pseudo-colouring
technique according to the QT-nomogram [CIKD07] and changing the coordinate sys-
tem (Cartesian vs. Polar) can support laypeople in identifying QT-prolongation at risk
of TdP regardless of T-wave morphology and heart rate visually, without the need for
explicit QT measurement and heart rate correction. Participants assessed the ECGs
of multiple patients on different QT-prolonging drugs for risk of TdP. The ECGs were

156
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presented alone (without a drug-free ECG baseline comparison). Accuracy was quanti-
fied in terms of sensitivity and specificity using a multi-reader, multi-case (MRMC) re-
ceiver operating characteristic (ROC) study design within a psychophysical paradigm.
Eye-tracking was used to determine the locus of visual attention.

The results of this study show that pseudo-colouring significantly improves laypeo-
ple’s ability to detect QT-prolongation at risk of TdP visually and identify ‘normal’
QT-intervals showing no risk of TdP, regardless of heart rate, T-wave morphology and
coordinate system. These results have motivated us to investigate whether modelling
the visual perceptual process used by humans when interpreting the pseudo-coloured
ECG can be used as a basis for an automated QT-prolongation detection algorithm,
which was initially explored in Chapter 7 and comprehensively studied in Chapter 8.

The main content of this chapter is adapted from: Alaa Alahmadi, Alan Davies, Markel
Vigo, and Caroline Jay. Pseudo-colouring an ECG enables lay people to detect QT-
interval prolongation regardless of heart rate. PLoS One, 15(8):e0237854, 2020.

6.0.2 Author’s contributions

Alaa Alahmadi expanded the development of the pseudo-colouring visualisation such
that it automatically adjusted according to heart rate, designed the study, carried out
the data collection, analysed the results and wrote the paper, with Alan Davies, Markel
Vigo and Caroline Jay contributing significant edits. Alan Davies acted as the electro-
cardiogram domain expert throughout. Caroline Jay and Markel Vigo provided con-
tinuous guidance and discussion.

6.0.3 Published abstract

Drug-induced long QT syndrome (diLQTS), characterized by a prolongation of the
QT-interval on the electrocardiogram (ECG), is a serious adverse drug reaction that
can cause the life-threatening arrhythmia Torsade de Points (TdP). Self-monitoring for
diLQTS could therefore save lives, but detecting it on the ECG is difficult, particularly
at high and low heart rates. In this paper, we evaluate whether using a pseudo-colouring
visualisation technique and changing the coordinate system (Cartesian vs. Polar) can
support lay people in identifying QT-prolongation at varying heart rates. Four visual-
isation techniques were evaluated using a counterbalanced repeated measures design
including Cartesian no-colouring, Cartesian pseudo-colouring, Polar no-colouring and
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Polar pseudo-colouring. We used a multi-reader, multi-case (MRMC) receiver op-
erating characteristic (ROC) study design within a psychophysical paradigm, along
with eye-tracking technology. Forty-three lay participants read forty ECGs (TdP risk
n = 20, no risk n = 20), classifying each QT-interval as normal/abnormal, and rat-
ing their confidence on a 6-point scale. The results show that introducing pseudo-
colouring to the ECG significantly increased accurate detection of QT-interval prolon-
gation regardless of heart rate, T-wave morphology and coordinate system. Pseudo-
colour also helped to reduce reaction times and increased satisfaction when reading
the ECGs. Eye movement analysis indicated that pseudo-colour helped to focus vi-
sual attention on the areas of the ECG crucial to detecting QT-prolongation. The study
indicates that pseudo-colouring enables lay people to visually identify drug-induced
QT-prolongation regardless of heart rate, with implications for the more rapid identifi-
cation and management of diLQTS.

6.1 Introduction

6.1.1 Background and significance

An electrocardiogram (ECG or EKG) is a graphical representation of the electrical
activity of the heart, widely used as a clinical tool for monitoring heart function and
detecting cardiac pathologies [Sch71]. An important measurement on the ECG is the
QT-interval, which represents the duration of the ventricular depolarization and repo-
larization cycle. It is measured from the beginning of the QRS complex (illustrating
ventricular depolarization) to the end of the T-wave (showing subsequent repolariza-
tion) [GMZ06, Sch71], as shown in Figure 6.1.

The QT-interval is of considerable clinical importance, primarily because its pro-
longation can increase the risk of a life-threatening arrhythmia known as Torsades de

Pointes (TdP), a form of polymorphic ventricular tachycardia that is the leading cause
of sudden cardiac death in young, otherwise healthy people [AAKR+02, MSC+91,
GM08, YC03]. Prolongation of the QT-interval indicates a cardiac disorder known
as ‘long QT syndrome’(LQTS), which is caused by the malfunction of cardiac ion
channels impairing ventricular repolarization; it manifests as a longer QT-interval
than normal on the ECG [MK05, DSR08]. The TdP arrhythmia is often precipi-
tated by triggers such as physical activity (notably swimming) [BSW14], and stress-
related emotion [VTVAV15]. Athletes with LQTS are thus particularly at risk of TdP
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Figure 6.1: An illustration of electrocardiogram (ECG or EKG) waveforms and the QT-
interval. Different ‘waves’ (peaks and troughs) are labelled with letters and represent
different stages of a heartbeat. The QT-interval is measured from the beginning of the
Q-wave to the end of the T-wave, identified here using the tangent method drawn at the
maximum down-slope of the T-wave.

episodes [JA13, BSW14, GPR16]. A major difficulty with identifying LQTS is that
it is often asymptomatic; sudden cardiac death can be the first clinical manifesta-
tion, and therefore it may go undiagnosed, or underdiagnosed, without ECG assess-
ment [Kha02, SC08, RV05].

LQTS can be congenital—a result of genetic mutations in cardiac channelopathies,
as seen in Romano–Ward syndrome [PSN+98]—or acquired, resulting from the clin-
ical administration of certain drugs [YC03, CMY08]. There are many commonly
prescribed medications that can prolong the QT-interval, including antihistamines,
antibiotics, antidepressants and antiarrhythmic drugs [YC03, CMY08]. Drug inter-
actions that block the human ether-a-go-go-related gene (hERG) potassium channel
are the most common cause of drug-induced long QT syndrome (diLQTS) [TKK06,
RPM+05]. These drugs are associated with large and increasing numbers of sud-
den deaths, and preventive strategies could therefore save many lives [Wys07, YC03,
Bro04].

Frequent ECG monitoring is strongly recommended for people at risk of acquiring
diLQTS, including patients on a known QT-prolonging drug and patients participat-
ing in a clinical trial testing a new drug [Sha02, KW12]. A baseline ECG, before
taking a QT-prolonging drug, and follow-up ECGs to monitor the QT-interval are ad-
visable [NAS12, DAF+10]. Recent innovations in home healthcare technologies have
made it possible to record high-quality, clinically reliable ECG data outside of the clin-
ical environment [SGH+17, SPS+19, WRY19, RFP19], but interpreting such data cor-
rectly in a timely manner still remains a major challenge [SW17, HG06]. One approach
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involves monitoring patients’ ECGs remotely, where the ECG report is referred to a
clinician who specialises in ECG interpretation [SGH+17, SPS+19, WRY19, RFP19].
However, a single dose of a QT-prolonging drug could dramatically prolong the QT-
interval within 24 hours for some patients, with the risk of TdP increasing with contin-
ued use [LVL+18]. At present, remote expert monitoring is too infrequent and costly
to be an effective way of managing this issue for everyone at risk of acquiring diLQTS.

While there are computerised methods for interpreting the ECG, the accuracy of
these methods remains limited [HG06, SW17]. Challenges of automating ECG in-
terpretation include the correct recognition of the ECG waveforms, in particular the
amplitude and duration characteristics (which differ substantially across individuals),
and the precise determination of the onset and offset of the different waves and com-
plexes (P-wave, QRS complex, T-wave) [SW17].

Automated QT measurement algorithms have proved unsatisfactory for detecting
LQTS in particular [TAS+15, KBD+18, EI13, GL13, MCbA01, TABW11, RSG09].
Garg and Lehmann [GL13] found that even a widely used computerized ECG analysis
system was not able to detect QT-interval prolongation in 52.5% of patients affected.
Research has also shown that drug-induced QT-prolongation can be underestimated
and under-reported by computerised methods in patients on Methadone, a drug that is
infamous for prolonging the QT-interval and increasing the risk of TdP [TAS+15].
A major challenge for automated QT algorithms is identifying the precise end of
the T-wave (the terminal point), especially when the T-wave’s morphology is abnor-
mal [GPAW14, GMZ06, Mor01]. This is particularly problematic, as QT-prolonging
drugs also often affect the morphology of the T-wave; for example, patients on pure
hERG-blocking drugs can develop flat, asymmetric, and notched T waves, whilst pa-
tients on multi-channel blocking drugs (e.g. hERG-blocking with lesser calcium and
late sodium block) can develop more distorted, bizarre, T-waves [VJM+15]. In fact,
specific T-wave patterns can aid detection of LQTS [CHA+15], and large T-U waves
are known to precede TdP [KFBW09]. These indicators are lost by automated QT
algorithms, however, as they work by abstracting the ECG data into a number (the
calculated length of the QT-interval). As such, the human visual validation of QT-
prolongation on the ECG remains mandatory in clinical practice, and provides the rich-
est information for recognizing LQTS [EI13, KBD+18, TABW11, GL13, MCbA01,
RSG09, TAS+15, SW17].

Giving laypeople the means to detect when the QT-interval is prolonged without
having to rely on an external interpreter could lead to a step-change in the detection
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and management of diLQTS, as well as helping to reduce the development of life-
threatening complications in situations that place individuals at risk of QT-interval
prolongation. ECG interpretation is complex, however, and detecting QT-prolongation
on the ECG is particularly difficult, even for clinicians [VRS+05, STN08]. From a
perceptual-cognitive perspective, this may be related to the fact that people are poor
at perceiving quantity represented along a horizontal scale [LSZ+09, WA84, PK11].
Research has also shown that changes in the T-wave morphology and/or artefacts
in the ECG signal can cause misinterpretation of the QT-interval length [ADVJ18,
ADR+19, GPAW14, Mor01]. The effect of heart rate on the QT-interval is another
challenge, as it is the proportionate rather than absolute length that is important, and
it is common to misinterpret the QT-interval at heart rates that differ from the ‘stan-
dard’ 60 bpm [LMJM04]. Visualisation techniques have the potential to highlight
abnormal changes within the ECG, by supporting intuitive visual perception of the is-
sues. Pre-attentive processing theory, which outlines a set of visual properties known
to be detected rapidly and accurately by the human eye, is considered to be especially
powerful for designing effective visualisations [War12, HBE95, HBE96]. Colour is
one of the most effective pre-attentive attributes that is noticed without conscious ef-
fort [Not93, GCC17]. A useful technique is pseudo-colouring, which encodes contin-
uously varying values using a sequence of colours [War12]. It has been widely used
to support diagnosis from medical images, including breast disease [ZSST11], and for
highlighting details in organs and bones structures that would otherwise be difficult to
perceive [Quw09, Sem18]. It is also used extensively in geographic and time series
visualisations, where applications include encoding elevation in the data or showing
changes over time [War12, SMY+05]. To our knowledge, no prior work has used
pseudo-colouring to support ECG interpretation.

In this paper, we investigate whether a pseudo-colouring technique can reliably
show prolongation of the QT-interval on an ECG, such that it be identified by a lay
person. In an earlier feasibility study, we found that superimposing pseudo-colouring
on the ECG using a spectrum-approximation colour sequence significantly improved
people’s ability to detect increases in the QT-interval at a low normal heart rate, when
compared with a reference ECG stimulus showing a normal QT baseline [ADR+19].
This initial investigation had several limitations that affected the generalisability of
the results. Firstly, the ECGs all had a single, regular heart rate of 60 bpm, and it is
unknown how the technique would perform at higher or lower heart rates. The ECGs
belonged to the same patient, who was taking the QT-prolonging drug (‘Dofetilide’,
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an antiarrhythmic drug with a pure hERG blocker) and subsequently experienced a
gradual increase in the QT-interval from the normal QT baseline. It is well-known that
the ECG differs from one individual to another, and that different types of drug can
affect the ECG in different ways. The study examined only sensitivity (identifying true
positives); for self-monitoring, it is important also to examine specificity (identifying
true negatives). Finally, and most importantly, the study design allowed people to
compare the ECG with a normal baseline. Such a baseline would be hard to produce
in self-monitoring situations, not least because it would have to be adjusted according
to heart rate. Therefore, this study tests the technique by presenting the ECGs one by
one, asking participants to judge whether QT-prolongation has occurred when viewing
just a single image, rather than comparing it with a baseline.

6.1.2 Objective

The objective of the study was to evaluate the effectiveness of the pseudo-colouring
technique in displaying QT-prolongation risk threshold on the ECG, when the data is
displayed on two coordinate systems: Cartesian and Polar. Accuracy was quantified in
terms of both sensitivity and specificity. The technique was tested with QT-intervals
across several heart rates for multiple patients on different QT-prolonging drugs. No
comparison baseline ECG was provided.

6.2 Materials and methods

In this section, we provide a detailed description of how the ECGs images were pro-
duced and displayed, and the experiment designed to evaluate the effectiveness of the
technique. The ECGs shown in the figures are reduced in size for inclusion in the pa-
per. All of the full size ECG images used in the experiment, along with the R scripts
used to create them, can be found in [ADVJ20b].

6.2.1 ECG data acquisition

The ECG datasets were acquired from a clinical trial study that was conducted to as-
sess the effects of different types of known QT-prolonging drugs, including a pure
hERG potassium channel blocker and multichannel blockers, on the ECG of healthy
subjects [JVM+14]. The open ECG datasets are available online from the PhysioNet
database [GAG+00].
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6.2.2 Visualisation design

The visualisation was created in two layers. The first layer plotted the ECG using the
standard method, which is a two dimensional line graph displaying the amplitude, or
voltage, of the electrical signal along the Y-axis and the time in milliseconds (ms) along
the X-axis. We used the ECG data from lead II, as the QT-interval is conventionally
measured in this lead [GMZ06, CMY08]. The pseudo-colouring was then applied in
a second layer, following a series of steps: identifying individual heartbeats via R-
peak detection; applying pseudo-colouring to each heartbeat; adjusting the colouring
according according to heart rate; displaying the data on either a Cartesian (current
standard) or Polar coordinate system.

Identifying individual heartbeats

The R-wave peaks (points with greatest amplitude) were detected in the raw ECG
datasets using an automated numerical math function that finds the greatest peaks
(maxima) in a time series [Bor]. A solid vertical line was superimposed on the im-
age at this point perpendicular to the X-axis to show the location of the R-waves on
the ECG, and delineate individual heartbeats. Detecting the R wave in the vast ma-
jority of ECGs is straightforward, as it consistently has the greatest amplitude. This
is in contrast to the other waveforms which vary considerably across ECGs. As high
quality ECG signals were used in the study, this method proved accurate and effi-
cient. Where signal data is lower quality, it may be necessary to use alternative de-
tection methods that can reliably distinguish R-peaks from high amplitude noises (see
e.g. [FNY+13, PHC05, LLL+14, SMM14]).

Applying the pseudo-colouring

The traditional way to measure the QT-interval clinically is to count the small squares
(each representing 40ms) on the standard ECG background grid, from the beginning
of the Q-wave to the end of the T-wave. For the purposes of applying the pseudo-
colouring, we added sequential time in ms as a third dimension to each heartbeat, from
the R-peak minus 20ms (the estimated start of the Q-wave), to the clinically significant
point of maximum risk for TdP—the method for estimating this is provided in the next
section. We then applied pseudo-colouring to the area under the curve of the ECG
signal by mapping every 40ms of this sequential time to a colour code or hue, with the
intensity of the hue changing every millisecond. We used a spectrum-approximation
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sequence as it is effective for supporting people in reading continuous values [War88];
it ranges from cool colours (purple to blue to green), which were used to indicate
normal QT-interval levels, to warm colours (yellow to orange to red), used to show
prolonged QT-interval levels.

Adjusting pseudo-colouring according to heart rate using the QT nomogram

To apply the pseudo-colouring accurately for different heart rates, it was necessary
to identify the value of QT-prolongation that determines being ‘at risk’ for TdP. In
the previous study [ADR+19], where all ECGs had a 60 bpm heart rate, we used the
half R-R interval rule to identify at risk QT-prolongation. This states that the QT-
interval is prolonged if it is equal to or longer than the half R-R interval (midpoint
between two consecutive R-peaks) [LMJM04, Dub00]. This rule is accurate with a
heart rate of 60 bpm, but lacks sensitivity in detecting at risk QT-prolongation with
both lower and higher heart rates [BI15, LMJM04]. In clinical practice it is common
to apply a QT correction formula (QTc), and then use a ‘cut off’ value to identify at
risk QT-prolongation. Examples of such QTc formulae include Bazett’s, Fredericia’s,
Framingham’s and Hodge’s [LMJM04]. However, recent research has shown that these
correction formulae are inaccurate in identifying patients at risk of drug-induced TdP,
particularly for fast and slow heart rates [DLD+03, LMJM04].

An alternative approach, known as the ‘QT nomogram’, is a risk assessment method
designed specifically for identifying patients at risk of drug-induced TdP according to
heart rate [FWM+05, CIKD07]. It was developed after screening 129 ECG cases that
reported drug-induced TdP and comparing these with control cases (i.e. when no TdP
was reported). The actual QT-interval value (not the QTc) and the heart rate for each
case were plotted as coordinates on a graph; this produced a line showing the upper
bound of the QT-interval value at risk for TdP as a function of heart rate. If the QT/HR
value falls on or above this risk line, the patient is at risk of TdP; below the line the
patient is not considered at risk of TdP [CIKD07]. The nomogram plot can be seen
in Figure 6.2. Further evaluation of the QT nomogram showed that it had higher sen-
sitivity and specificity than widely accepted QTc formulas [WGG+10] and the half
R-R interval rule [BI15]. We therefore used it as the foundation for modifying the
pseudo-colour as a function of heart rate.

For each ECG, the heart rate (HR) was calculated and then the corresponding QT
value for the ‘at risk’ threshold was acquired from the QT nomogram and plotted
on the ECG as a dashed vertical line. To apply the pseudo-colouring, we used nine
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Figure 6.2: The QT-nomogram for identifying QT-prolongation at risk of TdP over
heart rate. If the QT/HR value falls on or above the risk line, the patient is at risk of
TdP; below the line the patient is not considered at risk of TdP [CIKD07].

indices, where each was mapped to a colour code and represented by a small square
on the standard ECG background grid. A time value on the nomogram threshold line
was mapped to dark orange, and values 40ms and 80ms above the nomogram line
were mapped to red and dark red respectively, showing a higher risk for TdP. Time
values below the nomogram line were mapped to progressively cooler colours, such
that a time value below the line by five small squares (200ms), was mapped to blue.
Figure 6.3 illustrates how the pseudo-colouring technique was applied according to
the standard ECG background grid. The mappings between colours and time values
according to the nomogram is shown in Table 6.1. Note that this approach does not
provide a numerical value for the QT-interval, but rather colours the area under the
curve of the signal over a specific time interval (40ms × 9 indices = 360ms) according
to the nomogram. The T-wave area lies within this time interval: if the T-wave is in
a cool colour location, then the QT-interval is in the normal range; if it is in a warm
colour location, the interval is prolonged.
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Figure 6.3: Mapping the pseudo-colouring to the ECG, according to the QT-
nomogram. A small square on the standard ECG background grid is equal to 40ms.

Table 6.1: The nine indices on the pseudo-colouring scale with their corresponding
time values and colour codes.
Index The corresponding time value (ms) Colour code

1 QT-value of the nomogram line - (40 × 6) Purple
2 QT-value of the nomogram line - (40 × 5) Blue
3 QT-value of the nomogram line - (40 × 4) Green
4 QT-value of the nomogram line - (40 × 3) Lime
5 QT-value of the nomogram line - (40 × 2) Yellow
6 QT-value of the nomogram line - (40 × 1) Orange

7 QT-value of the nomogram line Dark orange

8 QT-value of the nomogram line + (40 × 1) Red
9 QT-value of the nomogram line + (40 × 2) Dark red
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Coordinate system

Our previous work indicates that people may be able to detect QT-prolongation more
accurately on a Polar coordinate system [ADR+19]. To see whether this held when
ECGs with varying heart rates are presented in isolation, we compared two coordinate
systems (Cartesian and Polar) with and without pseudo-colouring. We used the R
programming language [IG96] using RStudio software version 1.1.447 to create the
visualisations. Figures 6.4 and 6.5 show examples of ECGs with pseudo-colouring
that have different heart rates, but similar QT-interval risk levels for TdP, on Cartesian
coordinates. Figures 6.6 and 6.7 show the same ECGs on Polar coordinates.
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Figure 6.4: Pseudo-coloured ECGs that have different heart rates, but similar ‘normal’ QT-interval risk levels, on Cartesian coordi-
nates. The QT-intervals are below the nomogram line by 80ms for both ECGs (no risk of TdP). The top stimulus has a low heart rate
(HR = 57, QT = 401) and the bottom has a high heart rate (HR = 95, QT = 339).
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Figure 6.5: Pseudo-coloured ECGs that have different heart rates, but similar prolonged QT-interval risk levels, on Cartesian coordi-
nates. The QT-intervals are on the nomogram line in both ECGs (risk of TdP). The top stimulus has a low heart rate (HR = 46, QT =
487) and the bottom has a high heart rate (HR = 94, QT = 410).
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Figure 6.6: Pseudo-coloured ECGs that have different heart rates, but similar ‘normal’ QT-interval risk levels, on Polar coordinates.
The QT-intervals are below the nomogram line by 80ms for both ECGs (no risk of TdP). The left stimulus has a low heart rate (HR =
57, QT = 401) and the right has a high heart rate (HR = 95, QT = 339).
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Figure 6.7: Pseudo-coloured ECGs that have different heart rates, but similar prolonged QT-interval risk levels, on Polar coordinates.
The QT-intervals are on the nomogram line in both ECGs (risk of TdP). The left stimulus has a low heart rate (HR = 46, QT = 487)
and the right has a high heart rate (HR = 94, QT = 410).
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6.2.3 Experimental design

We used a multi-reader, multi-case (MRMC) receiver operating characteristic (ROC)
study design within a psychophysical paradigm. The MRMC ROC design is an eval-
uation method commonly used to assess diagnostic performance in medical imag-
ing studies, where multiple human observers (readers) interpret multiple patient im-
ages (cases) [HBM08]. The area under the ROC curve, a plot of sensitivity versus
1-specificity, is used to measure diagnostic accuracy. The MRMC design helps to
increase the generalisability of study results and enhance statistical power, particu-
larly when evaluating different computer-assisted detection (CAD) systems [HBM08].
Psychophysical experiments use detection and discrimination tasks to investigate the
relationship between the intensity of a physical stimulus and human perception and
sensation, by systematically varying the properties of the stimulus along one or more
physical dimensions [P+16]. Here the paradigm was used to systematically evaluate
the impact of the visualisation technique on people’s sensitivity to increases in the
QT-interval. We also used eye-tracking, a non-invasive sensor technology that mea-
sures human eye movements, to help us interpret the visual behaviour underpinning
the results on a post hoc basis [Duc07].

The study used a counterbalanced repeated measures design with two independent
variables, each with two levels:

1. Colour-coding (no colouring and pseudo-colouring).

2. Coordinate system (Cartesian and Polar).

The within-subjects factorial design yielded a total of 4 (2×2) experimental condi-
tions for each participant: Cartesian no-colouring; Cartesian pseudo-colouring; Polar
no-colouring; Polar pseudo-colouring. We counterbalanced the order of visualisation
presentation using a balanced Latin square to minimize practice effects. The partic-
ipants were divided into four groups of eleven participants, except for the last group
which included ten participants. Although an additional participant would have re-
sulted in a more rigorous counterbalanced design, this small effect was mitigated by
the systematic approach we adopted when analysing the results, i.e. by considering the
comparison of sensitivity and specificity within-participant as well as across partici-
pants for each visualisation (discussed in detail in Section 6.2.9). Considering (A) to
be ‘Cartesian no-colouring’, (B) to be ‘Cartesian pseudo-colouring’, (C) to be ‘Polar
no-colouring’ and (D) to be ‘Polar pseudo-colouring’, the counterbalanced order of
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Table 6.2: The six QT-levels with their corresponding QT-value relative to the nomo-
gram and an estimated range.

QT-level QT-value relative to the QT-nomogram line Estimated range

1 QT-value of the nomogram line - (40 × 3) Normal
2 QT-value of the nomogram line - (40 × 2) Normal
3 QT-value of the nomogram line - (40 × 1) Borderline

4 QT-value of the nomogram line Prolonged

5 QT-value of the nomogram line + (40 × 1) Very prolonged
6 QT-value of the nomogram line + (40 × 2) Severely prolonged

visualisation presentation for groups 1 to 4 respectively was as follows: A, B, D, C; B,
C, A, D; C, D, B, A; and D, A, C, B. The dependent variables were accuracy (broken
down into sensitivity and specificity), reaction time in ms, satisfaction with the visuali-
sation on a five point Likert-type scale from low (1) to high (5), mean fixation duration,
total fixation duration and spatial fixation distribution.

6.2.4 Stimulus design

The heart rates of the ECGs acquired from the clinical trial ranged from 40 to 96 bpm,
and the QT-interval values ranged from 300 to 579ms. As such, bradycardia (HR <60
bpm) was included in the range of heart rates, but not tachycardia (HR >100 bpm).

We followed psychophysical experimental design principles to systematically se-
lect the study’s stimuli. We considered QT interval value, relative to the nomogram
line, to be the physical dimension along which the stimulus was varied, in units of
40ms. Six levels of the QT-interval were identified: three levels below the nomo-
gram line (no/low risk to borderline), one level on the nomogram line (moderate risk),
and two levels above the nomogram line (high risk). The six QT levels were repre-
sented by indices 4 to 9 on the pseudo-colouring scale respectively (see Table 6.1).
Figure 6.8 shows examples of ECGs with the first QT-level (normal), and the sixth QT-
level (severely prolonged), while Figures 6.4, 6.5, 6.6 and 6.7 show examples of ECGs
with the second QT-level (normal) and the fourth QT-level (prolonged). Table 6.2
shows the corresponding estimated QT-interval prolongation for the six levels.
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Figure 6.8: Pseudo-coloured ECGs that have similar heart rates, but different QT-interval risk levels, on Cartesian coordinates. (A)
Normal QT-interval (HR = 55, QT = 361). (B) Severely prolonged QT-interval (HR = 52, QT = 579).
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6.2.5 ECG case selection

Forty ECG cases were selected from multiple patients (n = 17) to match the six QT-
levels. Twenty ECGs were below the nomogram line (i.e. no risk of TdP) and 20
ECGs were on or above the nomogram line (i.e. at risk of TdP). Six ECG cases were
on a placebo, and had values corresponding to the first QT-level, across heart rates
ranging from 48 to 90 bpm. The other 34 ECG cases (18 on Dofetilide, a known QT-
prolonging drug with a pure hERG potassium channel blocker, and 16 on Quinidine,
a multichannel blocker with a strong hERG block, and lesser calcium and late sodium
blocks), represented the second to sixth QT-levels across heart rates from 42 to 96
bpm. Table 6.3 shows the metadata of each ECG case in terms of QT value, heart rate,
drug type, patient ID, the corresponding QT-level relative to the nomogram line and
whether the case was at risk for TdP or not based on the nomogram plot.

6.2.6 Participants

A total of forty three participants, with no experience in ECG interpretation, were
recruited from a university campus (30 students and 13 staff). Eligibility for the study
was determined by asking participants to rate their knowledge of ECG interpretation,
and only people who identified as having no knowledge at all were included in the
study. There were 18 male and 25 female participants between 20 and 56 years old
(Mean = 31, SD = 8). Table 6.4 shows the participants’ demographic data. Participants’
sight was normal or corrected-to-normal and they reported no motor or neurological
disorders. The research was approved by the University Research Ethics Committee).
All participants provided written informed consent.

6.2.7 Apparatus

Stimuli were displayed on a 23.8 inch (diagonal) wide-screen Spectrum eye-tracking
monitor, with a resolution of 1920 × 1080 pixels. Eye gaze was recorded using the
Tobii Pro Spectrum eye-tracker and Tobii Pro Lab 1.95 software with a sampling rate
of 600Hz. Key press events were recorded during the experiment to measure reaction
times. Each Cartesian coordinate ECG stimulus measured 32.31cm × 6.14cm, and
each Polar coordinate stimulus was 15.61cm × 12.93cm.
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Table 6.3: Characteristics of the 40 selected ECG cases used in the study. The meta-
data were acquired from the clinical trial study [JVM+14], published by PhysioNet
database [GAG+00].

ECG ID QT value Heart rate Drug type Patient ID QT-level Risk for TdP on the nomogram

1 370 48 Placebo 11 1 Not at risk
2 361 55 Placebo 13 1 Not at risk
3 350 68 Placebo 16 1 Not at risk
4 343 72 Placebo 16 1 Not at risk
5 329 83 Placebo 18 1 Not at risk
6 335 90 Placebo 4 1 Not at risk
7 401 57 Dofetilide 12 2 Not at risk
8 389 75 Dofetilide 18 2 Not at risk
9 339 95 Dofetilide 20 2 Not at risk
10 419 47 Quinidine 8 2 Not at risk
11 396 68 Quinidine 16 2 Not at risk
12 355 82 Quinidine 18 2 Not at risk
13 445 46 Dofetilide 2 3 Not at risk
14 441 67 Dofetilide 7 3 Not at risk
15 431 75 Dofetilide 8 3 Not at risk
16 417 80 Dofetilide 11 3 Not at risk
17 371 94 Dofetilide 17 3 Not at risk
18 444 58 Quinidine 4 3 Not at risk
19 424 76 Quinidine 10 3 Not at risk
20 363 95 Quinidine 22 3 Not at risk

21 487 46 Dofetilide 4 4 At risk
22 468 72 Dofetilide 8 4 At risk
23 451 79 Dofetilide 9 4 At risk
24 445 81 Dofetilide 10 4 At risk
25 486 54 Quinidine 7 4 At risk
26 485 64 Quinidine 7 4 At risk
27 419 91 Quinidine 15 4 At risk
28 410 94 Quinidine 19 4 At risk
29 523 42 Dofetilide 4 5 At risk
30 494 71 Dofetilide 9 5 At risk
31 470 85 Dofetilide 18 5 At risk
32 565 49 Dofetilide 4 6 At risk
33 579 52 Dofetilide 18 6 At risk
34 547 64 Dofetilide 21 6 At risk
35 518 54 Quinidine 4 5 At risk
36 509 68 Quinidine 7 5 At risk
37 482 80 Quinidine 9 5 At risk
38 417 96 Quinidine 21 5 At risk
39 518 77 Quinidine 21 6 At risk
40 507 79 Quinidine 21 6 At risk
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Table 6.4: The participants’ demographic data.

Category Count Percentage %

Age

20-30 25 58%
31-40 13 30%
41-50 3 7%
50+ 2 5%

Sex

Male 18 42%
Female 25 58%

Occupation

University Staff 13 30%
Student 30 70%

Background

Computer science 27 63%
Chemical engineering 1 2%
Psychology 3 7%
Biochemistry 4 9%
Interior design 1 2%
Mathematics 1 2%
Art, history and sociology 1 2%
Biomedical sciences 4 9%
Business 1 2%
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6.2.8 Task and procedure

Participants completed a 15 minute training session prior to starting the experiment,
where they were introduced to the ECG trace, and taught how to identify the QT-
interval using the tangent method to identify the end of the T-wave (see Figure 6.1
and [PDJVdBW08]). Participants were instructed to use the tangent method visually
on the screen (i.e. without any additional equipment) to roughly identify the end of the
T-wave; the training session did not involve any medical terms or high-level training
techniques typically associated with clinical ECG interpretation and focused solely on
identification of the QT interval. Participants were then introduced to the four visu-
alisation techniques, and shown how to use the pseudo-colouring scale and the risk
threshold (represented by a dashed line) to assess the QT-interval. Participants were
told that a QT-interval is considered prolonged if the T-wave ends on or exceeds the
risk threshold dashed line, and when the pseudo-colouring within the QT-interval, and
particularly in the Tpeak–Tend interval, contains warm colours (yellow/orange/red),
with a greater visibility of warm colours indicating a higher level of QT-prolongation.
Finally, participants completed an assessment task, in which they were asked to high-
light the start and end points of the QT-intervals on two different ECGs (one with
normal QT-interval and the other with a prolonged QT-interval) and decide whether it
was normal or abnormal using the visualisation techniques (i.e. 2 ECGs × 4 visuali-
sation techniques = 8 stimuli), to ensure that they understood how to perform the task.
All participants passed the assessment task , correctly categorising the QT-intervals for
all stimuli.

Participants were tested individually. They completed four tests, one for each visu-
alisation technique, in which they read all ECG cases for one test before moving to the
next. Participants read the same ECG cases using each visualisation technique. ECGs
were presented at random within a test. Each test began with a five-point calibration
of the eye-tracking apparatus. ECGs were presented one at a time, and participants
completed two tasks: the first task used a psychophysical one alternative forced-choice
paradigm (also known as a yes-no detection task), in which participants indicated ver-
bally, as quickly as possible, whether they perceived the QT-interval as (‘normal’ or
‘abnormal’), whilst pressing the space-bar on the keyboard to collect reaction time; the
second task was to rate their confidence in their response using a 6-point scale of ‘very
likely normal’ (1), ‘probably normal’ (2), ‘possibly normal’ (3), ‘possibly abnormal’
(4), ‘probably abnormal’ (5), and ‘very likely abnormal’ (6). There was no time limit
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imposed, but participants were encouraged to do the tasks as quickly as possible. The
binary responses and the confidence scores were recorded on a spreadsheet during the
experiment by the researcher. At the end of the experiment, participants were asked to
provide their satisfaction with the visualisations by rating how much each helped them
to assess the QT-interval using a five point Likert-type scale ranging from ‘not very
much’ (1) to ‘a lot’ (5).

6.2.9 Statistical analysis methods

Response accuracy was measured by calculating the average area under the receiver
operating characteristic (ROC) curves (AUC) with 95% confidence intervals (CIs).
QT-levels 1-3 inclusive were classified as negative (normal), and levels 4-6 as posi-
tive (prolonged). We used the Dorfman-Berbaum-Metz multi-reader multi-case (DBM
MRMC) software from the University of Iowa [KMSPB], to calculate and compare
the AUCs of the four visualisation techniques, based on the methods of Dorfman,
Berbaum and Metz [DBM92] and Obuchowski and Rockette [OJRJ95] and later uni-
fied and improved by Hillis and colleagues [HOSB05, Hil07, HBM08]. The DBM
MRMC method uses jackknifing and analysis of variance (ANOVA) methods and we
considered both readers and cases as random variables; this allows the results to be
generalised to the population of readers and cases. The ROC curve was fitted using
the trapezoidal area and Wilcoxon method. The statistical power of ROC MRMC was
greater than 90%, and the sample size estimation was performed using [HS18].

All statistical tests were performed at a 5% significance level (α = 0.05); two-sided
95% confidence intervals (CIs) were used to quantify uncertainty. Within-participant
comparisons of sensitivity and specificity were performed using McNemar’s chi-squared
test. We measured perceptual sensitivity to QT-levels using the psychometric function
and just noticeable difference (JND) threshold, along with the signal detection analysis
method R packages [LLM16, Mak18]. Differences in reaction time and satisfaction
scores were determined via a Friedman test and post hoc pairwise comparisons per-
formed with a Wilcoxon signed-rank test utilising a Bonferroni correction (α= 0.008).
Visual behaviour was analysed using eye tracking metrics including mean fixation du-
ration, total fixation duration and fixation distribution using the nearest neighbour in-
dex (NNI) method, as implemented by Davies et al. [DVHJ16].
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Table 6.5: The average area under the ROC curve across all participants and for each
visualisation technique. SE = Standard error. CI = %95 Confidence intervals.

Visualisation technique Average AUC SE %95 CI

Cartesian no-colouring 0.895 0.024 0.848 to 0.943
Cartesian pseudo-colouring 0.935 0.020 0.895 to 0.974

Polar no-colouring 0.878 0.029 0.821 to 0.935
Polar pseudo-colouring 0.934 0.023 0.888 to 0.980

6.3 Results

All anonymised data and related metadata underpinning the findings reported in this
article can be found in [ADVJ20b].

6.3.1 Accuracy

Area under the ROC curve Pseudo-colouring significantly increased the average
area under the ROC curve (AUC) for both coordinate systems (Tables 6.5 and 6.6).
When Cartesian coordinates were used, the average AUC increased from 0.895 (stan-
dard error (SE) = 0.024) to 0.935 (SE = 0.020), while the increase was from 0.878
(SE = 0.029) to 0.934 (SE = 0.023) for Polar coordinates (Table 6.5). The average
increase in AUC as a result of pseudo-colouring was therefore 0.04 for Cartesian and
0.056 for Polar coordinates, a statistically significant increase in both cases (p= 0.014,
p < 0.001 for Cartesian and Polar coordinates respectively, see Table 6.6). There was
no significant difference in average AUC as a function of coordinate system when
pseudo-colouring was used (p = 0.978, see Table 6.6). Although the average AUC
was higher for Cartesian coordinates than for Polar coordinates when no-colouring
was used, the difference was not statistically significant (p = 0.273, see Table 6.6).



6.3.
R

E
SU

LT
S

181

Table 6.6: Pairwise comparisons of the area under the ROC curve for the four visualisation techniques. Significant p-values are in
bold. SE = Standard error. CI = %95 Confidence intervals.

Pairwise comparisons AUC Difference SE P-value 95% CI

Cartesian no-colouring, Cartesian pseudo-colouring - 0.039 0.015 0.014 -0.070 to -0.007
Cartesian no-colouring, Polar no-colouring 0.017 0.015 0.273 -0.013 to 0.048
Cartesian no-colouring, Polar pseudo-colouring -0.038 0.015 0.015 -0.070 to -0.007

Cartesian pseudo-colouring, Polar no-colouring 0.056 0.015 <0.001 0.025 to 0.087
Cartesian pseudo-colouring, Polar pseudo-colouring 0.000 0.015 0.978 -0.030 to 0.031

Polar no-colouring, Polar pseudo-colouring -0.056 0.015 <0.001 -0.087 to -0.024



182 CHAPTER 6. PSEUDO-COLOUR AT VARYING HEART RATES

Table 6.7: Comparisons of mean specificity between the visualisation techniques. The
table shows the mean ± standard error, and 95% two-sided confidence intervals. Sig-
nificant p-values are in bold and were calculated using a McNemar’s chi-squared test.

Coordinate Pseudo-colouring No-colouring Difference P-value

Cartesian 0.90±0.002, 0.94±0.002, −0.04±0.002, <0.001
0.870 to 0.929 0.913 to 0.966 -0.069 to -0.014

Polar 0.90±0.002, 0.88±0.002, 0.02±0.002, 0.460
0.874 to 0.925 0.849 to 0.910 -0.024 to 0.044

Difference 0.00±0.002, 0.06±0.002,
-0.030 to 0.030 0.0260 to 0.073

P-value 1.000 <0.001

Specificity Specificity was calculated as the proportion of true negative (i.e. ‘nor-
mal’) responses for QT-levels 1 to 3. The mean specificity across all participants was
high and similar for both coordinate systems regardless of pseudo-colouring was used
(Table 6.7). Although pseudo-colouring increased the mean specificity for Polar co-
ordinates from 0.88 (SE=0.002) to 0.90 (SE=0.002), the increase was not statistically
significant (p = 0.460). The highest mean specificity was 0.94 (SE=0.002) for Carte-
sian coordinates when pseudo-colouring was not used, which was significantly higher
than when pseudo-colouring was used with this coordinate system (p < 0.001). There
was no difference in the mean specificity between the two coordinate systems when
pseudo-colouring was used (p = 1.000).

Sensitivity Sensitivity was measured using the ROC method as the proportion of
true positive (i.e. ‘abnormal’) responses for QT-levels 4 to 6. The mean sensitiv-
ity increased with pseudo-colouring from 0.63 (SE=0.004) to 0.83 (SE=0.003) with
Cartesian coordinates, and from 0.72 (SE=0.004) to 0.82 (SE=0.003) with Polar co-
ordinates (Table 6.8). The increase in sensitivity of 0.2 (SE=0.004) with Cartesian
and 0.1 (SE=0.003) with Polar coordinates was statistically significant (p < 0.001).
Sensitivity was higher when Cartesian coordinates were used than when Polar coor-
dinates were used by 0.01, a statistically significant difference (p = 0.001). When
pseudo-colouring was not used, the mean sensitivity was 0.09 (SE=0.003) higher with
Polar coordinates than with Cartesian coordinates, a difference that was statistically
significant (p < 0.001).
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Table 6.8: Comparisons of mean sensitivity between the visualisation techniques. The
table shows the mean ± standard error, and 95% two-sided confidence intervals. Sig-
nificant p-values are in bold and were calculated using a McNemar’s chi-squared test.

Coordinate Pseudo-colouring No-colouring Difference P-value

Cartesian 0.83±0.003, 0.63±0.004, 0.2±0.004, <0.001
0.773 to 0.877 0.570 to 0.689 0.138 to 0.261

Polar 0.82±0.003, 0.72±0.004, 0.1±0.003, <0.001
0.779 to 0.860 0.665 to 0.774 0.050 to 0.149

Difference 0.01±0.003, −0.09±0.003,
-0.030 to 0.050 -0.140 to -0.039

P-value 0.001 <0.001

We also measured perceptual sensitivity across QT-levels using the following psy-
chophysical detection methods:

(1) Psychometric function and just noticeable difference (JND)

(2) Signal detection analysis The psychometric function and JND threshold quan-
tify sensitivity in terms of a binary response (here, ‘normal’ or ‘abnormal’). In psy-
chophysics, signal detection theory recognises that there is uncertainty in the task, such
that the decision may be affected by noise either externally, for example where a stim-
ulus changes between presentations, or internally, as people may be biased towards
saying ‘normal’ or ‘abnormal’ more frequently [P+16]. We attempted to minimise
the effect of decision bias by increasing sample size, counterbalancing experimental
conditions, and including confidence scores, but some uncertainty is likely to remain.
Signal detection theory measures the sensitivity, while taking response bias into ac-
count, using a sensitivity index d′ [P+16]. This was calculated for each participant and
then averaged across all participants. Table 6.9 shows the mean sensitivity index (d′)
with the standard deviation and standard error for each visualisation technique. The
results show that pseudo-colouring increased the mean sensitivity with both coordinate
systems independent of decision bias.
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Table 6.9: The mean sensitivity index for each visualisation technique. SD = Standard
deviation. SE = Standard error.

Visualisation technique Sensitivity index (d′) SD SE

Cartesian no-colouring 1.87 0.55 0.01
Cartesian pseudo-colouring 2.22 0.49 0.01

Polar no-colouring 1.82 0.57 0.01
Polar pseudo-colouring 2.15 0.44 0.01
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Figure 6.9: Psychophysical detection measures of sensitivity. (A) The fitted psychometric function plot shows the proportion of
responses indicating QT-prolongation as a function of the QT-interval difference from the nomogram line, which corresponds to the
six QT-levels. The QT value of the nomogram line (i.e. the fourth QT-level) is equal to 0 on the X-axis. Cartesian no-colouring
is represented by a red line, Cartesian pseudo-colouring by a green line, Polar no-colouring by a turquoise line and Polar pseudo-
colouring by a purple line. (B) The just noticeable difference (JND) thresholds plot. The error bars represent bootstrap confidence
intervals.
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Table 6.10: Results of the Friedman test comparing reaction times across the four
visualisation techniques.

QT-level Estimated Range Risk for TdP χ2(3) p-value

1 Normal No risk 35.251 <0.001
2 Normal No risk 26.307 <0.001
3 Borderline No risk 16.349 0.001
4 Prolonged At risk 18.216 <0.001
5 Very Prolonged At risk 32.223 <0.001
6 Severely prolonged At risk 48.008 <0.001

Overall All ECG stimuli 141.737 <0.001

6.3.2 Reaction time

We measured reaction time as the period from the appearance of the stimulus on the
screen to the key press event when people made their binary decision. The mean re-
action times across all stimuli were 7.9 and 8.6 seconds for Cartesian coordinates with
and without pseudo-colouring respectively, and 8.1 and 8.9 seconds for Polar coordi-
nates with and without pseudo-colouring respectively. A Friedman test was conducted
for each QT-level stimulus and overall for each condition. People were significantly
faster when pseudo-colouring was used for each QT-level and over all ECG stimuli
cumulatively (p ≤ 0.001)(Table 6.10, Figure 6.10). A post hoc pairwise comparison
using a Wilcoxon signed-rank test with Bonferroni correction (α = 0.008) showed that
although participants responded faster when pseudo-colouring was used with Cartesian
coordinates than with Polar coordinates, the difference was not significant (p = 0.808).

6.3.3 Satisfaction

A Friedman test showed there was a statistically significant difference in participants’
satisfaction as a function of visualisation technique (χ2(3) = 50.954, p < 0.001). A
post hoc pairwise comparison using a Wilcoxon signed-rank test with Bonferroni cor-
rection (α = 0.008) showed that people preferred pseudo-colouring to no-colouring
(p < 0.008); and Cartesian coordinates to Polar coordinates whether pseudo-colouring
was used (Z =−3.340c, p= 0.001), or not (Z =−3.029c, p= 0.002). Although people
were more sensitive to QT-prolongation when the ECG was presented on Polar coordi-
nates with pseudo-colouring, people preferred Cartesian coordinates without pseudo-
colouring to Polar coordinates with pseudo-colouring (Z =−2.142b, p = 0.032).
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Figure 6.10: Mean reaction time in seconds for each QT-level and all stimuli combined.
Error bars represent 95% confidence intervals.

6.3.4 Eye movement analysis

An area of interest (AOI) was created on the whole ECG for each stimulus. As such,
160 AOIs were created (40 ECGs × 4 visualisation techniques).

Mean fixation duration The mean fixation duration metric, which is an indicator
of cognitive load [HNA+11, DVDL14], was calculated across all participants for each
ECG stimulus and then averaged over each QT-level. Mean fixation duration increased
as the QT-level increased when pseudo-colouring was used (Figure 6.11A). When con-
sidered alongside the psychometric function (Figure 6.9A), this indicates that pseudo-
colour helped people to focus visual attention. When pseudo-colouring was not used,
mean fixation duration continued to increase at higher QT-levels for Cartesian coor-
dinates, but this effect was not seen with Polar coordinates, indicating a difference in
how people interpreted the ECG as a function of coordinate system.

Total fixation duration The total fixation duration (also known as the dwell time)
quantifies the amount of time spent fixating on the stimulus [HNA+11]. It was cal-
culated across all participants for each stimulus and then averaged for each QT-level.
The results show that total fixation duration was lower when pseudo-colouring was



188 CHAPTER 6. PSEUDO-COLOUR AT VARYING HEART RATES

Figure 6.11: Eye movement analysis results. (A) Mean fixation duration in millisec-
onds on the ECG stimuli averaged for each QT-level. (B) Total fixation duration in
milliseconds on the ECG stimuli averaged for each QT-level.

used for both coordinate systems (Figure 6.11B). People spent less cumulative time
fixating on the ECG stimuli with pseudo-colouring, but individual fixations were more
focused (Figures 6.11A and 6.11B). When pseudo-colouring was not used, there were
more, shorter fixations, indicating a less-focused interpretation strategy.

Fixation distribution Figures 6.12 and 6.13 show heatmaps of fixations across an
ECG stimulus with and without pseudo-colouring, for Cartesian and Polar coordinate
systems respectively. We hypothesised that pseudo-colour helped to draw people’s
attention to the coloured T-wave area, and that fixations would therefore be more clus-
tered when pseudo-colour was used. We used the Nearest Neighbour Index (NNI)
to determine if the fixations were randomly spaced or clustered. The NNI provides
a ratio of the distribution pattern of points in space from 0 (clustered) to 1 (dis-
persed) [DVHJ16]. We calculated the average Nearest Neighbour Index (NNI) for
each ECG stimulus across all participants and for all visualisation techniques. Fig-
ure 6.14 shows a histogram of the distribution of the Nearest Neighbour Index (NNI),
along with a box-plot for Cartesian and Polar coordinates, with and without pseudo-
colouring. When Cartesian coordinates were used (Figure 6.14A), pseudo-colouring
resulted in clustering in more stimuli than no-colouring. When Polar coordinates were
used (Figure 6.14B), however, pseudo-colouring did not appear to affect the fixation
distribution.
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Figure 6.12: A heatmap of fixation count shows the cumulative number of fixations across all participants on Cartesian coordinates.
With pseudo-colouring, people made fewer, more clustered fixations on the coloured T-wave area compared with no-colouring on the
same ECG.
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Figure 6.13: A heatmap of fixation duration shows the cumulative mean fixation duration across all participants on Polar coordinates.
With pseudo-colouring, fixations were longer on the coloured T-wave area and the vertical dashed line that represents the QT risk
threshold, while with no-colouring fixations were longer on the vertical dashed line only.
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Figure 6.14: Nearest Neighbour Index (NNI) of fixations on ECGs with and without pseudo-colouring. (A) Cartesian coordinates.
(B) Polar coordinates.
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6.4 Discussion

This study demonstrates that applying pseudo-colouring to an ECG relative to the
QT nomogram significantly increases lay people’s accuracy in visually assessing QT-
intervals regardless of heart rate (Tables 6.5 and 6.6). In particular, pseudo-colouring
increased sensitivity to prolongation (true positive cases); whilst people were able to
identify normal QT-intervals without colour, adding pseudo-colouring resulted in more
accurate identification of at risk QT-prolongation cases, shown by both the ROC curve
analysis and the psychophysical detection measures of sensitivity (Tables 6.8 and 6.9;
Figure 6.9). The psychometric function shows that pseudo-colour helped increase sen-
sitivity to QT-interval increases even before a patient is at risk of TdP (Figure 6.9A),
specifically in the borderline range (i.e. the third QT-level). This level could be critical
from a clinical perspective as just a 40ms increase from this point could put some-
one at risk of TdP. Clinical research has shown that even small (≈ 10ms) QT-interval
increases from the baseline should be regarded as a significant side effect of a QT-
prolonging drug [RFF+09, Bre10, FDA+05]. From the perspective of our study de-
sign, this meant that pseudo-colouring with Cartesian coordinates reduced specificity
(true negative cases) at this level, as we considered it to be within the normal range.
From a practical perspective, however, considering this level to be abnormal may serve
a useful purpose.

Pseudo-colour significantly reduced reaction times and helped to focus visual at-
tention on the areas of the ECG crucial for detecting QT-prolongation. Eye-tracking
data showed that pseudo-colour consistently increased mean fixation duration as the
QT-level increased (Figure 6.11A); when the ECG was presented on Cartesian coordi-
nates, fixations were more clustered when pseudo-colouring was used (Figure 6.14A).

Obtaining a precise measurement of the QT-interval is known to be challenging.
An important QT-interval increase may be just a few milliseconds, less than one small
square on the ECG. This would be particularly difficult to detect at high heart rates,
as the QT-interval length shrinks with the R-R interval length [Mor01, GPAW14].
Here, we demonstrate that pseudo-colour can support detection of QT prolongation
regardless of heart rate without needing to measure the QT-interval (Figures 6.4,6.5,
6.6 and 6.7). Figure 6.13 shows a heat map of absolute fixation duration across all
participants on an ECG with a QT-interval 40ms above the nomogram line. When
pseudo-colouring was not used, people’s fixations appear to be more focused on mea-
suring the gap between the end of the T-wave and the QT risk threshold dashed line.
When pseudo-colouring is present on the same ECG, fixations appear more focused
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on the T-wave. Focusing attention in this area is particularly useful, as long QT
syndrome (LQTS) is associated with prolonging ventricular repolarization [MK05,
DSR08], which is represented by the T-wave on the ECG [GMZ06, Sch71]. Research
examining the effects of QT-prolonging drugs is investigating precisely how the T-
wave responds to them to provide further insights of drug ion channel interactions
and TdP risk [VJM+15]. Pseudo-colour might ultimately help clinicians to determine
which part of the T-wave—the initial half of the T-wave (J-T-peak) or the second half
(T-peak T-end)—underpins QT-prolongation.

6.4.1 Limitations and future work

Whilst this work indicates the potential for pseudo-colouring to assist in the self-
monitoring of QT-interval, the study took place in a controlled setting with a limited
number of stimuli, and the transferability of the technique to practice remains an open
question. Cartesian and Polar coordinates support the same level of accuracy, but peo-
ple expressed a preference for pseudo-colour displayed on Cartesian coordinates. It
may be, however, that the ECG trace would be better presented with Polar coordinates
on smaller screens like smart watches, and future work should thus examine the effects
of screen size and lighting setting on accuracy.

In this study, we only investigated the assessment of QT-interval, and it is not
clear whether these visualisation techniques would generalise to interpretation of other
ECG abnormalities, such as changes in ST-segment elevation. Research has shown
that a large number of clinicians lack the skills to interpret QT-prolongation accu-
rately [VRS+05, STN08]; pseudo-colouring could also be used to help clinicians, es-
pecially within emergency departments, to visually assess and monitor patients’ QT-
intervals before or during the provision of a QT-prolonging medication. Future work
should evaluate the visualisation techniques in clinical trials with more diverse clinical
populations.

6.5 Conclusion

Applying pseudo-colouring to ECGs according to the QT-nomogram supports lay peo-
ple in detecting QT-prolongation visually, regardless of heart rate. The results indicate
that self-monitoring ECGs for drug-induced LQTS is feasible, with the potential to
prevent the development of life threatening complications.



Chapter 7

Human-Machine Perception of
Complex Signal Data

7.0 Chapter overview

7.0.1 Thesis context

At present, clinicians do not regard automated QT measurement algorithms as a reli-
able way of detecting QT-prolongation (discussed in Chapter 1 as the fourth research
challenge). Current automated ECG interpretation approaches rely on recognizing dif-
ferent ECG waves, identifying the beginning of the Q-wave and the end of the T-wave
to measure the QT-interval—a process that quickly becomes challenging in the pres-
ence of anomalies, artefacts or non-standard ECG waves, as discussed in detail in
Chapters 2 and 3. Based on the evidence that pseudo-colouring significantly improves
laypeople’s ability to detect QT-prolongation by perceiving the amount of warm colour
in the signal, alleviating the need to measure the QT-interval (Chapters 5 and 6), this
chapter introduces an exploratory algorithm (Section 7.3) that uses an understanding
of human visual perception of ECG data to improve automated QT-prolongation de-
tection.

An empirical evaluation of the algorithm demonstrates how modelling the percep-
tual process that we hypothesise humans are using to interpret the pseudo-coloured
ECGs can be used as a basis for a simple, explainable rule-based algorithm that is
more accurate than current signal processing techniques (Section 7.3.2), and has the
benefit of the human and machine sharing the same representation of the data (Section
7.3.1). We discuss the potential of this novel, shared human-machine interpretation

194
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approach, in terms of its accuracy and acceptability in clinical practice (Section 7.4).
The promising results of the work reported in this chapter encouraged further eval-

uation of this new ‘human-like’ approach to the ECG interpretation, testing its effec-
tiveness in detecting QT-prolongation at risk of TdP on a larger number of ECGs with
a wide range of drug-induced ECG morphological changes (Chapter 8).

The main content of this chapter is adapted from: Alaa Alahmadi, Alan Davies, Kather-
ine Dempsey, Markel Vigo, and Caroline Jay. Human-machine perception of complex
signal data. In Human-Like Machine Intelligence. Oxford University Press, 2021.

7.0.2 Author’s contributions

Alaa Alahmadi and Caroline Jay conceptualised and devised the idea for the work.
Alaa Alahmadi developed and evaluated the human-like algorithm, carried out the
ECG data acquisition, designed and analysed the study and wrote the paper, with
Alan Davies, Markel Vigo and Caroline Jay contributing significant edits. Katherine
Dempsey assisted with comparing the human-like algorithm with signal processing
techniques. Alan Davies acted as the electrocardiogram domain expert throughout.
Caroline Jay and Markel Vigo provided continuous guidance and discussion.

7.0.3 Published abstract

Electrocardiograms (ECGs), which capture the electrical activity of the human heart,
are widely used in clinical practice, and notoriously difficult to interpret. Whilst there
have been attempts to automate their interpretation for several decades, human reading
of the data presented visually remains the ‘gold standard’. We demonstrate how a visu-
alisation technique that significantly improves human interpretation of ECG data can
be used as a basis for an automated interpretation algorithm that is more accurate than
current signal processing techniques, and has the benefit of the human and machine
sharing the same representation of the data. We discuss the potential of the approach,
in terms of its accuracy and acceptability in clinical practice.
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7.1 Introduction

This research explores a new approach to the processing of complex signal data, which
exploits an understanding of the human perceptual system to facilitate its interpretation
by humans and machines simultaneously. We focus on the interpretation of electro-
cardiogram (ECG) data, and in particular on the heart condition known as ‘long QT
syndrome (LQTS)’, which is associated with a life-threatening arrhythmia (Torsades

de pointes (TdP)) that can lead to sudden cardiac death. The syndrome is character-
ized by a prolongation of the QT-interval on the ECG, which represents the duration
of the ventricular depolarization and repolarization cycle, and is measured from the
beginning of the Q-wave to the end of the T-wave [GM08], as shown in Figure 7.1.
Whether or not the interval is considered to be prolonged depends on a number of fac-
tors, and particularly heart rate. Given a heart rate of 60bpm, a normal QT-interval
would generally be 430ms or less [GM08, YC03].

Figure 7.1: Measurement of the QT-interval on the ECG from the beginning of the
Q-wave to the end of the T-wave. Figure taken from [ADR+19].

7.1.1 Interpreting the QT-interval on an ECG

The electrocardiogram (ECG), a recording of the complex signal data representing
the heart’s electrical activity, is widely used in clinical practice for assessing cardiac
function and detecting pathologies. The standard method for visualising ECG data is
with a two dimensional line graph showing the amplitude of the recorded electrical
signal of the heart on the Y-axis and the time in milliseconds (ms) on the X-axis. The
ECG ‘wave forms’ (peaks and troughs) are labelled with letters and represent different
stages of the heartbeat, as shown in Figure 7.1.
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Long QT syndrome is indicated by a prolongation of the QT-interval on the ECG,
representing a delay in the ventricular repolarization activity of the heart [GM08].
Many commonly prescribed medications can prolong the QT-interval, leading to ac-
quired drug-induced long QT syndrome (diLQTS).

Whilst there have been attempts to automate ECG interpretation for several decades,
expert human reading of the data presented visually remains the ‘gold standard’ [WBA+14,
SW17]. Nevertheless, ECG interpretation is complex and requires extensive train-
ing, with some conditions known to be very challenging to recognise, even for clin-
icians who routinely read ECGs [VRS+05]. To date, long QT syndrome has re-
mained difficult to recognise on the ECG, from both a human and a machine per-
spective [VRS+05, TAS+15, KBD+18, GL13, MCbA01, TABW11, RSG09]. Here,
we demonstrate how a visualisation technique that significantly improves human inter-
pretation of ECG data—without the need for prior training—can be used as the basis
for an automated human-like algorithm.

7.1.2 The broad notion of human-machine perception

Many approaches to computer vision, including deep learning, attempt to mimic or
improve on human ability, but are often only loosely related to human visual pro-
cesses [SANC14, SBOR06]. A growing area of research is investigating the role that
models of human perception may play in improving computer vision. Perception,
broadly speaking, is the process of recognising and interpreting sensory information
[HW97]. The human visual system has a highly developed capability for perceiving
different patterns and objects simultaneously, both whole and in parts, without prior
training [SANC14, SBOR06, OAD+12]. This appears to be due to a primitive percep-
tual organization process that derives relevant groupings and patterns from an image or
scene without prior knowledge of its contents [Low12, vdH17, Sta19], a phenomenon
first noted in the Gestalt principles of visual perception, which articulate factors that
regulate perceptual grouping, including proximity, similarity, closure, continuation and
symmetry [Wer23]. Today, there is evidence of a multiplicity of perceptual grouping
processes that vary in attentional demands [RYK17, BK03, KHBP05, KRA04], with
many operating before the higher level cognitive system applies top-down knowledge
to recognising a scene [vdH17, Sta19].
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Research in computer vision has shown that the capability of a machine to organ-
ise and interpret sensory information in a ‘human-like’ way, termed machine percep-

tion [Vel10] can dramatically decrease the search space required for object recognition
[Low12]. Combining a perceptual grouping approach with the principle of simplic-
ity, which states that people tend to perceive the simplest possible interpretation of
any given visualised information [Fel16, Hoc57, HE85], has been shown to enhance
machine vision further [Fel16, vdH15, DSP90, Fel97].

Pre-attentive processing theory outlines a set of visual properties known to be de-
tected rapidly and accurately by the human eye, which are important in the perceptual
grouping process [WU19, The13, Not93]. Examples of pre-attentive properties include
colour, shape, and size. Colour, in particular, is known to aid and influence the per-
ceptual organization of the visual scene [KRA04]. Zavagno et al. (2014) have shown
colour to be a relatively strong grouping factor that functions according to the princi-
ples of Gestalt theory, and can override other types of pre-attentive property including
shape and size [ZD14]. In the technique we describe here, colour serves as the foun-
dation for drawing the human reader’s attention to the QT-interval in an ECG image,
such that he or she can make a decision about whether it is dangerously prolonged.
The salience information used by humans to make this judgement is then mapped to
quantitative values, which can be used by an algorithm to automate the detection of
prolongation.

7.1.3 Human-machine perception of ECG data

The majority of machine vision algorithms use machine learning, and in particular
neural networks, as the basis for processing image data. Here, we take a different ap-
proach, in terms of both the data representation, and the role of human vision in the
resulting algorithm. Our starting point is ECG signal data that is presented visually
for human interpretation, and is typically analysed computationally using signal pro-
cessing methods. As a first step, the signal data is visualised with colour, such that a
human can easily draw the relevant information from it. Following this, the perceptual
process we hypothesise the human is using to interpret the data is modelled, and forms
the basis of a simple rule-based algorithm that accurately classifies whether the interval
is prolonged.
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7.2 Using pseudo-colour to support human ECG inter-
pretation

Recognizing QT-interval prolongation on the standard ECG is notoriously difficult,
even for trained medical professionals [VRS+05]. From a perceptual perspective, this
is likely to be related to the fact that humans are poor at judging quantity on a horizontal
scale [LSZ+09, WA84, Lib91, PK11]. Morphological diversity of the wave forms
and artefacts in the ECG signal serve to exacerbate this issue [ADVJ18, THTA07,
PDJVdBW08].

Our previous work—motivated by the potential benefits of self-monitoring for
drug-induced long QT syndrome—considered the problem from the perspective of the
lay person with no experience of ECG interpretation. To support this challenging target
population we used knowledge of visual perception to enhance the way the ECG is vi-
sualised. Colour is a particularly powerful way of attracting visual attention in complex
scenes, and aids visual recognition via perceptual grouping [Tre83, OS00, KRA04].
Based on this phenomenon, we produced a visualisation technique that highlights
the duration of the QT-interval on the ECG using pseudo-colouring, a salient means
of representing continuously varying values using a sequence of meaningful colours
[War12]. This shifts the visual encoding process from perceiving a distance between
two waves, to perceiving colour in terms of hue and intensity. Applying pseudo-
colouring to the ECG significantly increased the speed and accuracy of human per-
ception of QT-prolongation, at both a regular 60 beat-per-minute heart rate [ADR+19]
and at varying heart rates, with diverse T-wave morphologies [ADVJ20a].

7.2.1 Pseudo-colouring method

The first step in the application of pseudo-colouring was to detect the R-peaks on the
ECG, which identify heartbeats (see Figure 7.1). Note that it is trivial to detect the
R-peaks in the vast majority of ECGs, as they consistently have the greatest amplitude
(the amplitude of the other waves varies considerably). Pseudo-colour was then applied
as follows:

• Identifying the risk threshold for QT-prolongation: The risk threshold for
QT-prolongation changes according to heart rate. The QT-nomogram, a clinical
assessment method that shows the risk of TdP by considering QT-interval as a
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Figure 7.2: The QT-nomogram [CIKD07].

function of heart rate, was used to identify the threshold [CIKD07]. Figure 7.2
shows the QT nomogram plot. If the QT/HR pair plots on or above the risk line,
the patient is at clinically significant risk of TdP; below the line the patient is not
considered at risk. The risk threshold was calculated for each heart rate using
the nomogram risk line. The risk threshold for a given heart rate was termed
‘QT-value at risk’.

• Applying pseudo-colouring to each heartbeat: In clinical practice, the QT-
interval is measured by counting the small squares (each representing 40ms) on
the standard ECG background grid from the beginning of the Q-wave to the
end of the T-wave. The time period of interest (i.e., an approximation of the
QT-interval) was calculated for each heartbeat from the R-peak minus 20ms
(estimated as the start of the Q-wave) to the maximum potential QT-interval,
which was estimated as the QT-value at risk plus two small squares (80ms).
This formed an additional time dimension, to which the pseudo-colour could be
mapped. Pseudo-colouring was then applied periodically over each heartbeat to
the area between the isoelectric baseline (where amplitude is zero) and the ECG
signal, by mapping the relevant area of the heartbeat time to a pseudo-colouring
sequence.
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We used a spectrum-approximation pseudo-colouring sequence, where cool spec-
tral colour codes (purple to blue to green) were used to indicate normal QT-
interval ranges, and warm colours (yellow to orange to red) to show abnormal
QT-interval ranges. This produced nine indices on the pseudo-colouring scale,
where each index was mapped to a colour code and represented a small square
on the ECG, starting backwards from the nomogram line showing the QT-value
at risk plus two small squares (80ms) to six small squares (240ms) below the
nomogram line.

The QT-value at risk was mapped to dark orange. Forty ms and 80ms above this
were mapped to red and dark red respectively, to indicate higher risk. Within
each square, the intensity of the hue changed every millisecond, to show time
progression. Figure 7.3 shows an illustration explaining how the pseudo-colouring
technique was applied according to the standard ECG background grid. The
way in which colours were mapped to the time period of interest according to
the nomogram is shown in Table 7.1. Figure 7.4 shows examples of ECGs with
normal and very prolonged QT-intervals visualised using the pseudo-colouring
technique. Figures 7.5 and 7.6 show how the pseudo-colouring was adjusted ac-
cording to heart rate (based on the QT-nomogram), where the pseudo-colouring
shows the same level of risk, despite heart rate differences. The R script used to
implement the visualisation technique can be found in [AVJ20].
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Figure 7.3: Mapping the pseudo-colouring to the ECG. A small square on the grid is
equal to 40ms.

Table 7.1: The nine indices on the pseudo-colouring scale with their corresponding
time value in milliseconds (ms) and colour code.
Index Corresponding time value (ms) Color code

1 QT-value at risk - (40 × 6) Purple
2 QT-value at risk - (40 × 5) Blue
3 QT-value at risk - (40 × 4) Green
4 QT-value at risk - (40 × 3) Lime
5 QT-value at risk - (40 × 2) Yellow
6 QT-value at risk - (40 × 1) Orange

7 QT-value at risk Dark orange

8 QT-value at risk + (40 × 1) Red
9 QT-value at risk + (40 × 2) Dark red



7.2.
U

SIN
G

PSE
U

D
O

-C
O

L
O

U
R

TO
SU

PPO
R

T
H

U
M

A
N

E
C

G
IN

T
E

R
PR

E
TA

T
IO

N
203

Figure 7.4: Examples of ECGs with pseudo-colouring, showing (A) a normal QT-interval (HR = 55, QT = 361ms) and (B) a danger-
ously prolonged QT-interval (HR = 52, QT = 579ms).
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Figure 7.5: Examples of ECGs with pseudo-colouring that have the same normal QT-level, but different heart rates.
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Figure 7.6: Examples of ECGs with pseudo-colouring that have the same abnormal QT-level, but different heart rates.
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The pseudo-colouring technique was shown in an evaluation to be very effective,
enabling lay people with no prior training in ECG interpretation to detect QT prolon-
gation with 83% sensitivity, compared with 63% when pseudo-colour was not used.
For more information about the visualisation technique and its evaluation with humans
see [ADR+19] and [ADVJ20a].

7.3 Automated human-like QT-prolongation detection

Automated ECG interpretation systems have typically proved poor at detecting LQTS
[TAS+15, KBD+18, EI13, GL13, MCbA01, TABW11, RSG09]. A major challenge
for automated QT-detection algorithms is identifying the precise end of the T-wave (the
terminal point), particularly when the T-wave’s morphology is abnormal [GPAW14,
HC94, GMZ06, Mor01]. This is particularly problematic, as medications that prolong
the QT-interval often change levels of the blood’s electrolytes including potassium,
calcium, sodium, and magnesium, which can affect T-wave morphology [VJM+15].
Methadone, a drug that is infamous for prolonging the QT-interval and increasing the
risk of TdP, also causes changes in the T-wave that cause the interval to be underesti-
mated [TAS+15].

The pseudo-colouring technique was able to communicate QT-prolongation in such
a way that humans were able to accurately perceive risk of TdP, as the signal from
the colour reduces the need to identify the end of the T-wave. It thus follows that
an algorithm using the same or an equivalent process to ‘perceive’ the information
encoded in the colour should also be able to perform this task. We hypothesised that
quantifying computationally the amount of warm colour displayed in the ECG signal
could help a machine to detect LQTS, alleviating the need to measure the QT-interval
directly.
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The heuristic of quantifying area, rather than identifying the interval per se, is
effective because the T-wave generally has the largest area under the curve of the ECG
signal. The QT-interval is considered normal when the T-wave is located in the cool
colour region, and prolonged when in the warm colour region. The pseudo-colour
thus highlights the T-wave position in relation to the inter-heartbeat time dimension,
without needing to identify either the peak or end of the wave. As such, the first step
in the computational human-like algorithm is to calculate the area under the curve of
the ECG signal using the trapezoidal rule. In mathematics, the trapezoidal rule is a
method commonly used for approximating the definite integral that estimates the area
under the curve of a linear function by dividing the area into a number of strips of
equal width. That is, given a linear function f (x) of a real variable x and an interval
[a, b], the rule estimates the area under the graph of the function f (x) as a trapezoid,
calculating its area as follows:

b∫
a

f (x)dx≈ ( f (a)+ f (b))
2

(b−a) (7.1)

The raw ECG signal has an array of X and Y values, where X represents the time
of the ECG signal in milliseconds, and Y represents the amplitude of the ECG signal.
We considered [a, b] to be the interval of two successive timestamps in the X array
of the ECG signal. If we consider the time interval of x1 and x2, the trapezoidal rule
was applied by taking the average of amplitude of the ECG signal on the Y-axis of
this interval as f (x1) and f (x2), and multiplying it by the difference in time between
x1 and x2. As the time of the ECG is represented by integer numbers ranging from
1 to 10000 milliseconds for a 10-second ECG recording, the difference between any
two successive times x1 and x2 is always equal to one. Using the finest possible level
of granularity maximised the precision of the estimation. Then, the total area under
the curve was calculated for every 40ms index on the pseudo-colouring scale. Cool
spectral colours from indices 1 to 4 represented normal QT-intervals, and warm spec-
tral colours from indices 5 to 9 represented prolonged QT-intervals. The percentage of
the area under the curve was then calculated for warm and cool colours respectively.
The QT-interval was considered ‘prolonged’ by the algorithm if the proportion of warm
colours was greater than the that of cool colours; otherwise it was considered ‘normal’.
In summary, the QT-interval was considered ‘prolonged’ if the warm colours occupied
more than 50% of the area under the curve of the ECG signal. The full human-like
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algorithm is described in the pseudo-code below and the R script used to implement it
can be found in [AVJ20].

Algorithm 1 Human-like algorithm
Data: ECG signal with X and Y
Input: X is time list x[i], i = 1,2, · · · ,10000.

Y is amplitude list y[i], i = 1,2, · · · ,10000.
Result: Normal or prolonged QT-interval
// Calculate area under the curve (AUC)

i← 1
while x[i]≤ 10000 do

delta_x← x[i+1]− x[i]

AUC[i]← ((y[i]+ y[i+1])/2)(delta_x)

i← i+1
end
// Acquire the time points of the nine indices of the

pseudo-colouring scale

Pseudo-colouring scale is time list index[i], i = 1,2, · · · ,9.
for each index i in the pseudo-colouring scale do

Calculate the sum of AUCs of the 40ms interval:

Sum_index[i]← ∑
index[i+40]
index[i] AUC[i]

end
// Calculate percentage of AUC for warm colours

Sum_cool_areas← ∑
index[4]
index[1]AUC[index]

Sum_warm_areas← ∑
index[9]
index[5]AUC[index]

Total← Sum_cool_areas+Sum_warm_areas

Warm_Colours%← (Sum_warm_areas/Total)×100

// Inference rule

if Warm_Colours%≥ 50 then
QT is prolonged

else
QT is normal

end
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Table 7.2: The sensitivity, specificity and overall accuracy of the human-like algorithm
and human participants (mean values) when classifying the 40 ECGs.

Human-like algorithm Human Difference

Sensitivity 0.85 0.83 0.02

Specificity 0.95 0.90 0.05

Overall accuracy 0.90 0.86 0.04

7.3.1 Comparison with human interpretation

We evaluated the accuracy of the human-like algorithm by first comparing it with the
results of a study conducted with humans [ADVJ20a]. The ECGs (n = 40) were ac-
quired from a clinical study conducted to assess QT-interval prolongation in healthy
subjects receiving medication known to cause this issue [JVM+14]. As part of the clin-
ical study QT-intervals were calculated for all ECGs, and it is these values that were
used as ground truth for our subsequent evaluation. ECGs were selected from mul-
tiple patients (n = 17), and represented different values of the QT-interval and heart
rate, with 20 ECGs showing a normal QT-interval, and 20 ECGs showing clinically
significant QT-prolongation. The ECGs had different heart rates, with some morpho-
logical T-wave changes caused by the QT-prolonging drugs. The ECG datasets can be
found in the PhysioNet database [GAG+00], and the clinical trial study is described in
[JVM+14].

We measured the sensitivity, specificity and overall accuracy of the classification.
The sensitivity is the ability of the classifier (human/algorithm) to correctly identify
those patients with the disease, and was calculated as the proportion of correctly clas-
sified ‘prolonged’ ECGs. The specificity is the ability of the classifier to correctly
identify those patients without the disease, and was calculated as the proportion of
correctly classified ‘normal’ ECGs. The overall accuracy was calculated as the pro-
portion of correct classification of the 40 ECGs, i.e. the average of the sensitivity and
specificity. The results of the human-like algorithm were very similar to those of the
human participants, with both showing slightly higher specificity than sensitivity, and
the algorithm being slightly more accurate overall (see Table 7.2 and Figure 7.7).
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Figure 7.7: The sensitivity, specificity and overall accuracy of the human-like algo-
rithm and human participants (mean values) when classifying the 40 ECGs. The error
bars represent 95% confidence intervals.
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7.3.2 Comparison with signal processing approaches

The majority of automated QT-interval analysis algorithms are proprietary or unavail-
able, and as such formally bench-marking the performance of our algorithm is not
possible. Here, we compare it with signal processing approaches reported in the liter-
ature that have previously been applied to QT-interval measurement. The logic behind
the human-like algorithm differs considerably from that used by standard signal pro-
cessing methods, as it takes a naive perspective, calculating the percentage area of
warm colours relative to cool colours, without prior identification and detection of
the Q-wave or T-wave. By contrast, traditional signal processing approaches to ECG
interpretation are based on the precise determination of the onset and offset of the
different waves and complexes (P-wave, QRS complex, T-wave). This process is rela-
tively straightforward if the ECG signal has a normal sinus rhythm, but it quickly be-
comes challenging in the presence of anomalies, artefacts or non-standard ECG waves
[SW17].

ECG wave characteristics are also known to differ substantially across individu-
als, and are affected by factors including age, race, sex and health status [GMZ06,
MMDY94, HST+16]. At present, there are no standard definitions for the ECG waves
[Wil80, Par85, SW17]. As a result, differences in signal processing measurements
persist. In addition to the challenge of correctly recognising the different ECG waves,
accurate measurements of intervals (PR, QRS, QT) are particularly difficult to make,
and thus the methods of determining onset and offset of waves vary among algorithms.

We implemented two common signal processing algorithms that use different meth-
ods to identify the end of the T-wave. The first algorithm, proposed by Hermans et al.
(2017), uses an automated tangent method to identify the point of the maximum T-
wave down-slope as the end of the T-wave [HVB+17]. The second algorithm uses the
15% threshold method which determines the end of the T-wave as the point in time
when the ECG signal crosses the threshold at 15% of the amplitude of the T-wave peak
[Hun05]. In both cases, the Q-wave onset was determined using the same method as
the visualisation technique, which is the time of the R-peak - 20ms.
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We compared the sensitivity, specificity and overall accuracy of the two signal
processing methods with the human-like algorithm using the same 40 ECGs tested in
the human interpretation study [ADVJ20a]. The signal processing methods measured
the QT-interval of the ECGs as numbers and calculated the heart rate. As the pseudo-
colouring technique was adjusted according to the nomogram to detect normal and
prolonged QT-intervals across different heart rates, the signal processing methods were
implemented to classify the QT-interval as ‘normal’ if the calculated QT/HR plot was
below the nomogram line, and otherwise as ‘prolonged’.

Table 7.4 shows the 40 ECGs ordered by QT-level from low-risk (1-3) to high-risk
(4-6). The results show that both signal processing methods significantly underesti-
mate the QT-interval, with most ECGs with a prolonged QT-interval being classified
as ‘normal’ based on the nomogram (see Figure 7.8 and Table 7.3). The mean dif-
ference in milliseconds between the actual QT values and the calculated QT values
were 61ms and 62ms for the automated tangent method and 15% threshold method
respectively. The accuracy of the human-like algorithm was considerably better, due
to its dramatically higher sensitivity, as shown in Figure 7.8. Table 7.4 illustrates how,
as the QT-level relative to the nomogram increased, the percentage of warm colours
calculated by the human-like algorithm also increased.
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Figure 7.8: The sensitivity, specificity and overall accuracy of the human-like algo-
rithm and two signal processing algorithms when classifying the 40 ECGs. The error
bars represent 95% confidence intervals.

Table 7.3: The sensitivity, specificity and overall accuracy of the human-like algorithm
and the two signal processing algorithms when classifying the 40 ECGs.

Human-like algorithm Automated tangent 15% threshold
algorithm algorithm

Sensitivity 0.85 0.10 0.10

Specificity 0.95 1.00 1.00

Overall accuracy 0.90 0.55 0.55
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Table 7.4: The 40 ECGs with, from left to right, the actual values as measured in
the clinical study of the QT-interval in milliseconds, the heart rate (HR) in beats per
minute, the QT-level at risk, the calculated QT values in milliseconds of the two signal
processing methods, and the percentage of warm colours calculated by the human-like
algorithm.

ECG QT HR QT-level Automated tangent 15% threshold Human-like algorithm
algorithm (QT) algorithm (QT) (warm colours%)

1 370 48 1 324 338 14%
2 361 55 1 319 332 1%
3 350 68 1 437 309 2%
4 343 72 1 417 306 5%
5 329 83 1 361 287 1%
6 335 90 1 332 290 20%
7 401 57 2 344 359 12%
8 389 75 2 306 324 19%
9 339 95 2 317 286 11%

10 419 47 2 354 367 28%
11 396 68 2 330 317 3%
12 355 82 2 364 327 2%
13 445 46 3 384 401 21%
14 441 67 3 378 390 49%
15 431 75 3 360 372 42%
16 417 80 3 343 367 32%
17 371 94 3 320 309 57%
18 444 58 3 390 403 29%
19 424 76 3 325 346 26%
20 363 95 3 315 310 39%

21 487 46 4 454 460 38%
22 468 72 4 417 409 69%
23 451 79 4 358 374 50%
24 445 81 4 367 396 54%
25 486 54 4 419 435 61%
26 485 64 4 405 422 48%
27 419 91 4 316 349 71%
28 410 94 4 312 326 74%
29 523 42 5 432 452 57%
30 494 71 5 427 403 69%
31 470 85 5 353 421 63%
32 518 54 5 413 431 48%
33 482 80 5 378 398 55%
34 417 96 5 310 344 51%
35 507 79 6 377 251 62%
36 565 49 6 478 528 65%
37 579 52 6 477 548 65%
38 547 64 6 451 448 68%
39 509 68 6 435 414 79%
40 518 77 6 388 405 87%
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7.4 Human-machine perception: differences, benefits
and opportunities

Perception, broadly speaking, involves two forms of processing: bottom-up process-
ing, which is driven by incoming stimuli, and uses perceptual organisation to form a
representation of an object; and top-down processing, which uses contextual informa-
tion to aid the perception of patterns [EY97, CEY04, FAGB06]. ECG interpretation is
thought to be dependent primarily on top-down processing [WBA+14, SW17]. From
a human perspective, the visualisation technique described here works by harnessing
bottom-up processing, drawing visual attention to the critical information contained
within the ECG signal. Using a simple model of this process, the human-like algo-
rithm was able not only to match human performance, but to exceed it. It is interesting
to note that specificity was slightly higher for both the human participants and the al-
gorithm. Whilst we cannot be sure that humans were internally employing a version of
the algorithm to make decisions, this indicates that similar processes may be at work.

The shared representation of the data, and the shared model of how to interpret
it, are important when considering the real world application of this approach. At
present, clinicians do not regard automated ECG interpretation as reliable. In broader
terms, the public also have concerns about the use of algorithms for medical decision
support. A survey carried out for the Wellcome Trust highlighted transparency as an
important factor in automation [FSB18]. A human can, in theory, explain an error,
and it is therefore possible to establish negligence or malicious intent, an important
consideration for the respondents. The majority of those surveyed also stated they
would not like machines to suggest treatments or answer medical questions. This sits
in contrast to the proposed digitisation of healthcare, which includes the potential use
of AI and robotics in healthcare delivery [Top19b]. To achieve a shift in people’s atti-
tudes towards this technology, a number of challenges need to be addressed, including
improved data protection and privacy standards, fairness (guarding against bias) and
transparency in how technology works and decisions are made [VBC18]. Whilst we
have not evaluated trust in the algorithm described here, we hypothesise that its in-
herent transparency will be of benefit in this regard. Its explainability goes beyond
that offered by many rule-based algorithms, which are theoretically explainable, but
may nevertheless be extremely complex and difficult for humans to understand. The
human-like algorithm uses a representation of the data that matches that used by the
person making the decision. We suggest that this operates not just at a conscious level,



216 CHAPTER 7. HUMAN-MACHINE PERCEPTION OF ECG DATA

using deliberate ‘system 2’ processes, but also at a sub-conscious, perceptual level, and
is thus able to engage fast ‘system 1’ processes, such that people can understand the
data quickly and relatively effortlessly [Kah11].

7.5 Future work

Biologically-inspired algorithms such as deep Convolutional Neural Networks (CNN),
are now capable of image classification on a par with adult human capabilities [ZF19].
Whilst they have achieved impressive practical successes across a number of appli-
cation domains including medicine, deep learning models must be trained on large
datasets, and the way they represent and use data internally is often unclear [HBPK17].
They also exhibit weaknesses, as demonstrated by adversarial learning, a field of study
that evaluates the safe use of machine learning techniques in adversarial settings such
as spam filtering, cybersecurity, and biometric recognition, by attempting to fool the
models through malicious input [LM05]. An example of this is provided by Good-
fellow et al. (2015), who took an image of a panda that was that used in an image
classification task and introduced a small perturbation to the image data [GSS15].
This changed the algorithm’s classification from 57.7% confidence the image showed
a panda, to 99.3% confidence that the image showed a gibbon [GSS15]. To a human
observer, the image still clearly resembles that of a panda, but to a machine, the small
change was catastrophic. Further exploration of human information processing may
be the key to addressing these challenges.

Human visual perception is described as the construction of efficient representa-
tion formalisms of visual information [Can13]. The challenges of visual perception
have drawn the curiosity of computer scientists for many years, particularly in terms of
understanding representation formalisms that may be effective in machine perception
and artificial intelligence [OPN08]. Human representation formalisms used in artifi-
cial intelligence include relational representations based on networks, graphs or frame
schemes, propositional representations that use linguistics based on first order pred-
icate logic, and procedural representations, also known as pattern-directed schemes
[Can13]. A promising direction is using these representations to mimic the sophis-
ticated and flexible perceptual capabilities of human perception to organise informa-
tion in a preprocessing step. Merging deep learning models with symbolic procedural

representations based on perceptual schemes has the potential to advance AI systems
[TCX+17]. A good example of the potential of this approach is provided by Stettler et
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al. (2018), who demonstrated that mimicking the process involved in perceiving visual
obstruction can improve the performance of a CNN in a letter recognition task [SF18].

The human-like algorithm developed here also has the potential to aid CNN de-
sign. For example, using pseudo-colouring to improve information segmentation in a
pre-processing step, may help to improve a CNN’s accuracy in classifying ECGs with
LQTS. Figures 7.9 and 7.10 show two ECGs, one with a normal and one with a pro-
longed QT-interval respectively. Below each ECG are the results of using an image
pre-processing method, available online [Ana20], for detecting orange to red colours
using RGB (red, green, blue) colour space and then masking the ECG image to show
only the parts containing the warm colours. The information that is salient to a human
can thus be prioritised as input to the CNN, reducing the search space.

The field of human perception has long been a great source of inspiration for devel-
oping and improving machine perception. A motivation for our approach was not only
improving the accuracy of ECG interpretation, but also producing data representations
that can be used to provide a transparent, understandable and explainable interpreta-
tion that keeps the human in the loop. Further exploration of the potential that human
perceptual processes have for informing machine interpretation is a promising avenue
for future research.
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Figure 7.9: Examples of two ECGs and corresponding images pre-processed to display orange to red pixels, showing an ECG with a
normal QT-interval.
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Figure 7.10: Examples of two ECGs and corresponding images pre-processed to display orange to red pixels, showing an ECG with
a prolonged QT-interval.



Chapter 8

An Explainable Algorithm for
Detecting Drug-Induced
QT-Prolongation at Risk of Torsades
de Pointes (TdP) Regardless of Heart
Rate and T-Wave Morphology

8.0 Chapter overview

8.0.1 Thesis context

Drug-induced QT-prolongation is known to invalidate automated QT-interval measure-
ment algorithms due to the substantial changes it causes to T-wave morphology and
heart rate, thus causing underestimation of the risk of TdP [TAS+15, CMY08] (dis-
cussed in Chapter 1 as the fifth research challenge). This chapter therefore introduces
a study that extends the development of the ‘human-like’ algorithm reported in Chapter
7 and evaluates its effectiveness in determining drug-induced QT-prolongation at risk
of TdP regardless of heart rate and T-wave morphology across a wide range of ECG
cases. It empirically compares two approaches to building the enhanced algorithm: a
manually-curated ‘expert’ algorithm that incorporates knowledge from the clinical lit-
erature; and a decision tree, which automates the generation of the rules from the data.
The study also reports the results of two focus groups—one consisting of patients, the
other of clinicians—which explored the relevance of our approach to clinical practice.

220
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The results show that combining the ‘human-like’ perceptual heuristics provided
by the pseudo-colour that serve as a proxy QT-interval length with additional clin-
ical knowledge about T-wave morphology significantly improves machine detection
of drug-induced QT-prolongation at risk of TdP regardless of heart rate and T-wave
morphology (sensitivity = 0.94 and specificity = 0.99, when tested on 5050 ECGs).
The study also shows that whilst the decision tree is highly accurate when tested using
cross-validation, it performs less well on unseen data than the ‘expert’ algorithm, due
to the generation of spurious rules that lack clinical validity. We conclude that the ‘ex-
pert’ algorithm significantly improves the detection of drug-induced QT-prolongation
at risk of TdP, and hypothesise that a human-like approach to the development of diag-
nostic algorithms—incorporating both human pattern recognition ability and clinical
expertise—may have much wider utility. These findings underpin several directions
for future work, which are discussed in detail in Chapter 9.

The content of this chapter is adapted from: Alaa Alahmadi, Alan Davies, Jennifer
Royle, Leanna Goodwin, Katharine Cresswell, Zahra Arain, Markel Vigo, and Caro-
line Jay. An explainable algorithm for detecting drug-induced QT-prolongation at risk
of torsades de pointes (TdP) regardless of heart rate and T-wave morphology. Comput-

ers in Biology and Medicine, 2021.

8.0.2 Author’s contributions

Alaa Alahmadi and Caroline Jay conceptualised and devised the idea for the work.
Alaa Alahmadi developed and evaluated the algorithm, carried out the ECG data ac-
quisition, designed and analysed the study and wrote the paper, with Alan Davies,
Markel Vigo and Caroline Jay contributing significant edits. Caroline Jay assisted with
study design and drew out the theoretical contribution. Alan Davies acted as the elec-
trocardiogram domain expert throughout. Jennifer Royle, Leanna Goodwin, Katharine
Cresswell and Zahra Arain coordinated and organised the focus group events.
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8.0.3 Published abstract

Torsade de points (TdP), a life-threatening arrhythmia that can increase the risk of
sudden cardiac death, is associated with drug-induced QT-interval prolongation on
the electrocardiogram (ECG). While many modern ECG machines provide automated
measurements of the QT-interval, these automated QT values are usually correct only
for a noise-free normal sinus rhythm, in which the T-wave morphology is well defined.
As QT-prolonging drugs often affect the morphology of the T-wave, automated QT
measurements taken under these circumstances are easily invalidated. An additional
challenge is that the QT-value at risk of TdP varies with heart rate, with the slower the
heart rate, the greater the risk of TdP.

This paper presents an explainable algorithm that uses an understanding of hu-
man visual perception and expert ECG interpretation to automate the detection of
QT-prolongation at risk of TdP regardless of heart rate and T-wave morphology. It
was tested on a large number of ECGs (n = 5050) with variable QT-intervals at vary-
ing heart rates, acquired from a clinical trial that assessed the effect of four known
QT-prolonging drugs versus placebo on healthy subjects. The algorithm yielded a bal-
anced accuracy of 0.97, sensitivity of 0.94, specificity of 0.99, F1-score of 0.88, ROC
(AUC) of 0.98, precision-recall (AUC) of 0.88, and Matthews correlation coefficient
(MCC) of 0.88.

The results indicate that a prolonged ventricular repolarisation area can be a signif-
icant risk predictor of TdP, and detection of this is potentially easier and more reliable
to automate than measuring the QT-interval distance directly. The proposed algorithm
can be visualised using pseudo-colour on the ECG trace, thus intuitively ‘explaining’
how its decision was made, which results of a focus group show may help people to
self-monitor QT-prolongation, as well as ensuring clinicians can validate its results.
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Graphical abstract

Figure 8.1: Graphical abstract of the ‘expert’ algorithm.
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Highlights

• We develop an explainable algorithm to detect drug-induced QT-prolongation at
risk of torsades de pointes (TdP) regardless of heart rate and robust to T-wave
morphology changes using a ‘human-like’ approach, where human perception of
the ECG signal is used to determine features, and diagnostic rules are determined
according to the clinical literature.

• Testing the algorithm on a large number of ECGs (n = 5050) with variable QT-
intervals at varying heart rates yields a Matthews correlation coefficient (MCC),
balanced accuracy, sensitivity and specificity of 0.88, 0.97, 0.94, 0.99 respec-
tively.

• We explore whether we can improve the algorithm by automating the rule-generation
with a decision tree. We find that we can, but the rule-based decision tree algo-
rithm overfits and generalises less well than the ‘expert’ evidence-based rule
algorithm, and that whilst the decision tree rule algorithm is technically explain-
able, it is not clinically explainable.

• A focus group evaluation confirms the explainability of the algorithm is impor-
tant, supporting an ‘expert’ rule-based approach, rather than a fully automated
approach.

• Defining features according to human interpretation heuristics provides a promis-
ing route to automating ECG interpretation, and has the benefit of being explain-
able to patients and clinicians. Automating rule generation based on these fea-
tures has potential, but here it is not sufficient to produce a reliable, trustable
algorithm. A human-in-the-loop approach, where machine learning is a tool
used to surface potential rules, but these are validated empirically before being
implemented, may be the best approach to use in clinical practice.
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8.1 Introduction

This paper provides a new perspective on the challenging topic of electrocardiogram
(ECG) interpretation. ECGs, which represent the electrical activity of the human
heart, are powerful and widely used diagnostic instruments. The data they contain
is rich and extremely complex, however, and learning how to accurately interpret
them can take many years. Automated systems can identify a normal sinus rhythm
with reasonable accuracy, but are much poorer at reliably detecting abnormalities
[SW17, EI13, RSG09]. A clinically significant cardiac abnormality that automated
methods have been shown to be particularly unreliable at detecting is QT-interval pro-
longation [TAS+15, KBD+18, EI13, GL13, TABW11, RSG09]. This can be congen-
ital, or acquired, resulting from the clinical administration of certain pharmacological
drugs, and is associated with a life-threatening arrhythmia known as Torsade de Pointes
(TdP) [YC03, CMY08].

In this work, we combine knowledge of human perception with clinical expertise to
develop an automated algorithm that can reliably detect patients with QT-prolongation
at risk of Torsade de Points (TdP). We take as our starting point a visualisation tech-
nique that displays the ECG signal such that a lay person can detect QT-interval pro-
longation quickly and accurately (Section 8.2.2). The information encoded in the vi-
sualisation is mapped to a set of features, which form the basis of two interpretation
algorithms: an ‘expert’ set of rules, which are formed according to clinical practice
(Section 8.3.2); and a decision tree, which automates the generation of rules from the
same set of features (Section 8.4.3). Whilst the decision tree appears more accurate
when trained and tested with cross-validation, the expert algorithm is more accurate
when tested on unseen data.

8.2 Background and significance

8.2.1 Identifying patients at risk of TdP

Torsades de pointes (TdP), or ‘twisting of the points’, was a term first used in 1966
by Francois Dessertenne to describe a form of polymorphic ventricular tachycardia,
in which the continuously changing polarity and amplitude of the QRS complexes
appear to twist around the isoelectric line of the electrocardiogram (ECG) [Des66]. It
is a potentially lethal arrhythmia that can degenerate into ventricular fibrillation, the
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leading cause of sudden cardiac death in young individuals with structurally normal
hearts [YC03, MK05, ESTB20, WS20]. It is often precipitated by triggers such as
emotional stress or exercise, especially swimming [BSW14, VTVAV15]. Since the
time of its original description by Dessertenne, it has been well-established that TdP
is frequently associated with QT-interval prolongation on the ECG, and is caused by
a cardiac ion channelopathy known as ‘long QT syndrome’ (LQTS) [Des66, YC03,
ESTB20, WS20].

Whilst TdP can result from both congenital and acquired long QT syndrome, ac-
quired LQTS caused by pharmacological drugs is by far the most common cause of
TdP [YC03, CMY08, ESTB20, WS20]. A steadily increasing number of medications
have been reported to cause drug-induced QT-prolongation, TdP and sudden cardiac
death [Kha02, CMY08, ESTB20]. This, in turn, has troubled clinicians, the pharma-
ceutical industry and regulatory authorities, particularly because many of these QT-
prolonging drugs, including antihistamines, psychotropics, antibiotics and antiarrhyth-
mic agents, are widely prescribed, often for self-limited diseases [YC03, WS20].

The QT-interval represents the duration of the ventricular depolarisation and repo-
larisation cycle; it is measured on the ECG from the beginning of the QRS complex
(reflecting ventricular depolarisation) to the end of the T-wave (representing subse-
quent repolarisation) [GMZ06]. In LQTS, a delay occurs in ventricular repolarisation,
which increases the risk of premature ventricular contraction (PVC) occurring dur-
ing the relative refractory period of repolarisation, reflected on the ECG by a unique
pattern known as the R-on-T phenomenon that initiates TdP [YC03, AAKR+02] (see
Figure 8.2). Dividing the ventricular repolarisation period into early and late repo-
larisation, shown on the ECG as the J–T peak and T peak-T end intervals respectively
(Figure 8.2), is recommended for assessing the risk of drug-induced TdP; many TdP
episodes are reported following a prolonged T peak-T end interval in particular [CZSZ08,
JVM+14, KGS+12, BSR+16].
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Figure 8.2: An illustration of drug-induced QT-interval prolongation and the R-on-T phenomenon that initiates torsades de pointes
(TdP) arrhythmia on the electrocardiogram (ECG).
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Measuring the QT-interval, however, is known to be a challenging task [MS99,
Mor01, GPAW14, CMY08], making drug-induced QT-prolongation detection difficult,
even for clinicians who routinely read ECGs [VRS+05, STN08]. Whilst it is relatively
easy to determine the beginning of the QRS complex (or RS complex if there is no
Q-wave), identifying the end of the T-wave is recognized as being the most difficult
aspect of measuring the QT-interval [CMY08, GPAW14, GMZ06, Mor01]. Numerous
methods have been proposed [MCM96, MCM95b, KGK+96, GMZ06, PDJVdBW08,
PKN+09, SKP+11, IP13, GPAW14], among which the tangent method is the most
popular [PDJVdBW08], but all techniques have been shown to be associated with
potential inaccuracies [CMY08, Mor01]. A major challenge lies in the fact that the
morphology (shape) of the T-wave itself can be very variable, and QT-prolonging
drugs may cause abnormal changes in it [KGK+96, Mor01, CMY08, VJM+15]. Vari-
ability in T-wave amplitude [MCM95a], a prolonged, flat T-wave, and fused T-U
waves (also known as T-U complexes) can easily invalidate QT-interval measurement
[CMY08, IRHH98, KNK+10, KGK+96]. This issue complicates both manual and
automated QT-interval measurement, and the best method to use remains a subject of
debate [CMY08, KOO+11, SW17]. At present, despite numerous efforts [KOO+11,
PKN+09, HVB+17, Hun05, MCM95b, MCM96], no automated QT-interval measure-
ment method is considered reliable enough to be used in the clinical assessment of the
cardiac safety of a QT-prolonging drug [CMY08, SW17, TAS+15, KBD+18, EI13,
GL13, MCbA01, TABW11, RSG09].

Automated methods in the literature fall into two categories according to how
the end of the T-wave is defined: threshold-based methods and slope-based methods
[PKN+09, MCM96, MCM95b, CMY08]. Threshold-based methods identify the end
of the T-wave based on threshold levels, defined as a fraction ranging from 5% to
15% of the amplitude or differential of the T-wave [Hun05, CMY08]. In slope-based
methods, the end of the T-wave is defined as the interception of the maximum T-wave
slope with the isoelectric line [Hun05, CMY08]. As the steepest part of the descending
portion of the T-wave is affected by T-wave morphology, different methods have been
proposed to identify the maximum T-wave slope, including the tangent method, peak
slope method, and least-square fitting method [MCM96, MCM95b, Hun05, CMY08,
WLX+16]. Generally, slope-based methods provide a better estimation of the QT-
interval than threshold-based methods, as the results of the latter vary according to the
threshold level and the T-wave morphology [XR98, CMY08, HVB+17]. However, the
accuracy of slope-based methods can be significantly reduced when the T-wave has a
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slow-moving deflection that fails to return to the ECG baseline, making the steepest
slope hard to define [CMY08]. In addition, these methods depend on an accurate iden-
tification of the isoelectric line, which is known to be influenced by noise and ECG
baseline wander (a type of artifact) [SW17, CMY08]. Bizarre automated QT measure-
ments are also sometimes reported, even for normal, noise-free ECGs [CMY08].

Assessing the risk of drug-induced TdP also benefits from consideration of the
ventricular repolarisation morphology more generally [TRR+07, HES92]. Augmented
U-waves, or partial/complete T-U wave fusion, where the T and U waves cannot be
distinguished, are significant risk predictors of TdP [KNK+10, KFBW09]. In most
cases, this is shown to be, in fact, a prolonged biphasic, or notched T-wave [YA98,
VJM+15]. For certain T-U morphologies commonly reported in drug-induced long
QT syndrome, measuring the QT-interval as a simple time period may lack diagnostic
validity, and the presence of prolonged fused T-U waves should be viewed as a more
accurate predictor of TdP [CMY08, HES92].

8.2.2 A human-like approach to automated ECG interpretation

We have shown in previous work that superimposing pseudo-colouring, a technique
that represents continuously varying values using a sequence of colours [War12], on
the ECG significantly improves people’s ability to detect QT-prolongation at risk of
TdP, regardless of heart rate [ADVJ20a]. Our technique draws from the field of pre-
attentive processing theory in human vision, which outlines a set of visual proper-
ties including colour that can be detected rapidly and accurately by the human eye
[War21, HBE96, HBE95]. This form of data presentation helps to overcome the prob-
lem of identifying the end of the T-wave, directing the observer instead to inspect
repolarisation morphology. The technique was designed to support ‘intuitive’ visual
perception of drug-induced LQTS, both for patients on a QT-prolonging drug, and
clinicians with less training in ECG interpretation. The technique colours the area un-
der the curve of the ECG signal within the ventricular repolarisation period relative to
the R-peak, with a gradient of cool colours (purple to blue to green) indicating nor-
mal QT-interval ranges, and warm colours (yellow to orange to red) showing abnormal
QT-interval ranges. As the ventricular repolarisation period is represented by the T-
wave on the ECG [CMY08], the pseudo-colour highlights its position in relation to the
inter-heartbeat time dimension, without needing to identify either the peak or end of
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the T-wave. The pseudo-colouring was adjusted for heart rate using the ‘QT nomo-
gram’, which is a risk assessment method designed specifically for identifying patients
at risk of drug-induced TdP according to heart rate [FWM+05, CIKD07]. Figure 8.3
shows examples of ECGs with pseudo-colouring that have different heart rates, but
similar levels of TdP risk according to QT-interval; the dashed lines represent the QT
nomogram line value at risk of TdP for a given heart rate. More details about the
pseudo-colouring technique and its evaluation can be found in [ADR+19, ADVJ20a].

Here, we exploit an understanding of how humans use pseudo-colouring to de-
termine QT-interval length to inform a new approach to the automated detection of
QT-prolongation. We term this approach human-like, as the knowledge representation
and reasoning processes used within the algorithm are inspired by the way in which
humans interpret ECGs.

Long QT syndrome refers to a prolongation of the ventricular repolarisation pe-
riod, represented by the T-wave on the ECG [CMY08]. Although the interval of in-
terest starts at the Q-wave, it is the prolongation of the T-wave in particular that is the
ECG marker for LQTS, rather than the QRS complex that represents the ventricular
depolarisation period [CMY08]. As the T-wave generally has the largest area under the
curve (AUC) of the ECG signal, the pseudo-colouring provides a way to approximate
QT prolongation, alleviating the need to measure the QT-interval distance precisely.

Although using AUC to assess the risk of drug-induced LQTS has yet to appear
in the automated ECG interpretation literature, it has been theoretically suggested by
Bonate et al. (1999), who proposed a univariate summary measure that calculated the
total area under the QT interval for both the ECG baseline and the post-dose ECG
[BR99]. However, this method still required identification of the beginning of the Q-
wave and the end of the T-wave to locate the QT-interval for comparison, and lacked
clarity on whether both positive and negative values from the ECG isoelectric line be
used in the calculation, or only positive values.

Our proposed algorithm avoids the necessity of locating the start and end of the
QT-interval by considering the AUC in reference to the easily detectable R-peak, as
described in Section 8.3.2. In a pilot study, we took the ECG signal with superim-
posed pseudo-colour as a starting point, and calculated the AUC for each colour in the
sequence using the trapezoidal rule [ADD+21]. The QT-interval was considered ‘pro-
longed’ if the warm pseudo-colours (yellow to orange to red) occupied more than 50%
of the AUC of the ECG signal, i.e. when the T-wave contained more warm than cool
colours; otherwise it was considered ‘normal’. When tested on a clinical dataset of 40
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Figure 8.3: Pseudo-coloured ECGs that have different heart rates, but similar QT-
interval TdP risk levels. The dashed lines represent the QT nomogram line value at
risk of TdP. (A) QT-intervals are below the nomogram line by 120ms for both ECGs
(no risk of TdP). The top stimulus has a low heart rate (HR = 55, QT = 361) and the
bottom has a high heart rate (HR = 83, QT = 329). (B) QT-intervals are above the
nomogram line in both ECGs (risk of TdP). The top stimulus has a low heart rate (HR
= 52, QT = 579) and the bottom has a high heart rate (HR = 85, QT = 470).
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Figure 8.4: A pseudo-coloured ECG that has wide T-waves with prolonged J–T peak

and T peak-T end intervals but only 28.67% warm colours. The dashed lines represent
the QT nomogram line value at risk of TdP.

ECGs, the algorithm was more accurate in detecting QT-prolongation at risk of TdP
than current signal processing techniques, including threshold-based and slope-based
QT-interval measurement methods. However, this pilot version of the algorithm has
two significant limitations. Firstly, as it relies on the ratio of warm to cool pseudo-
colour under the T-wave, it may inaccurately classify the QT-interval as normal where
drugs prolong both early and late ventricular repolarisation, shown on the ECG as
prolonged J–T peak and T peak-T end intervals, or when a patient has an electrolyte ab-
normality such as hypercalcemia alongside QT-prolongation. In these cases, the width
of the T-wave may increase, and thus contain proportionally more cool colours than
warm. Figure 8.4 shows an example of this issue, where the pseudo-coloured ECG
has wide T-waves with clinically prolonged J–T peak and T peak-T end intervals, and the
percentage of warm colours area is therefore only 28.67%—considerably below the
50% threshold required for a ‘prolonged’ result from the algorithm. Secondly, calcu-
lating the AUC alone, without inspecting the shape of the curve, makes it difficult to
distinguish between T and U waves, particularly where there are significant T-wave
morphology changes.

In this paper, we combine the information about QT-interval length provided by
the pseudo-colour with additional knowledge about T-wave morphology to generate a
set of visual features that form the basis of an automated algorithm that can determine
risk of TdP across a wide range of cases. We empirically compare two approaches to
building the algorithm: a manually-curated ‘expert’ algorithm that incorporates knowl-
edge from the clinical literature; and a decision tree, which automates the generation
of the rules from the data. In addition, we report the results of two focus groups—one
consisting of patients, the other of clinicians—which explored the relevance of our
approach to clinical practice.
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8.3 Materials and methods

In this section, we provide a detailed description of how the algorithm was developed
in 8.3.2 and explain the evaluation process in 8.3.3. The source code for the algorithm
can be found in [ADVJ21].

8.3.1 ECG data acquisition

The ECG datasets (n = 5050) were acquired from a clinical trial that assessed the ef-
fect of four known QT-prolonging drugs versus placebo on healthy subjects [JVM+14].
The 10-second lead-II recording was selected from each 12-lead ECG, as this is typi-
cally used to measure the QT-interval [CMY08]. The heart rates of the ECGs ranged
from 40 to 96 beats per minute (bpm), and the QT-interval values ranged from 300 to
579 ms. The ECGs were from 22 subjects who received a single dose of a pure hERG
potassium channel blocker (‘Dofetilide’), and three drugs that block hERG and either
calcium or late sodium currents (‘Quinidine’, ‘Ranolazine’, and ‘Verapamil’), during
a placebo-controlled cross-over trial.

As part of the clinical study methodology, QT-intervals and heart rates were cal-
culated for all ECGs, and it is these QT/HR values that were used as ground truth for
our subsequent evaluation of the algorithm. According to the QT/HR pair plots of
all ECGs on the nomogram [CIKD07], 180 ECGs were on or above the nomogram
line, showing risk of TdP, while the other ECGs (n = 4870) were below the nomogram
line, as shown in Figure 8.5. The open ECG datasets are available online from the
PhysioNet database [GAG+00].

8.3.2 Algorithm development

Pseudo-colouring application

The R-peaks in the ECG signal were detected using an automated math function that
finds the greatest peaks (maxima), according to regular pattern in the signal [Bor15].
The average RR-interval and heart rate were calculated. The TdP risk threshold was
calculated for each heart rate using the nomogram line [CIKD07].

In clinical practice, the QT-interval is measured by counting the small squares (each
representing 40 ms) on the standard ECG background grid from the beginning of the
Q-wave to the end of the T-wave [CMY08]. An approximate time for the ventricular
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Figure 8.5: Assessment of the TdP risk for all ECGs (n = 5050) using the QT-
nomogram. According to the acquired QT/HR pair values from the clinical trial study:
(A) A total of 180 ECGs were on or above the nomogram line, showing risk of TdP.
(B) The other ECGs (n = 4870) were below the nomogram line, showing no risk of
TdP.

depolarisation and repolarisation cycle was calculated for each heartbeat from the R-
peak minus 20 ms (which served as a proxy for the beginning of the Q-wave) to the
maximum potential QT-prolongation at risk of TdP, which was estimated as the QT-
nomogram line value at risk of TdP plus two small squares (80 ms). This formed an ad-
ditional inter-heartbeat time dimension, to which the pseudo-colour could be mapped.

As the time period of interest is the duration of ventricular repolarisation, the
pseudo-colouring sequence was applied to the area between the isoelectric line (where
amplitude is zero) and the ECG signal, starting at the time of the QT-nomogram line
value at risk of TdP plus two small squares (80 ms) to six small squares (240 ms) be-
low the nomogram line. The time of the QT-nomogram line value at risk of TdP was
mapped to dark orange, and values 40 ms and 80 ms above the nomogram line were
mapped to red and dark red respectively, showing the higher risk of TdP. Time values
below the nomogram line were mapped to progressively cooler colours, showing no
risk of TdP. This resulted in nine indices on the pseudo-colouring scale, where each
index was mapped to a colour code and represented a small square on the ECG. Fig-
ure 8.6 illustrates how the pseudo-colouring technique was applied according to the
QT nomogram line and the standard ECG background grid.
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Figure 8.6: An illustration of how the pseudo-colouring technique was applied accord-
ing to the QT nomogram line and the standard ECG background grid. A small square
on the grid is equal to 40 ms.
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Calculating the pseudo-coloured area under the curve (AUC) of the ECG signal

The pseudo-coloured area under the curve (AUC) of the ECG signal was calculated
using the trapezoidal rule. In mathematics, and more specifically in integral calculus,
the trapezoidal rule is a common method for approximating the area under the curve
of a linear function, which works by dividing it into a number of intervals of equal
width [Y+02]. That is, given a linear function f (x) of a real variable x and an interval
[a, b], the rule estimates the area under the graph of the function f (x) as a trapezoid,
calculating its area as follows:

b∫
a

f (x)dx≈ ( f (a)+ f (b))
2

(b−a) (8.1)

The time dimension of the raw ECG signal is represented by integer numbers rang-
ing from 1 to 10000 milliseconds for a 10-second ECG recording. To maximise the
precision of the calculation, we considered [a, b] to be the interval of two successive
timestamps in the ECG signal, where the difference between them is equal to one mil-
lisecond. If we consider the ECG time interval of x1 and x2, the trapezoidal rule was
applied by taking the average amplitude of the ECG signal on the Y-axis of this inter-
val as f (x1) and f (x2), and multiplying it by the difference in time between x1 and x2,
which is always equal to one. The trapezoidal rule was thus applied to each one mil-
lisecond subinterval, and the results were then summed for every 40 ms colour index
on the pseudo-colouring scale to produce a total AUC value for each small square on
the standard ECG background grid. The negative area below the ECG baseline was
treated in the same way as the positive area, as the baseline is not usually fixed, and in
some abnormal cases the T-wave can be negative in Lead-II, a condition known as ‘T
wave inversion’. As such, the absolute AUC was calculated.

As a spectrum-approximation pseudo-colouring sequence was used, the indices
from 1 to 4 (purple, blue, green, lime) were considered to be cool spectral colours,
while the indices from 5 to 9 (yellow, orange, dark orange, red, dark red) were consid-
ered warm spectral colours. By plotting the calculated AUC as a function of pseudo-
colouring sequence, we obtain a global representation of the pseudo-coloured repolar-
isation morphology across the whole 10-second ECG signal. Figures 8.7 and 8.8 show
examples of pseudo-coloured ECGs with normal (no risk of TdP) and prolonged (at
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risk of TdP) QT-intervals, and their global representation plot, showing an approxima-
tion of the total pseudo-coloured AUC.

Figure 8.7: Pseudo-coloured ECGs with normal QT-intervals (no risk of TdP), and
their global representation graph, showing the calculated ∑AUC for each pseudo-
colour across the whole ECG signal. (A) The ECG has a low heart rate (HR = 55,
QT = 361), and displays a greater area of cool pseudo-colours. It also has a negative
small red area below the EGC baseline, which was included in the AUC calculation.
(B) The ECG has a high heart rate (HR = 83, QT = 329), with a cool pseudo-coloured
T-wave and warm pseudo-coloured U-wave.

Locating intervals of concavity and inflection points

As T-wave morphology can change substantially and other ECG waves may present
during ventricular repolarisation, including an augmented U-wave, a simple compar-
ison of the relative amounts of cool to warm pseudo-colour in the AUC may not be
sufficient for recognising a prolonged QT-interval. We therefore also consider the T-
wave morphology by inspecting the shape of the ECG signal curve.

In differential calculus, the second derivative f ′′(x) of a linear function f (x) is
the derivative of the derivative of f (x), i.e. the derivative of the first derivative f ′(x).
While the first derivative measures the rate of change of a quantity, e.g. the slope or
gradient of a line that is tangential to the f (x) curve at a particular point, the second
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H

Figure 8.8: Pseudo-coloured ECGs with prolonged QT-intervals (at risk of TdP), and
their global representation graph, showing the calculated ∑AUC for each pseudo-
colour across the whole ECG signal. (A) The ECG has a low heart rate (HR = 52,
QT = 579), and displays a greater area of warm pseudo-colours. (B) The ECG has a
high heart rate (HR = 85, QT = 470), with a notched T-wave that contains a greater
area of warm pseudo-colours.
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derivative measures how the rate of change of a quantity is itself changing. The tangent
method commonly used to identify the end of the T-wave is equal to the first derivative
of the ECG signal function at the T-peak point; the second derivative will measure
the concavity of the T-wave at the same T-peak point, showing the rate at which the
T-wave signal is increasing or decreasing over time. This provides a new approach to
estimating the end of the T-wave, which builds on the widely utilised tangent method
[PDJVdBW08].

The second derivative measures the concavity of the graph of f (x), and identifies
inflection points at which the shape of the function changes from concave down to con-
cave up (or vice versa). If the second derivative of a function is positive, then the shape
of this function is concave up (convex), and if it is negative, then its shape is concave
down (concave). We thus determined the second derivative of the graph representing
the global pseudo-coloured AUC, to estimate the location of the maximum concav-
ity downward within the ECG signal and its subsequent inflection point, at which the
shape of the signal changes to convex. This helps with identifying the location of the
maximum rate of change of the maximum T-wave down slope on the pseudo-colouring
scale, and the subsequent pseudo-colour index at which the T-wave signal starts to rise
again, indicating its end.

When using Leibniz’s notation for derivatives, the first and second derivatives of
the graph representing the global pseudo-coloured AUC, considering the AUC as a
dependent variable y with respect to an independent variable x representing the pseudo-
colouring index, are written as follows:

f ′(x) =
dy
dx

and f ′′(x) =
d2y
dx2 (8.2)

The difference between any two successive indices dx on the pseudo-colouring
scale is always equal to one. That is, the first derivative is measured by calculating the
difference in the AUC between each two successive indices on the pseudo-colouring
scale. This produced 8 derivatives. The second derivative was calculated by taking
the derivative of these 8 derivatives, which produced further 7 derivatives. Then, the
maximum concave down and its subsequent inflection point (if any) were identified
with respect to the pseudo-colouring index. Figure 8.9 shows an illustration of this
process. As the QT nomogram line represents the QT value at risk of TdP, only the
first five second derivatives were used as predictors of at risk QT-prolongation, shown
by the grey blocks in Figure 8.9. In addition, the inflection point index, defined as the
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index between any two pseudo-colour indices at which the maximum concave down
changes to convex, was also used as a predictor. As such, six predictors were calculated
for each ECG.

Figure 8.9: An illustration of how the second derivative of the pseudo-coloured AUC
was measured and how the inflection point index was determined.
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Figure 8.10: The expert algorithm’s inference process.

Generating the expert rules

A rule-based algorithm was developed to classify the QT-interval as ‘normal’ (no TdP
risk) or ‘abnormal’ (at risk of TdP), and rate the confidence of the classification on a
6-point scale of ‘very likely normal’ (1), ‘probably normal’ (2), ‘possibly normal’ (3),
‘possibly abnormal’ (4), ‘probably abnormal’ (5), and ‘very likely abnormal’ (6).

As the inflection point is a potential proxy for the end of the T-wave, we hypothe-
sised that the probability of QT-prolongation at risk of TdP increases as the inflection
point index increases. If the inflection point index is located within the cool pseudo-
colours, i.e., an index of 3.5 or less, this indicates a normal QT-interval (no TdP risk).
Conversely, if the inflection point index is located within the warm pseudo-colours,
i.e., an index 5.5 or more, this indicates an abnormal QT-interval at risk of TdP.

An inflection point index of 4.5 is considered borderline, as the maximum concave
down, representing the T-wave, is located between the cool and warm pseudo-colours
of green, lime, yellow and orange. As the QT-interval may be very close to or on the
nomogram line at this point, it is difficult to determine the risk of TdP precisely using
the inflection point alone. In this situation, we thus also used the pseudo colouring
index of the maximum concave down. If most of the maximum concave down colours
are cool pseudo-colours, i.e. 50% or more of the concave is located within green, lime
and yellow, then the QT-interval is not considered at risk of TdP; if 50% or more of
the concave is located within lime, yellow, and orange, it is considered at risk. The
expert algorithm’s inference process is shown in Figure 8.10, and Figure 8.11 shows
a flowchart of the expert rules. The confidence rating is also determined based on
the inflection point index and the maximum concave location on the pseudo-colouring
index. As the location of the maximum concavity on the pseudo-colouring scale in-
creases, the likelihood of QT-prolongation at risk of TdP also increases, as illustrated
in Figure 8.11.
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Figure 8.11: A flowchart of the expert IF-THEN rules. The number in round brackets
represents the confidence rating of the algorithm.
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Table 8.1: The confidence rating and the corresponding maximum concave pseudo-
colours, inflection point index and the QT range relative to the pseudo-colouring index
and the QT-nomogram.

Rating Likelihood Maximum concave Inflection QT range QT range
pseudo-colours point index (Pseudo-colouring index) (Nomogram Line = NL)

1 Very Likely Purple,Blue, 1.5 3 (Green) to 4 (Lime) NL - 160ms to NL - 120ms
Normal Green

2 Probably Blue,Green, 2.5 4 (Lime) to 5 (Yellow) NL - 120ms to NL - 80ms
Normal Lime

3 Possibly Green,Lime, 3.5 5 (Yellow) to 6 (Orange) NL - 80ms to NL - 40ms
Normal Yellow

4 Possibly Lime,Yellow, 4.5 6 (Orange) to 7 (Dark Orange) NL - 40ms to NL
Abnormal Orange

5 Probably Yellow,Orange, 5.5 7 (Dark Orange) to 8 (Red) NL to NL + 40ms
Abnormal Dark Orange

6 Very Likely Yellow,Orange 6.5 8 (Red) to 9 (Dark Red) NL + 40ms to NL + 80ms
Abnormal Dark Orange

The inflection point index can also help estimate the range in which the numerical
value of the QT-interval is likely to be. This can support an ECG reader measuring
the QT-interval, by providing an estimated 40 ms time window (representing a small
square on the ECG grid) at which the T-wave probably ended. Figure 8.9 shows how
the second derivative was calculated by examining the shape of the ECG curve within
three successive pseudo-colours, and then moving one pseudo-colour at a time (i.e.

inspecting the shape of the ECG curve again within the two backward pseudo-colours
and one forward pseudo-colour). The inflection point index is located between the
maximum concave down (corresponding to a negative second derivative that decreases
within the three successive pseudo-colours) and the subsequent convex, which has a
positive second derivative that is increasing within the previous two pseudo-colours
and one subsequent pseudo-colour, representing an increasing curve, at which point
the T-wave probably ended. If the maximum concave down in Figure 8.9 was located
in the first grey block of the second derivative (i.e. within the purple, blue and green
pseudo-colours), and the inflection point was 1.5, the T-wave was decreasing within the
blue and green pseudo-colours, but increasing within the lime pseudo-colour. As each
colour represents a 40 ms time scale, then the QT range can be estimated accordingly.
Table 8.1 illustrates how the QT range relative to the pseudo-colouring index and the
QT-nomogram was estimated.
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‘Explaining’ the algorithm

A textual interpretation explaining the output of the algorithm was provided with the
classification. It described what is visualised in the pseudo-coloured ECG signal and
how the algorithm reached its decision. In some cases, the ECG may have an ST-
elevation, a sign of myocardial infarction (heart attack), represented by the shape of
the ECG signal as a concave (representing the ST-elevation), followed by a convex
(representing the beginning of the T-wave, i.e. the J–T peak interval), then a maximum
concave down representing the T-wave. This information was included in the result
text report if the ECG had this pattern. Below, we show examples of how the algorithm
results were explained for four ECGs with different QT-intervals and heart rates. Fig-
ure 8.12 shows normal QT-intervals, and Figure 8.13 shows at risk QT-prolongation,
where the ECG (A) also has an ST-elevation.

“ The QT-interval of this ECG is very likely normal, and the patient is not
considered at risk for TdP. This decision has been made based on the as-
sumption that the QT-interval is considered normal when the area under
the T-wave contains cool pseudo-colours (purple to blue to green) and pro-
longed with risk of TdP when it contains warm pseudo-colours (yellow to
orange to red). The maximum concave down in the pseudo-coloured area
was considered to be the T-wave, and most of its colours are cool (purple
to blue to green), with a greater amount of blue than green, indicating a
normal QT-interval. The T-wave probably ends within the green colour
region, which indicates that the QT/HR falls below the nomogram line
by approximately 120 ms or more, showing no risk of TdP. Based on the
pseudo-colouring scale, the estimated value of the QT-interval ranges from
310 to 350 ms, and the HR is 71.

[Figure 8.12A] ”
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“ The QT-interval of this ECG is probably normal, and the patient is not
considered at risk of TdP. This decision has been made based on the as-
sumption that the QT-interval is considered normal when the area under
the T-wave contains cool pseudo-colours (purple to blue to green) and pro-
longed with risk of TdP when it contains warm pseudo-colours (yellow to
orange to red). The maximum concave down in the pseudo-coloured area
was considered to be the T-wave, and most of its colours are cool colours
(purple to blue to green), with a greater amount of green than blue, in-
dicating a normal QT-interval. The T-wave is probably ends within the
green region, which indicates that the QT/HR falls below the nomogram
line by approximately 80 ms or more, showing no risk of TdP. Based on
the pseudo-colouring scale, the estimated value of the QT-interval ranges
from 343 to 383 ms, and the HR is 75.

[Figure 8.12B] ”
“ The QT-interval of this ECG is possibly abnormal, and the patient is con-

sidered at risk of TdP. This decision has been made based on the assump-
tion that the QT-interval is considered normal when the area under the
T-wave contains cool pseudo-colours (purple to blue to green) and pro-
longed with risk of TdP when it contains warm pseudo-colours (yellow to
orange to red). The maximum concave down in the pseudo-coloured area
was considered to be the T-wave, and most of its colours are warm colours
(green to yellow to orange), with a greater amount of yellow than green,
indicating an abnormal QT-interval. It looks like there is an ST-elevation
as there is a purple-blue wave before the T-wave. The T-wave probably
ends within the yellow-orange region, which indicates that the QT/HR
falls on or very close to the nomogram line, showing risk of TdP. Based on
the pseudo-colouring scale, the estimated value of the QT-interval ranges
from 444 to 484 ms, and the HR is 53.

[Figure 8.13A] ”
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“ The QT-interval of this ECG is very likely abnormal, and the patient is con-
sidered at risk of TdP. This decision has been made based on the assump-
tion that the QT-interval is considered normal when the area under the
T-wave contains cool pseudo-colours (purple to blue to green), and pro-
longed with risk of TdP when it contains warm pseudo-colours (yellow to
orange to red). The maximum concave down in the pseudo-coloured area
was considered to be the T-wave, and most of its colours are warm colours
(orange to red), indicating an abnormal QT-interval. The T-wave prob-
ably ends within the orange-red region, which indicates that the QT/HR
falls above the nomogram line, showing risk of TdP. Based on the pseudo-
colouring scale, the estimated value of the QT-interval ranges from 496 to
536 ms, and the HR is 77.

[Figure 8.13B] ”
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Figure 8.12: The pseudo-coloured ECG examples with normal QT-intervals showing no risk of TdP interpreted by the expert algo-
rithm. Based on the actual QT/HR acquired from the clinical trial study: (A) The ECG has a normal QT-interval (QT = 345, HR =
71, Difference from the nomogram line = -125 , Drug = Ranolazine). (B) The ECG has a normal QT-interval (QT = 378, HR = 75,
Difference from the nomogram line = -85 , Drug = Placebo).
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Figure 8.13: The pseudo-coloured ECG examples with prolonged QT-intervals at risk of TdP interpreted by the expert algorithm.
Based on the actual QT/HR acquired from the clinical trial study: (A) The ECG has at risk QT-prolongation and ST-elevation (QT =
532, HR = 52, Difference from the nomogram line = + 48 , Drug = Dofetilide). (B) The ECG has at risk QT-prolongation (QT = 518,
HR = 77, Difference from the nomogram line = + 62 , Drug = Quinidine).
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8.3.3 Evaluation design

The expert algorithm was evaluated in four ways. Firstly, we evaluated the diagnostic
accuracy of the algorithm for detecting QT-prolongation at risk of TdP on all ECG
datasets (n = 5050). Secondly, as different types of QT-prolonging drug can affect
the T-wave morphology in different ways, we systematically evaluated the effect of
drug type on the algorithm’s sensitivity to increases in the QT-interval using psy-
chophysical methods. In vision science, psychophysical experiments investigate the
relationship between the intensity of a physical stimulus and human perception, by
systematically varying the properties of the stimulus along one or more physical di-
mensions [Ste17]. They are widely used in computer vision research to evaluate an
algorithm’s behaviour by measuring the exemplar by exemplar difficulty and mod-
eling the algorithm’s pattern of errors over different levels of object visibility and
saliency, making the algorithm’s classification inference more explainable (see exam-
ples in [RYKC+18, GJS+17, GWB13, ECS16, HSSB98]). In addition, we assessed
how the drug type affected the algorithm’s classification confidence score.

Thirdly, we compared the human expert-generated rules with a set of rules auto-
matically generated through statistical machine learning. In this case the same six
predictors used for the expert algorithm were used as inputs to train a C4.5 decision
tree classifier. The comparison was performed under two conditions: (1) generating
the decision tree model with imbalanced class datasets, i.e. using all 5050 ECGs, and
(2) with balanced class datasets using down-sampling, which involves randomly re-
moving datasets from the majority class. A 5-fold cross-validation with 20% holdout
procedure was used to evaluate the rule-based decision tree performance under both
conditions. That is, 80% of the data was used to train the model and this was tested us-
ing 5-fold cross-validation withholding 20% of the data, as shown in Figure 8.14. The
source code of the decision tree classification model can be found in [ADVJ21]. Fi-
nally, we compared the classification accuracy of the expert algorithm with the results
of a previous study conducted with humans [ADVJ20a].

8.3.4 Statistical analysis

The diagnostic accuracy of the algorithm was measured by calculating the area under
the receiver operating characteristic (ROC) curve (AUC), sensitivity, specificity, pre-
cision, accuracy, F1-score and error rate. QT-intervals below the nomogram line were
classified as negative (i.e. ‘normal’, no risk of TdP), and QT-intervals on or above the
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Figure 8.14: An illustration of the 5-fold cross-validation with 20% holdout procedure
used to develop a rule-based decision tree classification model for pseudo-coloured
ECGs.
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nomogram line as positive (i.e. ‘abnormal’, at risk of TdP). As the ECG dataset has a
class imbalance issue, i.e. the number of samples in the negative class (n = 4870) is
much larger than the number of samples in the positive class (n = 180), we used the
additional statistical measures of the balanced accuracy (i.e. the average of the sensi-
tivity and specificity), area under the precision-recall curve (PR-AUC) and Matthews
correlation coefficient (MCC), which have been shown to be particularly useful for
evaluating imbalanced binary classification [CJ20, SR15].

The effect of drug type on the algorithm’s sensitivity to increases in the QT-interval
was modeled using the psychometric function and just noticeable difference (JND)
threshold [LLM16]. The psychometric function is an inferential model used in psy-
chophysical detection and discrimination tasks, here used to model the proportion of
the ECGs classified as ‘QT-prolongation at risk of TdP’ by the expert algorithm, as a
function of QT-interval increase across the four QT-prolonging drugs and placebo. The
just noticeable difference (JND) threshold is defined in psychophysics as the minimum
amount of a change in a stimulus required for it to be ‘just noticeable’ [P+16]. In this
study, we defined it as the minimum difference in the QT-interval from the nomogram
line required for the TdP risk to be detectable. The JND threshold was determined by
fitting the psychometric function using a logistic function with maximum likelihood
estimation (MLE). The correlation between the QT-interval difference from the nomo-
gram line and the algorithm’s confidence score for each drug type and across all drugs
was calculated using a Spearman’s rank correlation.

The comparison with the rule-based decision tree model involved testing the ex-
pert algorithm on the same testing data used for each fold (then averaged across the
five folds), and on the final 20% holdout testing datasets, under both conditions (imbal-
anced and balanced class datasets). Evaluation metrics included sensitivity, specificity,
precision, balanced accuracy, F1-score, and Matthews correlation coefficient (MCC).

The comparison with human interpretation was conducted by testing the expert al-
gorithm on ECGs (n = 40) used in a previous study conducted with humans to evaluate
the pseudo-colouring technique [ADVJ20a]. The ECGs were acquired from the same
clinical trial study used in the current paper, and were selected from multiple patients
with different values of the QT-interval and heart rate; 20 ECGs were below the nomo-
gram line (no TdP risk), and 20 ECGs were on or above the nomogram line, showing
QT-prolongation at risk of TdP. Evaluation metrics included sensitivity, specificity and
accuracy.
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Table 8.2: The diagnostic accuracy results of the expert algorithm.

Evaluation Metric Proportion

Accuracy 0.99
Balanced Accuracy 0.97
Recall/sensitivity 0.94

Specificity 0.99
Precision/positive predictive value (PPV) 0.83

F1-score 0.88
ROC (AUC) 0.98

Precision-recall (AUC) 0.88
Matthews correlation coefficient (MCC) 0.88

Error rate 0.01

8.4 Results

All pseudo-coloured ECGs and related metadata underpinning the findings reported in
this article can be found in [ADVJ21].

8.4.1 Diagnostic accuracy

The results show that the expert algorithm is reliable and accurate in detecting QT-
prolongation at risk of the TdP regardless of heart rate. The algorithm was tested
on the 5050 ECGs (TdP risk n = 180, no risk n = 4870), with various values of QT-
interval and heart rate across different QT-prolonging drugs, and a placebo. It achieved
an accuracy of 0.99, balanced accuracy of 0.97, sensitivity of 0.94, specificity of 0.99,
precision of 0.83, F1-score of 0.88, ROC (AUC) of 0.98, precision-recall (AUC) of
0.88, Matthews correlation coefficient (MCC) of 0.88, and error rate of 0.01. The full
results are shown in Table 8.2. Figure 8.15 shows the algorithm’s ROC and precision-
recall curves.

The expert algorithm provides an estimated 40 ms range of the QT-interval value,
and we found that 74% of the ECGs were within the algorithm’s estimated range. In
addition, the expert algorithm showed superior performance to the pilot version, which
considered a QT-interval to be prolonged with risk of TdP if the warm pseudo-colours
(yellow to orange to red) occupied more than 50% of the area under the ECG signal.
Figure 8.16 shows a comparison of sensitivity, specificity and balanced accuracy, when
classifying all ECGs (n = 5050), between the pilot version and the modified version
reported in this paper. This indicates that locating concavity and inflection points with
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Figure 8.15: The algorithm’s ROC and precision-recall curves when tested on all ECGs
(Positive cases (P) n = 180, Negative cases (N) n = 4870). ROC (AUC) = 0.98 and
precision-recall (AUC) = 0.88.

respect to the pseudo-colouring scale significantly increased sensitivity to detecting
QT-prolongation.

8.4.2 Modeling the effect of drug type on QT-interval prolongation
detection

The clinical trial study from which the ECGs were acquired assessed the effect of
QT-prolonging drug type on T-wave morphology [VJM+15]. The results showed that
patients on a pure hERG blocker (Dofetilide) developed flat, asymmetric, and notched
T-waves, whilst patients on multi-channel blocking drugs (Quinidine and Ranolazine)
had equal or greater T-wave morphology changes including distorted and bizarre T-
waves. In particular, ‘Dofetilide’ and ‘Quinidine’ were shown to cause significant
T-wave morphology changes, while substantially prolonging the QT-interval. No sig-
nificant T-wave changes were observed for patients on ‘Verapamil’, or the placebo.

In this study, we examined the robustness of the expert algorithm to T-wave mor-
phology changes by evaluating its sensitivity in detecting at risk QT-prolongation
across drug types. The psychometric function was plotted as the proportion of the
ECGs classified as ‘QT-prolongation at risk of TdP’ by the expert algorithm, as a func-
tion of the QT-interval difference from the nomogram line. The results show that the
sensitivity of the expert algorithm in detecting at risk QT-prolongation increased as the
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Figure 8.16: A comparison of the sensitivity, specificity and balanced accuracy, when
classifying all ECGs (n = 5050), between the pilot version and the modified version of
the expert algorithm.

QT-interval difference from the nomogram decreased, regardless of T-wave morphol-
ogy changes (Figure 8.17). We estimated the 75% just noticeable difference (JND)
threshold as the value of the QT-interval with respect to the nomogram line at which
the proportion of the ECGs classified as ‘QT-prolongation at risk of TdP’ by the expert
algorithm is equal to 0.75. It was estimated for the drugs that caused a QT-prolongation
at risk of TdP, which were ‘Dofetilide’ and ‘Quinidine’. Figure 8.18 shows the JND
threshold results, which show that the expert algorithm was sensitive in detecting TdP
risk for 75% of the ECGs at which the QT-interval value is below the nomogram line
by approximately -9 and -3 milliseconds for ‘Dofetilide’ and ‘Quinidine’ respectively.
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Figure 8.17: The psychometric function plot shows the proportion of the ECGs classi-
fied as ‘QT-prolongation at risk of TdP’ by the expert algorithm, as a function of the
QT-interval difference from the nomogram line for each drug type. The QT value of
the nomogram line is equal to 0 on the X-axis.
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Figure 8.18: Psychophysical detection measures of the expert algorithm’s sensitivity. (A) The fitted psychometric function plot shows
the proportion of the ECGs classified as ‘QT-prolongation at risk of TdP’ by the expert algorithm, as a function of the QT-interval
difference from the nomogram line for ‘Dofetilide’ and ‘Quinidine’. The QT value of the nomogram line is equal to 0 on the X-axis.
(B) The just noticeable difference (JND) thresholds plot. The error bars represent bootstrap confidence intervals.
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Table 8.3: The results of the Spearman’s rank correlation between the algorithm’s
confidence rating and the QT-interval difference from the nomogram line for each drug
type and all.

Drug type Spearman’s rho (R) P-value

Dofetilide 0.867 <0.001
Quinidine 0.824 <0.001
Ranolazine 0.768 <0.001
Verapamil 0.750 <0.001
Placebo 0.810 <0.001

All 0.828 <0.001

A Spearman’s rank correlation was used to determine the relationship between the
algorithm’s confidence rating and the QT-interval difference from the nomogram line.
The results show that there was a strong, positive correlation between the algorithm’s
confidence rating and the QT difference from the nomogram, which was statistically
significant (R = 0.828, p < 0.001) across all drug types, and per drug (Table 8.3).
Figure 8.19 shows how the algorithm’s confidence rating score of TdP risk increased as
the QT-interval difference from the nomogram line decreased (i.e. as the QT-value gets
closer to the nomogram line). The results demonstrate the reliability of the algorithm
as high risk scores (5 and 6) were given only for ‘Dofetilide’ and ‘Quinidine’ drugs,
where the QT-values were above the nomogram line showing risk of TdP (Figure 8.19).

8.4.3 Comparison with rule-based decision tree classification model

Imbalanced classes are a common issue in machine learning, particularly with medical
data, where rare conditions have a limited number of representative cases. Imbalance
may introduce bias into the training data, but there is no one-size-fits-all solution, as in
some cases using more data, even if not balanced, may improve the model performance
[KAL20, LCKP19, AS18]. As such, we examined whether class balance affected the
decision tree’s rule generation and performance. We used the down-sampling tech-
nique as we have a very large number of inputs in the negative class. The re-sampled
datasets have various values of QT-interval and heart rate, and were for multiple pa-
tients on multiple QT-prolonging drugs/placebo.
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Figure 8.19: A boxplot shows the distribution of the ECG cases grouped by their
confidence rating (1-6) as classified by the expert algorithm. The QT value of the
nomogram line is equal to 0 on the Y-axis. The confidence ratings are ‘very likely
normal’ (1), ‘probably normal’ (2), ‘possibly normal’ (3), ‘possibly abnormal’ (4),
‘probably abnormal’ (5), and ‘very likely abnormal’ (6).
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Figure 8.20: A comparison of the expert algorithm and the rule-based decision tree
model, under imbalanced and balanced class conditions, when tested on 20% hold-
out datasets. Evaluation metrics include sensitivity, specificity, Matthews correlation
coefficient (MCC) and precision, also known as positive predictive value (PPV).

Under both the imbalanced and balanced class conditions, the results show that the
expert algorithm was more accurate and generalisable to new ECG data than the deci-
sion tree model (Figure 8.20). The decision tree model was over-fitted to the training
data under both conditions, showing higher average accuracy during cross-validation
than the expert algorithm, but lower accuracy when tested on new data. Tables 8.4
and 8.5 show the evaluation results for the imbalanced and balanced class conditions
respectively.

More rules were generated under the balanced class condition, which was expected
given that the training dataset is smaller and thus the classification rules may be more
difficult to infer. Figure 8.21 illustrates a flowchart of the decision tree IF-THEN
classification rules for the imbalanced and balanced class conditions.
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Table 8.4: A comparison of the rule-based decision tree model and the expert algo-
rithm, under the imbalanced class condition, showing the evaluation metrics on each
fold (K), averaged across the 5 folds, and on 20% holdout datasets. MCC = Matthews
correlation coefficient.

MCC Precision Recall/ Specificity Balanced F1-score
Sensitivity Accuracy

K1 Expert algorithm 0.882 0.837 0.939 0.992 0.965 0.885
Decision tree model 0.919 0.937 0.909 0.997 0.953 0.923

K2 Expert algorithm 0.961 0.925 0.967 0.997 0.998 00.961
Decision tree model 0.979 0.961 1 0.998 0.999 0.980

K3 Expert algorithm 0.828 0.730 0.950 0.991 0.970 0.826
Decision tree model 0.903 0.863 0.950 0.996 0.973 0.904

K4 Expert algorithm 0.876 0.822 0.948 0.989 0.969 0.880
Decision tree model 0.859 0.914 0.820 0.996 0.908 0.864

K5 Expert algorithm 0.839 0.774 0.923 0.991 0.957 0.842
Decision tree model 0.943 0.928 0.962 0.997 0.980 0.945

Averaged across Expert algorithm 0.877 0.818 0.952 0.992 0.972 0.879
5 folds Decision tree model 0.921 0.921 0.928 0.997 0.962 0.923

20% holdout Expert algorithm 0.888 0.868 0.917 0.995 0.956 0.892
datasets Decision tree model 0.793 0.769 0.833 0.991 0.912 0.800

Table 8.5: A comparison of the rule-based decision tree model and the expert algo-
rithm, under the balanced class condition, showing the evaluation metrics on each fold
(K), averaged across the 5 folds, and on 20% holdout datasets. MCC = Matthews
correlation coefficient.

MCC Precision Recall/ Specificity Balanced F1-score
Sensitivity Accuracy

K1 Expert algorithm 0.889 0.972 0.945 0.952 0.949 0.958
Decision tree model 0.887 0.947 0.972 0.904 0.938 0.960

K2 Expert algorithm 0.734 0.800 0.965 0.750 0.857 0.875
Decision tree model 0.806 0.828 1 0.785 0.892 0.906

K3 Expert algorithm 0.893 0.956 0.916 0.970 0.943 0.936
Decision tree model 0.928 0.958 0.958 0.970 0.964 0.958

K4 Expert algorithm 0.894 0.960 0.923 0.967 0.945 0.941
Decision tree model 0.894 0.960 0.923 0.967 0.945 0.941

K5 Expert algorithm 0.861 0.928 0.928 0.933 0.930 0.928
Decision tree model 0.896 0.962 0.928 0.966 0.947 0.945

Averaged across Expert algorithm 0.854 0.923 0.935 0.914 0.925 0.927
5 folds Decision tree model 0.882 0.931 0.956 0.919 0.937 0.942

20% holdout Expert algorithm 0.839 0.875 0.972 0.861 0.917 0.921
datasets Decision tree model 0.732 0.810 0.944 0.778 0.861 0.872
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Table 8.6: The sensitivity, specificity, balanced accuracy, and area under the ROC
curve of the expert algorithm and human participants (mean values) when classifying
the 40 ECGs (TdP risk n = 20, no risk n = 20).

Expert algorithm Human Difference

Sensitivity 1 0.83 0.17
Specificity 0.95 0.90 0.05

Balanced accuracy 0.98 0.87 0.11
ROC (AUC) 0.98 0.93 0.05

8.4.4 Comparison with human interpretation

A comparison with human interpretation shows that the expert algorithm was more
accurate at classifying the 40 ECGs than the averaged human participants (n = 43).
Figure 8.22 and Table 8.6 show the performance results of the expert algorithm and
human interpretation in terms of sensitivity, specificity, balanced accuracy, and area
under the ROC curve.

8.5 Focus group evaluation

We conducted two focus group discussions, one with patients and one with clinicians,
to gather feedback about the potential usage of the pseudo-coloured ECG and auto-
mated algorithm within clinical practice. The focus groups were conducted as patient
and public involvement/stakeholder engagement events, which are less formal than an
interview study, and designed to gather feedback to direct an approach, rather than
provide empirical evidence for it.

The patient focus group involved seven cancer patients (4 male and 3 female),
who were recruited via the Patient and Public Involvement and Engagement (PPIE)
coordinators of the Cancer Precision Medicine themes, within the NIHR Manchester
Biomedical Research Centre (BRC), UK. Table 8.7 shows the patients’ demographic
information and Table 8.8 summarises the focus group discussion with patients using
the short form of GRIPP2 (Guidance for Reporting Involvement of Patients and Public)
[SBS+17].
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Figure 8.22: The sensitivity, specificity, balanced accuracy, and area under the ROC
curve of the expert algorithm and human participants (mean values) when classifying
the 40 ECGs (TdP risk n = 20, no risk n = 20).
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Table 8.7: Patients’ demographic information.

ID Sex Age Education Occupation

1 Female 50-59 years Bachelors Disabled, not working
2 Male <30 years Diploma Working full time
3 Male <30 years Diploma Working full time
4 Female 30-39 years Masters Unemployed
5 Male 50-59 years Bachelors Working part time
6 Female 50-59 years Masters Working full time
7 Male 50-59 years Masters Working full time

All patients had been regularly monitored for drug-induced ECG changes. Some
patients (n = 3) had attempted to interpret their ECG signal results before, but they
found them difficult to understand. The investigator gave a short introduction explain-
ing drug-induced LQTS and how to detect it on both standard and pseudo-coloured
ECGs.

All patients found the pseudo-colouring technique to be effective in distinguishing
between normal and prolonged QT-intervals, and preferred the coloured ECG over the
non-coloured one.

Most patients (n = 5) agreed that empowering people to self-monitor for drug-
induced LQTS had the potential to save lives, provide a cost-effective healthcare so-
lution, and support more informed shared decision-making between patients and clin-
icians. Three patients agreed a verbal/text-based explanation feature would support
them in interpreting the pseudo-coloured ECG, and felt that this would be particularly
helpful for elderly patients. Two patients believed that having a risk assessment feature
that showed the severity of warm colours relative to the QT-prolongation level could
help people with anxiety, so they know when not to worry, and when to seek medical
advice.

While two patients raised concerns about trusting automated ECG interpretation,
the other patients welcomed the idea of the expert rule-based ECG interpretation al-
gorithm as a supportive tool that may help to overcome the potential challenges as-
sociated with human interpretation. Most patients (n = 5) wanted to understand why
the algorithm made a certain decision, particularly if it suggested the QT-interval to be
abnormal.
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Table 8.8: The short form of GRIPP2 (Guidance for Reporting Involvement of Patients and Public) for the focus group discussion
with patients.

Section and topic Extra detail

Aim To gather feedback and opinions about the potential usage of the pseudo-coloured ECG, and the automated
algorithm that interprets it, within clinical practice.

Methods An online focus group meeting with patients was held in May 2020. Seven patients who were under
frequent ECG monitoring were approached by the PPIE coordinators for the Cancer Precision Medicine

themes. A semi-structured focus group guide was followed, seeking views on 1) self-monitoring
drug-induced LQTS using the pseudo-colouring technique, and 2) automated ECG interpretation.

The meeting was led by one of the research team, facilitated by two members of the Manchester BRC’s staff.

Study results All patients perceived pseudo-colouring as an effective way of distinguishing between normal and prolonged
QT-intervals, and preferred the coloured ECG over the non-coloured one. They said that empowering

people to self-monitor ECGs is going to save lives, be cost-effective, and improve patient-clinician
communication, supporting more informed shared decision-making. While two patients raised concerns

about trusting automated ECG interpretation, other patients welcomed the idea of an automated algorithm
that used the same process of reading the pseudo-colours as expert humans.

Discussion and All patients had a positive attitude towards using the pseudo-colouring technique, and perceived the expert
conclusions automated algorithm as a supportive tool that may help to overcome the potential challenges associated

with human interpretation of the pseudo-colours.

Reflections and critical Involving patients demonstrated the potential of the expert algorithm as a risk assessment tool that
perspective could help to quantify the severity of QT-interval prolongation through the area of warm colours displayed,

and highlighted the advantage of producing explainable results in a way that could support and guide the lay
interpreter of the pseudo-coloured ECG.



266 CHAPTER 8. AN EXPLAINABLE ALGORITHM

Table 8.9: Clinicians’ demographic information.

ID Sex Age Education Job title

1 Female <30 years Diploma Clinical Research Nurse
2 Female 30-39 years BNurs Clinical Research Nurse
3 Male 30-39 years MRes Clinical Fellow

The focus group with clinicians involved two female nurses and one male doctor,
who are working on early phase clinical trials of new experimental cancer drugs, within
the Experimental Cancer Medicine Team (ECMT) at The Christie NHS Foundation
Trust, Manchester, UK. They were recruited via our research collaborators within the
digital ECMT. Table 8.9 shows the clinicians’ demographic information.

As a part of their routine clinical practice, the nurses record patients’ ECGs, but
they do not interpret them, while the doctor interprets the ECGs and monitors QT-
interval changes. The doctor stated that the standard approach to assessing the QT-
interval in clinical trials is by using a rigid manual QT-interval measurement, and they
do not rely on any kind of automated QT measurements at present. The clinicians
identified the potential benefits of using the pseudo-colouring technique within clinical
practice as speeding up the process of interpreting ECGs, and supporting QT-interval
monitoring out of hours. All clinicians perceived the pseudo-colouring technique to be
particularly useful for clinicians who have less training in ECG interpretation, as it can
assist them in visually detecting drug-induced QT-prolongation.

The doctor, who frequently interprets ECGs, recommended having an automated
expert algorithm that provided an alert about QT-prolongation, while showing the vi-
sualised pseudo-coloured ECG at the same time. He commented this would be partic-
ularly useful in reducing common errors associated with manual QT-interval measure-
ment, and in resolving issues with inter-observer variability, particularly in clinical trial
settings testing a new drug where accurate QT-monitoring is crucial. He said that well-
known difficulties with measuring the QT-interval in clinical practice included slow
and fast heart rates and T-wave morphology changes (e.g. the fused T-U complex).
He felt that the expert algorithm would be very useful in clinical practice if it could
detect QT-prolongation regardless of these issues. All clinicians believed that an ex-
pert, explainable automated algorithm would have a greater potential of being trusted
and adopted in clinical practice than a fully automated algorithm where the basis for
decisions was less clear.
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8.6 Discussion

Many pharmacological drugs have been shown to prolong the QT-interval on the ECG
and reported to cause drug-induced TdP and/or sudden cardiac death [Kha02, CMY08,
ESTB20]. Despite its clinical importance, predicting the TdP risk for most of these
drugs is difficult, even for clinicians who routinely read ECGs [VRS+05, STN08].
Major challenges include measuring the QT-interval and determining the TdP risk
at varying heart rates [YC03, CMY08]. While many modern ECG machines pro-
vide automated measurements of the QT-interval, these are usually correct only in
noise-free normal sinus rhythm, in which the T-wave morphology is well defined
[CMY08, SW17]. As QT-prolonging drugs often affect the morphology of the T-
wave, this can easily invalidate automated QT measurement [TAS+15, KBD+18, EI13,
GL13, TABW11, RSG09].

This study demonstrates that an automated ECG algorithm, developed with a human-

like approach—using human perceptual heuristics to determine features, and expertise
from the clinical literature to determine rules—is highly effective in detecting drug-
induced QT-prolongation at risk of TdP regardless of heart rate (Table 8.2; Figure
8.15). The psychophysical detection measures show that the sensitivity of the expert
algorithm in detecting TdP risk increased as the QT-interval approached the nomogram
risk line, regardless of drug type (Figures 8.17 and 8.18). The JND threshold results in-
dicate that although multi-channel blocking drugs are known to affect T-wave morphol-
ogy to a greater extent than pure hERG blocking drugs [VJM+15], the algorithm was in
fact more sensitive with ‘Quinidine’ than ‘Dofetilide’ (Figure 8.18). Research has es-
timated that 2.0% to 8.8% of patients treated with ‘Quinidine’ will develop TdP, which
is a high number [SW64, RWP86, BBH+84, Dar01, CMY08]. Although the difference
in the JND thresholds between the two drugs is very small (≈ 6ms), one possible reason
behind it could be that ‘Dofetilide’ can cause greater T-U fusion/complexes, which are
known to precede the development of TdP [JG14, DmFBR+96, Zip87]. In fact, in this
case measurement of the QU-interval is recommended [GMZ06, SOKS91, EsBH89].
This, in turn, will prolong the maximum concave and inflection point in the ECG sig-
nal, which potentially increases the sensitivity of the algorithm to TdP risk, whilst the
QT-value is below, but very close, to the nomogram line. In addition, a Spearman’s
rank correlation shows a strong, positive relationship between the algorithm’s confi-
dence rating and the QT difference relative to the nomogram line regardless of drug
type, demonstrating the reliability of the expert algorithm (Table 8.3; Figure 8.19).
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The comparison with the rule-based decision tree model showed the value of using
expert knowledge in the development of the algorithm. Both the expert and deci-
sion tree algorithms were highly effective, demonstrating the promise of using per-
ceptual heuristics as features; whilst the decision tree was more effective under cross-
validation, however, it was poorer at generalising than the expert algorithm. The de-
cision tree inference mechanism depends on the ‘value’ of certain features to separate
the two classes, which cannot be standardised across all ECGs. For example, under the
imbalanced class condition in Figure 8.21, the second decision point separated the two
classes based on the inflection point index and the value of the ‘Lime_Yellow_Orange’
feature. If the value of this feature is convex greater than 25.585, and the inflection
point index is less than 4.5, then the QT-interval is classified as normal. However, the
rate of change of a convex/concave depends on the amplitude of the ECG wave, which
is known to differ substantially across individuals, and is affected by factors including
age, race, sex and health status, body mass and electrode position [GMZ06, CMY08].
The decision of the expert algorithm is not based on inferred feature values, but rather
on the relationships between features acquired from the medical knowledge used to
detect risk of TdP. For instance, at the fourth decision point in Figure 8.11 the expert
algorithm separates a normal from an abnormal QT-interval, despite the fact that they
have the same inflection point index, based on the location of the maximum concave.
As shown in Figure 8.9, if the inflection point index is equal to 4.5 and the maximum
concave is located at ‘Green_Lime_Yellow’ and not ‘Lime_Yellow_Orange’, then this
means the T-wave is farther from the nomogram line, and there is thus no TdP risk.
Furthermore, we encountered the issue of cognitive and technical bias in selecting
good, representative training datasets. Research has shown that this issue is relatively
common when selecting training medical datasets [KAL20, LCKP19, AS18]. Despite
numerous statistical re-sampling methods including up/downsampling and k-fold cross
validation techniques, acquiring representative datasets that support the generalisabil-
ity of machine learning algorithms, remains a challenging problem.

An additional benefit of the human-like approach is its inherent explainability. The
expert algorithm is able to both precisely specify the reasons for a decision, and—due
to the algorithm and human interpreter sharing the same, pseudo-coloured represen-
tation of the data—the reasons for the decision are straightforward for someone to
perceive. The shared representation of the ECG data, and the shared model of how to
interpret it, are also important when considering the application of this approach within
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clinical practice. All new regulations for adopting artificial intelligence (AI)- and ma-
chine learning (ML)-based technologies in healthcare emphasise the importance of
explainability [FA+19a, JM19]. Results from the focus groups with clinicians and pa-
tients also provided evidence for the value of the expert algorithm. The explanations it
provides (Figures 8.12 and 8.13) may be helpful in training lay people to read pseudo-
coloured ECGs to self-monitor QT-prolongation, as well as supporting clinicians in
supervising and validating its automated results in clinical practice, using a human-
in-the-loop approach. Clinicians commented that our approach would be particularly
useful in reducing common errors associated with manual QT-interval measurement,
and in resolving issues with inter-observer variability, particularly in clinical trial set-
ting testing a new drug where accurate, frequent QT-monitoring is crucial. Whilst the
decision tree algorithm is also technically explainable, its decisions cannot be mapped
directly to the medical evidence, and are therefore harder to understand, and potentially
spurious, if inferred from a biased dataset. Nevertheless, machine learning has been
shown to have promise in many areas of medical decision making, and we highlight in
particular its potential for efficiently inferring new knowledge, which, once validated,
could be used in future expert algorithms.

8.6.1 Limitations and future work

In this study we only examined the detection of QT-prolongation at risk of TdP, and it
is not clear whether the pseudo-colour heuristics would support ECG interpretation of
other abnormalities that may increase the risk of TdP, including electrolyte imbalance
(e.g. hypokalemia and hypocalcemia) and changes in ST-segment elevation.

This study showed the preliminary results of using human-like perceptual pre-
processing of the ECG signal data to facilitate a single decision-tree machine learning
algorithm, and future work should explore whether this can aid other machine learning
techniques, including computer vision, where pseudo-colouring could be used to im-
prove ECG information segmentation in a pre-processing step. Only a small number
of people participated in the focus groups, and further usability evaluations are neces-
sary to determine the utility of the technique in clinical practice and with more diverse
clinical populations.



270 CHAPTER 8. AN EXPLAINABLE ALGORITHM

8.7 Conclusion

This study demonstrates that combining a data representation based on human percep-
tual heuristics with expert clinical knowledge results in accurate, reliable and explain-
able automated detection of drug-induced QT-prolongation at risk of TdP regardless
of heart rate, and robust to T-wave morphology changes. The results indicate that a
prolonged ventricular repolarisation area can be a significant risk predictor of TdP, and
it is potentially easier and more reliable to automate detection of this than automating
the measurement of the QT-interval distance per se.



Chapter 9

Summary, Synthesis and Future Work

9.1 Research overview

This thesis explores whether we can improve the early detection and assessment of
drug-induced long QT syndrome (diLQTS) at risk of TdP by non-experts in ECG in-
terpretation by incorporating knowledge of human visual perception into the design,
development and evaluation of computer-based ECG interpretation approaches. As
discussed in the literature review in Chapter 3, research in this area has focused mainly
on congenital LQTS; few studies have investigated the use of computer-based ECG in-
terpretation and visualisation methods to support diLQTS detection or TdP risk assess-
ment. No previous work has focused on supporting non-experts in ECG interpretation
or using knowledge of visual perception to enhance ECG interpretation.

The research used an exploratory process, investigating the broader context of the
research problem with an interdisciplinary review approach across the fields of car-
diac physiology, computer science and cognitive psychology (as presented in Chapter
2) to formulate the hypotheses, and using the findings of each study to inform the
aims and methods of the next study. In particular, the research drew from the field
of pre-attentive processing theory, which is fundamental to how we understand visual
distinctiveness [Tre85]. This theory outlines a set of visual properties including colour
(hue and intensity), form, and motion, known to be detected rapidly and accurately
by the human eye [War21]. Empirical evidence appears to confirm the notion that
complex visual image is broken via a primitive perceptual grouping process into these
pre-attentive elements [War21]. Using these pre-attentive properties in visualisation
design can improve both the effectiveness and efficiency of interpreting complex in-
formation by increasing the salience of target patterns [War21, HBE95, HBE96].

271
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9.2 Summary of findings and contributions

Five empirical studies were conducted within this thesis, yielding five publications.
The main chapters within this thesis (Chapter 4 to 8) are in the form of research papers.
Here, we summarise the main findings of each study, draw out their unique contribution
to the overall research problem, and describe how the papers are interrelated.

Chapter 4: The first study used methods from psychophysics and eye-tracking re-
search to systematically examine the ability of non-experts to identify drug-induced
QT-interval prolongation on an ECG. It also investigated whether the presentation of
the ECG signal trace (as a single complex representing a single heartbeat or a 10-
second rhythm strip showing more than one complex/heartbeat) affects interpretation
accuracy. The results of this study show that the majority of laypeople were able to
perceive a clinically significant difference in the QT-interval length (drug-induced QT
> 500ms with a potential risk of TdP) when compared to a ‘normal’ drug-free ECG
baseline, where both ECGs have a heart rate of 60 bpm. It also demonstrated that
the rhythm strip, which shows multiple complexes/heartbeats, is a better form of pre-
sentation than a single complex, as it is less susceptible to artefacts or changes in the
ECG morphology. This study provided the empirical evidence that self-monitoring for
diLQTS may be possible, laying the foundation for developing visualisation techniques
to further support this process.

Chapter 5: This chapter describes a novel ECG visualisation technique, designed
using a science-of-perception-based approach, which introduces pseudo-colour to the
ECG to highlight QT-interval duration at a regular heart rate of 60 bpm. It investigated
whether there is an interaction effect between the coordinate system (Cartesian vs.

Polar) and the pseudo-colour on diLQTS detection. Psychophysical and eye-tracking
methods were used to systematically evaluate the effectiveness of the proposed visu-
alisation techniques on the detection of variable QT-interval increases. The results
of this study show that introducing pseudo-colour significantly improves ECG inter-
pretation accuracy, reduces the reaction time to notice an increase in the QT-interval,
and increases laypeople’s satisfaction in interpreting the ECG signal. The technique
significantly improved non-experts’ sensitivity to drug-induced QT-interval increases
that are much smaller than a 1mm square on the standard ECG grid (which represents
40ms) when compared to a drug-free ‘normal’ QT-interval baseline, with the effect
being strongest for Polar coordinates, even when T-wave morphology is abnormal.
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Chapter 6: This chapter further developed the pseudo-colouring technique (which
eliminates the need to measure the QT-interval to identify QT-prolongation) to work
at any heart rate, and evaluated whether it could be interpreted without a drug-free
‘normal’ baseline. An enhanced version of the pseudo-colouring technique was de-
veloped to automatically adjust the QT-interval duration at risk of TdP according to
heart rate based on a clinically reliable TdP risk assessment method known as ‘QT-
nomogram’ [CIKD07]. The study used a multi-reader, multi-case (MRMC) receiver
operating characteristic (ROC) design within a psychophysical paradigm. The results
of this study showed that pseudo-colouring significantly improves laypeople’s accu-
racy in detecting QT-prolongation at risk of TdP visually, as well as identifying ‘nor-
mal’ QT-intervals showing no risk of TdP, regardless of heart rate, T-wave morphology
and coordinate system, and without comparing the ECG to a drug-free baseline. These
results provide further evidence that self-monitoring ECGs for diLQTS is feasible, in
particular with the aim of preventing the development of TdP arrhythmia attacks.

Chapter 7: Based on the evidence that pseudo-colouring significantly improves hu-
man ECG interpretation accuracy, this chapter explored whether modelling the percep-
tual heuristics used by humans when interpreting the pseudo-coloured ECG can also
improve machine ECG interpretation accuracy. The potential of this new ‘human-like’
approach to ECG interpretation was investigated in an exploratory study, which de-
veloped and evaluated a simple, explainable QT-prolongation detection algorithm that
yielded more accurate results than current signal processing techniques, and has the
benefit of the human and machine sharing the same representation of the data.

Chapter 8: This chapter further evaluated the effectiveness of the ‘human-like’ ECG
interpretation approach, developing and evaluating an enhanced version of the algo-
rithm to detect diLQTS across a wide range of drug-induced ECG morphological cases,
and testing it on a large number of ECGs (n = 5050) across multiple patients and QT-
prolonging drugs. The study empirically compared two approaches to building the en-
hanced algorithm: a manually-curated ‘expert’ algorithm that incorporates knowledge
from the clinical literature; and a decision tree, which automates the generation of the
rules from the data. The effect of drug type on the algorithm’s sensitivity to increases in
the QT-interval was also modelled using psychophysical methods. The results of two
focus groups—one consisting of patients, the other of clinicians—provided evidence
about the acceptability of the approach within clinical practice. The results show that
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combining the ‘human-like’ perceptual heuristics about QT-interval length provided by
the pseudo-colour with additional clinical knowledge about T-wave morphology sig-
nificantly improves the machine ECG interpretation accuracy. Whilst the decision tree
is highly accurate when tested using cross-validation, it performs less well on unseen
data than the ‘expert’ algorithm, due to the generation of spurious rules that lack clini-
cal validity. As the ‘expert’ algorithm interprets the visualised pseudo-coloured ECG,
it can be understood intuitively, which the focus groups demonstrated to be important
for helping patients to self-monitor diLQTS, as well as ensuring clinicians can validate
its results.

From both a clinical and computational point of view, the ‘human-like’ ECG in-
terpretation algorithm explored in this thesis helps reveal a new clinically reliable ap-
proach for automatically detecting LQTS, showing that since the prolonged ventricular
repolarisation area under the ECG signal curve (represented by large fused T-U waves)
is a significant risk predictor of TdP, detection of this is potentially easier and more
reliable to automate than measuring the QT-interval distance directly, by incorporating
both human pattern recognition ability and clinical expertise. The heuristic of quanti-
fying area, rather than identifying the interval per se, is effective because the T-wave
generally has the largest area under the curve of the ECG signal.

Overall, the thesis contributes to both medicine and computer science research, as
it demonstrates that it is possible to self-monitor for and automate the detection of a
potentially lethal medical condition that has not been possible before. LQTS has chal-
lenged many clinicians for a long time, and supporting laypeople in self-monitoring
their own ECG for LQTS may ultimately play a role in the secondary prevention of
TdP arrhythmia attacks and sudden cardiac death. The thesis also advances the ex-
plainability of diagnostic algorithms, as our proposed algorithm is not just technically
explainable (i.e. an expert human can understand how it works and verify its rules) but
also ‘intuitively’ explainable to members of the public. This demonstrates the poten-
tial of a positive feedback loop between understanding how humans interpret data and
using this knowledge to inform how machines should do it.
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9.3 Synthesis of findings

Most of the studies within this thesis employed methods from psychophysics—a scien-
tific approach to studying sensory capabilities which identifies perceptual responses to
changes in physical stimuli [Ste17]—to systematically evaluate the effect of different
signal representations on human and machine detection of QT-prolongation that may
vary from small increases (few milliseconds) to large increases (more than 100ms).
This enabled us to observe similarities and differences between human and machine
performance across different signal representation methods. In the evaluation studies
with humans, eye-tracking methods were used to contextualise our understanding of
the psychophysical performance measures. Using these methods across the different
studies allows us to synthesise their results.

An important insight from the first study with laypeople (Chapter 4) was that ac-
curately detecting QT-prolongation requires reading more than one heartbeat (ECG
complex), and this finding thus informed the design of all of our subsequent studies,
including those focused on algorithm development. It has already been established
that the morphology of the ECG signal is highly dynamic, variable across individuals
and subject to signal noise (discussed in detail in Chapter 2); the results of our studies
show that the ECG morphology can also be variable within an ECG of a single patient
and even between successive heartbeats within a single ECG. Such variability affects
the accuracy of the QT-interval assessment when interpreting a single heartbeat, and a
global accumulated view of the ECG signal across multiple heartbeats provides a more
accurate QT assessment for humans (Chapters 4, 5 and 6) and machines (Chapters 7
and 8).

The psychophysical and eye-tracking results of the second and third study (Chap-
ters 5 and 6) show the effectiveness of pseudo-colour in exposing QT-interval dura-
tion, even when the interval is borderline and not yet prolonged. This improves on
the results of the first study evaluating the standard ECG presentation method with-
out pseudo-colour (Chapter 4), where people were not able to detect borderline QT-
intervals, and they only detected a QT-prolongation at potentially dangerous level
when comparing with a normal baseline. The borderline QT level is critical from a
clinical perspective as just a 40ms increase from this point could put someone at risk
of TdP. Clinical research has shown that even small (≈ 10ms) QT-interval increases
from the baseline should be regarded as a significant side effect of a QT-prolonging
drug [RFF+09, Bre10, FDA+05]. This shows the power of the colour codes used
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with the spectrum-approximation pseudo-colouring sequence, where warmer colours
including orange and red help to attract attention to the early stages of abnormal QT-
interval prolongation.

The studies also showed that pseudo-colour helped to focus visual attention on
the T-wave area, which is crucial for detecting QT-prolongation at both a 60 bpm heart
rate (Chapter 5) and faster and slower heart rates (Chapter 6). Focusing attention in this
area is particularly useful, as long QT syndrome (LQTS) is associated with prolonging
ventricular repolarisation [MK05, DSR08], which is represented by the T-wave on the
ECG [GMZ06, Sch71]. As research examining the effects of QT-prolonging drugs is
investigating precisely how the T-wave responds to them to provide further insights into
drug ion channels interactions and TdP risk [VJM+15, CMY08], pseudo-colour might
ultimately help clinicians to determine which part of the T-wave—the initial half of the
T-wave (J-T-peak) or the second half (T-peak T-end)—underpins the QT-prolongation.

We also found that there is an interaction effect between pseudo-colour, coordinate
system and task type. In the second study (Chapter 5), which used a ‘two alterna-
tive forced choice’ (2AFC) psychophysical discrimination task asking the participant
to compare two ECGs and select the ECG with a longer QT-interval, the coordinate
system interacts with pseudo-colour, such that people were most accurate in detect-
ing the condition where the ECG was presented using polar coordinates and pseudo-
colour, and least accurate when presentation occurred with polar coordinates and no
colour. Eye-tracking research has shown that people’s initial eye movements are more
commonly located in the center of the screen [Bin10]. According to the study’s eye-
tracking data, the warmer hues of the pseudo-colour helped to focus visual attention;
as Polar coordinates concentrate more colour in the center of the screen than Cartesian
coordinates, the increased salience may be easier to perceive in foveal vision. How-
ever, this interaction effect was not observed when we changed the task type to a ‘one
alternative forced choice’ (1AFC) presenting a single ECG in the third study (Chapter
6), as there was no statistically significant difference in people’s detection accuracy
between the Cartesian and Polar coordinates when pseudo-colour was used. This may
be due to the fact that people have to make a more careful judgement when reading a
single pseudo-coloured ECG, where perceptual processes of colour are likely to dif-
fer from the ‘pop-out’ colour comparison between two pseudo-coloured ECGs. Note
here we do not assume the heart rate has any additional effect, as the results show that
pseudo-colour helps improve detection accuracy regardless of heart rate.
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A further interesting insight is the value of using the dual-process perception model
to enhance machine interpretation. Human perception, broadly speaking, involves
two forms of processing: bottom-up processing, which is driven by incoming stim-
uli, and uses perceptual organisation to form a representation of an object; and top-
down processing, which uses contextual information to aid the perception of patterns
[EY97, CEY04, FAGB06]. The pseudo-colour technique works by harnessing bottom-
up processing, drawing visual attention to the critical information contained within the
ECG signal. The fourth study (Chapter 7) shows that using a ‘human-like’ model of
this bottom-up processing can improve automated ECG interpretation accuracy. How-
ever, when testing this on a wide range of ECG cases, where the T-wave morphology
is substantially affected, the fifth study (Chapter 8) demonstrated that the ‘human-like’
top-down processing that used contextual clinical knowledge, along with the ‘human-
like’ bottom-up processing provided by the pseudo-colour, provided more accurate
automated decisions.

9.4 Limitations and recommendations for future work

In this section, we discuss potential avenues for extending the work presented within
this thesis, and articulate limitations of the current approach, as follows:

Applicability to wearable ECG devices: In all studies within this thesis, the ECG
data were from a high-quality signal with little noise; they were acquired from a 12-
lead ECG, not a wearable ECG device, where the signal is much more likely to be
affected by noise. An interesting future research area is the applicability of this tech-
nique to wearable ECG devices, in terms of both the challenge of working with the
signal data, and considering the practical aspects of ECG self-monitoring. Research
questions include: how can this technique be developed and evaluated when the spec-
ifications of the wearable devices differ significantly from the 12-lead ECG devices,
including number and type of leads (such as limbs vs chest leads), signal quality and
accessibility to raw data?; from a clinical perspective, will applying this technique to
wearables also improve LQTS detection and provide clinically reliable results?

One of the studies (Chapter 6) showed that Cartesian and Polar coordinates support
the same level of accuracy for detecting QT-prolongation across several heart rates, but
people expressed a preference for pseudo-colour displayed on Cartesian coordinates.
Under certain circumstances, however, the ECG trace may be better presented with
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Polar coordinates, for example on smaller screens like wearable smart watches, and
future work should thus examine the effects of screen size and lighting setting on ECG
interpretation accuracy.

Clinical evaluation of the technique: Whilst the research within this thesis demon-
strates the potential for pseudo-colouring to assist in the self-monitoring of drug-
induced QT-prolongation, all our studies with laypeople took place in a controlled
laboratory setting with a limited number of ECG stimuli, and the transferability of the
technique to practice remains an open question. An interesting area of research is com-
paring the performance of laypeople across different categories (e.g. patient vs. non-
patient), as well as across different demographics (e.g. understanding the effect of age
on colours perception within the ECG signal). Research has shown that a large number
of clinicians lack the skills to interpret QT-prolongation accurately [VRS+05, STN08];
the pseudo-coloured ECG, and the explainable algorithm that interprets it, could also
be used to help clinicians, especially within emergency departments, to assess and
monitor patients’ QT-intervals before or during the provision of a QT-prolonging med-
ication. Future work should evaluate our proposed ECG interpretation approach in
clinical trials with more diverse clinical populations.

Future research should adopt a systematic approach for transferring the technique
to clinical practice. A good example is adopting the Technology Readiness Level
(TRL) approach, which includes one to nine levels showing the technology maturity
roadmap, with nine being the most ready-to-launch technology [Str15]. The research
within this thesis contributes to the transfer of technique to the third level, which is the
‘Proof-of-Concept Demonstrated, Analytically and/or Experimentally’.

Generalizability to other ECG abnormalities: ECG interpretation primarily in-
volves two tasks: (1) measuring the duration and amplitude of different waves and
intervals (known to be challenging); and (2) recognition of abnormal signal patterns
(acquired by expertise). The research in this thesis aimed to combine these two tasks
into one perceptual task by substituting the measurement of the QT-interval itself with
the perception of areas of colour, an ‘intuitive’ pattern recognition task requiring no
prior expertise. This thesis only examined the perception of QT-interval prolongation.
Whilst the proposed approach may generalise to the interpretation of other ECG abnor-
malities, such as changes in the ST-segment (e.g. representing the ST-depression with
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a pseudo-colour sequence that progressively changes from blue to red as the increas-
ing ST-elevation indicates a potential heart attack), confirming this requires further
research.

The work within this thesis focused on dynamic changes in QT-interval and heart
rate to assess the risk of TdP, and it is not clear whether the pseudo-colour heuris-
tics would also support human-machine ECG interpretation of other abnormalities that
may increase the risk of TdP, such as electrolyte imbalance (e.g. hypokalemia and
hypocalcemia), which are also characterised by specific changes in the T-wave mor-
phology. Pseudo-colour represents an ECG area (i.e. representing the duration and
amplitude of the ECG signal), and it thus has the potential to also indicate the ampli-
tude and morphology of the T-wave, a potential avenue for future research.

Evaluation of the science-of-perception-based engineering approach in develop-
ing and evaluating clinical diagnostic algorithms: Chapter 7 hypothesised that the
‘human-like’ algorithm development approach explored in this thesis, which exploits
an understanding of human perception, has the potential to aid the design of other
biologically-inspired algorithms such as deep Convolutional Neural Networks (CNN).
For example, using pseudo-colouring to improve information segmentation in a pre-
processing step may help to improve a CNN’s accuracy in classifying medical images.
In particular, the pre-attentive features that are salient to a human could be prioritised
as input to the CNN, reducing the search space. Furthermore, we hypothesise that a
human-like approach to the development of diagnostic algorithms—i.e. incorporating
both human pattern recognition ability and clinical expertise—may have much wider
utility.

The field of human visual perception has drawn the curiosity of computer scientists
for many years, and has been a great source of inspiration for developing and improv-
ing machine perception and artificial intelligence [Top19a, OPN08]. A motivation for
our approach was not only improving the accuracy of automated ECG interpretation,
but also producing data representations that can be used to provide a transparent, un-
derstandable and explainable interpretation that keeps the human in the loop. Further
exploration of the potential that human visual perception has for informing human-
machine interpretation is a promising avenue for future research.
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Version 1.0; Date 28/09/2017  

 

School of Computer Science 

 

Can lay people perceive a prolonged QT interval in the 'raw' 

ECG data 

Participant Information Sheet 

You are being invited to take part in a research study. Before you decide, it is 

important for you to understand why the research is being done and what it will 

involve. Please take time to read the following information carefully and discuss 

it with others if you wish. Please ask if there is anything that is not clear or if 

you would like more information. Take time to decide whether or not you wish 

to take part. Thank you for taking the time to read this.  

Who will conduct the research?  

Alaa Alahmadi (PhD student). 

What is the purpose of the research?  

This research aims to examine whether lay people can perceive a prolonged QT 

interval in the ‘raw’ data (ECG) signal, and whether this can be enhanced by 

employing data visualisation methods. 

Why have I been chosen?  

We are inviting students and university staff, who have no experience and 

training in ECG interpretation. 
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What would I be asked to do if I took part?  

You will sit in front of an eye tracker (which looks like a desktop monitor), 

which will help us to know exactly where your eyes are focused. Two selected 

ECG signals (only two complexes) will appear on the screen. You should look 

at the two ECGs images and decide whether there is any difference between 

them. You may take as long as you need to, but press either the 'Yes' or 'No' 

button, as soon as you have made your decision. You should press the 'Yes' 

button if you think there is a difference, and the 'No' button if you do not think 

there is a difference.   

What happens to the data collected?  

All data will be encrypted and stored securely. 

Any information that could be used to identify individuals will be anonymised. 

How is confidentiality maintained? 

All data will be encrypted and stored securely. Participants will be allocated a 

ID/code, which will be used to identify their responses  and eye tracking data. 

Names will not be associated with the data at any point. 

What happens if I do not want to take part or if I change my mind?  

It is up to you to decide whether or not to take part. If you do decide to take part 

you will be given this information sheet to keep and be asked to sign a consent 

form. If you decide to take part you are still free to withdraw from the research 

at any point without giving prior reason. 

Will I be paid for participating in the research?  

No 
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What is the duration of the research?  

The study will take from 1 to 2 hours to complete. 

Where will the research be conducted?  

In the University of Manchester premises. 

Will the outcomes of the research be published?  

The outcomes will be published in journals and/or conference proceedings.  

Contact for further information. 

For further information, please contact either myself or my supervisor (details 

below) 

Alaa Alahmadi: alaa.alahmadi@postgrad.manchester.ac.uk 

Dr Caroline Jay: Caroline.Jay@manchester.ac.uk 

What if something goes wrong? 

 

If a participant wants to make a formal complaint about the conduct of the 

research they should 

contact the Head of the Research Office, Christie Building, University of 

Manchester, Oxford 

Road, Manchester, M13 9PL. 

 

 

 

This Project Has Been Approved by the University of Manchester’s 

Research Ethics Committee [Ref: 2017-2714-3948] 
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School   of   Computer   Science 

 

Can lay people perceive a prolonged QT interval in the 'raw' 

ECG data 

 

CONSENT  FORM 

 

If  you  are  happy  to  participate  please  complete  and  sign  the  consent  

form  below: 

 

1. I  confirm  that  I  have  read  the  attached  information  sheet  on  the 

above  project  and  have  had  the  opportunity  to  consider  the 

information  and  ask  questions  and  had  these  answered satisfactorily. 

2. I  understand  that  my  participation  in  the  study  is  voluntary  and that  

I  am  free  to  withdraw  at  any  time  without  giving  a  reason. 

3. I  understand  that  the  session  will  be  audio  recorded  and  an eye-

tracker  will  be  used. 

4. I  agree  to  the  use  of  anonymous  quotes. 

 

 Name  of  participant                     Date                   Signature 

 

 

 Name  of  person  taking  consent    Date                   Signature 

 

 

Please 

Initial 

Box 
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Version 1.0; Date 10/06/2018   

 

Can visualisation properties influence perception of QT 

prolongation? 

Participant Information Sheet (PIS) 

You are being invited to take part in a research study to understand how lay 

people, who have no prior knowledge in ECG interpretation, can self-monitor 

abnormal changes in ECG when compared to a normal ECG (Baseline). We 

focused on one type of significant change which is the QT-interval prolongation. 

The ECG data will be presented to you using different visualization methods, 

which differ in their display properties or attributes. We aim to investigate the 

effect of such visualization properties on lay people's interpretation of QT-

interval prolongation. Before you decide whether to take part, it is important for 

you to understand why the research is being conducted and what it will involve. 

Please take time to read the following information carefully and discuss it with 

others if you wish. Please ask if there is anything that is not clear or if you would 

like more information. Take time to decide whether or not you wish to take part. 

Thank you for taking the time to read this.  

Who will conduct the research?  

Alaa Alahmadi (PhD student) is the researcher from the Interaction Analysis and 

Modelling Lab (IAM), School of Computer Science, University of Manchester. 

What is the purpose of the research?  

People take medication that may cause abnormal change in ECG including 

prolongation of the QT interval, which can lead to sudden death if not discovered 

early. It is not possible for them to have frequent enough ECGs interpreted by 

their clinicians to identify the problem; if they can self-monitor outside of clinical 

environment, and spot when problem is arising, timely clinical intervention may 

save their life. This study aims to examine whether lay people's perception of QT 
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interval prolongation in ECG can be influenced by the way we visualise the ECG 

data. In this study, we are going to present different types of data visualisation 

methods to lay people and compare their performance in interpretation across 

those visualisations.  

Why have I been chosen?  

We are inviting lay participants, who have no prior experience and training in 

ECG interpretation, including students and university staff to understand how 

they interpret this type of data and what is the best way to present to them.  We 

need around 60 participants.  

What would I be asked to do if I took part?  

At the beginning, you will have a quick training session to understand what is a 

QT-interval and where its location is on an ECG image. Then, you will sit in front 

of an eye tracker (which looks like a desktop monitor), which will help us to know 

exactly where your eyes are focused. Three selected ECG images will appear on 

the screen, one of them shows a normal ECG and will be used as a comparator. 

You should look at the other two ECGs images and compare it with the normal 

ECG image and decide whether which of the two ECGs has a prolonged QT-

interval. You will be presented with different visualization methods, and you will 

be asked to rate whether they were effective and helped you in perceiving the 

prolonged QT-interval.  After the experiment, you will have a quick semi-

structured interview that will be run by the researcher to ask you about what do 

you think about interpreting this type of data and the types of visualisation used. 

What will happen to my personal information?  

In order to undertake the research project we will need to collect the following 

personal information/data about you: 
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• Eye-tracking data will be recorded during the experiment using a Tobii 

eye- tracker. This is a non-invasive device attached to the computer 

screen. 

• A university audio recorder will be used during the experiment and in the 

post-experimental interview to record your comments. 

• Observation data including your comments and suggestions during the 

experiment will be written down on a paper sheet by the researcher.  

Only the research team will have access to this information.   

We are collecting and storing this personal information in accordance with the 

General Data Protection Regulation (GDPR) and Data Protection Act 2018 

which legislate to protect your personal information.  The legal basis upon 

which we are using your personal information is “public interest task” and “for 

research purposes” if sensitive information is collected. For more information 

about the way we process your personal information and comply with data 

protection law please see our Privacy Notice for Research Participants. 

The University of Manchester, as Data Controller for this project, takes 

responsibility for the protection of the personal information that this study is 

collecting about you.   In order to comply with the legal obligations to protect 

your personal data the University has safeguards in place such as policies and 

procedures.  All researchers are appropriately trained and your data will be 

looked after in the following way: 

The study team at the school of computer science, interaction and modelling lab, 

the University of Manchester will have access to your personal identifiable 

information, that is data which could identify you, but they will anonymise it after 

one day from finishing the experiment. All data will be encrypted and stored 

securely. You will be allocated a ID/code, which will be used to identify your 

responses/answers and eye tracking data. Your name will not be associated with 

the data at any point. However, your consent form, contact details, etc will be 
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retained for five years and kept in paper formats in a locked drawer, at the 

interaction and modelling lab. 

You have a number of rights under data protection law regarding your personal 

information. For example you can request a copy of the information we hold 

about you, including audio recordings or eye-tracking data. This is known as a 

Subject Access Request. If you would like to know more about your different 

rights, please consult our privacy notice for research and if you wish to contact 

us about your data protection rights, please email 

dataprotection@manchester.ac.uk or write to The Information Governance 

Office, Christie Building, University of Manchester, Oxford Road, M13 9PL. at 

the University and we will guide you through the process of exercising your 

rights. 

You also have a right to complain to the Information Commissioner’s Office, 

Tel 0303 123 1113   

Will my participation in the study be confidential?  

Your participation in the study will be kept confidential to the study team and 

those with access to your personal information as listed above.  The following 

shows in details how the data will be kept confidential: 

• The audio recordings will be used to create digital transcripts, by the 

researcher (Alaa Alahmadi). The transcripts will be stored securely in the 

interaction and modelling lab’ server, and they will be allocated a ID/code, 

which will be used to identify the participant.  

• After five years the recordings will be destroyed and digitally removed 

from the server. 

• Only the research team (the main researcher -Alaa Alahmadi- and the main 

supervisor-Caroline Jay- will have access to the data). 

• All the data will be encrypted and stored securely in the interaction and 

modelling lab’ server. Participants will be allocated a ID/code, which will 

be used to identify their responses/answers and eye tracking data. Names 
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will not be associated with the data at any point. The consent form, contact 

details, etc will be retained for five years and kept in paper formats in a 

locked drawer, at the interaction and modelling lab. 

What happens if I do not want to take part or if I change my mind?  

It is up to you to decide whether or not to take part. If you do decide to take part 

you will be given this information sheet to keep and be asked to sign a consent 

form. If you decide to take part you are still free to withdraw at any time 

without giving a reason and without detriment to yourself. However, it will not 

be possible to remove your data from the project once it has been anonymised 

and forms part of the dataset as we will not be able to identify your specific 

data. This does not affect your data protection rights.  

The audio recording is desirable to your participation in the study. You should 

be comfortable with the recording process at all times and you are free to stop 

recording at any time.  

Will my data be used for future research? 

Your anonymous data may be used for health informatics research in the future. 

Your information will only be used by organisations and researchers to conduct 

research in accordance with the UK Policy Framework for Health and Social 

Care Research. 

This information will not identify you and will not be combined with other 

information in a way that could identify you. The information will only be used 

for the purpose of health and care research, and cannot be used to contact you 

regarding any other matter or to affect your care. It will not be used to make 

decisions about future services available to you.  

Will I be paid for participating in the research?  

Yes, a £10 shopping voucher will be provided to you after completing the study.  
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What is the duration of the research?  

The study will take a maximum of one hour to complete, divided as follows: 

• 10 minutes before the experiment for introduction and short training 

session. 

• 40 minutes for the experiment.  

• 10 minutes after the experiment for the semi- structured interview. 

Where will the research be conducted?  

In the University of Manchester premises, at the Interaction Analysis and 

Modelling Lab, School of Computer Science, University of Manchester. 

 Will the outcomes of the research be published?  

The outcomes will be published in journals and/or conference proceedings.  

 Who has reviewed the research project? 

The project has been reviewed by "Proportionate University Research Ethics 

Committee (UREC) Review" (School of Computer Science). 

What if I want to make a complaint? 

Minor complaints 

If you have a minor complaint then you need to contact the researcher(s) in the 

first instance. 

• The researcher: Alaa Alahmadi  

Email: alaa.alahmadi@postgrad.manchester.ac.uk 

Telephone number: 0161-275-7821 

• The supervisor: Dr Caroline Jay  

Email: Caroline.Jay@manchester.ac.uk 

Telephone number: 0161-275-0677 
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Formal Complaints 

If you wish to make a formal complaint or if you are not satisfied with the 

response you have gained from the researchers in the first instance then 

please contact  

The Research Governance and Integrity Manager, Research Office, Christie 

Building, University of Manchester, Oxford Road, Manchester, M13 9PL, by 

emailing: research.complaints@manchester.ac.uk  or by telephoning 0161 

275 2674. 

What Do I Do Now? 

If you about have any queries the study or if you are interested in taking part 

then please contact the researcher(s). 

• The researcher: Alaa Alahmadi  

Email: alaa.alahmadi@postgrad.manchester.ac.uk 

Telephone number: 0161-275-7821 

 

• The supervisor: Dr Caroline Jay  

Email: Caroline.Jay@manchester.ac.uk 

Telephone number: 0161-275-0677 
 

 

This Project Has Been Approved by the University of Manchester’s 

Research Ethics Committee [Ref: 2017-2714-3948] 
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Can visualisation properties influence perception of QT 

prolongation? 

Consent Form 

If you are happy to participate please complete and sign the consent form below 

 

  Activities Initials 

1 

I confirm that I have read the attached information sheet (Version 1.0, Date 

10/06/2018) for the above study and have had the opportunity to consider the 

information and ask questions and had these answered satisfactorily. 
  

2 

I understand that my participation in the study is voluntary and that I am free 

to withdraw at any time without giving a reason and without detriment to 

myself.  I understand that it will not be possible to remove my data from the 

project once it has been anonymised and forms part of the data set.   

I agree to take part on this basis.   

3 
I agree to the experiment itself and the interviews after the experiment being 

audio recorded. 
 

4 I agree that my eye-moments will be recorded using eye-tracker device. 

 

5 
I agree that any data collected may be published in anonymous form in 

academic books, reports or journals. 
 

6 I agree to take part in this study 

 

 

Data Protection 

 

The personal information we collect and use to conduct this research will be processed 

in accordance with data protection law as explained in the Participant Information 

Sheet and the Privacy Notice for Research Participants.  

 

 

________________________            ________________________           

Name of participant Signature  Date 

 

 

________________________            ________________________           

Name of the person taking consent Signature  Date 



Appendix C

Supplement for Chapter 6

C.1 Participant information sheet and consent form

337



 
 

 
 
 

Version 1.0; Date 29/01/2019   

 

Can data visualisations support ECG Interpretation?  

Participant Information Sheet (PIS) 

An ECG (electrocardiogram) is a graph that shows the electrical activity of the 

heart, picked up via sensors placed on the skin. It is commonly used in medicine 

to diagnose heart conditions, and other illnesses.  

You are being invited to take part in a research study to understand how lay 

people, who have no prior experience of ECG interpretation, can be supported 

in understanding changes in an ECG. This will ultimately help patients to 

monitor their own ECG at home, allowing the early detection of abnormalities.  

You do not need any medical knowledge to take part, and will receive training 

on how to read the ECG at the start of the study. The ECG data will be 

presented to you using the current standard format, and using alternative 

formats. The aim of the study is to understand how the format affects ECG 

interpretation. Please note that you are not going to interpret your own ECGs, as 

all ECGs will be belonging to other people. 

Before you decide whether to take part, it is important for you to understand 

why the research is being conducted and what it will involve. Please take time 

to read the following information carefully and discuss it with others if you 

wish. Please ask if there is anything that is not clear or if you would like more 

information. Take time to decide whether or not you wish to take part. Thank 

you for taking the time to read this.  

Who will conduct the research?  

Alaa Alahmadi, a PhD Student from the Interaction Analysis and Modelling 

(IAM) lab, School of Computer Science, University of Manchester. 
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What is the purpose of the research?  

A number of common medications can cause abnormal changes in the ECG, 

which can lead to serious illness or sudden death if not discovered early. It is 

often not possible for patients to have frequent enough ECGs to identify the 

problem; if they can self-monitor at home, and spot when a problem arises, 

timely clinical intervention may save their life. This study aims to examine 

whether lay people's perception and interpretation of some patterns of serious 

ECG changes can be influenced by the way we visualise the ECG data.  

Why have I been chosen?  

We are inviting lay participants, who have no prior experience of ECG 

interpretation, to take part.  

What would I be asked to do if I took part?  

At the start of the study, you will have a quick training session to help you 

identify patterns in the  ECG signal, and distinguish between those that are 

normal, and those that are abnormal. Then, you will sit in front of an eye tracker 

(which looks like a desktop monitor), which will help us to know exactly where 

your eyes are focused. A series of ECGs will appear on the screen. You should 

look at these ECGs, and rate how likely you think it is that they contain an 

abnormality on a rating scale.  

What will happen to my personal information?  

In order to undertake the research project we will need to collect the following 

information/data: 

• Eye-tracking data will be recorded during the experiment using a Tobii 

eye- tracker. This is a non-invasive device attached to the computer 

screen. It will not video your eyes, only record their positions on the 

screen. 

• Your responses on the rating scale. 
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Only the research team will have access to this information.   

We are collecting and storing this information in accordance with the General 

Data Protection Regulation (GDPR) and Data Protection Act 2018 which 

legislate to protect your personal information.  The legal basis upon which we 

are using your personal information is “public interest task” and “for research 

purposes” if sensitive information is collected. For more information about the 

way we process your personal information and comply with data protection law 

please see our Privacy Notice for Research Participants. 

The University of Manchester, as Data Controller for this project, takes 

responsibility for the protection of the personal information that this study is 

collecting about you.   In order to comply with the legal obligations to protect 

your personal data the University has safeguards in place such as policies and 

procedures.  All researchers are appropriately trained and your data will be 

looked after in the following way: 

All data will be encrypted and stored securely. You will be allocated a ID/code, 

which will be used to identify your responses/answers and eye tracking data. 

Your name will not be associated with the data at any point. However, your 

consent form will be retained for five years and kept in paper formats in a 

locked drawer, in the School of Computer Science. 

You have a number of rights under data protection law regarding your personal 

information. For example you can request a copy of the information we hold 

about you, including audio recordings or eye-tracking data. This is known as a 

Subject Access Request. If you would like to know more about your different 

rights, please consult our privacy notice for research and if you wish to contact 

us about your data protection rights, please email 

dataprotection@manchester.ac.uk or write to The Information Governance 

Office, Christie Building, University of Manchester, Oxford Road, M13 9PL. at 

the University and we will guide you through the process of exercising your 

rights. 

You also have a right to complain to the Information Commissioner’s Office, 

Tel 0303 123 1113   
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Will my participation in the study be confidential?  

Your participation in the study will be kept confidential to the study team and 

those with access to your personal information as listed above.  The following 

shows in details how the data will be kept confidential: 

• All the data will be encrypted and stored securely on a server at the 

University of Manchester. Participants will be allocated an ID/code, 

which will be used to identify their rating answers and eye tracking data. 

Names will not be associated with the data at any point. The consent form 

will be retained for five years and kept in paper formats in a locked 

drawer, in the School of Computer Science. 

What happens if I do not want to take part or if I change my mind?  

It is up to you to decide whether or not to take part. If you do decide to take part 

you will be given this information sheet to keep and be asked to sign a consent 

form. If you decide to take part you are still free to withdraw at any time 

without giving a reason and without detriment to yourself. However, it will not 

be possible to remove your data from the project once it has been anonymised 

and forms part of the dataset as we will not be able to identify your specific 

data. This does not affect your data protection rights.  

Will my data be used for future research? 

We will make the anonymised data open access. This is in accordance with the 

Open Research Framework principles, and means that other researchers can 

check our results, or use them in further research. This maximises the value of 

the data. It will not be possible to identify any individual from this dataset. 

Will I be paid for participating in the research?  

Yes, a £10 amazon voucher will be given to each participant. 
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What is the duration of the research?  

The study will take a maximum of one hour to complete, divided as follows: 

• 20 minutes before the experiment for introduction and short training 

session. 

• 40 minutes for the experiment.  

Where will the research be conducted?  

In the Kilburn Building, School of Computer Science, University of 

Manchester. 

 Will the outcomes of the research be published?  

The outcomes will be published in journals and/or conference proceedings.  

 Who has reviewed the research project? 

The project has been reviewed by "Proportionate University Research Ethics 

Committee (UREC) 

Review" (School of Computer Science).  

What if I want to make a complaint? 

Minor complaints 

If you have a minor complaint then you need to contact the researcher(s) in the 

first instance. 

   

• The researcher: Alaa Alahmadi  

Email: alaa.alahmadi@postgrad.manchester.ac.uk 

Telephone number: 0161-275-7821 

 

• The supervisor: Dr Caroline Jay  

Email: Caroline.Jay@manchester.ac.uk 

Telephone number: 0161-275-0677 
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Formal Complaints 

If you wish to make a formal complaint or if you are not satisfied with the 

response you have gained from the researchers in the first instance then 

please contact  

The Research Governance and Integrity Manager, Research Office, Christie 

Building, University of Manchester, Oxford Road, Manchester, M13 9PL, by 

emailing: research.complaints@manchester.ac.uk  or by telephoning 0161 

275 2674. 

What Do I Do Now? 

If you about have any queries the study or if you are interested in taking part 

then please contact the researcher(s). 

• The researcher: Alaa Alahmadi  

Email: alaa.alahmadi@postgrad.manchester.ac.uk 

Telephone number: 0161-275-7821 

 

• The supervisor: Dr Caroline Jay  

Email: Caroline.Jay@manchester.ac.uk 

Telephone number: 0161-275-0677 

 

This Project Has Been Approved by the University of Manchester’s 

Research Ethics Committee [Ref: 2019-6122-9941] 
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Can data visualisations support ECG Interpretation?  

Consent Form 

If you are happy to participate please complete and sign the consent form below: 

 

  Activities Initials 

1 

I confirm that I have read the attached information sheet (Version 1.0, Date 

20/03/2019) for the above study and have had the opportunity to consider the 

information and ask questions and had these answered satisfactorily. 
  

2 

I understand that that I am free to withdraw at any time without giving a 

reason and without detriment to myself.  I understand that it will not be 

possible to remove my data from the project once it has been anonymised and 

forms part of the data set.   

I agree to take part on this basis.   

4 I agree that my eye-movements will be recorded using eye-tracker device. 

 

5 
I agree that any data collected may be published in anonymous form in 

academic books, reports or journals. 
 

 

6 
I agree that anonymised data will be accessible for other researchers after the 

end of the study (i.e. the anonymised data will be made open access). 
 

7 

I agree that the principal investigator (Alaa Alahmadi) and the main supervisor 

(Caroline Jay) will have access to the data throughout the life-cycle of the 

research project, while the main supervisor (Caroline Jay) will be also the 

overall custodian (responsible beyond the end of the project).  

8 I agree to take part in this study. 

 

 

Data Protection 

The personal information we collect and use to conduct this research will be processed 

in accordance with data protection law as explained in the Participant Information 

Sheet and the Privacy Notice for Research Participants.  

 

________________________            ________________________           

Name of participant Signature  Date 

 

 

________________________            ________________________           

Name of the person taking consent Signature  Date 
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