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Abstract 15 

One of the most common approaches to modelling soil erosion worldwide has been the implementation of 16 

the original Universal Soil Loss Equation (USLE) and its revised version, the RUSLE. However, despite 17 

its widespread use, often there are discrepancies in the methods used to compute it and in the values 18 

elicited for the five individual factors that comprise this function. Such pitfalls subsequently skew the final 19 

results obtained and often many studies also fail to adequately examine the accuracy of the enumerated soil 20 

loss amounts. We examine these aspects with respect to the raft of USLE-based studies undertaken in India 21 

over the last few decades, reviewing a total of 100 investigations in this regard. Results reveal that almost 22 

all studies had either over- or underestimated at least one of the five factors, thereby possibly 23 

misrepresenting the actual soil loss occurring from their examined areas. Even more worryingly, most 24 

studies had failed to document their methods succinctly or in sufficient detail to ascertain their efficacies or 25 

provide viable templates for replication elsewhere. Our results also show a marked spatiality in the 26 

pursuance of such studies, with these being mostly undertaken in the eastern part of the country, even 27 

though the proportionate land affected by soil erosion is considerably less in this region. Thus regions 28 
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where the USLE would be most pertinent for implementation towards land management have seen a lower 29 

number of applications. We hope that by avoiding the missteps highlighted in this paper and following the 30 

subsequently detailed exemplar methods of conducting such an investigation along with the relevant model 31 

accuracy and uncertainty checks, the USLE can be best utilised in these regions and in the rest of the 32 

country for soil erosion mitigation. Though focused on India, the methods outlined can also be used to 33 

conduct the most accurate possible USLE-based soil erosion modelling elsewhere. 34 

 35 

Keywords: Universal Soil Loss Equation; land degradation; runoff and sediment yield; factor estimation 36 

accuracy; rainfall erosivity; land management 37 

 38 

1. Introduction 39 

Like most countries in (sub)tropical and semi-arid climes, soil erosion by water (overland and channelised) 40 

is a primary agent of land degradation in India too (Lal, 2001; Bhattacharyya et al., 2015, 2016). About 41 

68.4% of the nation's degraded tracts experience accelerated soil erosion at rates greater than 10 t ha-1 yr-1 42 

(NAAS, 2010). A recent pan-Indian sediment budget study (Sharda and Ojasvi, 2016) estimated a gross 43 

average annual soil erosion rate of 15.6 t ha-1 yr-1 that removes 5.11±0.4 billion tonnes of soil per year. 44 

About 22.9±29% of this volume passes into the marine realm, 34.1±12% gets deposited in reservoirs while 45 

the remaining 43.0±41% are held within inland sinks. About 40% of the country has a soil loss tolerance of 46 

less than 7.5 t ha-1 yr-1 while this is below 10 t ha-1 yr-1 for 70% of it (Sharda et al., 2013). The 47 

aforementioned pan-Indian average soil erosion rate of 15.6 t ha-1 yr-1 thus paints a rather bleak picture of 48 

land degradation country-wide, even taking into account the marked spatial variability in regional rates due 49 

to the ambient climatic and physiographic diversity. The existent soil loss results in considerable on-site 50 

and off-site effects, manifesting, respectively, in production losses valued at ca. $1 billion in 1989 (Reddy, 51 

2003) and ~$2.5 billion in 2010 (Sharda and Pradeep, 2013), with the concomitant reservoir sedimentation 52 

decreasing the average capacity by ca. 1% (Sharda and Ojasvi, 2016) annually. Aptly therefore, in a recent 53 

global review of soil erosion modelling studies (Borrelli et al., 2021), India ranked third worldwide after 54 

USA (537 studies) and China (450 studies) with 161 studies.  55 
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Soil erosion models help in identifying erosion-susceptible areas, estimate erosion rates and discern 56 

possible causes behind its occurrence, thereby contributing towards land management. Such models can 57 

have relatively simple empirical approaches, like the Universal Soil Loss Equation or USLE (Wischmeier 58 

and Smith, 1965, 1978), which has also been supported theoretically thereafter (Ferro, 2010) or be 59 

physically-based (e.g. Pandey et al., 2016; Hancock and Wells, 2021). The USLE (Wischmeier and Smith, 60 

1965, 1978) and the Revised USLE or RUSLE (Renard et al., 1991, 1993, 1997) stand out as the most 61 

frequently and widely used soil erosion models by far (Alewell et al., 2019; Borrelli et al., 2021). Their 62 

spatial applications have ranged from individual field parcels (Swerts et al., 2019; Fiener et al., 2019) to 63 

country-wide studies (Almaw Fenta et al., 2019; Koirala et al., 2019) and even across the entire planet's 64 

land surface (Borrelli et al., 2017, 2020).  65 

The USLE/RUSLE has been employed to accomplish multifarious objectives related to soil erosion 66 

worldwide, including, but not limited to, modelling of future soil erosion scenarios with respect to 67 

projected land cover and climate conditions (e.g. Borrelli et al., 2017, 2020), ascertaining the most 68 

appropriate soil conservation strategies (e.g. Kabanza et al., 2013; Galdino et al., 2015), land use planning 69 

(e.g. Haregeweyn et al., 2017; Liu et al., 2020), simulation of soil organic carbon flux and sequestration 70 

potential (e.g. Ito, 2007; Mandal et al., 2020) and to assess the global market impacts of soil erosion (e.g. 71 

Sartori et al., 2019). The presence of a huge body of scientific literature and a high degree of flexibility in 72 

terms of data requirements promotes these methods' adaptability to and applicability in data-sparse 73 

conditions (Benavidez et al., 2018; Alewell et al., 2019). It is therefore unsurprising that the seminal works 74 

of Wischmeier and Smith (1965, 1978), who developed the USLE, have been cited a staggering 10989 75 

times while those of Renard et al. (1991, 1997) on the RUSLE had 5755 citations at the end of 2020. Not 76 

only do process-based models have far larger data requirements, they are not necessarily better than the 77 

USLE in estimating soil erosion (Kinnell, 2010; Alewell et al., 2019), and for large-scale soil erosion 78 

assessments, no other model is as suitable as the USLE (Borrelli et al., 2017, 2020).  79 

India is projected to experience increased annual rainfall as well as intensified localised heavy downpour 80 

spells (Kulkarni et al., 2020), besides potentially undergoing marked land cover changes in the near future 81 

(Bhattacharyya and Sanyal, 2019). As these environmental changes are expected to aggravate soil erosion 82 

problems around the world (Borrelli et al., 2017, 2020), there is a genuine case for undertaking targeted 83 
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scenario-based soil erosion modelling in India, for which the USLE is most suitable. However, data 84 

unavailability/inaccessibility pose serious challenges this regard, even though the country stood fifth 85 

worldwide with 67 papers on USLE, after USA (274), China (218), Brazil (88) and Italy (87) in a recent 86 

global meta-analysis on USLE-type soil erosion modelling (Alewell et al., 2019).  87 

Therefore, the objectives of this review are to identify existing bottlenecks to using the USLE in India, 88 

highlight the missteps apparent in previous attempts and propose best model parameterisation methods 89 

based on state-of-the-art data, along with relevant model evaluation options to foster effective and accurate 90 

USLE applications herein. Since this review does not attempt to explore or analyse the subtleties of the 91 

USLE-type modelling approach, any interested reader is referred to the Agricultural Handbook No. 537 92 

(Wischmeier and Smith, 1978) for USLE and No. 703 (Renard et al., 1997) for RUSLE, as well as review 93 

articles that have either discussed the model development history (Laflen and Moldenhauer, 2003; Laflen 94 

and Flanagan, 2013), scrutinised the logic and science behind the USLE-modelling approach (Alewell et 95 

al., 2019; Kinnell, 2019), outlined appropriate parameterisation methods for different regions across the 96 

world (Benavidez et al., 2018; Ghosal and Das Bhattacharya, 2020) or proposed other contributions 97 

towards further development of the model concept (Kinnell, 2008, 2010, 2014). While this review only 98 

considers Indian studies, we perceive that some of the methodological missteps apparent in them may also 99 

be present in USLE/RUSLE applications elsewhere. Thus this review can aid anyone employing the USLE 100 

for soil erosion research and also highlight future possibilities for model refinement by pointing out current 101 

data deficiencies.        102 

 103 

2. A brief account of the USLE/RUSLE 104 

Generally speaking, the USLE was developed to be a cornerstone of soil and water conservation in the 105 

United States after measuring and analysing soil losses due to water erosion from thousands of field plots 106 

and small catchments since the 1930's, considering rainfall parameters, topography, soil characteristics, 107 

cropping and management practices (Wischmeier and Smith, 1965, 1978). It was the result of a statistical 108 

analysis involving 10,000 plot-years of runoff and soil loss data from 49 stations across the USA. As the 109 

quintessential example of an empirical model [which has also been theoretically endorsed (Ferro, 2010)], 110 

the USLE does not simulate soil erosion rates using physical equations describing the detachment, 111 
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transport and deposition of soil particles but instead uses a simple multiplicative equation that was devised 112 

by identifying statistically significant relationships between the assumed important variables and measured 113 

soil loss data. These data were collected from plots that were up to 122 m long with slopes ranging 114 

between 3% and 18%, having different cropping and management practices, and were compared to soil 115 

losses from 22.1 m long and 1.83 m wide ‘unit plots’ having 9% slope and maintained in a continuous 116 

regularly tilled fallow condition with up-and-down hill tillage, which was taken to represent the ‘worst-117 

case scenario’ for soil erosion. The unit plot was thus used as a baseline condition to which the 118 

topographic attributes and cropping, management and conservation practices of all other plots were 119 

compared in order to establish relationships between the occurring soil erosion and its influencing factors 120 

(Wischmeier and Smith, 1965, 1978; Renard et al., 1997, 2011).  121 

In SI units, the USLE calculates the long-term average annual soil erosion rate in t ha-1 yr-1, through a 122 

simple multiplication of six model parameters or factors, viz. rainfall-runoff erosivity (R factor), soil 123 

erodibility (K factor), slope length and steepness (LS factor), cover and management (C factor) and 124 

support practice (P factor). Of these six factors, only the R factor has an original unit, i.e. MJ mm ha-1 h-1 125 

yr-1, while the unit of the K factor (t ha h ha-1 MJ-1 mm-1) is merely the soil loss rate per unit of the R 126 

factor, and the rest are dimensionless. The LS is the slope length and steepness factor in relation to unit 127 

plot conditions, the C factor is defined as the ratio of soil loss from a field with specific cover and 128 

management to that from a field under clean-tilled continuous fallow unit plot conditions and P, the 129 

support practice factor, is the ratio of soil loss with a specific support practice to that from an up-and-130 

down-slope tillage culture of unit plots. Notably, the values of the C and P factors range from zero for 131 

completely erosion-resistant conditions, to unity for the worst-case unit plot conditions (Wischmeier and 132 

Smith, 1965, 1978). In sum, the USLE uses four dimensionless factors to modify the soil loss as described 133 

by dimensioned rainfall erosivity and soil erodibility factors (Renard et al., 1997). These dimensionless 134 

LS, C and P factors highlight the model’s utility as a key decision making tool in land and water 135 

management, as they pertain to plausible precursors of erosion that can actually be managed in order to 136 

reduce soil loss to below the permissible tolerance rates.  137 

Originally devised to ascertain the best cropping practices to reduce erosion from agricultural fields 138 

(Wischmeier and Smith, 1965), the USLE was updated over the next decade to provide techniques for 139 
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estimating the respective factor values for additional land uses, climatic conditions, irregular terrain and 140 

management practices (Wischmeier and Smith, 1978). In later years, owing to widespread use of the USLE 141 

within and outside the USA, its limitations became apparent, quite important among which was its 142 

inability to accurately estimate soil erosion in rangelands (Spaeth et al., 2003; Renard et al., 2011).  143 

A need for updating the USLE was therefore felt and the RUSLE came into being (Renard et al., 1991, 144 

1997). Its development benefitted from the previously identified limitations as well as from an improved 145 

understanding of the physics of rill and interrill erosion under natural and simulated rainfall (Renard et al., 146 

1997, 2011). Although the equation remained the same, a comprehensive revision of the factor estimation 147 

methods was undertaken, the most significant of which was the new subfactor-based approach in the C 148 

factor estimation, which promoted RUSLE applications in any land use. The RUSLE also introduced 149 

process-based relationships to improve parameterisation and allowed sub-annual calculation of the R, K 150 

and C factors, in addition to including a new term ‘rill to interrill erosion ratio’ in the LS factor estimation 151 

and provided new P-values applicable to both croplands and rangelands. Above all, the RUSLE was a shift 152 

towards computerised (DOS-based) erosion modelling from the ‘paper-based’ approach of the USLE 153 

(Renard et al., 1997, 2011).  154 

The latest version, RUSLE2, is a full-blown Windows-based program, with substantially advanced 155 

modelling capabilities and application possibilities, compared to the original USLE as well as the RUSLE 156 

(Renard et al., 2011). However, having been developed to estimate rill and interrill erosion rates from 157 

relatively small plots or catchments, the RUSLE2, like its predecessors and many other soil erosion 158 

models, is unable to simulate gully erosion.   159 

 160 

3. USLE applications in India: facts and figures 161 

According to the database that we prepared, which consists of research articles published in journals 162 

indexed in the Web of Science, Scopus or Scimago databases, as well as theses and conference papers, the 163 

USLE is by far the most used soil erosion model in India, with 115 applications between 1991 and 2020 164 

(see Tables S1 and S2 in the Supplementary Information file). It has been applied to estimate soil erosion 165 

rates at all spatial scales ranging from an open pit mine (Nigam et al., 2017) and large river basins (Karan 166 

et al., 2019; Bhattacharya et al., 2020a,b) to districts (Srinivas et al., 2002; Thelkar et al., 2019), states 167 
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(Mandal and Sharda, 2011a; Mahapatra et al., 2018) and the entire country (Singh et al., 1992; Maji et al., 168 

2008; Sharda et al., 2013). Its temporal applications have been just as diverse, ranging from individual 169 

rainstorms (Kothyari and Jain, 1997; Jain and Kothyari, 2000) to decadal and centennial erosion 170 

projections with respect to climate change scenarios (Mondal et al., 2015, 2016a; Gupta and Kumar, 2017; 171 

Khare et al., 2017; Pal and Chakrabortty, 2019; Chakrabortty et al., 2020).  172 

 173 

 174 

Fig. 1: Trend of published studies using the USLE in India 175 

Note: See Table S1 in the Supplementary Information file for details about each study 176 

For this review, we have considered 100 of the 115 studies that were collated, excluding those articles (the 177 

details of which are given in Table S2 in the Supplementary Information file) that used the USLE but did 178 

not provide any details on factor estimation, or studies that assessed the erosion risk after keeping one of 179 

the factors as a constant and not estimating the same, or studies that performed event-scale soil erosion 180 

modelling, as the USLE is ill-suited for this (Wischmeier and Smith, 1978; Kinnell, 2010). These 100 181 

studies (see Table S1 in the Supplementary Information file for individual details on each of them) were 182 

carried out in 24 different states across India between 2000 and 2020, with the highest number of 183 
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publications (16) being in 2018. The number of publications first increased sharply during 2009-2012 and 184 

between 2017 and 2020, a USLE-based paper was published on average, once every month (Fig. 1).  185 

The peninsular plateau and its fringe areas are the most erosion susceptible physiographic region of India 186 

(Singh et al., 1991, 1992) and naturally most of the studies we reviewed (n=73) were conducted in various 187 

parts of it. Apart from this, 15 studies were based in the Himalayas, three were situated in the hills of the 188 

Northeast and the remaining ones had modelled soil erosion in the northern plains (n=4), eastern coastal 189 

plains (n=3) and western coastal plains (n=2) (Fig. 2). An overwhelming 84% of the papers had 190 

implemented the USLE at the catchment scale, the smallest and largest of these basins encompassing 7.31 191 

km2 and 41285 km2, respectively (Fig. 2) (mean catchment area = ca. 4200 km2, standard deviation = ca. 192 

8000 km2). Of the remaining 16 studies, one had used the USLE at the plot-scale, three others had 193 

employed it at the hillslope-scale and 12 studies had modelled soil erosion in administrative units (i.e. sub-194 

districts, districts or states). Overall, 52 studies clearly stated why it was important or necessary to 195 

undertake soil erosion modelling in their respective study area, while 48 did not provide such a rationale. 196 

Our reviewed studies (Table S1) had used the model to accomplish a variety of objectives– 54 197 

investigations simply aimed to obtain a soil erosion map, 10 studies used the model for subwatershed 198 

prioritisation, in nine cases the USLE-derived soil loss estimates were compared to that predicted by other 199 

modelling approaches, five studies employed it to propose erosion control measures, 14 studies performed 200 

multi-temporal soil erosion modelling (with seven of them comprising future erosion projections), three 201 

studies each had used the model to obtain an approximation of reservoir sedimentation rates and study the 202 

effect of DEM resolution on erosion modelling while two studies had assessed the model uncertainty and 203 

performance at the catchment- and plot-scale respectively (Fig. 2).  204 



 

9 
 

 205 

Fig. 2: Aims of the reviewed USLE applications and the location and size of their respective study areas 206 

Note: For details of the respective study locations and areal coverage, see Table S1 in the Supplementary 207 

Information file. 208 

 209 

Sharda et al. (2013) compared the USLE-modelled erosion rates (Maji et al., 2008) to soil loss tolerances 210 

(Mandal and Sharda, 2011b) across the entire country, and delineated areas of erosion risk while also 211 

calculating extents under the various erosion control priority classes for different states of India. As 212 

opposed to a simple soil erosion map (Singh et al., 1992; Maji et al., 2008), their state-wise comparative 213 

assessment of erosion rates and tolerances is far more informative and highlights more pertinently the 214 

regions under various levels of erosion risk. We thus used data from their study (share of state-wise to 215 

country-wide priority erosion risk area) as well as information gathered by us during this review (location 216 

of the reviewed USLE applications; Fig. 2) to examine if the spatiality (focus or target areas) of the 217 

reviewed USLE applications was appropriate (i.e. applied in the most erosion-prone regions) (Fig. 3).  218 

What becomes apparent from the above is that despite the raft of soil erosion investigations employing the 219 

USLE across India and the diverse aspects/viewpoints considered, the method is not being applied where it 220 
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is probably the most pertinent. There is a clear concentration of studies in eastern India and the largest 221 

study areas are also found therein (Fig. 2). However, the eastern Indian states of West Bengal, Jharkhand 222 

and Odisha are not at the highest risk to soil loss nationwide (Sharda et al., 2013; Fig. 3). Jharkhand and 223 

West Bengal lead the country in terms of USLE applications with 15 and 13 studies, but rank 9th and 23rd, 224 

respectively, among 28 states, in terms of area under erosion control priority (Sharda et al., 2013). 225 

Conversely, Uttar Pradesh and Andhra Pradesh have the largest erosion priority areas but are 10th and 13th, 226 

respectively, in terms of studies conducted therein (Fig. 3). In four states (Uttar Pradesh, Karnataka, 227 

Sikkim and Nagaland) more than 80% of the eroded area is classed under one of the priority categories for 228 

conservation (Sharda et al., 2013; Fig. 3), despite which, these areas have received little attention (just four 229 

studies each in Uttar Pradesh and Karnataka, one in Sikkim and none in Nagaland). Less than 30% of the 230 

studies reviewed were conducted in states where more than 65% of the total eroded area is deemed to be of 231 

conservation priority (i.e. in Andhra Pradesh, Arunachal Pradesh, Assam, Karnataka, Nagaland, Sikkim, 232 

Uttar Pradesh and Uttarakhand).  233 

 234 

Fig. 3: State-wise comparison between share of total priority eroded area and share of total number of 235 

studies  236 

 237 
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 238 

4. USLE applications in India: factor-wise review 239 

After reviewing all the papers scrupulously it was apparent that very few studies had attempted to evaluate 240 

the elicited results. Thus, we have particularly emphasised on assessing the model parameterisation 241 

methods stated in each paper as a measure of the efficacy of their derived results, with respect to the actual 242 

modelling procedures outlined in Agricultural Handbook Nos. 537 (Wischmeier and Smith, 1978) and 703 243 

(Renard et al., 1997), as well as in seminal review articles on USLE (Renard et al., 2011; Benavidez et al., 244 

2018; Alewell et al., 2019; Kinnell, 2019). We discerned that across the 100 studies examined (see Table 245 

S1), a total of 32 different methods had been used to estimate the various model parameters– 12 for the R 246 

factor, six each for the K and LS factors and four each for the C and P factors. There were also instances 247 

where one or more of the factor estimation methods was not sufficiently described or their sources 248 

misquoted. We visualised the frequency with which each method was used by means of a chord diagram, 249 

rather than simple bar graphs, as this further allowed assessment of the frequency of co-occurrence of the 250 

various methods. Since in one USLE application, five methods can be combined to form 10 pairs (5C2 = 251 

10), we could derive 1000 such pair-wise combinations from the reviewed 100 studies. These 1000 252 

combinations were grouped into 263 unique combinations, where the minimum and maximum frequency 253 

of co-occurrences was 1 and 24 respectively (Fig. 4). Among these, 95 pair-wise combinations were found 254 

only once and 200 of the 263 unique combinations occurred less than six times (Fig. 4).  255 
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 256 

Fig. 4: Grouped chord diagram illustrating the 263 unique pair-wise combinations of USLE factor 257 

estimation methods. The width of a sector is indicative of the frequency with which that method was used 258 

in the studies reviewed, and the shades of grey demarcating the chords highlight the frequency of 259 

occurrence of a particular pair, ranging between 24 and 1. For details on the method-wise codes, refer to 260 

Table Nos. 1 (for R factor), 2 (for K factor), 3 (for LS factor), 4 (for C factor) and 5 (for P factor), and see 261 

the ensuing subsections for a detailed analysis. 262 

 263 

4.1 Computations of the R factor 264 

The R factor captures the potential erosive effect of rainfall and the ensuing runoff on the topsoil. Devised 265 

by Wischmeier (1959), the annual R factor, also termed as ‘Rainfall Erosion Index’, is a product of two 266 

rainfall factors, i.e. the total storm kinetic energy (E) and the maximum 30-minute rainfall intensity (I30), 267 

summed over a year for all storms of over 12 mm rainfall or for downpours expending more than 6.5 mm 268 
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rainfall within 15 minutes, and taking the average of those annual values for at least 22 years. Since the R 269 

factor can only be calculated as an average over decadal timescales, the USLE is ill-suited to simulate 270 

event-scale soil erosion (Kinnell, 2010). If successive storms have an interval of at least 6 hours, they are 271 

considered to be separate events and storms debouching rainfall amounts less than 12 mm are not 272 

considered (unless 6.5 mm fell within 15 minutes), as sufficient runoff capable of causing erosion is 273 

unlikely to be generated in such a scenario. However, this can also depend on the ambient antecedent 274 

moisture conditions in the area and so may need to be evaluated separately, if required. 275 

The kinetic energy of a rainstorm is calculated using equations that link E to I, which in USLE were of 276 

logarithmic nature for rainfall intensities less than 76 mm h-1 (for I > 76 mm h-1, a constant value was 277 

proposed) (Wischmeier and Smith, 1978) while in the RUSLE, an exponential relationship replaced the 278 

logarithmic equation, this being valid for all rainfall intensities (Brown and Foster, 1987). The E is 279 

indicative of the volume of rainfall and runoff, while the I30 indicates peak detachment and runoff rates. 280 

The EI30 term therefore captures both particle detachment and transport capacity (Wischmeier and Smith, 281 

1978; Renard et al., 1997). The R factor estimation method is almost identical in both the USLE and 282 

RUSLE, apart from the change in the kinetic energy equation and correction for ponding on flat slopes in 283 

the RUSLE. The R factor takes the unit of MJ mm ha-1 hr-1 yr-1 in SI units (Foster et al., 1981). 284 

Although the USLE/RUSLE can only predict on-site soil erosion and not off-site catchment sediment yield 285 

as runoff is not categorically considered in the R factor (Alewell et al., 2019), the EI30 term was found to 286 

be the most strongly correlated of the considered rainfall parameters that measures soil loss at the plot-287 

scale, andcan explain between 72–97% of the variations in soil loss caused by individual rainfall events 288 

(Wischmeier and Smith, 1978; Renard et al., 2011). However, the lack of individual storm records and 289 

sub-hourly data for the recommended long periods in many parts of the world, especially in the Global 290 

South, has often precluded the use of the prescribed USLE/RUSLE methods for R factor estimation and 291 

triggered the development of simple regression equations or other empirical methods [such as the Modified 292 

Fournier Index (Arnoldus, 1977, 1980)] that enable R factor estimation using annual/monthly rainfall data 293 

(Benavidez et al., 2018; Alewell et al., 2019). Apart from the apparent constraint of massive data 294 

requirements to compute the R factor, there also exists the matter of its universal relevance, especially in 295 

the tropics. The larger median drop size of tropical rainstorms as well as their higher rainfall intensities and 296 



 

14 
 

kinetic energies might lead to underestimation of the R factor in the tropics when calculated as per the EI30 297 

method (Lal et al., 1980; Nyssen et al., 2005).  298 

Of the 100 papers we reviewed, 73 studies clearly mentioned the temporal extent of the rainfall data used, 299 

which ranged between 1 and 113 years, with an average data record of 20.67 years. In all, 92 papers 300 

provided information about their rainfall data source, 78 of which used point-scale rainfall data obtained 301 

from weather stations in and around their study area, nine studies used any one of the various open-source 302 

gridded rainfall datasets available (e.g. India Meteorological Department (IMD), Tropical Rainfall 303 

Measuring Mission (TRMM), Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), 304 

WorldClim or others), three studies measured rainfall erosivity as per the stipulated USLE method while in 305 

the remaining two cases, approximate rainfall erosivity values were obtained from the iso-erodent map of 306 

India (Babu et al., 1978, 2004). Exactly half (39) of the 78 papers that used weather station data, detailed 307 

the interpolation method used to generate an R factor map from the point-scale data. The deterministic 308 

interpolation methods of Inverse Distance Weighting and Thiessen’s polygons were used in 21 and nine 309 

studies, respectively, and eight studies performed kriging (however no information on the kriging variant 310 

or variogram modelling was shared by any of these studies), while in one study a trend surface map was 311 

created.  312 

 313 

Table 1: Summary of the various methods employed to quantify rainfall erosivity for USLE-based soil 314 

erosion modelling in India 315 

Code 

in 

Fig. 4 

Source Method Location of 

development 

No. of 

studies 

used 

R1 Wischmeier and Smith 

(1978) 𝑹 =
∑ (𝑬𝑰𝟑𝟎)𝒊

𝒋
𝒊=𝟏

𝑵
 

(𝐸𝐼30)𝑖: Product of rainfall kinetic energy (E) and 30-minute 

maximum rainfall intensity (I30) for storm i. 
j: number of storms in an N-year period (suggested minimum 

period is 22 years) 

Original unit: 100 foot-tonf inch acre-1 h-1 yr-1, but depends 

on units of measurement of E and I30. 

USA 3 

R2 Babu et al. (1978) 𝑹 = 𝟕𝟗 + 𝟎. 𝟑𝟔𝟑𝑷 

𝑃: annual precipitation (mm) 

Original unit: t-m cm ha-1 h-1 yr-1 

India 27 

R3 Babu et al. (2004) 𝑹 = 𝟖𝟏. 𝟓 + 𝟎. 𝟑𝟖𝑷 

𝑃: annual precipitation (mm) 

Original unit: t-m cm ha-1 h-1 yr-1 

India 7 
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R4 Arnoldus (1977, 1980) 
R based on Modified Fournier Index ∑

𝑃𝑖
2

𝑃
𝟏𝟐
𝒊=𝟏  

𝑃: annual precipitation (mm) 

𝑃𝑖: monthly precipitation (mm) 

Original unit of the MFI-based equations: t-m cm ha-1 h-1 yr-1 

Western 

Africa and 

Western 

USA 

6 

 

R4 Unclear 𝑹 = 𝟏. 𝟕𝟑𝟓 × 𝟏𝟎(𝟏.𝟓𝒍𝒐𝒈𝟏𝟎(𝑴𝑭𝑰)−𝟎.𝟖𝟏𝟖𝟖) 

MFI: Modified Fournier Index 

Unit: unclear 

Unclear 31 

 

R5 El-Swaify et al. (1987) 

as cited in Benavidez et 

al. (2018) 

𝑹 = 𝟑𝟖. 𝟓 + 𝟎. 𝟑𝟓𝑷 

𝑃: annual precipitation (mm) 

Units: t ha-1 year-1 (all the other factors must have been 

developed to be dimensionless so that the final soil loss is in t 

ha-1 year-1) 

Possibly 

Thailand 

4 

R6 Roose (1977) as cited in 

Renard and Freimund 

(1994) 

𝑹 = (𝟎. 𝟓 ± 𝟎. 𝟎𝟓)𝑷 

𝑃: annual precipitation (mm) 

Original unit: 100 foot-tonf inch acre-1 h-1 yr-1 

Western 

Africa 

4 

R7 Renard and Freimund 

(1994) 
𝑹 = 𝟎. 𝟎𝟒𝟖𝟑𝑷𝟏.𝟔𝟏𝟎 (if P <850 mm) 

𝑹 = 𝟓𝟖𝟕. 𝟖 − 𝟏. 𝟐𝟏𝟗𝑷 + 𝟎. 𝟎𝟎𝟒𝟏𝟎𝟓𝑷𝟐    (if P >850 mm) 

Unit: MJ mm ha-1 h-1 yr-1 

Western 

USA 

2 

R8 Panigrahi et al. (1996) as 

cited in Shinde et al. 

(2011) and Sundara 

Kumar et al. (2018) 

𝑹 = 𝑷𝟐(𝟎. 𝟎𝟎𝟑𝟔𝟒𝒍𝒐𝒈𝟏𝟎𝑷 − 𝟎. 𝟎𝟎𝟎𝟎𝟔𝟐) 

𝑃: annual precipitation (mm) 

Unit: MJ mm ha-1 h-1 yr-1 

India 2 

R9 Babu et al. (1978, 2004) R values from Iso-erodent map of India 

Unit: t-m cm ha-1 h-1 yr-1 

India 2 

R10 Nakil (2014) as cited in 

Nakil and Khire  (2015) 
𝑹 = 𝟖𝟑𝟗. 𝟏𝟓𝒆𝒙𝒑(𝟎. 𝟎𝟎𝟎𝟖𝑷) 

𝑃: annual precipitation (mm) 

Unit: MJ mm ha-1 h-1 yr-1 

India 1 

R11 SARH (1991) as cited in 

Ghoshal and Das 

Bhattacharya (2020) 

𝑹 =  −𝟎. 𝟎𝟑𝟑𝟒𝑷 + 𝟎. 𝟎𝟎𝟔𝟔𝟔𝟏𝑷𝟐 

𝑃: annual precipitation (mm) 

Unit: MJ mm ha-1 h-1 yr-1 

Mexico 1 

R12 Sudhishri and Patnaik 

(2004) as cited in Dash 

et al. (2019) 

𝑹 = 𝟎. 𝟖𝟐𝑷 − 𝟔. 𝟔𝟏 
𝑃: annual precipitation (mm) 

Unit: t-m cm ha-1 h-1 yr-1 

India 1 

RX Unclear N/A N/A 9 

 316 

A total of 12 different methods were used in the reviewed works to estimate the R factor (Table 1). We 317 

obtained R factor values from the tables and maps of those studies that explicitly mentioned the same, and 318 

compared these values to the rainfall erosivity values for the respective study areas as estimated in the 319 

Global Rainfall Erosivity Database (GloREDa) (Panagos et al., 2017). The GloREDa R factor map 320 

(resolution ~1 km; unit: MJ mm ha-1 h-1 yr-1) for the Indian subcontinent was prepared through 321 

geostatistical interpolation of high resolution rainfall kinetic energy and intensity data of 247 stations that 322 

are well-distributed throughout India, with an average temporal coverage of 7 years. It is till date the best 323 

available rainfall erosivity map for India and we have used it to examine the relative accuracy of the 324 

various methods employed in the reviewed studies to estimate rainfall erosivity at the catchment- and 325 
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regional-scale in India (Fig. 5), with particular emphasis on the regional specificity and units of the same. 326 

We finally compared 88 studies in this manner, leaving out plot- and hillslope-scale USLE applications (as 327 

evaluating the R factor value of such small area studies would not be feasible using the GloREDa map that 328 

is of far coarser resolution) as well as studies that did not report their R factor values.  329 

A non-parametric Wilcoxon rank-sum test was conducted for the entire sample of 88 studies to assess the 330 

presence of any statistically significant difference between the rainfall erosivity values as obtained from 331 

the sampled studies and that derived from GloREDa. The results of this test express a highly significant 332 

difference (p <10-15) between the two, highlighting the overall underestimation of rainfall erosivity in these 333 

studies. We did not perform similar tests to compare the rainfall erosivity values summarised for each of 334 

the methods used as not all of the methods were used sufficiently or equitably to guarantee a minimum or 335 

roughly equal sample size for group-wise comparison of means. A graphical comparison appeared to be 336 

more meaningful instead (Fig. 5).  337 

With 31 applications, the equation cited by Tiwari et al. (2015), based on the Modified Fournier Index 338 

(Arnoldus, 1977, 1980) is the most frequently used R factor derivation method. Arnoldus (1977) had 339 

developed the equation as– 340 

𝑹 = 𝟏. 𝟕𝟑𝟓 × 𝟏𝟎 (𝟏. 𝟓𝒍𝒐𝒈𝟏𝟎(𝑴𝑭𝑰) − 𝟎. 𝟖𝟏𝟖𝟖)    (Eq. 1) 341 

to compute approximate rainfall erosivity for Morocco, in units of t-m cm ha-1 h-1 yr-1, and this equation 342 

has apparently been confused as–  343 

𝑹 = 𝟏. 𝟕𝟑𝟓 × 𝟏𝟎(𝟏.𝟓𝒍𝒐𝒈𝟏𝟎(𝑴𝑭𝑰)−𝟎.𝟖𝟏𝟖𝟖)      (Eq. 2) 344 

and subsequently been widely misused in India. The Eq. 2 has even been used to create a rainfall erosivity 345 

map for the entire country (Tiwari et al., 2015). Since such a fundamental error was committed by these 346 

studies, further assessment of the units or values derived in them was deemed immaterial. For 347 

completeness’ sake, this has still been shown in Fig. 5 (Code A), and is observed to undervalue the R 348 

factor.  349 
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 350 

Fig. 5: Comparison of rainfall erosivity as estimated by various methods (high-low bars) in the reviewed 351 

studies and the GloREDa rainfall erosivity estimates (area graph). A: MFI-based equation used by Tiwari 352 

et al. (2015); B: Babu et al. (1978); C: Babu et al. (2004); D: Babu et al. (1978) with units corrected; E: 353 

Arnoldus (1980); F: El-Swaify et al. (1987); G: Wischmeier and Smith (1978); H: Renard and Freimund 354 

(1994); I: Panigrahi et al. (1996); J: Roose (1977); K: Roose (1977) with units corrected; L: Nakil (2014); 355 

M: Sudhishri and Patnaik (2004); N: SARH (1991); X: Method unclear. 356 

 357 

Babu et al. (1978) devised a simple regression equation linking rainfall erosivity and annual rainfall using 358 

data from 42 stations across India. In all, 27 studies have used this method to compute the R factor, 359 

although only five of them have expressed their R values in the correct units of t-m cm ha-1 h-1 yr-1. We 360 

could not succinctly assess if the other 22 studies had specifically converted their values from the metric 361 

units to the reported SI units of MJ mm ha-1 h-1 yr-1, and therefore compared them separately. These 22 362 

studies had underestimated the R factor by about nine times on average (Code B in Fig. 5). Since the 363 

multiplication factor to convert from metric to SI units is 10.2, we are quite certain that this 364 

underestimation stems from the misreporting of units. Contrarily, the other five papers that expressed their 365 

R factor in the correct units of t-m cm ha-1 h-1 yr-1 (that were converted to MJ mm ha-1 h-1 yr-1 for the 366 

comparison) differ on average from the GloREDa-extracted values by about 500 MJ mm ha-1 h-1 yr-1 367 

(which could be due to differences in data resolution and measurement/computation aspects), and actually 368 

perform the best of all the methods sampled (Code D in Fig. 5) in quantifying the R factor. Just seven 369 

studies used the revised regression equation of Babu et al. (2004), and all of them reported their R factor 370 
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values in SI units. These studies also underestimate (by about seven times) the rainfall erosivity, which 371 

again suggests that they possibly did not convert the derived values from metric to SI units (Code C in Fig. 372 

5).  373 

Six papers mention that they used the basic MFI, rather than one of the MFI-based equations that Arnoldus 374 

(1977, 1980) had proposed. This approach is inherently flawed, as the MFI is simply a ratio and not a 375 

method in itself, nor does it estimate the R factor in units of MJ mm ha-1 h-1 yr-1. These six studies 376 

unsurprisingly underestimate the rainfall erosivity (Code E in Fig. 5). The method of El-Swaify et al. 377 

(1987: as cited in Benavidez et al., 2018) is rather odd, as it seemingly estimates the R factor in units of t 378 

ha-1 yr-1, meaning that all other factors must be dimensionless. The implication for users looking to use 379 

such a method is that all six factors must be estimated as per the guidelines of the same source, rather than 380 

employing different methods to estimate different factors (which would then have varying and 381 

incompatible units). In our survey, four studies were found to use this equation, although none of them 382 

correctly quoted the source or reported the correct units corresponding to this method. Consequently, there 383 

is an average underestimation of the R Factor by a staggering 29 times across them (Code F in Fig. 5).  384 

Following Roose (1977: as cited in Renard and Freimund, 1994), four studies actually estimated the 385 

rainfall erosivity as being equal to half of the annual precipitation. However, only one denoted the units 386 

correctly, i.e. 100 foot-tonf inch acre-1 h-1 yr-1 and clearly converted the elicited values from the imperial to 387 

SI units using a multiplication factor of 17.3. However, it is apparent that this study grossly overestimated 388 

the R factor (Code K in Fig. 5). The other three studies did not convert the units and ended up 389 

underestimating the rainfall erosivity by more than 10 times (Code J in Fig. 5). The equations of Renard 390 

and Freimund (1994) (Code H in Fig. 5) and Nakil (2014) (Code L in Fig. 5) also overestimate the R 391 

factor, while that of SARH (1991) (Code N in Fig. 5), Panigrahi et al., (1996) (Code I in Fig. 5) and 392 

Sudhishri and Patnaik (2004) (Code M in Fig. 5) underestimate the same to various degrees. Biswal (2015) 393 

employed the regional R factor equation of Sudhishri and Patnaik (2004) but incorrectly reported the units 394 

to be in the SI system (instead of t-m cm ha-1 h-1 yr-1), which could have led to its underestimation (Code 395 

M in Fig. 5). The eight studies for which the R factor estimation methods could not be understood, 396 

identified or otherwise verified also underestimated the erosivity on average (Code X in Fig. 5).  397 
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Three studies estimated the R factor as per the EI30 method of Wischmeier and Smith (1978), of which one 398 

was the plot-scale study of Ali and Sharda (2005) that we did not include in this comparison (due to its 399 

small areal extent that precludes sound judgement on the estimated R value from the GloREDa map which 400 

is of far coarser resolution). The other two studies, i.e., Pandey et al. (2007) and Singh and Panda (2017), 401 

respectively, underestimated and overestimated the R factor, and both taken together underestimated the 402 

rainfall erosivity (Code G in Fig. 5). This is surprising, as both these studies have reported R-values in the 403 

correct units and the GloREDa map, to which the values are being compared, was also developed in the 404 

same way. The discrepancy therefore, could arise from the short-term recording of pluviographic data in 405 

the respective studied locales, possibly at a low temporal resolution. However, some discrepancies may 406 

have also arisen due to data error ranges or uncertainty in both the GloREDa datasets and the actual 407 

measured rainfall erosivity values used in these studies. 408 

Apart from the extensive confusion or lack of attention regarding assigning correct units to the various 409 

methods, the main issue with most of the studies’ R factor estimation methods is their applicability in 410 

India. Considering that only 40 studies have estimated the rainfall erosivity using a method developed in 411 

India and just three more had attempted to measure the rainfall erosivity as per the USLE method, 57 412 

studies had used methods that were developed elsewhere and hence calibrated for totally different climatic 413 

regimes. Of these 57 studies, only four reported the elicited values in the correct units. One of them 414 

estimated the R factor as per Roose (1977) and corrected the units, while the other three used the methods 415 

of SARH (1991) and Renard and Freimund (1994). However, none of them could estimate the R factor 416 

with any degree of accuracy (Codes H, K and N in Fig. 5), possibly because these methods are simply not 417 

suitable to quantify the rainfall erosivity in the Indian climatic scenario. Awareness of the regional 418 

specificity of the R factor estimation methods is especially important for Indian USLE users as there is a 419 

strong seasonality in the rainfall received (and hence, soil erosion) in the country and the rainfall regime is 420 

very dissimilar to that of the west coast of USA or western Africa for example, which is where Roose 421 

(1977), Arnoldus (1980) and Renard and Freimund (1994) had developed their respective methods.  422 

 423 

 424 
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4.2 Computations of the K factor 425 

The K factor is the rate of soil loss per rainfall erosivity index for a specific soil, as measured in unit-plot 426 

conditions (Wischmeier and Smith, 1965, 1978) by keeping the LS, C and P factors constant at 1.0. It is a 427 

measure of the soil’s capability to resist erosion, with higher values indicating higher erosion susceptibility 428 

and vice versa. Thus, the K factor is in effect a lumped parameter that captures the integrated effect of the 429 

soil properties (especially physical properties like texture, structure, porosity) that influence its erosional 430 

response. These are in effect, the soil hydraulic conductivity, permeability and total water capacity, as well 431 

as any other attributes that might influence soil particle detachment and transportation due to rainfall and 432 

the ensuing runoff (Wischmeier and Smith, 1965; Wischmeier and Mannering, 1969).  433 

The best estimations of the K factor are obtained from long-term soil loss measurement on natural runoff 434 

plots, which is how it was originally determined (Wischmeier and Smith, 1965). However, as establishing, 435 

maintaining and monitoring runoff plots is an expensive affair, even for the minimal required period of 436 

two years (Renard et al., 2011; Alewell et al., 2019), the soil erodibility nomograph or its approximation 437 

equation is used in most cases to estimate the K factor. This requires data on the soil texture and organic 438 

matter content, along with information on soil structure and permeability (Wischmeier and Smith, 1978). 439 

The nomograph equation was reported to be quite accurate when used within its limits, i.e. for soils 440 

containing less than 70% silt and very fine sand and below 4% organic matter (OM) (Declercq and Poesen, 441 

1992). Auerswald et al. (2014) have recently developed a set of equations that emulates and effectively 442 

replaces the nomograph or its approximation equation and can thus be used for the full range of soil 443 

properties. The earlier equation developed by Sharpley and Williams (1990) within the EPIC (Erosion 444 

Productivity Impact Calculator) model can also be used for the full range of soil properties. However, the 445 

universal applicability of the aforesaid K factor estimation methods can be questioned as both of them 446 

were developed by making use of plot-scale soil loss data from the US and thus perform best in medium 447 

textured, poorly aggregated soils of temperate regions. Irrespective of this, these methods have been the 448 

most frequently used worldwide (Benavidez et al., 2018), and understandably so, as efforts to come up 449 

with regionally or conditionally applicable K factor estimation methods or values have been largely 450 

unsuccessful or inconclusive, primarily due to the lack of long-term measured plot-level data (Alewell et 451 

al., 2019).  452 
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With a motive of increasing its global applicability, K factor estimation procedures were considerably 453 

revamped in the RUSLE (Renard et al., 1997). A new globally applicable soil erodibility index was 454 

included, which estimates this as a function of the geometric mean diameter of particles and specific 455 

equations were proposed for smectite-rich soils, soils with a clay-rich subsurface horizon and Hawaiian 456 

volcanic soils. Moreover, provisions were made to allow for interactions of the K factor with other factors 457 

(including the computation of a seasonal K factor) and the effect of surface stoniness (particles with >2 458 

mm diameter) was explicitly included within this revamped K factor, rather than in the C factor, as was the 459 

case in the USLE. Further estimates of the K factor have also been devised subsequently (e.g. Bagarello et 460 

al., 2012). The unit of the USLE/RUSLE K factor in SI is t ha h ha-1 MJ-1 mm-1 (Foster et al., 1981). 461 

 462 

Table 2: Summary of the various methods employed to quantify soil erodibility for USLE-based soil 463 

erosion modelling in India. All the equations in this table estimate the K factor in units of t acre h 100-acre-464 

1 ft-1 tonf-1 inch-1  465 

Code in 

Fig. 4 

Source Method No. of 

studies used 

K1 Wischmeier and Smith 

(1978) 
𝑲 =

𝑨

𝑹
 

𝐴: soil loss rate; 𝑅: rainfall erosivity 

1 

K2 Wischmeier and Smith 

(1978), Renard et al. 

(1997) 

Standard soil erodibility nomograph 16 

K3 Wischmeier and Smith 

(1978), Renard et al. 

(1997) 

𝑲 = [𝟐. 𝟏 × 𝟏𝟎−𝟔 × 𝑴𝟏.𝟏𝟒(𝟏𝟐 − 𝒂) + 𝟎. 𝟎𝟑𝟐𝟓(𝒃 − 𝟐)

+ 𝟎. 𝟎𝟐𝟓(𝒄 − 𝟑)] 
𝑀 = (𝑆𝐼𝐿 + 𝑉𝐹𝑆) × (100 − 𝐶𝐿𝐴) 

𝑆𝐼𝐿 + 𝑉𝐹𝑆: Mass fraction (%) of silt and very fine sand, i.e. 

particles with sizes between 2 and 100 µm. 

𝐶𝐿𝐴: Mass fraction (%) of clay particles (<2 µm) 

𝑎: soil organic matter mass fraction (%) 

𝑏: soil structure code, viz. 1 (very fine granular), 2 (fine granular), 3 

(medium or coarse granular), 4 (blocky, platy or massive) 

𝑐: profile permeability class, viz. 1 (rapid), 2 (moderate to rapid), 3 

(moderate), 4 (slow to moderate), 5 (slow), 6 (very slow) 

44 

K4 Sharpley and Williams 

(1990) 𝑲 = [𝟎. 𝟐 + 𝟎. 𝟑𝒆𝒙𝒑 (−𝟎. 𝟎𝟐𝟓𝟔𝑺𝑨𝑵 (𝟏 −
𝑺𝑰𝑳

𝟏𝟎𝟎
))]

× [
𝑺𝑰𝑳

𝑪𝑳𝑨 + 𝑺𝑰𝑳
]𝟎.𝟑

× [𝟏. 𝟎 −
𝟎. 𝟐𝟓 𝑪

𝑪 + 𝒆𝒙𝒑(𝟑. 𝟕𝟐 − 𝟐. 𝟗𝟓𝑪)
] × [𝟏. 𝟎

−
𝟎. 𝟕 𝑺𝑵𝟏

𝑺𝑵𝟏 + 𝒆𝒙 𝒑(−𝟓. 𝟓𝟏 + 𝟐𝟐. 𝟗 𝑺𝑵𝟏)
] 

SAN, SIL, CLA and C are percentages of sand, silt, clay and organic 

carbon contents respectively, and SN1 is SAN divided by 100 and 

subtracted from 1. 

4 
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K5 Stewart et at. (1975), 

Stone and Hilborn 

(2000), Das (2012) 

As a function of texture class and OM content 14 

 

K6 Singh et al. (1981) as 

cited in Vemu and 

Pinnamaneni (2011) 

K factor values corresponding to soil type 1 

KX Unclear N/A 20 

 466 

 467 

Fig. 6: K factor values as estimated by the reviewed studies. The red line indicates the maximum possible 468 

value of the K factor in SI units (0.1 t ha h ha-1 MJ-1 mm-1). A: Wischmeier and Smith (1978) nomograph 469 

equation; B: Wischmeier and Smith (1978) standard nomograph; C: K factor tables of Stewart et at. 470 

(1975), Stone and Hilborn (2000) and Das (2012); D: Sharpley and Williams (1990) equation; E: From 471 

Singh et al. (1981) as per soil type; X: Method unclear 472 

 473 

The methods employed to estimate the K factor in the reviewed studies are tabulated (Table 2). A total of 474 

60 studies used the USLE standard nomograph or its associated equation, which is recommended for 475 

estimating the K factor in India (Singh et al., 1985). However, Ali and Sharda (2005) did not estimate the 476 

K factor by any set method but chose to actually measure it, which gives the most reliable account of the 477 

soil erodibility (Wischmeier and Smith, 1978; Renard et al., 1997, 2011). The accuracy of table-based 478 

(Stewart et al., 1975; Stone and Hilborn, 2000; Das, 2012) or equation-based (Sharpley and Williams, 479 

1990) approaches to estimate the soil erodibility using soil textural and organic matter content data can 480 
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however be questioned, given that these methods have no consideration of the soil structure or 481 

permeability, unlike the USLE standard nomograph. 482 

Of the studies considered in this review, 74% had used soil maps to generate a K factor map, a quarter of 483 

the studies had estimated the soil erodibility from soil samples collected in the field, and one study had 484 

measured the K values from plot-scale soil losses. In all, 17 of the 25 studies that had estimated the soil 485 

erodibility from collected soil samples had adopted a stratified random sampling strategy. Except for three 486 

hillslope-scale applications in these 17 investigations, the soil samples for the other 14 studies had been 487 

collected from various soil types or geomorphic units (as ascertained from the respective soil/geomorphic 488 

maps) and the estimated K factor value was assigned to the entire corresponding soil or geomorphic unit. 489 

The remaining eight out of 25 studies had generated spatially-continuous K factor maps through 490 

interpolation but only two papers (Prasannakumar et al., 2011a, b) had clearly mentioned the interpolation 491 

technique used. In total, 91 studies had generated spatially-discrete K factor maps. Of these, 77 had either 492 

tabulated all the K factor values in their respective study area or the same could be noted from the 493 

provided maps. With a motive of assessing the accuracy with which these studies had been able to capture 494 

the spatial variability in the K factor, we calculated the average area under each K factor value, by dividing 495 

the areal extent of each study area by its denoted number of soil erodibility values, and compared the same 496 

with the known spatial variability in K factor in India (cf. Adhikary et al., 2014). In these 77 studies, the 497 

area under a singular K factor value ranged from as low as 0.695 km2 (Singh and Panda, 2017) to a 498 

considerably larger extent of 20642.5 km2 (Vemu and Pinnamaneni, 2011), with a mean of 1057 km2 and 499 

standard deviation of 2711 km2. However, in an isotropic scenario (variogram range and sill same in all 500 

directions), the soil erodibility is constant only up to ca. 50 km2 in India (Adhikary et al., 2014). Judging 501 

by this, 60 of the 77 studies had failed to adequately capture the spatial variability in soil erodibility and 502 

had generalised the same to various extents, ranging from a minor 1.11 times (Pradeep et al., 2014) to a 503 

staggering 421 times (Vemu and Pinnamaneni, 2011), with the average being 27 times. 504 

The other issue concerning the K factor estimation in India is overestimation. We found that 70 studies had 505 

partially or wholly transgressed the physical limit of the K factor in SI units, i.e. 0.1 t ha h ha-1 MJ-1 mm-1 506 

(Foster et al., 1981) (Fig.6). The results of a non-parametric Wilcoxon signed-rank test confirmed that on 507 

average, the estimated soil erodibility was significantly greater than 0.1 t ha h ha-1 MJ-1 mm-1 (p=8×10-10). 508 
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The degree of overestimation is on average 0.3 (at least 3x overestimation) with a standard deviation of 509 

0.186. In all, 11 (of the 16) studies that used the standard nomograph, 24 (out of 44) papers that used the 510 

nomograph approximation equation, three (out of four) that used the Sharpley and Williams (1990) 511 

equation, all 14 studies that had read their K factor values from tables with respect to texture class and OM 512 

content and 18 (of the 20) studies that did not clearly specify the methods used, had overestimated the soil 513 

erodibility to varying degrees (Fig. 6). The commonness of this error possibly suggests some lack of 514 

attention on the part of most users towards the original unit (t acre h 100-acre-1 ft-1 tonf-1 inch-1) of the K 515 

factor estimators and/or possible overlooking of the fact that these values must be multiplied by 0.1317 to 516 

convert from the imperial to SI units, in which measurement system these studies have reported their K 517 

factor values.  518 

While it is not intrinsically wrong to estimate and report soil erodibility in the US customary units of t acre 519 

h 100-acre-1 ft-1 tonf-1 inch-1, users must be mindful that the R factor is also expressed in the same system 520 

of units, so that the eventually modelled soil losses would be assigned the unit of t acre-1 yr-1. However, as 521 

most of the studies have reported their rainfall erosivity in the popular SI units of MJ mm ha-1 h-1 yr-1, the 522 

K factor must also be given in t ha h ha-1 MJ-1 mm-1. Similarly, the appropriate K factor unit when the 523 

rainfall erosivity is in metric units (t-m cm ha-1 h-1 yr-1) is t ha h ha-1 t-m-1 cm-1.  524 

 525 

4.3      Computations of the LS factor 526 

The dimensionless topographic factor LS comprises of the slope length (L) and slope steepness (S) factors. 527 

Wischmeier and Smith (1978: page no. 14) defined L as “the distance from the point of origin of overland 528 

flow to the point where either the slope gradient (S) decreases enough that deposition begins, or the runoff 529 

water enters a well-defined channel that may be part of a drainage network or a constructed channel”. The 530 

L factor is basically the ratio of soil loss occurring from any slope relative to that from the USLE unit plot, 531 

raised to an exponent, the value of which was denoted as a function of the slope gradient in the USLE and 532 

as the ratio of the rill to interrill erosion in the RUSLE. While soil loss increases with increasing slope 533 

length (Wischmeier and Smith, 1978), the influence of slope steepness (whether constant or increasing) is 534 

far more pronounced (McCool et al., 1989). When the USLE was first proposed (Wischmeier and Smith, 535 

1965), the S factor was devised as a quadratic function of the slope gradient taken as percent slope (Smith 536 
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and Wischmeier, 1957), which upon upgradation, was replaced by another quadratic equation that models 537 

it as a function of the sine of the slope (Wischmeier and Smith, 1978). In the RUSLE, two different linear 538 

equations were proposed to estimate the S for slope gradients higher and lower than 9%, along with 539 

another equation that should be used to evaluate the S for slope lengths shorter than 4.5 m. The RUSLE 540 

also provides two similar equations (differently again as per the slope gradient being more or less than 9%) 541 

to estimate the S for thawing, weakened soils (McCool et al., 1989; Renard et al., 1997). A further 542 

equation based on a linear function relationship between the slope steepness factor and the sine of the 543 

slope angle was also devised by Nearing (1997) for slope gradients higher than 22%, which closely fits the 544 

RUSLE provided equations for slope gradients up to 22% and was also seen to be pertinently applicable 545 

for gradients higher than this value. 546 

The LS factor could originally only be computed for uniform slopes (Wischmeier and Smith, 1965), but 547 

was soon extended to irregular slopes as well. However, irregular slopes must first be sub-divided into 548 

individual segments of uniform slope gradients that can then be considered uniform, with the LS factor 549 

values being calculated for each segment (Foster and Wischmeier, 1974; Wischmeier and Smith, 1978; 550 

Renard et al., 1997) or it can be computed by introducing a power equation describing the slope profile and 551 

modifying the RUSLE LS factor equations following the methodology of Di Stefano et al. (2000). 552 

Building on the development of a physically-based equivalent of the LS factor (Moore and Burch, 1986; 553 

Moore and Wilson, 1992), Desmet and Govers (1996) really facilitated LS factor computation for irregular 554 

slopes and complex topographies by proposing a novel method that applied flow accumulation algorithms 555 

on Digital Elevation Models (DEMs) in a GIS environment. Their solution was that the unit contributing 556 

area of each cell, calculated from the upslope drainage area, could substitute the slope length. As it is 557 

natural for surface runoff to converge and diverge over the landscape before ending in a ‘well-defined 558 

channel’, the LS factor calculated in this manner readily paved the way for large-scale USLE-based soil 559 

loss modelling that was hitherto impossible. Although the method of Desmet and Govers (1996) has been 560 

globally accepted (Benavidez et al., 2018), further advances have been made in the last few decades to 561 

further improve LS factor computations by applying different flow accumulation algorithms on DEMs 562 

(e.g. Winchell et al., 2008; Zhang et al., 2013, 2017). However, a further consideration should be the most 563 
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apt flow routing algorithm (single or multi-directional) to be employed in a certain terrain, based upon 564 

which the flow accumulation surface is derived (Alewell et al., 2019). 565 

Presently, the computation of the topographic factor is rather easy with multiple freely available DEMs to 566 

choose from, with a range of resolutions appropriate for catchment-scale to continent-scale applications. 567 

The problem with LS factor estimation is therefore not data unavailability but rather the improper usage of 568 

the LS factor equations while using DEMs. For example, most open-source global DEMs (i.e. datasets 569 

other than LiDAR generated elevation grids) are unable to capture the minute and concentrated flow 570 

paths/channels that mark the end of a USLE/RUSLE slope segment due to their relatively coarse spatial 571 

resolution and consequently the computed slope lengths are too long in most cases. Therefore, in order to 572 

prevent such an overestimation, the slope lengths are simply cut off at some arbitrary value– a decision 573 

that rests with the researcher and hence subjectivity cannot be ruled out (Renard et al., 2011). It is 574 

therefore more prudent to threshold slope lengths at 122 m, which not only corresponds to the maximum 575 

length of the USLE soil loss plots but also equals the most frequently observed slope lengths in the field 576 

(McCool et al., 1989; Renard et al., 1997). 577 

 578 

Table 3: Summary of the various methods employed to quantify LS factor for USLE-based soil erosion 579 

modelling in India 580 

Code 

in 

Fig. 4 

Source Equation No. of 

studies 

used 

Details of usage in reviewed 

applications 

LS1 Smith and 

Wischmeier 

(1957) 

𝑳𝑺 =  (
𝝀

𝟐𝟐. 𝟏𝟑
)𝒎 × (𝟎. 𝟎𝟔𝟓 + 𝟎. 𝟎𝟒𝟓𝒔

+ 𝟎. 𝟎𝟎𝟔𝟓𝒔𝟐) 
λ: slope length (m); s: slope gradient (%) 

m: varies between 0.2 and 0.5 depending on 

the slope gradient  

14 λ estimated using:  

flow accumulation (n=8); set constant 

(n=2) 

equation 𝜆 = 158 − 2.92𝑠 (n=1); no 

details (n=3) 

s obtained from:  

topographical maps (n=7); DEM 

(n=5); field measurements (n=1); no 

details (n=1) 

LS2 Wischmeier 

and Smith 

(1978) 

𝑳𝑺 =  (
𝝀

𝟐𝟐. 𝟏𝟑
)𝒎  

× (𝟔𝟓. 𝟒𝟏 𝐬𝐢𝐧𝟐 𝜽
+ 𝟒. 𝟓𝟔 𝐬𝐢𝐧 𝜽 + 𝟎. 𝟎𝟔𝟓) 

λ: slope length (m); θ: slope angle 

m: dependent on the slope gradient  

– 0.5 if slope ≥ 5%  

– 0.4 if slope is between 3.5% and 4.5%  

– 0.3 if slope is between 1% and 3%  

– 0.2 if slope ≤1% 

21 λ estimated using:  

flow accumulation (n=4); field 

measurements (n=1) 

equation 𝜆 = 40 + 0.4𝑠 (n=4); set 

constant (n=2); 

no details (n=10) 

θ obtained from:  

topographical maps (n=5), field 

measurements (n=1), DEM (n= 10), 

no details (n=5)  
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LS3 Moore and 

Burch (1986), 

Desmet and 

Govers (1996) 

𝑳𝑺 = (
𝑨𝒔

𝟐𝟐. 𝟏𝟑
)𝟎.𝟒  × (

𝒔𝒊𝒏 𝜽

𝟎. 𝟎𝟖𝟗𝟔
)𝟏.𝟑  

As: unit contributing area; θ: slope angle 

As = flow accumulation × DEM cell size  

24 θ obtained from DEM (n=18) and 

topographical maps (n=6) 

LS4 Moore and 

Wilson (1992), 

Desmet and 

Govers (1996) 

𝑳𝑺 = (
𝑨𝒔

𝟐𝟐. 𝟏𝟑
)𝒎  ×  (

𝒔𝒊𝒏 𝜽

𝟎. 𝟎𝟖𝟗𝟔
)𝟏.𝟑  

As: unit contributing area; θ: slope angle 

m = 0.4 – 0.6  

As = flow accumulation × DEM cell size  

10 θ obtained from DEM (n=8) and 

topographical maps (n=2) 

LS5 McCool et al. 

(1989) 
 𝑳 = (

𝝀

𝟐𝟐. 𝟏𝟑
)𝒎 

𝒎 =
𝜷

𝟏 + 𝜷
 

𝜷 =
(

𝒔𝒊𝒏 𝜽
𝟎. 𝟎𝟖𝟗𝟔

)

𝟑 (𝒔𝒊𝒏 𝜽)𝟎.𝟖 + 𝟎. 𝟓𝟔
 

𝑺 = 𝟏𝟎. 𝟖 𝐬𝐢𝐧 𝜽 + 𝟎. 𝟎𝟑 (For slopes <9%) 

𝑺 = 𝟏𝟔. 𝟖 𝐬𝐢𝐧 𝜽 − 𝟎. 𝟓 (For slopes ≥9%) 

𝑺 = 𝟑 (𝒔𝒊𝒏 𝜽)𝟎.𝟖 + 𝟎. 𝟓𝟔 (For λ <4.5 m) 

λ: slope length (m); θ: slope angle 

26 λ estimated using:  

flow accumulation (n=15),  

set constant (n=4) 

no details (n=7) 

θ obtained from:  

topographical maps (n=6), DEM (n= 

20) 

LS6 Smith and 

Wischmeier 

(1957), 

Wischmeier 

and Smith 

(1978), 

McCool et al. 

(1989) 

Comparison of various LS factor methods 1  

LX  Method unclear 4 N/A 

 581 

In all, 64 of the 100 studies examined here had used a DEM to compute the LS factor. The ASTER GDEM 582 

and SRTM DEM were the most popularly used DEM datasets, even though this choice of DEM or DEM 583 

resolution appears to be arbitrary in all cases despite the fact that the ascertained topographic parameters 584 

from each DEM can vary markedly (Das et al., 2016). Of the remaining examples, 28 studies had 585 

estimated the LS factor for their study area from topographical maps (either manually or from contour-586 

generated DEMs), one plot-scale study had actually measured the LS factor in the field while the rest did 587 

not mention any data source. The LS factor estimation methods are detailed in Table 3.  588 

In total, 34 studies had applied the equations developed by Moore and Burch (1986) and Moore and 589 

Wilson (1992), which are based on the concept of unit stream power. All of these 34 studies estimated the 590 

L factor from a flow accumulation surface as suggested by Desmet and Govers (1996). Although 591 

Wischmeier and Smith (1978) had replaced the earlier LS factor equation of Smith and Wischmeier (1957) 592 

with a more pertinent equation that models S values as a quadratic function of the sine of the slope angle, 593 
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the latter (i.e. older equation) was still used in 14 of the studies reviewed. Just 22 studies employed the 594 

updated equation of Wischmeier and Smith (1978), four of which specified an unrealistic value of 0.7 595 

(which exceeds the maximum possible value of 0.5) for the exponent m. In all, 26 studies had calculated 596 

the LS factor as per the RUSLE method (Renard et al., 1997), though only four had actually obtained the 597 

m exponent of the L factor through estimation of the rill to interrill erosion ratio as should be done for 598 

RUSLE. We observed that in nine cases, the slope length (λ) was taken to be the same as the DEM 599 

resolution, which varies between 23.5 m and 200 m. The justification of such an assumption was unclear in 600 

all cases, but according to our understanding, a constant slope length could result in considerable under- or 601 

overestimation of the LS factor and consequently a similar aberration in the estimated soil loss rates.  602 

Another issue that leads to overestimation of soil loss rates stems from users considering abnormally long 603 

slope lengths (Renard et al., 2011). Thus it is especially important for modellers using a DEM and flow 604 

accumulation algorithms to calculate the L factor to apply an appropriate channel initiation threshold to 605 

truncate the overland flow paths as they terminate in a 'well-defined channel' (Haregeweyn et al., 2017; 606 

Almaw Fenta et al., 2019). Of the 61 studies that used a flow accumulation surface to calculate slope 607 

lengths, only three explicitly mentioned how the flow accumulation raster was thresholded. There was no 608 

objective means to assess if and how the remaining 58 studies obtained the slope lengths from their 609 

respective flow accumulation rasters. Five studies even calculated slope lengths using regression equations 610 

(𝜆 = 40 + 0.4𝑠; 𝜆 = 158 − 2.92𝑠) that were functions of the slope steepness, though no sources were 611 

cited for these equations and 24 other studies supplied no information on the LS factor estimation apart 612 

from the equation used. In sum, many questions remain concerning the LS factor estimation (both in terms 613 

of ascertained values and clarity of method) in the bulk of USLE applications in India. 614 

 615 

4.4 Computations of the C factor 616 

The cover and management factor is defined as the ratio of soil loss from a field with specific cover and 617 

management to that of a field under 'clean-tilled continuous fallow' (Wischmeier and Smith, 1965, 1978). 618 

Being a ratio, it normally varies between 0 and 1.0, unless an area is more erosion-prone than the unit-plot 619 

(Karpilo and Toy, 2003; Renard et al., 2011) It is one of the most important USLE factors because it 620 
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represents the most readily manageable condition for reducing erosion (Wischmeier and Smith, 1978; 621 

Renard et al., 1997).  622 

The USLE C factor estimation procedure differs between land cover/use classes. For croplands, it is 623 

estimated annually by considering soil loss ratios and relative rainfall erosivities for different crop growth 624 

stages. Therefore the C factor represents how the crop calendar and agricultural practices influence soil 625 

erosion in a region. For various non-agricultural land uses such as pastures, rangelands and undisturbed 626 

forests or woodlands, the estimation scheme is somewhat different in that it varies as a function of the 627 

vegetation height, canopy and ground cover (undergrowth, litter and other such aspects). The USLE also 628 

allows C factor estimation for construction sites (Wischmeier and Smith, 1965, 1978).  629 

The RUSLE C factor probably underwent the most significant change among all the factors compared to 630 

that of the USLE, as a subfactor-based approach was devised to evaluate C values for all types of land 631 

cover/use classes. Soil loss ratios were not to be estimated anymore from tables but to be calculated as a 632 

product of the prior-land-use (PLU), canopy-cover (CC), surface-cover (SC), surface-roughness (SR) and 633 

soil-moisture (SM), for each time period over which these sub-factors can be assumed to be constant. 634 

Subsequently, each of the soil loss ratio values are weighted by the fraction of (relative) rainfall erosivity 635 

of the corresponding time period and then combined into an overall C factor value (Renard et al., 1997).  636 

The problem with estimating the C factor either according the textbook USLE or RUSLE approach is that 637 

they require voluminous data on the spatio-temporal dynamics of land cover/use of the examined area, in 638 

addition to knowledge of local agricultural practices (Gabriels et al., 2003), which is often impracticable to 639 

monitor directly or impossible to gain otherwise, especially at the catchment- or regional-scale. 640 

Consequently, the process of C factor estimation has undergone considerable simplification and cover-641 

specific values are simply obtained from existing literature and applied to land cover/use maps (Benavidez 642 

et al., 2018; Alewell et al., 2019). As an alternative to the original USLE/RUSLE methods or the look up 643 

table based approach of estimating the C factor, the use of remotely sensed imagery and various image 644 

derived band ratios or indices have gained traction (De Jong, 1994; Van der Knijff et al., 2000; Schönbrodt 645 

et al., 2010; Zhang et al., 2011; Panagos et al., 2015a; Teng et al., 2016; Schmidt et al., 2018). However, 646 

though remote sensing helps to estimate time-varying C factors and facilitates sub-annual or seasonal soil 647 
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erosion prediction, it fails to adequately capture or properly represent the inherent management aspect of 648 

this component (Alewell et al., 2019).  649 

Proper assessment of the C factor estimation methods as adopted in the reviewed studies was the most 650 

difficult to accomplish. This is because catchment-scale USLE applications do not normally follow the 651 

methodology suggested by Wischmeier and Smith (1978) or Renard et al. (1997), due to the obvious 652 

reasons outlined above. Of the reviewed studies, only the plot-scale study of Ali and Sharda (2005) 653 

obtained the C factor values as per the USLE methodology. Alewell et al. (2019) noticed that in most 654 

USLE applications, C factor values are simply obtained from the literature. This certainly holds true for 655 

India, with 56 studies clearly having done the same (Table 4). However, some studies did not explicitly 656 

state a source and in most cases the denoted/used C factor values corresponding to different land cover/use 657 

types were obtained from different sources, without consideration of the fact that the land use as well as 658 

definitions of land cover may vary in the examined area compared to the region from where these values 659 

were originally estimated.  660 

None of the reviewed applications considered crop rotation while estimating the C factor values for 661 

croplands. In 16 studies, croplands were assigned higher C values than degraded barren areas or 662 

wastelands, implying a higher soil loss susceptibility of croplands, which is rather counterintuitive and 663 

unlikely to find ratification in the available literature. A Normalised Difference Vegetation Index (NDVI)-664 

based approach to C factor estimation was adopted in 31 studies, 27 of which employed the equation 665 

coined by Van der Knijff et al. (2000) and four used a simple regression equation that estimates the C 666 

factor as a function of the NDVI (Patil and Sharma, 2013). Although one advantage of using the NDVI 667 

parameter is its potentiality of determining C factors sub-annually, upon availability of cloud-free imagery, 668 

the equation proposed by Van der Knijff et al. (2000) has been observed to produce unrealistically high C 669 

factor values in non-agricultural areas (Benavidez et al., 2018). It was not clear how the studies that 670 

employed this method tackled the problem of C factor overestimation in non-agricultural areas but 10 of 671 

them had C factor values greater than 1, which is quite unrealistic. Three of the four studies that used the 672 

regression equation of Patil and Sharma (2013) also overestimated the C factor. Generally speaking, it 673 

seems as if the C factor estimation in most cases has been based on the user’s arbitrary decisions, rather 674 

than scientific objectivity, which is not unheard of when it comes to estimation of both the C and P factors 675 
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(Karpilo and Toy, 2003). However, with the C factor being so important in predicting soil loss rates and 676 

also in demonstrating the possible efficacies of any implementable ameliorative measures, any such 677 

miscalculation directly deteriorates the accuracy of modelled erosion rates. 678 

 679 

Table 4: Summary of the various methods employed to estimate the C factor for USLE-based soil erosion 680 

modelling in India 681 

Code in 

Fig. 4 

Method No. of 

studies  

C1 As per USLE (Wischmeier and Smith, 1978) 1 

C2 Values from literature corresponding to land cover/use classes 56 

C3 𝐶 = 𝑒𝑥𝑝 [𝛼(
𝑁𝐷𝑉𝐼

𝛽−𝑁𝐷𝑉𝐼
)] where α = 2; β = 1 (Van der Knijff et al., 2000) 27 

C4 𝐶 = 1.02 − 1.21 𝑁𝐷𝑉𝐼 (Patil and Sharma, 2013) 4 

CX Unclear 12 

 682 

4.5 Computations of the P factor 683 

The support practice (P) factor is “the ratio of soil loss with a specific support practice to the 684 

corresponding loss with up-and-down-slope culture” (Wischmeier and Smith, 1978: page no. 14). It is 685 

representative of the efficacy of erosion control measures, with values close to zero suggestive of the 686 

success of a particular erosion control practice. Contouring, contour stripcropping, terracing and stabilised 687 

waterways are some of the conservation practices recommended to reduce the P factor value of a cropland 688 

(Wischmeier and Smith, 1965, 1978). The USLE guidebook of Wischmeier and Smith (1978) contains 689 

detailed tables to estimate the P factor value for each of the mentioned practices as a function of the slope 690 

gradient and length, which can be reliably used to evaluate the P factor for croplands.  691 

As for the other factors, P factor estimation methods were upgraded in the RUSLE and a larger range of 692 

support practices incorporated, owing to the CREAMS (Chemicals, Runoff, and Erosion from Agricultural 693 

Management Systems) model based analytical experiments and availability of more experimental data 694 

(Renard et al., 1997, 2011). Akin to the C factor, the RUSLE P factor is calculated as a product of sub-695 

factors for individual support practices that are normally combined to achieve the best possible erosion 696 

control. However, the original USLE or RUSLE method is rarely followed to obtain P factor values while 697 
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modelling soil erosion at the catchment- or regional-scale (Alewell et al., 2019), and for non-agricultural 698 

land uses, the P factor definition is confusing and also somewhat misleading. Karpilo and Toy (2003) have 699 

discussed this problem further and mentioned that the majority of non-agricultural RUSLE applications 700 

assume the absence of any conservation practice and specify the P value to be 1.0. For the majority of non-701 

agricultural land uses, such as forests, woodlands, grasslands or urban areas, this seems to be appropriate if 702 

no special operation or activity is undertaken to arrest or divert runoff and promote deposition.  703 

Evaluation of the P factor estimation methods used in the reviewed papers proved to be just as difficult as 704 

that for the C factor. 24 studies had considered the P factor to be constant at 1.0 (Table 5), which is 705 

appropriate if no erosion control measures exist (Karpilo and Toy, 2003; Benavidez et al., 2018). 17 706 

studies had assigned two P factor values, i.e. 0.28 for croplands and 1.0 for the rest of their study area 707 

following Rao (1981). Due to the inaccessibility of this paper, it is unclear on which basis (i.e. kind of 708 

existing support practice) the P value for croplands was assigned as 0.28 and further if this study had 709 

considered a range of agricultural practices or not. 22 studies had obtained P values specific to certain land 710 

cover/use classes but 18 of these did not provide any source. Finally, seven studies had used one of the 711 

tables provided by Wischmeier and Smith (1978) on P factor values for croplands under contouring, but 712 

none of them had also provided any information on how values were estimated for non-agricultural areas 713 

and whether the agricultural lands in their respective study areas were indeed all under contouring-based 714 

management. 30% of the reviewed studies did not clearly state or provide any details on their method of P 715 

factor estimation.  716 

 717 

Table 5: Summary of the various methods employed to estimate the P factor for USLE-based soil erosion 718 

modelling in India 719 

Code in 

Fig. 4 

Method No. of 

studies 

P1 Values from literature corresponding to land cover/use classes 22 

P2 P factor for contouring (Wischmeier and Smith, 1978) 7 

P3 P=1 assigned due to absence of any support practice 24 

P4 Assigned P=0.28 for croplands and P=1 for non-croplands as per Rao 

(1981) 

17 

PX Unclear 30 
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 720 

4.6 In a nutshell 721 

Over half (55%) of the studies we reviewed claimed that they had used the RUSLE framework to estimate 722 

soil erosion, which was strictly speaking, not the case as per their adopted methodology. This confusion 723 

over the correct nomenclature is mainly caused by the identical equations of the USLE and the RUSLE. 724 

The RUSLE is difficult, if not impossible to use, for large-scale soil erosion modelling in general and even 725 

more so in data-sparse conditions of India, as it necessitates parameterisation in sub-annual timescales. All 726 

the studies had directly or indirectly followed the USLE method for R and K factor estimation and such 727 

misnomers in terms of the model use possibly further highlight a deficient understanding/adoption of the 728 

correct model parameters, units and computation methods.  729 

Viable estimations of the C and P factors are the main impediment in the way of large-scale USLE 730 

applications. Even though the C factor is rarely, if at all, computed following the USLE methodology in 731 

contemporary studies, the common practice of obtaining C factor values corresponding to land cover/use 732 

classes from previous studies is inherently a USLE-based approach, since these C factor values were 733 

originally estimated following the USLE methodology (see Morgan (2005) for an example). The use of 734 

arbitrary C and P factor values (i.e. eliciting them from studies conducted in areas quite different to the 735 

location being examined) thus presents a real challenge. Possibly, this can be surmounted to an extent 736 

using the high resolution satellite images (that are also multi-temporal and multi-spectral) and terrain 737 

datasets that are progressively becoming more available. 738 

Nonetheless, all factors considered together, the vast majority of papers sampled here misapplied the 739 

USLE while modelling soil erosion in various parts of India. We observed that lack of attention towards 740 

factor estimation methods, their units or their applicability in India was surprisingly ubiquitous. Most of 741 

the studies estimated rainfall erosivity using an erroneous or ill-suited equation and/or reported their values 742 

in the wrong units, causing a gross underestimation of the same. Use of short-term rainfall data of only a 743 

few years was also observed to result in considerable inaccuracies even when the rainfall erosivity was 744 

measured as per the guidelines of the Agricultural Handbook No. 537 (Wischmeier and Smith, 1978). The 745 

clear overvaluation of the K factor, on the other hand, is probably solely due to the various users' lack of 746 
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attention towards denoting the appropriate units (with respect to the R factor) and its maximum possible 747 

value. Furthermore, it is worth noting that most studies have homogenised the K factor values over regions 748 

larger than what is deemed suitable as per its spatial variability limits and thus have feasibly missed out on 749 

adequately capturing the inherent variability in soil erodibility within the examined areas (i.e. thereby 750 

possibly over- or underestimating this parameter). While substantial doubts also remain about the 751 

undertaken LS factor computations in general, the estimation of the C and P factors in an overwhelming 752 

majority of publications from India are quite inaccurate, inconsistent and possibly bereft of sound 753 

foundations. Since both these factors are given as ratios, assigning arbitrary values could certainly 754 

culminate in a severe miscalculation of soil loss rates or abet impaired/skewed judgements about erosion 755 

mitigation measures.  756 

The fact that a large number of studies did not supply enough (if any) information on one or more of their 757 

factor estimation procedures stymied our evaluations as well. Of the 100 papers examined, the field-scale 758 

study of Ali and Sharda (2005) that sought to assess the applicability of the USLE in India stood out in 759 

terms of technical clarity and viability of findings. They used the USLE to simulate soil erosion at the most 760 

appropriate scale (i.e. plot- to field-scale) and found that the coefficient of determination between the 761 

measured and simulated soil loss values was between 0.88 and 0.91, with no statistically significant 762 

difference existing between the observed and simulated values at the 1% alpha-level. Among the studies 763 

that aimed to simulate soil erosion at larger spatial scales, Nagaraju et al. (2011), Nakil and Khire (2015) 764 

and Swarnkar et al. (2018) stood out by virtue of their consistent and accurate factor estimation. Even 765 

though none of these three studies attempted to validate their model output, Swarnkar et al. (2018) 766 

proposed a framework to assess the model uncertainty, which is relevant when the USLE is used in large, 767 

ungauged river basins. Since only a paltry four of the 100 studies we reviewed were observed to have 768 

applied the USLE correctly, there is definitely room for and an urgent need to markedly improve future 769 

USLE applications in India.   770 

 771 

5. A roadmap for future USLE applications in India  772 

Presently, with the considerable amount of open-source data available to apply the USLE at the sub-773 

continental, continental or global scales, many studies have been undertaken in this regard (e.g. Borrelli et 774 
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al., 2017; Panagos et al., 2018; Almaw Fenta et al., 2019; Koirala et al., 2019; Borrelli et al., 2020; 775 

Panagos et al., 2020). However, USLE applications in field-settings or catchments cannot benefit much 776 

from these data due to their coarse resolution and the associated uncertainty at these scales. Careful 777 

curation of the input data at an appropriately high resolution is thus necessary (cf. Borrelli et al. (2014) and 778 

Swerts et al. (2019) for examples). In countries such as India where all the requisite data are not available 779 

or readily accessible, using the USLE for estimating soil erosion in catchments and river basins remains a 780 

challenge. Furthermore, the previous sections have highlighted the multiple erroneous estimations of the 781 

different USLE components in studies conducted herein and the concomitant skewed soil loss predictions. 782 

Addressing this, in the following sections we suggest the most appropriate combination of model 783 

parameterisation methods for Indian conditions, giving due consideration to data availability as well as 784 

demonstrate the best possible evaluation methods for each of the USLE's parameters, so as to contribute 785 

towards improving future USLE applications in India.  786 

 787 

5.1 Correctly computing the R factor 788 

To date, the most appropriate and accurate estimator of the rainfall erosivity factor in India is the method 789 

adopted by Babu et al. (2004). They analysed long-term data of monthly, seasonal and annual rainfall 790 

erosivity for 123 stations across India and framed two linear regression equations to estimate the annual 791 

and seasonal (June–September, i.e. the summer monsoon period) erosivity separately, by using annual and 792 

monsoonal rainfall, respectively. Both equations had high correlation (r ≥ 0.9) between erosivity and 793 

rainfall amounts. As mentioned before, these equations estimate the R factor in metric units of t-m cm ha-1 794 

h-1 yr-1, which is converted to MJ mm ha-1 h-1 yr-1 by a multiplication factor of 10.2 as shown below.  795 

1 [
t − m cm

ha h yr
] = [

9806.65 Nm cm

ha h yr
 ] = [ 

98066.5 Nm mm

ha h yr
] = [

98066.5 J mm

ha h yr
] = 0.098 [

MJ mm

ha h yr
] 796 

Therefore, 1 [
MJ mm

ha h yr
] = 10.204 [

t−m cm

ha h yr
] 797 

Therefore the equations of Babu et al. (2004) can be rewritten as –  798 

𝑅𝑎 = 831.626 + 3.877𝑃𝑎     (Eq. 3) 799 

𝑅𝑠 = 733.668 + 3.684𝑃𝑠     (Eq. 4) 800 
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where, 𝑅𝑎 and 𝑅𝑠 are the annual and seasonal rainfall erosivity, in units of MJ mm ha-1 h-1 yr-1, calculated 801 

from annual rainfall (𝑃𝑎) and seasonal rainfall (𝑃𝑠), respectively. As hitherto mentioned, annual/monthly/ 802 

seasonal precipitation must always be averaged over decadal timescales before computing the R factor 803 

using any suitable regression equation.  804 

The requisite rainfall data (both spatial and non-spatial) can be obtained from the India Meteorological 805 

Department (IMD) website (https://imdpune.gov.in/index.html). IMD data are based on long-term gauge 806 

records and can be used reliably. However, the interpolation method used must be clearly specified if 807 

gauge data is used. The WorldClim data repository (https://www.worldclim.org/) also provides gauge-808 

based data in a gridded format, which can be used as well. Since Babu et al. (2004) developed their 809 

equations using measured rainfall data, the use of satellite-based rainfall products such as the Tropical 810 

Rainfall Measurement Mission (TRMM) or model-derived data like CFSR (Climate Forecast System 811 

Reanalysis) is not recommended, unless these have been extensively evaluated against the measured 812 

rainfall records in the intended study area.  813 

 814 

5.2 Correctly computing the K factor 815 

The soil erodibility calculated from runoff plots per unit of rainfall erosivity index in various parts of the 816 

country corresponded best with the nomograph-derived K factor values and hence use of the nomograph is 817 

recommended (Singh et al., 1985). However, data availability/accessibility issues do arise during soil 818 

erodibility estimation in India. Although soil maps of some states can be obtained from the data portal of 819 

the European Soil Data Centre (https://esdac.jrc.ec.europa.eu/), these are not accompanied by 820 

corresponding soil survey reports or analytical data, even though the scale (1:500000) of state-level soil 821 

maps is adequate for soil erodibility mapping for USLE applications at the catchment scale and beyond. 822 

The National Bureau of Soil Survey and Land Use Planning (NBSS&LUP), the nodal soil survey 823 

organisation in India, has not yet made their maps and survey reports available openly either. Since for 824 

basin-scale soil erosion modelling, estimating the soil erodibility from collected soil samples is not feasible 825 

owing to the expenses and logistics involved, gridded soil databases perforce have to be used. The most 826 

popular gridded soil database is the International Soil Reference and Information Centre (ISRIC) SoilGrids 827 

https://imdpune.gov.in/index.html
https://www.worldclim.org/
https://esdac.jrc.ec.europa.eu/
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(https://soilgrids.org/), which provides depth-wise rasterised data on a number of soil physico-chemical 828 

properties as well as the most probable soil classifications at a resolution of 250 m (Hengl et al., 2017).  829 

However, a few points are noteworthy while using the ISRIC SoilGrids data to estimate soil erodibility. 830 

Primarily, all the requisite data (sand, silt, clay and organic carbon content) must be converted to percent 831 

contents. The very fine sand (0.05–0.1 mm) content is usually not measured in standard soil textural 832 

analysis and data on this fraction is not available from ISRIC. It can however be taken as 20% of the sand 833 

content (0.05–2.0 mm) for soil erodibility estimation (Panagos et al., 2014). ISRIC only provides data on 834 

organic carbon content, which must be converted to organic matter content by multiplying the obtained 835 

figures with the Van Bemmelen factor of 1.724 (Heaton et al., 2016). Since soil structure or permeability 836 

data is not available from the ISRIC, these have to be indirectly estimated with respect to the major texture 837 

classes (Table 6, Table 7).  838 

 839 

Table 6: Soil structure types inferred from major soil textural classes as per Bagarello et al. (2009) 840 

Soil texture Structure types 

Sand, loamy sand, sandy loam 1 (very fine granular) 

Sandy clay, sandy clay loam, loam, silty loam, silt 2 (fine granular) 

Clay loam, silty clay loam 3 (medium or coarse granular) 

Silty clay, clay 4 (blocky, platy or massive) 

 841 

Table 7: Soil permeability classes estimated from major soil textural classes as per Rawls et al. (1982) 842 

Soil texture Permeability class 

Sand 1 (fast and very fast) 

Loamy sand, sandy loam 2 (moderately fast) 

Loam, silty loam, silt 3 (moderate) 

Sandy clay loam, clay loam 4 (moderately slow) 

Silty clay loam, sandy clay 5 (slow) 

Silty clay, clay 6 (very slow) 

 843 

Graphical estimation of the soil erodibility using the nomograph is not possible when gridded soil datasets 844 

are used and the approximation equation (Code K3 in Table 2) cannot be used for the available range of 845 

soil properties. Consequently, soils with silt and very fine sand content exceeding 70% or having OM 846 

content greater than 4% are often excluded from large-scale soil erodibility mapping or scaled down to 847 

70% silt and very fine sand and 4% OM (Panagos et al., 2014; Borrelli et al., 2017; Almaw Fenta et al., 848 

https://soilgrids.org/


 

38 
 

2019). However, it is for such situations that the K factor estimation method developed by Auerswald et al. 849 

(2014) is most useful. This method enables K factor estimation in four steps, though in situations where 850 

data on surface coarse fragments cover is not available (such as when using the ISRIC SoilGrids data) or 851 

when a correction for coarse fragments need not be applied, the computation terminates after the third step.  852 

 853 

Step 1: 854 

𝐾1 = 2.77 × 10−5 × (𝑓𝑆𝑖+𝑣𝑓𝑆𝑎 × (100 − 𝑓𝐶𝑙))1.14  (for 𝑓𝑆𝑖+𝑣𝑓𝑆𝑎 < 70%)  (Eq. 5) 855 

𝐾1 = 1.75 × 10−5 × (𝑓𝑆𝑖+𝑣𝑓𝑆𝑎 × (100 − 𝑓𝐶𝑙))
1.14

+ (0.0024 × 𝑓𝑆𝑖+𝑣𝑓𝑆𝑎) + 0.16   856 

(for 𝑓𝑆𝑖+𝑣𝑓𝑆𝑎 > 70%)  (Eq. 6) 857 

 858 

Step 2: 859 

𝐾2 =
(12−𝑓𝑂𝑀)

10
       (for 𝑓𝑂𝑀 < 4%);  (Eq. 7) 860 

𝐾2 = 0.8         (for 𝑓𝑂𝑀 > 4%)   (Eq. 8) 861 

Step 3: 862 

𝐾3 =  𝐾1 × 𝐾2 + 0.043 × (𝐴 − 2) + 0.033 × (𝑃 − 3)  (for (𝐾1 × 𝐾2) > 0.2)  (Eq. 9) 863 

𝐾3 =  0.091 − (0.34 × 𝐾1 × 𝐾2) + 1.79 × (𝐾1 × 𝐾2)2 + 0.24 × 𝐾1 × 𝐾2 × 𝐴 + 0.033 × (𝑃 − 3) 864 

        (for (𝐾1 × 𝐾2) < 0.2)  (Eq. 10) 865 

           866 

Step 4:  867 

𝐾 = 𝐾3        (for 𝑓𝑟𝑓 < 1.5%)  (Eq. 11) 868 

𝐾 =  𝐾3 × (1.1 × exp(−0.024 × 𝑓𝑟𝑓) − 0.06)   (for 𝑓𝑟𝑓 > 1.5%)  (Eq. 12) 869 

where, K is the soil erodibility expressed in t ha-1 h N-1, 𝑓𝑆𝑖+𝑣𝑓𝑆𝑎 is silt and very fine sand (2–100 μm) 870 

mass fraction (%), 𝑓𝐶𝑙 is mass fraction (%) of clay (<2 μm), 𝑓𝑂𝑀 is organic matter mass fraction (%) in the 871 

fine earth (<2 mm) fraction, and 𝑓𝑟𝑓 is the fraction of the soil surface covered with rock fragments. A is the 872 

soil structure index: very fine granular = 1; fine granular = 2; medium or coarse granular = 3; and blocky, 873 

platy, or massive = 4; and P is soil permeability index: very fast = 1, moderate fast = 2, moderate = 3, 874 
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moderate slow = 4, slow = 5, and very slow = 6. The conversion from t ha-1 h N-1 to t ha h ha-1 MJ-1 mm-1 875 

is done by dividing the ascertained K factor values by 10.  876 

 877 

5.3 Correctly computing the LS factor 878 

In India, the SRTM DEM of 30 m resolution has so far been found to be the most accurate of all freely 879 

available gridded elevation datasets for soil erosion modelling (Mondal et al., 2016b, 2017; Saxena et al., 880 

2020). The RUSLE method of LS factor estimation (McCool et al., 1989; Renard et al., 1997) represents 881 

an improvement over the equations of Smith and Wischmeier (1957) or Wischmeier and Smith (1978) in 882 

all directions and its use is recommended (Renard et al., 1997, 2011). A further equation based on a linear 883 

function relationship between the slope steepness factor and the sine of the slope angle was also devised by 884 

Nearing (1997) for slope gradients higher than 22%, which closely fits the RUSLE provided equations for 885 

slope gradients up to 22% and was also seen to be pertinently applicable for gradients higher than this 886 

value and can feasibly be used. However, while using one of the popular open-source DEMs available so 887 

far (ASTER GDEM, SRTM DEM, JAXA AW3D, Copernicus DEM, CartoDEM, ALOS PALSAR DEM), 888 

the RUSLE LS factor for short slopes (λ < 4.5 m) cannot be calculated, since their respective pixel size 889 

exceeds 4.5 m (as high resolution LiDAR data is still freely not available for almost the entirety of India).  890 

For the most accurate calculation of the LS factor, it is necessary to truncate the slope lengths as they reach 891 

a channel and not consider slope gradients above 60% (Wischmeier and Smith, 1978; Renard et al., 1997). 892 

In order to estimate a suitable channel initiation threshold for the purpose of truncating slope lengths, one 893 

can make use of the high-resolution imagery available in Google Earth or OpenStreetMap, to identify 894 

channel initiating points. The same can also be done with the aid of topographical maps (e.g. Jain and Das, 895 

2010), or by using information from other studies in the same region (e.g. Haregeweyn et al., 2017). Once 896 

channel initiation points are identified, the flow accumulation value up to these points (to be taken from 897 

the flow accumulation grid pixel within which the point is situated) needs to be considered while excluding 898 

any other grids of higher flow accumulation values. Finally, slope lengths must be shorter than or equal to 899 

122 m, as this corresponds to the maximum length of USLE soil loss plots, as well as the most frequently 900 

observed field slope lengths (McCool et al., 1989; Renard et al., 1997).  901 

 902 
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5.4 Correctly computing the C factor 903 

For large-scale C factor mapping, a land cover and land use (LULC) map is indispensable. We recommend 904 

using the LULC datasets available from the Bhuvan Geo-portal (https://bhuvan.nrsc.gov.in/), which can be 905 

loaded as a WMS layer in QGIS and subsequently saved as GeoTIFF files. It must be noted that layers 906 

saved in this manner cannot readily be analysed as they are simply georeferenced images. A convenient 907 

and fast intermediate step to get them ready for processing is to perform unsupervised classification. Since 908 

the various LULC types are already assigned different colours in the source image, an unsupervised 909 

classification perfectly discriminates between the various LULC classes and yields an analysis-ready 910 

chorochromatic layer. The LULC maps made available in the Bhuvan Geo-portal by the National Remote 911 

Sensing Centre (NRSC), India are products of supervised image classification and on-screen digitisation of 912 

Resourcesat-2 LISS-III 23.5 m resolution imagery. Three sets of maps are available at a scale of 1:50000, 913 

corresponding to LULC conditions of 2005-06, 2011-12 and 2015-16 respectively. The data are classified 914 

into 24 end-classes that are grouped into eight first-order LULC categories, viz. built-up, agriculture, 915 

forest, grassland, barren, rann (marsh), water and snow. The overall accuracy of these different LULC 916 

classes varies from 79% (agricultural plantation) to 97% (water) (NRSC, 2019a). 917 

The best approach for C factor estimation is to follow separate procedures for croplands and non-croplands 918 

(Panagos et al., 2015a; Borrelli et al., 2017; Almaw Fenta et al., 2019), even though all C factor values are 919 

obtained from the literature. This is because C factor values for croplands vary between regions according 920 

to cropping characteristics (crop types, rotation, tillage and management) and are calculated as a weighted 921 

average, while the procedure is different for non-arable land cover classes.   922 

 923 

5.4.1 Computing the C factor for croplands 924 

In the Indian LULC classification system (NRSC, 2019a), the agriculture class is subdivided into 925 

croplands, agricultural plantation, current shifting cultivation and fallow. This subsection elaborates the 926 

method of C factor computation for croplands only. 927 

Panagos et al. (2015a) calculated the C factor for croplands (𝐶𝑐𝑟𝑜𝑝𝑙𝑎𝑛𝑑𝑠) in the European Union as: 928 

𝐶𝑐𝑟𝑜𝑝𝑙𝑎𝑛𝑑𝑠 = 𝐶𝑐𝑟𝑜𝑝 × 𝐶𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡    (Eq. 13) 929 

https://bhuvan.nrsc.gov.in/
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where, 𝐶𝑐𝑟𝑜𝑝 is a weighted average value calculated as a summed product of the respective C factor of 930 

different crops and their acreage share in a region and 𝐶𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 adjusts the C factor value as a function 931 

of recognised management practices (e.g. tillage, cover crop and crop residues) that contribute towards 932 

reducing soil erosion. 933 

Adapting this scheme to India, we propose computing the 𝐶𝑐𝑟𝑜𝑝𝑙𝑎𝑛𝑑𝑠 for each district as follows: 934 

𝐶𝑐𝑟𝑜𝑝𝑙𝑎𝑛𝑑𝑠 =  ∑ (𝐶𝑐𝑟𝑜𝑝𝑖
15
𝑖=1 × %𝐷𝐺𝐶𝐴𝑐𝑟𝑜𝑝𝑖) × 𝐶𝑡𝑖𝑙𝑙𝑎𝑔𝑒  (Eq. 14) 935 

where, 𝐶𝑐𝑟𝑜𝑝𝑖 is the C factor value of the ith crop (Table 8), %𝐷𝐺𝐶𝐴𝑐𝑟𝑜𝑝𝑖 is the share of this crop in the 936 

district gross cropped area and the term 𝐶𝑡𝑖𝑙𝑙𝑎𝑔𝑒 corrects the C factor according to the tillage practice.  937 

The gross cropped area represents the total area sown once and/or more than once in a particular year, i.e. 938 

the area is counted as many times as there are sowings in a year. Therefore the C factor value weighted 939 

against the share of a particular crop acreage in the district gross cropped area (%𝐷𝐺𝐶𝐴𝑐𝑟𝑜𝑝𝑖) implicitly 940 

considers crop rotation within a year and thereby yields an annual C factor value. The requisite spatial and 941 

non-spatial data on the district crop acreage can be freely downloaded from the ICRISAT data portal 942 

(http://data.icrisat.org/) or obtained from state statistical handbooks. In India, conventional tillage is 943 

practised over most of the country, while reduced/zero tillage is done in the Indo-Gangetic plain (Gupta 944 

and Abrol, 1992; Bhan and Behera, 2014), for which the C factor corrections of 1 and 0.3 can be applied as 945 

per the scheme of Stone and Hilborn (2000). Since intensive agriculture is practised in India with multiple 946 

crop rotations in a year, cover crops are not usually planted and most of the crop residue is used as fodder 947 

or fuel or for preparing bio-fertilisers while the remnant stubble is often burnt in the field (DAC, 2014). 948 

Therefore, corrections for cover crops or crop residues need not be applied to the crop-specific C factor 949 

values. Table 8 contains the C factor values per crop type as estimated from experimental studies 950 

conducted solely in the tropics (Roose, 1977; Singh et al., 1981; El-Swaify et al., 1982; Hurni, 1985; Singh 951 

et al., 1985; David, 1988; Clay and Lewis, 1990; Singh et al., 1991; Nill et al., 1996), although data 952 

generated from India (Singh et al., 1981, 1985, 1991) has been preferred wherever applicable.  953 

 954 

 955 

 956 

http://data.icrisat.org/
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Table 8: C factor values from the literature for major crops (excluding plantation crops) grown in India 957 

i Crop type Share (%) of country’s gross cropped area 

(DES, 2017) 

C factor 

1 Rice 22.3 0.28 

2 Wheat 16.2 0.3 

3 Sorghum 3.1 0.63 

4 Millets 4.9 0.61 

5 Maize 4.4 0.42 

6 Barley 0.4 0.3 

7 Pulses 10.9 0.41 

8 Oilseeds 14.3 0.4 

10 Sugarcane 2.8 0.2 

11 Cotton 6.4 0.55 

12 Potatoes 1.05 0.4 

13 Onion 0.65 0.4 

14 Vegetables 3.3 0.3 

15 Fodder 4.6 0.13 

Note: Crop type Millets includes both pearl and finger millets, Pulses includes chickpeas, pigeonpeas and 958 

other pulses, and Oilseeds includes groundnut, sesame, soya, rapeseed, mustard, safflower, castor, linseed 959 

and sunflower.  960 

 961 

5.4.2 Computing the C factor for non-croplands 962 

While a literature review yielded singular C factor values for most of the non-cropland LULC classes 963 

(Table 10) that can directly be assigned, classes characterised by varying degrees of vegetal cover (Table 964 

9) naturally have C factor values that differ according to the cover/use type (Panagos et al., 2015a; Borrelli 965 

et al., 2016). The assignment of unique C factor values is thus inappropriate for the latter category, as the 966 

combined effect of cover type and vegetation density must be captured. Enabling this, the following 967 

equation (Panagos et al., 2015a) calculates the C factor (𝐶𝑛𝑜𝑛𝑐𝑟𝑜𝑝𝑖) as a product of the range of class-968 

specific C factor values and fractional vegetation cover: 969 

𝐶𝑛𝑜𝑛𝑐𝑟𝑜𝑝𝑖 = 𝑀𝑖𝑛𝐶 + (𝑀𝑎𝑥𝐶 − 𝑀𝑖𝑛𝐶) × (1 − 𝐹𝑐𝑜𝑣𝑒𝑟)   (Eq. 15) 970 

where, 𝐶𝑛𝑜𝑛𝑐𝑟𝑜𝑝𝑖 is the calculated C factor value of the ith non-arable LULC class (Table 9), 𝑀𝑖𝑛𝐶  and 971 

𝑀𝑎𝑥𝐶 are the minimum and maximum C-factor values corresponding to the LULC class (Table 9), and 972 

𝐹𝑐𝑜𝑣𝑒𝑟 is the fractional vegetation cover (ranging from 0 to 1).  973 

Based on this approach, the C factor is highest when 𝐹𝑐𝑜𝑣𝑒𝑟  equals 0 (i.e. no vegetation cover or bare soil) 974 

and lowest when 𝐹𝑐𝑜𝑣𝑒𝑟 equals 1 (i.e. the soil surface is fully covered by vegetation). Annual fractional 975 
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vegetation cover data (𝐹𝑐𝑜𝑣𝑒𝑟) for various land cover types, derived from PROBA-V imagery, are available 976 

at 100 m resolution from the Copernicus Global Land Cover viewer (https://lcviewer.vito.be/) and can be 977 

used to quantify the effects of vegetal cover on C factor estimation for non-arable areas. 978 

 979 

Table 9: C factor values from the literature for non-cropland LULC classes (as per NRSC classification 980 

2015-16) with varying vegetal cover 981 

i LULC class Description C factor 

values 

Source 

1 Agricultural 

Plantation 

It includes agricultural plantation (e.g. tea, 

coffee, rubber etc.) horticultural plantation 

(e.g. coconut, arecanut, citrus fruits, 

orchards, fruits, ornamental shrubs and 

trees, vegetable gardens etc.) and agro-

horticultural plantation. 

0.1–0.3 David (1988), Antronico 

et al. (2005), Bakker et 

al. (2008), Borselli and 

Torri (2008); De Vente 

et al. (2009); Diodato et 

al. (2011) 

2 Forest Plantation Areas under tree species of forestry 

importance raised and managed especially 

in notified forest areas. 

0.0001–0.003 Wischmeier and Smith 

(1978) 

3 Evergreen/Semi-

evergreen 

Area under perennial plants that are never 

entirely without green foliage 

0.0001–0.003 Wischmeier and Smith 

(1978) 

4 Deciduous Area under perennial plants that are leafless 

during the dry season 

0.0001–0.003 Wischmeier and Smith 

(1978) 

5 Scrub forest Open forest areas generally seen at the 

fringes of dense forest cover and settlements 

0.0001–0.003 Wischmeier and Smith 

(1978) 

6 Swamp/Mangroves Tropical and subtropical vegetation species 

that are densely colonised on coastal tidal 

flats, estuaries, salt marshes etc. 

0.0001–0.003 Wischmeier and Smith 

(1978) 

7 Grass It includes natural/semi-natural grass/ 

grazing lands of Alpine/Sub‐Alpine or 

temperate or sub‐tropical or tropical zones, 

desertic areas and manmade grasslands. 

0.003–0.45 Wischmeier and Smith 

(1978) 

8 Salt-affected land Land characterised by saline soils and 

sparse grass cover 

0.003–0.45 Wischmeier and Smith 

(1978) 

9 Scrubland These areas possess shallow and skeletal 

soils, at times chemically degraded extremes 

of slopes, severely eroded or subjected to 

excessive aridity with scrubs dominating the 

landscape. 

0.45–1.0 Wischmeier and Smith 

(1978), David (1988), 

Borselli and Torri 

(2008), Capolongo et al. 

(2008) 

 982 

 983 

 984 

 985 

https://lcviewer.vito.be/
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Table 10: C factor values from literature for the other non-cropland LULC classes (as per NRSC 986 

classification 2015-16) that can be assigned directly 987 

LULC class Description C factor values Source 

Fallow Lands adjacent to croplands with an alternation 

between a cropping period of several years and a 

fallow period. 

0.45 Shi et al. (2004), 

Nyakatawa et al. 

(2007) 

Current shifting 

cultivation 

Lands adjacent to forests with an alternation between a 

cropping period of several years and a fallow period. 

0.45 Shi et al. (2004), 

Nyakatawa et al. 

(2007) 

Mining Area under surface mining operations 1.00 Wischmeier and 

Smith (1978) 

Gullies/ Ravines Entrenched erosional feature formed by concentrated 

surface runoff 

0.00 Wischmeier and 

Smith (1978) 

Sandy area Swathes of sand in coastal or inland areas 0.00 Panagos et al. 

(2015a) 

Barren rocky Rock exposures devoid of soil and vegetal cover 0.00 Panagos et al. 

(2015a) 

Rann An extensive salt marsh of western India between the 

Gulf of Kutch and the  

Indus River delta. 

0.00 Panagos et al. 

(2015a) 

Urban Built up areas covered by impervious structures 

adjacent to or connected by streets. 

0.00 Märker et al. 

(2008), Diodato et 

al. (2011) 

Rural Built-up areas, smaller in size than urban, mainly 

associated with agriculture and allied sectors and 

non‐commercial activities. 

0.00 Märker et al. 

(2008), Diodato et 

al. (2011) 

Wetlands/ Water 

bodies 

Includes inland and coastal wetlands, rivers, streams, 

canals, reservoir, lakes and ponds 

0.00 Panagos et al. 

(2015a) 

Snow and 

Glacier 

Areas under perpetual snow/ice cover in the Himalayas 0.00 Panagos et al. 

(2015a) 

 988 

5.5 Correctly computing the P factor 989 

Panagos et al. (2015b) have devised a P factor map for the European Union by using field-surveyed 990 

information. However, such geo-referenced information on support practices is scarce or not available in 991 

countries of the Global South. Remote sensing-aided mapping of soil conservation structures and 992 

associated P factor quantification have till date not yielded fruitful results either (Mekuriaw, 2014, as cited 993 

in Haregeweyn et al., 2017), making the P factor the hardest parameter to estimate in large-scale USLE 994 

applications, and often compelling researchers to ignore it altogether (Jain and Das, 2010; Mondal et al., 995 

2015; Borrelli et al., 2017; Bhattacharya et al., 2020a,b). In India, however, two main support practices are 996 

observed in croplands– contouring and field bunding is widespread in the plains and plateau fringes, while 997 
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terraces (both graded and levelled) are observed in the Himalayas and other hilly regions (Das, 1977; 998 

Dhruva Narayana and Sastry, 1985). Wischmeier and Smith (1978) have provided a table to estimate the P 999 

factor values for contoured croplands based on slope classes (Table 11), and Renard et al. (1997) proposed 1000 

a similar scheme of P factor estimation for terraced fields (Table 12) that can be combined with the P 1001 

factor derived for contouring and stripcropping tracts wherever necessary. In the absence of requisite 1002 

information to objectively estimate the P factor for non-croplands, we, following the suggestion of Karpilo 1003 

and Toy (2003), recommend considering it constant at 1.0, which is rather common in contemporary 1004 

USLE-based soil erosion modelling (Koirala et al., 2018; Almaw Fenta et al., 2019).  1005 

 1006 

Table 11: P factor values for contouring and contour bunding (Wischmeier and Smith, 1978) 1007 

Slope (%) 1–2 3–5 6–8 9–12 13–16 17–20 21–25 >25 

P factor 0.6 0.5 0.5 0.6 0.7 0.8 0.9 1.0 

 1008 

Table 12: P factor values for terracing (Renard et al., 1997) 1009 

Terrace width (m) <33.53 33.53–42.67 42.67–54.86 54.86–68.58 68.58–91.44 >91.44 

P factor 0.5 0.6 0.7 0.8 0.9 1.0 

 1010 

 1011 

5.6 Evaluation of modelled erosion rates 1012 

Like the outputs from other environmental models, modelled soil erosion rates/amounts must be evaluated 1013 

against empirical evidence (Batista et al., 2019). However, the ‘validation’ of soil erosion models is rather 1014 

difficult, if not impossible, since observed soil losses are themselves frequently as uncertain as the 1015 

modelled outputs (Alewell et al., 2019; Batista et al., 2019, 2021). A recent global review of soil erosion 1016 

modelling studies (Borrelli et al., 2021) revealed that the overwhelming majority of model validation 1017 

attempts were based on comparing the sediment yield observed at a catchment's outlet to the predicted soil 1018 

erosion from it, even though it can be justifiably questioned whether the measured and modelled data 1019 

represent the same fluxes or not (Alewell et al., 2019; Borrelli et al., 2021). This especially holds true for 1020 

USLE-type models that are only capable of predicting on-site rill and interrill erosion at the plot/field-scale 1021 

and not off-site catchment sediment yield (Trimble and Crosson, 2000). The results of a recent USLE-1022 

based modelling study in the East Africa region (Almaw Fenta et al., 2019), when compared with observed 1023 
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catchment-level sediment yield data of 100 catchments, elicited a coefficient of determination of only 0.39. 1024 

However, the USLE-modelled soil loss rates compared much better against the observed soil losses from a 1025 

small agricultural watershed of 973 ha in India, with a coefficient of determination of 0.71 (Singh and 1026 

Panda, 2017) and when applied and compared at the field-scale, the coefficient of determination was 1027 

considerably higher at 0.88–0.91 (Ali and Sharda, 2005). 1028 

Sediment yield rates are always lower than soil erosion rates, as most of the eroded soil is deposited within 1029 

the catchment during its transfer, along gentler declivities or within areas of poor hydrological and 1030 

sediment connectivity (Boardman et al., 2018; Baartman et al., 2020). Furthermore, the sediment yield 1031 

measured at the catchment outlet is a combined output of all erosion/transport processes acting therein 1032 

(Morgan, 2005), and not just the rill and interrill erosion that the USLE simulates. Therefore, using 1033 

catchment sediment yield records to evaluate on-site USLE-modelled soil losses is not always appropriate.  1034 

Measured soil loss or sediment yield records are scant anyway in Global South nations (Garcia-Ruiz et al., 1035 

2015; Borrelli et al., 2021; Batista et al., 2021), which is why most USLE-based modelling studies are 1036 

unsurprisingly deterministic in nature, with little attempt made to evaluate their results through comparison 1037 

with other soil erosion modelling studies. This is certainly valid in the Indian context, as three quarters of 1038 

the studies reviewed here did not attempt any kind of evaluation and only 12 studies compared the USLE 1039 

derived output to that obtained from other modelling approaches. Of the remaining 13 papers, nine 1040 

attempted a quantitative evaluation using observed catchment/basin sediment yield, two studies validated 1041 

their results against measured hillslope or plot-scale soil losses, just one paper assessed the uncertainty of 1042 

the modelled soil erosion rates while another compared the soil erosion map generated from the USLE to 1043 

that area's microwatershed erosion and runoff potential map as prepared by the Soil and Land Use Survey 1044 

of India (SLUSI). 1045 

Interestingly, SLUSI has produced a potential erosion priority map at a scale of 1:50000 by computing the 1046 

Sediment Yield Index (SYI) and Runoff Potential Index (RPI) through a multicriteria-based decision 1047 

making and weightage assignment approach for 321324 micro-watersheds across the country, covering 1048 

2.61 million square kilometres, which is ca. 80% of India's entire territory. This exercise, conceived 1049 

principally for the purpose of watershed management in the catchment areas of major river valley projects 1050 

and other flood-prone rivers, was initiated in the 1970s and completed in 2012. Each micro-watershed was 1051 
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classed under one of the priority categories, namely very high, high, medium, low and very low, according 1052 

to the calculated SYI and RPI values. This approach was purely subjective and was only devised to obtain 1053 

a relative ranking of the respective runoff volumes and erosion vulnerability of these sub- and micro-1054 

watersheds. As such, the SYI and RPI values do not correspond in any way to actual sediment yield and 1055 

runoff volumes (SLUSI, 2021a). Moreover, the most erosion-prone regions of the country were surveyed 1056 

before 2000 (SLUSI, 2021b), making this database somewhat dated as well. Most importantly, as there is 1057 

no objective means to classify a USLE soil loss map in a manner congruent to the SLUSI micro-watershed 1058 

prioritisation strategy, its use is not recommended to assess the accuracy of soil erosion rates modelled 1059 

through the USLE.  1060 

With a view to improving the verifiability of future USLE applications in India, we hereby propose a novel 1061 

procedure for evaluating the accuracy of modelled soil erosion maps in India using a remote sensing-based 1062 

product and also include some general comments on the model uncertainty analysis. 1063 

 1064 

5.6.1 Evaluation of the derived USLE soil loss map 1065 

The NRSC has produced comprehensive land degradation maps of India corresponding to the years 2005-1066 

06 and 2015-16, at a scale of 1:50000, through visual inspection and image classification of Resourcesat-2 1067 

LISS-III 23.5 m imagery, subsequently verified by ground truthing. These datasets, available from the 1068 

Bhuvan Geo-portal (https://bhuvan.nrsc.gov.in/), highlight eight land degradation types, viz. water erosion, 1069 

wind erosion, water-logging, salinisation/alkalisation, acidification, glacial weathering, anthropogenic and 1070 

other processes, that are further classified into 36 categories (NRSC, 2019b). However, for the purpose of 1071 

assessing the USLE model output, only three severity classes of the water erosion type are needed, i.e. 1072 

Sheet erosion – Slight, Sheet erosion – Moderate and Sheet erosion – Severe, which correspond, on 1073 

average, to soil erosion rates of 10-20, 20-40 and >40 t ha-1 yr-1, respectively. Logically, areas that are not 1074 

characterised by soil loss rates of greater than 10 t ha-1 yr-1 can be considered to have erosion rates <10 t 1075 

ha-1 yr-1. However, being a remote sensing-based product, the sheet erosion severity classes were mapped 1076 

by visual interpretation of the surface manifestations of soil erosion. Though these interpretations were 1077 

field verified, the exact severity of the problem is often difficult to estimate with naked eyes (NRSC, 1078 

2019b). Therefore, the stated corresponding soil erosion rates are only indicative, rather than being strictly 1079 

https://bhuvan.nrsc.gov.in/
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prescriptive. They nevertheless provide a suitable means for assessing both the catchment and regional 1080 

scale soil erosion risk in a spatially-explicit manner. 1081 

Just like the Bhuvan LULC datasets, these land degradation maps can be loaded as a WMS layer in a GIS 1082 

and subsequently saved as GeoTIFF files. Performing an unsupervised classification renders them ready 1083 

for further analysis and manipulation. A USLE-produced soil erosion map is best evaluated against the 1084 

NRSC devised sheet and rill erosion map by creating an accuracy map. To generate this, the USLE output 1085 

must first be reclassified akin to the classification of the NRSC map, i.e. into soil erosion classes of <10, 1086 

10-20, 20-40 and >40 t ha-1 yr-1. If these four classes are numbered respectively as 1, 2, 3 and 4 in both sets 1087 

of reclassified maps and subsequently multiplied, the areas (pixels) of correct prediction will bear the 1088 

numbers 1, 4, 9 and 16, i.e. squares of 1 through 4. It would mean that for these areas, the USLE-based 1089 

estimate of the soil erosion severity was the same as that denoted in the NRSC dataset. Of course, this 1090 

method elicits a comparison of the accuracy of value ranges rather than specific/individual cell-wise 1091 

discrete values. However, in the current data sparse scenario, we feel that this is perhaps the most objective 1092 

and simple way of evaluating USLE derived outputs in India.   1093 

 1094 

5.6.2 Uncertainty analysis of USLE soil loss map 1095 

Soil loss rates predicted by the USLE are known to be highly uncertain (Schurz et al., 2019; Batista et al., 1096 

2021), in no small part due to input data unavailability or quality and associated problems regarding model 1097 

parameterisation, rather than any inherent failure of the model itself (Fischer et al., 2018). This is 1098 

especially true for studies conducted in developing countries, where adequate datasets are not usually 1099 

available for robust model parameterisation. Therefore, uncertainty analysis of the modelled output 1100 

becomes vital (Swarnkar et al., 2018; Batista et al., 2021). The most common uncertainty analysis methods 1101 

are Markov Chain Monte Carlo (MCMC) (Gasparini, 1995) and Generalised Likelihood Uncertainty 1102 

Estimation (GLUE) (Beven and Binley, 1992). Biesemans et al. (2000) applied the MCMC error 1103 

propagation technique to RUSLE, while Batista et al. (2021) and Rosas and Gutierrez (2020) showed how 1104 

to implement the GLUE methodology in a USLE-based soil erosion modelling study at the catchment and 1105 

regional scales, respectively. Swarnkar et al. (2018) proposed a rather simple first-order error analysis 1106 

method for modelling soil erosion using USLE in large river basins in India, by separately accounting for 1107 
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uncertainties in the different factors. As the above cited studies present appropriate uncertainty analysis 1108 

methodologies for USLE-type soil loss modelling with adequate clarity and details, we refer to them, 1109 

instead of proposing or demonstrating a similar method ourselves. Such uncertainty analysis combined 1110 

with model evaluation according to the procedure explained in section 5.6.1 and demonstrated below 1111 

would surely further the verifiability of modelled outputs and improve manifold the overall quality of 1112 

future USLE applications in India. 1113 

 1114 

5.7 Modelling a correctly parameterized USLE - a test application 1115 

We demonstrate the applicability and accuracy of the afore-suggested USLE factor estimation methods to 1116 

model soil erosion in the Upper Brahmani river basin in eastern India (Fig. 7), and thereafter evaluate the 1117 

extracted soil erosion map using the NRSC land degradation dataset of 2015-16. This basin is formed by 1118 

the tributaries of the River Brahmani, viz. the South Koel and the Sankh. The latter originates from the 1119 

Netarhat region of the Chhotanagpur plateau while the source of the former is at Lohardaga, on the other 1120 

side of the water divide from where the River Damodar arises (Behera et al., 2020). The basin area is 1121 

19330 km2., of which 15280 km2 is in the state of Jharkhand, 2625 km2 lies in Odisha and the remaining 1122 

1425 km2 is in Chhattisgarh. The basin elevation ranges between 155 m and 1116 m a.m.s.l. Deciduous 1123 

forest is the largest land cover class of the basin, occupying 34% of its area, followed by croplands and 1124 

fallow that cover 31% and 18% of the basin area respectively. The climate is of Aw (Tropical hot and dry) 1125 

type, with annual temperatures and rainfall ranging between 4–47° C and 1022–1618 mm, respectively. 1126 

The Chhotanagpur plateau is naturally erosion-prone due to the undulating physiography of the region and 1127 

rapid deforestation in some parts causes especially severe soil erosion (Roy Mukherjee, 1995), among 1128 

which the Upper Brahmani basin area stands out due to the rather large differences between its soil loss 1129 

tolerance and soil erosion rates (Sharda et al., 2013). 1130 
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 1131 

Fig. 7: Location map of the Upper Brahmani basin 1132 

 1133 

All the USLE factor maps (Fig. 8) were prepared according to the procedures elucidated in sections 5.1 1134 

through 5.5. For making the R factor map, a mean annual precipitation surface (1 km horizontal resolution) 1135 

was prepared through ordinary kriging with spherical variogram using mean annual precipitation data (25–1136 

40 years records) of 111 weather stations located in and around the Upper Brahmani basin. We obtained 1137 

topsoil (0–30 cm) texture and organic carbon content layers from ISRIC SoilGrids (https://soilgrids.org/) 1138 

to estimate a spatially continuous depth-averaged soil erodibility (as per Auerswald et al., 2014) map for 1139 

the basin at a resolution of 250 m. In order to identify the appropriate channel initiation threshold in this 1140 

area, high-resolution imagery from the OpenStreetMap platform (https://www.openstreetmap.org/) and a 1141 

flow accumulation surface derived from the 30 m resolution SRTM DEM was used and the threshold was 1142 

found to be ca. 25 pixels or 2.25 ha on average. Therefore, all pixels with a flow accumulation value 1143 

greater than 25 were left out and we finally only considered slope lengths shorter than or equal to 122 m, 1144 

https://soilgrids.org/
https://www.openstreetmap.org/
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as is the convention. The C and P factors (at 30 m resolution) were derived from the LULC map of NRSC 1145 

(2019a) corresponding to 2015-16 through the respective procedures outlined before. 1146 

 1147 

 1148 

Fig. 8: USLE factor maps (with R and K factors in SI units) for the Upper Brahmani basin 1149 

 1150 

 1151 
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 1152 

Fig. 9: Spatial distribution of predicted and actual soil loss rates in t ha-1 yr-1 and a spatially-explicit 1153 

evaluation of USLE prediction accuracy in the Upper Brahmani basin. 1154 

 1155 

Compared according to the procedure outlined in section 5.6.1, the modelled soil loss rates predicted by 1156 

the USLE corresponded quite well to the actual soil loss rates in this region estimated by NRSC (2019b), 1157 

with an overall accuracy of 79.6% (Fig. 9). This relative accuracy analysis reveals that only near the 1158 

catchment mouth a substantial zone of mismatch exists between these two outputs.     1159 

 1160 

5.8 Using this review’s findings beyond India 1161 

Across the Global South (and indeed in many other places too), USLE applications may be more 1162 

vulnerable to inappropriate/ incorrect parameterisation, due to want of requisite data in general and the 1163 

lack of local/regional research on individual USLE factors. Through our review, we have sought to outline 1164 

some best practices, such as being mindful of the regional specificity and applicability of the R factor 1165 

computation methods prevalent in the literature, the viability of the USLE K factor nomograph equation 1166 

set developed by Auerswald et al. (2014) when used in combination with ISRIC SoilGrids data, general 1167 

considerations regarding the LS factor's estimation from open-source elevation datasets and nuances of the 1168 
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C and P factors' estimation when using readily available land cover/use maps. These 1169 

principles/considerations are applicable worldwide. 1170 

Furthermore, with India being located in the monsoonal tropics where precipitation and hence soil erosion 1171 

has a characteristic strong seasonality, our suggested best methods and parameters are especially 1172 

applicable in the rest of Monsoon Asia or South Asia, South-East Asia and other regions of the world that 1173 

have similar climatic regimes and intensive land use practices. The R factor methods of Babu et al. (2004) 1174 

as discussed in Section 5.1 can be feasibly used in areas receiving monsoonal rain of up to 3500 mm on an 1175 

annual basis and thus by default is able to estimate the rainfall erosivity factor from gauged precipitation 1176 

data anywhere in monsoon Asia, if the country in question does not have a local R factor estimation 1177 

method, viz. Nepal, Bhutan, Bangladesh, Sri Lanka and Myanmar.  1178 

Although the NRSC land cover datasets are only available for Indian territories, the C and P factor 1179 

computation schemes as outlined in Section 5.4 and 5.5 will be relevant even when applied outside of 1180 

India using similar databases. The C factor values for the various crop types and non-arable land cover 1181 

classes collated in Section 5.4 represent, in most cases, the soil loss sensitivity of the respective land cover 1182 

types in subtropical and monsoonal climates. The Copernicus Global Land Service 1183 

(https://land.copernicus.eu/global/products/lc) has made available data on a number of bio-geophysical 1184 

properties of the land surface, including land cover/use maps that can be utilised in absence of national 1185 

land cover classification and as hinted by Borrelli et al. (2017, 2020), requisite data on crop acreage can be 1186 

conveniently procured from the FAOSTAT database (http://www.fao.org/faostat/en/#data) of the Food and 1187 

Agriculture Organization (FAO), if the same is not available from the concerned national data repositories.  1188 

Just like the NRSC land cover datasets, the land degradation maps prepared by NRSC only pertain to 1189 

Indian territories. However, besides model uncertainty analysis, spatial assessment of the produced soil 1190 

erosion maps (as demonstrated in Section 5.6.1) can be undertaken through comparison with global land 1191 

degradation datasets such as the Global Assessment of Human-induced Soil Degradation (GLASOD) 1192 

(Oldeman et al., 1991) and Global Assessment of Land Degradation and Improvement (GLADA) (Bai et 1193 

al., 2008). The GLASOD database, which has already been used to evaluate global soil erosion 1194 

assessments (Borrelli et al., 2017, 2020), comprises of the type, extent, degree, rate and causes of 1195 

degradation within physiographic units at a scale of 1:10 million, based on expert judgement. It was the 1196 

https://land.copernicus.eu/global/products/lc
http://www.fao.org/faostat/en/#data
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result of an international data compilation initiative wherein more than 300 soil scientists across the world 1197 

contributed data collected using uniform guidelines and international correlations based on extensive field 1198 

observations (Oldeman et al., 1991). However, the qualitative GLASOD maps lack recency, having been 1199 

compiled during the 1980s. The GLADA followed up on the GLASOD through a more detailed and 1200 

accurate assessment of the land degradation status and trends by means of integration of time series 1201 

analyses of the NDVI parameter for the years 1981–2003 with climatic, land cover and terrain data (Bai et 1202 

al., 2008). Although this dataset highlights land degradation and not directly soil erosion, it has also been 1203 

successfully used to examine USLE-based soil erosion estimates (Borrelli et al., 2017, 2020). 1204 

 1205 

6. Concluding remarks 1206 

This review has sought to highlight the fallacies apparent in past studies that have used the USLE to 1207 

estimate soil erosion in India at varied spatial scales. We have succinctly highlighted the nature of each of 1208 

the parameters that constitute the USLE and the RUSLE models together with the range of methods and 1209 

equations that have been proposed to compute them. At the same time, through a detailed review, we have 1210 

highlighted the potential shortcomings of a substantial number of studies that have either misinterpreted 1211 

these parameters, computed them based on misassumptions or misrepresented the units of the values 1212 

derived. This has caused over- and under estimation of modelled soil erosion values in a large number of 1213 

cases. The stark disparity between the derived values and those to be expected from correctly 1214 

parameterised, computed and represented studies is not only statistically significant but also quite 1215 

troubling, given the apparent dearth of accurate information in many of the studies and their possible 1216 

duplication in ensuing analyses, thereby likely compounding mistakes even further. We also find the 1217 

failure of many studies to properly document their methods in detail for each parameter and forgo the 1218 

subsequent model accuracy and uncertainty analysis to be a cause for further concern. This has urged us to 1219 

try and identify the best possible methods and ways to devise and conduct a test-case of the USLE in India, 1220 

based on available open-source datasets and also present its accuracy estimates. We hope that the detailed 1221 

discussions of the different factors presented here and the highlighting of possible missteps in their 1222 

implementation can better inform future USLE based soil loss modelling studies in India, through more 1223 

accurate, considered and context and area-specific model parameterisation.  1224 
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Our review also highlights a concentration of USLE studies in only some parts of India with scant 1225 

attention accorded to regions where the model's application may be most desirable to gauge the ongoing 1226 

soil loss. Correct applications of this model in these regions can further soil loss management plans for the 1227 

most affected portions of the country and increase their spatial ambit. Furthermore, we have outlined the 1228 

general principles/considerations that govern any USLE-based soil erosion modelling exercise and these 1229 

are applicable not only in the Indian context but in any such study worldwide, particularly in regions that 1230 

have similar climatic and cropping regimes to India, wherein the best methods and equations we have 1231 

highlighted can be feasibly employed for quite accurate estimations of the soil loss, either using local 1232 

datasets or suggested global repositories.            1233 

Another big step towards improving the USLE's applicability in India would be the generation and regular 1234 

updation of higher resolution hydrological, climate, soil and topographic datasets. The product of the 1235 

official soil erosion modelling endeavour of India was an isopleth map at a rather coarse resolution of 10 1236 

km (Maji et al., 2008; Sharda et al., 2013), and more research is certainly warranted, using state-of-the-art 1237 

data, to develop refined, high resolution datasets at a pan-Indian scale to model soil erosion in general and 1238 

facilitate USLE applications in particular. For instance, Babu et al. (2004) deduced the rainfall erosivity-1239 

precipitation relationships by analysing the relevant data up to 1995. Their devised equations thus lack 1240 

recency, especially given the recent climate change effects on the precipitation regime of India (Kulkarni 1241 

et al., 2020). Moreover, even though rainfall erosivity estimation methods based on the Modified Fournier 1242 

Index (Arnoldus, 1980) are used all over the world (Benavidez et al., 2018), no such method yet exists to 1243 

specifically predict the R factor in India. A re-analysis of precipitation-erosivity relationships in the 1244 

country is thus pertinent to assess the performance of existing techniques and to develop revised R factor 1245 

estimation methods, as and where necessary. Similarly, there is a pertinent need for a nationwide high-1246 

resolution digital soil erodibility map together with comprehensive country-wide mapping and decadal 1247 

change analysis of the cover and management factors, in order to identify potential erosion hotspots so that 1248 

the commensurate soil erosion control works may be undertaken more fruitfully.  1249 
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