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Abstract 
The application of speech enhancement algorithms for hearing 
aids may not always be beneficial to increasing speech 
intelligibility. Therefore, a prior environment classification 
could be important. However, previous speech intelligibility 
models do not provide any additional information regarding 
the reason for a decrease in speech intelligibility. We propose 
a unique non-intrusive multi-task transfer learning-based 
speech intelligibility prediction model with scenery 
classification (N-MTTL SI model). The solution combines a 
Mel-spectrogram analysis of the degraded speech signal with 
transfer learning and multi-task learning to provide 
simultaneous speech intelligibility prediction (task 1) and 
scenery classification of ten real-world noise conditions (task 
2). The model utilises a pre-trained ResNet architecture as an 
encoder for feature extraction. The prediction accuracy of the 
N-MTTL SI model for both tasks is high. Specifically, RMSE 
of speech intelligibility predictions for seen and unseen 
conditions is 3.76% and 4.06%. The classification accuracy is 
98%. In addition, the proposed solution demonstrates the 
potential of using pre-trained deep learning models in the 
domain of speech intelligibility prediction. 
Index Terms: speech intelligibility prediction, environmental 
sound classification, multi-task learning, transfer learning 

1. Introduction 
Speech perception decline is often associated with hearing 
impairment. People who wear a hearing aid (HA) experience 
difficulties understanding speech, especially in adverse 
acoustic scenarios containing various types of environmental 
noise [1]. The major complaints expressed by HA users are the 
insufficient reduction of environmental noise and  
the unexpected simultaneous amplification of noise with 
speech [2]. This problem has been approached by speech 
enhancement combined with noise-reduction algorithms for 
HAs. However, the benefits of speech enhancement 
algorithms may be perceived only in some acoustic 
environments. In other words, the application of the same 
speech enhancement algorithm can be beneficial in one 
environment but result in a negative impact on speech 
intelligibility and quality in a different environment.  
Diverse speech enhancement algorithms must be applied to 
different noisy environments to reduce noise adequately [2, 3]. 
Therefore, the automatic classification of acoustic 
environments in which speech enhancement would benefit a 
HA user is vital [4, 5]. In principle, this could be achieved by  
an objective speech intelligibility prediction metric running 
online in HAs [6]. 

Work connected to speech intelligibility prediction dates 
back several decades. Since then, many speech intelligibility 
models have been proposed based on different principles 
starting with the models such as Articulation Index (AI) [7, 8] 
and its successor SII [9] or STI [10]. Later on, more 
sophisticated models incorporated further elements of human 
auditory functioning (STOI [11], mr-sEPSM [12], HASPI 
[13]). The aforementioned objective models are intrusive – 
they require a reference signal to determine predictions of 
speech intelligibility, which is not available in real-world 
scenarios. On the contrary, non-intrusive speech intelligibility 
models (ModA [14], SRMR [15], NIC-STOI [6]) require only 
a degraded speech signal for speech intelligibility prediction. 
This advantage makes non-intrusive models more suitable for 
real-world applications [5]. Recently, rapid progress in the 
deep learning domain has also been utilised in the field of 
speech intelligibility prediction. Several models have been 
introduced employing DNN [16], CNN [17, 18] or U-Net [19]. 
However, none of the speech intelligibility models proposed 
so far provide any additional information regarding the cause 
of the speech intelligibility degradation that could be further 
used to fine-tune speech enhancement algorithms. 

Therefore, this paper proposes a novel non-intrusive multi-
task transfer learning-based speech intelligibility model (N-
MTTL SI model) which provides speech intelligibility 
prediction along with scenery classification at the same time. 
N-MTTL SI determines speech intelligibility and classifies 
environmental noise by combining two common techniques 
from deep learning (multi-task learning and transfer learning). 
This unique model is based on a pre-trained ResNet 
architecture and uses Mel-spectrograms of degraded speech 
signals as an input. Since there is a scarcity of suitable speech 
intelligibility datasets with subjective scores, we used an 
objective speech intelligibility metric (STOI [11]) to label the 
dataset with intelligibility predictions. We therefore emphasize 
that the proposed solution is proof-of-concept, rather than a 
direct comparison with pre-existing speech intelligibility 
models.  

2. Non-intrusive multi-task transfer 
learning-based speech intelligibility model 

Multi-task learning (MTL) [20] is an approach in deep 
learning when the model performs at least two tasks. MTL has 
been successfully applied in various fields [20] including 
speech (e.g., speech recognition [21], speech enhancement 
[22], or objective speech assessment in real-world 
environments by generating several objective intelligibility 
and quality scores [23]). 
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Sharing representations between related tasks in MTL can 
sometimes result in better performance than is observed in the 
single-task model. The most common type of multi-task 
learning is hard parameter sharing of hidden layers, which has 
been shown to reduce overfitting [20]. This approach is 
adopted in our N-MTTL SI model. The hidden layers are 
shared between all the tasks while preserving task-specific 
output layers. Our N-MTTL SI model (Figure 1) utilises pre-
trained ResNet architecture on the ImageNet dataset, which is 
used as an encoder for feature extraction. Here, the transfer 
learning element occurs when the architecture (ResNet) 
trained on one dataset, and performing well on one task, is 
used to solve a task in a different domain. Such transfer 
learning has been explored in urban sound classification [24] 
but is novel when it comes to predictions of speech 
intelligibility. The ResNet architecture is adjusted (see 3.3) to 
perform two specific tasks: 1). speech intelligibility (SI) 
prediction and 2). classification of noise present in the 
degraded speech signal, i.e., scenery classification.  

2.1. ResNet (Residual Networks) 

The ResNet is one of the most popular and powerful 
architectures that scored very well in the ImageNet challenge 
[25] for image classification: It solved the gradient vanishing 
problem by introducing residual blocks with skip connection, 
the objective of which is to perform identity mapping. The 
entire architecture comprises several residual blocks stacked 
on top of each other, depending on the ResNet version. Each 
residual block contains a pair of convolutional layers (3x3) 
with the same number of filters. The number of output filters 
increases twofold with every two residual blocks. The residual 
block also contains a batch normalization layer and Rectified 
Linear Unit (ReLU) activation function, which is used after 
every convolutional layer [26]. Previous work [17] has 
explored the importance of the convolution layer to extract 
spectro-temporal patterns in the input signal related to speech 
intelligibility. Therefore, we expect the convolutional layers of 
ResNet to be beneficial for both our specific tasks in our N-
MTTL SI model. 

 

 
Figure 1: Non-intrusive multi-task transfer learning-based 
speech intelligibility model. 

3. Experimental design 
In this section, the dataset used for training, validation and 
testing of the N-MTTL SI model is described including the 
preprocessing performed. Additionally, we provide the details 
of the training procedure. 

3.1. Dataset (Training, Validation and Test set) 

The dataset [27, 28] consists of 28 speakers of British English 
(14 females and 14 males). It comprises ten noisy conditions: 
1. speech-shaped noise, 2. babble (six speakers), 3. kitchen, 4. 
meeting room, 5. cafeteria, 6. restaurant, 7. subway station, 8. 
car, 9. metro, 10. busy traffic intersection. The conditions (3. - 
10.) represent the real-world noise e.g., domestic noise (3.), 
office noise (4.), public spaces noise (5., 6.), transportation 

noise (7. - 9.), street noise (10.). These noisy conditions were 
produced at four different signal-to-noise ratios (SNRs): 0, 5, 
10, 15 dB, resulting in 40 different conditions (10 noises x 4 
SNRs) and approximately 10 different sentences per speaker 
in each condition. Overall, there are approximately 400 
sentences per speaker. The dataset contains 11572 sentences 
that were divided into a training and a validation set using a 
ratio of 80% (9282 sentences) to 20% (2290 sentences). 
Sentences range in duration from 1 - 15 seconds. However, the 
vast majority of sentences (93%, 10776) are 2 - 4 seconds in 
duration. A separate test set consisting of 824 sentences 
spoken by two British English speakers (a female and a male) 
was used to test the proposed N-MTTL SI model on unseen 
conditions, which differ from conditions used for training the 
N-MTTL SI model. The unique set of noisy conditions in this 
set comprises 1. living room, 2. office space, 3. bus, 4. 
cafeteria (open area), 5. public square. These types of noise 
also represent real-world conditions: domestic noise (1.), 
office noise (2.), transport noise (3.) and street noise (4., 5.). 
Furthermore, the test set differs from the training and 
validation sets in terms of SNRs (2.5, 7.5, 12.5 and 17.5 dB). 
Overall, this makes for 20 conditions (5 types of noise x 4 
SNRs) and approximately 20 sentences per speaker and 
condition. 

3.2. Dataset preprocessing  

During the preprocessing stage, we generated speech 
intelligibility labels using the STOI model based on clean and 
corresponding degraded sentences. STOI was chosen because 
its predictions correlate very well with actual intelligibility in 
noisy conditions resembling ones in the used dataset [11]. This 
model and its extended version (ESTOI [29]) were also used 
in previous studies to label speech data [23, 30]. The input 
data for our N-MTTL SI model were generated by the 
conversion of degraded sentences into Mel-spectrograms, 
which provided necessary visual representation for the model. 
The spectrograms were generated employing a Short-Time 
Fourier Transform (STFT) of 2048-length Hann-windowed 
speech signals with a 22.05 kHz sampling rate. Subsequently, 
windowed speech samples were extracted with a hop length of 
512. Mel-scale mapping was done using Mel bands to obtain 
the Mel-spectrogram [31]. The resulting spectrograms were 
stored as 224 x 224 pixel images. 

3.3. Training the N-MTTL SI model 

Modifications to the ResNet architecture were performed 
before commencing training. Specifically, two task-related 
heads were added to the model so as to perform: 1. Regression 
to predict speech intelligibility and 2. Classification of 
background noise into one of ten classes (see noisy conditions 
in section 3.1.). In addition, the loss functions were defined for 
intelligibility prediction (Mean Square Error – MSE) and 
noise classification (Cross-Entropy). The weights for both 
specific tasks were learned and determined by the model 
considering the homoscedastic uncertainty of each task [32]. 
We used the Cyclical Learning Rate [33] technique to 
determine an efficient learning rate (LR) for training. The first 
three epochs, with maximum LR = 0.1, were trained using a 
frozen ResNet model when only added layers were trained. 
Subsequently, after unfreezing, ten more epochs with a 
discriminative learning rate (LR = 0.003 for early layers and 
LR = 0.03 for last layers) were run to fine-tune the pre-trained 
ResNet. During the training, a dropout rate of 25% was 
applied and the ADAM optimizer was used. 
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4. Experimental results 

4.1. Speech intelligibility prediction  

Results (Table 1) were obtained by running two versions of 
the N-MTTL SI model (ResNet-18 MT, ResNet-34 MT) using 
them as the feature encoder, compared with the single-task 
models (ResNet-18 ST, ResNet-34 ST) predicting only speech 
intelligibility based on the same architectures (ResNet-18, 
ResNet-34). Performance of the models is similar: We do not 
observe better prediction performance of the single-task 
models (ResNet-18 ST, ResNet-34 ST) in comparison to its 
multi-task counterparts (ResNet-18 MT, ResNet-34 MT). 
Considering the number of layers in ResNet-18 MT versus 
ResNet-34 MT, as well as the prediction accuracy of these 
models, we consider the ResNet-18 MT version of the N-
MTTL SI model as the best solution. Specifically, the Root 
Mean Square Error (RMSE) values for the validation and test 
set obtained by ResNet-18 MT are similar (3.76% and 4.06%), 
which indicates that the model provides comparable speech 
intelligibility prediction for seen and unseen conditions. The 
linear relationship between predicted (ResNet-18 MT) and 
STOI-labelled intelligibility, as measured by Pearson 
correlation (r) is 0.93 for seen conditions and 0.86 for unseen 
(Figure 2). Spearman rank correlation (ρ) confirms 
monotonicity between the estimated and labelled 
intelligibility, which is 0.93/0.85 for the seen/unseen 
conditions, respectively. Lastly, Kendall’s rank correlation 
coefficient, as used in the speech intelligibility prediction 
literature [17, 18], also expresses the degree of monotonicity 
in the relation between measurements and predictions.  
Kendall’s (τ) values obtained by the N-MTTL SI model 
(ResNet-18 MT) are 0.80 and 0.69 for seen and unseen 
conditions, respectively. Overall, the accuracy measures of the 
model are comparable to the literature [17], where similar 
values are observed for unseen conditions. However, 
conditions in our dataset are not identical to [17], therefore 
direct comparison is not possible. 

Table 1: SI prediction of N-MTTL SI model (variants).  

 

   
Figure 2: Pearson correlation and data distribution for seen 
conditions (left) and unseen conditions (right). SI predictions 
by N-MTTL SI (ResNet-18 MT). 

4.1.1. Speech intelligibility prediction in seen conditions 

We further examine the prediction performance achieved by 
the N-MTTL SI model (ResNet-18 MT) for individual 
conditions in the validation set and test set. Figure 3 shows the 
RMSE calculated for different noise conditions and SNRs in 
the validation set. The training and validation sets contain 
identical conditions. The largest cumulative RMSE can be 
observed in the babble condition, consistent with previous 
work [17], showing that babble is challenging for speech 
intelligibility predictions. We suspect that a component of 
informational masking (IM) from the six-talker babble may 
contribute to this result: IM is more complex in its operation 
than an energetic masker. The smallest masking effect is 
observed in the car noise condition, which is primarily low-
frequency and where human hearing sensitivity is low. Car 
noise is a less effective masker than babble, which shares the 
spectro-temporal characteristics of speech.  
 

 

Figure 3: Speech intelligibility predictions for seen conditions 
(validation set) obtained by N-MTTL SI model. 

4.1.2. Speech intelligibility prediction in unseen conditions 

The same relative variability due to the nature of the 
background noise is observed in RMSE values calculated for 
unseen conditions in the test set (Figure 4). Specifically, the 
largest cumulative RMSE is also present in the environment 
where is it very likely that speech of other people occurs, e.g., 
a cafeteria (open space) and the spectro-temporal 
characteristics of single or multi-talker babble make them very 
effective maskers. On the other hand, an office space 
environment primarily includes noise resembling printer and 
paper noise, which are not very effective sources of masking. 
This condition shows the smallest RMSE and predictions are 
more precise. 
 

 
Figure 4: Speech intelligibility predictions for unseen 
conditions (test set) obtained by N-MTTL SI model.  

4.2. Scenery classification  

4.2.1. Scenery classification in seen conditions 

A class was assigned to each of the ten different types of noise 
that were present in degraded speech signals used in the 
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training and validation set (3.1). The proposed N-MTTL SI 
model (ResNet-18 MT) can classify the type of noise into one 
of these classes with 98% accuracy. Several common 
performance measures (precision, recall, f1 score) are also 
very high (0.98). More details regarding the classification can 
be observed in the confusion matrix (Figure 5) which provides 
information about the number of correctly and incorrectly 
classified cases for the validation set. The number of 
incorrectly classified cases is 45 out of a total of 2290 cases 
(sentences). Specifically, the most frequently misclassified 
condition was metro noise with 12 incorrect classifications. 
This condition is followed by cafeteria (9 misclassifications), 
traffic and meeting room (6 misclassifications) conditions. On 
the other hand, speech-spectrum shaped noise (ssn) was 100% 
correctly classified.  

 

 
Figure 5: Confusion matrix for the scenery classification task 
performed by N-MTTL SI model in the validation set. 

4.2.2. Scenery classification in unseen conditions 

The classification performance of the N-MTTL SI model 
cannot be properly evaluated for the test set because the 
training and validation set do not contain identical noisy 
conditions. However, noise types in the test set originate from 
the same noise categories (office noise, transportation noise, 
street noise). Therefore, we visualised the actual labels for 824 
sentences in the test set and the corresponding predicted labels 
(classes) in the form of a Sankey diagram (Figure 6) to explore 
if the model was able to pick up the characteristics of the 
similar but unseen types of noise as those used during the 
training of the model. Results show that sentences within the 
actual class public square (166 sentences) were classified into 
seven different types of noise from the training set. This effect 
might be caused by the variability of noises presented in the 
public square environment. Most sentences were classified as 
the metro (78) or traffic noise (58). Office space (164) was not 
classified with similar environments. Only a few sentences 
were predicted as being from a meeting room (20) and 
remaining sentences as, traffic (71), car noise (56), metro (13). 
In terms of the living room class (166), the vast majority of 
sentences were predicted as being from classes in a similar 
category, such as a meeting room (108). The outside cafeteria 
(open area) (164) was mostly classified as similar, namely 
cafeteria (117). Lastly, sentences containing bus noise (164) 
were mainly classified as car (76), metro noise (33) and traffic 
(30). These are all similar types of noise comprising transport 
noise. It is impressive, that the proposed N-MTTL SI model 
(ResNet-18 MT) can correctly assign similar classes for many 
sentences containing unseen types of noise (classes).  

 
Figure 6: Sankey diagram visualizing the classification 
performance for unseen noise conditions in the test set. The 
left side represents the actual classes and the right side 
predicted classes. 

5. Conclusion 
The objective of this work was to develop a new model that 
would provide speech intelligibility prediction and 
information regarding a factor (type of noise – scenery 
classification) that contributes to degraded speech 
intelligibility. The proposed solution (N-MTTL SI model) 
combines transfer learning with multi-task learning and uses 
the Mel-spectrograms of degraded speech signals as the input. 
The N-MTTL SI model based on a pre-trained ResNet 
architecture achieved very high accuracy for simultaneous 
speech intelligibility predictions (RMSE 3.76%/4.06% for 
seen/unseen conditions) and noise classification (98%) 
considering the duration range of sentences (1 - 15 seconds) 
and 60 different conditions (noise types and SNRs). The 
classification accuracy is comparable to, or better than, seen in 
the best models providing either only environmental sound 
classifications [34], or sound classification in HAs [35].  

Due to the scarcity of suitable speech intelligibility 
datasets with subjective scores, the STOI model was used to 
label the dataset with speech intelligibility estimations. This 
approach allowed the labelling of a large quantity of speech 
without the necessity to conduct time-consuming and 
expensive listening tests. Such labelling does not allow a 
direct comparison with existing speech intelligibility models. 
However, the scope of our work was proof-of-concept and 
comparisons would be possible if a suitable dataset of 
sufficient size becomes available in the future. Future work 
could also involve the extension of the model by including 
additional measures e.g., predictions based on speech 
reception thresholds, or both the speech envelope and 
temporal fine structure. 

Finally, considering the continual development of 
technologies associated with HA devices, we believe that our 
solution could be deployed in the future. The accurate 
classification of acoustic scenes and the speech intelligibility 
predictions provided by the N-MTTL SI model would help to 
select a more suitable speech enhancement algorithm for HAs, 
leading to improved speech perception and potentially greater 
HA satisfaction.  
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