Metadata, citation and similar papers at core.ac.uk

Provided by Warwick Research Archives Portal Repository

Financial WORKING PAPERS SERIES

Econometrics
Research Centre WP04-04

Modelling Asymmetric Exchange Rate
Dependence

Andrew Patton



https://core.ac.uk/display/47797?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Modelling Asymmetric Exchange Rate Dependence

Andrew J. Patton*

London School of Economics

First version: 29 December, 2000. This version: 11 June, 2004.

We test for asymmetry in a model of the dependence between the Deutsche mark and the Yen,
in the sense that a different degree of correlation is exhibited during joint appreciations against
the U.S. dollar versus during joint depreciations. Such a dependence structure is not consistent
with the commonly employed normal or Student’s ¢ distribution assumptions. We verify that the
theory of copulas may be extended to conditional distributions, and employ it to construct flexible
models of the conditional dependence structure of these exchange rates. We find evidence that the
mark-dollar and Yen-dollar exchange rates are more correlated when they are depreciating against
the dollar than when they are appreciating. We also find strong evidence of a structural break in

conditional density of these exchange rates upon the introduction of the euro.

KEYWORDS: exchange rates, density forecasting, copulas, multivariate GARCH, asymmetry.
J.E.L. Codes: (€32, C51, C52, F31.

*This paper is based on Chapter I of my Ph.D. dissertation, Patton (2002), and was previously circulated under
the title “Modelling Time-Varying Exchange Rate Dependence Using the Conditional Copula”. I would like to thank
Graham Elliott, Rob Engle, Raffaella Giacomini, Tony Hall, Joshua Rosenberg, Kevin Sheppard, Allan Timmer-
mann, four anonymous referees, and seminar participants at the 2001 North American Econometric Society meetings
in Maryland, Board of Governors of the Federal Reserve, Chicago Graduate School of Business, Commonwealth
Scientific and Industrial Research Organisation, London School of Economics, Michigan State, Monash, Oxford,
Pennsylvania, Princeton, Purdue, Texas A&M, UCSD, UC-Riverside, University of Technology Sydney and Yale for
their comments and suggestions. Financial support from the UCSD Project in Econometric Analysis Fellowship is
gratefully acknowledged. Contact information: Financial Markets Group, London School of Economics, Houghton
Street, London WC2A 2AE, United Kingdom. Email: a.patton@lse.ac.uk. This paper may be downloaded from
http://fmg.1se.ac.uk /~patton/research.html.



1 Introduction

Evidence that the univariate distributions of many common economic variables are non-normal has
been widely reported, as far back as Mills (1927). Common examples of deviations from normality
are excess kurtosis (or fat tails) and skewness in univariate distributions. Recent studies of eq-
uity returns have also reported deviations from multivariate normality, in the form of asymmetric
dependence. One example of asymmetric dependence is where two returns exhibit greater corre-
lation during market downturns than market upturns, as reported in Erb, et al. (1994), Longin
and Solnik (2001) and Ang and Chen (2002). Various explanations for the presence of asymmetric
dependence between equity returns have been proffered. For example, Ribeiro and Veronesi (2002)
suggest correlations between international stock markets increase during market downturns as a
consequence of investors having greater uncertainty about the state of the economy.

Much less attention has been paid to the possibility of asymmetric dependence between exchange
rates. Asymmetric responses of central banks to exchange rate movements is a possible cause
of asymmetric dependence. For example, a desire to maintain the competitiveness of Japanese
exports to the U.S. with German exports to the U.S. would lead the Bank of Japan to intervene
to ensure a matching depreciation of the yen against the dollar whenever the Deutsche mark (DM)
depreciated against the U.S. dollar. Such a scenario was considered by Takagi (1999). On the
other hand, a preference for price stability could lead the Bank of Japan to intervene to ensure
a matching appreciation of the yen against the dollar whenever the DM appreciated against the
U.S. dollar. An imbalance in these two objectives could cause asymmetric dependence between
these exchange rates. If the competitiveness preference dominates the price stability preference
we would expect the DM and yen to be more dependent during depreciations against the dollar
than during appreciations. An alternative cause could come from portfolio re-balancing: when the
dollar strengthens there is often a shift of funds from other currencies into the dollar, whereas
when the dollar weakens much of these funds shift into the DM or euro, rather than the yen, as
the former was/is the second most important currency'. Such re-balancing behaviour would also
lead to greater dependence during depreciations of the DM and yen against the dollar than during
appreciations.

To investigate whether the dependence structure of these exchange rates is asymmetric, we

make use of a theorem due to Sklar (1959), which shows that any n-dimensional joint distribution

T thank a referee for providing these further suggestions on possible sources of asymmetric exchange rate depen-

dence.



function may be decomposed into its n marginal distributions, and a copula, which completely
describes the dependence between the n variables’. The copula is a more informative measure of
dependence between two (or more) variables than linear correlation, as when the joint distribution
of the variables of interest is non-elliptical the usual correlation coefficient is no longer sufficient to
describe the dependence structure.

By using an extension of Sklar’s theorem we are able to exploit the success we have had in
the modelling of univariate densities by first specifying models for the marginal distributions of
a multivariate distribution of interest, and then specifying a copula. For example, consider the
modelling of the joint distribution of two exchange rates: the Student’s ¢ distribution has been
found to provide a reasonable fit to the conditional univariate distribution of daily exchange rate
returns, see Bollerslev (1987) amongst others. A natural starting point in the modelling of the joint
distribution of two exchange rates might then be a bivariate ¢ distribution. However, the standard
bivariate Student’s ¢ distribution has the restrictive property that both marginal distributions have
the same degrees of freedom parameter. Studies such as Bollerslev (1987) have shown that different
exchange rates have different degrees of freedom parameters, and our empirical results confirm that
this is true for the Deutsche mark - U.S. dollar and Yen - U.S. dollar exchange rates: the condition
that both exchange rate returns have the same degrees of freedom parameter is rejected by the data.
Note also that this is possibly the most ideal situation: where both assets turn out to have univariate
distributions from the same family, the Student’s ¢, and very similar degrees of freedom (6.2 for
the mark and 4.3 for the yen). We could imagine situations where the two variables of interest
have quite different marginal distributions, where no obvious choice for the bivariate density exists.
Further, the bivariate Student’s ¢ distribution imposes a symmetric dependence structure, ruling
out the possibility that the exchange rates may be more or less dependent during appreciations than
during depreciations. Decomposing the multivariate distribution into the marginal distributions
and the copula allows for the construction of better models of the individual variables than would
be possible if we constrained ourselves to look only at existing multivariate distributions.

A useful parametric alternative to copula-based multivariate models is a multivariate regime

switching model, see Ang and Bekaert (2002) for example. These authors show that a mixture of

>The word copula comes from Latin for a ‘link’ or ‘bond’, and was coined by Sklar (1959), who first proved the
theorem that a collection of marginal distributions can be ‘coupled’ together via a copula to form a multivariate
distribution. It has been given various names, such as dependence function (Galambos, 1978 and Deheuvels, 1978),
uniform representation (Kimeldorf and Sampson, 1975, and Hutchinson and Lai, 1990) or standard form (Cook and

Johnson, 1981).



two multivariate normal distributions can match the asymmetric equity return dependence found
in Longin and Solnik (2001), and thus may also be useful for studying asymmetric exchange rate
dependence. A detailed comparison of flexible copula-based models and flexible multivariate regime
switching models for exchange rates and/or equity returns would be an interesting study, but we
leave it for future research.

An alternative to parametric specifications of the multivariate distribution would of course be a
nonparametric estimate, as in Fermanian and Scaillet (2003) for example, which can accommodate
all possible distributional forms. One common drawback with nonparametric approaches is the
lack of precision that occurs when the dimension of the distribution of interest is moderately large
(say over four), or when we consider multivariate distributions conditioned on a state vector (as
is the case in this paper). The trade-off for this lack of precision is the fact that a parametric
specification may be mis-specified. It is for this reason that we devote a great deal of attention to
tests of goodness-of-fit of the proposed specifications.

This paper makes two main contributions. Our first contribution is to show that the existing
theory of (unconditional) copulas may be extended to the conditional case, thus allowing us to
use copula theory in the analysis of time-varying conditional dependence. Time variation in the
conditional first and second moments of economic time series has been widely reported, and so
allowing for time variation in the conditional dependence between economic time series seems
natural. The second and main contribution of the paper is to show how we may use the theory
of conditional copulas for multivariate density modelling. We examine daily Deutsche mark - U.S.
dollar (DM-USD) and Japanese yen - U.S. dollar (Yen-USD) exchange rates over the period January
1991 to December 2001, and propose a new copula that allows for asymmetric dependence and
includes symmetric dependence as a special case. We find significant evidence that the dependence
structure between the DM-USD and Yen-USD exchange rates was asymmetric, consistent with the
asymmetric central bank behaviour story presented above. We also find very strong evidence of a
structural break in the conditional copula following the introduction of the euro in January 1999:
the level of dependence drops substantially, the dynamics of conditional dependence change, and
the dependence structure goes from significantly asymmetric in one direction to weakly asymmetric
in the opposite direction.

The modelling of the entire conditional joint distribution of these exchange rates has a number
of attractive features: given the conditional joint distribution we can, of course, obtain conditional

means, variances, and correlation, as well as the time paths of any other dependence measure of



interest, such as rank correlation or tail dependence?. Further, there are economic situations where
the entire conditional joint density is required, such as the pricing of financial options with multiple
underlying assets, see Rosenberg (2003) or in the calculation of portfolio Value-at-Risk (VaR), see
Hull and White (1998), or in a forecast situation where the loss function of the forecast’s end-user
is unknown.

Despite the fact that copulas were introduced as a means of isolating the dependence structure
of a multivariate distribution over forty years ago, it is only recently that they attracted the at-
tention of economists. In the last few years numerous papers have appeared, using copulas in such
applications as multivariate option pricing, asset allocation, models of default risk, integrated risk
management, selectivity bias, nonlinear autoregressive dependence and contagion?. To our knowl-
edge, this paper is one of the first to consider copulas for time-varying conditional distributions,
emphasize the importance of formal goodness-of-fit testing for copulas and marginal distributions,
and to employ statistical tests comparing the goodness-of-fit of competing non-nested copulas.

The structure of the remainder of this paper is as follows. In Section 2 we present the theory
of the conditional copula. In Section 3 we apply the theory of conditional copulas to a study of the
dependence structure of the Deutsche mark - U.S. dollar and Yen - U.S. dollar exchange rates. In
that section we discuss the construction and evaluation of time-varying conditional copula models.
We summarise our results in Section 4. Some proofs are contained in Appendix A, and details on

the goodness-of-fit tests are presented in Appendix B.

2 The Conditional Copula

In this section we review the theory of copulas and discuss the extension to handle conditioning
variables, using existing results for unconditional distribution functions and unconditional copulas.
Though in this paper we focus on bivariate distributions, it should be noted that the theory of
copulas is applicable to the more general multivariate case. We must firstly define the notation:
the variables of interest are X and Y and the conditioning variable is W, which may be a vector.

Let the joint distribution of (X,Y, W) be H*, denote the conditional distribution of (X,Y") given

3This measure will be discussed in more detail in Section 3. Dependence during extreme events has been the

subject of much analysis in the financial contagion literature, see Hartmann, et al. (2001) amongst others.
‘See Frees, et al. (1996), Bouyé et al. (2000a), Cherubini and Luciano (2000, 2001), Costinot et al. (2000),

Li (2000), Fermanian and Scaillet (2003), Embrechts, et al. (2001), Frey and McNeil (2001), Rockinger and Jon-
deau (2001), Sancetta and Satchell (2001), Smith (2001), Rodriguez (2003), Rosenberg (2003), Patton (2004) and
Rosenberg and Schuermann (2004).



W, as H, and let the conditional marginal distributions of X|WW and Y |W be denoted F and G
respectively. Recall that F' (z|w) = H (z, 00|lw) and G (y|w) = H (00, ylw) .We will assume in this
paper that the distribution function H* is sufficiently smooth for all required derivatives to exist,
and that F'; G and H are continuous. The latter assumptions are not necessary, but making them
simplifies the presentation. Throughout this paper we will denote the distribution (or c.d.f.) of
a random variable using an upper case letter, and the corresponding density (or p.d.f.) using the
lower case letter. We will denote the extended real line as R = R U {#o00}. We adopt the usual
convention of denoting random variables in upper case, X;, and realisations of random variables in
lower case, .

A thorough review of (unconditional) copulas may be found in Nelsen (1999) and Joe (1997).
Briefly, copula theory enables us to decompose a joint distribution into its marginal distributions

and its dependence function, or copula:

H(z,y) = C(F(z),G(y)),or (1)

hiz,y) = f(x)-g(y)-c(F(z),G(y)) (2)

where equation (1) above decomposes a bivariate cdf, and equation (2) decomposes a bivariate
density. To provide some idea as to the flexibility that copula theory gives us, we now consider
various bivariate distributions, all with standard normal marginal distributions and all implying
a linear correlation coefficient, p, of 0.5. The contour plots of these distributions are presented
in Figure 1. In the upper left corner of this figure is the standard bivariate normal distribution
with p = 0.5. The other elements of this figure show the dependence structures implied by other
copulas, with each copula calibrated so as to also yield p = 0.5. It is quite clear that knowing
the marginal distributions and linear correlation is not sufficient to describe a joint distribution:
Clayton’s copula, for example, has contours that are quite peaked in the negative quadrant, implying
greater dependence for joint negative events than for joint positive events. Gumbel’s copula implies
the opposite. The functional form of the symmetrised Joe-Clayton will be given in Section 3; the

remaining copula functional forms may be found in Joe (1997) or Patton (2004).
[ INSERT FIGURE 1 HERE |

Now let us focus on the modifications required for the extension to conditional distributions. We
will derive the properties of conditional joint distributions and the conditional copula directly from

the properties of unconditional distributions and copulas. For the purposes of exposition we will



assume below that the dimension of the conditioning variable, W, is 1. The conditional bivariate
distribution of (X,Y) |W can be derived from the unconditional joint distribution of (X,Y, W) as

follows:
OH* (x,y,w)
ow

where f,, is the unconditional density of W, and W is the support of W. However, the condi-

H (z,ylw) = fu (w)il , forweWw

tional copula of (X,Y) |W cannot be derived from the unconditional copula of (X,Y, W); further

information is required®. The conditional copula of (X,Y") |W is defined below.

Definition 1 (Conditional copula) The conditional copula of (X,Y) |W, where X|W ~ F and
Y|W ~ G, is the conditional joint distribution function of U = F (X|W) and V = G (Y|W) given
w.

The two variables U and V are known as the conditional ‘probability integral transforms’ of
X and Y given W. Fisher (1932) and Rosenblatt (1952) showed that these random variables have
the Unif (0,1) distribution, regardless of the original distributions, F' and G.® A two-dimensional
conditional copula can be derived from any distribution function such that the conditional joint
distribution of the first two variables given the remaining variables is a copula for all values of the
conditioning variables in their support. It is simple to extend existing results to show that the

conditional copula has the following properties.

Proposition 1 (Properties of a conditional copula) A two-dimensional conditional copula has

the following properties:
1. It is a function C : [0,1] x [0,1] x W — [0, 1]
2. C(u,0lw) = C(0,v|w) =0, for every u,v in [0,1] and each w € W
3. C(u,ljw) = u and C(1,v|w) = v, for every u,v in [0,1] and each w € W

4. Ve ([ur, ug] X [v1,v2] |w) = C (ug, va|w) — C (u1, va|w) — C (uz, vi|w) + C (ug,vi|w) > 0 for all

w1, u2,v1,v2 € [0,1], such that uy < ug and vi < vy and each w € W.

®We present the conditional copula of (X,Y)|W as the distribution of (U,V)|W, where U = F (X|W) and
V = G(Y|W). We thank a referee for pointing out that the conditional copula can also be obtained given the

unconditional copula of (X,Y, W) and the marginal density of W.
5The probability integral transform has also been used in the context of goodness-of-fit tests as far back as the

1930s, see K. Pearson (1933) for example. More recently Diebold, et al. (1998) extended the probability integral

transform theory to the time series case, and proposed using it in the evaluation of density forecasts.



where YW is the support of the conditioning variables.

The proof is presented in Appendix A. A two-dimensional conditional copula, then, is the
conditional joint distribution of two conditionally Uniform(0,1) random variables. The fourth
condition above refers to the ‘C-volume’ of a rectangle in [0,1] x [0,1], denoted by Vi. This is
simply the conditional probability of observing a point in the rectangle, and in the case that the
probability density function exists this condition reduces to the function C' always implying a non-
negative copula density. We now move on to an extension of Sklar’s (1959) theorem for conditional

distributions:

Theorem 1 (Sklar’s theorem for continuous conditional distributions) Let F' be the con-
ditional distribution of X|W, G be the conditional distribution of Y|W, H be the joint conditional
distribution of (X,Y)|W and W be the support of W. Assume that F' and G are continuous in x

and y. Then there exists a unique conditional copula C such that
H(z,ylw) = C(F(z|w),G(ylw)|w), V¥ (x,y) € R xR and each w € W (3)

Conversely, if we let F' be the conditional distribution of X|W, G be the conditional distribution of
YW, and C be a conditional copula, then the function H defined by equation (8) is a conditional

bivariate distribution function with conditional marginal distributions F' and G.

It is the converse of the theorem above that is the most interesting for multivariate density
modelling. It implies that we may link together any two univariate distributions, of any type
(not necessarily from the same family), with any copula and we will have defined a valid bivariate
distribution. The usefulness of this result stems from the fact that while in the economics and
statistics literatures we have a vast selection of flexible parametric univariate distributions, the
set of parametric multivariate distributions available is much smaller. With Sklar’s theorem the
set of possible parametric bivariate distributions is increased substantially, though of course not
all of these distributions will be useful empirically. With a corollary to Sklar’s theorem, given in
Nelsen (1999) for example, the set of possible parametric multivariate distributions increases even
further, as we are able to extract the copula from any given multivariate distribution and use it
independently of the marginal distributions of the original distribution. This corollary allows us to
extract, for example, the ‘normal copula’ from a standard bivariate normal distribution.

The only complication introduced when extending Sklar’s theorem to conditional distributions is
that the conditioning variable(s), W, must be the same for both marginal distributions and the cop-

ula. This is important in the construction of conditional density models using copula theory. Failure



to use the same conditioning variable for F'; G and C' will, in general, lead to a failure of the function
H to satisfy the conditions for it to be a joint conditional distribution function. For example, say
we condition X on W1, Y on Wa, and the copula on (W3, W), and then specify H (x,y| Wy, Wa) =
C(F(z|Wy), G(y|Wa)|[W1, Wa). Then H (x, c0|Wy, Ws) = C(F(z|Wy),1|Wy, Wy) = F (x|W7), the
conditional distribution of X|W7j, which is the conditional marginal distribution of (X,Y") |IW;. But
H (oo, y|W1, Ws) = C(1,G (y, |Wa) |[W1,Wa) = G (y,|W>), the conditional distribution of Y| Wk,
which is the conditional marginal distribution of (X,Y) |W,. Thus the function H will not be the
joint distribution of (X,Y") | (W7, W3) in general.

The only case when H will be the joint distribution of (X,Y) | (W, Wa) is when F (z|W;) =
F (z|W;,W3) and G (y, |W2) = G (y, |Wh1, Ws). Although this is obviously a special case, it is not
uncommon to find that certain variables affect the conditional distribution of one variable but not
the other, and thus this condition is satisfied. For example, in our empirical application we find
that, conditional on lags of the DM-USD exchange rate, lags of the Yen-USD exchange rate do not
impact the distribution of the DM-USD exchange rate. Similarly, lags of the DM-USD exchange rate
do not affect the Yen-USD exchange rate, conditional on lags of the Yen-USD exchange rate. Thus
in our case the above condition is satisfied, though it must be tested in each separate application.

The density function equivalent of (3) is useful for maximum likelihood estimation, and is easily

obtained provided that F' and G are differentiable and H and C are twice differentiable.

_ 0%H (z,y|w)
h(z,ylw) = owdy
_ OF (zlw) 9G (ylw) PC(F(z|w),G (ylw)|w)
Oz oy Oudv
h(z,ylw) = f(zlw) g (ylw) c(u,vlw), ¥(z,y,w)eRxRxW,so (4)
Lxy = Lx+Ly+Lc (5)

where u = F (z|w), and v = G (y|w), Lxy = logh (z,y|w), Lx = log f (z|w), Ly = logg (y|w),

and Lo = log ¢ (u, v|w).

3 The Conditional Dependence between the Mark and the Yen

In this section we apply the theory of conditional copulas to the modelling of the conditional
bivariate distribution of the daily Deutsche mark - U.S. dollar and Japanese yen - U.S. dollar
exchange rate returns over the period January 2, 1991 to December 31, 2001. This represents

the post-unification era in Germany (East and West Germany were united in late 1989, and some



financial integration was still being carried out during 1990) and includes the first three years of
the euro’s reign as the official currency of Germany’. The Yen-USD and DM-USD (euro-USD since
1999) exchange rates are the two most heavily traded, representing close to 50% of total foreign
exchange trading volume (see the Bank for International Settlements, 1996 and 2002). Given their
status, the DM-USD and Yen-USD exchange rates have been relatively widely studied, see Andersen
and Bollerslev (1998), Diebold et al. (1999), Andersen et al. (2001), amongst others. However there
has not, to our knowledge, been any investigation of the symmetry of the dependence structure
between these exchange rates.

Table 1 presents some summary statistics of the data. The data were taken from the database
of Datastream International and as usual we analyse the log-difference of each exchange rate. The
table shows that neither exchange rate had a significant trend over either period, both means
being very small relative to the standard deviation of each series. Both series also exhibit slight
negative skewness, and excess kurtosis. The Jarque-Bera test of the normality of the unconditional
distribution of each exchange rate strongly rejects unconditional normality in both periods. The
unconditional correlation coefficient between these two exchange rate returns indicates relatively

high linear dependence prior to the introduction of the euro, and weaker dependence afterwards.
[ INSERT TABLE 1 ABOUT HERE |

In specifying a model of the bivariate density of DM-USD and Yen-USD exchange rates we
must specify three models: the models for the marginal distributions of each exchange rate, and
the model for the conditional copula. We will first present estimation and goodness-of-fit test results
for the marginal distribution models. We will then proceed to the main focus of this section: a
detailed study of the results for the conditional copula models. We will examine the impact on
the introduction of the euro on the joint distribution of the DM-USD and Yen-USD exchange
rates by allowing the parameters of the joint distribution to change between the pre- and post-
euro subsamples. Note that allowing the parameters to change pre- and post-euro is equivalent
to expanding the information set to include an indicator variable that takes the value zero in the
pre-euro sample and one in the post-euro sample. Recall that the same information set must be
used for both margins and the copula, meaning that we must test for a structural break in the

DM margin, the Yen margin and the copula. To minimise the number of additional parameters in

"The mark was still used for transactions in Germany until the end of 2001, but the mark/euro exchange rate was

fixed on January 1, 1999, and all international transactions were denominated in euros.
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the models, we conducted tests for the significance of the change in each parameter, and imposed
constancy on those parameters that were not significantly different in the two periods.

Maximum likelihood is the natural estimation procedure to use for our models. The procedure
employed to construct the joint distribution lends itself naturally to multi-stage estimation of the
model, where we estimate the two marginal distribution models separately, and then estimate
the copula model in a final stage. See Patton (2001) for details. Although estimating all of the
coeflicients simultaneously yields the most efficient estimates, the large number of parameters can
make numerical maximisation of the likelihood function difficult. Under standard conditions the

estimates obtained are consistent and asymptotically normal.

3.1 The models for the marginal distributions

The models employed for the marginal distributions are presented below. We will denote the log-
difference of the DM-USD exchange rate as the variable X3, and the log-difference of the Yen-USD

exchange rate as the variable Y;.

Xt = pp+ 1. X1+ (6)
O'i,t = Wzt 5300-?:,75—1 + augf (7)
(o ..
. ~ 1id ty. 8
U?g,t(vfc —-2) . 1t (®)
Vi = py+é1,Yio1 + b1y Y10 + (9)
Uz,t = wy+ ﬁyait—l + ayn?—l (10)
Uy y
o5 4(vy —2) T B (1)

The marginal distribution for the DM-USD exchange rate is assumed to be completely charac-
terised by an AR(1), t-GARCH(1,1) specification, while the marginal distribution for the Yen-USD
exchange rate is assumed to be characterised by an AR(1,10), t-GARCH(1,1) specification®. We
will call the above specifications the ‘copula models’ for the marginal distributions, as they are to
be used with the copula models introduced below.

The parameter estimates and standard errors for marginal distribution models are presented in

Table 2. Table 3 shows that we only needed univariate models for these two marginal distributions:

8The marginal distribution specification tests, described in Appendix B, suggested that the model for the condi-
tional mean of the Yen-USD exchange rate return needed the tenth autoregressive lag. The tenth lag was not found

to be important for the DM-USD exchange rate.
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no lags of the “other” variable were significant in the conditional mean or variance specifications.
This simplification will not always hold, and it should be tested in each individual case. In the DM
margin all parameters except for the degrees of freedom parameter changed significantly following
the introduction of the euro. The drift term in the mean increased from 0.01 to 0.07, reflecting
the sharp depreciation in the euro in its first three years. In the Yen margin only the degrees of
freedom changed, from 4.30 to 6.82, indicating a ‘thinning’ of the tails of the Yen-USD exchange
rate. The t-statistic (p-value) for the significance of difference in the degrees of freedom parameters
between the two exchange rates was 2.0877 (0.0368) for the pre-euro period and —0.4618 (0.6442)
in the post-euro period, indicating a significant? difference prior to the break, but no significant
difference afterwards'®. The significant difference in degrees of freedom parameters in the pre-euro
period implies that a bivariate Student’s ¢ distribution would not be a good model, as it imposes

the same degrees of freedom parameter on both marginal distributions, and also on the copula.
[ INSERT TABLES 2 AND 3 ABOUT HERE ]

For the purposes of comparison we also estimate an alternative model from the existing literature
(the estimation results are not presented in the interests of parsimony, but are available from the
author upon request). We first model the conditional means of the two exchange rate returns series,
using the models in equations (6) and (9), and then estimate a flexible multivariate GARCH model
on the residuals: the “BEKK” model introduced by Engle and Kroner (1995):

Zt == C/C + B;_lztle + A'e;_let,lA (12)
2
0%t Oayt cin 0 b1 b2 ail a2
where ¥y = = , C = , B = , A = , e =
2
Ozyt Oyy Cl2 €22 b1 b2 az a2

[ e My ]/, J%t is the conditional variance of X at time ¢, and 0y, is the conditional covariance
between X and Y at time t. We use a bivariate standardised Student’s ¢ distribution for the stan-
dardised residuals. We include this model as a benchmark density model obtained using techniques
previously presented in the literature. When coupled with bivariate Student’s ¢ innovations the
BEKK model is one of the most flexible conditional multivariate distribution models currently avail-
able, along with the multivariate regime switching model, see Ang and Bekaert (2002) for example.

The main cost of the BEKK models is that they quickly become unwieldy in higher dimension

9 All tests in this paper will be conducted at the 5% significance level.
10The variance matrix used here assumed the time-varying symmetrised Joe-Clayton copula was used to complete

the joint distribution. Almost identical results were obtained when the time-varying normal copula was used.

12



problems!!, and are quite difficult to estimate even for bivariate problems when the Student’s ¢
distribution is assumed, as all parameters of this model must be estimated simultaneously. The
parameters of this model are allowed to break following the introduction of the euro, and we also
see a thinning of tails here: the estimated degrees of freedom parameter changed from 5.42 to 7.82.
In both sub-periods the normal distribution BEKK model was rejected (with p-values of 0.0000)
in favour of the more flexible Student’s ¢ BEKK model, and so we focus solely on the Student’s ¢
BEKK model.

Modelling the conditional copula requires that the models for the marginal distributions are
indistinguishable from the true marginal distributions. If we use a mis-specified model for the mar-
ginal distributions then the probability integral transforms will not be Uniform(0, 1), and so any
copula model will automatically be mis-specified, by Proposition 1. Thus testing for marginal dis-
tribution model mis-specification is a critical step in constructing multivariate distribution models
using copulas. Appendix B outlines some methods for conducting such tests.

In Table 4 we present the LM tests for serial independence of the probability integral trans-
forms, U and V, and the Kolmogorov-Smirnov (K-S) tests of the density specification. The BEKK
marginal distribution models and the copula-based marginal models pass the LM and KS tests at
the 0.05 level, though the BEKK model would fail three of the KS tests at the 0.10 level. We also
employ the hit tests discussed in Appendix B to check for the correctness of the specification in
particular regions of the support!?. In the interests of parsimony we present only the joint hit test
results; the results for the individual regions are available on request. All models pass the joint hit

test at the 0.05 level, though the BEKK model for the Yen would fail at the 0.10 level.

[ INSERT TABLE 4 ABOUT HERE |

"' Kearney and Patton (2000) estimated a five-dimension BEKK model on European exchange rates. We have not

seen any applications of the BEKK model to problems of higher dimensions than this.
12We use five regions: the lower 10% tail, the interval from the 10*" to the 25" quantile, the interval from the

25" to the 75" quantile, the interval from the 75" to the 90*" quantile, and the upper 10% tail. These regions
represent economically interesting subsets of the support - the upper and lower tails are notoriously difficult to fit, and
so checking for correct specification there is important, while the middle 50% of the support contains the ‘average’
observations. We use as regressors (‘Zj;” in the notation of Appendix B) a constant, to check that the model implies
the correct proportion of hits, and three variables that count the number of hits in that region, and the corresponding
region of the other variable, in the last 1, 5 and 10 days, to check that the model dynamics are correctly specified.

The A; functions are set to simple linear functions of the parameters and the regressors: A; (th,ﬂj) = Zjt - B;-
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3.2 The models for the copula

Many of the copulas presented in the statistics literature are best suited to variables that take
on joint extreme values in only one direction: survival times (Clayton, 1978), concentrations of
particular chemicals (Cook and Johnson, 1981) or flood data (Oakes, 1989). Equity returns have
been found to take on joint negative extremes more often than joint positive extremes, leading to
the observation that ‘stocks tend to crash together but not boom together’. No such empirical
evidence is yet available for exchange rates, and the asymmetric central bank behaviour and cur-
rency portfolio re-balancing stories given in the introduction could lead to asymmetric dependence
between exchange rates in either direction. This compels us to be flexible in selecting a copula to
use: it should allow for asymmetric dependence in either direction, and should nest symmetric de-
pendence as a special case. We will specify and estimate two alternative copulas, the ‘symmetrised
Joe-Clayton’ copula and the normal (or Gaussian) copula, both with and without time variation.
The normal copula may be considered the benchmark copula in economics, though Chen, et al.
(2004) find evidence against the bivariate normal copula for many exchange rates. The reason
for our interest in the symmetrised Joe-Clayton specification is that while it nests symmetry as a

special case, it does not impose symmetric dependence on the variables like the normal copula.

3.2.1 The symmetrised Joe-Clayton copula

The first copula that will be used is a modification of the ‘BB7’ copula of Joe (1997). We refer
to the BB7 copula as the Joe-Clayton copula, as it is constructed by taking a particular Laplace

transformation of Clayton’s copula. The Joe-Clayton copula is:

Crolu,olrl,7h) = 1- (1 R L RS B 1}_1/7> . (13)
where k= 1/log, (2—7Y)
v = —1/log, (7F)
and 7V e (0,1), 7% € (0,1) (14)

The Joe-Clayton copula has two parameters, 7¥ and 77, which are measures of dependence

known as tail dependence. These measures of dependence are defined below.

Definition 2 If the limit
lim Pr[U <¢|V <¢] = limPr[V <e|U <¢] = 1limC (¢,¢) Je = 7F

e—0 e—0 e—0
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exists, then the copula C exhibits lower tail dependence if 7% € (0,1] and no lower tail depen-
dence if TV = 0. Similarly, if the limit

%Lni Pr[U > 4|V > 0] = %Lni Pr[V > 4|U > 0] :(sil{n (1-26+C(6,0))/(1—-08) =7Y

exists, then the copula C exhibits upper tail dependence if TV € (0,1] and no upper tail depen-

dence if TV = 0.

Tail dependence captures the behaviour of the random variables during extreme events. In-
formally, in our application, it measures the probability that we will observe an extremely large
depreciation (appreciation) of the Yen against the USD, given that the DM has had an extremely
large depreciation (appreciation) against the USD. Note that it does not matter which of the two
currencies one conditions on the dollar having appreciated /depreciated against. The normal copula
has 7Y = 71 = 0 for correlation less than one, meaning that in the extreme tails of the distribution
the variables are independent. The Joe-Clayton copula allows both upper and lower tail dependence
to range anywhere from zero to one freely of each other.

One major drawback of the Joe-Clayton copula is that even when the two tail dependence
measures are equal there is still some (slight) asymmetry in the Joe-Clayton copula, due simply to
the functional form of this copula. A more desirable alternative would have the tail dependence
measures completely determining the presence or absence of asymmetry. To this end, we propose

the ‘symmetrised Joe-Clayton’ copula:
Csjco (u,v]TU,TL) =0.5- (CJC (u,v|TU,TL) + Cjo (1 —u,1— ’U|’7'L,TU) +u+v-— 1) (15)

The symmetrised Joe-Clayton (SJC) copula is clearly only a slight modification of the origi-

U = 7L From an empirical

nal Joe-Clayton copula, but by construction it is symmetric when 7
perspective the fact the SJC copula nests symmetry as a special case makes it a more interesting

specification than the Joe-Clayton copula.

3.2.2 Parameterising time-variation in the conditional copula.

There are many ways of capturing possible time variation in the conditional copula. We will
assume that the functional form of the copula remains fixed over the sample while the parameters
vary according to some evolution equation. This is in the spirit of Hansen’s (1994) ‘autoregressive
conditional density’ model. An alternative to this approach may be to allow also for time variation
in the functional form using a regime switching copula model, as in Rodriguez (2003) for example.

We do not explore this possibility here.
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The difficulty in specifying how the parameters evolve over time lies in defining the forcing
variable for the evolution equation. Unless the parameter has some interpretation, as the parameters
of the Gaussian and SJC copulas do, it is very difficult to know what might (or should) influence

it to change. We propose the following evolution equations for the SJC copula:

10
1
T? = Alwy+ ﬁUng,l +ay - 10 ; ’Ut—j - Ut—j’ (16)
10
1
TL{' = A WL+5LT,{J_1+@L'1—O;|Utj—Utj| (17)

where A (z) = (1+ e_”c)f1 is the logistic transformation, used to keep 7¥ and 7% in (0,1) at all
times.

In the above equations we propose that the upper and lower tail dependence parameters each
follow something akin to a restricted ARMA(1,10) process. The right hand side of the model for
the tail dependence evolution equation contains an autoregressive term, 8, 7% ; and B,7F |, and
a forcing variable. Identifying a forcing variable for a time-varying limit probability is somewhat
difficult. We propose using the mean absolute difference between u; and v; over the previous ten
observations as a forcing variable!?. The expectation of this distance measure is inversely related
to the concordance ordering of copulas; under perfect positive dependence it will equal zero, under

independence it equals 1/3, and under perfect negative dependence it equals 1/2.

The second copula considered, the normal copula, is the dependence function associated with

bivariate normality, and is given by:

—(r? — 2prs + s2)

O 1(u) @ 1(v)
1
C(u,v|p) = _/ _/ 27T\/mexp{ 20— ) }drds, —-1l<p<l1 (18)

where ®~ 1! is the inverse of the standard normal c.d.f. We propose the following evolution equation

for p,:

10
- 1 _ _
p Rt By p b g3 @ ) 7 sy (19)

13 A few variations on this forcing variable were tried, such as weighting the observations by how close they are to
the extremes, or by using an indicator variable for whether the observation was in the first, second, third or fourth

quadrant. No significant improvement was found, and so we have elected to use the simplest model.
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where A (z) = (1 —e ) (1 + e_x)_l is the modified logistic transformation, designed to keep p, in
(—1,1) at all times. Equation (19) reveals that we again assume that the copula parameter follows
an ARMA(1,10)-type process: we include p,_; as a regressor to capture any persistence in the
dependence parameter, and the mean of the product of the last ten observations of the transformed

variables ® ! (u;_;) and ®~! (v;—;), to capture any variation in dependence'.

3.3 Results for the copulas

We now present the main results of this paper: the estimation results for the normal and sym-
metrised Joe-Clayton (SJC) models. For the purposes of comparison we also present the results
for these two copulas when no time variation in the copula parameters is assumed. It should be
pointed out, though, that neither of these copulas are closed under temporal aggregation, so if the
conditional copula of (X;,Y;) is normal or SJC, the unconditional copula will not in general be

normal or SJC. The estimation results are presented in Table 5.1
[ INSERT TABLE 5 ABOUT HERE |

All of the parameters in the time-varying normal copula were found to significantly change
following the introduction of the euro, and a test of the significance of a break for this copula
yielded a p-value of 0.0000. Using quadrature'® we computed the implied time path of conditional
correlation between the two exchange rates, and present the results in Figure 2. This figure shows
quite clearly the structural break in dependence that occurred upon the introduction of the euro.
The level and the dynamics of (linear) dependence both clearly change. The p-value from the test
for a change in level only was 0.0000, and the p-value from a test for a change in dynamics given

a change in level was 0.0001, confirming this conclusion.

" Averaging @71 (us—;) - @7 (v4—;) over the previous ten lags was done to keep the copula specification here

comparable with that of the time-varying symmetrised Joe-Clayton copula.
" The parameters of the constant SJC copula were found to significantly change following the introduction of the

euro, and in the post-euro period the upper tail dependence parameter went to zero. As 7¥ — 0 the SJC copula with

U,TL) limits to an equally-weighted mixture of the Clayton copula with parameter — (log2 (TL))_I

parameters (T
and the rotated “B5” copula of Joe (1997) with parameter (log2 (2 — TU))fl. Since zero is on the boundary of the

parameter space for 7¥ in the SJC copula, we impose 7¥ = 0 and only estimate 7% in the post-euro period.
16We use Gauss-Legendre quadrature, with ten nodes for each margin, leading to a total of 100 nodes. See Judd

(1998) for more on this technique. Although the normal copula is parameterised by a correlation coefficient, when
the margins are non-normal this coefficient will not equal the linear correlation between the original variables. We

must use quadrature, or some other method, to extract the linear correlation coefficient.

17



For the time-varying SJC copula only the level of dependence was found to significantly change;
the dynamics of conditional upper and lower tail dependence were not significantly different. The
significance of the change in level was 0.0000. For the purposes of comparing the results for the
SJC copula with the normal copula, we present in Figure 3 the conditional correlation between the
two exchange rates implied by the SJC copula. The plot is similar to that in Figure 2, and the

change in the level of linear correlation upon the introduction of the euro is again very clear.
[ INSERT FIGURES 2 AND 3 ABOUT HERE |

In Figures 4 and 5 we present plots of the conditional tail dependence implied by the time-
varying SJC copula model. Figure 4 confirms that the change in linear dependence also takes place
in tail dependence, with average tail dependence (defined as %T? + %TtL) dropping from 0.33 to
0.03 after the break. Figure 5 shows the degree of asymmetry in the conditional copula by plotting
the difference between the upper and lower conditional tail dependence measures (17 —7F). Under
symmetry this difference would of course be zero. In our model, upper (lower) tail dependence
measures the dependence between the exchange rates on days when the Yen and mark are both
depreciating (appreciating) against the USD. Our constant SJC copula results suggest that in the
pre-euro period the limiting probability of the yen depreciating heavily against the dollar, given that
the mark has depreciated heavily against the dollar, is about 22% greater than the corresponding
appreciation probability, meaning that the exchange rates are more dependent during depreciations
against the dollar than during appreciations. This difference is significant at the 0.05 level. Further,
from Figure 5 we note that conditional upper tail dependence was greater than conditional lower
tail dependence on 92% of days in the pre-euro period. As we used the same forcing variable
in the evolution equations for both upper and lower dependence, we can formally test for the
significance of asymmetry in the conditional copula by testing that the parameters of the upper
tail dependence coefficient equal the parameters of the lower tail dependence coefficient. The p-
value for this test is 0.0076 in the pre-euro sample. Thus our finding is consistent with export
competitiveness preference dominating price stability preference for the Bank of Japan and/or the
Bundesbank in the pre-euro period, and is also consistent with the currency portfolio re-balancing
story given in the introduction. Of course, there may be other explanations for our finding.

In the post-euro period the asymmetry is reversed. The constant SJC copula results show upper
tail dependence to be zero and lower tail dependence to be 0.09, which is significantly greater than

zero (the p-value is 0.0075). Further, Figure 5 also shows that conditional upper tail dependence
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is less than conditional lower tail dependence on every day in the post-euro sample (though the p-
value on a test of the significance of this difference is 0.1611). These results are consistent with price
stability preference dominating export competitiveness preference for the Bank of Japan and/or
the European Central Bank over the post-euro sample.

Overall, a test that the time-varying SJC copula is symmetric over the entire sample is rejected,
with p-value 0.0191, and the corresponding p-value for the constant SJC copula is 0.0175. Thus
we have strong evidence that the conditional dependence structure between the DM-dollar (euro-
dollar) and yen-dollar exchange rates was asymmetric over the sample period, afinding that has not
been previously reported in the empirical exchange rate literature, and one that we would not have
been able to capture with standard multivariate distributions like the normal or Student’s ¢. This
has potentially important implications for portfolio decisions and hedging problems involving these
exchange rates, as it implies that linear correlation is not sufficient to describe their dependence
structure. Thus, for example, a hedge constructed using linear correlation may not offer the degree

of protection it would under a multivariate normal or Student’s ¢ distribution.

[ INSERT FIGURES 4 AND 5 ABOUT HERE |

3.4 Goodness-of-fit tests and comparisons

The evaluation of copula models is a special case of the more general problem of evaluating multi-
variate density models, which is discussed in Appendix B. In Table 6 we present the results of the
bivariate ‘hit’ tests. We divided the support of the copula into seven regions, each with an economic
interpretation!”. We report only the results of the joint test that the models are well-specified in

all regions; the results for the individual regions are available on request. All five models pass all

'"Regions 1 and 2 correspond to the lower and upper joint 10% tails for each variable. The ability to correctly
capture the probability of both exchange rates taking on extreme values simultaneously is of great importance to
portfolio managers and macroeconomists, amongst others. Regions 3 and 4 represent moderately large up and down
days: days in which both exchange rates were between their 10" and 25", or 75" and 90**, quantiles. Region 5 is the
‘median’ region: days when both exchange rates were in the middle 50% of their distributions. Regions 6 and 7 are
the extremely asymmetric days, those days when one exchange rate was in the upper 25% of its distribution while the
other was in the lower 25% of its distribution. For the joint test we define the zero®® region as that part of the support
not covered by regions one to seven. We again specify a simple linear function for \;, that is: A; (Zj,g7 Bj) = Zjt - B,
and we include in Zj; a constant term, to capture any over- or under-estimation of the unconditional probability of
a hit in region j, and three variables that count the number of hits that occurred in the past 1, 5 and 10 days, to

capture any violations of the assumption that the hits are serially independent.
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joint tests and all individual region tests at the 0.05 level, though the Student’s ¢ BEKK model
would fail two tests at the 0.10 level. Thus although these models have quite different implications
for asymmetric dependence and/or extreme tail dependence, the specification tests have difficulty

rejecting any of them with the sample size available.
[ INSERT TABLE 6 HERE |

Finally, we conducted likelihood ratio tests to compare the competing models. None of the time-
varying models are nested in other models, and so we used Rivers and Vuong’s (2002) non-nested
likelihood ratio tests'®. These tests revealed that none of the differences in likelihood values were
significant at the 0.05 or 0.10 level. The fact that both the normal and the SJC copula models pass
the goodness-of-fit tests, and are not distinguishable using the Rivers and Vuong test indicates the
difficulty these tests have in distinguishing between similar models, even with substantial amounts
of data. This may be because, see Figure 1 for example, the Normal, Student’s ¢ and SJC copulas
are quite similar for the central region of the support; the largest differences occur in the tails,

where we have less data to use to distinguish between the competing specifications.

4 Conclusion

In this paper we investigated whether the assumption that exchange rates have a symmetric depen-
dence structure is consistent with the data. Such an assumption is embedded in the assumption
of a bivariate normal or bivariate Student’s ¢ distribution. Recent work on equity returns has
reported evidence that stocks tend to exhibit greater correlation during market downturns than
during market upturns, see Longin and Solnik (2001) and Ang and Chen (2002) for example. Risk
averse investors with uncertainty about the state of the world can be shown to generate such a
dependence structure, see Ribeiro and Veronesi (2002).

The absence of any empirical or theoretical guidance on the type of asymmetry to expect
in the dependence between exchange rates compelled us to be flexible in specifying a model of

the dependence structure. We verified that existing results on copulas may be extended to the

"8Rivers and Vuong (2002) show that, under some conditions, the mean of the difference in log-likelihood values for
two models is asymptotically normal. When the parameters of the models are estimated via maximum likelihood the
asymptotic variance of the log-likelihood ratio is simple to compute; we do so using a Newey-West (1987) variance
estimator. We use a variety of ‘truncation lengths’ (the number of lags used to account for autocorrelation and

heteroskedasticity) and found little sensitivity.
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conditional case, and employed it to construct flexible models of the joint density of the Deutsche
mark - U.S. dollar and Yen - U.S. dollar exchange rates, over the period from January 1991 to
December 2001.

Standard AR- tGARCH models were employed for the marginal distributions of each exchange
rate, and two different copulas were estimated: the copula associated with the bivariate normal
distribution, and the ‘symmetrised Joe-Clayton’ copula, which allows for general asymmetric depen-
dence. Time-variation in the dependence structure between the two exchange rates was captured
by allowing the parameters of the two copulas to vary over the sample period, employing an evo-
lution equation similar to the GARCH model for conditional variances. For comparison, we also
estimated a model using the BEKK specification for the conditional covariance matrix coupled with
a bivariate Student’s ¢t distribution for the standardised residuals.

Asymmetric behaviour of central banks in reaction to exchange rate movements is a possible
cause of asymmetric dependence: a desire to maintain the competitiveness of Japanese exports to
the U.S. with German exports to the U.S. would lead the Bank of Japan to intervene to ensure a
matching depreciation of the yen against the dollar whenever the Deutsche mark (DM) depreciated
against the U.S. dollar, and generate stronger dependence during depreciations of the DM and the
yen against the dollar than during depreciations. Alternatively, a preference for price stability would
lead the Bank of Japan to intervene to ensure a matching appreciation of the yen against the dollar
whenever the DM appreciated against the U.S. dollar, and generate the opposite type of asymmetric
dependence. We found evidence consistent with the scenario that export competitiveness preference
dominated price stability preference for the Bank of Japan and/or the Bundesbank in the pre-euro
period, whereas price stability preference dominated export competitiveness preference for the Bank
of Japan and/or the European Central Bank over the post-euro period.

Finally, we reported strong evidence of a structural break in the conditional copula following
the introduction of the euro in January 1999. The level of dependence between these exchange
rates fell dramatically following the break, and the conditional dependence structure went from

significantly asymmetric in one direction to weakly asymmetric in the opposite direction.
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5 Appendix A: Proofs

Some of the results below are simplified with the following lemma, adapted from Nelsen (1999).

Lemma 1 Let x1 < x9, y1 < yo and wy < wy then

5:15(2) = nyw (Zay27w2) _nyw (Zvaawl) _nyw (z,yl,wg) +nyw (Zyylawl)
5y(z) = nyw ($2727w2) _nyw (%2,2’,11)1) - nyw ($1,Z,’w2) +nyw (mlvszl)
5w(z) = nyw (l‘g,yg,z) - H:cyw ($1,y2,2) _szw (132’3/172) +szw (mlayhz)

are all non-decreasing functions of z.

Proof of Lemma 1. From the definition of a trivariate distribution function we know that
nyw ($27 Y2, w2) - nyw ($27 Y2, wl) _nyw (x27 Y1, w2) +nyw ($2a Y1, wl) > nyw (3717 Y2, w2) -
Hyyw (21,92, w1) —Hpyw (21, Y1, w2) +Hayw (21, y1,w1) for all 21 < 29, y1 < y2 and wy < wy. Thus

0% (x) is non-decreasing in z. Similarly for ¥ (y) and 6 (w). =

Proof of Proposition 1. The first property is obvious. We show the remaining properties of
the conditional copula by deriving some properties of the joint distribution of (F' (X |W),G (Y|W),W).
Let U = F(X|W) and V = G (Y|W). Rosenblatt (1952) shows that U|{W = w ~ Unif (0,1) for
all w € W. Note that this implies that the unconditional distribution of U is also Uni form (0,1).
This result holds similarly for V. Thus C (u, ljw) = v and C (1,v|w) = v.

Let the joint distribution of (U, V, W) be denoted C*, and let the joint distribution of (U, W)
be denoted C, which is obtained as C (u,w) = C* (u,1,w). Notice that by the above result that

C(u,w) =u- Fy (w). The conditional distribution of (U, V') |W is given by:
C (u,v|w) = fo (w) " 93C* (u,v,w), forwe W

where 03C™* denotes the partial derivative of C* with respect to its third argument. We do not write
dC* (u, v, w) /Ow as u and v are also functions of w. So C (u,0|w) = fu, (w) -85 (C* (u,0,w)) = 0,
as V has support (0,1). Similarly for C (0, v|w). Further,
Vo (Jur, ug] X [v1,ve] lw) = C(ug,v2|w) — C (ug, va|w) — C (ug, v1|w) + C (u1, vi|w)
— o) (5 (€ ) =€ (a2 0)
—C* (ug,v1,w) + C* (ug,v1, w))) >0

by Lemma 1 and the fact that f,, is a density function. m
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Proof of Theorem 1. We will only show the parts that differ from the proof of Sklar’s
theorem for the unconditional case. Note that from the triangle inequality and Lemma 2.1.5 of

Nelsen (1999) we have, for any wi,ws € W:

|H (22, y2|w2) — H (w1, y1|w1)] < |H (22, y2|wa) — H (w2, y1|w2)|
+|H (2, y1|we) — H (21, y1|wo)|

) —
+H (z1,y1|we2) — H (21, y1|w1)]
F(

IN

|F (w2|wa) — F (z1|w2)| + |G (y2|w2) — G (y1|wa)|
+|H (w1, y1|we) — H (z1,y1|w1)|

= ) ( O (@2, w2) — F* (a1, 02))

ow
s (wg)’l . OH* (xaliuyl,wﬂ — (wl)fl _

= 0 when 1 = 22, y1 = y2, and w; = we

‘— " (y2, wa) — G* (y1, w2))

OH* (z1,y1,w1)
ow

by the fact that F*, G* and H* are joint distribution functions, and f,, is a density function. Thus if
x1 = T2, y1 = yo and wy = wy then H (x2, yo|ws) = H (x1,y1|w1). The function C is defined by the
set of ordered pairs: {((F(z|w),G(ylw),w), H(z,ylw)): (z,y,w) € R x RxW}. The remainder

of the proof can be shown following the steps of the proof of Theorem 2.3.3 in Nelsen (1999). m

6 Appendix B: Evaluation of conditional density models

In this appendix we outline methods for conducting goodness-of-fit tests on marginal distribution
and coupla models. As stated in the body of the paper, the evaluation of copula models is a special
case of the more general problem of evaluating multivariate density models. Diebold, et al. (1998),
Diebold, et al. (1999), Hong (2000), Berkowitz (2001), Chen and Fan (2002) and Thompson (2002)
focus on the probability integral transforms of the data in the evaluation of density models. We
use the tests of Diebold, et al. (1998), and employ another test, described below.

Let us denote the two transformed series as {ut}z;l and {vt}le, where uy = F; (z4|W;—1) and
ve = Gt (ye|Wi—1), for t = 1,2,....,T. Diebold, et al. (1998) showed that for a time series of
probability integral transforms will be éid Unif (0,1) if the sequence of densities is correct, and
proposed testing the specification of a density model by testing whether or not the transformed

series was iid, and Unif (0,1) in two separate stages. We follow this suggestion, and test the
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independence of the first four moments of U; and V;, by regressing (u; — @)* and (v; — 9)* on 20
lags of both (u; — ﬂ)k and (v; — T))k, for k =1,2,3,4. We test the hypothesis that the transformed
series are Unif (0, 1) via the Kolmogorov-Smirnov test.

Our second test compares the number of observations in each bin of an empirical histogram
with what would be expected under the null hypothesis. Diebold, et al. (1998) suggest that such
comparisons may be useful for gaining insight into where a model fails, if at all. We decompose the
density model into a set of ‘region’ models (‘interval’ models in the univariate case), each of which
should be correctly specified under the null hypothesis that the density model is correctly specified.
The specification introduced below is a simple extension of the ‘hit’ regressions of Christoffersen
(1998) and Engle and Manganelli (1999). Clements (2002) and Wallis (2003) have proposed similar
extensions. We will describe our modification below in a general setting, and discuss the details of
implementation in the body of the paper.

Let Wy be the (possibly multivariate) random variable under analysis, and denote the support
of Wy by S. Let {Rj}JK:O be regions in S such that R; N R; = 0 if ¢ # j, and U]K:()Rj = S. Let
mj¢ be the true probability that W; € R; and let pj; be the probability suggested by the model'?.
Finally, let II; = [mos, 714, ..., Tx¢) and P; = [pot, Pit, .-, Pie) - Under the null hypothesis that the
model is correctly specified we have that P, = II; for t = 1,2,...,7T. Let us define the variables to
be analysed in the tests as Hit! = 1 {W, € R;}, where 1 {A} takes the value 1 if the argument, A,
is true and zero elsewhere, and M; = Z]K:Oj -1{W; € R;}.

We may test that the model is adequately specified in each of the K + 1 regions individually
via tests of the hypothesis Ho : Hit] ~ inid2® Bernoulli (pje) versus Hy : Hit! ~ Bernoulli (7jt),
where 7j; is a function of both pj;;, and other elements of the time ¢ — 1 information set thought
to possibly have explanatory power for the probability of a hit. Christoffersen (1998) and Wallis
(2001) modelled ; as a first-order Markov chain, while Engle and Manganelli (1999) used a linear
probability model. We propose using a logit model for the hits, which makes it easier to check
for the influence of other variables or longer lags, and is better suited to modelling binary random
variables than a linear probability model. Specifically, we propose:

Tt = 15 (Zje: B, pje) = A <>\j (Zjt,8;) —In [%D (20)
J

9 The researcher may have a particular interest in certain regions of the support (the lower tails, for example, which
are important for Value-at-Risk estimation) being correctly specified. For this reason we consider the case where the

probability mass in each region is possibly unequal.

2044 n.4.d.” stands for “independent but not identically distributed”.
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where A (z) = (1+¢7) " is the logistic transformation, Zj is a matrix containing elements from
the information set at time ¢t — 1, 3, is a (k;j x 1) vector of parameters to be estimated, and \; is
any function of regressors and parameters such that \; (Z,0) = 0 for all Z. The condition on A;
is imposed so that when §; = 0 we have that 7;; = 7; (Zjt,0,pj¢) = pjt, and thus the competing
hypotheses may be expressed as 3; = 0 versus 3; # 0. The parameter 3; may be found via
maximum likelihood, where the likelihood function to be maximised is: £ (7rj (Zj, Bjs pj) |Hit/ ) =
E'f:lHit{ ‘Inm; (th,ﬁj,pjt) + <1 — Hzti) -In (1 — T (th,ﬁj,pjt)). The test is then conducted as
a likelihood ratio test, where LR; = —2 - (E (pj|Hitj) - L <7T]‘ (Zj,Bj,pj> |Hz'tj)> ~ Xij under
the null hypothesis that the model is correctly specified in region R;.

We may test whether the proposed density model is correctly specified in all K 4 1 regions
simultaneously by testing the hypothesis Hy : My ~ inid Multinomial (P;) versus Hy : My ~
Multinomial (I1;), where again we specify II; to be a function of both P, and variables in the time

t — 1 information set. We propose the following specification for the elements of II;:

w1 (Z,8,P) = A <)\1 (Z1t,81) —In [1 ;flt}) (21)
j-1 N
7 (Z1,B, ) = (1 - Z”it> A (Aj (Zjt, B;) —In [%D  forj=2,.. K22)
= j
b 1
mor = 1= (%8, F) (23)
j=1

where Z; = [Z1, ..., Zk|' and B = [34, ..., Bk]'. Let the length of 3 be denoted K. This expression
for II; is specified so that II; (Z;,0, P;) = P, for all Z;. Further, it allows each of the elements of
IT; to be a function of a set of regressors, Z;;, while ensuring that each 7j; > 0 and that Z]K:()Trjt =
1. Again the competing hypotheses may be expressed as 3 = 0 versus 3 # 0. The likelihood
function to be maximised to obtain the parameter 8 is £ (II1(Z, 3, P) |Hit) = ZthlzjK:O Inmj -
1{M; =j}. The joint test may also be conducted as a likelihood ratio test: LRar; = —2 -
<[, (P|Hit) — L (H (Z,B, P) |Hzt>> ~ X%(/B under the null hypothesis that the model is correctly

specified in all K regions.

25



7 Tables and Figures

Table 1: Summary statistics
DM-USD  Yen-USD

Pre-euro
Mean 0.0053 -0.0090
Std Dev 0.6757 0.7344
Skewness -0.0149 -0.7486
Kurtosis 4.9642 9.2961

Jarque-Bera p-val ~ 0.0000 0.0000
ARCH LM p-val 0.0000 0.0000

Linear correlation 0.5085
Number of obs 2046
Post-euro
Mean 0.0358 0.0194
Std Dev 0.6617 0.6735
Skewness -0.5031 -0.2294
Kurtosis 4.2830 4.2471

Jarque-Bera p-val ~ 0.0000 0.0000
ARCH LM p-val 0.5061 0.0017
Linear correlation 0.1240
Number of obs 773

Note to Table 1: This table presents some summary statistics of the data used in this paper. The
data are 100 times the log-differences of the daily Deutsche mark - U.S. dollar and Japanese yen - U.S.
dollar exchange rates. The sample period runs eleven years from January 1991 to December 2001, yielding
2819 observations in total; 2046 prior to the introduction of the euro on January 1, 1999 and 773 after the
introduction of the euro. The ARCH LM test is conducted using 10 lags.
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Table 2: Results for the marginal distributions
Pre-Euro Post-Euro

DM-USD margin

Constant 0.0131 0.0716
(0.0123) (0.0245)
AR(1) 0.0036 0.0252
(0.0068) (0.0341)
GARCH constant 0.0047 0.0000
(0.0035) (0.0036)
Lagged variance 0.9331 0.9939
(0.0193) (0.0430)
Lagged e? 0.0590 0.0060
(0.0162) (0.0300)
Degrees of freedom 6.1926
(0.9306)
Yen-USD margin
Constant 0.0221
(0.0124)
AR(1) —0.0090
(0.0120)
AR(10) 0.0675
(0.0201)
GARCH constant 0.0076
(0.0046)
Lagged variance 0.9397
(0.0195)
Lagged e? 0.0469
(0.0131)
Degrees of freedom  4.3010 6.8243
(0.4102) (1.5173)

Note to Table 2: Here we report the maximum likelihood estimates, with asymptotic standard errors in
parentheses, of the parameters of the marginal distribution models for the two exchange rates. The columns
refer to the period before or after the introduction of the euro on January 1, 1999. If a parameter did not
change following the introduction of the euro then it is listed in the centre of these two columns.

Table 3: Testing the influence of the “other” variable in the mean and variance models.

p-value
Pre-euro Post-euro
X;_1 in conditional mean model for Y; 0.7198 0.8130
Y;_1 and Y;_q19 in conditional mean model for X; 0.3249 0.3791
7 , in conditional variance model for Y; 0.2459 0.6485
n?_; and n?_;, in conditional variance model for X;  0.6614 0.8325

Note to Table 3: This presents the results of tests of the conditional mean and variance models presented
in equations (6), (7), (9) and (10). We report p-values on tests that the variables listed have coefficients equal
to zero; a p-value greater than 0.05 means we cannot reject the null at the 0.05 level. We test whether the
first lag of the DM-USD exchange rate is important for the conditional mean of the Yen-USD exchange rate
by regressing the residuals 7, on X1 and testing that the coefficient on X;_1 is equal to zero. Similarly,
we test whether the first and tenth lags of the Yen-USD exchange rate are important for the conditional
mean of the DM-USD exchange rate by regressing the residuals €, on Y;_1 and Y;_1¢ and testing that both
coeflicients are equal to zero. To test the conditional variance models we regress the standardised squared
residuals of one exchange rate on the lagged squared residuals of the other exchange rate, and test that the
coefficient(s) on the lagged squared residuals of the other exchange rate is (are) zero.
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Table 4: Tests of the marginal distribution models

Student’s t BEKK Copula margins
DM Yen DM Yen

Pre-euro
First moment LM test 0.1350 0.4299 0.1639 0.7342
Second moment LM test (0.4845 0.1357 0.5378 0.4939
Third moment LM test  0.7695 0.1566 0.7899 0.4819
Fourth moment LM test 0.8675 0.2580 0.8704 0.5503

K-S test 0.8404 0.0687 0.9609 0.7595
Joint hit test 0.3854 0.1433 0.6970 0.0802
Post-euro

First moment LM test 0.7489 0.6465 0.7705 0.8101
Second moment LM test 0.7729 0.5728 0.7960 0.5723
Third moment LM test 0.7054 0.4214 0.7401 0.3765
Fourth moment LM test 0.6675 0.3144 0.6958 0.2661
K-S test 0.0923 0.6732 0.1475 0.3202
Joint hit test 0.9307 0.9049 0.9906 0.9689
Entire sample
First moment LM test 0.1475 0.3202 0.2087 0.3228
Second moment LM test 0.4404 0.0928 0.5348 0.0892
Third moment LM test  0.6397 0.0921 0.7043 0.0891
Fourth moment LM test 0.7535 0.1430 0.7910 0.1420
K-S test 0.4447 0.0636 0.1350 0.4299
Joint hit test 0.6047 0.0798 0.8651 0.1137

Note to Table 4: This table presents the p-values from LM tests of serial independence of the first four
moments of the variables U; and V;, described in the text, from the two models: a BEKK model for variance
with Student’s ¢ innovations, and marginal models to use with copulas. We regress (u; — ﬂ)k and (v; — E)k
on ten lags of both variables, for k = 1,2,3,4. The test statistic is (T" — 20) - R? for each regression, and
is distributed under the null as X%O' Any p-value less than 0.05 indicates a rejection of the null hypothesis
that the particular model is well-specified. We also report the p-value from the Kolmogorov-Smirnov (KS)
tests for the adequacy of the distribution model. Finally, we report the p-value from a joint test that the
density model fits well in the five regions described in the body, using the “hit” test described in Appendix
B.
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Table 5: Results for the copula models

Pre-Euro Post-Euro

Constant normal copula

p 0.5395 0.1366
(0.0148) (0.0379)
Copula likelihood 360.3418
Constant SJC copula
7U 0.3592 0.0000
(0.0247) -
7L 0.2938 0.0931
(0.0273) (0.0383)
Copula likelihood 353.4199
Time-varying normal copula
Constant —0.1700 0.1460
(0.0035) (0.0949)
Q 0.0557 0.2559
(0.0139) (0.1987)
15} 2.5087 0.7242
(0.0097) (0.6128)
Copula likelihood 372.7471
Time-varying SJC copula
Constant? —1.7208 —7.7557
(0.2281) (1.4827)
aV —1.0896
(0.7903)
BY 3.8031
(0.2317)
Constant” 1.7365 —0.4373
(0.6110) (1.2409)
al —6.6035
(3.1321)
gE —4.4815
(0.2624)
Copula likelihood 374.4699

Note to Table 5: Here we report the maximum likelihood estimates, with asymptotic standard errors in
parentheses, of the parameters of the copula models. The columns refer to the period before or after the
introduction of the euro on January 1, 1999. If a parameter did not change following the introduction of the
euro then it is listed in the centre of these two columns. We also report the copula likelihood of the models
over the entire sample. The parameter 7V in the constant SJC copula for the post-euro sample was imposed

to equal zero so no standard error is given.

Table 6: Joint hit test results for the copula models

Student’s t Constant Constant Time-varying Time-varying
BEKK Normal copula SJC copula Normal copula  SJC copula
Pre-euro 0.0530 0.4576 0.0978 0.6238
Post-euro 0.9318 0.9239 0.9661 0.9268
Entire sample 0.0723 0.6505 0.2049 0.7354

Note: We report the p-values from joint tests that the models are correctly specified in all regions. A
p-value less than 0.05 indicates a rejection of the null hypothesis that the model is well-specified.
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Figure 1: Contour plots of various distributions all with standard normal marginal distributions
and linear correlation coefficients of 0.5.
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Conditional Correlation in the Normal Copula
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Figure 2: Conditional correlation estimates from the Normal copulas allowing for a structural break
at the introduction of the euro on January 1, 1999, with 95% confidence interval for the constant
correlation case.
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Figure 3: Conditional correlation estimates from the symmetrised Joe-Clayton copulas allowing for
a structural break at the introduction of the euro on January 1, 1999, with 95% confidence interval
for the constant tail dependence case.
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Time path of average tail dependence in the Symmetrised Joe-Clayton copula
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Figure 4: Average tail dependence from the symmetrised Joe-Clayton copulas allowing for a struc-
tural break at the introduction of the euro on January 1, 1999.
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Figure 5: Difference between upper and lower tail dependence from the symmetrised Joe-Clayton
copulas allowing for a structural break at the introduction of the euro on January 1, 1999.
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