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NOMENCLATURE 

Indexes and MPC parameters 

𝐻, ℎ         total prediction horizon and its index 

Δ𝑡, 𝑘     discrete-time step and its index 

𝑖 = 1…𝑁𝑠𝑡  index for storage units 

𝑏 = {𝐴, 𝐵. . } index for buildings 

𝑛 = 1…𝑁𝑏
𝑡𝑧 index for thermal zones in each building 

Ts      RTDS real-time Hardware-in-the-Loop step 

 

Storage parameters and variables 

𝑃𝑖
𝑠𝑡      actual storage production 

𝑃𝑖
𝑠𝑡 , 𝑃𝑖

𝑠𝑡   max and min storage power levels 

𝜂𝑖
𝑐ℎ , 𝜂𝑖

𝑑𝑖𝑠   charging, discharging efficiencies 

𝑆𝑜𝐶𝑖 , 𝐸𝑖    storage state of charge, nominal energy 

𝑆𝑜𝐶𝑖 , 𝑆𝑜𝐶𝑖  max and min state of change levels 

𝑧𝑖
𝑠𝑡 , 𝛿𝑖

𝑠𝑡    additional storage decision variables 

 

Building related parameters and variables 

𝑃𝑏
𝑏𝑢        total building consumption 

𝑃𝑏
𝑒𝑙      unregulated building electrical loads 

�̇�𝑛 𝑏     heat injection in each thermal zone 

𝐶𝑂𝑃𝑛 𝑏    thermal-zone Coefficient of Performance 

𝜗𝑛 𝑏     thermal zone temperature 

 𝜗𝑛 𝑏 , 𝜗𝑛 𝑏   thermal zone temperature max / min limits 

𝜗𝑎     ambient temperature 

𝐶𝑛 𝑏
𝑡ℎ , 𝐺𝑛 𝑏

𝑡ℎ    thermal zone capacitance, conductance 

𝑂𝑛 𝑏     thermal zone occupancy 

𝑝𝑛 𝑏      occupancy to temperature impact coefficient 

𝑠𝑛 𝑏      direct solar irradiance to temperature coefficient 

 

PV and irradiance model parameters 

𝐼𝑟𝑚𝑒𝑎𝑠/ 𝐼𝑟ℎ measured / estimated solar irradiance 

𝐼𝑟𝑠𝑡𝑐    standard test conditions solar irradiance 

𝐼𝑟𝐶𝑆     maximum (clear-sky) solar irradiance 

𝑃𝑃𝑉 , 𝑃𝑃𝑉 ℎ     actual / estimated photovoltaic production 

𝑃𝑃𝑉̅̅ ̅̅ ̅        nominal photovoltaic size 

𝜙, 𝜉         site latitude and zenith angle 

𝛾, 𝜒        clear-sky parameters 

𝑑, 𝑠ℎ       day number and solar hour in clear-sky model  

 

External grid balance 

𝑃𝑔     power injected into the grid 

𝑃 
𝑔 , 𝑃 

𝑔
 
   max and min storage power levels 

𝑧 
𝑔 , 𝛿 

𝑔     auxiliary variables for grid-power sign tracking 

 

Cost function related parameters 

𝐶𝐴     energy-arbitrage cost 

𝐶𝐶𝐼     carbon-intensity cost 

𝐶1, 𝐶2    battery-ageing cost 

𝑐(𝑘)     carbon intensity at time 𝑘 

𝜆𝑏 , 𝜆𝑠    energy buy / sell prices 

𝜆𝐶𝐼      user-defined sustainability factor (£/gCO2) 

𝜆1𝑖
 , 𝜆2𝑖

     battery-ageing coefficients 
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ABSTRACT: 

A detailed system-level Model Predictive Control (MPC) framework is developed for use with sustainable technology systems 

which have either electrical or thermal load flexibility. Differently from the majority of relevant works in the literature, the 

proposed MPC framework includes non-ideal conversion efficiencies, flexibility in electrical/thermal loads and a detailed battery 

degradation model. A hybrid PV estimator based on clear-sky models and actual measurements is exploited for the photovoltaic 

production prediction within the MPC optimization problem. The formulated MPC problem is multi-objective, which aims to 

maximize the profit from energy arbitrage and minimise carbon emissions via a sustainable technology weighting factor (𝜆𝐶𝐼). A 

key novelty of the proposed approach is associated with the real-time experimental testing of the MPC framework using a 

microgrid consisting of an actual energy storage asset, a PV system and two buildings with electrically powered thermal loads. 

The experimental setup comprises a Hardware-in-the-loop (HIL) system together with a physical 240 kW 180 kWh battery energy 

storage system and a Real Time Digital Simulator (RTDS). Three scenarios with differing levels of flexibility in the electrical and 

thermal loads are considered, so as to derive consistent comparisons. When flexibility in both the electrical and thermal loads is 

utilised, a 𝐶𝑂2 reduction of up to 75 kg/day (𝜆𝐶𝐼=0.01) and an energy saving of up to 50 £/day (𝜆𝐶𝐼  =0) is observed, yielding a 

reduction of around 10% in carbon emissions or energy consumption with respect to the base case. 
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1. Introduction 

1.1. The context 

Greenhouse gas emissions are undoubtedly one of the major 

causes of global climate change. A radical reduction in carbon 

footprint can be achieved through the adoption of integrated 

energy policies, which include the containment of consumption, 

the de-carbonization of the energy supply and the lowering of 

atmospheric emissions [1]. Furthermore, the coordinated 

management of energy vectors is also beneficial for the end-

users in terms of reduced operating costs and security of the 

supply. In this perspective, National Grid (UK TSO) identifies 

the electrification of domestic and commercial buildings 

heating systems as a near-term alternative to the well-

established gas-combustion boilers [2]: the coordinated control 

of heating and electrical units then acquires an unprecedented 

importance and represents a clear opportunity to reduce the 

environmental/economic impact of energy consumption.  

In this paper, a Model Predictive Control (MPC) approach is 

adopted for this purpose: compared to heuristic or empirical 

techniques, MPC guarantees an optimized trajectory of the 

system, a robust behaviour against unmodelled dynamics and 

the fulfilment of the operating constraints associated with the 

physical assets [3]. 

1.2. Literature and state-of-the art analysis 

Several works in the literature show how MPC has been 

successfully applied to the field of electrical grid operation 

management. The MPC technique is exploited in [4] to 

minimize the voltage and frequency deviation experienced in 

an island-operated microgrid, with storage devices and 

renewable generators; a similar approach is proposed in [5], to 

balance the injections from a fleet of battery storage systems. In 

[6] several flexibility assets (battery storage, renewable 

generators, diesel gen-sets) are coordinated in order to 

maximize the system profitability during market operations, 

even though important aspects like battery degradation models 

are not included. Most of these publications assumes off-line 

idealized conditions, rather than a real-time implementation of 

the proposed techniques [7]-[8]. Furthermore, they do not 

explicitly include the interaction between the electrical assets 

and other relevant dynamics associated to the local loads (e.g. 

the thermal vectors involved in the buildings temperature 

control). 

Some early works on this topic analyse the regulation of 

building thermal dynamics through MPC approaches for 

minimizing the energy usage under natural weather variability 

while guaranteeing occupants’ comfort [9]-[10]. Nevertheless, 

the focus of these studies is predominantly focused on single 

buildings rather than on the whole-system level, and the 

optimization objective is exclusively related to economic 

factors with no consideration of environmental aspects. A few 

recent studies have started exploring the benefits brought by the 

optimal management of the flexibility afforded by buildings 

combined with energy storage systems [11]-[14], which can 

also incorporate energy arbitrage functions: while the 

publications so far have demonstrated promising results from 

MPC frameworks, they often lack consideration of essential 

aspects such as flexible loads, CO2 emissions or battery 

degradation, and generally no real-time algorithm experimental 

implementation is performed. Furthermore, the energy storage 

models utilised in some of the proposed frameworks are 

excessively simplified, do not clearly rule out the possibility of 

having simultaneous charging and discharging conditions and 

rarely include non-ideal conversion efficiencies. Other studies 

[15] include detailed models of the building thermal 

management, but exploit a simplified representation for 

renewables, do not analyse the environmental sustainability 

aspects and assess the proposed approach through simulation 

instead of experiments. 

1.3. Main contributions  

Differently from the available literature on the topic, this 

paper aims at deriving a holistic MPC approach for a grid-

connected microgrid composed of a wide range of flexibility 

assets (e.g., battery storage, renewable generators and building 

thermal control), including a detailed representation of the 

dynamical electrical/thermal coupling between the comprised 

energy sources. The key contribution of the paper includes both 

the mathematical modelling of the system and its operation 

optimization, and its real-time experimental assessment.  

As to the mathematical modelling of the system and its 

operation optimization, the developed control framework 

consists of a detailed system-level MPC optimization model, 

which combines electrical/thermal coupling dynamics, heat 

control, electrochemical storage devices and renewable 

generation at a unified mathematical model. This system-level 

model includes also non-ideal conversion efficiencies, flexible 

electrical/thermal loads and detailed battery degradation 

models are also included. Furthermore, both the maximization 

of the profit from energy arbitrage and the reduction of carbon 

emissions are integrated into the proposed multi-objective MPC 

optimization problem, which is able to achieve an optimal 

trade-off between the economic and environmental needs 

through the sustainable technology weighting factor (𝝀𝑪𝑰). 
These aspects have never been analysed together, to the best of 

the author’s knowledge.  

In addition, differently from the majority of the relevant 

studies in the literature, the prosed MPC-based optimization is 

integrated into a flexible hybrid experimental set-up (hardware 

+ HIL), which enables a consistent performance assessment 

under real-time high-fidelity conditions and allows to stress-test 

the algorithm capabilities in a scenario close to the real network 

operations. A hardware grid-scale 240 kVA 180 kWh battery 

storage system is integrated in the set-up and experimental 

profiles of the buildings consumption and renewable generation 

are exploited. Similarly, the evaluation of the environmental 

impact of the developed control strategy obtained through the 

proposed multi-objective optimization includes the real carbon 

intensity profiles of the UK energy scenario: this allows to 

derive an extensive and consistent validation of the algorithm 

performance.  

1.4. Paper outlines 

The paper is organized as follows: in Section 2 the dynamic 

models of the system are introduced, while Section 3 outlines 

the optimization algorithm. The real-time experimental set-up 

is described in Section 4, together with a detailed analysis of the 

technical and computational aspects associated with the real-

time resolution of the optimization problem. The experimental 
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results plus discussion are reported in Section 5, before the 

conclusion of the work. 

 

1. System modelling 

1.1. Storage system model 

Each storage unit 𝑖 = 1…𝑁𝑠𝑡 is modelled as a discrete-time 

difference equation: 

 𝑆𝑜𝐶𝑖(𝑘 + 1) = 𝑆𝑜𝐶𝑖(𝑘) + 𝜂𝑖
𝑃𝑖
𝑠𝑡(𝑘)

𝐸𝑖
Δ𝑡 (1) 

where 𝜂𝑖 is the conversion efficiency given by (2). The battery 

State of Charge 𝑆𝑜𝐶 range in (1) is 𝑆𝑜𝐶𝑖 ∈ [𝑆𝑜𝐶𝑖;  𝑆𝑜𝐶𝑖], while 

𝑃𝑖
𝑠𝑡(𝑘) is the battery power in [kW] (positive when charging), 

and is physically bounded by the rating of the converter 

𝑃𝑖
𝑠𝑡(𝑘) ∈ [𝑃𝑖

𝑠𝑡;  𝑃𝑖
𝑠𝑡] ; Δ𝑡 is the sample period and 𝐸𝑖 [kWh] is 

the nominal energy content of the battery asset. 

 𝜂𝑖 = {

𝜂𝑖
𝑐ℎ            𝑖𝑓 𝑃𝑖

𝑠𝑡(𝑘) ≥ 0 
1

𝜂𝑖
𝑑𝑖𝑠
                  otherwise

 (2) 

Due to the different charging and discharging efficiencies in 

(2), binary variables need to be associated with the storage 

model, which will lead to a Mixed-Integer Linear Problem 

(MILP) formulation of the optimization problem in Section 3. 

MILPs can be solved by computationally-efficient numerical 

techniques (e.g., branch-and-bound). 

As used in the storage model proposed in [6], and based on 

the formalisation described in [16], an integer binary value 

𝛿𝑖
𝑠𝑡(𝑘) ∈ {0,1}, 𝛿𝑖

𝑠𝑡(𝑘) = 1 charging, 𝛿𝑖
𝑠𝑡(𝑘) = 0 discharging, 

is introduced to model the battery charging/discharging mode, 

i.e., 𝑃𝑖
𝑠𝑡(𝑘) ≥ 0 ↔  𝛿𝑖

𝑠𝑡(𝑘) = 1. Equation (3) describes the 

mixed-integer linear inequalities related to 𝑃𝑖
𝑠𝑡  and 𝑃𝑖

𝑠𝑡 . The 

very small tolerance 𝜀 is introduced into the 𝑃𝑖
𝑠𝑡  equation in (3) 

as MILP algorithms require non-strict inequalities; the 𝑃𝑖
𝑠𝑡  

equation naturally satisfies the inequality requirement. 

 {
𝑃𝑖
𝑠𝑡(𝑘) − (𝑃𝑖

𝑠𝑡 + 𝜀)𝛿𝑖
𝑠𝑡(𝑘)  + 𝜀 ≤ 0 

– 𝑃𝑖
𝑠𝑡(𝑘) + 𝑃𝑖

𝑠𝑡(1 − 𝛿𝑖
𝑠𝑡(𝑘))  ≤ 0

 (3) 

The auxiliary real variable 𝑧𝑖
𝑠𝑡(𝑘) =  𝛿𝑖

𝑠𝑡(𝑘)𝑃𝑖
𝑠𝑡(𝑘) is 

introduced to express (1) and (2) combined as a linear equation 

subject to the constraint  𝑆𝑜𝐶𝑖(𝑘) ∈ [𝑆𝑜𝐶𝑖;  𝑆𝑜𝐶𝑖]: 

𝑆𝑜𝐶𝑖(𝑘+1)=𝑆𝑜𝐶𝑖(𝑘) + (𝜂𝑖
𝑐ℎ −

1

𝜂𝑖
𝑑𝑖𝑠
)
Δ𝑡

𝐸𝑖
𝑧𝑖
𝑠𝑡(𝑘) + 

+
1

𝜂𝑖
𝑑𝑖𝑠

Δ𝑡

𝐸𝑖
𝑃𝑖
𝑠𝑡(𝑘) 

(4) 

In order to yield a MILP formulation, the non-linearity in the 

definition of the auxiliary variable 𝑧𝑖
𝑠𝑡(𝑘) has to be expressed 

as a system of linear mixed-integer inequalities [6], [16]: 

 

{
 
 

 
 𝑧𝑖

𝑠𝑡(𝑘) − 𝑃𝑖
𝑠𝑡𝛿𝑖

𝑠𝑡(𝑘) ≤  0  

−𝑧𝑖
𝑠𝑡(𝑘) + 𝑃𝑖

𝑠𝑡𝛿𝑖
𝑠𝑡(𝑘) ≤  0 

𝑧𝑖
𝑠𝑡(𝑘) − 𝑃𝑖

𝑠𝑡(𝑘) + 𝑃𝑖
𝑠𝑡(1 − 𝛿𝑖

𝑠𝑡(𝑘)) ≤ 0

−𝑧𝑖
𝑠𝑡(𝑘) + 𝑃𝑖

𝑠𝑡(𝑘) − 𝑃𝑖
𝑠𝑡(1 − 𝛿𝑖

𝑠𝑡(𝑘)) ≤ 0

 (5) 

Thus the dynamics of each storage asset can be expressed in 

compact form by the linear equality (4), and the mixed-integer 

linear vector inequality (6) 

𝑴𝑷 𝑃𝑖
𝑠𝑡  +𝑴𝜹 𝛿𝑖

𝑠𝑡  + 𝑴𝒛 𝑧𝑖
𝑠𝑡 +𝑴𝑺𝒐𝑪𝑆𝑜𝐶𝑖 ≤ 𝑴𝑡 (6) 

𝑴𝑷 
 = [1 -1 0 0 -1 1 0 0 ]𝑇   

𝑴𝜹 
 = [-𝑃𝑖

𝑠𝑡-𝜀 -𝑃𝑖
𝑠𝑡 𝑃𝑖

𝑠𝑡 𝑃𝑖
𝑠𝑡 -𝑃𝑖

𝑠𝑡 𝑃𝑖
𝑠𝑡 0 0 ]

𝑇

  

𝑴𝒛 
 = [0 0 1 -1 1 -1 0 0 ]𝑇   

𝑴𝑺𝒐𝑪 
 = [0 0 0 0 0 0 1 -1 ]𝑇  

𝑴𝒕
 = [-𝜀 -𝑃𝑖

𝑠𝑡 0 0 -𝑃𝑖
𝑠𝑡 𝑃𝑖

𝑠𝑡 𝑆𝑜𝐶𝑖 𝑆𝑜𝐶𝑖  ]
𝑇

.  

1.2. Building model 

The electrical consumption 𝑃𝑏
𝑏𝑢 of each building (identified 

by the index 𝑏 = {𝐴, 𝐵, 𝐶 … }) is modelled in (7) as the sum of 

two independent contributions: i) 𝑃𝑏
𝑒𝑙, which is associated with 

the uncontrollable electrical loads; ii)the summation term in (7), 

which is related to the temperature control and  takes into 

account the electrical consumption of the heat pumps within 

each thermal zone, the latter identified by the index 𝑛 =
1…𝑁𝑏

𝑡𝑧: 

 𝑃𝑏
𝑏𝑢(𝑘) = 𝑃𝑏

𝑒𝑙(𝑘) + ∑ �̇�𝑛 𝑏(𝑘) / 𝐶𝑂𝑃𝑛 𝑏
𝑁𝑏
𝑡𝑧

𝑛=1 , (7) 

where �̇�𝑛 𝑏(𝑘) is the heat injection in each thermal zone, and 

𝐶𝑂𝑃𝑛 𝑏 is the Coefficient of Performance of the thermal unit. 

Fig. 1 shows the measured consumption profiles 𝑃𝑏
𝑒𝑙of two 

buildings in Manchester (a university building (a) and a 

commercial building (b)) over an observation period of one 

year. Both 𝑃𝑏
𝑒𝑙  profiles show a predominant weekly periodicity 

in the absorbed electrical power, thus the seven-days-ahead 

hourly consumption can be reasonably utilized as a forecast of 

𝑃𝑏
𝑒𝑙  within the MPC framework. 

The thermal dynamics are included following the procedure 

in [17]. The temperature evolution is: 

ϑ𝑛 𝑏(𝑘+1)= ϑ𝑛 𝑏(𝑘)+𝐶𝑛 𝑏
𝑡ℎ −1[(𝜗𝑎(𝑘)-𝜗𝑛 𝑏(𝑘))𝐺𝑛 𝑏

𝑡ℎ + 

+ �̇�𝑛 𝑏(𝑘) +𝑠𝑛 𝑏 𝐼𝑟
𝑚𝑒𝑎𝑠(𝑘)+𝑝𝑛 𝑏𝑂𝑛 𝑏(𝑘)]Δ𝑡 , 

(8) 

where 𝜗𝑛 𝑏(𝑘) is the thermal zone temperature, 𝐶𝑛 𝑏
𝑡ℎ  

corresponds to the thermal capacitance in [J/K], 𝐺𝑛 𝑏
𝑡ℎ  is the 

thermal-zone to ambient thermal conductance [W/K], �̇�𝑛 𝑏 is 

the thermal flux controlled by the temperature management 

system, and 𝐼𝑟𝑚𝑒𝑎𝑠(𝑘) and 𝑂𝑛 𝑏(𝑘) are the solar irradiance 

(described in Section 2.3) and people occupancy respectively.  
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Fig. 1: Experimental consumption profiles of (a) university building and (b) a 

commercial site (thermal management units excluded). 

 

The coefficients 𝑠𝑛 𝑏 and 𝑝𝑛 𝑏 determine the dependence of 

each thermal zone on people occupancy and solar radiation.  

The parameters 𝐺𝑛 𝑏
𝑡ℎ , 𝐶𝑛 𝑏

𝑡ℎ , 𝑠𝑛 𝑏, 𝑝𝑛 𝑏, with 𝑏 = {𝐴, 𝐵 … } and 

𝑛 = {1…𝑁𝑏
𝑡𝑧}, in (8) are estimated using datasets obtained 

from Energy+ models of the considered buildings; the Energy+ 

models have been validated against actual measurements [18]. 

A least-square parametric identification approach [19] is 

adopted to estimate the optimal values of the unknown 

parameters (𝐺𝑛 𝑏
𝑡ℎ , 𝐶𝑛 𝑏

𝑡ℎ , 𝑠𝑛 𝑏 , 𝑝𝑛 𝑏), with the input dataset 

comprising the measured temperature 𝜗𝑛 𝑏 and the known 

inputs �̇�𝑛 𝑏, 𝜗𝑎, 𝐼𝑟𝑚𝑒𝑎𝑠, 𝑂𝑛 𝑏. 

As the thermal dynamics of the system involve a significant 

amount of absorbed energy from the grid, they significantly 

affect the economical / environmental costs associated with the 

system. Smart management of their energy absorption profiles 

can deliver a substantial improvement in the microgrid 

management, as demonstrated in Section 5. 

1.3. PV generation 

The renewable source considered in this case study is a 

photovoltaic (PV) system, which is modelled as a time-varying 

power source with an instantaneous solar irradiance of 𝐼𝑟(𝑘). 
The inherent coupling of the PV generation with the buildings 

thermal evolution provides the best scenario to test the 

capabilities of the proposed integrated approach. The actual 

instantaneous power produced by the PV system is obtained 

from the measured 𝐼𝑟𝑚𝑒𝑎𝑠  and standard-test 𝐼𝑟𝑠𝑡𝑐 irradiance 

(𝐼𝑟𝑠𝑡𝑐=1000 W/m2) as: 

 𝑃𝑃𝑉(𝑘) = −𝐼𝑟𝑚𝑒𝑎𝑠(𝑘) ⋅ 𝑃𝑃𝑉̅̅ ̅̅ ̅/𝐼𝑟𝑠𝑡𝑐 (9) 

The negative sign in (9) is introduced to keep a consistent 

convention with the one adopted for the storage unit (negative 

power when physically injected).  

To exploit the optimal control capabilities in optimizing the 

system dynamics with respect to upcoming disturbances, a real-

time estimator of the future irradiance profile is needed by the 

MPC. Offline Artificial Neural Networks and statistical 

techniques have both been proposed as PV forecasters in recent 

years; however, the computational effort associated with the 

algorithm convergence and the huge amount of historical data 

required for the training make them unsuitable for online 

applications [20]-[22]. Another option, with reduced 

computational needs, is an algebraic estimator based on the 

clear-sky algorithm for real-time short-term prediction. 

Following the Robledo-Soler approach [23], the algorithm 

accepts as input the latitude 𝜙 of the considered site and 

predicts the maximum global horizontal irradiance 𝐼𝑟𝐶𝑆 (11) as 

a function of the solar zenith angle 𝜉 defined in (10): 

ξ = acos(cos(𝜙) cos(𝛾) cos(𝜒) + sin(𝜙) sin(𝛾)) (10) 

𝐼𝑟𝐶𝑆(𝑘)=max(1159.24[𝑐𝑜𝑠(𝜉)]1.179𝑒−0.019 (90−𝜉), 0) (11) 

where 𝛾 and 𝜒 in (10) are function of the day within the year 𝑑 

and the solar hour 𝑠ℎ, according to: 

 

𝛾=23.26 sin (360o
𝑑−81 

365
)    𝜒=(𝑠ℎ − 12) ⋅ 15o          (12) 

Equation (13) extends the clear-sky approach to take into 

account for the actual weather conditions through an online 

adaptive factor that rescales the forecasted theoretical 

production 𝐼𝑟𝐶𝑆, function of the last measurements available. 

Thus the ℎ-steps ahead estimator of the solar irradiance 𝐼𝑟ℎ(𝑘) 
and PV production 𝑃𝑃𝑉 ℎ(𝑘) for ℎ ∈ [1, 𝐻] are: 

𝐼𝑟ℎ(𝑘) =
𝐼𝑟𝑚𝑒𝑎𝑠(𝑘)

𝐼𝑟𝐶𝑆(𝑘)
⋅  𝐼𝑟𝐶𝑆(𝑘 + ℎ),   (13) 

𝑃𝑃𝑉 ℎ(𝑘) = −𝐼𝑟ℎ(𝑘) ⋅ 𝑃𝑃𝑉̅̅ ̅̅ ̅/𝐼𝑟𝑠𝑡𝑐 (14) 

Fig. 2 shows the performance of the clear-sky estimator (11), 

the proposed estimator (13) as a function of the prediction index 

ℎ, and the actual measured profile taken from a real PV both 

sunny (left) and partially-cloudy (right) days.  

 
Fig. 2: Actual solar irradiance injection, h1-prediction (ℎ = 1) and h5-

prediction (ℎ = 5)  for a sunny (on the left) and cloudy day (on the right).  
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The analysis reveals that for clear days (Fig. 2-left) the 

proposed predictor converges to the actual measured state, both 

for the short-term (ℎ = 1, which corresponds to a forecast of 

Δ𝑡=15 min) and mid-term prediction (ℎ = 5, corresponding to 

an horizon of 5Δ𝑡); on partially-cloudy days (Fig. 2, right), the 

quality of the forecaster slightly degrades for mid-term 

predictions, while it remains reliable for the short-term ℎ = 1 

prediction. Comparing the hybrid estimator (13) with the clear-

sky estimator (11) for the cloudy day (e.g. the one in Fig. 2-left, 

for ℎ = 5), leads to a RMS error reduction from 232.7 W/m2 

(clear-sky) to 68.7 W/m2 (hybrid) with respect to the actual 

measurements.   

Furthermore, the intrinsic feedback mechanism introduced 

by the MPC scheme during real-time operation is able to 

partially compensate for the uncertainty associated with the 

hybrid estimator. 

1.4. Grid balance  

The physical connection of the different assets is modelled as a 

power balance equality constraint, where 𝑃𝑔 is the net power 

absorbed from the public network (15), combined with the full 

expression for the building consumption as expressed in (7):  

𝑃𝑔(𝑘) =  ∑𝑃𝑖
𝑠𝑡(𝑘)

𝑁𝑠𝑡

𝑖=1

+∑𝑃𝑏
𝑏𝑢(𝑘)

𝑁𝑏𝑢

𝑏=1

+ 𝑃𝑃𝑉(𝑘) = 

=∑𝑃𝑖
𝑠𝑡(𝑘)

𝑁𝑠𝑡

𝑖=1

+ ∑ (𝑃𝑏
𝑒𝑙(𝑘)+∑

�̇�𝑛 𝑏(𝑘)

𝐶𝑂𝑃𝑛 𝑏

𝑁𝑏
𝑡𝑧

𝑛=1

)

 

𝑏={𝐴,𝐵}

+𝑃𝑃𝑉(𝑘) 

(15) 

 

Following the procedure introduced in Section 2.1, a binary 

variable 𝛿
𝑔(𝑘) ∈ {0,1} defined by (15) takes into account the 

sign associated with the power flow at the point of coupling 

with the external public network; as a convention, 𝑃
𝑔(𝑘) ≥ 0 

when the physical electrical power flows from the public 

network to the microgrid: 
 

 

 
𝑃
𝑔(𝑘) ≥ 0 ↔  𝛿

𝑔(𝑘) = 1 (16) 

The binary variable 𝛿
𝑔(𝑘) defined by (16) can be expressed 

through the mixed-integer linear inequality system (17), 

following the same procedure already introduced in (3) for the 

battery storage devices: 

{
𝑃 
𝑔(𝑘) − (𝑃 

𝑔 + 𝜀)𝛿 
𝑔(𝑘)  + 𝜀 ≤ 0 

– 𝑃 
𝑔(𝑘) + 𝑃 

𝑔(1 − 𝛿 
𝑔(𝑘))  ≤ 0,

 (17) 

with 𝑃
𝑔(𝑘) ∈ [𝑃𝑔; 𝑃𝑔]. 

The introduction of the binary variable 𝛿𝑔 allows to correctly 

track the sign of the power flow with the external public 

network and hence take into account the difference between the 

buy and sell energy prices typically applied by Distribution 

System Operators and the environmental impact associated to 

the microgrid operational profile, as clarified in Section 3.1. 

 

 

 

 

2. System optimization  

The system-level MPC scheme is described in this section. 

At each time step an optimization problem is solved and the first 

input of the obtained optimal trajectory is applied to the system. 

The procedure is repeated at each point in time, updating the 

states with the latest measurements and forecasts available, thus 

potentially compensating for any unpredicted disturbance in the 

models. Two counterposed objectives are included in the cost 

function of the MPC problem: 
a) energy arbitrage and minimization of the system operating 

cost associated with the battery ageing: these costs are 

expressed as a monetary net gain or loss for the system; 

b) minimization of the carbon impact of the exchanged energy 

profile with the network.  

2.1. Energy price arbitrage 

Consider the typical time-varying profiles (as the ones shown 

in Fig. 3) which represent the evolution of the buy/sell prices 

(𝜆𝑏 and 𝜆𝑠 respectively) associated to the energy exchanged 

with the external public network. Exploiting the 𝛿 
𝑔 definition 

proposed in (16), buy 𝜆𝑏 / sell 𝜆𝑠 price difference can be 

expressed as: 

𝐶𝐴=Δ𝑡∑{[𝜆𝑏(𝑘)𝛿 
𝑔(𝑘)+𝜆𝑠(𝑘)(1 − 𝛿 

𝑔(𝑘))]𝑃𝑔(𝑘)}

𝐻

𝑘=1

. (18) 

The bilinear relation term in equation (18) 𝛿 
𝑔 ∙ 𝑃𝑔  can be 

rewritten in a MILP form through the introduction of an 

additional variable 𝑧𝑔(𝑘) = 𝑃𝑔(𝑘) ⋅ 𝛿𝑔(𝑘) and the set of liner 

inequalities (19), as the ones introduced for the storage devices 

in (5). The reformulated linear cost function is reported in (20).  

 

{
 
 

 
 𝑧𝑔(𝑘) − 𝑃𝑔  𝛿𝑔(𝑘) ≤  0  

−𝑧𝑔(𝑘) + 𝑃𝑔  𝛿𝑔(𝑘) ≤  0 

𝑧𝑔(𝑘) − 𝑃𝑔(𝑘) + 𝑃𝑔  (1 − 𝛿𝑔(𝑘)) ≤ 0

−𝑧𝑔(𝑘) + 𝑃𝑔(𝑘) − 𝑃𝑔 (1 − 𝛿𝑔(𝑘)) ≤ 0

 (19) 

𝐶𝐴=Δ𝑡∑{𝜆𝑏(𝑘)𝑧
𝑔(𝑘)+𝜆𝑠(𝑘)𝑃

𝑔(𝑘) − 𝜆𝑠(𝑘)𝑧
𝑔(𝑘)}.

𝐻

𝑘=1

 (20) 

 
Fig. 3: Buy λb and sell λs prices (assumed as known) for the considered case 

study, together with the day-ahead forecasted Carbon Intensity 𝑐(𝑘) for UK 

[25]. 
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2.2. Carbon intensity reduction 

Increasing public concerns about the environmental impact and 

sustainability of daily activities is reflected by the adoption of 

minimally impacting energy behaviours. The environmentally 

concerned user can also consciously decide to minimize their 

carbon footprint. Therefore a carbon related cost 𝐶𝐶𝐼 term (18) 

is included in the problem formulation, which considers the 

forecast Carbon Intensity 𝑐(𝑘) of the energy consumption (Fig. 

3, secondary axis) [24], weighted by a user-defined 

sustainability factor 𝜆𝐶𝐼  in £/𝑔𝐶𝑂2, which represents the 

acceptable net-loss incurred by the user to avoid the emission 

of a 𝑔𝐶𝑂2 associated with their consumption profile. 

 

𝐶𝐶𝐼=𝜆𝐶𝐼Δ𝑡∑𝑐(𝑘)𝛿
𝑔(𝑘)𝑃𝑔(𝑘) = 

𝐻

𝑘=1

 

= 𝜆𝐶𝐼Δ𝑡∑𝑐(𝑘)𝑧
𝑔 (𝑘).

𝐻

𝑘=1

 

(21) 

The weighting coefficient 𝜆𝐶𝐼 ∈ [0; +∞) in (21) represents 

the users disposition to adopting a carbon-free energy pattern 

rather than just maximizing economic profit, leading to a Pareto 

curve, rather than to a single optimized profile. For 𝜆𝐶𝐼 = 0, the 

economic profit is maximized independent of the carbon 

footprint, while for increasing values of 𝝀𝑪𝑰 a more 

environmentally sustainable energy plan is preferred. Carbon 

Intensity predictions 𝑐(𝑘) are available for UK in [25]. 

2.3. Battery ageing model 

A battery ageing model is included in the optimization 

problem to account for the capital amortization due to the effect 

of the optimized control on the storage capacity. Wear-out 

phenomena are modelled in the cost function as additional 

terms, which take into account the battery power usage pattern 

[26]. Two different effects need to be taken into account: 

• wear-out which is directly proportional to the amount of 

cycled energy. This effect can be modelled as in (22), 

where 𝜆1𝑖 is the cost per cycle of the 𝑖-th unit. 

 𝐶1 = ∑(
𝜆1𝑖Δt

2 𝐸𝑖
∑|𝑃𝑖

𝑠𝑡(𝑘)|

𝐻

𝑘=1

)

𝑁𝑠𝑡

𝑖=1

 (22) 

• given the same exchanged energy, higher power levels 

induce faster battery ageing, thus a term, (23), 

proportional to the maximum absolute power is needed. 

 𝐶2 =∑(𝜆2𝑖 max
𝑘∈[1;𝐻]

|𝑃𝑖
𝑠𝑡(𝑘)|)

𝑁𝑠𝑡

𝑖=1

 (23) 

The absolute value function in (22)-(23) can be easily 

expressed in a MILP form through a standard procedure similar 

to the one already introduced for the non-linear storage 

behaviour in (2).  

2.4. MPC problem formulation 

The MPC algorithm is set as a minimization problem over 

the prediction horizon 𝐻. The objective function is defined as 

𝐽(𝑢, 𝑓) =  𝐶𝐴(𝑢, 𝑓)+𝐶1(𝑢, 𝑓)+𝐶2(𝑢, 𝑓)+𝐶𝐶𝐼(𝑢, 𝑓), where 𝑢 is 

the vector of decision variables and 𝑓 of the forecasts: 

 

𝑢={𝑃𝑖
𝑠𝑡   𝑆𝑜𝐶𝑖   𝛿𝑖

𝑠𝑡  𝑧𝑖
𝑠𝑡   �̇�𝑛𝑏   ϑ𝑛𝑏  𝑃

𝑔   𝛿 
𝑔  𝑧 

𝑔  }, 

  𝑓={𝑃𝑏
𝑒𝑙    𝐼𝑟𝑟ℎ   𝑃𝑃𝑉 ℎ}, 𝑛 ∈ 1…𝑁𝑏

𝑡𝑧, 𝑏 = {𝐴, 𝐵}. 

 

 The physical parameters of the storage devices and 

buildings, as well as the time profiles of the buy 𝜆𝑏(𝑘) and sell 

𝜆𝑠(𝑘) prices and carbon intensity 𝑐(𝑘) are assumed known. The 

sustainability factor 𝜆𝐶𝐼  involved in the definition of 𝐶𝐶𝐼 is a 

user-defined parameter.  

Thus the MPC problem can be formulated as follows: 

min
𝑢
𝐽(𝑢, 𝑓)   

subject to the following constraints: 

Storage asset 

• Equality constraint (4) 

• Inequality constraint (6) 

Buildings  

• Equality constraint (8) 

• Thermal comfort ϑ𝑛 𝑏(𝑘) ∈ [𝜗𝑛 𝑏;  𝜗𝑛 𝑏], 

    for  𝑏={𝐴, 𝐵}, 𝑛=1..𝑁𝑏
𝑡𝑧 

Grid balance 

• Equality constraint (15) 

• Inequality constraints (17)-(19).  
 

3. Experimental set-up description 

The validation of the proposed MPC framework has been 

carried out considering a microgrid which uses sustainable 

power technologies. The microgrid consists of an energy storage 

asset, which has flexibility in its control, a PV system and two 

smart-buildings, which enable flexibility due to each having 

three thermal zones. The full experimental setup is shown in Fig. 

4, where hardware and simulated elements are combined 

together to test the actual algorithm capabilities on physical grid-

scale devices.  

3.1. Power Hardware and HIL 

The power hardware is a 240 kVA 180 kWh commercial 

lithium-ion battery storage device from Siemens, which is 

equipped with a local controller, and is interfaced to external 

systems by a dSpace DS1007 control box. As depicted in Fig.4, 

the dSpace unit implements the battery storage control through 

a typical grid-following scheme [27], actuating the power set-

point commands received from the real-time digital simulator 

(RTDS Technologies) and sending, as a feedback, the measured 

phase currents at the converter terminals.  

The RTDS unit purpose is twofold. On one side, it simulates 

all the microgrid assets other than the power hardware during 

the real-time operations, i.e. electro / thermal behaviour of the 

buildings, external variable frequency network and PV power 

plant, with a discretization step 𝑇𝑠 = 100𝜇𝑠. Thus the RTDS 

represents the central processing unit were all the 

physical/simulated quantities are managed and dispatched. On 

the other hand, it operates as a communication gateway with the 

MATLAB environment, where the MPC optimal problem is 

implemented and solved: the state variables of the system during 

the real-time operations are sent from the RTDS to MATLAB, 
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which are used as the inputs of the optimization problem. The 

power set-points calculated by the MATLAB environment are 

sent back to each asset to be tracked. 

The design characteristics for the set-up are reported in 

Tables I and II (a more detailed characterization of the energy 

storage asset is available in [28]), while the numerical values 

needed for the battery ageing model (Section 3.2) are derived 

from [29] and are listed in Table III. 

 

 
Fig. 4: Structure of the experimental set-up used for the MPC algorithm testing. 

 
TABLE I: ENERGY STORAGE AND PV SYSTEM PARAMETERS 

Coefficient Value Unit 

𝑃𝑠𝑡 , 𝑃𝑠𝑡 -200, 200 kW 

𝑆𝑜𝐶 , 𝑆𝑜𝐶  10%,  90% % 

𝐸 180 kWh 

𝜂𝑐ℎ , 𝜂𝑑𝑖𝑠 92%  % 

𝑃𝑃𝑉̅̅ ̅̅ ̅ 240 kW 

𝜙 43𝑜 North deg. 

Δ𝑡, 𝐻 15, 48 min, - 

 

TABLE II: BUILDING PARAMETERS 

Build. Coefficient Value Unit 

 𝐶1𝐴
𝑡ℎ, 𝐶2𝐴

𝑡ℎ 𝐶3𝐴
𝑡ℎ 0.88,  0.21, 0.18 MJ/K 

A 𝐺1𝐴
𝑡ℎ , 𝐺2𝐴

𝑡ℎ , 𝐺3𝐴
𝑡ℎ  18.2, 2.60, 3.57 W/K 

 𝑝1𝐴 , 𝑝2𝐴, 𝑝3𝐴 15.2, 4.84, 3.01 W 

 𝑠1𝐴, 𝑠2𝐴, 𝑠3𝐴 22.0, 8.38, 6.28 m2 

 𝐶1𝐵
𝑡ℎ, 𝐶2𝐵

𝑡ℎ , 𝐶3𝐵
𝑡ℎ  1.0,  1.2, 0.49 MJ/K 

B 𝐺1𝐵
𝑡ℎ , 𝐺2𝐵

𝑡ℎ , 𝐺3𝐵
𝑡ℎ  14.3,  98.2,  28.6 W/K 

 𝑝1𝐵 , 𝑝2𝐵 , 𝑝3𝐵 0.68, 0.51, 0.29 W 

 𝑠1𝐵 , 𝑠2𝐵 , 𝑠3𝐵 0.79, 2.12, 1.04 m2 

A/B 𝑘𝑝, 𝑘𝑖 2, 4e-3 kW/K, kW/(Ks) 

 [𝜗𝑛;  𝜗𝑛], 𝐶𝑂𝑃 [19;22], 1.5 [ Co ; Co ],W/W 

 
TABLE III: COST PARAMETERS 

Coefficient Value Unit 

𝜆1 7.5e-03 £/kWh 

𝜆2 6.75e-04 £/kW 

𝜆𝑏(𝑡), 𝜆𝑠(𝑡) see Fig. 3 £/kWh 

𝑐(𝑘) see Fig. 4 gCO2/kWh 

𝜆𝐶𝐼  [0   0.001  0.005   0.01] £/gCO2 

 

3.2. Computational aspects  

The solution of the MPC algorithm in MILP form is obtained in 

the MATLAB environment by using the IBM-CPLEX solver, 

suitably implemented by using he MATLAB-based 

optimization tool YALMIP [30]. The MPC problem is 

performed considering a sampling period Δ𝑡 equal to 15 minutes 

and a half-day total prediction horizon (H = 48). Since binary 

variables are employed to represent the battery storage dynamics 

(see eq. (6)), the MPC optimization model is cast as a Mixed 

Integer Linear Program (MILP), which can be efficiently solved 

through the CPLEX Branch-and-Bounds algorithm. On a 64-bits 

architecture based on the Intel® Core™ i7-6700 CPU 3.40 GHz 

processor, equipped with a 16.0 GB RAM memory, the 

computational time associated to the solution of the MPC 

problem at each time step is bounded within 10s – 25s, with an 

average value close to 15s. Being the computation time 

significantly lower than the sampling period Δ𝑡, a higher number 

of controlled devices could be easily included and managed. The 

MATLAB is interfaced with the RTDS system through the 

freeware JTCP library, which enables a TCP-based 

communication from MATLAB to the real-time simulator.  

 

3.3. Scenario Descriptions 

Three different scenarios are considered to test the proposed 

optimization scheme under increasing levels of flexibility from 

sustainable energy assets. 

CS0, Scenario 0 (base case): the system is operated without 

any flexibility from assets. The storage unit is neglected. The 

temperature control within the buildings is carried out by simple 

local proportional-integral (PI) controllers, which are 

responsible for the thermal management within each thermal 

zone, in terms of their heat injection (�̇�𝑛, for  𝑛 ∈ 1…𝑁𝑏
𝑡𝑧,   𝑏 ∈

1…𝑁𝑏𝑢). This serves as a base case benchmark to assess the 

performances of the MPC algorithm. 

CS1, Scenario 1 (electrical flexibility): the system is operated 

assuming that the MPC exclusively manages the energy storage 

asset. The buildings thermal control is the same as in CS0.  

CS2, Scenario 2 (electrical and thermal flexibility): the 

system is operated exclusively by the MPC scheme described 

in Section 3, which is able to integrate the thermal and electrical 

dynamics within a unique optimization framework. 

In scenarios CS0 and CS1, a PI controller with a constant 

reference equal to the mean value of the comfort range is 

adopted to manage the heat injections �̇�𝑛(𝑘) for each thermal 

zone to maintain the temperature 𝜗𝑛(𝑘) within the comfort 

range [𝜗𝑛;  𝜗𝑛]. In scenario 2, CS2, the thermal behaviour is 

controlled by the MPC algorithm. 

 

4. Experimental results 

4.1. Carbon impact and energy cost reduction (CS1)  

Scenario 1 CS1 (electrical flexibility) has been 

experimentally tested using the actual building load and 

weather data from Monday the 2nd of April 2018; for this day, 

the load forecaster has a RMSE of 7.4 kW (building 1) and  

12.3 kW (building 2), while the hybrid PV forecaster RMSE is 

56.2 W/m2.  
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 Fig. 5 shows the experimental test data for 𝝀𝑪𝑰 =0 which 

means the optimization only considers economic factors: Fig. 

5(a) shows the profile of the battery state of charge, where the 

MPC utilizes the change in energy buy price 𝝀𝒃 (occurring 

between 𝑡0=12 noon and 𝑡1=2 p.m.) by pre-emptively charging 

the storage asset and subsequently discharging the battery as the 

energy sell price 𝝀𝒔 was at a maximum (between 𝑡1=2 p.m. and 

𝑡2 =7 p.m.). The corresponding power profiles for all assets are 

shown in Fig. 5(b), where the discharge operation of the storage 

asset during the high sell price conditions time period (𝑡1 to 𝑡2) 

is visible. For the same day of data, the base case (CS0, no 

flexibility) has an equivalent energy consumption of 478 £/day 

and 875 kgCO2/day, whereas CS1 has an equivalent energy 

consumption of 462 £/day and the same CO2 profile (as 𝝀𝑪𝑰=0). 

The sustainable technology weighting factor 𝝀𝑪𝑰 is increased 

to 𝝀𝑪𝑰=0.05 £/𝑔𝐶𝑂2 in Fig. 6. The MPC balances the economic 

profit with the minimization of the environmental impact of the 

absorption pattern. Hence, an additional charge/discharge cycle 

(Fig. 6(a), between 𝑡3= 6 a.m. and 𝑡4= 10 a.m.) occurs to reduce 

the consumption from the external grid in response to the 

forecasted peak in carbon intensity, at approximately 𝑡4. When 

comparing Fig. 5 and Fig. 6, the non-zero 𝜆𝐶𝐼  also causes the 

MPC to modify the operation of the storage asset in response to 

the high sell price (𝑡1 to 𝑡2) as this time period is immediately 

before a time period of high CO2 intensity. In Fig. 6 the MPC 

charges the storage asset when the energy buy price is low, and 

then discharges the storage asset when the CO2 intensity is high.  

The energy consumption in this case is minimally affected by 

the control but the CO2 impact reduces to 863 kgCO2/day. 

 

4.2. Building thermal dynamics contribution (CS2)  

By including the building thermal dynamics in the optimization 

problem (case CS2) both electrical and thermal flexibility in the 

sustainable assets can be co-optimized, increasing the algorithm 

performances. Fig. 7 shows the experimental results for the 

same day as used in Figs. 5 and 6. Temperature profiles for all 

three thermal zones in Building 1 are shown in Fig. 7, with Fig. 

7(a) being for CS1, and Figure 7(b) referred to the case CS2.  

The PI-based regulation in CS1 shows poor rejection of the 

external solar radiation 𝑃𝑃𝑉  and occupancy (Fig. 7(a)), leading 

to unregulated oscillations of the temperatures profiles (for 

clarity, its equivalent regulation scheme is reported in Fig.8). 

The PI-based regulation scheme requires to set an average 

reference temperature within the comfort range and to 

compensate the unpredicted positive and negative variations 

caused by the solar radiation and building occupancy. 

𝑡2 

(a) 

𝑡1 𝑡0 

(b) 

𝑡0 𝑡1 𝑡2 

Fig. 5: Scenario 1 CS1 - SoC, buy/sell prices, equivalent carbon intensity 

(a) and power profiles (b), 𝜆𝐶𝐼=0. As a convention, all the powers are 

positive when absorbed from the network. 

 

(a) 

𝑡4 𝑡3 

(b) 

𝑡4 𝑡3 

Fig. 6: Scenario 1 CS1- SoC, buy/sell prices, equivalent carbon 

intensity (a) and power profiles (b), with 𝜆𝐶𝐼=0.05. As a 

convention, all the powers are positive when absorbed from the 

network. 
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Fig. 7: Thermal zone temperatures (ϑ1,ϑ2,ϑ3) for building 1 under (a) CS1 (CS1: 

electrical flexibility) or (b) CS2 (CS2: electrical + thermal flexibility). 

 

 
Fig. 8: Equivalent scheme of the discretized PI controller as exploited in CS1. 

 

The possibility to include the compensation of the external 

disturbances (e.g. building occupancy and irradiance) directly 

into the MPC optimization problem (Fig. 7(b)) represents a key 

advantage of the proposed architecture over the simpler un-

compensated scheme reported in Fig. 8. The MPC approach 

reduces the occurrence and frequency of the thermal zones’ 

temperature oscillations, thus increasing the comfort for the 

building occupiers. Its predictive capabilities enable the 

retention of a slightly lower average temperature inside each 

thermal zones without violating the comfort constraint  ϑ𝑛(𝑘) ∈

[𝜗𝑛;  𝜗𝑛] =  [19;  22] C
o . This leads to a reduced energy 

consumption and carbon impact in CS2 with respect to the 

scenario CS1. Additionally, the MPC optimally manages the 

amount of stored heat inside the building so as to minimize the 

energy consumption of the premises: as soon as a step-increase 

of the buy price is foreseen (e.g. at 𝑡0=12 noon), the control 

system stores thermal energy within the building, which later 

allows a natural temperature decrease during the first time steps 

after the price rise, in order to reduce the corresponding cash 

flow associated to the energy absorption. This phenomenon can 

be observed from the temperature peaks experienced at 𝑡0=12 

noon and 𝑡5= 2 p.m. in Fig. 7(b); the thermal comfort 

constraints are not violated thanks to the inclusion of the 

characteristic dynamics of each zone within the model. It is 

worth highlighting how this behaviour is mainly due to the 

energy-arbitrage revenue maximization included in the cost 

function definition; if this is not desired, it could be easily 

removed through a different formulation of the MPC cost terms.   

The predictive nature of MPC allows taking advantage of the 

flexibility in the temperature comfort range and optimizing the 

stored heat inside the building. This leads to an improvement of 

the system energy behaviour demonstrated by an energy saving 

of almost 50£/day for CS2 with respect to CS0 (compared to 

16£/day for CS1), where a PI is utilized. 

Without loss of generality and for the sake of simplicity, the 

sustainable technology weighting coefficient 𝝀𝑪𝑰 was set to 0 

for both cases reported in with Fig. 7(a) and with Fig. 7(b), 

implying an optimization focused on the economic profit only. 

4.3. Results evaluation 

A more comprehensive evaluation of the MPC algorithm 

performance is given in Fig. 9, which shows the energy savings 

and CO2 emission reduction for different values of the 

sustainable technology carbon weighting factor 𝝀𝑪𝑰. The 

combination of the optimal solutions corresponding to different 

values of the weighting factor 𝜆𝐶𝐼  defines a Pareto curve in the 

space of the solutions. The coordinated management of the 

electrical/thermal dynamics (CS2) increases the degree of 

flexibility associated with the optimization problem and 

guarantees better performance both in terms of carbon 

reduction and energy cost containment.  

Referring to the results associated with Scenario 2 CS2, the 

proposed MPC-based optimal management guarantees a CO2 

reduction of up to 75 kg/day (𝝀𝑪𝑰=0.01 £/gCO2) and a 

maximum energy saving of up to 50 £/day (𝝀𝑪𝑰 =0) with respect 

to the base case CS0. CS2 also yielded a 350% energy saving 

when compared to CS1 (𝝀𝑪𝑰=0), and a 400% CO2 saving when 

compared to the savings in CS1, showing the significant 

performance improvement if all available flexibility is utilized. 

 

 

Fig. 9: Energy and CO2-emission savings, for different values of sustainability 

technology factor 𝜆𝐶𝐼, for the two considered case studies (CS1: electrical 

flexibility, CS2: electrical and thermal flexibility). 

 

(a) 

(b) 

𝑡0 𝑡5 
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5. Conclusion 

A detailed system-level optimization method has been 

described for use with sustainable technology systems which 

have flexibility in their operating characteristics. The 

optimization has been demonstrated using a microgrid rich in 

sustainable energy systems. Key innovative aspects have been 

included in the optimization framework, such as non-ideal 

conversion efficiencies for battery storage, flexibility in 

electrical/thermal loads and detailed battery degradation 

models. The proposed MPC problem is multi-objective, and its 

parameters can be set so as to maximize the profit from energy 

arbitrage, to minimise carbon emissions, or to optimize both 

criteria simultaneously: this feature represents a key element in 

the light of the rising concerns about the environmental 

sustainability of the current energy production, distribution and 

consumption paradigms. A hybrid estimator of the PV 

production based on clear-sky models and actual irradiance 

measurements is proposed, suitable for real-time operation. 

A further novelty of the proposed MPC approach regards its 

experimental testing. The MPC algorithm has been 

demonstrated experimentally using a HIL system together with 

an actual grid-scale battery energy storage system connected to 

the UK public power network. Three scenarios were 

demonstrated with different levels of flexibility in the electrical 

and thermal loads. When the both electrical and thermal loads 

flexibility was utilised by the MPC (CS2), a CO2 reduction of 

up to 75 kg/day (𝝀𝑪𝑰=0.01 £/gCO2) and a maximum energy 

saving of up to 50 £/day (𝝀𝑪𝑰=0) with respect to the base case 

CS0 was achieved. When electrical and thermal flexibility 

(CS2) is compared to electrical only flexibility (CS1) then a 

350% energy saving (and 𝝀𝑪𝑰=0), and a 400% CO2 saving were 

achieved. 
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