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1  |  INTRODUC TION

While hosts are under selection to combat pathogens, patho-
gens are under concurrent selection to overcome host defences 

(Schmid-Hempel, 2011; Woolhouse et al., 2002). This interaction 
is ubiquitous (e.g., Poulin, 1999) and has consequences ranging 
across the evolution of host immune systems (Frank, 2002), epide-
miology and the emergence of new infectious diseases (Ebert, 1994; 
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Abstract
Natural host populations differ in their susceptibility to infection by parasites, and 
these intrapopulation differences are still an incompletely understood component of 
host-parasite dynamics. In this study, we used controlled infection experiments with 
wild-caught guppies (Poecilia reticulata) and their ectoparasite Gyrodactylus turnbulli 
to investigate the roles of local adaptation and host genetic composition (immuno-
genetic and neutral) in explaining differences in susceptibility to infection. We found 
differences between our four study host populations that were consistent between 
two parasite source populations, with no indication of local adaptation by either host 
or parasite at two tested spatial scales. Greater values of host population genetic vari-
ability metrics broadly aligned with lower population mean infection intensity, with 
the best alignments associated with major histocompatibility complex (MHC) “super-
types”. Controlling for intrapopulation differences and potential inbreeding variance, 
we found a significant negative relationship between individual-level functional MHC 
variability and infection: fish carrying more MHC supertypes experienced infections 
of lower severity, with limited evidence for supertype-specific effects. We conclude 
that population-level differences in host infection susceptibility probably reflect vari-
ation in parasite selective pressure and/or host evolutionary potential, underpinned 
by functional immunogenetic variation.
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Lively, 2016), adaptive radiation (Karvonen & Seehausen, 2012), 
the maintenance of sex (Morran et al., 2011), and conservation bi-
ology (Altizer et al., 2003). Hosts within a population typically vary 
in their susceptibility to infection (Woolhouse et al., 2002), and, in 
spatially heterogeneous host-pathogen systems, host populations 
often differ in their average observed susceptibility (Brunner et al., 
2017; Eizaguirre & Lenz, 2010; Lively & Dybdahl, 2000). Integrating 
these within- and between-population interactions is important for 
understanding the evolutionary and epidemiological consequences 
of these dynamic processes (Brunner et al., 2017; Carlsson-Granér & 
Thrall, 2002; El Nagar & MacColl, 2016; Hess, 1996; Penczykowski 
et al., 2016; Schneider et al., 2017; Smith et al., 2003; Soubeyrand 
et al., 2009; Thompson, 2005). Host adaptation to local parasites, for 
example, may constitute a barrier to gene flow between host popu-
lations, facilitating speciation (El Nagar & MacColl, 2016), or increase 
host susceptibility to parasites transmitted from distant populations 
or different species (Daszak et al., 2000).

Less genetically variable host populations are often reported to 
be more susceptible to infection (e.g., Gibson & Nguyen, 2020). Such 
associations may arise if genetically homogenous hosts are easier for 
parasites to adapt to (reviewed in refs King & Lively, 2012; Radwan 
et al., 2010) and/or because individuals with higher homozygosity 
– genome-wide or at immunity genes – are more susceptible (e.g., 
Acevedo-Whitehouse et al., 2003; Luikart et al., 2008; Ortego et al., 
2007). Differences between hosts and parasites in the processes 
contributing to genetic diversity may thus play a critical role in local 
coevolutionary outcomes. In turn, this may help explain why, while 
shorter generation times and larger populations should give para-
sites the edge over hosts in local adaptation arms races (Gandon 
& Michalakis, 2002; Price, 1980), the majority of reciprocal infec-
tion experiments report no significant local adaptation by either 
parasite or host (approximately 56%; Greischar & Koskella, 2007). 
Complementary tests of local reciprocal adaptation alongside data 
on immunogenetic markers thus offer a potentially useful, but un-
derutilised, approach for understanding patterns of infection within 
and among host populations.

Here, we performed a controlled infection test for local adap-
tation using a model fish-ectoparasite system, complemented with 
the study of two sets of highly polymorphic genetic markers, one 
presumed to be neutral and the other known to be under intense 
selection from parasites. For the neutral marker set, we used micro-
satellites: a well-characterised and well-utilised set is available for 
our host species, and their polyallelic nature makes them useful in 
direct comparisons with our marker under selection, the major histo-
compatibility complex (MHC). Genes of the MHC encode molecules 
involved in immune responses in vertebrates (Klein, 1986), and de-
cades of research has been devoted to the complex suite of selec-
tion pressures that maintain and promote the gene family's extreme 
polymorphism, which includes parasite-mediated selection (Radwan 
et al., 2020; Snell, 1968; Spurgin & Richardson, 2010), sexual selec-
tion (Ejsmond et al., 2014; Penn & Potts, 1999), and selection act-
ing on the MHC-linked sheltered load (van Oosterhout, 2009). The 
ecological pertinence of the MHC is well established, including nu-
merous studies reporting associations between MHC alleles and 

resistance/susceptibility to parasites in wild systems (e.g., Buczek 
et al., 2016; Fraser & Neff, 2010; Kaufmann et al., 2017; Schad et al., 
2005). The role of MHC genes and MHC variability in causing differ-
ences in host resistance/susceptibility between populations is less 
well understood, with the hypothesis that populations with more 
MHC variants have lower parasite burdens supported by observa-
tional evidence (Meyer-Lucht & Sommer, 2009), mesocosm experi-
ments (e.g., Eizaguirre et al., 2012), and wild cage experiments (e.g., 
Bolnick & Stutz, 2017), but limited exposure-controlled experimental 
testing (but see Smallbone et al., 2021). An important concept in the 
study of MHC evolution is that of “supertypes” (STs), groups of MHC 
alleles that encode peptides with similar antigen-binding properties. 
STs may better capture the functional breadth of host defence than 
alleles or phylogenetic groupings. In ecological MHC studies, STs are 
usually assigned by statistical clustering (see Materials and Methods), 
but the concept is founded in laboratory immunology (Doytchinova 
& Flower, 2005; Sandberg et al., 1998; Sidney et al., 1996).

Guppies (Poecilia reticulata) are tropical freshwater fish native 
to northern South America and the Caribbean, and have been an 
important model species in elucidating processes as diverse as 
sexual selection, predator-prey interactions, ecological compe-
tition, and, most relevant to the present study, host-parasite dy-
namics. Furthermore, their MHC has been well-characterised and 
well-studied (e.g., Fraser & Neff, 2010; Smallbone et al., 2021). 
Monogenean ectoparasites in the genus Gyrodactylus are wide-
spread across wild guppy populations, but their prevalence varies 
greatly between and within populations, and through time (Dargent 
et al., 2013; Mohammed et al., 2020; van Oosterhout et al., 2003; 
Stephenson et al., 2015, 2017). The known pathogenicity of the 
parasites, coupled with the relative ease with which they can be 
maintained in a laboratory and used in exposure-controlled infec-
tion trials, make the guppy-Gyrodactylus system an excellent model 
for studying a wide range of host-parasite interactions, including the 
effects of parasitism on some of the processes described above (e.g., 
sexual selection, predator-prey; reviewed by Bakke et al., 2007). In 
the present study, we use this highly tractable system to investigate 
(i) whether wild host populations show consistent differences in re-
sistance across parasite strains, (ii) whether parasites are adapted to 
their local hosts and vice versa, (iii) what role interpopulation varia-
tion in MHC traits may play in this dynamic, and (iv) whether MHC 
genotypes predict infection intensity at the individual level and if 
this varies between host populations/parasite lineages.

2  |  MATERIAL S AND METHODS

2.1  |  Host collection and rearing

We collected (hand seine) juvenile guppies (standard length 
5–12 mm) from four wild populations in March 2016, two on Trinidad 
(Lopinot,”Lop”; Santa Cruz, “SC”) and two on Tobago (Scarborough 
Health Centre,”HC”; Roxborough, “Rox”; Table S1.1). Surveys under-
taken as preliminary work for Phillips et al. (2018) had shown that 
all sites had populations of gyrodactylids, and previous population 
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genetic analyses have shown significant neutral and MHC differ-
entiation between all host population pairs, with differentiation 
stronger between islands than within islands (Herdegen-Radwan 
et al., 2020; Phillips et al., 2018). At our field station in Tobago, we 
treated all fish with salt water (15 ppt, 5 min) to kill any gyrodactyl-
ids (Schelkle et al., 2011), confirmed by briefly anaesthetising all fish 
(0.02% tricaine methanesulphonate; “MS-222”) and screening them 
under a dissecting microscope with cold illumination multiple times 
over several days, according to Schelkle et al. (2009). We saw no 
signs of other ectoparasites or disease at any point in the study. Each 
population was then reared in a separate aquarium (80 L, 50–100 
fish per aquarium) and fed daily with live Artemia nauplii and generic, 
pet-shop fish flakes (Aquarian).

2.2  |  Parasite collection and rearing

In June 2016 we returned to each of the four sites and collected 50–
60  guppies to act as gyrodactylid donors for our experiment. The 
prevalence and intensity of gyrodactylid infections on these fish 
were too low for our preferred protocol of infecting experimental 
fish with parasites straight from the wild, and for sourcing parasites 
from all four populations, so we cultured Gyrodactylus turnbulli from 
populations Lop and HC using fish from a gyrodactylid-free cap-
tive population. Details of gyrodactylid species identification are in 
Appendix S1 (see also Cable & van Oosterhout, 2007a, 2007b; King 
et al., 2009; Xavier et al., 2015). This “farm” host population, main-
tained in an 800L mesocosm, had been founded 18 months earlier 
by crossing captive-reared virgin females from a Tobagonian popu-
lation with males from a Trinidadian population (Appendix S1), and 
had been verified as gyrodactylid-free at P, F1 and F2 generations. 
Neither founding population of the farm stock features in the present 
study. Farm gyrodactylid lineages were established by briefly anaes-
thetising both a wild donor and a recipient fish, and, under a dissect-
ing microscope with cold illumination, bringing together their caudal 
fins (tail) until a single gyrodactylid moved from the donor to the 
recipient. Any extra gyrodactylids that jumped were removed with 
watchmaker's forceps. Donor and recipient were then separated and 
revived, and the recipient was moved to a 500 ml isolation container. 
After six days the procedure was repeated, using infected farm hosts 
to make single-gyrodactylid infections on a fresh batch of farm recipi-
ents. Gyrodactylid cultures were subsequently maintained by keeping 
1–3 parasite-naïve recipients in an isolation container with an infected 
donor for 3–4 h, then moving each new recipient to its own isolation 
container (after Stewart et al., 2017). Farm hosts were fed fish flakes 
daily, with water changed every other day. All gyrodactylids used in 
experimental infections could be traced to their original wild founder.

2.3  |  Experimental design

We performed exposure-controlled gyrodactylid infection trials 
(Cable & van Oosterhout, 2007a, 2007b) on the fish captured as 

juveniles in March 2016. Experimental infections were established 
by briefly anaesthetising parasite donor (infected farm fish) and 
recipient and allowing two gyrodactylids to move to the recipient 
(any extras were removed – see above). Recipients were measured 
(standard length) before infection. All infected fish were females, 
with length ≥15.0 mm. Each experimental host was kept in its own 
500  ml isolation container at ambient shade temperature and fed 
with fish flakes every other day. The day after infection (day 1), we 
anaesthetised each experimental host and counted the number of 
gyrodactylids it carried and repeated this every other day thereafter 
until day 17 or until the fish was observed to be gyrodactylid-free 
for five days. A typical gyrodactylid infection in a parasite-naïve 
wild guppy will start with exponential growth, peak after 7–11 days, 
and rapidly fall away to single figures of parasites (e.g., Phillips et al., 
2018; see also Figures S11.1, S11.2). Each fish received a water 
change at the time of screening. Every 12 h, we checked whether 
all fish were alive, increasing this to every 4 h if a host's infection in-
tensity rose above 70 gyrodactylids. Fish found dead were promptly 
preserved in 1 ml absolute ethanol (changed as in Appendix S1). We 
preserved a fin clip (caudal fin, 2–4 mm2; 0.3 ml absolute ethanol) 
from all fish that survived the experiment. Any fish that cleared its 
infection within the first seven days was reinfected 4–6 days after 
first being recorded as “clear”, as rapid clearance may be a stochastic 
effect of gyrodactylid quality (further details below). We initiated 
experimental infections in two blocks four days apart, balanced by 
fish and gyrodactylid population. All reinfections were initiated six 
days after the second block.

2.4  |  Genetic analyses

We extracted genomic DNA (20–100 ng per sample) from guppy fin 
clips using MagJET Genomic DNA kits (Thermo Scientific). We then 
PCR amplified a 217 bp fragment of the MHC class II second exon, 
which codes for the highly polymorphic β-chain of the MHC mol-
ecule's antigen binding groove, using the primers of Phillips et al. 
(2018) designed from mRNA fragments conserved among poecilids 
(PCR conditions as Phillips et al., 2018). The PCR included the fusion 
primers required for DNA sequencing with an IonTorrent Personal 
Genome Machine (PGM; Life Technologies), as well as a unique com-
bination of 6  bp tags (20 tags  =  400 potential F×R combinations) 
for each amplicon (fish). After amplification, we pooled amplicons 
approximately equimolarly and sequenced the pool (PGM). We then 
used the adjustable clustering method of Biedrzycka et al. (2017), 
implemented in the software amplisas (Sebastian et al., 2016; param-
eters as Phillips et al., 2018), to turn raw sequence data into indi-
vidual genotypes. We followed this up by allocating MHC alleles to 
the supertype (ST) groups of Herdegen-Radwan et al. (2020), based 
on physicochemical properties at positively selected sites reported 
by Lighten et al. (2017).

Copy number variation at the MHC means that the locus affinity 
(phasing) of alleles is rarely known, but an earlier cross-breeding ex-
periment (Phillips et al., 2018) allowed us to phase all of the alleles in 
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this study's focal populations. That earlier experiment reported a sin-
gle linkage block of 1–3 alleles in a de facto single locus, although only 
1–2 alleles per block feature in the present study. We use the term “su-
perhaplotype” to refer to haplotypes based on STs rather than alleles.

To provide a proxy for neutral genetic variation, all hosts in 
the experiment were genotyped at 15  microsatellite loci (Becher 
et al., 2002; Olendorf et al., 2004; Shen et al., 2007; Watanabe 
et al., 2003). Of these, eight were retained for the main analyses, 
with 4/15 dropped for <50% amplification success in at least one 
population and 3/15 dropped for significant departure from Hardy-
Weinberg equilibrium (Appendix S2). These loci are routinely used 
in guppy behavioural ecology and population genetics, including for 
comparisons against MHC variability (e.g., Herdegen-Radwan et al., 
2020; Lighten et al., 2017).

2.5  |  Tests of host and parasite populations

To assess how host population and parasite population affected the 
outcome of infection trials, without considering any explicitly genetic 
predictors, we first tested for biases in host death rate. For this, we 
used contingency table-based analyses (χ2 and Fisher's exact tests), 
as we considered the death rate (5/114 fish, 4.4%) too low for logistic 
regression. We then tested for effects of host population and parasite 
population on the number of “worm-days” experienced by fish that sur-
vived the experiment. Worm-days were calculated as the area under a 
fish's infection trajectory graph (number of gyrodactylids against time), 
and are both ecologically pertinent and statistically tractable – more 
worm-days can reasonably be considered a more intense infection, and 
the metric avoids needing to consider time series, temporal autocor-
relation, zero inflation, or individual-level random effects (Phillips et al., 
2018). For fish that were reinfected, we retained the infection that 
reached the highest peak intensity (details in Appendix S3).

Worm-days were analysed using general linear models (LMs; 
Gaussian errors) on loge-transformed worm-days, and multimodel 
inference implemented in the MuMIn package (Bartoń, 2016) of the 
statistical software “r” (R Development Core Team, 2016). We opted 
for LMs over the generalised linear models with negative binomial 
errors used by Phillips et al. (2018) because: (i) the interpretation 
of LMs is usually more intuitive (e.g., use of R2 to quantify the pro-
portion of explained variation); (ii) their post hoc options are more 
tractable and more widely known; and (iii) in the present study, LMs 
tended to produce residuals that slightly better reflected a normal 
distribution. In the Supporting Information, we show that no inter-
pretive differences would have arisen had we used negative bino-
mial models (Appendix S4). We used corrected Akaike Information 
Criterion (AICC) to rank models with all combinations of the fol-
lowing parameters: host population (factor, four levels); parasite 
population (factor, two levels); the interaction between host and 
parasite population; temperature (factor, three levels corresponding 
to date of infection; empirical temperature data and rationale for 
factor in Appendix S5); and fish size (standard length; continuous, z-
transformed). If the top-ranked model was more than two AICC units 

clear of the second model, we deemed it the nominal best model 
and examined its coefficients for values significantly different from 
zero. If more than one model comprised the top two units of AICC, 
we used AICC-weighted model averaging to estimate coefficients 
and their significance, implemented in MuMIn. We inspected LM 
assumptions for all models by adding five LM diagnostic statistics 
to the summary tables produced by MuMIn: skewness and kurtosis 
of residuals; Kappa and maximum variance inflation factor to assess 
multicollinearity; and the maximum Cook's distance value to check 
for influential data points.

As alternatives to using host population and parasite population, 
we tested two predictors based on host-parasite allopatry/sympatry: 
one in which infections were considered “sympatric” if the host and 
parasite came from the same stream, and the other in which infec-
tions were considered ”sympatric” if the host and parasite came from 
the same island (i.e., Trinidad or Tobago). In exploratory analyses, 
we did not find a significant effect of parasite lineage within source 
location (Appendix S6).

As an indicator of possible relationships between population-
level genetic variability and worm-days, we calculated the rSPc 
ordered heterogeneity statistic (Rice & Gaines, 1994) for five 
population-level genetic diversity metrics: phased and unphased di-
versity for MHC alleles and STs, and mean microsatellite diversity. 
Significant rSPc values suggest an effect of a categorical predictor 
that is directional with respect to the ranking of categories by a third 
variable. Metrics were not derived from the present study's geno-
typed fish but from the much larger population genetics data set 
of Herdegen-Radwan et al. (2020). We assess additional population 
variability metrics in Appendix S7.

2.6  |  Tests of individual-level genetic predictors

Using all host populations, and restricting data to amplicons with 
≥300 MHC sequence reads, we applied the same model ranking ap-
proach as above, with the same response variable and error distribu-
tion, to test for individual-level effects of number of MHC alleles, 
number of MHC STs, and background (microsatellite) variability. 
Each genetic predictor was also tested for interactions with host 
population and parasite population. As our individual-level multilo-
cus microsatellite metric, we used 1 - [homozygosity-by-loci] (hence-
forth “HL”). This weights loci by their expected heterozygosity (HE) 
when calculating multilocus heterozygosity, which may better cap-
ture background genetic variability when a microsatellite panel is 
small (Aparicio et al., 2006; in Appendix S8 we have repeated the 
analyses with alternative microsatellite metrics that apply differ-
ent weightings, out of which HL produced the better fits). HL was 
calculated separately for each fish population, using allele frequen-
cies from the experiment's genotyped fish. No population showed 
significant identity disequilibrium across the eight loci (g2  ≤  0.07, 
p  ≥  .40; Table S2.3; g2 tests performed in inbreedR (Stoffel et al., 
2016), meaning there was not significant variance in individual het-
ero-/homozygosity. Similarly, HL was not a significant predictor of 
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MHC heterozygosity, although the relationship was positive (logistic 
regression: 0.37, SE = 0.28, z = 1.31, p = .19; note that we refer here 
to Mendelian heterozygosity of phased haplotypes, and not, as is 
often the case in the MHC literature, to the number of MHC variants 
that an individual carries).

A difference in effect size between MHC alleles and STs could 
be an artefact of aggregating a large number of alleles into a smaller 
number of STs. To assess this, we compared the observed coeffi-
cient for number of STs, taken from the best linear model to include 
the predictor, to a simulated distribution derived from repeating the 
model after reallocating alleles to STs at random (10,000 repeats; 
adapted from Lighten et al. (2017) and Herdegen-Radwan et al. 
(2020)). We used the 335 alleles and 15 STs of Herdegen-Radwan 
et al. (2020), and randomised ST membership size from a Dirichlet-
multinomial distribution (all α  =  1; Appendix S9; R code included 
in data repository). To test whether the interpretation of HL was 
disproportionately influenced by any one microsatellite locus, we 
dropped each locus in turn, recalculated HL, and repeated the best 
model to include the predictor.

2.7  |  Tests of specific MHC STs

Finally, we tested for effects of specific supertypes on individual in-
fection intensity. If a variant had at least three occurrences in more 
than one host population, we tested for an across-population gen-
eral effect, as well as the respective interaction. Population-specific 
analyses were performed for all variants with 3+ instances in a pop-
ulation. If a variant had at least two occurrences for each gyrodac-
tylid source within a host population, we tested the interaction. We 
did not analyse death rate with respect to individual MHC genotype, 
as only two dead fish gave MHC amplicons that met our genotyping 
quality criteria (details below).

2.8  |  Ethics statement

This experiment was conducted in accordance with Cardiff 
University's UK Home Office Licence PPL 303424. Tobago-sourced 
wild fish were collected under Tobago House of Assembly Permit 
#004/2014. Permission to collect fish in Trinidad was granted by the 
Fisheries Division of the Ministry of Food Production and Fisheries, 
and fish were collected only from areas where guppies were previ-
ously identified as abundant.

3  |  RESULTS

3.1  |  Tests of host and parasite populations

We successfully infected 114  guppies with Gyrodactylus turnbulli, 
with 12–16 fish in each experimental block (four fish sources × two 
gyrodactylid sources; Figure 1). Overall mortality was low (five fish, 

4.4%), and was entirely accounted for by fish from the Tobagonian 
populations of Scarborough Health Centre (“HC”; 2/32, 6.3%) 
and Roxborough (“Rox”; 3/27; 11.1%), with no fish dying from the 
Trinidadian populations Lopinot (“Lop”; 0/28) and Santa Cruz (“SC”; 
0/27). Mortality was not significantly biased by either host popula-
tion (bootstrap χ2: χ2 = 5.70, reps = 100 k, p =  .12) or host island 
(Fisher's exact test: p = .06). Mortality by parasite source was evenly 
split (HC = 2/54, 3.7%; Lop = 3/60, 5.0%), and did not differ signifi-
cantly across the two affected host populations (Fisher's exact test: 
p = 1).

The top-ranked model of worm-days among the 109 fish that 
survived the experiment, excluding genetic predictors, contained 
fish source, fish standard length, and an interaction between the 
two. Together, these explained 82% of variance (Tables 1–3). All pair-
wise differences between fish populations were significant in a post 
hoc test (t ≥ 4.65; p ≤ .001; ‘glht’ function of R package multcomp; 
Hothorn et al., 2008), with the rank order, in increasing infection 
intensity, of SC, Lop, HC, Rox (Figure 2a; Tables 2 and 3; infection 
trajectories in Appendix S11). Larger fish experienced significantly 
more worm-days than smaller fish, though the slope differed sig-
nificantly between populations. Although fish in SC were signifi-
cantly smaller than the other three populations, multicollinearity 
was not problematic (Appendix S12). Of the two other models in 
the top two units of AICC (ΔAICC ≥ +1.34), both dropped the fish 
source × length interaction, retaining a significantly positive overall 
relationship between length and worm-days (Tables 1 and 2). The 
second of these (ΔAICC = +1.95) added an interaction between fish 
and gyrodactylid source, but with a pattern not conforming to an 
obvious local adaptation scenario by either host or parasite (HC 
gyrodactylids produced heavier infections than Lop in SC and Rox 
fish, but lighter infections in Lop and HC fish; p ≥ .058; Table 2). We 
treat this latter interaction with extreme caution, however, as the 
model has very poor multicollinearity diagnostics (max. VIF = 19.0) 
and the interaction did not make the top set when the 12 fish with-
out genotypes were excluded (see below and Appendix S14). There 
was poor support for a noninteracting effect of gyrodactylid source 
(ΔAICC ≥ +2.23), or for any effect of temperature (ΔAICC ≥ +4.35). 
Restricting local adaptation analyses to the two host sources from 
which parasites were collected (HC and Lop) changed the composi-
tion of the top set of models but did not produce a qualitative change 
in interpretation (Appendix S13).

All population-level genetic diversity metrics had negative rSPc 
values against population mean worm-days, meaning populations 
with higher genetic diversity tended to have lower mean infection 
intensity (Table 4). The effect for microsatellite diversity was weaker 
than for STs (Table 4). Tests of additional genetic variability metrics 
are given in Appendix S7.

3.2  |  Tests of individual-level genetic predictors

Of the 109 fish that survived the experiment, 96 (88.1%) met our 
genotype quality criteria for inclusion in models of infection intensity. 
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We recognise the theoretical possibility for the untyped fish to be a 
biased subset of genotypes, but the two supplementary analyses in 
Appendix S14 suggest that if such a bias exists, it is not problematic 
for our interpretation. The number of MHC STs was in all four mod-
els comprising the new top model set (Table 5). Its model-averaged 
coefficient was significantly lower than zero (Tables 5 and 6), mean-
ing individuals carrying more STs experienced infections of lower in-
tensity. Microsatellite HL (our measure for overall genetic variation) 
was present in the third model (ΔAICC = +1.36; Table 5), with a non-
significant negative coefficient (Table 6). Differences between pop-
ulations in mean infection intensity were consistent with those of 
the nongenetic analysis (Tables 1 and 2; see also Appendix S14). Fish 
length retained its net positive relationship with worm-days, but its 
interaction with fish source was no longer in the top-ranked model 
(ΔAICC = +0.99; Table 5). Gyrodactylid source was not in the top set 
(ΔAICC = +2.31; Table 5), i.e. excluding it produced better fits. The 
first model to include number of MHC alleles had ΔAICC = +5.58.

The stronger effect of number of STs relative to number of al-
leles was significantly greater than expected from randomised 
grouping of alleles (obs. coef. = –0.38, exp. = –0.13 ± 0.09 [SD], n. 
randomisations = 10 k, p =  .003; details in Appendix S9), meaning 
it is unlikely to be a side-effect of aggregating alleles into STs. No 
microsatellite locus exerted a disproportionate influence on HL in 
jackknife removal (Appendix S10).

3.3  |  Tests of specific MHC STs

Five supertypes were carried by 3+ fish in at least two populations 
(Tables 7 and 8) and were thus available for cross-population test-
ing for effects of specific STs on infection intensity. Three of these 
STs were in their respective top model set, of which two were in 
their top-ranked model, of which one was present in all top-set mod-
els and/or had a significant coefficient in its best model (Table 8; 
see also Appendix S15). Carriers of ST12 (SC and Lop) experienced 
significantly fewer worm-days than noncarriers, with an effect size 
comparable to, and not confounded by, adding an extra supertype 
(Table S15.7).

For population-specific tests for effects of particular supertypes, 
there were 17 testable instances (3+ carriers in a population; 2–6 
STs per population; Table 8). Of these, six were in their population's 
top model set (Table 9), of which only one was present in all models 
of a top set or had a significant coefficient. Lop hosts carrying ST12 
experienced significantly fewer worm-days, but only when infected 
with Lop (i.e., local) gyrodactylids. However, this result should be 
treated with caution, as the interaction is based on the minimum 
allowable sample size of two carriers per gyrodactylid source. Tests 
of specific STs in Rox hosts were perfectly confounded with number 
of STs – only two STs were detected in the genotyped fish, of which 
one (ST15) was carried by all individuals.

F I G U R E  1  Design of cross-infection experiment, with four host (guppy) populations and two parasite (gyrodactylid) populations sourced 
from two different islands (Trinidad vs. Tobago). Sample sizes refer to numbers of infected hosts per treatment block, with each host 
receiving two gyrodactylid worms
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4  |  DISCUSSION

In our controlled parasite infection trials, we found strong differ-
ences between four host populations but no difference between 
two parasite populations. There were no significant host × parasite 
interactions, implying no significant local adaptation. Host popula-
tions with higher genetic variability (MHC supertypes [STs] and mi-
crosatellites) experienced gyrodactylid infections of lower intensity. 
There was a strong, consistent, negative relationship between in-
dividual MHC ST variability and infection intensity that could not 
be accounted for by microsatellite variability. This relationship was 
substantially stronger for MHC STs than for MHC alleles (nucleotide 
sequences). One ST showed a particularly strong effect, though the 
statistical power for such tests was constrained by low sample sizes.

The lack of evidence for local host or parasite adaptation con-
trasts with evidence for local adaptation to parasites in other fish 
systems (Bolnick & Stutz, 2017; El Nagar & MacColl, 2016), but is 
not out of keeping with the multitaxa meta-analysis of Greischar 
and Koskella (2007) in which studies reporting no significant overall 
local adaptation slightly outnumber (56%) those that do. However, 
host population, but not parasite population, was a strong, signif-
icant predictor of the intensity of infection experienced by hosts. 
Comparable results of consistent differences between host popu-
lations have been reported in other fish species (e.g., Konijnendijk 
et al., 2013; Pérez-Jvostov et al., 2015; Weber et al., 2017), as well 
as in laboratory guppies infected with the same parasite species 
(Smallbone et al., 2021). The precise reasons for such differences 
are usually unclear, though populations of stickleback (Gasterosteus 
aculeatus) have been shown to differ in gene expression profiles 
in response to Gyrodactylus spp. infection (Brunner et al., 2017; 
Robertson et al., 2017). In our study, infection intensity was asso-
ciated with both population- and individual-level genetic variability 
of hosts. Contrasts between the effects of MHC physicochemical 
STs, MHC alleles, and microsatellites indicate a functional role of the 
MHC in explaining these patterns, whilst also suggesting the MHC 
is not the whole story.

Higher host population genetic diversity was associated with 
lower population mean infection intensity. These associations were 
significant for MHC STs and microsatellites, but not for MHC al-
leles. Several previous studies have reported evidence for positive 
correlations between pathogen diversity and MHC polymorphism 
and/or positive selection in cyprinids (Šimková et al., 2006), birds 
(Minias et al., 2018), rodents (de Bellocq et al., 2008), and primates 
(Garamszegi & Nunn, 2011). Intraspecies, interpopulation examples 
include MHC polymorphism correlating positively with pathogen 
vector and ectoparasite abundance in the lizard Ctenophorus orna-
tus (see Radwan et al., 2014), and with length of time in which ra-
bies has been present in racoon populations (Procyon lotor) (see Kyle 
et al., 2014). However, these examples should be compared to our 
study with caution, as all are observational/ecological rather than 
exposure-controlled experiments, and all focus on MHC alleles with-
out a parallel assessment of STs. The significant relationship for MHC 
STs, which agrees with another recent guppy-gyrodactylid-MHC TA
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study (Smallbone et al., 2021), suggests a history of stronger selec-
tion on functional MHC. Our observed relationship could also result 
from population demographic histories affecting diversity by drift, 
with which the significant alignment with microsatellite diversity 
would be consistent. Drift and selection, though, are not mutually 
exclusive (e.g., C. ornatus; see Radwan et al., 2014), and the much 
wider range of ST diversity relative to microsatellite diversity (0.14–
0.84 vs. 0.47–0.53, respectively) is hard to reconcile with drift being 
dominant over selection on MHC functionality. Moreover, MHC al-
lele diversity (range 0.74–0.91), which is known to be sensitive to 
drift (Herdegen-Radwan et al., 2020; Lighten et al., 2017; McMullan 
& van Oosterhout, 2012; Radwan et al., 2010), was not significantly 
aligned with infection load.

Further evidence supporting the role of functional MHC diversity 
comes from our analyses of individual infection intensities. Stronger 
selection by parasites should not only maintain more variants in a 

population, but should also select for more variants expressed by 
an individual. The latter will be determined by both zygosity and the 
number of MHC genes in haplotypes (Bentkowski & Radwan, 2019; 
Minias et al., 2015), as more variants should widen the range of anti-
gens that can be detected and responded to. Such effects have been 
reported in numerous other studies (Carrington et al., 1999; Oliver 
et al., 2009; Penn et al., 2002; Pierini & Lenz, 2018; Radwan et al., 
2012), but others have found no such effect (Phillips et al., 2018), 
some have found the reverse (Ilmonen et al., 2007; Schwensow et al., 
2007; Sepil et al., 2013), and, in species with high numbers of dupli-
cated MHC loci, some have found intermediate numbers of MHC al-
leles to be associated with the lowest infection burdens (Kloch et al., 
2010; Madsen & Ujvari, 2006; Wegner et al., 2003, 2003, 2008). 
In our experiment, individuals carrying more MHC STs experienced 
significantly fewer worm-days: back-transformed from the loge scale 
(Table 6), one extra ST predicts a reduction in worm-days over the 

Term Slope SE z p
Sum of 
weights

Intercept 2.57 0.22 11.73 <.001 –

Fish source

Lopinot 1.04 0.28 3.68 <.001 1

HealthCentre 2.20 0.27 8.28 <.001 1

Roxborough 3.92 0.29 13.46 <.001 1

Fish length (× fish source)

Fish length (no interaction) 0.35 0.08 4.27 <.001 0.471

Fish length (SantaCruz) 0.01 0.15 0.04 .969 0.529

× Lopinot 0.30 0.25 1.22 .225 0.529

× HealthCentre 0.53 0.20 2.70 .008 0.529

× Roxborough 0.49 0.24 2.02 .046 0.529

Sum = 1

Gyro. Source × fish source

HealthCentre (SantaCruz fish) 0.39 0.27 1.43 .153 0.199

HealthCentre × Lopinot −0.72 0.38 1.89 .058 0.199

HealthCentre × HealthCentre −0.65 0.38 1.74 .082 0.199

HealthCentre × Roxborough 0.16 0.40 0.40 .686 0.199

Reference levels for fish and gyrodactylids are Santa Cruz and Lopinot respectively. Fish length (z-
transformed) was present in all models in the top set but interacted with fish source in 1/3 models, 
and we present this in the table as if length-without-interaction and length-with-interaction (the 
latter with Santa Cruz as the reference level) were two different predictors. Sum of weights (a.k.a. 
“importance”) is sum of Akaike weight. All p-values are two-tailed. Post hoc pairwise comparisons 
between all levels of fish source are in Table 3.

TA B L E  2  Model-averaged coefficients 
for models comprising the top two units 
of AICC model ranking of predictors of 
the number of worm-days experienced 
by guppies infected with Gyrodactylus 
turnbulli during our experiment, in models 
without genetic predictors and including 
four fish source populations (Table 1)

Term Mean diff. SE t p

Lopinot – SantaCruz 1.12 0.24 4.65 <.001

HealthCentre – SantaCruz 2.23 0.23 9.55 <.001

Roxborough – SantaCruz 4.08 0.23 17.39 <.001

HealthCentre – Lopinot 1.11 0.21 5.31 <.001

Roxborough – Lopinot 2.96 0.21 14.09 <.001

Roxborough – HealthCentre 1.85 0.20 9.19 <.001

TA B L E  3  Post hoc pairwise 
comparisons of number of worm-days 
(loge-transformed) between all levels of 
fish source in the top-ranked model of 
Table 1
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study period by 31.4%. This effect was not confounded by differ-
ences in ST diversity between host populations – it applied within 
each population, and without a significant interaction. Moreover, 
it did not interact with parasite population, and, importantly, was 
independent of multilocus neutral (microsatellite) heterozygos-
ity. In contrast, the effect of number of MHC alleles was relatively 
weak (17.2% worm-day reduction, and nonsignificant), producing a 
poorer fit than a model with no genetic predictors. The ST effect is 
unlikely to be a consequence of aggregating alleles into STs, as the 
coefficient is significantly more negative than expected if alleles are 
clustered into STs at random. Collectively, this suggests that the re-
lationship between the number of STs and infection intensity may be 
causal rather than correlational. If gyrodactylid infections select for 
individual-level functional MHC variability in guppies, our analysis of 
individual-level predictors supports a role for differences in past se-
lection by parasites in causing differences between host populations 
in susceptibility to infection.

The controlled infection experiments of Smallbone et al. (2021), 
Phillips et al. (2018), and the present study highlight the need for bet-
ter characterisation of the mechanistic role of MHC Class II in rapid 
primary immune responses to ectoparasites. Konczal et al. (2020) 
highlight the role of proinflammatory, MHC-dependent Th17 path-
way in response to gyrodactylid infection. Additionally, in vitro work 

on zebrafish skin tissue has suggested a role of antigen-presenting 
skin cells in mediating production of proinflammatory cytokines 
(Lugo-Villarino et al., 2010), and there is implied support for this 
from gene expression work on the salmonid response to ectopara-
sitic lice (e.g., Braden et al., 2015). Gyrodactylid infection is unlikely 
to provoke major upregulation of MHC Class II: it was not observed 
to do so in salmonids (Jørgensen et al., 2009) or guppies (Konczal 
et al., 2020), and its expression did not differ significantly between 
primary and secondary infection in goldfish (Zhou, Li, et al., 2018). 
However, Konczal et al. (2020) note its high constitutive expression, 
and its involvement in a gene co-expression module that was itself 
correlated with gyrodactylid burden within 4–8  days of infection. 
The guppy-gyrodactylid experiments to date cannot completely rule 
out a linkage effect driving the observed MHC patterns, but it would 
need to be close, physical linkage, which thus excludes MHC Class I 
in teleosts (Sato et al., 2000), in order to pass the breeding design of 
Phillips et al. (2018). Moreover, observing the strongest effects to be 
associated with physicochemical supertypes, which tend to be poly-
phyletic (e.g., Herdegen-Radwan et al., 2020), argues for the MHC 
itself being responsible.

Interestingly, microsatellite variability itself also showed a 
weak negative effect in the top set of models with genetic predic-
tors. Importantly, the addition of microsatellite variability neither 

F I G U R E  2  Differences in worm-
days (loge) between (a) hosts (fish) from 
four populations, and (b) parasites 
(gyrodactylids) from two populations. 
Points are fitted means, errors bars are 
SEs for the means, and violins show partial 
residuals from the top-ranked model to 
include the focal predictor. See Appendix 
S11 for average expected infection 
trajectories

TA B L E  4  Ordered heterogeneity testing by rSPc (Rice & Gaines, 1994) of host population-level genetic diversity metrics against 
population mean number of worm-days

Metric Marker class
MHC 
phasing SantaCruz Lopinot HealthCentre Roxborough rSPc p

ST div. MHC ST Unphased 0.84 0.83 0.72 0.14 −1.00 <.001

Msat div.(8) Microsat. - 0.53 0.52 0.51 0.47 −1.00 <.001

S.hap. div. MHC ST Phased 0.84 0.84 0.72 0.14 −0.95 <.001

Haplo. div. MHC allele Phased 0.88 0.90 0.74 0.79 −0.60 .098

Allele div. MHC allele Unphased 0.89 0.91 0.74 0.79 −0.60 .098

rSPc is calculated as the Spearman correlation coefficient (rS) multiplied by 1 − (p-value for the overall effect of host population). p-values for rSPc 
are derived from simulations (code in data repository). The host population columns (Santa Cruz-Roxborough) are ordered to that mean worm-days 
increases reading left to right (see also Tables 1 and 3). Additional metrics are tested in Appendix S7. All p-values are two-tailed.
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weakened the effect of number of STs nor produced problematic 
multicollinearity. As with number of STs, the effect was not con-
founded by between-population differences in variability. This sug-
gests a general heterozygosity-fitness correlation (HFC), of which 
there are numerous examples relating to infection susceptibility in 
both genome-wide terms (e.g., Acevedo-Whitehouse et al., 2003; 
Eastwood et al., 2017; Luikart et al., 2008) and with respect to other 
families of immune system genes (e.g., Hellgren et al., 2010; Lara 
et al., 2020; Levy et al., 2020). The relative weakness of this effect 
(an entirely heterozygous individual would experience 1.2% fewer 
worm-days than an entirely homozygous individual) may be due to 
limited within-population variance in genome-wide heterozygosity 
(nonsignificant identity disequilibrium; David et al., 2007) coupled 
with a small number of loci. However, neither of these caveats justi-
fies outright dismissal of our observed effect: although g2 correlates 
with HFC effect size (e.g., Miller & Coltman, 2014), HFCs can reach 
significance before g2 does (Szulkin et al., 2010), and weak micro-
satellite HFCs can hint at effects that become much stronger when 
large panels of neutral SNPs are available (e.g., Hoffman et al., 2014).

Santa Cruz and Lopinot hosts carrying ST12 experienced signifi-
cantly fewer worm days than noncarriers. This effect was not con-
founded by number of STs carried by a host, suggesting ST12 may 
be a “resistant” ST. This should be treated with caution, however, as 
the number of Lopinot carriers is low (n = 4) and there is a sugges-
tion that ST12 may interact with gyrodactylid source within this host 
population (Table S15.10). Indeed, the general weakness of evidence 
for effects of specific STs despite a strong effect of the number of 
MHC STs may be a result of our limited power to detect the former. 
Few MHC variants were shared among populations at high enough 
frequency to carry out meaningful analyses against the relatively 
small sample sizes (n  =  12–16) of each host  ×  parasite treatment 
block. Previous work has shown that the guppy-gyrodactylid sys-
tem is capable of producing such effects, but also that those effects 
are context-dependent (Smallbone et al., 2021). If ST12 is taken as 
“resistant” in our study, this would underscore this context depen-
dence, as it is not one of the STs identified as having a strong effect 
in Smallbone et al. (2021).

The lack of a significant effect of parasite source population, or 
of any interaction with host population, appears inconsistent with 
previous work on this study system showing that MHC variants that 
were novel to a given host population conferred a significant advan-
tage in resisting local parasites (Phillips et al., 2018). That finding, 
which used replicated population crosses to control for non-MHC 
genetic background, and which did not find significant interactions 
associated with those crosses, hinges on parasites being adapted to 
their local host's MHC composition. Host populations probably seg-
regate at other gene families reported to be involved in fish immune 
responses to ectoparasites (Konczal et al., 2020; Lindenstrøm et al., 
2004; Skugor et al., 2008; Zhou et al., 2018), and effects of these 
loci may mask any effect of MHC novelty in the present study. The 
results of a recent translocation study on sticklebacks imply such 
background effects (Bolnick & Stutz, 2017). While MHC alleles that 
were common in a local host population were more susceptible to TA
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Term Slope SE z p
Sum of 
weights

Intercept 2.78 0.20 13.56 <.001 –

Fish source

Lopinot 0.81 0.26 3.19 .001 1

HealthCentre 2.00 0.25 8.13 <.001 1

Roxborough 3.55 0.31 11.61 <.001 1

Microsats

Msat HL –0.07 0.07 0.96 .335 0.203

MHC STs (× fish source)

N MHC STs (no 
interaction)

–0.37 0.15 2.49 .013 0.845

N MHC STs (SantaCruz) –0.63 0.28 –2.22 .029 0.155

× Lopinot 0.19 0.35 0.55 .581 0.155

× HealthCentre 0.77 0.40 1.93 .057 0.155

× Roxborough –0.11 0.47 –0.23 .822 0.155

Sum = 1

Fish length (× fish source)

Fish length (no 
interaction)

0.43 0.09 4.97 <.001 0.756

Fish length (SantaCruz) 0.10 0.16 0.65 .520 0.244

× Lopinot 0.26 0.25 1.06 .291 0.244

× HealthCentre 0.44 0.20 2.21 .030 0.244

× Roxborough 0.49 0.25 1.95 .054 0.244

Sum = 1

Models are general linear models (Gaussian error distribution) of loge-transformed worm-days. Fish 
source coefficients are given in reference to Santa Cruz. HL coefficient is for z-transformed data. 
Fish length (z-transformed) was present in all models in the top set but interacted with fish source 
in one quarter models, and we present this in the table as if length-without-interaction and length-
with-interaction (the latter with Santa Cruz as the reference level) were two different predictors. 
The same approach was used for the interaction between fish source and number of MHC STs. 
Sum of weights (a.k.a. “importance”) is sum of Akaike weight. All p-values are two-tailed.

TA B L E  6  Model-averaged coefficients 
for models comprising the top two units 
of AICC model ranking of predictors of 
the number of worm-days experienced 
by guppies infected with Gyrodactylus 
turnbulli during our experiment, in models 
that were allowed to include an MHC and 
a microsatellite individual-level genetic 
variability metric in addition to fish source 
(Table 5)

TA B L E  7  Per-population counts of carriers of each MHC supertype (ST) among genotyped fish in our experiment. ST groupings are those 
of Herdegen-Radwan et al. (2020), and STs 4, 8, and 9 were not detected in the present experiment's sample

MHC ST Santa Cruz Lopinot Health Centre Roxborough

ST01 2 5b 0 0

ST02 1 10b 9a 0

ST03 1 10a 0 0

ST05 0 0 18b 0

ST06 6b 2 0 0

ST07 13b 5b 5a 0

ST10 3b 11b 0 4d

ST11 1 1 0 0

ST12 9a 4a 0 0

ST13 2 0 0 0

ST14 3a 0 0 0

ST15 0 2 16b 20c,d

Instances of STs with 3+ carriers in a given population were tested for within-population resistance/susceptibility effects: aST with an effect present 
in the top two units of its population's AICC-ranked general linear models of worm-days (see Table 9 for details of such instances); bST not present in 
its population's top model set; cST carried by every genotyped individual in a population; dPerfectly confounded with another genetic predictor. Tests 
of supertypes with 3+ carriers in 2+ populations are in Table 8.
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local parasites (consistent with an advantage from introgressing 
MHC alleles), immigrant fish experienced higher parasite loads when 
MHC genotype was controlled for (Bolnick & Stutz, 2017). The lack 
of signal of local adaptation in our study may thus result from oppos-
ing signals of MHC and other genomic regions affecting resistance 
to gyrodactylids.

An alternative explanation for the lack of a significant effect of 
parasite source population in our study is the culturing of parasites 
(“gyro farming”). HC and Lop gyrodactylids were both cultured on a 
single, separate lineage of hosts for 18 days (3–4 farm cycles; poten-
tially 9+ parasite generations) in order to obtain sufficient numbers 
for the experimental infections. This may have caused artificial se-
lection, either on ability to infect novel hosts or to a specific set of 
host immune genotypes. However, we think this explanation is un-
likely, as it would require the effective erasure of many generations 
of local adaptation in two large, natural populations of parasites, and 
it would require that this be achieved in a short time, with limited 
starting genetic variance (each culture lineage was founded from a 
single animal), on parasite-naïve hosts.

Host mortality in the experiment was low and restricted to the 
two Tobago fish populations, and was not significantly biased by 
gyrodactylid origin. Low host mortality probably reflects our ex-
periment's relatively benign conditions. In the wild, gyrodactylid 
infections expose guppies to a suite of additional selection pres-
sures, including other infections, anything requiring efficient swim-
ming (e.g., escape from predators and surviving flood events; van 
Oosterhout et al., 2007; Stephenson et al., 2016), and reduced re-
productive opportunities (Kennedy et al., 1987).

Overall, our results suggest that pathogens may select for higher 
numbers of MHC supertypes at an individual level, and previous 
work implies that it can also promote MHC polymorphism within 
populations, independently of benefits derived from simply carrying 
more variants (Phillips et al., 2018). Both of these effects will lead 
to differences between populations in functional immunogenetic 
diversity. The wider genomic implications of such selection (e.g., 
interactions with other immunity genes, effects on neutral genetic 
variability, and the shaping of MHC phylogenetics) requires further 
investigation. While this is a considerable effort, our results highlight 

TA B L E  8  Descriptions of effects associated with single MHC supertypes (STs) in multiple populations (3+ carriers in 2+ populations) in 
AICC-ranked general linear models of worm-days

MHC ST Populations Res./susc. First model
Sum of 
weights Min. p Interactions See also

ST02 Lop, HC Resistant Top-ranked 
model

0.390 .132 None Table S15.4

ST07 SC, Lop, HC Interaction +0.03 0.590 .136 Some Table S15.5

ST10 SC, Lop – +2.56 - – – Table S15.6

ST10 SC, Lop, Rox – – - – – Appendix S15

ST12 SC, Lop Resistant Top-ranked 
model

1.000 .023 None Table S15.7

ST15 HC, Rox – – – – – Appendix S15

Res./susc. = whether carrying the ST is associated with reduced or increased infection intensities (“resistant” or “susceptible”) among the top two 
AICC units of a focal ST’s ranked models. Numerical values in “First model” are ΔAICC values relative to the top-ranked model. Sum of weights, sum of 
Akaike weights of models containing the ST within the focal top model set (a.k.a. “importance”). Min. p, lowest p-value for the ST’s effect among the 
top model set. “Interactions” indicates whether there are interactions between the ST and fish/gyro source. Tests of specific STs in population “Rox” 
are perfectly confounded with number of STs carried. See Table S15.2 for remarks on each test.

TA B L E  9  Descriptions of single MHC supertypes (STs) with effects present in the top two units of a single population's AICC-ranked 
general linear models of worm-days

MHC ST Populations Res./susc. First model
Sum of 
weights Min. p Interaction See also

ST02 HC Resistant +1.61 0.174 .320 None Table S15.11

ST03 Lop Susceptible +1.52 0.262 .118 None Table S15.10

ST07 HC Susceptible +1.12 0.221 .234 None Table S15.11

ST12 SC Resistant +1.92 0.089 .211 None Table S15.9

ST12 Lop Interaction +1.26 0.293 .023 Some Table S15.10

ST14 SC Resistant Top-ranked 
model

0.487 .070 None Table S15.9

An ST required 3+ carriers to be tested. “Res./susc.”, whether carrying the ST is associated with reduced or increased infection intensities (“resistant” 
or “susceptible”). Numerical values in “First model” are ΔAICC values relative to the top-ranked model. Sum of weights, sum of Akaike weights of 
models containing the ST within the focal top model set (a.k.a. “importance”). Min. p, lowest p-value for the ST’s effect among the top model set. 
“Interaction” indicates whether the ST interacts with gyrodactylid source. See Table 7 for other tested STs, and Table S15.3 for remarks on each test.
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that our understanding of infection dynamics will remain incomplete 
unless we appreciate the differences in the history of selection im-
posed by pathogens. A lack of such understanding may limit our 
ability to predict consequences of emergent diseased threatening 
humans and wildlife (Altizer et al., 2003; Chabas et al., 2018; Ekroth 
et al., 2019; Penczykowski et al., 2016; Stephenson et al., 2017), and 
further research in this area should underpin the One Health ap-
proach (Daszak et al., 2000; van Oosterhout, 2021) in the coming 
decades.
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