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Abstract
Tree shape statistics provide valuable quantitative insights into evolutionary mech-
anisms underpinning phylogenetic trees, a commonly used graph representation of
evolutionary relationships among taxonomic units ranging from viruses to species.We
study two subtree counting statistics, the number of cherries and the number of pitch-
forks, for randomphylogenetic trees generated by twowidely used null treemodels: the
proportional to distinguishable arrangements (PDA) and the Yule-Harding-Kingman
(YHK) models. By developing limit theorems for a version of extended Pólya urn
models in which negative entries are permitted for their replacement matrices, we
deduce the strong laws of large numbers and the central limit theorems for the joint
distributions of these two counting statistics for the PDA and the YHK models. Our
results indicate that the limiting behaviour of these two statistics, when appropriately
scaled using the number of leaves in the underlying trees, is independent of the initial
tree used in the tree generating process.
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1 Introduction

As a common mathematical representation of evolutionary relationships among bio-
logical systems ranging from viruses to species, phylogenetic trees retain important
signatures of the underlying evolutionary events and mechanisms which are often not
directly observable, such as rates of speciation and expansion (Mooers et al. 2007;
Heath et al. 2008). To utilise these signatures, one popular approach is to compare
empirical shape indices computed from trees inferred from real datasets with those
predicted by neutral models specifying a tree generating process (see, e.g. Blum and
François 2006; Hagen et al. 2015).Moreover, topological tree shapes are also informa-
tive for understanding several fundamental statistics in population genetics (Ferretti
et al. 2017; Arbisser et al. 2018) and important parameters in the dynamics of virus
evolution and propagation (Colijn and Gardy 2014).

This paper focuses on two subtree counting statistics: the number of cherries (i.e.,
nodes that have precisely two descendent leaves) and that of pitchforks (i.e., nodes that
have precisely three descendent leaves) in a tree. These statistics are related to mono-
phylogenetic structures in phylogenetic trees (Rosenberg 2003) and have been utilised
recently to study evolutionary dynamics of pathogens (Colijn and Gardy 2014). For
example, the asymptotic frequency of cherries in pathogen trees generated by some
models can be used to estimate the basic reproduction number (Plazzotta and Colijn
2016) and to study the impact of the underlying contact network over which a pathogen
spreads (Metzig et al. 2019). Various properties concerning these statistics have been
established in the past decades on the following two fundamental randomphylogenetic
tree models: the Yule-Harding-Kingman (YHK) (Rosenberg 2006; Disanto andWiehe
2013; Holmgren and Janson 2015) and the proportional to distinguishable arrange-
ments (PDA) models (McKenzie and Steel 2000; Chang and Fuchs 2010; Wu and
Choi 2016; Choi et al. 2020).

In this paper we are interested in the limiting behaviour of the joint cherry and pitch-
fork distributions for the YHK and the PDAmodels. In a seminal paper,McKenzie and
Steel (2000) showed that cherry distributions converge to a normal distribution, which
was later extended to pitchforks and other subtrees by Chang and Fuchs (2010). More
recently, Holmgren and Janson (2015) studied subtree counts in the random binary
search tree model, and their results imply that the cherry and pitchfork distributions
converge jointly to a bivariate normal distribution under the YHK model. This is fur-
ther investigated by Wu and Choi (2016) and Choi et al. (2020), where numerical
results indicate that convergence to bivariate normal distributions holds under both
the YHK model and the PDA model. Our main results, Theorems 1 and 2, provide a
unifying approach to establishing the convergence of the joint distributions to bivari-
ate normal distributions for both models, as well as a strong law stating that the joint
counting statistics converge almost surely (a.s.) to a constant vector. Moreover, our
results indicate that the limiting behaviour of these two statistics, when appropriately
scaled, is independent of the initial tree used in the tree generating process.

Our approach is based on a general model in probability theory known as the Pólya
urn scheme, which has been developed during the past few decades including applica-
tions in studying various growth phenomena with an underlying random tree structure
(see, e.g. Mahmoud (2009) and the references therein). For instance, the results by
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McKenzie and Steel (2000) are based on a version of the urn model in which the off-
diagonal elements in the replacement matrix are all positive. However, such technical
constraints pose a central challenge for studying pitchfork distributions as negative
entries in the resulting replacement matrix are not confined only to the diagonal (see
Sects. 4 and 5). To overcome this limitation, we study a family of extended Pólya urn
models under certain technical assumptions in which negative entries are allowed for
their replacement matrices (see Sect. 3). Inspired by the martingale approach used
by Bai and Hu (2005), we present a self-contained proof for the limit theorems for
this extended urn model, with the dual aims of completeness and accessibility. Our
approach is different from a popular framework in which discrete urn models are
embedded into a continuous Markov chain known as the branching processes (see,
e.g. Janson (2004) and the references therein).

We summarize the contents of the rest of the paper. In the next section, we collect
some definitions concerning phylogenetic trees and the two tree-based Markov pro-
cesses. In Sect. 3, we introduce the urnmodel and a version of the Strong Law of Large
Numbers and the Central Limit Theorem that are applicable to our study. We apply
these two theorems to the YHK process in Sect. 4, and the PDA process in Sect. 5.
These results are then extended to unrooted trees in Sect. 6. The proofs of the main
results for the urn model are presented in Sect. 7, with a technical lemma included
in the appendix. We conclude this paper in the last section with a discussion of our
results and some open problems.

2 Preliminaries

In this section, we present some basic notation and background concerning phyloge-
netic trees, random tree models, and urn models. Throughout this paper, n is a positive
integer greater than two unless stated otherwise.

2.1 Phylogenetic trees

A tree T = (V (T ), E(T )) is a connected acyclic graph with vertex set V (T ) and edge
set E(T ). A vertex is referred to as a leaf if it has degree one, and an interior vertex
otherwise. An edge incident to a leaf is called a pendant edge, and let E◦(T ) be the set
of pendant edges in T . A tree is rooted if it contains exactly one distinguished degree
one node designated as the root, which is not regarded as a leaf and is usually denoted
by ρ, and unrooted otherwise. Moreover, the orientation of a rooted tree is from its
root to its leaves. Other than those in Sect. 6, all trees considered in this paper are
rooted and binary, that is, each interior vertex has precisely two children.

A phylogenetic tree on a finite set X is a rooted binary tree with leaves bijec-
tively labelled by the elements of X . The set of binary rooted phylogenetic trees on
{1, 2, . . . , n} is denoted by Tn . See Fig. 1 for examples of trees in T7 and T8. Given
an edge e in a phylogenetic tree T on X and a taxon x ′ /∈ X , let T [e; x ′] be the phy-
logenetic tree on X ∪ {x ′} obtained by attaching a new leaf with label x ′ to the edge
e. Formally, let e = (u, v) and let w be a vertex not contained in V (T ). Then T [e; x ′]
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Fig. 1 Examples of phylogenetic trees. T1 is a rooted phylogenetic tree on {1, . . . , 7}; T2 = T1[e1] is a
phylogenetic tree on X = {1, . . . , 8} obtained from T1 by attaching a new leaf labelled 8 to the edge e1
which is incident with taxon 1 in T1

has vertex set V (T ) ∪ {x ′, w} and edge set
(
E(T ) \ {e}) ∪ {(u, w), (w, v), (w, x ′)}.

See Fig. 1 for an illustration of this construction, where tree T2 = T1[e1; 8] is obtained
from T1 by attaching leaf 8 to the edge e1. We simply use T [e] instead of T [e; x ′]
when the taxon name x ′ is not essential.

Removing an edge in a phylogenetic tree T results in two connected components;
the connected component that does not contain the root of T is referred to as a subtree
of T , also commonly known as a fringe subtree. A subtree is called a cherry if it has
two leaves, and a pitchfork if it has three leaves. Following the notation by Choi et al.
(2020), let A(T ) and B(T ) be the number of pitchforks and cherries contained in T .
For example, in Fig. 1 we have A(T2) = 1 and B(T2) = 3.

2.2 The YHK and the PDA processes

Let Tn be the set of phylogenetic trees with n leaves. In this subsection, we introduce
the two tree-based Markov processes investigated in this paper: the proportional to
distinguishable arrangements (PDA) process and the Yule-Harding-Kingman (YHK)
process. Our description of these two processes is largely based on that in Choi et al.
(2020), which is adapted from the Markov processes as described by Steel (2016,
Section 3.3.3).

Under the YHK process (Yule 1925; Harding 1971), starting with a given tree Tm
in Tm with m ≥ 2, a random phylogenetic tree Tn in Tn is generated as follows.

(i) Select a uniform random permutation (x1, . . . , xn) of {1, 2, . . . , n};
(ii) label the leaves of the rooted phylogenetic tree Tm randomly using the taxon set

{x1, x2, . . . , xm};
(iii) for m ≤ k < n, uniformly choose a random pendant edge e in Tk and let Tk+1 =

Tk[e; xk+1].
The PDA process can be described using a similar scheme; the only difference is
that in Step (iii) the edge e is uniformly sampled from the edge set of Tk , instead
of the pendant edge set. Furthermore, under the PDA process, Step (i) can also be
simplified by using a fixed permutation, say (1, 2, . . . , n). In the literature, the special
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case m = 2, for which T2 is the unique tree with two leaves, is also referred to as the
YHK model and the PDA model, respectively.

For n ≥ 4, let An and Bn be the random variables A(T ) and B(T ), respectively,
for a random tree T in Tn . The probability distributions of An (resp. Bn) are referred
to as pitchfork distributions (resp. cherry distributions). In this paper, we are mainly
interested in the limiting distributional properties of (An, Bn).

2.3 Modes of convergence

Let X , X1, X2, . . . be randomvariables on someprobability space (Ω,F ,P). To study
the urnmodel wewill use the following fourmodes of convergence (see, e.g. Grimmett
and Stirzaker (2001, Section 7.2) for more details). First, Xn is said to converge to X

almost surely, denoted as Xn
a.s.−−−→ X , if {ω ∈ Ω : Xn(ω) → X(ω) as n → ∞} is

an event with probability 1. Next, Xn is said to converge to X in r-th norm, where
r > 0, written Xn

r−→ X , if E(|Xr
n|) < ∞ for all n and E(|Xn − X |r ) → 0 as

n → ∞. Furthermore, Xn is said to converge to X in probability, written Xn
p−→ X ,

if P(|Xn − X | > ε) → 0 as n → ∞ for all ε > 0. Finally, Xn converges to a random
variable Y in distribution, also termed weak convergence or convergence in law and

written Xn
d−→ Y , if P(Xn ≤ x) → P(Y ≤ x) as n → ∞ for all points x at which the

distribution function P(Y ≤ x) is continuous. Note that Xn
p−→ X implies Xn

d−→ X ,

and Xn
p−→ X holds if either Xn

a.s.−−−→ X holds or Xn
r−→ X holds for some r > 0.

2.4 Miscellaneous

Let 0 = (0, . . . , 0) be the d-dimensional zero row vector. Let e = (1, . . . , 1) be the
d-dimensional row vector whose entries are all one, and for 1 ≤ j ≤ d, let e j denote
the j-th canonical row vector whose j-th entry is 1 while the other entries are all zero.

Let diag(a1, . . . , ad) denote a diagonal matrix whose diagonal elements are
a1, . . . , ad . Furthermore, 0
0 is the d × d matrix whose entries are all zero. Here
Z
 denotes the transpose of Z , where Z can be either a vector or a matrix.

3 Urnmodels

In this section, we briefly recall the classical Pólya urn model and some of its gen-
eralisations. Pólya urn model was studied by Pólya (1930) and can be traced back to
Markov (see, e.g. Johnson andKotz (1977, Section 1.2)). It has been applied to describe
evolutionary processes in biology and computer science. Several such applications in
genetics are discussed by Johnson andKotz (1977, Chapter 5) and byMahmoud (2009,
Chapters 8 and 9). In a general setup, consider an urn with balls of d different colours
containing C0,i many balls of colour i ∈ {1, 2, . . . , d} at time 0. At each time step, a
ball is drawn uniformly at random and returned with some extra balls, depending on
the colour selected. The reinforcement scheme is often described by a d×d matrix R:
if the colour of the ball drawn is i , then we return the selected ball along with Ri j many
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balls of colour j , for every j ∈ {1, 2, . . . , d}, where a positive value of Ri j means
adding Ri j balls and a negative value of Ri j means removing |Ri j | many balls from
the urn. Such a matrix is termed as replacement matrix in the literature. For instance,
the replacement matrix R is the identity matrix for the original Pólya urn model with
d colours: at each time point, the selected ball is returned with one additional ball of
the same colour. We restrict our attention to tenable urn processes, that is, at each step
it is always possible to add or remove balls according to the matrix R.

Let Cn = (Cn,1, . . . ,Cn,d) be the row vector of dimension d that represents the
ball configuration at time n for an urn model with d colours, in which each entry
is necessarily non-negative and at least one of these entries is greater than 0. Then
the sum of Cn,i , denoted by tn , is the number of balls in the urn at time n. Note that
throughout this paper, tn is always a number greater than 0. Recall that a vector is
referred to as a stochastic vector if each entry in the vector is a non-negative real
number and the sum of its entries is one. Denote the stochastic vector associated with
Cn by C̃n , that is, we have C̃n,i = Cn,i/tn for 1 ≤ i ≤ d.

LetFn be the information of the urn’s configuration from time 0 up to n, that is, the
σ -algebra generated by C0,C1, . . . ,Cn . Let R denote the replacement matrix. Then,
for every n ≥ 1,

Cn = Cn−1 + χn R, (1)

where χn is a random row vector of length d such that for i = 1, . . . , d,

P(χn = ei |Fn−1) = C̃n−1,i .

Since precisely one entry in χn is 1 and all others are 0, it follows that

E[χn|Fn−1] = C̃n−1 and E[χ

n χn|Fn−1] = diag(C̃n−1). (2)

We state the following assumptions about the replacement matrix R:

(A1) Tenable: It is always possible to draw balls and follow the replacement rule,
that is, we never get stuck in following the rules (see, e.g. Mahmoud (2009,
p.46)).

(A2) Small:All eigenvalues of R are real; the maximal eigenvalue λ1 = s is positive
with λ1 > 2λ holds for all other eigenvalues λ of R.

(A3) Strictly Balanced:The column vector e
 is a right eigenvector of R correspond-
ing to λ1 and one of the left eigenvectors corresponding to λ1 is a stochastic
vector. Note that e
 being a right eigenvector implies tn = t0+ns, and hence the
urn models discussed here are balanced, as commonly known in the literature.

(A4) Diagonalisable: R is diagonisable over real numbers. That is, there exists an
invertible matrix U with real entries such that

U−1RU = diag(λ1, λ2, . . . , λd) =: Λ, (3)

where λ1 ≥ λ2 ≥ · · · ≥ λd are all eigenvalues of R.

For thematrixU in (A4) and 1 ≤ j ≤ d, letu j = Ue

j denote the j-th column ofU ,

and v j = e jU−1 the j-th row ofU−1. Then u j and v j are, respectively, right and left
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eigenvectors corresponding to λ j . Furthermore, since viu j = eiU−1Ue

j = ei I e


j ,
where I is the identity matrix, we have

viu j = 1 if i = j, and viu j = 0 if i �= j . (4)

In view of (A3), (A4) and (4), for simplicity the following convention is used through-
out this paper:

u1 = e
 and v1 is a stochastic vector. (5)

Furthermore, the eigenvalue λ1 is referred to as the principal eigenvalue; u1 and v1
specified in (5) as the principal right and principal left eigenvector, respectively.

Motivated by adaptive clinical trial problems, Bai and Hu (2005) derived limit
results in an urn model by martingale techniques. Moreover, they considered random
replacement matrices but required the replacement matrix has non-negative elements.
On the other hand, the limit results derived in Janson (2004) are based on an embedding
of the urn model into a continuous time branching process under certain non-trivial
technical assumptions of the associated continuous time branching process. In this
paper, we prove first and second order limit results for an urnmodel with a replacement
matrix that may contain non-negative elements. As mentioned earlier, our proofs are
based on the martingale approach for the urn models used by Bai and Hu (2005).
Under assumptions (A1)-(A4), the exact expression for the limiting variance matrix
agrees with the one obtained by Bai and Hu (2005) and by Janson (2004). Notice that
the assumption of real eigenvalues in (A2) and real eigenvectors in (A4) is chosen
to make our proof more accessible to a wider audience by simplifying expressions
and the proofs. Indeed, our proof can be extended to the case where the dominating
eigenvalue λ1 is real while the eigenvalues λ2, . . . , λd are complex-valued whose real
parts are less than λ1/2, as one of the cases studied in Janson (2004).

The limit of the urn process and the rate of convergence to the limiting vector
depends on certain spectral properties of matrix R (see, e.g. Janson (2004) or Bai and
Hu (2005)). In our context, it suffices to consider the extended Pólya urn model under
the aforementioned assumptions (A1)–(A4), for which Theorems 1 and 2 below give
the Strong Law of Large Numbers and the Central Limit Theorem. Our proofs, which
are adapted from that of Bai and Hu (2005), are presented in Sect. 7 .

Theorem 1 Under assumptions (A1)–(A4), we have

(ns)−1Cn
a.s.−−−→ v1 and (ns)−1Cn

r−→ v1 for r > 0, (6)

where s is the principal eigenvalue and v1 is the principal left eigenvector.

LetN (0,Σ) be the multivariate normal distribution with mean vector 0 and covari-
ance matrix Σ .

Theorem 2 Under assumptions (A1)–(A4), we have

n−1/2(Cn − nsv1)
d−→ N (0,Σ),
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where s is the principal eigenvalue, v1 is the principal left eigenvector, and

Σ =
d∑

i, j=2

sλiλ ju

i diag(v1)u j

s − λi − λ j
v

i v j . (7)

Remark 1 During the reviewing process of this paper, a reviewer suggested that an
alternative approach to establishing Theorems 1 and 2 might be based on Janson
(2004, Theorems 3.21 & 3.22 and Remark 4.2) and a result on the super-critical
Galton-Watson process (see, e.g. Athreya and Ney (1972, Theorem 2(i) in Section
III.7)), which could potentially lead to a stronger version of the results presented here.

4 Limiting distributions under the YHKmodel

A cherry is said to be independent if it is not contained in any pitchfork, and dependent
otherwise. Similarly, a pendant edge is independent if it is contained in neither a
pitchfork nor a cherry. In this section, we study the limiting joint distribution of the
random variables An (i.e., the number of pitchforks) and Bn (i.e., the number of
cherries) under the YHK model.

To study the joint distribution of cherries and pitchforks, we extend the urn models
used in McKenzie and Steel (2000) (see also Steel (2016, Section 3.4)) as follows.
Each pendant edge in a phylogenetic tree is designated as one of the following four
types:

(E1): a type 1 edge is a pendant edge in a dependent cherry (i.e., contained in both a
cherry and a pitchfork);

(E2): a type 2 edge is a pendant edge in an independent cherry (i.e., contained in a
cherry but not a pitchfork);

(E3): a type 3 edge is a pendant edge contained in a pitchfork but not a cherry;
(E4): a type 4 edge is an independent pendant edge (i.e., contained in neither a pitch-

fork nor a cherry).

It is straightforward to see that any pendant edge in a phylogenetic tree with at
least two leaves belongs to one and only one of the above four types. Furthermore,
the numbers of pitchforks and independent cherries in a tree are precisely half of the
numbers of type 1 and type 2 edges, respectively.

As illustrated in Fig. 2, the composition of the types of the pendant edges in T [e],
the tree obtained from T by attaching an extra leaf to a pendant edge e, is determined
by the composition of pendant edge types in T and the type of e as follows. When e is
type 1, then the number of type 4 edges in T [e] increases by one compared with that
in T while the number of edges of each of the other three types is the same. This holds
because both T [e] and T have the same number of cherries and that of pitchforks (see
T3 and T4 in Fig. 2). When e is of type 2, then the number of type 2 edges decreases by
two while the numbers of type 1 and of type 3 increase by two and one, respectively.
This is because in this case one independent cherry is replaced by one pitchfork (see
T2 and T3 in Fig. 2). When e is type 3, one pitchfork is replaced by two independent
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Fig. 2 A sample path of the YHK model and the associated urn model. (i): A sample path of the YHK
model evolving from T2 with two leaves to T6 with six leaves. The labels of the leaves are omitted for
simplicity. The type of pendant edges is indicated by the circled numbers next to them. For 2 ≤ i ≤ 5, the
edge selected in Ti to generate Ti+1 is highlighted in bold and the associated edge type is indicated in the
circled number above the arrows. (ii) The associated urn model with four colours, derived from the types of
pendants edges in the trees. Note that in the vector form we have C0 = (0, 2, 0, 0),C1 = (2, 0, 1, 0),C2 =
(2, 0, 1, 1),C3 = (2, 2, 1, 0), and C4 = (0, 6, 0, 0)

cherries, hence the number of type 2 edges increases by four while the numbers of
edges of type 1 and of type 3 decrease by two and one, respectively (see T5 and T6 in
Fig. 2). Finally, when e is type 4, one independent pendant edge is replaced by one
independent cherry, and hence the number of type 2 edges increases by two and that
of type 4 edges decreases by one (see T4 and T5 in Fig. 2).

Using the dynamics described in the last paragraph,we can associate aYHKprocess
starting with a tree Tm with a corresponding urn process (C0, R) as follows. The urn
model contains four colours in which colour i (1 ≤ i ≤ 4) is designated for type
i edges. In the initial urn C0 = (C0,1, . . . ,C0,4), the number C0,i is precisely the
number of type i edges in Tm . Furthermore, the replacement matrix R is the following
4 × 4 matrix:

R =

⎡

⎢
⎢
⎣

0 0 0 1
2 −2 1 0

−2 4 −1 0
0 2 0 −1

⎤

⎥
⎥
⎦ . (8)

Given an arbitrary tree T , let α(T ) = (|E1(T )|, |E2(T )|, |E3(T )|, |E4(T )|) be the
pendant type vector associated with T where |Ei (T )| counts the number of type i
edges in T for 1 ≤ i ≤ 4.

The following result will enable us to obtain the joint distribution on pitchforks and
cherries for the YHK model. Moreover, it also implies that the asymptotic behaviour
of these two statistics, when appropriately scaled, is independent of the initial tree
used in the YHK process.

Theorem 3 Suppose that Tm is an arbitrary phylogenetic tree with m leaves with
m ≥ 2, and that Tn is a tree with n leaves generated by the YHK process starting with
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Tm. Then we have

α(Tn)

n
a.s.−−−→ v1 and

α(Tn) − nv1√
n

d−→ N (0,Σ) , (9)

where v1 = ( 1
3 ,

1
3 ,

1
6 ,

1
6

)
and

Σ = 1

1260

⎡

⎢⎢
⎣

276 − 388 138 − 26
−388 724 − 194 − 142
138 − 194 69 − 13
−26 − 142 − 13 181

⎤

⎥⎥
⎦ . (10)

Proof Consider the YHK process {Tn}n≥m starting with Tm . Let Ck = α(Tk+m) for
k ≥ 0. Then Ck = (Ck,1, . . . ,Ck,4), where Ck,i = |Ei (Tm+k)| for 1 ≤ i ≤ 4, is
the urn model of 4 colours derived from the pendant edge decomposition of the YHK
process. Therefore, it is a tenable model with C0 = α(Tm) and replacement matrix R
as given in (8).

Note that R is diagonalisable as

U−1RU = Λ

holds with

U =

⎡

⎢
⎢
⎣

1 1 −1 −1
1 0 −1 −3
1 −2 2 5
1 0 2 3

⎤

⎥
⎥
⎦ , Λ =

⎡

⎢
⎢
⎣

1 0 0 0
0 0 0 0
0 0 −2 0
0 0 0 −3

⎤

⎥
⎥
⎦

and U−1 = 1

6

⎡

⎢⎢
⎣

2 2 1 1
2 −2 −2 2

−4 2 −2 4
2 −2 1 −1

⎤

⎥⎥
⎦ . (11)

Therefore, R satisfies condition (A4). Next, (A2) holds because R has eigenvalues

s = λ1 = 1, λ2 = 0, λ3 = −2, λ4 = −3,

where s = λ1 = 1 is the principal eigenvalue. Furthermore, put ui = Ue

i and

vi = eiU−1 for 1 ≤ i ≤ 4. Then (A3) follows by noting that u1 = (1, 1, 1, 1)
 is the
principal right eigenvector, and v1 = 1

6

(
2, 2, 1, 1

)
is the principal left eigenvector.

Since (A1)–(A4) are satisfied by the replacement matrix R, by Theorem 1 it follows
that

Ck

k
a.s.−−−→ v1 with k → ∞
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and hence

α(Tn)

n
= n − m

n

Cn−m

n − m
a.s.−−−→ v1 with n → ∞.

By Theorem 2 we have

Ck − kv1√
k

d−→ N (0,Σ) with k → ∞, (12)

where

Σ =
4∑

i, j=2

λiλ ju

i diag(v1)u j

1 − λi − λ j
v

i v j . (13)

Therefore, we have

α(Tn) − nv1√
n

= Cn−m − (n − m)v1√
n

+ mv1√
n

=
√
n − m√

n

Cn−m − (n − m)v1√
n − m

+ mv1√
n

d−→ N (0,Σ) .

Here the convergence follows from (12) and the fact that
√
n−m√
n

converges to 1 and
mv1√

n
converges to 0 when n approaches infinity. �

By Theorem 3, it is straightforward to obtain the following result on the joint distri-
bution of cherries and pitchforks,which also follows fromageneral result byHolmgren
and Janson (2015, Theorem 1.22).

Corollary 1 Under the YHK model, for the joint distribution (An, Bn) of pitchforks
and cherries we have

1

n
(An, Bn)

a.s.−−−→
(1
6
,
1

3

)
(14)

and
(An, Bn) − n(1/6, 1/3)√

n
d−→ N

(
0,

1

1260

[
69 −28

−28 56

])
. (15)

Proof Consider the YHK process {Tn}n≥2 starting with a tree T2 with two leaves.
Denote the i-th entry in α(Tn) by αn,i for 1 ≤ i ≤ 4. Then the corollary follows from
Theorem 3 by noting that we have An = αn,1

2 and Bn = αn,1+αn,2
2 . �

The above result is consistent with the previously known results on the mean and
(co-)variance of the joint distribution of cherries and pitchforks (see, e.g., Wu and
Choi (2016); Choi et al. (2020)), namely, under the YHK model and for n ≥ 7 we
have

E(An) = n

6
, E(Bn) = n

3
, V(An) = 23n

420
, V(Bn) = 2n

45
, and Cov(An, Bn) = − n

45
.
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Fig. 3 A sample path of the PDA model and the associated urn model. (i) A sample path of the PDA model
evolving from T2 with two leaves to T6 with six leaves. The labels of the leaves are omitted for simplicity.
The edge types are indicated by circled numbers. For 2 ≤ i ≤ 5, the edge selected in Ti to generate Ti+1
is highlighted in bold and the associated edge type is indicated in the circled number above the arrows. (ii)
The associated urn model with six colours, derived from the edge types in the trees. Note that in the vector
form we have C0 = (0, 2, 0, 0, 1, 0), . . . ,C3 = (2, 2, 1, 0, 1, 3), and C4 = (0, 6, 0, 0, 2, 3)

5 Limiting distributions under the PDAmodel

In this section, we study the limiting joint distribution of the random variables An

(i.e., the number of pitchforks) and Bn (i.e., the number of essential cherries) under
the PDA model.

To study the PDAmodel, in addition to the four edge types (E1)–(E4) considered in
Sect. 4, which partitions the set of pendant edges, we need two additional edge types
concerning the internal edges. Specifically,

(E5): a type 5 edge is an internal edge adjacent to an independent cherry;
(E6): a type 6 edge is an internal edge that is not type 5.

For 1 ≤ i ≤ 6, let Ei (T ) be the set of edges of type i . Then the edge sets
E1(T ), . . . , E6(T ) form a partition of the edge set of T . That is, each edge in T
belongs to one and only one Ei (T ). Furthermore, let β(T ) = (|E1(T )|, . . . , |E6(T )|)
be the type vector associated with T , where |Ei (T )| counts the number of type i edges
in T .

As illustrated in Fig. 3, the composition of edge types in T [e], which is obtained
from T by attaching an extra leaf to edge e, is determined by the composition of edge
types in T and the type of e. First, if e is a pendant edge, the change of the composition
of the pendant edge types in T [e] is the same as described in Sect. 4, and the change
of the composition of the interior edge types in T [e] is described as follows:

(i) If e is type 1, then |Ei (T [e])| − |Ei (T )| is 0 if i = 5, and 1 if i = 6;
(ii) if e is type 2, then |Ei (T [e])| − |Ei (T )| is −1 if i = 5, and 2 if i = 6;
(iii) if e is type 3, then |Ei (T [e])| − |Ei (T )| is 2 if i = 5, and −1 if i = 6;
(iv) if e is type 4, then |Ei (T [e])| − |Ei (T )| is 1 if i = 5, and 0 if i = 6.

Finally, when e is type 5, the change it caused is the same of that of a type 2 edge, and
when e is type 6, the change it caused is the same of that of type 1 edge. Therefore, we
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can associate a PDA process starting with a tree T0 with a corresponding urn process
(C0, R) as follows. The urn model contains six colours in which colour i (1 ≤ i ≤ 6)
is designated for type i edges. In the initial urn C0 = (C0,1, . . . ,C0,6), the number
C0,i is precisely the number of type i edges in T0. Furthermore, the replacement matrix
R is the following 6 × 6 matrix:

R =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0 0 0 1 0 1
2 −2 1 0 −1 2

−2 4 −1 0 2 −1
0 2 0 −1 1 0
2 −2 1 0 −1 2
0 0 0 1 0 1

⎤

⎥⎥⎥⎥⎥⎥
⎦

. (16)

Note that the replacement matrix for the YHK model in (8) is a submatrix of the
replacement matrix in (16); and the last (respectively, second last) row in (16) is the
same as its first (respectively, second) row. These two observations are direct conse-
quences of the dynamic described above. The theorem below describes the asymptotic
behaviour of β(Tn), which enables us to deduce the asymptotic properties of the joint
distribution of the number of pitchforks and the number of cherries for the PDAmodel
in Corollary 2. Moreover, it also implies that the asymptotic behaviour of these two
statistics, when appropriately scaled, is independent of the initial tree used in the PDA
process.

Theorem 4 Suppose that Tm is an arbitrary phylogenetic tree with m leaves with
m ≥ 2, and that Tn is a tree with n leaves generated by the PDA process starting with
Tm.

Then we have

β(Tn)

n
a.s.−−−→ v1 and

β(Tn) − nv1√
n

d−→ N (0,Σ) , (17)

as n → ∞, where v1 = 1
16 (2, 2, 1, 3, 1, 7) and

Σ = 1

64

⎡

⎢⎢⎢⎢⎢⎢
⎣

12 −12 6 −6 −6 6
−12 28 −6 −10 14 −14

6 −6 3 −3 −3 3
−6 −10 −3 19 −5 5
−6 14 −3 −5 7 −7
6 −14 3 5 −7 7

⎤

⎥⎥⎥⎥⎥⎥
⎦

. (18)

Proof Consider the PDA process {Tn}n≥m starting with Tm . Let Ck = β(Tk+m) for
k ≥ 0. Then Ck = (Ck,1, . . . ,Ck,6), where Ck,i = |Ei (Tm+k)| for 1 ≤ i ≤ 6, is the
urn model of 6 colours derived from the edge partition of the PDA process. Therefore,
it is a tenable model with C0 = β(Tm) and replacement matrix R as given in (16).

Note that R is diagonalisable as

U−1RU = Λ
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holds with Λ = diag(2, 0, 0, 0,−2,−4) and

U =

⎡

⎢⎢
⎢⎢
⎢
⎢
⎣

1 2.5 2 1 1 1
1 −2 1 0 1 5
1 −8 −1 1 −3 −9
1 −1 1 1 −3 −5
1 3 −1 1 1 5
1 1 −1 −1 1 1

⎤

⎥⎥
⎥⎥
⎥
⎥
⎦

and U−1 = 1

176

⎡

⎢⎢
⎢⎢
⎢
⎢
⎣

22 22 11 33 11 77
4 −20 −14 14 6 10

30 26 −17 17 −43 −13
40 −24 36 −36 60 −76
66 −22 33 −77 −11 11

−22 22 −11 11 11 −11

⎤

⎥⎥
⎥⎥
⎥
⎥
⎦

.

(19)
Therefore, R satisfies condition (A4). Next, (A2) holds because R has eigenvalues
(counted with multiplicity)

s = λ1 = 2, λ2 = 0, λ3 = 0, λ4 = 0, λ5 = −2, λ6 = −4

where s = λ1 = 2 is the principal eigenvalue. Furthermore, put ui = Ue

i and

vi = eiU−1 for 1 ≤ i ≤ 6. Then (A3) follows by noting that u1 = (1, 1, 1, 1, 1, 1)

is the principal right eigenvector, and v1 = 1

16 (2, 2, 1, 3, 1, 7) is the principal left
eigenvector.

The remainder of the proof is similar to the final part of the proof of Theorem 3, and
hencewe only outline themain steps. Since (A1)–(A4) are satisfied by the replacement
matrix R, by Theorem 1 it follows that

Ck

k
a.s.−−−→ v1 with k → ∞, and hence

β(Tn)

n
= n − m

n

Cn−m

n − m
a.s.−−−→ v1 with n → ∞.

By Theorem 2 we have

Cn−m − (n − m)v1√
n − m

= Ck − kv1√
k

d−→ N (0,Σ), (20)

where

Σ =
6∑

i, j=2

λiλ ju

i diag(v1)u j

1 − λi − λ j
v

i v j . (21)

Therefore, we have

β(Tn) − nv1√
n

=Cn−m − (n − m)v1√
n

+ mv1√
n

=
√
n − m√

n

Cn−m − (n − m)v1√
n − m

+ mv1√
n

d−→ N (0,Σ) .

�

Similar to Corollary 1, by Theorem 4 it is straightforward to obtain the following
result on the joint distribution of cherries and pitchforks.
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Corollary 2 Under the PDA model, for the joint distribution (An, Bn) of pitchforks
and cherries we have

1

n
(An, Bn)

a.s.−−−→
(1
8
,
1

4

)
(22)

and
(An, Bn) − n(1/8, 1/4)√

n
d−→ N

(
0,

1

64

[
3 0
0 4

])
(23)

as n → ∞.

Proof Consider the PDA process {Tn}n≥2 starting with a tree T2 with two leaves.
Denote the i-th entry in β(Tn) by βn,i for 1 ≤ i ≤ 6. Then the corollary follows from
Theorem 3 by noting that we have An = βn,1

2 and Bn = βn,1+βn,2
2 . �

The above result is consistent with the previously known results on the mean and
(co-)variance of the joint distribution of cherries and pitchforks (see, e.g., Wu and
Choi (2016); Choi et al. (2020)), namely, under the PDAmodel and for n ≥ 7 we have

E(An) = n(n − 1)(n − 2)

2(2n − 3)(2n − 5)
, E(Bn) = n(n − 1)

2(2n − 5)
, V(Bn) = n(n − 1)(n − 2)(n − 3)

2(2n − 3)2(2n − 7)
,

V(An) = 3(4n3 − 40n2 + 123n − 110)

2(2n − 5)(2n − 7)(2n − 9)
V(Bn), and Cov(An, Bn) = −V(Bn)

(2n − 7)
.

6 Unrooted trees

Although rooted phylogenetic trees are often preferred by biologists as time is explic-
itly shown, it is also important to consider unrooted phylogenetic trees. Indeed, many
methods for building trees from real data can usually do so only up to the placement
of the root, and thus produce unrooted trees first and then figure out the root position
(see, e.g. Steel (2016, Section 1.3)). In this section, we extend our results in Sects. 4
and 5 to unrooted phylogenetic trees.

Formally, deleting the root ρ of a rooted phylogenetic tree and suppressing its
adjacent interior vertex r results in an unrooted tree (see Fig. 4). The set of unrooted
phylogenetic trees on {1, 2, . . . , n} is denoted by T ′

n . The YHK process on unrooted
phylogenetic tree is similar to that on rooted ones stated in Sect. 2.2; the only difference
is that at step (ii) we shall start with an unrooted phylogenetic tree Tm in T ′

m form ≥ 3.
Similar modification suffices for the PDA processes on unrooted phylogenetic trees;
see Choi et al. (2020) formore details. Note that the concepts of cherries and pitchforks
can be naturally extended to unrooted trees in T ′

n for n ≥ 6. Moreover, let A′
n and B ′

n
be the random variables counting the number of pitchforks and cherries in a random
tree in T ′

n .
To associate urn models with the two processes on unrooted trees, note that for a

tree T in T ′
n with n ≥ 6, we can decompose the edges in T into the six types similar to

those for rooted trees, and hence define α(T ) and β(T ) correspondingly. Furthermore,
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Fig. 4 Example of sample paths for the PDA process on unrooted trees and the associated urn model. Two
sample paths of the PDA process evolving from T5: one ends with T

1
7 using the edges in bold and the other

with T 2
7 using the edges in grey. Leave labels are omitted for simplicity. Note that in the vector form we

have β(T 1
6 ) = (4, 0, 2, 0, 0, 3) and β(T 2

6 ) = (0, 6, 0, 0, 3, 0)

the replacement matrix is the same as the unrooted one, that is, the replacement matrix
for the YHK model is given in (8) and the one for the PDA process is given in (16).
See two examples in Fig. 4. We emphasize that the condition n ≥ 6 is essential here:
for instance, there is no appropriate assignment for the edge e2 in the tree T5 in Fig. 4
in our scheme, neither type 3 nor type 4 satisfying the requirement of a valid urn
model. This observation is indeed in line with the treatment of unrooted trees in Choi
et al. (2020). However, there is only one unrooted shape for n = 4 and one for n = 5.
Furthermore, there are only two tree shapes for T ′

6 (as depicted in T
1
6 and T 2

6 in Fig. 4).
In particular, putting α1

6 = (4, 0, 2, 0) and α2
6 = (0, 6, 0, 0), then for each T in T ′

6 ,
we have either α(T ) = α1

6 or α(T ) = α2
6.

Now we extend Theorem 3 and Corollary 1 to the following result concerning the
limiting behaviour of the YHK process. Similar to the rooted version, the asymptotic
behaviour of the frequencies of cherries and pitchforks, when appropriately scaled, is
independent of the initial trees used in the unrooted YHK process.

Theorem 5 Suppose that Tm is an arbitrary unrooted phylogenetic tree with m leaves
with m ≥ 6, and that Tn is an unrooted tree with n leaves generated by the YHK
process starting with Tm. Then, as n → ∞,

α(Tn)

n
a.s.−−−→ v1 and

α(Tn) − nv1√
n

d−→ N (0,Σ) , (24)

where v1 = ( 1
3 ,

1
3 ,

1
6 ,

1
6

)
and Σ is given in Eq. (10). In particular, as n → ∞,

1

n
(A′

n, B
′
n)

a.s.−−−→
(1
6
,
1

3

)
and

(A′
n, B

′
n) − n(1/6, 1/3)√

n
d−→ N

(
0,

1

1260

[
69 −28

−28 56

])
.

(25)

Proof The proof of (24) follows an argument similar to that for Theorem 4.
To establish (25), consider theYHKprocess {Tn}n≥2 startingwith a tree T2 with two

leaves. For n ≥ 6, let αn = α(Tn) and αn,i denote the i-th entry in α(Tn) for 1 ≤ i ≤ 4.
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Consider the vector α1
6 = (4, 0, 2, 0) and α2

6 = (0, 6, 0, 0). For j = 1, 2, let E j be

the event that α6 = α
j
6 . It follows that E1 and E2 form a partition of the sample

space. Moreover, we have P(E1) = 4/5 and P(E2) = 1 − P(E1) = 1/5. Consider
the random indicator variable IE1 , that is, P(IE1 = 1) = 4/5 and P(IE1 = 0) = 1/5.
Random indicator variable IE2 is similarly defined. Then we have

αn = α1
nIE1 + α2

nIE2 .

Furthermore, by (24) we have α
j
n
n

a.s.−−−→ v1 a.s. on E j , for j = 1, 2, and hence

αn

n
a.s.−−−→ v1(IE1 + IE2) = v1.

Together with A′
n = αn,1

2 and B ′
n = αn,1+αn,2

2 , the almost surely convergence in (25)
follows. Finally, the convergence in distribution in (25) also follows from a similar
argument. �

Finally, combining Theorem 4, Corollary 2, and an argument similar to the proof
of Theorem 5 leads to the following result concerning the limiting behaviour of the
unrooted PDA process, whose proof is hence omitted.

Theorem 6 Suppose that Tm is an arbitrary unrooted phylogenetic tree with m leaves
with m ≥ 6, and that Tn is an unrooted tree with n leaves generated by the PDA
process starting with Tm.

Then, as n → ∞,

β(Tn)

n
a.s.−−−→ v1 and

β(Tn) − nv1√
n

d−→ N (0,Σ) , (26)

where v1 = 1
16 (2, 2, 1, 3, 1, 7) and Σ is given in Eq. (18). In particular, as n → ∞,

1

n
(A′

n, B
′
n)

a.s.−−−→
(1
8
,
1

4

)
and

(A′
n, B

′
n)−n(1/8, 1/4)√

n
d−→ N

(
0,

1

64

[
3 0
0 4

])
.

(27)

7 Proofs of Theorems 1 and 2

In this section, we shall present the proofs of Theorems 1 and 2. To this end, it is more
natural to consider Yn := CnU , a linear transform of Cn . Next we introduce

ξn = Yn − E[Yn|Fn−1]. (28)

For 1 ≤ j ≤ d, consider the following numbers

bn,n( j) = 1 and bn,k( j) =
n−1∏

�=k

(1 + λ j/t�) for 0 ≤ k < n. (29)
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Moreover, we introduce the following diagonal matrix for 0 ≤ k ≤ n:

Bn,k = diag
(
bn,k(1), . . . , bn,k(d)

)
. (30)

Then we have the following key observation:

Yn = Y0Bn,0 +
n∑

k=1

ξk Bn,k . (31)

To see that (31) holds, let Qk = I + t−1
k−1R for 1 ≤ k ≤ n, where I is the identity

matrix. Then we have

E[Cn|Fn−1] = Cn−1 + t−1
n−1Cn−1R = Cn−1

[
I + t−1

n−1R
]

= Cn−1Qn .

As Ck − E[Ck |Fk−1] = ξkU−1 for 1 ≤ k ≤ n, we have

Cn = (Cn − E[Cn|Fn−1]) + Cn−1Qn = ξnU
−1 + Cn−1Qn

= C0(Q1 · · · Qn) + ξnU
−1 +

n−1∑

k=1

ξkU
−1(Qk+1 · · · Qn). (32)

Since

U−1
( n∏

�=k+1

Q�

)
U =

n−1∏

�=k

(
U−1

(
I + t−1

� R
)
U
) =

n−1∏

�=k

(
I + t−1

� Λ
)

= Bn,k (33)

holds for 0 ≤ k ≤ n and Yn = CnU , it is straightforward to see that (31) follows from
transforming (32) by a right multiplication of U .

Next, we shall present several properties concerning ξk . To this end, consider the
sequence of random vectors τk = χk − E[χk |Fk−1] for k ≥ 1. Then {τk}k≥1 is a
martingale difference sequence (MDS) in that E[τk |Fk−1] = 0 almost surely. Hence
E[τk] = E

[
E[τk |Fk−1]

] = 0. Furthermore, since the entries in χk are either 0 or 1 and
E[χk |Fk−1] = C̃k−1, the random vector τk is also bounded. As a bounded martingale
difference sequence, τk is uncorrelated. To see it, assuming that � < k, then we have

E[τ

� τk] = E

[
E[τ


� τk |Fk−1]
] = E

[
τ

� E[τk |Fk−1]

] = E[τ

� 0] = 0
0,

where the first equality follows from the total law of expectation and the second from
τ� is Fk−1-measurable. A similar argument shows E[τ�τ



k ] = 0. Consequently, we

have the following expression showing that distinct τk and τ� are uncorrelated:

E[τ

k τ�] = 0
0 and E[τkτ


� ] = 0 if k �= �. (34)
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Moreover, putting

Γk := diag
(
C̃k

) − C̃

k C̃k,

then we have

E[Γk] = diag
(
E[C̃k]

) − E
[
C̃

k C̃k

]
.

Consequently, we have

E[τ

k τk |Fk−1] = E[(χk − E[χk |Fk−1]

)
(
χk − E[χk |Fk−1]

)|Fk−1]
= E[(χ


k − C̃

k−1

)(
χk − C̃k−1

)|Fk−1]
= E[χ


k χk |Fk−1] − C̃

k−1E[χk |Fk−1] − E[χ


k |Fk−1]C̃k−1 + C̃

k−1C̃k−1

= E[χ

k χk |Fk−1] − C̃


k−1C̃k−1 = Γk−1, (35)

where the last equality follows from (2). This implies

E[τ

k τk] = E

[
E[τ


k τk |Fk−1]
] = E[Γk−1]. (36)

Note that ξk is a ‘linear transform’ of τk in that combining (1) and (28) leads to

ξk = (
Ck − E[Ck |Fk−1]

)
U = (

Ck−1 + χk R − E[Ck−1 + χk R|Fk−1]
)
U

= (
χk − E[χk |Fk−1]

)
RU = τk RU = τkUΛ. (37)

Note this implies that ξk is a martingale difference sequence in thatE[ξk |Fk−1] = 0 =
E[ξk]. Furthermore, by (35) and (37) we have

E
[
ξ

k ξk |Fk−1

] = ΛU
Γk−1UΛ for k ≥ 1. (38)

Together with (34) and (36), for all k, � ≥ 1 we have

E[ξ

k ξk] = ΛU


E[Γk−1]UΛ, and E[ξ

k ξ�] = 0
0 if k �= �. (39)

Since u1 = Ue

1 = e
 is a right eigenvector of R corresponding to s, by (37) we have

ξke

1 = τk RUe


1 = τk Ru1 = sτku1 = sτke
 = 0 for k ≥ 1, (40)

where the last equality follows from χke
 = 1 and E[χk |Fk−1]e
 = C̃k−1e
 = 1.
Note that for n > 1 and ρ < 1, we have

1

n

n−1∑

k=1

(n
k

)ρ ≤ 1

1 − ρ
, and lim

n→∞
1

n

n∑

k=1

(n
k

)ρ =
∫ 1

0
x−ρdx = 1

1 − ρ
. (41)

Furthermore, we present the following two results on the entries ofBn,k , whose proofs
are elementary calculus and included in the appendix.
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Lemma 1 Under assumptions (A2) and (A3), there exists a constant K such that

|bn,0( j)| ≤ Knλ j /s and |bn,k( j)| ≤ K (n/k)λ j /s (42)

hold for 1 ≤ j ≤ d and 1 ≤ k ≤ n. Furthermore, we have

lim
n→∞

1

n

n∑

k=1

bn,k(i)bn,k( j) = s

s − λi − λ j
for 2 ≤ i ≤ j ≤ d. (43)

Corollary 3 Assume that {Zn} is a sequence of random variables such that

Zn
1−→ Z

for a random variable Z. Then under assumptions (A2)-(A3), for 2 ≤ i ≤ j ≤ d we
have

1

n

n∑

k=1

bn,k(i)bn,k( j)Zk
p−→ s

s − λi − λ j
Z as n → ∞. (44)

7.1 Proof of Theorem 1

Proof Recall that Yn = CnU for n ≥ 1. Hence, it is sufficient to show that

n−1Yn
a.s.−−−→ s e1 (45)

because s e1U−1 = s v1 and n−1Cn = n−1YnU−1. Furthermore, as the sequence of
random vectors n−1Cn is bounded, its Lr convergence follows from the almost sure
convergence.

To establish (45), we restate the following decomposition from (31) as below:

Yn = Y0Bn,0 +
n∑

k=1

ξk Bn,k, (46)

where {ξk} is themartingale difference sequence in (28) andBn,k is the diagonalmatrix
in (30).

Next we claim that
n−1

E[Yn] −→ s e1 as n → ∞. (47)

Indeed, since E[ξk] = 0 implies E[ξk Bn,k] = E[ξk]Bn,k = 0, by (46) we have
E[Yn] = Y0Bn,0. Therefore the j-th entry in E[Yn], denoted by yn, j , is given by

yn, j = E[Yn]e

j = Y0Bn,0e


j = bn,0( j)Y0e

j for 1 ≤ j ≤ d.

When j = 1, we have

yn,1 = bn,0(1)Y0e

1 = (tn/t0)Y0e


1 = (tn/t0)C0Ue

1 = (tn/t0)C0u1 = (tn/t0)t0 = tn,
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where we used the fact that u1 = e
 and hence t0 = C0u1. Therefore we have
yn,1/n = tn/n → s as n → ∞. On the other hand, for 2 ≤ j ≤ d there exist two
constants K1 and K such that

|yn, j | = |bn,0( j)Y0e

j | ≤ K1|bn,0( j)| ≤ K1Knλ j /s,

where the last inequality follows from Lemma 1. Since λ j < s, it follows that
yn, j/n → 0 as n → ∞. This completes the proof of (47).

For simplicity, let Zn := Yn − E(Yn). Then we have Yn = Zn + E(Yn), by (47) it
follows that to establish (45), it remains to show that

Zn/n
a.s.−−−→ 0, (48)

Denote the j-th entry in Zn by Zn, j , then from (46) we have

Zn, j =
n∑

k=1

(ξkBn,k)e

j =

n∑

k=1

bn,k( j)ξke

j . (49)

Since (48) is equivalent to

Zn, j

n
a.s.−−−→ 0 for 1 ≤ j ≤ d, (50)

the remainder of the proof is devoted to establishing (50).
It is straightforward to see that (50) holds for j = 1 because by (40) and (49) we

have

Zn,1 =
n∑

k=1

bn,k( j)ξke

1 = 0.

Thus in the remainder of the proof, we may assume that 2 ≤ j ≤ d holds. Note that

E
[
Z2
n, j

] = E

[( n∑

k=1

bn,k( j)ξke

j

)2]
= E

[ n∑

k,�=1

bn,k( j)bn,�( j)e jξ

k ξle


j

]

= E
[ n∑

k=1

b2n,k( j)e jξ


k ξke


j

] =
n∑

k=1

b2n,k( j)E
[
e jξ


k ξke

j

]
.

Here the third equality follows from (39). As E[e jξ

k ξke


j ], the ( j, j)-entry of matrix

E[ξ

k ξk], is bounded above by a constant K1 in view of (39), there exist constants K2
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and K so that

E
[
Z2
n, j

] ≤ K1

n∑

k=1

|bn,k( j)|2 ≤ K2

n∑

k=1

(n
k

)2λ j /s = K2 + K2n
n−1∑

k=1

1

n

(
k

n

)−2λ j /s

≤ K2 + K2n

1 − 2λ j/s
≤ Kn

holds for all n ≥ 1. Here the second inequality follows from Lemma 1 and the third
one from (41) in view of λ j < s/2 for 2 ≤ j ≤ d.

Since E(Zn, j ) = 0, for ε > 0 using the Chebychev inequality we get

P
(∣∣Zn, j

∣∣ > nε
) ≤ K

nε2
for all n ≥ 1. (51)

Consider the subsequence Z ′
n, j of Zn, j with Z ′

n, j = Zn2, j for n ≥ 1. Then for ε > 0
we have

∞∑

n=1

P

( |Z ′
n, j |
n2

> ε

)

=
∞∑

n=1

P

(∣∣Zn2, j

∣∣ > n2ε
)

≤
∞∑

n=1

K

n2ε2
< ∞,

where the first inequality follows from (51). Thus, by the Borel-Cantelli Lemma, it
follows that

n−2Z ′
n, j

a.s.−−−→ 0. (52)

Next, consider

Δn, j := max
n2≤k<(n+1)2

|Zk, j − Z ′
n, j | = max

n2≤k<(n+1)2
|Zk, j − Zn2, j | = max

1≤k≤2n
|Zn2+k, j − Zn2, j |.

Since for each � > 0, elements of χ� and RU are all bounded above, there exists a
constant K independent of � and j so that

|Z�+1, j − Z�, j | = |((C�+1 − E[C�+1]) − (C� − E[C�])
)
Ue


j |
= |(C�+1 − C�

) − (
E[C�+1 − C�]

)
Ue


j | = |(χ�+1 − E[χ�+1]
)
RUe


j | ≤ K .

Consequently, we have

Δn, j = max
0≤k≤2n

|Zn2+k, j − Zn2, j | ≤ max
1≤k≤2n

k∑

�=1

|Zn2+�, j − Zn2+�−1, j | ≤ max
1≤k≤2n

k∑

�=1

K = 2nK ,

and hence
n−2Δn, j

a.s.−−−→ 0. (53)
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Now, for each k > 0, considering the natural number n with n2 ≤ k < (n + 1)2,
then we have

∣∣Zk, j
∣∣

k
≤

∣∣Zk, j − Zn2, j

∣∣

k
+

∣∣Zn2, j

∣∣

k
≤ Δn, j

n2
+

∣∣Zn2, j

∣∣

n2
= Δn, j

n2
+

∣∣∣Z ′
n, j

∣∣∣

n2
. (54)

Note that when k → ∞, the natural number n satisfying n2 ≤ k < (n + 1)2 also
approaches to ∞. Thus combining (52), (53), and (54) leads to

k−1Zk, j
a.s.−−−→ 0 when k → ∞, (55)

which completes the proof of (50), and hence also the theorem. �

7.2 Proof of Theorem 2

Proof For each n ≥ 1, consider the following two sequences of random vectors:

Xn,k := n−1/2ξkBn,k and Sn,k :=
k∑

�=1

Xn,� for 1 ≤ k ≤ n,

where {ξk}k≥1 is the martingale difference sequence in (28) and Bn,k is the diago-
nal matrix in (30). Then for each n ≥ 1, the sequence {Xn,k}1≤k≤n is a martingale
difference sequence, and {Sn,k}1≤k≤n is a mean zero martingale.

Recalling that Yn = CnU , then by (31) we have

Sn,n = n−1/2
n∑

k=1

ξkBn,k = n−1/2(Yn − E[Yn]
)
. (56)

A key step in our proof is to show that

Sn,n
d−→ N (0, Σ̃), (57)

where N (0, Σ̃) denotes a normal distribution with mean vector 0 and variance-
covariance matrix

Σ̃ :=
d∑

i, j=2

sλiλ ju

i diag(v1)u j

s − λi − λ j
e

i e j . (58)

We shall show that Theorem 2 follows from (57). To this end, we claim that

Zn := n−1/2 (E[Yn] − nse1) −→ 0 with n → ∞. (59)

Indeed, we have Zne

1 = n−1/2(tn − ns) = n−1/2t0 → 0. Furthermore, by Lemma 1

there exists a constant K such that
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|Zne

j | = n−1/2|Y0, j bn,0( j)| = n−1/2Y0, j |bn,0( j)| ≤ n−1/2Y0, j Knλ j /s for 2 ≤ j ≤ d.

As λ j/s < 1/2, it follows that |Zne

j | → 0 for all 1 ≤ j ≤ d, and hence (59) holds.

Consequently, we have

n−1/2 (Yn − nse1) = n−1/2 (Yn − E[Yn]) + Zn = Sn,n + Zn
d−→ N (0, Σ̃). (60)

Here the second equality follows from (56); convergence in distribution follows from
the Slutsky theorem (see, e.g. Grimmett and Stirzaker (2001, P. 318)) in view of (57)
and (59). Since n−1/2(Cn−nsv1) = n−1/2 (Yn − nse1) V with V = U−1, by (60) and
the fact that a linear transform of a normal vector is also normal (see, e.g. Grimmett
and Stirzaker (2001, Section 4.9)), we have

n−1/2(Cn − nsv1)
d−→ N (0,Σ), (61)

where

Σ = V
Σ̃ V = V
(
d∑

i, j=2

sλiλ ju

i diag(v1)u j

s − λi − λ j
e

i e j

)
V =

d∑

i, j=2

sλiλ ju

i diag(v1)u j

s − λi − λ j
v

i v j ,

(62)
which shows indeed that the theorem follows from (57).
What remains is to prove (57). Define

Φ(n) :=
n∑

k=1

E
[
X

n,k Xn,k |Fk−1

] = 1

n

n∑

k=1

Bn,kE[ξ

k ξk |Fk−1]Bn,k .

We next show that
Φ(n)

p−→ Σ̃. (63)

Let Γ = diag(v1) − v

1 v1. Note that for 2 ≤ i, j ≤ d, we have v1ui = 0 = v1u j in

view of (4), and hence

sλiλ ju

i Γ u j

s − λi − λ j
= sλiλ ju


i (diag(v1) − v

1 v1)u j

s − λi − λ j
= sλiλ ju


i diag(v1)u j

s − λi − λ j
.

Therefore (63) is equivalent to

eiΦ(n)e

j

p−→

⎧
⎪⎨

⎪⎩

sλiλ j u

i Γ u j

s − λi − λ j
2 ≤ i, j ≤ d,

0 if i = 1 or j = 1.
(64)
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Since Bn,k is a diagonal matrix and e1ξ

k = 0 in view of (40), this implies

e1Φ(n) = 1

n

n∑

k=1

e1Bn,kE[ξ

k ξk |Fk−1]Bn,k = 1

n

n∑

k=1

bn,k(1)E[e1ξ

k ξk |Fk−1]Bn,k = 0.

A similar argument shows Φ(n)e

1 = 0, and hence (64) holds for i = 1 or j = 1. It

remains to consider the case 2 ≤ i, j ≤ d. Since

C̃k
1−→ v1 and C̃


k C̃k
1−→ v


1 v1

hold in view of Theorem 1,
we have

λiλ ju

i Γku j

1−→ λiλ ju

i Γ u j as k → ∞. (65)

As both Bn,k and Λ are diagonal matrices, we have

1

n

n∑

i=k

eiBn,k(ΛU
Γk−1UΛ)Bn,k e

j = 1

n

n∑

k=1

bn,k(i)bn,k( j)eiΛU
Γk−1UΛe

j

= λiλ j

n

n∑

k=1

bn,k(i)bn,k( j)u

i Γk−1u j

p−→ sλiλ ju

i Γ u j

s − λi − λ j
, (66)

where the convergence follows from Corollary 3 and (65).
Since Sn,n is a mean 0 random vector and Bn,k is a diagonal matrix, we have

V
[
Sn,n

] = E[S

n,n Sn,n] = 1

n

n∑

k,�=1

B

n,kE[ξ


k ξ�]Bn,� = 1

n

n∑

k=1

Bn,kE[ξ

k ξk]Bn,k

=
n∑

k=1

E[X

n,k Xn,k] = E[Φ(n)]

where the third equality follows from (39).
Furthermore, an argument similar to the proof of (63) shows that

lim
n→∞V(Sn,n) = Σ̃.

Therefore Σ̃ is positive semi-definite because thematrixV(Sn,n) is necessarily positive
semi-definite for each n ≥ 1.

Following the Cramér-Wold device for the multivariate central limit theorem (see,
e.g. Durrett (2019, Theorem 3.10.6)), fix an arbitrary row vector w = (w1, . . . , wd)

in R
d \ {0} and put sn,k = Sn,kw
 and xn,k = Xn,kw
. Furthermore, since the

matrix Σ̃ is positive semi-definite, we can introduce σ 2 := w Σ̃ w
 ≥ 0. Then for
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establishing (57) it suffices to show that

sn,n
d−→ N (0, σ 2). (67)

Since {xn,k}1≤k≤n is a martingale difference sequence and {sn,k}1≤k≤n is an array of
mean zero martingale, the martingale central limit theorem (see, e.g. Hall and Heyde
(2014, Corollary 3.2)) implies that (67) follows from

γn :=
n∑

k=1

E

[∣
∣xn,k

∣
∣2 |Fk−1

]
p−→ σ 2 as n → ∞ (68)

and the conditional Lindeberg-type condition holds, that is, for every ε > 0

γ ∗
n :=

n∑

k=1

E

[∣∣xn,k
∣∣2 IAn,k,ε |Fk−1

]
p−→ 0 as n → ∞ (69)

where IAn,k,ε is the indicator variable on An,k,ε := {|xn,k | > ε}.
Now (68) follows from

γn =
n∑

k=1

E

[
wX


n,k Xn,kw
|Fk−1

]
= w

n∑

k=1

E

[
X

n,k Xn,k |Fk−1

]
w


= wΦ(n)w
 p−→ w Σ̃ w
 = σ 2, (70)

where the convergence follows from (63).
To see that (69) holds, by (37) we have

Xn,k =
d∑

j=1

Xn,ke

j e j =

d∑

j=1

n−1/2λ j bn,k( j)τku je j , 1 ≤ k ≤ n.

In particular, we have Xn,k(1) = 0 because τku1 = 0 holds for k ≥ 1 in view of (40).
Consequently, we have

xn,k = Xn,kw
 =
d∑

j=2

n−1/2w jλ j bn,k( j)τku j . (71)

Putting ρ = λ2/s, then λ j/s ≤ ρ < 1/2 holds for 2 ≤ j ≤ d in view of (A2) and
(A4). Furthermore, there exists a constant K0 > 0 independent of n and k such that

|xn,k | ≤
d∑

j=2

n−1/2|w jλ jτku j ||bn,k( j)| ≤ K0n
−1/2(n/k)ρ ≤ K0n

−1/2 max(1, nρ)

(72)
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holds for 1 ≤ k ≤ n. Here the second inequality follows from Lemma 1 and
the fact that |w jλ jτku j | is bounded above by a constant independent of k. The
last inequality follows from the fact that (n/k)ρ ≤ max

(
(n/1)ρ, (n/n)ρ

)
. Now let

A′
n,ε := {K0n−1/2 max(1, nρ) > ε}, which it is either ∅ if n is sufficient large or the

whole probability space otherwise. Then by (72) we have An,k,ε ⊆ A′
n,ε and hence

for all ε > 0 and each n, we have IAn,k,ε ≤ IA′
n,ε

for all 1 ≤ k ≤ n. Furthermore, since
ρ < 1/2 and K0 > 0, we have

E[IA′
n,ε

] = P(A′
n,ε) → 0 as n → ∞. (73)

Consequently, we have

E[γ ∗
n ] = E

[ n∑

k=1

E
[ ∣∣xn,k

∣
∣2 IAn,k,ε |Fk−1

]] ≤ E

[ n∑

k=1

E
[ ∣∣xn,k

∣
∣2 IA′

n,ε
|Fk−1

]]
(74)

= E

[( n∑

k=1

E
[ ∣∣xn,k

∣∣2 |Fk−1
])
IA′

n,ε

]
= E

[
γnIA′

n,ε

]
(75)

= E
[
γn

]
E
[
IA′

n,ε

] → 0, as n → ∞ (76)

where we have used the fact that IA′
n,ε

is Fn-measurable and independent of Fn (and
all its sub-sigma-algebras); the convergence follows from (70) and (73). Since γ ∗

n is
almost surely non-negative, this completes the proof of (69), the last step in the proof
of the theorem. �

8 Discussion

Inspired by a martingale approach developed by Bai and Hu (2005), we present in
this paper the strong law of large numbers and the central limit theorem for a family
of the Pólya urn models in which negative off-diagonal entries are allowed in their
replacement matrices. This leads to a unified approach to proving corresponding limit
theorems for the joint vector of cherry and pitchfork counts under the YHK model
and the PDA model. In other words, the results for both models are derived from
Theorems 1 and 2, using different replacement matrices. Furthermore, our results on
unrooted trees are also derived directly from Theorems 1 and 2, without the need for
a detour of rooted trees. For each of these random tree models, we show that the joint
vector of cherry and pitchfork frequencies converges almost surely to a deterministic
vector and the appropriately scaled fluctuations converge in distribution to a bivariate
normal distribution. Interestingly, such convergence results do not depend on the initial
tree used in the generating process.

The results presented here also lead to several broad directions that may be interest-
ing to explore in future work. The first direction concerns a more detailed analysis on
convergence. For instance, the central limit theorems present here should be extend-
able to a functional central limit theorem (see, e.g. Gouet (1993)), a follow-up project
that we will pursue. Furthermore, it remains to establish the rate of convergence for the
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limit theorems (see Laulin (2020) for some recent results on urns with two colours).
For example, a law of the iterated logarithm would add considerable information to
the strong law of large numbers by providing a more precise estimate of the size of
the almost sure fluctuations of the random sequences in Theorems 3 and 4.

The second direction concerns whether the results obtained here can be extended
to other tree statistics and tree models. For example, the two tree models considered
here, the YHK and the PDA, can be regarded as special cases of some more general
tree generating models, such as Ford’s alpha model (see, e.g. Chen et al. (2009)) and
the Aldous beta-splitting model (see, e.g. Aldous (1996)). Therefore, it is of interest to
extend our studies on subtree indices to these twomodels as well. Furthermore, instead
of cherry and pitchfork statistics, we can consider more general subtree indices such
as k-pronged nodes and k-caterpillars (Rosenberg 2006; Chang and Fuchs 2010).

Finally, it would be interesting to study tree shape statistics for several recently
proposed graphical structures in evolutionary biology. For instances, one can consider
aspects of tree shapes that are related to the distribution of branch lengths (Ferretti
et al. 2017; Arbisser et al. 2018) or relatively ranked tree shapes (Kim et al. 2020).
Furthermore, less is known about shape statistics in phylogenetic networks, in which
non-tree-like signals such as lateral gene transfer and viral recombinations are accom-
modated (Bouvel et al. 2020). Further understanding of their statistical properties could
help us design more complex evolutionary models that may in some cases provide a
better framework for understanding real datasets.
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Appendix

In the appendix we present a proof of Lemma 1 and Corollary 3. To this end, we start
with the following observation.

Lemma 2 For λ ∈ R, � ∈ R>0, and two non-negative integers m and n with n ≥ m,
put

Fm
m (�, λ) = 1, and Fn

m(�, λ) :=
n−1∏

i=m

(
1 + λ

� + i

)
for n > m.
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Then we have

lim
m→∞ sup

n≥m

(m
n

)λ

Fn
m(�, λ) = 1. (77)

Furthermore, there exists a positive constant K = K (λ, �) such that

∣∣Fn
m(�, λ)

∣∣ ≤ K (n/m)λ for all 1 ≤ m ≤ n. (78)

Proof Since the lemma holds for λ = 0 in view of Fn
m(�, 0) = 1, we assume that

λ �= 0 in the remainder of the proof. For simplicity, put L := max
(
1,−(� + λ)

)
.

First we shall establish (77). To this end, we may assume m > L , and hence
m + � + λ > 0. Furthermore, recall the following result on the ratio of gamma
functions: for a fixed number y ∈ R, we have

lim
x→∞

Γ (x + y)

x yΓ (x)
= 1, (79)

which follows fromStirling’s formula for the gamma function; see also Jameson (2013,
P.398) for an alternative approach. Therefore, putting

Gm,k := Γ (m + k + � + λ)

(m + k)λΓ (m + k + �)
for integer k ≥ 0,

then we have

lim
m→∞ ln

(
Gm,0

) = 0, and hence lim
m→∞ sup

k≥0
ln

(
Gm+k,0

) = 0. (80)

Here the second limit holds because the limit of ln
(
Gm,0

)
being 0 implies that its limit

superior is also 0. Together with Gm,k = Gm+k,0 for k ≥ 0, this leads to

lim
m→∞ sup

k≥0
ln

(
Gm,k

) = lim
m→∞ sup

k≥0
ln

(
Gm+k,0

) = 0. (81)

Since

(
m

m + k

)λ

Fm+k
m (�, λ) =

(
m

m + k

)λ
Γ (m + k + � + λ)Γ (m + �)

Γ (m + k + �)Γ (m + � + λ)
= Gm,k

Gm,0
(82)

holds for each integer k ≥ 0, we have

lim
m→∞ sup

n≥m
ln

( (m
n

)λ

Fn
m(�, λ)

)
= lim

m→∞ sup
k≥0

ln
(( m

m + k

)λ

Fm+k
m (�, λ)

)

= lim
m→∞ sup

k≥0

(
ln(Gm,k) − ln(Gm,0)

)

= lim
m→∞ sup

k≥0
ln(Gm,k) − lim

m→∞ ln(Gm,0)

= 0,
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where the last equality follows from (80) and (81). This completes the proof of (77).
Next, we shall establish (78). To this end we assume m < n, m + � + λ �= 0, and

n − 1 + � + λ �= 0 as otherwise it clearly holds. Now consider the following three
cases:
Case 1: 1 ≤ m ≤ n − 1 < L , and hence n − 1 + � + λ < 0. Let A = {(α, β) |α, β ∈
N; 1 ≤ α ≤ β ≤ 1 − � − λ} be the finite subset of N × N whose size depends on �

and λ, and consider the constant

K1 := max
(α,β)∈A

{|Fβ
α (�, λ)| (α/β)λ

}
.

Since (m, n) ∈ A, it follows that |Fn
m(�, λ)| ≤ K1(n/m)λ holds.

Case 2:m ≥ L and hencem+�+λ > 0. Note that in this case we have Fn
m(�, λ) > 0.

Furthermore, an argument similar to the proof of (77) shows that for each m ≥ L we
have

lim
n→∞

(m
n

)λ

Fn
m(�, λ) = 1

Gm,0
,

and hence there exists a constant K ′
m depending on m, �, λ so that Fn

m(�, λ) ≤
K ′
m(n/m)λ holds. Furthermore, by (77) it follows that there exists a constant M =

M(�, λ) and a constant K0 = K0(�, λ) so that Fn
m(�, λ) ≤ K0(n/m)λ holds for all

m > M . Therefore, for the constant

K2 := max{K0, K
′
1, . . . , K

′
M },

which depends only on � and λ, we have Fn
m(�, λ) ≤ K2(n/m)λ for all L ≤ m ≤ n.

Case 3: 1 ≤ m < L < n − 1 and hence m + � + λ < 0 < n − 1 + � + λ. Note
this implies L > 1 and we may further assume that L is not an integer as otherwise
Fn
m(�, λ) = 0 follows. Let p be the (necessarily positive) largest integer less than

L . Then 1 ≤ m ≤ p < L and we have |F p
m (�, λ)| ≤ K1(p/m)λ for a constant K1

in view of Case 1 and the fact that Fm
m (�, λ) = 1. Furthermore, as p + 1 > L , by

Case 2 we have |Fn
p+1(�, λ)| ≤ K2(n/p + 1)λ. Therefore, considering the constant

K3 = max{K1K2, 2−λK1K2}, which depends on only � and λ, we have

|Fn
m(�, λ)| = |F p

m (�, λ)Fn
p+1(�, λ)| ≤ K1K2

( p

m

)λ
(

n

p + 1

)λ

= K1K2

(
p

p + 1

)λ ( n

m

)λ ≤ K3

( n

m

)λ

.

The last inequality follows since (
p

p+1 )
λ ≤ 1 holds for λ > 0, and (

p
p+1 )

λ ≤ 2−λ for
λ < 0. �

With Lemma 2, we now present a proof of Lemma 1.
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Proof of Lemma 1. Recall that by (A3) we have t� = t0 + �s for � ≥ 1, and hence

bn,k( j) =
n−1∏

�=k

(
1 + λ j

t0 + �s

)
=

n−1∏

�=k

(
1 + λ j/s

(t0/s) + �

)
= Fn

k

( t0
s

,
λ j

s

)

holds for 1 ≤ j ≤ d and1 ≤ k < n.Noting thatbn,n( j) = 1, byLemma2 there exists a
constant K ′

j such that |bn,k( j)| ≤ K ′
j (n/k)λ j /s holds for 1 ≤ k ≤ n. Now let a j = 1+

(λ j/t0) and put K j = max(K ′
j , K

′
j |a j |). Then we have |bn,0( j)| ≤ K jnλ j /s in view

of bn,0( j) = a jbn,1( j). This establishes (42) by choosing K = max(K1, . . . , Kd).
Next, we shall show (43). To this end, fix a pair of indices 2 ≤ i ≤ j ≤ d,

and put ρi = λi/s and ρ j = λ j/s. Then by (A2) we have ρ := ρi + ρ j < 1 and
1 − ρ = (s − λi − λ j )/s. Furthermore, consider

Δn := 1

n

n∑

k=1

(n
k

)ρ j
(
bn,k(i) −

(n
k

)ρi
)

and Δ∗
n := 1

n

n∑

k=1

bn,k(i)
(
bn,k( j) −

(n
k

)ρ j
)
.

Then we have

Δn + Δ∗
n = 1

n

n∑

k=1

(
bn,k(i)bn,k( j) −

(n
k

)ρ )
.

By (41) it suffices to show that both Δn → 0 and Δ∗
n → 0 as n → ∞.

By (42), we have |bn,k(i)| ≤ K (n/k)ρi and |bn,k( j)| ≤ K (n/k)ρ j . We shall first
show that Δn → 0 as n → ∞. To this end, let

Hn,k :=
(n
k

)ρ j
(
bn,k(i) −

(n
k

)ρi
)

=
(n
k

)ρ (( k
n

)ρi
bn,k(i) − 1

)
.

Then we have |Hn,k | ≤ (K + 1)(n/k)ρ for all 1 ≤ k ≤ n. Consider ε > 0. Then it
follows that ε′ := ε(1−ρ)

2(2−ρ)
> 0. By (77) in Lemma 2, we have

lim
k→∞ sup

n≥k

(
k

n

)ρi

bn,k(i) = lim
k→∞ sup

n≥k

(
k

n

)ρi

Fn
k

( t0
s

, ρi

)
= 1.

Therefore, there exists a positive integer M such that

sup
n≥k

(( k
n

)ρi
bn,k(i) − 1

)
≤ ε′

holds for all k ≥ M . Consequently, |Hn,k | ≤ ε′(n/k)ρ holds for all n ≥ k ≥ M . More-
over, let N be the smallest integer greater than M so that N > [2(K + 1)M/ε]1/(1−ρ)
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and N > M[2(K + 1)/ε]1/(1−ρ) both hold. Then for n > N we have

1

n

n∑

k=1

|Hn,k | ≤ ε′

n

n∑

k=M+1

(n
k

)ρ + 1

n

M∑

k=1

|Hn,k | ≤ ε′

n

n∑

k=1

(n
k

)ρ + 1

n

M∑

k=1

|Hn,k |

≤ ε′(2 − ρ)

1 − ρ
+ K + 1

n1−ρ

M∑

k=1

(
1

k

)ρ

≤ ε

2
+ ε

2
= ε,

where in the third inequality we use the fact that (41) implies

1

n

n∑

k=1

(n
k

)ρ ≤ 1

n
+ 1

1 − ρ
≤ 1 + 1

1 − ρ
= 2 − ρ

1 − ρ
.

Therefore it follows that Δn → 0 as n → ∞. Since |bn,k(i)| ≤ K (n/k)ρi , a similar
argument can be adopted to show that Δ∗

n → 0 as n → ∞, completing the proof of
Lemma 1. �

Finally, we complete the appendix by the following proof of Corollary 3.

Proof of Corollary 3 Fix a pair of indexes 2 ≤ i ≤ j ≤ d. For simplicity, we put
an,k = bn,k(i)bn,k( j). Furthermore, let ρ = (λi + λ j )/s, then ρ < 1 and 1 − ρ =
(s − λi − λ j )/s > 0. Then by Lemma 1 we have

lim
n→∞

1

n

n∑

k=1

an,k = 1

1 − ρ
, and |an,k | ≤ K

(n
k

)ρ

for all n ≥ 1 and 1 ≤ k ≤ n.

(83)
Furthermore, let N0 be the smallest integer greater than 1 such that both N0 > −(λi +
t0)/s and N0 > −(λ j + t0)/s hold. Then we have an,k > 0 for all n ≥ k ≥ N0.

We shall next show that

1

n

n∑

k=1

an,kE[|Zk − Z |] → 0. (84)

For simplicity, put βk := E[|Zk − Z |] for k ≥ 1. Then {βk}k≥1 is a sequence of
non-negative numbers which converges to 0. Thus there exists a constant K1 > 0 such
that βk < K1 holds for all k ≥ 1. Next, fix an arbitrary number ε > 0. By (83), let
N1 = N1(ε) be the smallest integer greater than N0 so that

1

n

n∑

k=1

an,k <
1

1 − ρ
+ ε for holds for all n > N1. (85)

Since 1 − ρ > 0, the number ε′ := ε(1−ρ)
2(1+ε(1−ρ))

is greater than 0. Let N2 be the
smallest positive integer greater than N1 so thatβk < ε′ holds for all k > N2.Now let N
be the smallest positive integer greater than N2 so that N ≥ (2(K1+ε′)K N2/ε)

1/(1−ρ)

and N ≥ N2(2(K1 + ε′)K/ε)1/(1−ρ) both hold. Then for n > N we have
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∣
∣∣
1

n

n∑

k=1

an,kβk

∣
∣∣ ≤

∣
∣∣
1

n

N2∑

k=1

an,kβk

∣
∣∣ + 1

n

n∑

k=1+N2

an,kβk ≤ K1

n

N2∑

k=1

|an,k | + ε′

n

n∑

k=1+N2

an,k

= K1

n

N2∑

k=1

|an,k | − ε′

n

N2∑

k=1

an,k + ε′

n

n∑

k=1

an,k

≤ K1 + ε′

n

N2∑

k=1

|an,k | + ε′

n

n∑

k=1

an,k

≤ (K1 + ε′)K N2 max(nρ, (n/N2)
ρ)

n
+ ε′

n

n∑

k=1

an,k

≤ ε

2
+ ε′( 1

1 − ρ
+ ε

)
= ε,

from which (84) follows. Here the first inequality follows from the triangle inequality
and that an,kβk > 0 holds for n ≥ k > N2 ≥ N0, the second inequality holds
since 0 ≤ βk < K1 for k ≥ 1 and βk < ε′ for k > N2. Next, the third inequality
holds since we have ε′(an,k + |an,k |) ≥ 0 for 1 ≤ k ≤ n. Furthermore, the fourth
inequality holds because by (83) we have |an,k | ≤ K max(nρ, (n/N2)

ρ) for 1 ≤ k ≤
N2, and the last inequality follows from (85) and that 2(K1 + ε′)K N2nρ ≤ εn and
2(K1 + ε′)K N 1−ρ

2 nρ ≤ εn hold in view of n > N .
Finally, by (83) and (84) it follows that

1

n

n∑

k=1

an,k Z
p−→ 1

1 − ρ
Z and

1

n

n∑

k=1

an,k(Zk − Z)
p−→ 0.

Therefore, we can conclude that

1

n

n∑

k=1

an,k Zk = 1

n

n∑

k=1

an,k Z + 1

n

n∑

k=1

an,k(Zk − Z)
p−→ 1

1 − ρ
Z ,

as required. �
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