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Cyanate is utilized by many microbes as an organic nitrogen source. The key enzyme for cyanate metabolism is cyanase, converting
cyanate to ammonium and carbon dioxide. Although the cyanase gene cynS has been identified in many species, the diversity,
prevalence, and expression of cynS in marine microbial communities remains poorly understood. Here, based on the full-length
cDNA sequence of a dinoflagellate cynS and 260 homologs across the tree of life, we extend the conserved nature of cyanases by
the identification of additional ultra-conserved residues as part of the modeled holoenzyme structure. Our phylogenetic analysis
showed that horizontal gene transfer of cynS appears to be more prominent than previously reported for bacteria, archaea,
chlorophytes, and metazoans. Quantitative analyses of marine planktonic metagenomes revealed that cynS is as prevalent as ureC
(urease subunit alpha), suggesting that cyanate plays an important role in nitrogen metabolism of marine microbes. Highly
abundant cynS transcripts from phytoplankton and nitrite-oxidizing bacteria identified in global ocean metatranscriptomes indicate
that cyanases potentially occupy a key position in the marine nitrogen cycle by facilitating photosynthetic assimilation of organic N
and its remineralisation to NO3 by the activity of nitrifying bacteria.
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Cyanate (OCN−) is an oxidation product of cyanide and a
decomposition product of urea [1, 2]. It is considered as an
organic nitrogen source for diverse prokaryotic and eukaryotic
microbes in terrestrial and aquatic ecosystems [2–7] with
concentrations in the nanomolar range [4, 7–9]. Cyanate is also
formed intracellularly from urea and carbamoyl phosphate,
making it part of the central nitrogen metabolism [10–12]. In
spite of the central metabolic role of cyanate, it has received much
less attention than other organic nitrogen compounds, particularly
for marine environments. However, it has been found that cyanate
is likely an essential N source for cyanobacteria in oligotrophic
oceans [2, 6, 13, 14] and an alternate N substrate for marine
nitrification and anammox [15–17].
Cyanate metabolism relies on the well-characterized enzyme

cyanase, which catalyzes the reaction of cyanate with bicarbonate
to produce ammonium and carbon dioxide [18]. The cyanase gene
cynS has been identified in many terrestrial and aquatic species
and was reported to play a significant role in the assimilation of
exogenous cyanate and detoxification of internally generated
cyanate [6, 13, 16, 19–28]. However, knowledge on the diversity
and evolution of cynS in marine microbes is rather limited,
including its prevalence in the oceanic system.
To address this knowledge gap, we retrieved 260 cynS

homologs across the tree of life (Table S1) based on the full-
length cDNA from the marine dinoflagellate Alexandrium

pacificum (APcynS, 653 bp, GenBank accession number:
MZ666876) (Fig. S1; Table S2) and its deduced amino acid
sequence (APcyanase). This reference dataset was used to query
marine metagenomes and metatranscriptomes using the Ocean
Gene Atlas (OGA) [29] to explore the biogeography and in situ
expression pattern of cynS (full methods were described in
supplements).
An amino-acid alignment composed of 260 homologs revealed

the presence of nine ultra-conserved residues (Fig. 1a), potentially
responsible for the catalytic activity and structural stability. Six of
them have not been documented before [25, 30–32]. Modeling of
the 3D enzyme structure indicated the following subunit
organization: a decameric holoenzyme with a core formed by
five dimers [30, 31] (Fig. 1b, f; Fig. S2). Five active sites are located
between dimers forming an inner ring (Fig. 1c, g), non-covalently
bound with five oxalate di-anions (Fig. 1d, e, h, i; Table S3),
indicating the possible binding sites of cyanate. In E. coli, there are
four types of residue-oxalate interactions known for binding
cyanate (Fig. 1j) [30]. However, only type 1 is present in modeled
APcyanase (Fig. 1j), suggesting reduced plasticity in binding
cyanate. Whether this structural variation translates into different
binding affinities and therefore potentially physiological roles of
the APcyanase remains to be seen.
Four major clades of cynases were identified based on their

phylogenic relationships (Fig. 1k, Fig. S3). Interestingly, horizontal
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gene transfer (HGT) of cynS contributed to the evolution of
bacteria, archaea, and eukaryotes including microalgae (Bath-
ycoccus, Micromonas) and metazoans, which provides evidence
that HGT of cynS is more common than previously documented
[3, 6, 13, 16, 27, 33–35].
To contextualize cyanate metabolism in the upper ocean from the

surface (epipelagic) down to the intermediate depths of ca. 1000m
(mesopelagic (MES)), we analyzed the prevalence and expression of
cynS in comparison to ureC, the gene encoding the urease subunit
alpha. The urea cycle, unlike cyanate metabolism, is well studied in
many marine microbes including the acquisition of urea as an organic
nitrogen source. Homologs of both genes and their corresponding
transcripts could be retrieved from almost all sampling stations of the
OGA (Table S4), which suggests their overall prevalence in many
marine microbes. However, the normalized gene activity of cynS and
ureC differed depending on the size class, taxonomic group and the
water depth (Fig. 2; Fig. S4). Interestingly, the transcriptional activity of
ureC appears to be much lower compared to cynS in the larger size
fraction (0.8–2000 μm) mostly representing eukaryotic microbes and
for both, surface (SRF) and deep chlorophyll maximum (DCM) (Fig. 2a,
b, f, g). Pelagophytes, dinophytes, bacillariophytes, and fungi
contributed the most cynS transcripts in the epipelagic ocean with
pelagophyte transcripts dominating the surface layer (Fig. 2a, b).
Transcripts for both genes in the smaller size fraction (0.22–3 μm)
were mostly derived from prokaryotes (Figs. 2c–e, 2h-j). In the surface
ocean, Synechococcus contributed most of the cynS transcripts in non-
polar oceans whereas picochlorophyte cynS transcripts were most
dominant in the coastal Arctic (Fig. 2c). In contrast, proteobacteria

together with unclassified microbes contributed most of the ureC
transcripts in surface ocean metatranscriptomes regardless of
geography (Fig. 2h). The taxonomic contributions of the ureC
transcripts did not change much for the DCM and not even the
MES zone although Gammaproteobacteria appear to have contrib-
uted more ureC transcripts in the MES compared to the epipelagic
(Fig. 2i, j). By comparison, unclassified microbes together with
Prochlorococcus contributed more cynS transcripts in the DCM
(Fig. 2d). For the MES, most of the cynS transcripts were contributed
by unclassified microbes, Nitrospinae and Proteobacteria (Fig. 2e).
The abundance of cynS transcripts from most prokaryotic and

eukaryotic phytoplankton was negatively correlated (p < 0.05) with
dissolved inorganic nitrogen concentrations (Fig. S5a, b; Table S5a,
b). The latitudinal differences in the taxonomic contributions of
cynS correlated negatively with temperature (p < 0.05), suggesting
that cyanases are induced in picochlorophytes by low tempera-
ture. As no Arctic samples were available for the larger size
fraction (0.8–2000 μm) representing mainly eukaryotes, it remains
elusive if this group of organisms does have similar cynS
expression patterns under polar conditions.
Although much less cynS transcripts were detected in the MES,

the contribution of Nitrospinae was more significant compared to
the epipelagic (Fig. 2e). Members of the phylum Nitrospinae are
known to be the most abundant nitrite-oxidizing bacteria (NOB) in
the oceans with an important role in dark-ocean carbon fixation
[3, 16]. Cyanate metabolism of NOBs is common and essential for
the global nitrogen cycle, supplying ammonia oxidizers with
ammonium, which is nitrified by this nitrifying consortium
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Fig. 1 Alignment, quaternary structure, proposed catalytic residues, and phylogenetic analysis of cyanases. a Alignment of the catalytic
domain in cyanases from representative species. Numbers in parentheses refer to the sequence ID from the full list (Table S1). b The front view
of the decameric cyanase from the dinoflagellate Alexandrium pacificum. Alpha-helix and beta-hairpin is shown in purple and green,
respectively. Ten monomers are labeled as chains A-J. c Overall location of the five active sites. d, e Enlarged views of the chain interactions
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including NOBs [3]. In our study, cynS transcripts from Nitrospinae
in the epipelagic layers were limited to only few stations in the
Eastern Pacific and Arctic Ocean (Fig. 2c, d). However, more
prevalent and abundant were these transcripts in the MES (Fig. 2e).
The abundance of cynS transcripts from Nitrospinae was positively
correlated with nitrate and nitrite (p < 0.05, Fig. S5b; Table S5b),
suggesting that cyanate metabolism in Nitrospinae may facilitate
marine nitrification. In contrast, cynS was not detected in marine
ammonia-oxidizing archaea of the phylum Thaumarchaeota.
However, the ureC transcript from this taxon was detected mainly
in MES zone (Fig. 2j) and positively correlated with depth and the
concentration of nitrate (p < 0.05, Fig. S5b, Table S6b). This
corroborates previous findings as marine Thaumarchaeota gen-
omes lack the canonical cynS gene but the organisms can utilize
cyanate and urea to fuel nitrification [15]. The contents of all the
retrieved unigenes from OGA have been summarized in
Supplementary Tables S7–S14.
Taken together, cynS is a conserved gene ubiquitous across the

tree of life, transferred frequently via HGT. Comparative analyses
based on the prevalence and expression of cynS and ureC

representing intertwined processes of organic N metabolism in
marine microbes suggest that cyanate is at least as important as
urea in the oceans. Cyanate likely supports the assimilation of
organic N in photoautotrophs when inorganic N is scarce and it
appears to contribute to remineralisation by the activity of nitrifying
bacteria which produce nitrate in deeper layers of the oceans.
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