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ABSTRACT (75 words limit) 6 

Bacteria produce specialised metabolites with a range of functions. In this issue of the Journal of 7 

Bacteriology Schoenborn et al. study the production and role of secondary metabolites during 8 

biofilm development and sporulation in Bacillus subtilis. Most metabolites studied are produced 9 

during differentiation and six are required for the development of biofilms and/or spores. The 10 

authors propose a model for the timing of production and role in differentiation exerted by each 11 

secondary metabolite. 12 
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COMMENTARY 16 

Social interactions in the microbial world are incredibly complex, but we are slowly starting to 17 

understand some of the intricate mechanisms that underpin them. Specialised metabolites, 18 

which are a diverse range of molecules with a broad range of functions, are major players in 19 

defining these social dynamics. These molecules can impact populations of microbes through 20 

killing or inhibiting growth, triggering differentiation between physiological states, or 21 

manipulating nutrient availability in the environment (1). The prevalence of these molecules, and 22 

their pervasive impact on many aspects of microbial life, means that they have crucial roles in 23 

defining the composition and emergent properties of inter-kingdom, inter-species, intra-species, 24 

and single strain communities of microbes.  25 

Biofilms are highly heterogeneous structures where microenvironments and gradients in nutrient 26 

availability, oxygen levels, and cells types develop (2) (Figure 2A). Bacillus subtilis is a Gram-27 

positive soil bacterium that has been extensively used for the study of social interactions in the 28 

context of biofilm formation. Examples of the cell types that make up a B. subtilis biofilm include 29 

motile cells, biofilm matrix producers, exoprotease producers, and endospores, facilitating the 30 

division of labor and the sharing of public goods between the community members (3). The 31 

regulatory processes leading to differentiation of cells into these physiological states is highly 32 

complex and relies on input from a variety of environmental signals, some of which are 33 

specialised metabolites produced by the cells in the biofilm themselves (3).  34 

B. subtilis is well known for the plethora of specialised metabolites it produces. Most of these 35 

specialised metabolites are primarily linked with their antimicrobial properties and include 36 
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bacilysin (4), bacillaene (5), subtilosin A (6), plipastatin (7), surfactin (8), sporulation killing factor 37 

(9) and sublancin 168 (10). Other specialised metabolites produced by B. subtilis include the iron-38 

chelating molecule pulcherriminic acid (11) and the siderophore bacillibactin (12) (Figure 2B). The 39 

specialised metabolites with a known impact on cell state differentiation in B. subtilis 40 

communities are surfactin and the pheromone ComX, which act as extracellular signals to induce 41 

the differentiation of cells into biofilm matrix producers and “cannibals” (13). Cannibals are a 42 

subpopulation of cells that produce the specialised metabolites sporulation killing factor (SKF) 43 

and sporulation delaying protein (SDP), which function to lyse sister cells in the community to 44 

use them as a nutrient source and delay sporulation (9, 13). The siderophore bacillibactin has 45 

also been found to be involved in the development of B. subtilis biofilms (14). However, while we 46 

know that some specialised metabolites are crucial for cell fate differentiation and biofilm 47 

formation, there has not been a comprehensive systematic study of the interplay between 48 

secondary metabolite production and differentiation until now.  49 

In this paper, Schoenborn et al. tested the role of nine specialised metabolites during biofilm 50 

formation and sporulation by examining the expression, production, and impact of deletion 51 

mutants on differentiation (they deleted biosynthetic genes necessary to produce specialised 52 

metabolites; these genes are often referred to as "clusters" based on their genomic structure). 53 

The authors demonstrated that most clusters (those needed for surfactin, subtilosin A, ComX, 54 

SDP, SKF, bacilysin, and bacillaene production) are expressed at a higher level under 55 

differentiation-inducing conditions, except for the plipastatin and bacillaene clusters. Largely 56 

mirrored by this analysis, all metabolites examined, including plipastatin and bacillaene, were 57 

produced in significantly higher amounts under conditions that promote biofilm formation and 58 
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differentiation. The higher production of specialised metabolites during cell fate differentiation 59 

points to these molecules having a role during these processes. Interestingly however, the ability 60 

of cells to produce most of these molecules was not essential for biofilm formation, at least 61 

individually, as deletion of genomic regions required for biosynthesis of the specialised 62 

metabolites did not impact biofilm structure. The exception was surfactin, the absence of which 63 

resulted in a biofilm deficient strain when analysed by the pellicle biofilm model. These findings 64 

are in contrast to a recent study showing that lack of surfactin does not impact pellicle biofilm 65 

development, but consistent with surfactin being required for architecturally complex colony 66 

biofilms to form (15). In line with an impact to colony biofilm formation, in this study, the lack of 67 

surfactin caused a decrease in the expression of the biofilm matrix protein encoding gene tapA. 68 

The reduction in tapA expression was also found to be the case for the mutant lacking the ability 69 

to produce ComX, which is consistent with both ComX and surfactin being important for 70 

differentiation of cells into biofilm matrix producers. Another two molecules, subtilosin A and 71 

bacillaene, impacted matrix gene expression, but this was at the later stages of the pellicle biofilm 72 

formation, after around 16 hours of growth. At this point the increase in expression of the biofilm 73 

matrix protein starts to level off in the wild type but continued to increase in the subtilosin A and 74 

bacillaene mutants. Looking at sporulation dynamics, the authors showed that lack of surfactin, 75 

plipastatin, bacilysin, subtilosin A, ComX, and bacillibactin all impacted sporulation. At 16 hours, 76 

the number of spores was significantly lower for the strains incapable of producing the 77 

specialised metabolites compared to the wild type, suggesting that these molecules are required 78 

for triggering spore formation.  79 
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We are gaining more and more understanding about the multifaceted nature of specialised 80 

metabolites and some of the B. subtilis-produced specialised metabolites are now known to be 81 

multifunctional. For example, bacillaene protects B. subtilis from predation by other bacteria 82 

(16), can modulate production of secondary metabolites by competing bacteria (17), impacts the 83 

composition of mixed species bacterial communities (18), inhibits biofilm formation by other 84 

bacteria (19), and has been suggested to impact biofilm development of B. subtilis biofilms at 85 

subinhibitory concentrations (20). This paper by Schoenborn et al. reveals an additional role for 86 

some of the less widely explored specialised metabolites produced by B. subtilis in 87 

differentiation. Plipastatin (which has been studied for its ability to inhibit the growth of multiple 88 

plant pathogenic fungal species (21)), the bacteriocin subtilosin A (6), and bacillibactin (which is 89 

a siderophore), are now known to also function as signals that regulate sporulation in B. subtilis 90 

mixed communities. Therefore, it is clear that these molecules have a function in both 91 

competition against others, either through their antimicrobial functions or in limiting available 92 

nutrients in the environment by sequestering them, and in impacting cooperative dynamics in a 93 

single species biofilm. One can speculate about the multipurpose role for the molecules. Bacteria 94 

produce a relatively limited number of molecules with which they need to navigate an incredibly 95 

complex world. B. subtilis can be found in the gastrointestinal tract of animals, in association with 96 

plant roots, in bulk soil, and in marine environments and is likely to have to interact with its 97 

eukaryotic hosts, other species of microbes, and members of its own species. It therefore makes 98 

sense, from an evolutionary perspective, for bacteria to ensure that the limited molecules they 99 

produce have a variety of functions to help them thrive in an ever-changing environment.  100 

  101 
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 Figure 1: Secondary metabolites and B. subtilis biofilms. (A) Vertical cross-section of a colony biofilm 169 

formed by B. subtilis NCIB 3610 with a schematic representation of the concepts covered in this work. The 170 

cross-section was prepared and imaged by Dr. Sofia Arnaouteli while visiting the laboratory of Prof. Lars 171 

Dietrich. (B) Schematic of the genome of B. subtilis strain NCIB 3610 showing the locations on the 172 

chromosome of the secondary metabolite biosynthesis clusters and other explored molecules. The 173 

secondary metabolite biosynthesis clusters were predicted using AntiSMASH version 6.0 (22) and the 174 

genome map was constructed using GCView (23).  175 


