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ABSTRACT 

Type 2 diabetes is a multifactorial disease with multiple underlying aetiologies. To address this 

heterogeneity a previous study clustered people with diabetes into five diabetes subtypes. The 

aim of the current study is to investigate the aetiology of these clusters by comparing their 

molecular signatures. In three independent cohorts, in total 15,940 individuals were clustered 

based on five clinical characteristics. In a subset, genetic- (N=12828), metabolomic- (N=2945), 

lipidomic- (N=2593) and proteomic (N=1170) data were obtained in plasma. In each datatype 

each cluster was compared with the other four clusters as the reference. The insulin resistant 

cluster showed the most distinct molecular signature, with higher BCAAs, DAG and TAG 

levels and aberrant protein levels in plasma enriched for proteins in the intracellular PI3K/Akt 

pathway. The obese cluster showed higher cytokines. A subset of the mild diabetes cluster with 

high HDL showed the most beneficial molecular profile with opposite effects to those seen in 

the insulin resistant cluster. This study showed that clustering people with type 2 diabetes can 

identify underlying molecular mechanisms related to pancreatic islets, liver, and adipose tissue 

metabolism. This provides novel biological insights into the diverse aetiological processes that 

would not be evident when type 2 diabetes is viewed as a homogeneous disease.   
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Type 2 diabetes is a multifactorial disease with multiple underlying aetiologies.(1; 2) In an 

attempt to address this heterogeneity, a recent study stratified people with any form of diabetes 

into five clusters based on six clinical variables, i.e. age, glutamate decarboxylase (GAD) 

antibodies, BMI, HbA1c, insulin resistance (HOMA2-IR) and β-cell function estimates 

(HOMA2-B).(3) Based on this work, we clustered and cross-validated individuals into five 

clusters in three large cohorts based on age, BMI, random or fasting c-peptide, HbA1c and 

HDL, largely reproducing the ANDIS clusters using more readily measured clinical 

variables.(4) 

 The original and subsequent papers have shown that people in different clusters had 

different risks for a number of diabetes related outcomes.(3; 5-7) The autoimmunity and insulin 

deficient cluster were defined by high HbA1c at diagnosis, had ketoacidosis and retinopathy(7) 

more often and progressed more rapidly onto insulin compared to the other clusters.(3) The 

insulin resistant cluster showed a higher frequency of non-alcoholic fatty liver disease and 

people in this group were at increased risk of developing chronic kidney disease.(3) The 

differences in progression and characteristics of the different clusters suggest that these groups 

represent different underlying aetiologies. For example, differences in genotype frequency 

across clusters based on candidate loci were observed and this was further illustrated in a 

follow-up study where it was shown that individuals in different clusters have differences in 

portioned polygenic risk scores for diabetes-related outcomes.(3; 8) 

A systematic deconvolution of the different etiological processes underlying the clusters 

is currently lacking. To address this, we investigate each cluster’s molecular signature using 

metabolomics, lipidomics, proteomics, and genomics to better understand the underlying 

aetiological processes representative of patients with diabetes in that cluster.  
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RESEARCH DESIGN AND METHODS 

 

Cohort descriptions 

Data from 15,940 individuals from three cohorts, DCS (Netherlands), GoDARTS (Scotland) 

and ANDIS (Sweden) were used in this cross-sectional study. Inclusion criteria for 

RHAPSODY were age of diagnosis was ≥35 years, clinical data available within 2 years after 

diagnosis, GAD negative, no missing data in one of the five for clustering used clinical 

measures and the presence of GWAS data. Individuals were clustered using k-means clustering 

based on five clinical characteristics age at sampling, BMI, HbA1c, HDL and C-peptide. Of 

note, C-peptide was included in the clustering as proxy of insulin resistance, while HDL has 

previously been recognized as risk factor for time to insulin requirement. Details on the cohorts 

and clustering have been described elsewhere.(4) Briefly, DCS is an open prospective cohort 

that started in 1998 comprised on over 14,000 individuals with type 2 diabetes from the 

northwest part of the Netherlands.(9) The Ethical Review Committee of the VU University 

Medical Center, Amsterdam has approved the study. People visit DCS annually as part of 

routine care. GoDARTS is a study comprising individuals with diabetes mellitus from the 

Tayside region of Scotland (N = 391,274; January 1996) that were added to the DARTS 

register.(10) The GoDARTS study was approved by the Tayside Medical Ethics Committee. 

Longitudinal retrospective and prospective anonymized data were collected, including data on 

prescribing, biochemistry, and clinical data. In ANDIS, people were recruited with incident 

diabetes within the Scania County, Sweden from January 2008 until November 2016.  

 

Molecular measures 

An overview of the sample selection procedure is given in Fig. S1a. Individuals were selected 

based on the shortest time between diagnosis date and sampling date without taking into 

account cluster assignment. Analysis of small charged molecule analytes (metabolomics, 

UHLPC-MS/MS) was performed in the largest set (N=2945), followed by lipidomics (N=2593, 

Lipotype lipidomics platform) and proteomics (N=1170, SomaScan® Platform- Somalogic). 

Of note, the smaller sets were selected from the larger set based upon the samples being 

collected closest to the time of diagnosis, so in the smallest set of 1170 GWAS, metabolomics, 

lipidomics and proteomics was available (Fig. S1a). Molecular measures were taken close to 

diagnosis (Table S2). Quality control was performed in a similar way for metabolomics, 

lipidomics and proteomics. A participant’s data was excluded if their profile was a strong outlier 
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based on principal components analysis and the data of the individual measurements was clearly 

distinct from the other samples. 

 

Genetic data 

In DCS, genetic data were generated using the Illumina HumanCoreExome array. In 

GoDARTS genetic data were generated using the Affymetrix Genome-Wide Human SNP 

Array 6.0 and the Illumina HumanOmniExpress Array. ANDIS was genotyped 

InfiniumCoreExome-24v1-1 BeadChip arrays (Illumina, San Diego, CA, USA), at Lund 

University Diabetes Centre, Malmö, Sweden. Samples were excluded for ambiguous gender, 

call rate < 95%, and any duplicate or related individuals (pi_hat ≥ 0.2). SNP were excluded for 

monomorphic SNPs, SNPs with MAF < 0.05, and SNPs with missingness rate > 0.05. 

Differences in diabetes-related genetic risk were based on 403 relatively independent diabetes 

associated SNPs identified in a recent large GWAS meta-analysis.(11) Genetic data were 

imputed using the Michigan Server against the reference panel Human Reference Consortium 

R1.1 using default settings, i.e. phasing with Eagle v2.3 and population of European 

descent.(12) SNPs with minor allele frequency below 5% were discarded from the analyses 

leaving 394 SNPs across the three studies.  

 

Metabolomics  

Fifteen small charged molecules were measured in plasma using targeted UHLPC-MS/MS 

(Steno Diabetes Center, Copenhagen, Denmark).(13) In DCS, 1267 individuals were included 

for metabolomics measurements. All passed QC and 1230 individuals overlapped with the 

cluster data. In GoDARTS, 898 individuals were included in the analysis, one failed QC and of 

the 897 remaining individuals, 894 overlapped with the cluster data. In ANDIS, 896 individuals 

were included in the analysis, four failed QC and of the 892 remaining samples, 821 overlapped 

with the cluster data.  

 

Lipidomics 

614 plasma lipids common to the three cohorts were determined using a QExactive mass 

spectrometer (Thermo Scientific) equipped with a TriVersa NanoMate ion source (Advion 

Biosciences) on the Lipotype lipidomics platform (Lipotype, Dresden, Germany).(14) Samples 

were divided into analytical batches of 84 samples each. Lipid identification was performed on 

unprocessed mass spectra files using LipotypeXplorer.(15) Only lipid identifications with a 

signal-to-noise ratio >5, and a signal intensity 5-fold higher than in corresponding blank 
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samples were considered for further data analysis. Batch correction was applied using eight 

reference samples per 96-well. Amounts were also corrected for analytical drift if the p-value 

of the slope was below 0.05 with an R2 greater than 0.75 and the relative drift was above 5%. 

In DCS, 900 individuals were included for lipidomics measurements, all passed QC and 877 

overlapped with the cluster data. In GoDARTS, 898 individuals were included in the analysis, 

one failed QC and of the 897 remaining samples, 894 overlapped with one of the clusters. In 

ANDIS, 896 individuals were included in the analysis, five failed QC and of the 891 remaining 

samples, 820 overlapped with one of the clusters. Lipid nomenclature is used as described 

previously and SwissLipids database identifiers are provided (Table S1).(16) After quality 

control 162 lipid species were used in this study. The median coefficient of subspecies variation 

of the 162 lipids used as accessed by reference samples was 9.49% across all three cohorts.  

 

Protein measurements 

Protein levels (1195 proteins) in plasma were measured on the SomaLogic SOMAscan platform 

(Boulder, Colorado, USA) in 600 individuals each for both DCS and GoDARTS. Individuals 

were removed if they were strong outliers based on a principal component analysis. In DCS, 

600 individuals were included for proteomics measurements, 11 failed QC and 573 overlapped 

with one of the cluster data. In GoDARTS, 600 individuals were included in the analysis, one 

failed QC and of the 599 remaining samples, 597 overlapped with one of the clusters. 

 

Statistical analysis 

Molecular data were log-transformed and z-scaled before analysis on a federated node system. 

Each of the cohorts’ data were stored on a local node using Opal, an open source data warehouse 

(Open Source Software for BioBanks, OBiBa). A central node responsible for federated node 

access, user administration and software deployment was set up at SIB. Clinical and molecular 

data were harmonized according to the CDISC Study Data Tabulation Model (www.cdisc.org).  

To identify molecular measures specific for a cluster, a generalized linear model was 

used to test each of the molecular measures in each cluster, where cluster i was compared 

against reference group j, where j was a combined group of the other clusters. Effect sizes 

represent change per log standard deviation of the tested molecular measure. Genetic data were 

not transformed and represent change in allele frequency. For example, cluster 1 was compared 

to clusters 2-5 combined, cluster 2 to clusters 1,3,4,5. Main results presented are based on an 

unadjusted model (log and z-scaled). Next, as an exploratory sensitivity analysis, models were 

adjusted for the extreme characteristic of a cluster to investigate whether the observed effect 
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was independent of the extreme characteristic. This was only done for those clusters that had 

extreme characteristics. Models were run on each of the cohorts separately and meta-analysed 

using the R-package meta.(17) Meta-analysed P-values were adjusted using the Benjamini-

Hochberg procedure and a false discovery rate-adjusted (FDR) P-value below 0.05 was 

considered significant. 

Partitioned polygenic risk scores (pPRSs) were obtained from Udler et al.(18). In each 

individual cohort, dosages of SNPs were multiplied with the scores for each cluster, which 

resulted in a risk score per individual for each of the five clusters beta cell (30 SNPs), proinsulin 

(7 SNPs), obesity (5 SNPs), lipodystrophy (20 SNPs) and liver (5 SNPs). Differences in pPRSs 

were tested with a linear model for one cluster with the other clusters as the reference group. 

Next, results from the three cohorts were meta-analysed using the metagen function from the 

meta package. P-values were Bonferroni adjusted and considered significant at Padj < 0.05.  

Pathway enrichment on the proteomics was performed based on KEGG pathways using 

the R-package of STRINGdb (1.24.0). The entire Somalogic set (1195 proteins) was used as 

the background set. P-values of enriched pathways were adjusted using the Benjamini-

Hochberg procedure and an FDR-adjusted P-value below 0.05 was considered significant. 

Effect sizes of proteins associated with eGFR and incident cardiovascular disease 

(CVD) were obtained from Yang et al. (2020).(19) Up- and downregulated proteins in each of 

the clusters (PFDR<0.05) were selected and compared to the from Yang et al. obtained 1) 

correlation coefficient of protein levels and eGFR and 2) hazard ratios from the Cox 

Proportional Hazard models for cardiovascular disease in non-CKD individuals.(19)  

Analyses were performed using R statistics (version 3.6.2). Figures were produced using 

the R-package ggplot2 (v3.3.0) and omicCircos (v1.22.0). 

 

Data and resource availability statement 

The datasets generated during and/or analysed during the current study are not publicly 

available, but are available from the corresponding author upon reasonable request.  
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RESULTS 

In this cross-sectional study, 15,940 individuals from three cohorts were included described 

previously.(4) As described, we reproduced the original ANDIS SIDD, SIRD and MOD 

clusters; and refined the MARD cluster into two, a subset with high HDL (MDH) and one 

without any particular defining features (MD). The characteristics of the clusters and those of 

the individuals used for molecular characterization (genetic data, metabolites, lipids, and 

proteins) are given in Table S2 and Table S3.  

 

Severe insulin-deficient cluster (SIDD) 

For SIDD, no differences were observed in allele frequency of known type 2 diabetes loci 

compared to the other clusters (Table S4), nor in the pPRS (Fig. S2). Two metabolites, tyrosine 

(Fig. 1a, Fig. 1b) and asymmetric/symmetric dimethylarginine (SDMA/ADMA, Fig. 1c, Table 

S5) were significantly lower in SIDD versus all other clusters. The effect sizes attenuated 

slightly after adjustment for the primary variable HbA1c that defined the SIDD cluster (Fig. 

S3b, Table S5). Of the lipids, eight were downregulated and one upregulated. Three of the 

eight downregulated lipids were of the sphingomyelin class, four lipids of the 

phosphatidylcholine class and one cholesterol ester (Fig. 2a, Table S6). The sole upregulated 

lipid was the cholesterol ester (CE 20:2;0). Seven out of nine lipids remained significant after 

adjustment (Fig. S3c, Table S6). Finally, eight proteins were differentially expressed with four 

up- and four downregulated (Fig. S4a-d), where the effect sizes remained similar after 

adjustment (Fig. S3d, Table S7). 

 

Severe insulin resistance cluster (SIRD) 

The SIRD cluster was characterized by a strong and distinct molecular signature of insulin 

resistance. The pPRS for beta-cell function and proinsulin (18) were decreased in the SIRD 

cluster relative to other clusters (beta cell, β[95%CI]=1.41[-2.21 – -0.62]; proinsulin, 

β[95%CI]=-0.28[-0.41 – -0.15], Fig. S2), indicating genetically higher beta-cell function in the 

SIRD group. Five diabetes-associated SNPs all showed a lower risk allele frequency. The top 

SNP (rs3802177-A) of SIRD mapped to the protective allele in SLC30A8 (Table S4, Table 1). 

In a sensitivity analysis, only the SLC30A8 variant remained significant after adjustment for C-

peptide (Fig. S3a, Table S4, Table 1). The SIRD cluster showed eight upregulated metabolites, 

including four amino acids, i.e. tyrosine, leucine, isoleucine, and phenylalanine (Fig. 1a, Fig. 
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S5a-b). Two were metabolites of the amino acid L-tryptophan, i.e. L-kynurenine and indoxyl 

sulphate. Adjustment for C-peptide attenuated the effect (Fig. S3b, Table S5). 

Eighty-nine lipids were changed in SIRD, with 45 (50.6%) upregulated and 44 

downregulated (49.4%, Fig. 2a). Of the 45 upregulated lipids, 43 were in the di- and 

triacylglycerol class with TAG 51:3;0 as the strongest associating lipid (Fig. 2b, Table S6), 

while the remaining two upregulated lipids were phosphatidylcholines containing the omega-3 

fatty acid docosahexaenoic acid (22:6;0, PC 18:0;0_22:6;0, PC 16:0;0_22:6;0). Of the 44 

downregulated lipids, the most represented were the phosphatidylcholines class (27 lipids, 

61.4%), especially with the ether phosphatidylcholines (38.6%), with PC O-16:0;0/18:1;0 being 

the strongest downregulated lipid (Fig. 2a, Fig. 2c, Table S6). Also, most ether 

phosphatidylethanolamines are (four lipids, 9.1%) and sphingomyelin species were 

downregulated (7 lipids, 15.9%). The changes in lipids seemed to be dependent on the high C-

peptide levels with effect sizes of DAG and TAGs close to zero after adjustment for the latter 

(Fig. S3c, Table S6).  

Out of the 1195 plasma proteins investigated, 367 proteins were differentially 

expressed, with 158 proteins downregulated and 209 upregulated. Several top proteins were 

upregulated independent of C-peptide levels, including two metalloproteinases, matrix 

metalloproteinase-7 (MMP-7) and Macrophage metalloelastase (MMP-12), and MIC-1 (Table 

S7). Metalloproteinases are associated with multiple physiological processes, but also with 

atherosclerosis and diabetes-related nephropathy.(20; 21) MIC-1 (GDF-15) is known to be 

associated with insulin resistance.(22) The identified proteins showed a strong enrichment in 

pathways, including Cytokine-cytokine receptor interaction (50 proteins, PFDR=8.69·10-56), 

Chemokine signalling pathway (26 proteins, PFDR=1.81·10-34), Axon guidance (26 proteins, 

PFDR=3.55·10-34) and PI3K-Akt signalling pathway (29 proteins, PFDR=1.05·10-29). There was a 

significant reduction in 3-phosphoinositide-dependent protein kinase-1 (PDPK1, Fig. 3a, Fig. 

3c), which, when activated by insulin, activates Akt/PKB and increases glucose uptake via 

GLUT4.(23) Plasma Akt itself was also decreased in SIRD (Fig. 3a). Insulin tended to be higher 

in SIRD although not significant (Fig. 3b), while the insulin receptor was significantly 

upregulated (Fig. 3a). In the downstream signalling cascade of the PI3K-Akt pathway, PDPK1 

(Fig. 3c), RAC1, AMPK, HSP90, 14-3-3 and p53 were differentially expressed (Fig. S5c-i). Of 

note, the proteins associated with SIRD were only modestly driven by C-peptide levels (Fig. 

S3d). 

Next, we overlapped identified proteins with those previously associated with eGFR 

and incident CVD.(19) Proteins upregulated in SIRD, were previously associated with lower 
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eGFR levels, including Cystatin C (ρ= -0.74, P= 1.12·10-163), Tumor Necrosis Factor receptor 

superfamily member 1A (TNF sR-I, ρ= -0.65, P= 2.51·10-114) and Neuroblastoma suppressor 

of tumorigenicity 1 (DAN, ρ= -0.64, P= 2.29·10-109, Fig. S7a). Conversely, proteins positively 

associated eGFR were downregulated including Epidermal growth factor receptor (ERBB1, ρ= 

0.44, P= 1.96·10-46) and Alpha-2-antiplasmin (ρ= 0.41, P= 1.42·10-38). For incident 

cardiovascular disease (CVD), Angiopoietin-2 (HR=1.66, P=2.20·10-16) and MMP-12 

(HR=1.65, P=2.20·10-16) were upregulated risk factors in SIRD, while ERBB1 (HR=0.59, 

P=2.20·10-16) was protective for CVD and downregulated in SIRD (Fig S7b). 

 

Mild Obesity-related Diabetes (MOD) 

In MOD, the pPRS for obesity was significantly higher (β[95%CI]=0.51[0.34 – 0.68], Fig. S2) 

compared to other clusters. Individual diabetes-associated risk alleles associated with high BMI 

were also more frequent in MOD, that is FTO (rs1421085-C) and the MC4R locus (rs523288-

T, Table S4, Table 1). Of note, both loci are also in the pPRS, although using different SNPs 

in LD. Naturally, adjustment for BMI attenuated the effect size for both SNPs (Fig. S3a, Table 

S4). 

Isoleucine was the sole metabolite that was differentially upregulated in MOD (Fig. 1a, 

Fig. S4a, Table S5), and this difference was completely eliminated after adjustment for BMI. 

The lipid profile of the MOD cluster was largely similar to the SIRD cluster (Fig. 2a, Table 

S6). That is, in MOD, acyl phosphatidylethanolamine species were upregulated, but not the 

ether phosphatidylethanolamines. Cholesterol esters and phosphatidylcholine species 

containing the omega-3 fatty acids eicosapentaenoic acid (20:5;0) and docosahexaenoic acid 

(22:6;0) were downregulated, while these were upregulated or not significantly changed in the 

SIRD cluster. However, cholesterol esters and phosphatidylcholine species containing 20:3;0 

fatty acids are upregulated in MOD, while downregulated or not significantly changed in the 

SIRD cluster. In total 61 lipids were affected of which 40 were upregulated. Amongst these the 

diacylglycerols (15%) and triacylglycerols (57.5%) were strongly enriched. Of the 21 

downregulated lipids, the majority were phosphatidylcholines (61.9%). The effect size for 

diacylglycerol and triacylglycerol changes were strongly reduced after adjustment for BMI 

(Fig. S3c, Table S6). Interestingly, the largest effect size was seen in the TAGs with the lowest 

number of acyl chain carbons and double bonds (Fig. S6a-b), while the TAGs with more acyl 

chain carbons and double bonds were not significantly altered in MOD. In a previous study, 

saturated or monounsaturated TAGs were associated with an increased diabetes risk, including 
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TAG 46:1, TAG 48:0 and TAG 48:1 that were also significantly upregulated in the MOD 

cluster.(24)  

Of the 1195 proteins, 261 were differentially expressed in MOD with the majority 

downregulated (158 proteins, 60.5%, Table S7). After adjustment for BMI, several remained 

significant, although their effect sizes were attenuated, including NCAM-120, DKK3 and 

CRDL1 (Fig. S3d, Table S7). DKK3 has been associated with increased adipogenesis in fat 

cells.(25) CRDL1 has been shown to be predictive of beta-cell function.(26) The role of 

NCAM-120 is largely unclear. The strongest enrichment was found for Cytokine-cytokine 

receptor interaction with 38 proteins (42.7%, PFDR=2.08·10-43) overlapping (Fig. S8). The 

strongest upregulated proteins in this pathway were leptin (Fig. S4b), growth hormone receptor 

and Interleukin-1 receptor antagonist protein, while Interleukin-1 receptor type 1(IL-1 sRi) was 

downregulated. Adjustment for BMI influenced the effect size of several proteins, including 

leptin, FABP and CRP (Fig. S3d, Table S7). Finally, upregulated proteins identified in MOD 

were generally positively associated with eGFR and protective for CVD, including the growth 

hormone receptor (HR=0.62, P=2.20·10-16, Fig. S7). 

 

Mild diabetes with high HDL 

The MDH cluster showed a higher GRS relative to the other clusters for beta-cell function 

(β[95%CI]=0.61[0.33-0.38], Fig. S2). Among the diabetes-associated SNPs, a lower risk allele 

frequency was observed for a SNP near LPL (rs10096633-T, Table S4, Table S1). With respect 

to metabolite-, lipid- and peptide levels the MDH cluster showed opposite effects compared to 

the SIRD and MOD cluster. The amino acids that were upregulated in SIRD were generally 

downregulated in MDH (Fig. 1a, Table S5). Only the difference in isoleucine level was 

significant and phenylalanine borderline insignificant. In addition, taurine was significantly 

upregulated in MDH. After adjustment for HDL the effect sizes strongly attenuated (Fig. S3b, 

Table S5).  

Out of the 162 lipids, 135 lipids were affected in MDH, with 52 downregulated and 83 

upregulated (Table S6). Opposite to SIRD and MOD, diacylglycerols (13.5%), triacylglycerols 

(73.1%) and acyl phosphatidylethanolamines (9.6%) were downregulated in MDH, while 

phosphatidylcholines (65.1%) were upregulated, especially the ether phosphatidylcholines (PC 

O-, 25.6%, Table S6). The TAGs with a smaller number of acyl chain carbons and double 

bonds showed the lowest protein levels versus the other clusters, while the differences 

attenuated with increasing number of acyl chain carbons and double bonds (Fig. S6a-b). In 

addition, upregulation was seen for cholesterol esters (13.3%), sphingomyelins (10.8%) and all 
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ether phosphatidylethanolamines (9.6%), which point in the opposite direction in the SIRD 

cluster (Table S6). Adjustment for HDL strongly decreased the effect size for diacylglycerols 

and triacylglycerols (Fig. S3c, Table S6). 

Out of the 1195 proteins, 270 proteins were differentially expressed in the MDH cluster 

(119 down, 151 upregulated). The effect size of the proteins changed very modestly after 

adjustment for HDL (Fig. S3d). The peptide profile of the MDH cluster was opposite of that of 

MOD (Fig. S9, r=-0.82). As such among the top proteins similar proteins were identified such 

as CRDL1 that remained significant after adjustment for HDL. The pathway enrichment 

resembled that of SIRD and MOD, with enrichment for Cytokine-cytokine receptor interaction 

(31 proteins, PFDR=7.04·10-32), Pathways in cancer (22 proteins, PFDR=2.35·10-24) and PI3K-

Akt signalling pathway (22 proteins, PFDR=5.56·10-23). In the latter, growth hormone receptor 

was downregulated, as well as insulin (Fig. 3b, Table S7). Effect sizes were generally not solely 

driven by increased HDL levels (Fig. S3d, Table S7). MDH-associated proteins in relation to 

eGFR showed a similar pattern to that of SIRD (Fig. S7a-b), with proteins associated with 

lower eGFR being upregulated as well as proteins associated with higher risk for CVD, the 

latter including Follistatin-related protein 3 (HR=1.55, P=2.20·10-16) and HCC-1 (HR=1.54, 

P=2.20·10-16).  

 

Mild diabetes 

The MD cluster was generally less well-defined, with only one significant SNP and no 

significant GRSs, lipids or metabolites. There was a higher risk allele frequency (C-allele) in 

MD – opposite to that of MDH – compared to the other clusters near the LPL gene (rs10096633-

T, Table S4). In contrast to the few signals for lipids or metabolites, 354 proteins were 

differentially expressed in the MD cluster, with the majority downregulated (209 proteins, 

59.0%). Enrichment was found for Axon guidance (20 proteins, PFDR=1.12·10-30), Cytokine-

cytokine receptor interaction (25 proteins, PFDR=3.48·10-25), PI3K-Akt signalling pathway (21 

proteins, PFDR=4.28·10-23). While similar pathways were found to be enriched compared to the 

SIRD cluster the effect sizes were correlated but reversed (r=-0.88, Fig. S9). In line with this, 

insulin and its receptor were significantly downregulated in MD. Finally, in MD upregulated 

proteins were generally associated with better eGFR levels and lower risk for CVD (Fig. S7a-

b) 
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DISCUSSION 

Based on five clinical variables, people with type 2 diabetes from three large European cohorts 

were assigned to five separate clusters. The molecular phenotyping of the clusters revealed that, 

in addition to differences in clinical characteristics, there were also profound differences in 

underlying molecular profiles which related to pancreatic islet biology (in SIDD), liver (in 

SIRD) and adipose tissue metabolism (in MOD and MDH).   

The SIRD cluster was characterized by a molecular profile that fits with insulin 

resistance, i.e. upregulation of DAGs, BCAAs and insulin and downregulation of PI3K-Akt 

pathway-related proteins and phosphatidylcholines. The MOD cluster showed overlap with the 

SIRD cluster, but with a more pronounced molecular profile of obesity. Individuals in the MDH 

cluster showed the opposite effect of SIRD and MOD with, relative to the other clusters, low 

levels of TAG, DAG and BCAAs, but higher levels of ether phosphatidylcholines and 

phosphatidylethanolamines, sphingomyelins, and cholesterol esters. The results were in part, 

but not fully, driven by the identifying characteristic of the cluster, except for SIDD which 

showed consistent results after adjustment for HbA1c. For example, effect sizes of TAGs and 

DAGs in SIRD and MDH were influenced by adjustment for C-peptide and HDL, respectively. 

The lower frequency of diabetes-associated risk alleles could be explained by the fact that most 

diabetes SNPs are associated with reduced insulin-secretion. People in the SIRD cluster do not 

have diabetes because of lower insulin secretion but because of high insulin resistance (and 

consequent greater beta-cell function).  

The SIDD cluster was characterized by greater insulin sensitivity and lower beta-cell 

function than the other clusters based on the clinical characteristics. SIDD is characterized by 

low tyrosine levels and (a)symmetric dimethylargine, CE 16:1;0, PC O-34;1 and PC O-34;2, 

compared to the other clusters; higher levels of these metabolites and lipids have been 

associated with higher type 2 diabetes risk.(27-30) Higher CE 16:1;0 has also been associated 

with higher fasting plasma glucose (FPG) and 2-hour post-loading glucose (2h-PLG).(31) 

Moreover, in SIDD, CRP was downregulated and this is in line with a previous report that CRP 

levels are generally higher in those with insulin resistance and not low secretion.(32) 

The SIRD – and to some extent the MOD cluster – showed opposing metabolite, lipid 

and protein profiles compared to the MDH cluster (Fig. 4). The SIRD cluster was characterized 

by a molecular signature compatible with insulin resistance inside cells. In SIRD, the frequency 

of protective alleles was higher for HOMA-B-associated variants. Evidence was found for 

downregulation of insulin-mediated glucose uptake across the different omics levels, where for 

example higher levels of BCAA and DAG/TAG were observed. BCAAs have been shown to 
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be risk factors for developing incident type 2 diabetes in observational studies; their causal role 

has also been suggested.(33) Both BCAAs and DAG inhibit insulin receptor substrate 1 

(IRS1).(34) DAGs activate PKC isoforms which inhibit PI3K activation by phosphorylating 

the inhibitory serine 307 of IRS1 instead of tyrosine.(34; 35) BCAAs target the intramuscular 

mammalian target of rapamycin/ribosomal protein S6 kinase beta-1 (mTOR/p70S6K) 

signalling pathway as shown in in vitro and rodent in vivo studies that also inhibits the PI3K/Akt 

pathway via IRS1 and IRS2 depending on the cell type.(34) Inhibition of PI3K/Akt reduces the 

GLUT4 translocation. In SIRD multiple proteins were downregulated in PI3K/Akt and the 

GLUT4 translocation pathway, including Akt, PDPK1, RAC1, while insulin was strongly 

upregulated.(36; 37) Furthermore, upregulation was seen in three ephrin family members 

(Ephrin A2,A2,A5). Inhibition of the ephrin receptors has been shown to enhance glucose-

stimulated insulin secretion in mice.(38) Although these results might suggest changes in the 

insulin or glucose responsiveness of relevant metabolic tissues (e.g. muscle, liver or adipose), 

proteins were measured in plasma in the current study and, as such, are unlikely to reflect 

changes in intracellular signalling. Future studies will be needed to determine the tissue(s) of 

origin of these biomarkers and the mechanisms through which they are released. For example, 

tissue-specific knock-out of proteins identified in plasma in cell lines or model organisms might 

provide insight into both the role and tissue of origin. The higher BMI in individuals in the 

MOD cluster was in line with the higher allele frequency of variants associated with a higher 

BMI, i.e. variants near FTO and MC4R. Interestingly also variants near TM6SF2 were 

associated with this cluster. TM6SF2 is known to be associated with NASH.(39) The metabolic 

and lipid profile of MOD resembled that of SIRD. An interesting observation was that the 

number of acyl chain carbons and double bonds was associated with the effect size in some 

clusters in particular MOD and MDH. In MOD lipids with a higher number of acyl chain 

carbons and double bonds the effect size was much lower compared to those with lower 

numbers. These findings are in line with a previous publication that showed that TAGs with a 

lower number of acyl chain carbons and double bonds are elevated in T2D cases versus 

controls.(24) In addition, lipids that were associated with increased diabetes risk were generally 

saturated or monounsaturated fatty acids.(24) MOD was further characterized by upregulation 

of leptin, growth hormone receptor and multiple interleukins and IL-1Ra. People with a high 

BMI have high levels of leptin, which may be a marker of leptin resistance.(40) IL-1Ra is 

negatively correlated with quantitative insulin sensitivity check index (QUICKI), where higher 

levels associate with higher insulin resistance.(32)  
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The MDH cluster was the cluster with the most beneficial profile and had a molecular 

signature of insulin sensitivity. This cluster had high HDL levels, low BCAA levels, low DAGs, 

and high levels of ether phosphatidylcholines relative to the other clusters (Fig. 4). Regarding 

the peptide level, the effects were opposite of the MOD cluster. MDH cluster displayed high 

levels of anti-inflammatory fatty acids which have been associated with improved insulin 

sensitivity in animal studies(41-43). 

In the study by Ahlqvist et al.(3) the SIRD cluster was associated with poorer renal 

function. In the current study we compare the identified proteins to proteins previously 

associated with eGFR levels and CVD-risk.(19) We show that proteins identified in the current 

study upregulated in the SIRD and MDH cluster are generally associated with lower eGFR 

levels and higher risk for CVD and conversely those downregulated in these two clusters are 

associated with higher eGFR levels and lower CVD risk. An explanation may be that 

individuals in the SIRD and MDH cluster are generally older compared to the other three 

clusters. These results also further confirm the added value of adding HDL to the clustering as 

the MOD and MD cluster were much more alike than MD and MDH. The proteins upregulated 

in the MD and MOD cluster were associated with higher eGFR levels and lower CVD risk. 

The strengths of the current study include the large number of individuals, the use of 

multiple cohorts and the use of multiple molecular layers to characterise the clusters. A 

limitation is that the identified markers are measured in plasma and as such they cannot be 

directly linked to specific metabolic tissues. Second, whilst we adjusted models for the 

characteristic of that cluster to identify markers that were not simply proxies of the clinical 

features that defined the cluster we cannot estimate whether we were able to fully adjust for 

that characteristic. Third, in the current study we compared the levels of molecular measures 

between individuals with type 2 diabetes and not relative to healthy controls. We can therefore 

not infer which cluster would be most close to the general population. Fourth, we use a validated 

quantitative method to measure metabolites that have previously been linked to diabetes, but 

the limitation of this targeted method is that  other metabolites are not measured. As such, we 

may have missed metabolites with differential levels across clusters. As such, we may have 

missed metabolites with differential levels across clusters. Finally, the cohorts used are mainly 

comprised of people of European descent and these results may not be generalizable to other 

populations.  
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CONCLUSION 

In the current study, clusters were identified in three cohorts, based on five different clinical 

characteristics. The underlying molecular signatures of each cluster were markedly different 

(Fig. 4) suggesting different underlying etiopathological processes. As expected, the identified 

molecular signatures reflected the underlying phenotype to some extent, but often remained 

associated after adjustment. Importantly, our study provides important new granularity on the 

likely molecular processes involved in diabetes pathology in each of the diabetes subgroups.  
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Table 1 Significant SNPs in each of the clusters 

Variant 
 
Cluster Chr Position Gene Risk allele REF ALT 

Risk AF 
in cluster Effect Lower Upper P-value I2 Heterogeneity  

rs3802177 SIRD 8 118185025 SLC30A8 G G A ↓ 0.07 0.04 0.10 2.19·10-5 0.09 0.14  
rs10811660 SIRD 9 22134068 CDKN2A/B G G A ↓ 0.05 0.02 0.07 8.72·10-5 0.00 0.59  
rs7903146 SIRD 10 114758349 TCF7L2 T C T ↓ -0.10 -0.15 -0.05 1.59·10-4 0.62 0.02  
rs11708067 SIRD 3 123065778 ADCY5 A A G ↓ 0.05 0.02 0.08 3.76·10-4 0.00 0.31  
rs243024 SIRD 2 60583665 BCL11A A G A ↓ -0.06 -0.10 -0.03 6.12·10-4 0.10 0.14  
rs1421085 MOD 16 53800954 FTO C T C ↑ 0.06 0.03 0.09 3.99·10-5 0.00 0.53  
rs10893829 MOD 11 128042575 ETS1 T T C ↓ 0.04 0.02 0.06 6.62·10-5 0.00 0.35  
rs523288 MOD 18 57848369 MC4R T A T ↑ 0.05 0.02 0.08 1.54·10-4 0.00 0.23  
rs8107974 MOD 19 19388500 TM6SF2 T A T ↓ -0.04 -0.06 -0.02 2.60·10-4 0.32 0.09  
rs10096633 MD 8 19830921 LPL C C T ↑ -0.04 -0.05 -0.02 7.60·10-5 0.00 0.57  
rs10096633 MDH 8 19830921 LPL C C T ↓ 0.07 0.05 0.09 1.04·10-11 0.00 0.25  
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FIGURE LEGENDS 

 
Figure 1 Metabolite levels in the five clusters. a. Change in metabolites levels in each of the 

clusters versus all others. Colours represent effect size in log SD, with red upregulation and 

blue downregulation. SDMA/ADMA, Symmetric dimethylarginine/Asymmetric 

dimethylarginine; TCA, Taurocholic acid; GUDCA, Glycoursodeoxycholic acid. b. Levels of 

tyrosine in DCS, GoDARTS and ANDIS. SIDD and SIRD PFDR < 0.05. c. Levels of (a) 

symmetric dimethylarginine. SIDD and SIRD PFDR ≤ 0.05. Dots represent the median, the 

vertical line the interquartile range. SIDD, Severe Insulin-Deficit Diabetes; SIRD, Severe 

Insulin-Resistant Diabetes cluster; MOD, Mild Obesity-related Diabetes; MD, Mild diabetes; 

MDH, Mild diabetes with high HDL. 

 
Figure 2. Lipid levels in the five clusters. a. Change in lipid levels in each of the clusters 

versus all others. Colours represent effect size in log SD, with red upregulation and blue 

downregulation b. Levels of TAG 51:3;0 in DCS, GoDARTS and ANDIS. SIRD, MOD and 

MDH PFDR ≤ 0.05. c. Levels of PC O-16:0;0/18:1;0. SIRD, MOD and MDH PFDR ≤ 0.05. Dots 
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represent the median, the vertical line the interquartile range. SIDD, Severe Insulin-Deficit 

Diabetes; SIRD, Severe Insulin-Resistant Diabetes cluster; MOD, Mild Obesity-related 

Diabetes; MD, Mild diabetes; MDH, Mild diabetes with high HDL. 

 
Figure 3 Proteins in the PI3K/Akt pathway in the five clusters. a. Effect sizes of proteins 

in the PI3K/Akt pathway (PFDR=1.05·10-29) with red upregulation in the cluster versus all 

others and blue downregulation. Bars on the left indicate whether proteins are statistically 

significant in a specific cluster. Dots represent the median, the vertical line the interquartile 

range. b. Levels of insulin in DCS, GoDARTS and ANDIS. MDH PFDR ≤ 0.05. c. Levels of 

PDPK1. Dots represent the median, the vertical line the interquartile range. SIRD PFDR ≤ 0.05.  

 
Figure 4 Schematic overview of the results in the current study. BCAAs, DAGs, TAGs, 

PE were upregulated in SIRD and to a lesser extend MOD, while being downregulated in 

MDH. PE O-, sphingomyelins and proteins associated with the PI3K/Akt pathway were 
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downregulated in SIRD. In MOD proteins were found upregulated that have been associated 

with cytokine-cytokine interaction. SIDD, Severe Insulin-Deficit Diabetes; SIRD, Severe 

Insulin-Resistant Diabetes cluster; MOD, Mild Obesity-related Diabetes; MD, Mild diabetes; 

MDH, Mild diabetes with high HDL. 


