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The coordinated dynamic interactions of large-scale brain circuits and networks have

been associated with cognitive functions and behavior. Recent advances in network

neuroscience have suggested that the anatomical organization of such networks

puts fundamental constraints on the dynamical landscape of brain activity, i.e., the

different states, or patterns of regional activation, and transition between states the

brain can display. Specifically, it has been shown that densely connected, central

regions control the transition between states that are “easily” reachable (in terms of

expended energy), whereas weakly connected areas control transitions to states that are

hard-to-reach. Changes in large-scale brain activity have been hypothesized to underlie

many neurological and psychiatric disorders. Evidence has emerged that large-scale

dysconnectivity might play a crucial role in the pathophysiology of schizophrenia ,

especially regarding cognitive symptoms. Therefore, an analysis of graph and control

theoretic measures of large-scale brain connectivity in patients offers to give insight into

the emergence of cognitive disturbances in the disorder. To investigate these potential

differences between patients with schizophrenia (SCZ), patients with schizoaffective

disorder (SCZaff) and matched healthy controls (HC), we used structural MRI data

to assess the microstructural organization of white matter. We first calculate seven

graph measures of integration, segregation, centrality and resilience and test for group

differences. Second, we extend our analysis beyond these traditional measures and

employ a simplified noise-free linear discrete-time and time-invariant network model to

calculate two complementary measures of controllability. Average controllability, which

identifies brain areas that can guide brain activity into different, easily reachable states

with little input energy and modal controllability, which characterizes regions that can

push the brain into difficult-to-reach states, i.e., states that require substantial input

energy. We identified differences in standard network and controllability measures for
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both patient groups compared to HCs. We found a strong reduction of betweenness

centrality for both patient groups and a strong reduction in average controllability for the

SCZ group again in comparison to the HC group. Our findings of network level deficits

might help to explain the many cognitive deficits associated with these disorders.

Keywords: schizophrenia, connectome, graph theory, control theory, dysconnectivity

1. INTRODUCTION

Ample evidence has emerged that dysconnectivity, i.e., network-
level abnormalities in the connectivity between brain regions,
might play a central role in the pathophysiology of schizophrenia
(1–4). While traditionally analysis of structural connectivity has
looked at gray and white matter volume and tissue anisotropy,
over the last decades, network neuroscience, interpreting
the brain as a complex network of interconnected regions,
has emerged and applied graph and network science to
understand structure-function relationships in the brain (5).
Therefore, a graph-theoretical analysis of brain networks is
well-suited to address the network-level abnormalities that
according to the dysconnectivity hypothesis might lie at the
heart of the disorder. Graph theoretical measures allow for a
characterization of changes to the topology of brain networks
that goes beyond a description of in- or decreased connectivity
between regions. Overall, studies applying network science
techniques have identified disturbances regarding integration
and segregation properties in structural and functional networks
in schizophrenia (6–8) as well as reduced connectivity within
the central hub structure, i.e., a set of densely connected
regions that provides links between functional subnetworks (9).
Therefore, we hypothesized that patients with schizophrenia and
schizoaffective disorder would show reductions in integration,
segregation and centrality measures. Moving beyond a graph
theoretical perspective, Gu et al. (10) employed a control-
theoretic framework to gain a deeper understanding of the
dynamic interactions between large-scale brain networks and
their relation to cognitive abilities. This framework sees the brain
as a dynamic network that shows a repertoire of potential brain
states, where a brain state can simply be viewed as a distinct
spatio-temporal pattern of brain activity, that is continually
revisited against a background of noisy neural activity (11, 12).
The dynamics of this state revisiting is thought to underlie
cognition (13, 14), reflect overall capacity (15) and are likely
related to changing mental states. Furthermore, since cognitive
deficits constitute a core feature of schizophrenia (16) it seems
likely that they are related to changes in the dynamic transitions
between brain states. Gu et al. (10) now demonstrated that
the anatomical structure constrains this temporal evolution of
activity and dynamic changes of brain states. Therefore, control
theoretic results can be harnessed to derive insights into the
effect of structural features on brain dynamics and into how they
constrain the transition between brain states. Their results imply
that densely connected areas (e.g., in the default mode network)
enable the movement of brain activity to many easily reachable
states, i.e., state transitions that require the least amount of

energy, whereas weakly connected regions (e.g., in the cognitive
control systems) help the brain to transition to states that are hard
to reach, again in terms of energy. Importantly, the results of Gu
et al. (10) highlight that changes to large-scale brain dynamics
can, at least to some degree, be predicted from controllability
measures calculated from the structural, anatomical connectivity
alone. This suggests that the global, large-scale activity changes
in schizophrenia, which have been associated with deficits in
cognitive processes, might be reflected in control theoretic
measures of structural connectivity. Therefore, we hypothesized
that patients might display disturbances in measures of network
controllability. Since the affective symptom components of
patients with schizoaffective disorder are more similar to patients
with bipolar disorder than to patients with schizophrenia and
since difference in the central hub structure between patients with
schizophrenia and bipolar disorder have been identified (17), we
further hypothesized that patients with schizoaffective disorder
and patients with schizophrenia might show differences in
network and control measures, especially in centrality measures.

To address this hypothesis, we built structural brain networks
from DTI and T1w MRI using a freely available data set from
the Center of Biomedical Research Excellence (COBRE) data
repository of patients with schizophrenia and schizoaffective
disorder and subsequently performed a graph- and control-
theoretic analysis.We investigated graphmeasures of integration,
segregation, centrality and resilience together with two measures
of controllability, average, and modal controllability. We found
a strong difference between healthy controls and patients for
betweenness centrality and, importantly, strong differences in
controllability between the groups.

2. METHODS

2.1. Data Set
We queried the SchizConnect database (http://schizconnect.
org) SchizConnect to obtain our study sample. We used the
following query “study: COBRE, subject: schizophrenia_broad,
symptoms_psychpathology: PANSS protocol: structural” to
obtain the data for the patient groups. This resulted in 83 SCZ
and 11 SCZaff subjects. A second SchizConnect query “study:
COBRE, subject: no_known_disorder, protocol: structural” was
used to obtain data for 91 healthy control subjects. We did not
query other studies on SchizConnect to avoid artifacts introduced
by different imaging sites. After preprocessing we excluded
subjects where head movement and eddy current correction
or the brain extraction (BET) was not successful on the T1w
images or where fitting the diffusion model and probabilistically
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TABLE 1 | Demographics and clinical characteristics.

HC SCZ SCZaff Statistics, p-value

Group size 43 43 9

Age 36.70 (11.04) 38.72 (14.02) 39.00 (12.60) HC/SCZ: t = −0.73, p = 0.46

(years) HC/SCZaff: t = −0.54, p = 0.59

Gender 11/32 12/31 2/7 HC/SCZ: χ2 = 0.06, p = 0.81

(female/male) HC/SCZaff: χ2 = 0.04, p = 0.83

PANSS positive – 14.34 (4.94) 15.78 (3.12) SCZ/SCZaff: t = −0.75, p = 0.45

PANSS negative – 14.45 (4.90) 16.33 (4.45) SCZ/SCZaff: t = −1.04, p = 0.30

PANSS general – 28.47 (8.16) 33.78 (8.98) SCZ/SCZaff: t = −1.65, p = 0.10

PANSS total – 57.53 (13.44) 65.89 (14.93) SCZ/SCZaff: t = −1.63, p = 0.11

CPZ equiv. dose – 373.54 (335.70) 375.0 (210.82) SCZ/SCZaff: t = −0.01, p = 0.99

Illness duration – 16.89 (12.99) 16.10 (12.12) SCZ/SCZaff: t = −0.84, p = 0.41

Data are shown as mean(standard deviation). Age, medication and illness duration differences between groups were compared using an independent samples t-test and differences in

gender distribution using a chi-square test.

tracking of fibres failed on the diffusion imaging data. This
resulted in 43 SCZ and 9 SCZaff subjects. We then randomly
chose 43 healthy control subjects for which (a) preprocessing
was successful and b) which did not significantly differ from the
two patient groups with respect to age and gender distribution.
Because of the relatively high rejection rate for the schizophrenia
patient group, we wanted to verify that the resulting final
sample was still representative of the total sample and thus
compared the total sample (83 subjects) with the final sample (43
subjects). Specifically, we performed t-tests to test for statistically
significant differences in age (t = 0.48, p = 0.63), illness duration
(t = 0.36, p = 0.72), PANSS positive (t=-0.11, p=0.91), PANSS
negative (t = 0.13, p = 0.89), PANSS general (t=0.32, p = 0.75),
PANSS total (t = 0.19, p = 0.85), and a chi-square test to test
for differences in gender (χ2 = 1.63, p = 0.20). We performed
the same analysis for the full SCZaff sample (11 subjects) and
the final SCZaff sample (9 subjects): age (t=-0.25, p = 0.81),
illness duration (t = −0.57, p = 0.57), PANSS positive
(t=-0.64, p=0.53), PANSS negative (t=-0.37, p = 0.71), PANSS
general (t=-0.09, p = 0.93), PANSS total (t = −0.31, p = 0.76),
and (χ2 = −0.07, p = 0.80). Neither of the measures differed
significantly between the initial full patient sample and the final
patient sample.

We thus obtained a final sample of 43 healthy control subjects,
43 patients with schizophrenia and 9 patients with schizoaffective
disorder. Patients received antipsychotic medication. Symptom
severity in patients was assessed using the Positive and Negative
Syndrome Scale (PANSS) (18). Written informed consent was
obtained from all participants, and the study was approved
by the regional ethics committee. The groups did not differ
significantly in terms of age and gender, and the patient
groups also did not differ significantly in terms of symptoms
as measured with PANSS , duration of illness and medication
dosage as measured with the chlorpromazine-equivalent (CPZ-
equivalent) dosage (see Table 1). Patients showed no change
in symptomatology or type/dose of antipsychotic medication
during the 3 months before the assessment [for more details
see (19)].

Data collection was performed using a Siemens Magnetom
Trio 3T MR scanner. Structural images (high resolution
T1-weighted) were acquired using a five-echo MPRAGE
sequence with the following parameters: repetition time (TR)
= 2,530ms; echo time (TE) = 1.64, 3.5, 5.36, 7.22, 9.08ms;
inversion time (TI) = 1,200ms; flip angle (FA) = 7◦; field of view
(FOV) = 256 × 256mm; matrix = 256 × 256; slice thickness =
1mm; 192 sagittal slices. Diffusion tensor imaging (DTI) data
were acquired using a single-shot EPI sequence with TR/TE =
9,000/84ms; FA = 90◦; FOV =256mm × 256mm; matrix = 128
× 128; slice thickness = 2mm without gap; 72 axial slices; 30
non-collinear diffusion gradients (b = 800 s/mm2) and 5 non-
diffusion-weighted images (b = 0 s/mm2) equally interspersed
between the 30 gradient directions. For more information see
also (20).

2.2. Data Preprocessing and Tractography
We conducted preprocessing of anatomical and diffusion images
using a semi-automatic pipeline implemented in the FSL toolbox
(www.fmrib.ox.ac.uk/fsl, FMRIB, Oxford). For the anatomical
images, preprocessing included removal of non-brain tissue
and brain extraction using the brain extraction toolbox (BET)
implemented in FSL, as well as the generation of a brain
mask. After extraction, images were checked for quality and
subsequently, 94 cortical and subcortical regions were defined
according to the automated anatomical atlas (AAL2) described
in (21).

For diffusion data, we performed brain extraction on the b0
images using BET. After correcting the data for head movement
and eddy current distortions, we fitted a probabilistic diffusion
model to the data by using the Bayesian Estimation of Diffusion
Parameters Obtained using Sampling Techniques (BEDPOSTX)
FSL toolbox. Finally, we linearly registered each b0 image to
the corresponding subject’s anatomical T1 image, transformed
the high-resolution anatomical mask volumes containing the
cortical parcellations to the subject’s diffusion space, and ran
probabilistic tractography with 5,000 samples per voxel using
FSL’s PROBTRACKX algorithm (22).
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2.3. Network Construction
We defined the weight of a connection between two regions i
and j to be the inverse of the normalized number of fibres nfij
determined through the probabilistic tracking:

wij =
1

nfij
, (1)

if nfij > T, with a certain threshold T. If not mentioned
otherwise, we used a threshold of T = 0.Using this definition,
the larger the weight between two regions the weaker the
connectivity is between these regions, or in other words, the
higher cost is to go from one node to the other. This approach
is similar to previously used definitions of weighted structural
networks (23–25).

2.4. Network Measures
We followed Rubinov and Sporns (26) and defined the
network measures as follows. Let W = wij be the weighted
matrix describing the pair-wise connectivity between regions
constructed from the DTI scans. Let N be the set of nodes in the
network with n : = |N| = 94. Then we can define some basic
measures describing a network. First, the weighted degree of node
i can be defined as

kwi =
∑

j∈N

wij. (2)

The shortest weighted path length between two nodes i and j is
given by

dwij =
∑

auv∈g
w
i−j

f (wuv), (3)

where f is the inverse of the weight and gwi−j is the shortest

weighted path between i and j. Lastly, the weighted geometric
mean of triangles around a node i can be calculated as

twi =
1

2

∑

j,h∈N

(wijwihwjh)
1/3. (4)

With the weighted degree, the shortest weighted path length and
the weighted geometric mean of triangles, we have the basic
measures that will allow us to define our measures of integration,
segregation, and centrality. While measures of integration are
often based on the path length, segregationmeasures are typically
based on triangle counts, with triangles being the simplest fully
connected structure with more than two nodes, i.e., the smallest
cluster. Measures of centrality can be based on the degree or on
the shortest paths. Resilience measures are often more complex
measures based on the node degrees.

With these basic measures we can now define the network
measures of interest.

2.4.1. Integration
First, we define two measures of integration: characteristic path
length and global efficiency. The weighted characteristic path

length (for short, since we only deal with weighted graphs in
this study, the characteristic path length) describes the average
shortest path length between two nodes in the network, where
the average is taken over all possible pairs of nodes i and j. It is
defined as

Lw =
1

n

∑

i∈N

∑
i∈N,j 6=i d

w
ij

n− 1
. (5)

The global efficiency is defined as

Ew =
1

n

∑

i∈N

∑
i∈N,j 6=i(d

w
ij )

−1

n− 1
. (6)

2.4.2. Segregation
Next, we define two measures of segregation: the weighted
clustering coefficient (for short the clustering coefficient) and the
weighted transitivity (for short the transitivity). The clustering
coefficient can be calculated as

Cw =
1

n

∑

i∈N

2twi
ki(ki − 1)

(7)

and the transitivity is given by

Tw =
1

n

∑
i∈N 2twi∑

i∈N ki(ki − 1)
. (8)

2.4.3. Centrality
We then introduce two measures of centrality: closeness
centrality and betweenness centrality. We define closeness
centrality as the average of nodal closeness centrality over all
nodes, where nodal closeness centrality of node i is given by

(Lwi )
−1 =

n− 1∑
i∈N,j 6=i d

w
ij

(9)

and, similarly, betweenness centrality as the average of nodal
betweenness centrality over all nodes, where nodal betweenness
centrality of node i calculated as

bi =
1

(n− 1)(n− 2)

∑

h,j∈N;h6=j,h6=i,j 6=i

ρw
hj
(i)

ρw
hj

, (10)

where ρw
hj
is the number of shortest weighted paths between h and

j, and ρw
hj
(i) is the number of shortest weighted paths between h

and j that pass through i.

2.4.4. Resilience
Lastly, we also defined a measure of network resilience:
(weighted) assortativity. (Weighted) assortativity can be
defined as

rw =
l−1

∑
(i,j)∈L wijk

w
i k

w
j − [l−1

∑
(i,j)∈L wij(k

w
i + kwj )]

2

l−1
∑

(i,j)∈L
1
2wij((k

w
i )

2 + (kwj )
2)− [l−1

∑
(i,j)∈L wij(k

w
i + kwj )]

2
.

(11)
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2.5. Controllability Measures
Here we utilized the control theoretic notion of controllability
which gives theoretical insight into the effect local changes of
dynamics might have. We chose two different measures based
on a linear control setting: average controllability and modal
controllability. Average controllability is given by the average
input energy to the control nodes over all possible target states.
Typically, nodes with high average controllability can control
networks dynamics over nearby target states in an energy efficient
way. On the other hand, modal controllability describes how well
a node can control all networkmodes. Highmodal controllability
means that a node is able to reach all modes of a network and,
thus, can force the dynamics into hard-to-reach target states.

To define the controllability measures, we assume a simplified
noise-free linear discrete-time and time-invariant networkmodel
of the form

x(t + 1) = Wx(t)+ Bkuk(t), (12)

where x is the state of the network, W is again the weighted
adjacency matrix of the network, the input matrix Bk specifies
the control nodes and uk defines the control strategy over time.
In our setting, we always choose a single control node i, which
means that Bi is simply a unit vector with entry at row i. This
allows us to define the so-called controllability Gramian as

Gi =

∞∑

τ=0

WτBiB
T
i W

τ . (13)

The controllability Gramian contains information on the
controllability of the network under the specific control Bi.
In fact, one classic results from control theory states that the
network is controllable from the node i if and only if the
controllability Gramian is invertible. We then define average
controllability of node i simply as the trace Tr(Gi) of the
controllability Gramian [see (10, 27)]. Average controllability
here can be interpreted as the average input energy from the
control node over all possible network states (28). regions with
high average controllability can be interpreted as the most
influential nodes since they, on average, need the least energy to
steer the dynamical system (10). The average controllability of the
network is then defined as the mean of the average controllability
over all nodes in the network. Modal controllability of node i will
be defined as

φi =

n∑

j=1

(1− λ2j (W))vij (14)

where V = (vij) is the matrix of eigenvectors from the
weighted adjacency matrix W and λj(W) are the eigenvalues
of W. Modal controllability provides a scaled measure of the
controllability of the modes of a brain region. Regions with
high modal controllability can control all modes of a dynamic
network and therefore drive its dynamics into difficult-to-reach
configurations (29).

3. RESULTS

3.1. Graph Measures
We first compared seven standard graph measures in the two
patient groups against the shared control of healthy subjects.
The graph measures were: characteristic path length and global
efficiency (two measures of integration), cluster coefficient and
transitivity (two measures of segregation), betweenness and
closeness centrality (twomeasures of centrality), and assortativity
(a measure of resilience).

3.1.1. Integration
Patients with schizophrenia did not show differences in measures
of integration (characteristic path length and global efficiency)
compared to healthy controls (Figure 1, Table 2). Patients with
schizoaffective disorder showed an increase in characteristic path
length, which, however, did not survive correction for multiple
comparisons (g = 0.766, p = 0.266 Bonferroni corrected,
statistical power = 0.36; see also Figure 1, Table 3) Note the
small sample size of the schizoaffective group. We found no
other significant correlations between measures of integration
and PANSS total scores neither for the SCZ nor for the SCZaff
group (see Supplementary Figures 1–8).

3.1.2. Segregation
Patients from both groups did not show differences in measures
of segregation (cluster coefficient and transitivity) compared to
healthy controls (Figure 1, Table 2). we found a strong positive
correlation between cluster coefficient and PANSS general score
(r = 0.693, p = 0.038; see Supplementary Figure 7) and a
moderate negative correlation between the cluster coefficient and
the PANSS positive score for the SCZaff group (r = −0.304,
p = 0.047; see Supplementary Figure 4). However, none of them
survived correction for multiple comparisons.

3.1.3. Centrality
Patients with schizophrenia showed a strong reduction of
betweenness centrality compared to healthy controls (g =

−0.644, p < 0.05 Bonferroni corrected, statistical power= 0.87;
see also Figure 2, Table 2). In our exploratory analysis of the
small schizoaffective group, patients showed a similar reduction
in betweenness centrality than the SCZ group (g = −1.080,
p < 0.05 Bonferroni corrected, statistical power = 0.65; see also
Figure 2, Table 3). We found no significant correlations between
centrality measures and PANSS total scores neither for the SCZ
nor for the SCZaff group (see Supplementary Figures 1–8).

3.1.4. Resilience
Patients from both groups did not show differences in network
resiliencemeasured by assortativity compared to healthy controls
(Figure 2, Table 2). We found a moderate positive correlation
between assortativity and PANSS total score in the SCZ group
(r = 0.346, p = 0.023; see also Supplementary Figure 1) and
a strong negative correlation between assortativity and PANSS
positive score in the SCZaff group (r = −0.846, p = 0.004;
see Supplementary Figure 2). However, none of them survived
correction for multiple comparisons.
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FIGURE 1 | Hedge’s g for the comparisons of various graph measures for the SCZ and SCZaff groups against the HC group are shown in the above Cumming

estimation plot. The raw data is plotted on the upper axes. On the lower axes, mean differences are plotted as bootstrap sampling distributions. Each mean difference

is depicted as a dot. Each 95% confidence interval is indicated by the ends of the vertical error bars [see (30)]. Panels show (A) characteristic path length (measure of

integration), (B) cluster coefficient (measure of segregation), (C) betweenness centrality (measure of centrality), and (D) closeness centrality (measure of centrality).

*Denotes statistically significant differences at a significance level of 0.05 Bonferroni corrected.

Frontiers in Psychiatry | www.frontiersin.org 6 June 2021 | Volume 12 | Article 669783

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Dimulescu et al. Dysconnectivity in Schizophrenia/Schizoaffective Disorder

TABLE 2 | Permutation test statistics for the SCZ group (sample size n = 43).

Hedge’s g 95% CI interval Permutation p-value

(uncorrected)

Characteristic path length 0.38 [−0.056, 0.814] p = 0.079

Cluster coefficient −0.406 [−0.715,−0.017] p = 0.056

Betweenness centrality −0.644 [−1.070,−0.204] p = 0.004

Closeness centrality −0.384 [−0.808, 0.059] p = 0.078

Transitivity −0.340 [−0.753,−0.091] p = 0.110

Global efficiency −0.381 [−0.802, 0.058] p = 0.081

Assortativity −0.198 [−0.605, 0.226] p = 0.363

Comparison against the HC group [sample size n = 43; see (30)].

TABLE 3 | Permutation test statistics for the SCZaff group (sample size n = 9).

Hedge’s g 95% CI interval Permutation p-value

(uncorrected)

Characteristic path length 0.766 [−0.206, 1.480] p = 0.038

Cluster coefficient −0.371 [−0.770, 0.473] p = 0.293

Betweenness centrality −1.080 [−1.810,−0.049] p = 0.005

Closeness centrality −0.626 [−1.230, 0.429] p = 0.090

Transitivity −0.505 [−1.190, 0.678] p = 0.173

Global efficiency −0.615 [−1.230, 0.462] p = 0.093

Assortativity 0.065 [−0.461, 0.642] p = 0.855

Comparison against the HC group [sample size n = 43; see (30)].

Since patients with schizophrenia and schizoaffective disorder
are sometimes grouped together, we additionally performed the
graph measure analysis for a single, pooled patient group with
a “schizophrenia broad” categorization, which can be found
in Supplementary Figures 14, 15, Supplementary Table 2.
Unsurprisingly, we found a significant reduction of betweenness
centrality in the pooled patient group compared to the
healthy controls. We further explored a potential influence
of the antipsychotic medication on the graph measures.
We did not find any correlation between the medication
dose (measured in CPZ-equivalent dose) and the graph
measures used in this study for any of the patient groups (see
Supplementary Tables 4, 5, respectively).

3.2. Controllability
Going beyond traditional network measures, we also
explored two control theoretic measures: average and modal
controllability. Network control theory has been increasingly
utilized in network neuroscience and offers a mechanistic
framework to understand the effects of local changes in
dynamics on the global brain state (27). We specifically chose
average and modal controllability because they offer information
on two different aspects of controllability: while nodes with
a high average controllability have the ability to convey large
changes in network dynamics by moving the global system
into many easily reachable states, nodes with high modal

controllability can move the system to states that are difficult to
reach (27).

For the SCZ group we found a strong decrease in
average controllability (g = −0.606, p < 0.05 Bonferroni
corrected; see also Figure 3, Table 4). Additionally, we also
found a moderate increase of modal controllability in the
SCZ group, which, however, did not survive correction
for multiple comparisons (g = 0.476, p = 0.056
Bonferroni corrected; see also Figure 3, Table 4). We found
no differences for the SCZaff group compared to the healthy
controls. Again, we pooled the two patient groups and
performed the same analysis (see Supplementary Figure 16,
Supplementary Table 3). We found a significant reduction of
average controllability for this pooled patient group compared to
the HC group.

We found no correlations between controllability measures
and symptom scores, neither for the PANSS total score nor
for the positive or negative subscores, in either of the patient
groups (see Supplementary Figures 9–12). We again tested
for a potential influence of the antipsychotic medication on
the measures. We did not find any correlation between the
medication dose (measured in CPZ-equivalent dose) and the
control measures used here for any of the patient groups (see
Supplementary Tables 4, 5, respectively).

Gu et al. (10) demonstrated that control regions are
differentially distributed across cognitive systems depending on
whether they show high average or high modal controllability.
Therefore, we next asked whether this differential distribution
would still be valid in both patient groups or not. To test
this, we averaged controllability measures of all 94 regions of
the AAL2 atlas (for both average and modal controllability)
across all subjects of a group and then extracted the 15 regions
with the highest measures. These regions were then assigned
one of the following 8 large-scale cognitive systems based on
the 7 functional cortical networks from Yeo et al. (31) but
extended to also include subcortical structures: Somatomotor,
Default Mode (DMN), Control, Visual, Dorsal Attention, Ventral
Attention, Limbic, and Other [subcortical regions that could
not be assigned to any system; see Supplementary Tables 2–4

for the assignments and (10) for more details on the
approach]. We found that for average controllability most
regions belong to the DMN followed by the somatomotor
network in all three groups (Figure 4), consistent with (10). For
modal controllability we found that in all three groups most
regions belong to the limbic category (Figure 4). Interestingly,
again for all three groups, DMN network regions also made
up a large share of the top modal controllability regions.
Importantly, the DMN regions with high modal controllability
here where distinct from the DMN regions with high average
controllability, highlighting the importance, and uniqueness of
the DMN. Nevertheless, the main finding here is that there
are no substantial changes in regions with high average/modal
controllability between control and patient groups. There
were no strong differences between the mean controllability
of the top 15 regions of the different groups, neither for
average nor for modal controllability (Supplementary Figure 13,
Supplementary Table 1).
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FIGURE 2 | Hedge’s g for the comparisons of various graph measures for the SCZ and SCZaff groups against the HC group are shown in the above Cumming

estimation plot. The raw data is plotted on the upper axes. On the lower axes, mean differences are plotted as bootstrap sampling distributions. Each mean difference

is depicted as a dot. Each 95% confidence interval is indicated by the ends of the vertical error bars [see (30)]. Panels show (A) transitivity (measure of segregation),

(B) global efficiency (measure of integration), and (C) assortativity (measure of resilience).
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FIGURE 3 | Hedge’s g for the comparisons of (A) average and (B) modal controllability of weighted graphs of the SCZ and SCZaff groups against the HC group are

shown in the above Cumming estimation plot. The raw data is plotted on the upper axes. On the lower axes, Hedge’s g is plotted as bootstrap sampling distributions.

Each g is depicted as a dot. Each 95% confidence interval is indicated by the ends of the vertical error bars [see (30)]. *Denotes statistically significant differences at a

significance level of 0.05 Bonferroni corrected.

TABLE 4 | Permutation test statistics for the SCZaff group (sample size n = 9).

Hedge’s g 95% CI Permutation

p-value (uncorr.)

Average controllability −0.606 [−1.040,−0.171] p = 0.006

(SCZ)

Modal controllability 0.476 [0.047, 0.897] p = 0.028

(SCZ)

Average controllability −0.265 [−0.944, 0.537] p = 0.467

(SCZaff)

Modal controllability 0.001 [−0.701, 0.686] p = 0.994

(SCZaff)

Comparison against the HC group [sample size n = 43; see (30)].

4. DISCUSSION

From a dynamical systems perspective, the brain can be viewed
as an interconnected network in which complex behaviors are
characterized by transitions between network states, i.e., spatio-
temporal patterns of activity. Psychiatric disorders have been
associated with disturbances in these dynamical interactions
between brain regions. Schizophrenia for example has been

characterized as a disorder of dysconnection (2), where an
overall reduction in connectivity leads to disruptions of normal
cognitive functions. In this study, we apply techniques from
network theory, i.e., standard graph measures, together with
novel methods from control theory, i.e., controllability measures,
to characterize the degree of dysconnection in structural brain
networks derived from white matter fibre connectivity in
patients with schizophrenia and a small sample of patients with
schizoaffective disorder.

Integration, Segregation, Centrality, and
Resilience
We found a reduction in betweenness centrality in both patients
with schizophrenia and schizoaffective disorder. Since nodes
with high betweenness centrality, which quantifies the number
of times a node acts as a bridge along shortest paths between
pairs of nodes, reflect nodes which can potentially exert strong
control over the activity and information flow in the network,
the reduction in the patient groups suggests a less controlled
flow and a general decentralization of the brain network. We did
not find any significant differences between the patient groups
and the healthy control group for integration, segregation or
resilience measures.
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FIGURE 4 | Location of cognitive control hubs for controllability across large-scale cognitive systems in the HC group [average controllability (A) and modal

controllability (B)], the SCZ group [average controllability (C) and modal controllability (D)] and the SCZaff group [average controllability (E) and modal controllability

(F)]. We chose the top 15 regions with highest average and modal controllability (averaged over all subjects), respectively.

Several studies have analyzed differences in the structural
connectome of patients with schizophrenia using network
measures. Overall, these studies report an altered connectome
with altered integration and centrality. Filippi et al. (9) found that
patient networks were characterized by longer communication

pathways and fewer central hubs compared to healthy controls.
A reduction in hub structure, especially the hub hierarchy,
was also found in a study by Bassett et al. (6). Furthermore,
altered path length between brain nodes and reduced efficiency
have consistently been found in schizophrenia (6, 23, 32, 33),
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with frontal and parietal lobes being most effected. Frontal and
parietal lobes were also the areas with the highest reduction of
connectivity strength (34). Overall, our findings are consistent
with these previous studies. The reduced betweenness centrality
we see would imply a reduction of centrality hubs and their
hierarchy, as found by Filippi et al. (9) and Bassett et al. (6) and
distort normal communication pathways.

Network Control
Structural brain networks from patients with schizophrenia
display a strongly reduced average controllability. This finding
implies that the dysconnectivity in patients with schizophrenia
results in a reduced capacity of individual nodes to steer the
network activity from one brain state to another. This finding is
also consistent with the observation that random state switching
is more frequent in schizophrenicmodels, since the lower average
controllability implies a reduced capacity of keeping the system
in a desired state, which makes random transitions more likely.
The strong decrease of average controllability in schizophrenia
patients would be expected in a network where the central hub
structure is disturbed, as discussed above.

Studies show that the affective symptom components in
bipolar disorder and schizoaffective disorder are relatively
similar. Therefore, it is interesting that Collin et al. (17)
found the central hub structure to be intact in patients with
bipolar disorder. A finding which might explain the absence of
differences in average controllability between our schizoaffective
patient group and healthy controls, because of the link between
central structural hubs, i.e., influential high-degree nodes, and
their ability to easily push the brain network into different
brain states reflected in their average controllability. However,
this absence might also be a consequence of the patient sample
consisting of stably medicated subjects, since Wang et al. (35)
report a disruption of the rich-club hub system in bipolar
disorder. Antipsychotic medication has been shown to alter
connectivity in SCZ depending on the type of antipsychotic
(36). Furthermore, mood stabilizers tended to renormalize
connectivity, while antipsychotic medication did not in patients
with bipolar disorder (37). Therefore, differences in medication
in our patient samples might explain the absence of differences
with respect to average controllability and central hub structure.
However, we have to note that the small sample size and the
resulting lack of statistical power could also explain this absence.

Last, the distribution of large-scale functional cognitive
systems across nodes with high average or modal controllability
is not altered in patient groups, suggesting a global reduction
of controllability that does not affect a specific cognitive system.
This is not surprising, given that patients with schizophrenia
suffer from an array of cognitive symptoms.

Limitations
Notably, the current study has its limitations. First, by restricting
ourselves to the anatomical parcellation given by the AAL2 atlas,
we commit to a specific mapping between MR voxels and brain
regions. Importantly, in terms of parcellation schemes, there
are a variety of options and no standard has been established
so far. Taking into account the fact that these schemes differ

not only with regard to the number of regions in which they
divide the brain, but also with regard to other key aspects,
such as the exact location of the inter-regional borders or
the method through which they were generated, it is possible
that the specific choice of the parcellation scheme has an
impact on subsequent graph theoretical findings. Therefore, a
reproduction of our findings with other parcellation schemes
seems warranted. Second, the patient sample considered in
this study consists of chronic, stably medicated subjects and
therefore, the findings can only be considered representative of
this particular subpopulation of patients. It would indeed be
very interesting to track changes in network and controllability
measures in other patient subpopulations such as first-episode
psychosis subjects or throughout the course of the disorders
in a longitudinal study design. The presented analysis cannot
address whether our findings reflect a primary change due to the
disorder or whether they are indeed caused by the antipsychotic
medication, even though the medication dosage did not correlate
with any of the graph or control measures analyzed here. Last, the
sample size of the current study is not very large and therefore,
the results should be confirmed in a replication study with a
larger patient group. Importantly, the results from the patients
with schizoaffective disorder should be treated with caution
because of the very small number of subjects.

This study is, to our best knowledge, the first study
investigating controllability measures in patients with
schizophrenia and schizoaffective disorder and it corroborates
previous findings of altered structural connectivity and
suggests that a control theoretic approach could be useful in
pathological research.
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