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Abstract

This paper provides a new approach to study and apply dependence con-
ditions. It provides exact decoupling in terms of the copula function. Based
on these ideas a new dependence condition is formulated. In general we
characterize convergence to independence via weak convergence ideas. In
this context, this is often sufficient for our purposes. To provide a unifying
approach, the most common dependence conditions used in the literature
are illustrated using this approach. As an application, a CLT, stochastic
equicontinuity results and a Donsker theorem are proved for dependent ran-
dom variables under minimal dependence conditions.
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1 Introduction

This paper considers the problem of dependent sequences and their limiting be-
haviour from a new prospective. It characterizes convergence of a dependent sub-
sequence to an independent subsequence in terms of weak convergence of measures

on the unit interval.
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The paper uses the copula function (e.g. Sklar, 1973) as a natural tool to deal
with these limit theorems in the case of dependent random variables. The copula
function is the joint distribution of uniform random variables in the unit hyper-
cube. By Sklar’s Theorem, any joint distribution can be rewritten in terms of the
copula function, where the uniform random variables correspond to the Rosenblatt
transform of the original ones or some variant of it. Suppose X := (Xj);.4, is a
sequence of random variables indexed in H C Z with law p. Suppose X has copula
C, and Q is a transform such that U := Q!X is a [0,1]" uniform random vector
with joint distribution C' (this transform does not require the marginal distribu-
tions to be continuous). Then for any measurable function f, and the Lebesgue

. H .
measure A in [0, 1] we can write

p(f) =A((1+7)feQ),

where v is some measurable function that is uniquely determined by C. The paper
studies the properties of v and is concerned with conditions under which Q=1 — \.
We define the class of functions § under which weak convergence of v to zero holds.

This approach unifies the previous approaches via mixing conditions. In partic-
ular, I will consider several dependence conditions used in the literature and show
how these can be naturally reformulated in term of the copula function. Any cop-
ula function can be written as the independent copula plus a perturbation factor
(the indefinite integral of ) that accounts for dependence in the random variables
(see Riischendorf, 1985). Therefore, by the Radon-Nikodym derivative of the orig-
inal copula with respect to the independent copula, we can transform any series of
dependent random variables in terms of an independent series of random variables
with same marginals as the originals.

The advantage of the present formulation is that all variables are redefined on
a new probability space equipped with the Lebesgue measure. As a consequence of
this redefinition, the new random variables have continuous laws. This shows that
the class § under which weak convergence to independence holds is much larger
that the usual class of continuous bounded functions under which weak convergence
usually holds. This fact allows to prove new stochastic equicontinuity results by
simple extension of the well known results for independent random variables.

As a final comment, it is worth noticing that the use of the copula function
in statistical modelling is quite wide spread (especially in finance and economics).
Therefore, a formulation of dependence in terms of it is particularly convenient for
applied researchers making use of results in the probability literature.

The plan of the paper is as follows. Section 2 considers the decomposition



of measures in terms of product probabilities and a sign measure (y\) that com-
pletely captures dependence. The regression construction is discussed. In Section
3, metrics for independence are used to define suitable dependence and decoupling
conditions. These conditions are defined in terms of the copula and compared to
existing one. There is a direct link between the copula and some well known co-
variance inequalities (e.g. Viennet’s (1997) inequality). Section 4 is concerned with
the applications. I consider a CLT without rate assumptions. Two new stochastic
equicontinuity results are proved, and as a consequence of these a Donsker theorem
under minimal dependence conditions.

Throughout the paper the following notation will be used. If A is a set, 0A
stands for its boundary, and #A stands for its cardinality. Use a < b to mean
that b is greater than a up to a positive finite constant; a < b if b Sa Sb;a~ b
to mean asymptotic equivalence; and —, %, and =3 for weak convergence (with
respect to continuous bounded functions), convergence in probability and almost
surely, respectively. Use |[|...[,, , (p € [1,0]) for the L, (1) norm with respect to

the measure u (||.. is the essential supremum norm). For a function f on a

N ||oo 17
metric space (S, d) define ||f||,; to be the Lipschitz seminorm, i.e.

11, = suplf (2) = 1 )]/ (,3),

and || fllz; = || fllox + [Ifll; for the bounded Lipschitz metric. Finally, for any
function f: R — R, use f~! (z) :=inf {y : f (y) > x}. This notation will be used

freely without further reference.

2 Coupling
2.0.1 Radon Nikodym Derivative in L,

Suppose j is a measure on the infinite product sigma algebra F := ),y A;. Then,
we write py for the finite dimensional projection of p on Fg:= ®sz1 A;. Tt is
tacitly assumed that the family is consistent, e.g. 3 a probability kernel A such
that py, 1 = py, @ Ay for £ > 1.

Let p and v be o-finite measures in (S,.A). If for each A € A4, v(4A) = 0
implies p (A) = 0, then p is absolutely continuous with respect to v, and this is
written as p < v. They are called equivalent if for each A € A, v(A) = 0 if and
only if u(A) = 0. The Radon-Nikodym theorem say that if y < v, then for all
A€ A u(A)=(¢v)(A), where ¢ is a.s. unique and, since p is finite, |[¢]|,, < o0



(e.g. Billingsley, 1995, p. 423). We can write ¢ = du/dv, and call this the Radon-
Nikodym derivative. Let f € L; (v). By Holder’s inequality p (f) < |6l , v (|f])-

Consider the product probability measure v = ®sz1 Py on the product sigma
algebra Fy:= ®sz1 A; of a Polish space. Suppose pj is another probability mea-
sure on Fx with same marginals as vx. Then there exists a function C’f : [0, 1]K —
[0, 1] such that

/L(Al XKoo XAK):Cf (Pl (Al),...,PK (AK)) (1)

for any hyper-rectangle of F. C’f is called the copula and the present extension

to product probability measures of Polish spaces has been given by Scarsini (1989).

Theorem 1 Suppose vy and py are as above. Then pux < vi, and dpg/dvi

exists and it is finite v -almost surely.

Proof. The representation in (1) holds by Theorem 3.1 in Scarsini (1989). By
the properties of the copula (Proposition 4(2)), C = 0 if P, (A;) = 0 for any
k =1,.., K, i.e. the copula is grounded. This implies that u, < vg, and the
remaining statements follow from the Radon-Nikodym theorem and the fact that
probability measures are sigma finite measures. ®

For ju;e and v as in Theorem 1, we write duy /dvg = dCJ /dvg := cff. Suppose
Uy is a measure on the Borel sigma algebra of RX and A is the Lebesgue measure
on the Borel sigma algebra of [0, 1]K . Suppose QF : [0, 1]K — RX is a measurable

map such that for any (us, ..., ux) € [0, 1]K
O (uy, ..., ug) = (Ff1 (u1) ;.. Fict (uK)) = (21,...,TK), (2)

where (z1,...,2x) € RE and Fy (x) := Py ((—00,z]). (The simple modification in
(6) takes care of discontinuous marginals, so we do not worry about this for the

moment.) Suppressing the superscript K to ease notation, for some f € Ly (1),

p(f) = CuOQ_lf:Cu(fOQ) (3)
_ /[011K £ (P () o Pt (Ag)) dC.

To ease notation we will just omit the symbol o for the composition of functions.
The right hand side of (3) is called the hypercube transform of the integral i (f) . By

trivial re-writing, u (f) = v (f) + (u —v) (f) or p(f) = A(fQ) + A((c, = 1) fQ) .
The transform with respect to Q allows us to compute any arbitrary integral with

respect to a probability measure as an integral in the unit hypercube with respect
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to the copula. Then, all random variables are defined on the same probability

space.
Define

v = (cff - 1) ) (4)

Riischendorf (1985) has given a complete characterization of v%, in terms of an

integral operator and a L; (Ag) function, say h. However, almost surely, h is

bounded, then h € L., ()\K ) . Notice that by the Radon-Nikodym theorem, 7y is a
mean zero random variable.

The decomposition pQ = A (1 + ) (dropping the superscript K) allows us to

construct different decoupling equalities and inequalities (e.g. Lemma 26 in the

Appendix).

Lemma 2 Suppose (X;),.y is a sequence of random variables in a metric space
(S,d) with tight law p. Suppose H,., is a subsequence along {1,...,n}. Suppose

e, is the projection of u on the sigma algebra generated by (X;) and v

1€H 1 (n)
is as defined above for the variables indexed in H, . Suppose lim, \ (WHN")fQ) —
0, Vf such that ||fllz; < 1. Then, there exists a sequence of independent ran-

dom variables (X )ZEHT(”) : such that

llmn (Xi)ie’)-(r(n) (Ef (X’Ek)iGHr(n) and

Pr (d ((Xi)iem(n) >(X:)iem(n)) > e) <e

with same marginal distributions as (Xi)iEHT(n

where
AT (£Q)) > €/4
for f such that || f| 5, < 1.

Proof. It is well known that if [in,,,, converges weakly to the product of
marginals of (Xi)ieﬁr(n) , then, we can construct a series such that the conclusion
of the theorem holds (e.g. Theorem 1.10.4, in van der Vaart and Wellner, 2000).
Then, from Corollary 11.6.4 in Dudley (2002) and the discussion following this

and X* := (X}

Corollary, we have the following bound for X := (Xj;) ) i€ty

iG'HT(n)

inf{e>0:Pr(d(X,X*) >e) < e} <2[A (Y40 (£Q))]".

The above results show that a successful decoupling is characterized by weak
convergence of copulae to the product one. Moreover, the copula allows us to define
all random variables on a fixed probability space. In this probability space, the

dominating measure is tight.



2.1 The Regression Construction

A reference for almost sure construction of random variables is Riischendorf and
de Valk (1993). Suppose X := (X, ..., Xk) is a K dimensional vector of random
variables with joint distribution function F. Suppose V := (V4, ..., Vi) is a vector of
[0, 1] uniform random variables independent of X. Define the following transform
Uy - RE x [0,1]" — [0,1]%, which depends on the joint distribution F' : RK —
[0, 1], such that

Up (X> V) = <F1 (251, Ul) ,F2|1 (252,@2\1’1) ey FK|1 ..... K-1 (-TK>UK‘x1> ---737K—1)) ) (5)

Fk\l 7777 k—1 (xk,vk\xl,...,xk_l) : =Pr (Xk <xk\XZ:xl,z: 1,...,]€—1) (6)
+o Pr( Xy = 2| Xs =20 =1,..., k= 1),

k=1,..,K. Then define ¥% : [0,1]* — RX, such that
U (u) =2z =(21,.2K) ,
where

2k = Fk_|11 .... w1 (Uk|21, ..oy Z—1) := inf {y S Fep -1 (Y21, s 2em1) 2> uk} ,
and

k-1 (Tglxy, ooy p—1) = Pr (X <aplXi=ax;,0=1,..,k—1).

.....

Using the above notation, we have the following (Theorem 3 in Riischendorf
and de Valk, 1993).

Lemma 3 (Regression Construction) Let X be a K dimensional random vec-
tor with distribution function F'. Then

i. U:=Vp(X,V) is a K dimensional vector of iid random variables with [0,1]
uniform distribution;

ii. Z = V% (U) is a K dimensional vector of random variables with distribution

F; Z is called the regression construction of F';

i, Z = (Up (X, V)) E X.

The regression construction leads to an optimal coupling for real random vari-

ables X and Y with distribution functions F'x and Fy. In fact a classical result of



Dall’Aglio (1956) says that [| X — Y|, , (p > 1) is minimized in the class of random
variables with marginals Fy and Fy by X = Fy! (U) and Y = F,;' (U) where U is
a [0, 1] uniform random variable. Hence, without further reference, @' : R — [0, 1]

will be understood as a continuous operator such that

Q' X =F(X,V). (7)

3 Dependence Conditions

4 The Copula Function

We recall Sklar’s Theorem (e .g. Sklar, 1973). Let F' be a K dimensional dis-
tribution function with one dimensional marginals Fi, ..., Fx, then there exists a

function C from the unit K cube to the unit interval such that

F(z1,....,xx) = C (Fi(x1), ..., Fk(xK)) ; (8)

C is referred to as the K-Copula. If each F} is continuous, the copula is unique. If
F}, is not continuous, we use F' as in (5) to define continuous [0, 1] uniform random
variables. Then, the copula is always understood to be the joint distribution of
these uniform [0, 1] continuous random variables. Then, there is a unique copula
corresponding to these continuous uniform marginals.

The copula satisfies the following properties (e.g. Scarsini, 1989 for property
1-5 and Riischendorf, 1985, for property 6).

Proposition 4 (1) C is increasing in all its arqguments. Notice that throughout

the paper, we use increasing to mean nondecreasing;
(2) C satisfies the Fréchet bounds, i.e.

max (0,u; + ... +uxg — (K — 1)) < C (u1, ..., ux) < min (uq, ..., ux) ,

which implies C is grounded: i.e. C(uy,...,ux) = 0 if uy = 0 for at least one k,
and C(1,..., L ug, 1,..., 1) = u, Vk;

K
(3) ] ux is a copula for independent random variables, i.e. the product copula;

k=1
(4) C' is Lipschitz with constant one, i.e.

K
C (@1, 2i) = C (Y1, yi) <D ok — w3
k=1



(5) For k =1,.... K, let u, = Fy (xy) be the distribution function of xj and vy =
Gy (yx) be the distribution function of yx = gr (zx), where gy (...) is an increasing
function , then uy, ..., ux and vy, ..., vg have same copula function;

(6) To any copula C : [0, 1]K — [0,1] there corresponds a unique function G :
[0,1]% — [0,1] such that C = uy - -~ ug + G (uq, ..., ug) -

In particular, we notice that G is a completely tucked function, i.e. G (uq, ..., ux) =
0 for (ug,...,ux) € d[0,1]". Notice that G (uy, ..., ux) is the distance of the cop-
ula from the product copula. This is bounded above and below by the Fréchet
bounds. For a 2-copula, the Fréchet bounds define a skewed quadrilateral where
the product copula is the paraboloid inside it. All the dependence is measured by
”the perturbation term” G. One of the most important facts about copulae is that
it is uniformly continuous (Proposition 4 (4)).

Suppose Hj, j =1, ..., 7, are discrete index sets with cardinality #H; = n;, and
H, = U;:1 Hj. Suppose (X;),. i, are random variables with copula C;. Then, we
may write C*i or C™ instead of C;, whichever is more convenient. If the random
variables do not have continuous marginals, C; is understood as the unique copula
arising from an application of (7).

It is shown in Genest et al. (1995) that the only 2 dimensional copula con-
sistent with multivariate marginals is the independent one. However, using the
regression construction, we can consistently define the copula of nonoverlapping
copulae. This is called the Linkage function, but we will just refer to it as the
copula (see Li et al., 1996, for further details, though they consider the case of
absolutely continuous marginals). Therefore, we can define C**" to be the copula of
the copulae C; (j =1,...,7). From the definition of copula and Proposition 4 (6),

we have the following representation

T

C™" (uy,..,u,) = H HUZ + G (uy, ..., u,)

j=1 \i€H,

= o (ug) - -~ CHr (u,) + R (uy,...,u,), 9)
where
RH (1) i= G (g, o) — CF (wy) - O () + [ [ [T | > (10)
j=1 \i€H;

by obvious use of the superscripts for G and R. We denote the Radon-Nikodym
derivative of R™" with respect to the Lebesgue measure in [0, 1]%* x - - x [0, 1],

8



by p™". By the same argument as in Theorem 1, H pltr sox < 00 Moreover R is

easily seen to satisfy the following.

Proposition 5 (1) R™" = G = 0 if C™i(u;) is the product copula for each
7=1..r
(2) ’iij € {07 1} ] = 15 ey Ty

R = 0:
(3) ifu, =1,
R (uy,...,u,_1,u,) = RHr—1 (ug,...,u,_1)
r—1
= QHT* (ul,...,ur_l) —CHl (u1)~--C'HT (ur) +H H u; | ,
j=1 \i€H;
so that
R™ () = G™ (w) — € (wy) + JJ wi =0
i€ Hy
because, V7,

G" (u;) = C" (u;) — [ ] w:

icH,
4.1 Metrics for independence

Suppose (X;);c4, is a sequence of random variables. By an appeal to a special
case of Lemma (3), we redefine the random variables on the same probability space
via the unconditional version of (6), i.e. (7). Hence, the new probability space is
equipped with the measure A (1 + ). Since in this new probability space the prob-
ability measure is absolutely continuous, issues related to pointwise and uniform
convergence of A (1 + ) to A are avoided all at once. We depart from the common
approach based on sigma algebras and we shall only be concern with the depen-
dence properties in terms of the copula. Moreover, it is more convenient to restrict
attention to the coarse sigma algebra of sets { (0,u] : u € [0, 1]K} (K € N). More-
over, following Doukhan and Louhichi (1999) we express dependence conditions in
terms of tuples. Consider the following distances for convergence to independence:

total variation
7]l; =0, (11)

the Kolmogorov metric

sup A (Yo, | (12)
uc(0,1)



the Lipschitz metric
sup {[Eyf[ : [[fll, <1}, (13)
the bounded Lipschitz metric

sup {[Byf[ - [| fllpp, < 1} (14)

It is well known that (13) is equivalent to the Wasserstein distance for coupling and
the transportation problem (e.g. Dudley, 2002, Riischendorf, 1991); (14) metrizes
weak convergence (e.g., van der Vaart and Wellner, 2000); by absolute continuity
of the copula (12) is equivalent to (14) (Dudley, 2002, problem 4, p. 389, though
weaker conditions suffice, see Dudley, problem 11, p. 390). This does not hold in
general (for this reason, strong mixing may fail in some occasions; see example 13,
below). If we restrict attention to uniformly integrable functions, (13) and (14) are

equivelent, but not in general.

Example 6 (e.g. Dudley, 2002, p.421) Suppose 6, (s) is the Dirac measure at
x, 0, (s) = 1ifs = x,0 otherwise. Then, the measure (6o (n — 1) + 6,) /n converges
to 6o under (14), but to not under (13) (just use the definition of dirac measure
and then the Lipschitz condition).

In most cases (11) is stronger than necessary: it corresponds to beta mixing,
though uniformly over a coarser sigma algebra. Unlike strong mixing, a similar

comment does not apply to (12) because the copula is absolutely continuous.

4.2 Comparisons with Some Existing Dependence Condi-

tions

We recall some well known dependence conditions. Supppose, X and Y are random
variables. Then, their strong mixing coefficient is defined as

a(o(X),0(Y)) =sup{lcov(Ia,Ip)|: Aco(X),Beoa(Y)}; (15)

while their beta mixing coefficient,
1
Bo(X),o(Y)) = 5 Sup {Z |cov (14, 1,)| : Ai € 0 (X),B; € a(Y)} ,
i’j

where sup is taken over all possible finite partitions of o (X) and o (V).
Strong mixing corresponds to the kolmogorov metric, while beta mixing to
the total variation distance. (For details and applications, see Rio 2000.) These

dependent conditions can be rewritten in terms of the copula.
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Example 7 Suppose (X;),c, is a stationary sequence of random variables. Define
B; = B (o (X1),0(X14:)). Viennet (1997) has proved the following inequality for
the partial sum S, (X) of a B-mizing sequence of square integrable random variables
(Xi)sez with B-mizing coefficients (3;);>¢ »

var (S, (X)) < 4nE <ibz> X2,

where (bi)i€Z+ bp:=1,0<0b; <1, and Eb; = ;. Using the copula we can rediscover
the inequality in Viennet (1997). Let X and Y be two random wvariables with
marginals Fx and Fy, copula C. Then, for «y defined as in (4),

cov (X,Y) = / ey (dC (Fx (2), Fy (4)) — dFx () dFy (1))

_ /R 2y (Fx (2), Fr (1) dFx (2) dFy (1)

< ([ a1 (Fx @) B ()] s (0) ' )

Y ( [ B @) B () aFx () dEy <y>)q ,

by Holder’s inequality with 1/p+ 1/q = 1. Under stationarity, for p=q =2,
oo (YY) < [ a3 (P (@) Fy ()] dF (2) dFy 0).
It follows that
. [y (Fx (z), Fy (y))| dFx (z) dFy (y) = 26 (X, Y) .
The same result can also be written as

q

X V)< ([ @l oldudo)” (B ol dude) "
[0,1)? [0,1]?

with

(/[0’1}2 1y (u, v)| dudv) = 28(X,Y).

Therefore, the 3-mizing coefficient is just 1/2 the total variation of the sign measure

corresponding to G : [0,1)° — [0, 1].

11



Another dependence condition is the weak dependence condition of Doukhan
and Louhichi (1999). A sequence of random variables (X;),.y is called (6,3, v)-
weak dependent, if there exists a class § of real valued functions, a sequence (6;),y
decreasing to zero at infinity, and a function ¢ with arguments (h, k, u,v) € F* x N?
such that for any u-tuple (i1, ...,4,) and any v-tuple (ji, ..., j,) with i3 < -+ <74, <
lytr < J1 < -+ < Jp One has

lcov (h (X, ey X,

) kK (Xj17 "'7va))| < Qb (h7 k7uvv) 0,

for all functions h, k € § that are defined respectively on R* and R". This depen-

dence condition is of particular interest in our context.

Example 8 Let h and k be bounded lipschitz functions, then, 6, — 0 if and only
if

Law (Xil, ,Xz le, ...,va) — Law (Xi17 --~7Xiu) X Law (le, ...,va),

u )

which is metrized by (14) for the above tuple.

Other dependence conditions have been considered in the literature, but for
economy of space they are not discussed (e.g. mixingales, McLeish, 1975, Andrews,
1988, Dedecker and Doukhan, 2003).

Because of absolute continuity of copulae, convergence under the metrics in the
new probability space may be strictly weaker than the convergence requirement

under the same metric in the original probability space.

Example 9 Suppose X and Y are two random variables with copula A (1+ 7).
Consider the metric (12). Its equivalent in the original probability space is (15).

However, if (15) is zero then (12) is zero as well, but not the other way around.

4.3 A Decoupling Condition
Suppose n := (r — 1) (p + q) + p. Define the following index sets

Hy={i:1+({-Dp+9<i<p+(-1)(p+q}

j=1,..,r and H, = U;:I H;. Define the following random variables X, :=
(Xiyi € Hy)and &; := (§;,1 € Hj),i=1,...,r. Suppose Law(§;, ..., &,) =Law(X;)x
-+ xLaw(X,). For any measurable function f, we have the following decoupling

result:
Ef (Xy,...X,) =Ef (&, ....§,) + B (u,...,u,) f (Qiuy, ..., Qu,.)

12



where Q; = Qi is the transform in (7), j = 1,...,r, and E* is expectation with
respect to the Lebesgue measure. With this notation it is natural to introduce the

following condition.

Condition 10 (s) The sequences of random variables (X;),oy satisfies Condition
10(s) if there are sequences p,q,r, such that rp ~ n, p = o(q), p,q,r — 00 as
n — oo, and
for s € [1, 0]

ligbn HpHT (uy, ...,uT)HSA — 0,

or for s = 0, uy, ..., u, converges weakly to the product of copulae, i.e. R (uy,...,u,) —

0 pointwise.

Remark 11 We see that strong mizing is equivalent to Condition 10(0) if the
joint distribution of the random wvariables is continuous (weak convergence with
continuity implies uniform convergence); beta mizing is equivalent to Condition
10(1); when § is the class of bounded Lipschitz functions, (0,§,v)-weak dependence
is equivalent to Condition 10(0) .

4.4 Further Conditions
4.4.1 Condition 4(0) and the Monge-Wasserstein Distance

Let X and Y be random variables with values in a metric space (S, d). With the
usual notation, Py and Py are the laws of X and Y such that X and Y are
integrable. Define M (Px, Py) to be the class of all joint distributions (i.e. of

copulae) with marginal laws Px and Py. The Wasserstein distance is defined as

W (Py, Py) = inf{/sxsd(m,y) du(z,y) : p € M(PX,PY)}.

Suppose (X;);.; is a sequence of real random variables such that #H, = n = rp.

Suppose (§;);c5,. is a sequence such that

law ((ﬁi)iem)
= law ((Xi)iEHl) law ((Xi)ieHz) - law ((Xi)ieHT) ’

constructed by regression construction (i.e. the two sequences are defined on the
same probability space equipped with the Lebesgue measure). Writing Py and F,
respectively, for the laws of X = (X;),cy, and & = (§;),s, , and for p''" as defined

13



above, by the Kantorovich-Rubinstein Theorem (e.g. Theorem 11.8.2 in Dudley,
2002),

W (Px, Pe) = sup {|Bp" f| : | fll, < 1}.
Then, the following relationships hold
prHT BL; = Sup{|EpHTf : HfHBL S 1} S W(PX,P&), (16)
and if the laws Px and P are tight, by Lemma 2,
Pr(d ((Xi)ien, » (€)ien,) > €) <€ (17)
where
17 Q0% ||y, > /4. (18)
Example 12 Suppose S = R™ so that d is the Euclidean norm ||...||. By the

regression construction, and Minkoski’s inequality
1/2

W (Px,P) < BIX—¢|<D E|) (Xi—¢&)

=1 i€H;
< Y X =&l
j=1 i€ H,
Define 8q jpri = || X(j-1)(pra)+i — g(j—l)(P-Fq)—&-iHl’u and

O, 7= max Oy ipiq.
q 12 Qanipti
1<5<r

Then
Pr (d ((Xi)ieHT ) (fi)ieHT) > 2 (msq)l/2> <2 (n‘sq)l/2 .
Doukhan and Louhichi (1999) and Dedecker and Doukhan (2003) give examples of

processes satisfing 6, — 0.

4.4.2 Convergence of Measures of Concordance

Dall’Aglio (1966) has shown that if a random variable converges weakly to another
and their copula converges to the maximal element (the Frechét upper bound,
see Proposition 4(2)) then convergence holds in probability. Scarsini (1984) has
characterized convergence to the Frechét upper bound via strong measures of con-

cordance (see Scarsini, 1984, for definitions). Measures of concordance can then be
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used to describe convergence to independence (i.e. Condition 10(0), and actually
Condition 10(1)).

Many multivariate measures of concordance (see Joe, 1989, for a list and descrip-
tion) for random variables X7, ..., X can be shown (up to an affine transformation)
to reduce to the following

Xm“'XK = Bw (1 + ’YK) 5

where w is a suitably chosen monotone increasing transformation. For example

2 pdel'"XK :|
= E - 41,
P [pdf Xy PAfx e
and of
pajx,..x
Oxyxr :=EIn K ,
A |:pde1 o 'pdeK:|
are measures of dependence, which (by simple change of variables) can be rewritten
as
2 K
¢X1"'XK = H/Y HI,AK
and

5X1-~~XK = Fln [1 + "yK} .

Under suitable conditions on w, dx,...x,, — 0 implies Condition 10(1), i.e. conver-

gence in total variation.

4.4.3 Convergence of Moments

It is simple to show that any copula is completely determined by its moments (e.g.,
Theorem 30.1 in Billingsley, 1995). Moreover, all moments exists, hence conver-
gence of all moments implies weak convergence (e.g. Theorem 30.2 in Billingsley,
1995). Moreover, under the following condition, only a finite number of moments is
required to check Condition 10(0). Suppose U is the K random vector with given
copula CX, and Pr (U e 0,1} 7% x (o, 1)k> =0 for k =0,...,K, i.e. no mass
at the upper edge of the hypercube. Since a K dimensional copula is defined on

[0,1]", the high order moments of U converge to zero.

Example 13 (e.g. example 6.2 in Bradley, 1986) Suppose (Z;),., is an iid
Bernoulli sequence such that Pr(Z =0) = Pr(Z =1) = 1/2. Define the sequence
(Ut)iez by ,

1
Ui = §Ut—1 + §Zt>

15



so that the process has infinite moving average representation

o0

Ut = Z 2_1_iZt—i7
i=0
and Uy is uniformly distributed on [0,1]. ForT >0, define Fi'7 =0 (Us: t < s <t +1T).
Then, the (Uy),o; sequence is known to have a non-trivial future tail sigma-algebra:

N2y F2° coincides with F2°

s because Uy is measurable with respect to Uiy and

by induction, Uy is a.s. measurable with respect to U;. To see this just notice that
U1 & 2U; — |2U;] (where |A] is the integer part of A). As a consequence,
the usual strong mizing coefficient o (F0 o, F°) > a (F0o, FO ) = 1/4 because
FO C F°. On the other hand, we can check weak convergence calculating the
mized moments of U, and Uy. Using the conditional moving average representa-

tion,
t—1

1 .
Up =270y + B Z 2774,

i=0
it is easy to show that BUUy = BUEUy+0 (271), and BUFU] = BUFEU]+0 (271,
Vk,j. Hence, for t — oo the copula of Uy and Uy converges to the product one.
Hence, Condition 10(0) holds, i.e. pointwise convergence holds, but convergence

uniformly over the sigma algebra does not.

5 Applications
Throughout we will consider the following tuples

(X1> ) Xp) ) (Xp+q+1> Sy X2p+q) RREY (X(r—l)(p+q)+17 ) X(r—l)(p+q)+p) : (19)

We define (Xi)ieHj = (X(j—l)(p+q)+la '~'7X(j—1)(p+q)+p)7 j = 1,...,7“, and Hr =
Uj—1 Hj. Moreover, (€;);4, will be used to denote the regression construction of

a series of random variables such that

Law ((§;),e5,) = Law ((Xi)ieHl) -+ x Law ((Xi);ep, ) -

5.1 A Decoupling Inequality for Probabilities

We can show the following result which will be used in the sequel.

16



Lemma 14 Suppose (X;);cp, and (§;);cq, are sequences of random variables as
above and such that #MH, =n. Define S, (X) =" Xi,.

i. (total variation)
[Pr (S, (X) <) = Pr(8,(6) <o) <[] (uy,..,u)|],

where p't (uy, ..., u,) is as in Condition 1(s)

it. (Ly convergence)
Pr (S, (X) <€) = Pr(Sq(§) <o)l < W (Px, F),

where Px and P are, respectively, the joint probabilities of (X;);cy, and (;)

1/2
BL1> :

Proof. At first suppose that the copulae of (X;);c;, and (§;),c4, are unique and

i€Hy
iii. (Ky Fan convergence)

[Pr (S (X) <2) = Pr (S () < &) <2 ([l £Qo™

continuous. i. From Lemma 27 in the appendix, using the fact that || {z < e}l \ <
1,
Pr(Sy <) <A (Ifso, quze) + A ("D

i. and iis. From (17), (18), and (16) we have convergence in probability of (Xj),c,
to (€;);ep, With the given bounds above. Notice that the usual condition: Ve such
that

Pr (S, (X) € 8(—00, 2]) = Pr (S, (€) € (—o0,])
is not required as the copula is absolutely continuous, hence no mass on the bound-

ary. m

Remark 15 By absolute continuity of the copula, the same result follows (e.g.
Theorem 8, p.173, in Pollard, 2002,) for S, (f (X)), where f is a measurable upper
or lower semicontinuous function, respectively bounded from above or below (see
Definition 20 and Lemma 26 in the appendix for further details).

5.2 A CLT

We can state and prove the following CLT result for dependent random variables.

Theorem 16 Suppose (Xi)ieZ is a mean zero strictly stationary sequence of ran-
dom variables in (RZ,B (RZ) ,,u) . Set S, (X) :=>_" X,. Suppose there exists a
sequence B, T oo such that lim, var (B;1S, (X)) = 1. Then B;1S, % Y where

17



Eexp {itY'} = exp {it/2} in either of the following two cases:
i. Condition 10(0) is satisfied and B2 |S, (X)|* is asymptotically uniformly integrable;
ii. Condition 10(1) is satisfied and B;?|S, (X)|? is integrable.

Remark 17 The result of the Theorem implies that B,/n = k, > 0 where k,, is
slowly varying at infinity.

Proof. Choose sequences r,, p, and g, such that n = (p, + ¢) rn. For sim-
plicity let us drop the subscript n. Restrict p and ¢ such that ¢ = [p*], a € (0,1).
Define the following index sets

Hy={i:1+(-1Dp+g<i<p+(i-1D+q}

p
Hy={i:jp+ (-1 (p+q <i<jlp+q)}
j=1,..,r. Write S, = W, + W}, where W, := ", Z;, W] := >, 7}, and
Zj = Y iem, Xiy Z; = ZieHJ{ X;. Define 02 = var (S,). We now notice that
Lemma 2.6 in Berkes and Philipp (1998) is also valid under Condition 10(s) . Then,
for 02, > 0, 02 /02, > K (n/m), where k is some function such that lim;  (j) = oc.

Let ((ﬁ;)ieHj cj=1, ...,7‘) be sequences such that

Law ((f;)iem cj=1, ...,r) = Law (Xi);epy X -+ X Law (X3),cp, -

Define H; := (J;_, H}, and Fg to be the distribution function of . We only
consider case ii; case i is actually easier. From Condition 10(1), Lemma 28 in the

appendix and stationarity

var (W) = wvar <ZZJ'>
=1

T

2

= Do D4 Mo
J=1 \i€H; o LA
. ’ 2
+pr; &1
°°’AH; XH: e (2 ) >0 2
2
2 / /
= TEHZJ,'HQ, + M, (" 17/\+r P o\ ZJ/'I{|ZJ’.|2>MH/T2} ,
= I+ 11+ 11
We need to show that I<II+III. Define
115, = o2

18



and choose M, =< r’0.t,, where t, is an increasing sequence. Then, for n large
2

~
—~

enough, I1I< roZ, eventually. To control II we choose r, p and « such that H pltr

q’

1A
(rtn)_l, for ¢, increasing as slowly as possible. Hence, II+III<I, so that

var (W) Srol.

and
W

Trop

% %q <1/k (pl_o‘)l/2 — 0.
Op

(Case i holds by an application of Lemma 26 in the appendix.)
Choosing B, = ro, and noticing that |exp {iz} — 1] < |z|,

[Bexp {itB;'S,} — Bexp {itB;'W,}| < t/x (0)"".
Let ((ﬁi)ieHj =1, ...,7‘) be sequences such that
Law ((fz)leHj cj=1, ...,r) = Law (Xi);eg, X -+ X Law (Xi) gy -

Define H, := | J;_, H;. Then,

Eexp {itB,'W,} — [[Bexp {itB,"Z;}

J=1

= E*" (uy,...,u)exp{ itB," Z Z FE_il (u;)

7j=1 iEHj

< HPHT (ula'“aur)HL)\?

because exp {iz} < 1, Vx. (Again, apply Lemma 26 for case i). By the usual
Lindeberg CLT for independent random variables with s2 := Y7  var (X,,;), for

some constant C,

x

1
V2T J o

sup Pr(S,/sn < x)— exp (—t*/2) dt' < C(Ly(e) +e),

where

L@=53 [ atanw).

j=1  [z[=esn

The theorem is proved if we show that ’ — 0, Ve > 0, which

2/ 2
Zj /UP]{|Zj/ap|>\/Fe} ‘LH
is the case, as {|Z;/o,| > /re} | 0 as n T oo for any sequence €, — € such that

€n/T — 00. W
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5.3 Stochastic Equicontinuity Results

Consider the family of measurable functions § from S to R. Suppose d is a pseu-
dometric on §. The covering number is defined as

N (¢,§,d) := min {m :3f1, ..., fm € § such that sup min d(f, f;) < e} ,

feg 1=i<m

and In N (e, §, d) is called the entropy. We also define the class of functions
§(e,d):={f—9g:fg€T.d(g,[f) <e},

and use |[|... ||z 4 as a short notation for supy ez ag,5<c |---| - A class of subsets C
on a set S is called a V-C class if there exist a polynomial [ (...) such that, for every
set of N points in S, the class C picks at most [ (V) distinct subsets. A class of
functions § is called a V-C subgraph class if the graphs of the functions in § form
a V-C class of sets. That is, if we define the subgraph of a real valued function f

on S as the following subset Gy on S x R :
Gr={(s,8) :0<t < f(s) or f(s) <t <0}

the class Gy : f € § is V-C class of set S x R.

Suppose (X;);cz is a sequence of mean zero random variables such that (X;), -,
is adapted to the Borel sigma algebra B (R"™). For f € § with envelope F' such

that [|F'[|, , < oo, for some 2 < s < co. consider the following empirical process
v, (f) = nz Sor, (f(X;) —Ef (X;)). Then define the following metric d (f, g) =
1f = gl -

Condition 18 Let (Z;);oy

formly integrable second moment. Then, the following hold

be a sequence of mean zero random variables with uni-

n 250 (D), < b

where bs > 0 is a constant depending on s only, My := max;ey || Zi]| nd

S,p’ a
=S t>2:max|Z],, Vb < .
s sup {12 2 a2, v b < o0
This condition may hold in several cases:

Example 19 Suppose (Z;),.y is as above, but stationary and strong mizing with
mizing coefficients bounded above by the non increasing function o ([t]), t € Ry.
Then, for 1/p+1/q =1,

In=1725,, (Z)H;M < M? (1 + 8zn:a (i)l/q> ’

=1
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1/2
and b, = lim, (1 +83 " (i)l/q) . Condition 18 is satisfied if there exists a
p > 2 such that the right hand side is finite.

Definition 20 A function f : S — R is called lower semicontinuous if {x € S : f (z) >t}
is an open set for each fizedt. A function f : S — R is called upper semicontinuous
if {x € S: f(x) <t} is an open set for each fized t.

Remark 21 If f is lower semicontinuous, then, —f is upper semicontinuous. So

we will just consider lower semicontinuous functions.

An example of lower semicontinuous function is the indicator of an open set.

We have the following.

Theorem 22 Suppose § is a class of measurable lower semicontinuous functions
with envelope function F satisfying BF® < oo, 2 < s < 00, and, for any probability

measure () and finite constants v and b,

b Fllp0"
(e
5
/ \/lnN<m,{§,||...||27Q)dw<oo.
0

Suppose (X;),cq, is a mean zero sequence of strictly stationary random variables in
(RZ, B (RZ) ,u) such that Condition 10(0) is satisfied with p = o (n/Inn). Suppose
that (f (X)),ey satisfies Condition 18. Then, to any n > 0 and € > 0, there exists
an € > 0 such that

N (m,& ...

such that

Tim sup Pr ([[on (F)llg e > ) <.
Proof. Define the following sets
Hy={i:1+2p,) (G —1)<i<p,+2p,(j—1)}

Hj:={i:1+p,j <i<2p,j}

(in this proof use p, instead of p to avoid ambiguities in the argument of the proof).

We show that we can use sequences (§;);cg, (j =1,...,7), such that

law ((fz)zeH1 - (fl)ZGHr) = law ((Xi)ieHl) X -+ X law ((Xi)ieHr) )
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(In this case, we choose p,, < ¢y, which is weaker than what is used in Condition 10.)
For x,y € R, suppose A :={z,y:x+y >c,c>0}and B:={zx:2 > ¢/2,¢ > 0}U
{y :y>c/2,¢>0}. Then, A C B. By this remark

r}l—{go Pr <an (f)”g/(e,d) > 77)

< 2 lim Pr n_%iZf(Xi) >n/4

I=L et 3 (e,d)

We use the regression construction to construct a sequence (§;) M, H, = U;Zl H;j,
with the properties mentioned above. Then, by Condition 10(0), Lemma 14 and
the continuous mapping theorem, for any a.s. continuous function f, there exists

a sequence T, — 0, as p — o0, such that

lim Pr | n723 "% f(X) > /4

j=1icH; §(ed)

< Prf|In72) Y f(&) > /4| + Tp (20)

Jj=1i€Hj; §'(e,d)

Now notice that Lemma 2.1 in Arcones and Yu (1994) establishes equicontinuity
in probability for empirical processes based on underlying beta mixing sequences.
Close inspection of the proof of their Lemma 2.1 shows that their result is still valid
if we can decouple into a sequence of block independent random variables, with
a suitable block size p, — oo as n — oo. In fact, using their notation, set their
4n = Pn, and their p = s. Then, they choose a truncation region §,,n/ (272 (s > 2),

1/(25—2)

for some sequence 6,, going to zero slowly enough, so that 6,n — 00. More

generally, their truncation region can be written as 6,,b, and only needs to satisfy

pnb? < n/Inn. By Condition 18, s > 2, and we have b, < [n/ (p, In n)]M

— 00, by
the conditions in Theorem 22. Finally, their Lemma 2.1 only requires our Condition
18. Hence, the result follows setting their ¢, 3 = bs and closely applying all their
arguments. |

We can also establish equicontinuity in probability under bracketing conditions.
Given two functions [ and u, the bracket [I, u] is the set of all functions f such that
I < f < u. Then, an e-bracket is a bracket [I,u| with d(I,u), and the bracketing
number Nj (¢, §,d) is the minimum number of e-brackets needed to cover . Its

logarithm is called the entropy with bracketing. It is possible to avoid the restrictive
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Condition 10 by introducing a new metric. Suppose (X;),y is a sequence of random

variables. Then,
1£1l,,,, =B (fQ U) fR(V) (Z 7 (U, V))) )
i>1
where 711 (u,v) :== § (u — v), 6 is the Dirac measure at zero, and
(U, V) = sign (B fQU) fQ (V)" (U, V) v (U V)

where vt (u,v) i > 2 is as in (4) for the random variables (X) This metric

S0
bounds from above the variance of the sum S, (f (X)) . In particular, for (X;),

with associated sign measure having density +, it computes the following

If

1/2
2y = (Ef (X)+ D IBf (X1) f (Xi) — Bf (X1) Bf (Xi)|> -

i>1
Remark 23 Suppose (X;),.y i a stationary sequence of random variables. If
Ef (X1)? < oo, then, f(X1)f(X;), is uniformly integrable for i > 1. This fol-
lows from domination: f(Xy) f(X;) < 2f (X1)*.

We have the following.

Theorem 24 Suppose (X;),.y s a sequence of stationary real random variables
with associated sign measure having density v~ and satisfying Condition 5(0). Sup-
pose § is a class of measurable lower semicontinuous functions with envelope F' such
that such |[F||, ., < oo and

/NH (€811l ) de < oo

Then, vy, (f) is equicontinuous in probability.

Proof. From Condition 10(0) and semicontinuity of the class §, we refer to the

previous proof and 20, using the same notation to obtain

Pr(llon (Nllgieay > 1) <Pr [ [n 23S f€)] > |+

Jj=1 iEHj 3/(€,d)

for some sequence 7,, — 0, as p — oo. By Bernstein inequality

2

T 1 )

Pr sz(fz) >z | <2exp{ —=
j=1icH; 2 HZ}":l ZieHj f(&) zu +axp||f (@)HOO,M /3
| (22)
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Then, for any finite set of functions &, (22) together with Lemma 2.2.10 in van der
Vaart and Wellner (2000) imply that

1 - 1 (’5 1 ) 1/2
a1 S ma €0, PEE S 3 (#)

j=1i€H; & j=1i€H; o

We now prepare for an application of Theorem 8 in Pollard (2002). Using the new

norm,

SN @ <0 If E), -

j=1icH; »

so that

a In
LT AE)]| 2 1 E e P € ()

j=114cH;
[
= El@ ( b pf;Q) (23)

setting b := || f (§;)] ., and ls = In (#6)"? . Define 3, := |E*uvy; (u,v)| . Then
choose the following truncation region {|f| > flly, /VR (x)} , where

(0]

Y=\Vi
R(x):= Z/o du > z7,,.

i>1

By Chebishev’s inequality and the fact that || f[[,, < [|fllo,
BIf{IA > 1l /VE@) } < £, VE@). (24)

Finally, choose ¢/b = 1//R (p) < 1/,/p7,, and ls//n = /7, /p. With this choice

Y@ <o

j=1 icH; &

Then, we apply a chaining argument with adaptive truncation. To balance the
terms, we choose p such that 7, , < elg. Then, assumptions i-vi in Pollard (2002)
hold. Assumptions i-iii are automatically satisfied. Assumption iv is satisfied
using the maximal inequality (23). Assumption v is satisfied using the L; norm.
Assumption vi is satisfied using (24). For the final details we refer the reader to
Pollard (2002). m
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5.4 Invariance Principle for Empirical Processes

Theorems 22 and 24 imply an invariance principle for empirical processes. We only

state the result in terms of Theorem 24.

Theorem 25 Suppose (X;),.y is a sequence of stationary real random variables
with associated sign measure having density v~ and satisfying Condition 10(0), and
such that var (S, (X)) /n is uniformly integrable. Suppose§ is a class of measurable

lower semicontinuous functions with envelope F such that such || F||, , < co and

/NH <e, 3, H---HM) de < co.

Then vy, (f) is Donsker.

Proof. It directly follows from Theorems 16 and 24, and the fact that the
integral condition on the bracketing numbers implies that the class § is totally

bounded. This implies a tight Gaussian limit (e.g. example 1.5.10 in van der Vaart
and Wellner, 2000). =

A Additional Lemmata

Lemma 26 Let p and v be probability measures as in Theorem 1, and f a uni-
formly integrable measurable map which is lower semi continuous with values in R.

If i — v with respect to the class of continuous bounded functions, then

pf=vf+A(vfQ) — vf.

Proof. Use the decomposition pf = vf+AyfQ. Suppose f is continuous, then,
weak convergence implies Ay fQ — 0 by uniform integrability (e.g. Theorem 1.11.3
in van der Vaart and Wellner, 2000). If the function is only lower semi continuous,
then by uniform integrability, we can just assume f to be bounded from below
by a finite constant M. Use an approximation with respect to Lipschitz bounded
functions (e.g. simply extend Lemma 7 in Pollard, 2002a, to the multivariate case).
Then the result follows by monotone approximation and continuity of the copula.
[ ]

Lemma 27 Consider the following measurable map f : [0, 1]K — R and let pu be
a probability measure in |0, 1]K absolutely continuous with respect to the Lebesgue
measure \. Let vy be defined as in (4). Then,

pf =M+ =2 F <A+, 111,
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for1/p+1/q=1.
Proof. Use Holder’s inequality. m

Lemma 28 Let Xi,...,X,, be a sequence of random wvariables, and S, (X)
> ov . Xi. Then, for any M, > 0,

E (S0 (X)%) = BISy (O + Mo 010+ 10" e BISa (€)F Ty oan )

where &, ...,&,, is an independent sequence with same marginal laws as X, ..., X,

and vy =" is as in (4).
Proof. Consider the representation
E (S, (X)) = A (S0 (Qu)*) + A (7"Sn (Qu)?)

and rewrite

Sn (QU)2 = |Sh (QU)|2 I{|sn(gu)\2§Mn} + [Sh (QU)|2 I{\Sn(Qu)\2>Mn}7

substitute in the previous display and use Holder’s inequality on the first term on

the right hand side of the last display. m
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