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Abstract

A computational technique that transform integrals over RX, or some
of its subsets, into the hypercube [0, 1]K can be exploited in order to solve
integrals via Monte Carlo integration without the need to simulate from the
original distribution; all that is needed is to simulate iid uniform [0, 1] pseudo
random variables. In particular the technique arises from the copula repre-
sentation of multivariate distributions and the use of the marginal quantile
function of the data. The procedure is further simplified if the quantile func-
tion has closed form. Several financial applications are considered in order
to highlight the scope of this numerical techniques for financial problems.

JEL: C15, G11, G12

Keywords: Copula, Martingale, Monte Carlo Integral, Quantile Trans-
form, Utility Function.

1 Introduction

Mathematical and computer modelling in financial problems almost always requires
the calculation of some sort of expectation in the form of integral and its optimiza-

tion; i.e. expected utility, expected payoffs, expected losses. The purpose of this
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paper is to provide a general technique for the numerical solution of multidimen-
sional integrals via Monte Carlo (MC) integration. The standard MC integral only
requires us to evaluate the function at uniform random points over the support of
the integrand. However, this can be inefficient. A partial solution to the problem is
to use a kernel density function from which to simulate data (e.g. Geweke, 1996).
The function is chosen to minimize the error of the integrand intuitively giving
more weight to regions that give a larger contribution to the integral. This kind of
MC integral is called the importance sampling MC (ISMC) integral. The method
proposed in this paper provides a new practical approach to the implementation of
the ISMC integral.

We consider expectations of payoff functions with respect to arbitrary multidi-
mensional distributions. Unlike conventional ISMC integration, we do not need to
simulate from the multidimensional distribution. We only need to be able to simu-
late iid uniform [0, 1] random variables, as we would usually do with the standard
MC integral, or to construct quasi-random numbers in order to reduce the number
of simulations (e.g. Spanier and Maize, 1994).

Consider the expectation of some function with respect to the multivariate
Gaussian density. We cannot directly simulate from a multivariate normal dis-
tribution with given covariance matrix. Therefore, ISMC integration could be
problematic. The simplest alternative is to use standard MC integration. How-
ever, to do so, we need to consider a subset, say AX C R¥, such that its Lebesgue
measure !AK } < o0. It is well known that as K — oo the error in this approxi-
mation goes to infinity: this is the well known curse of dimensionality (e.g. Scott,
1992). Fortunately, the fast decay of the tails of the Gaussian distribution justifies
the approximation for any finite K. However, problems arise with other joint pdfs
which are more suitable in finance. Our method avoids approximation of the sup-
port whenever we can numerically compute the quantile function of the marginal
distributions at a finite number of points. Clearly, the focus is not on the Gaussian
case. (But, we consider the case of continuous martingales. Since any continuous
martingale is a time change of Brownian motion, we will consider the Gaussian
transition distribution.) Rather, we look at computations that are more suitable
to financial problems that try to capture the salient features of financial returns,
e.g. fat tails and nonlinear dependence. However the use of these distributions is
common in fields other than economics, so the approach used in this paper can be
extended to other cases of interest.

The Gaussian distribution allows us to derive closed form solutions for several

financial problems, e.g. portfolio optimization with suitable choice of utility. Us-



ing more general distributions, analytical closed form solutions are very rare and
confined to specific cases. For this reason Gaussianity has received great attention.
Unfortunately, computational problems that arise from a more general specification
of financial problems often prevent us from using interesting techniques which in
principle could provide more satisfactory answers. Our approach finds further jus-
tification in this context. For this reason we consider several financial applications
to illustrate the scope of the numerical technique proposed.

The reluctance to use more sophisticated tools is such that normality and linear
measures of dependence are used even when empirical evidence seems to disprove
them. As is well known, financial returns are found to be leptokurtic (e.g. Mandel-
brot, 1963, 1997, and Fama, 1965), they exhibit complex nonlinear time dependence
(e.g. Ding et al., 1993) and their cross dependence among countries (e.g. US and
European Markets) and shares within the same market is highly dependent during
downside movements and not as much during bull markets (e.g. Longin and Solnik,
2001).

Several solutions have been proposed to some of these problems. Our method
takes full advantage of these solutions. In fact, using the copula function repre-
sentation of multivariate distributions, we show that the integral of any nonlinear
payoff function with respect to the distribution of the payoff can be transformed
from an integral in, say R, to an integral in [0, 1]K. Then, we can easily compute
the expected value over a compact interval. When the copula is absolutely contin-
uous, this only requires us to compute expectation with respect to the Lebesgue
measure over [0,1]% . Simulating [0,1]% observations, the expected value is just
given by the mean of the integrand times the copula density evaluated at these
simulated points. Once a simulated sample is available (notice that the sample can
be the same from application to application) we only need to compute a mean like
statistic.

The procedure requires us to compute the univariate quantile function of the
variables concerned. This is a feasible numerical problem. However, in order to
keep our method simpler, we may like to use marginal distributions which have
inverses with a closed form expression. It is well known that rational powers of
the argument of the exponential distribution lead to distributions with closed form
quantile function. Incidentally, for the intermediate time scale, e.g. daily returns,
the use of densities proportional to an exponential of a rational power have been
advocated as the most reasonable choice of distributions (e.g. Frisch and Sornette,
1997, and Laherrére and Sornette, 1998).

Therefore, we can couple ideal numerical properties with a judicious modelling



approach. For this reason we also propose a family of distributions that both pos-
sess these properties and satisfies many others, which are relevant for unconditional
returns distributions. A special case of this family of distributions can be found
in Sancetta and Satchell (2001). All we do is to generalize it using an approach in
the spirit of Knight et al. (1995).

Therefore, our method has the following advantages. 1. It makes direct use of
the copula function. This is a benefit, as all distributions with continuous marginals
have a unique copula representation. Only a few multivariate densities (e.g. mul-
tivariate normal or t) can be written analytically without need to use the copula
representation. Unfortunately, this densities exhibit symmetric dependence and are
not particularly adequate for financial applications. Therefore, the copula function
is a quite important modelling tool. 2. The procedure is directly applicable to
integrals over RX. 3. It does not require to simulate from multivariate distribu-
tions. This is often a difficult task. 4. It is a universal transformation which does
not change from situation to situation. 5. Our theoretical and numerical studies
show that the error can be diminished with respect to other MC integration proce-
dures when our methodology is employed. 6. Unlike competitive approaches based
on importance sampling, our approach directly extend to the use of quasirandom
numbers (e.g. Spanier and Maize, 1994, for a definition of quasi-random numbers)

The plan for the paper is as follows. In Section 2 we introduce the copula based
MC integration. In Section 3 we study the method both theoretically and by three
numerical examples. Section 4 further discusses the copula based MC integration:
several financial applications are provided to highlight the scope of the technique.
Some appendices provide background material.

In the paper we will use De Finetti’s linear functional notation. Suppose X is
a random variable with values in (SK ,SK ) , K > 1, some subspace of (RK ,RE )
or (RK ,RE ) itself. Let Q be a measure. Then we write QX for the integral of X
with respect to Q over S, i.e. the expectation of X with respect to Q. Define A
to be the Lebesgue measure on S and P% := N~* SN 6, where 6y, is the Dirac
measure at x; (i.e. 0x,X = 1 if X = x;, 0 otherwise) to be the empirical measure.
Moreover, 14 stands for the indicator function of a set A and |A| for its Lebesgue
measure. Moreover, we will use & to denote a class of functions. For example, &
could be a family of functions which depends on some parameters in a compact

space, e.g. a portfolio variance with portfolio weights in the unit simplex.



2 Copula-Based Monte Carlo Integration

Our technique relies on a non-linear transform for arbitrary integrals. This trans-
form is obtained using the copula representation of multivariate distribution func-
tions. This representation is central to the development of the whole paper and
exploits the fact that simulation from univariate distributions is an easy task. In
multidimensional MC integration over an infinite support, one uses a multivariate
kernel density function from which the data are simulated (e.g. Geweke, 1996,
p. 757, for more details on kernel density functions for Monte Carlo integration).
Univariate distribution functions are one to one mappings, for this reason numer-
ical simulation can be easily implemented. On the other hand, simulation from
multivariate distributions can be very challenging.

Suppose g : SK — R, and we want to compute its integral with respect to the
probability measure P. Suppose P is the K dimensional joint distribution function
related to P with density with respect to the Lebesgue measure equal to p. Then,

PoX) = [ aGp(ax
= Mlgx)px)],

Suppose }SK ! < 00, and X1, ..., Xy is a sample of pseudo-uniform random variables
in S%; then PY [G (X) |AX|p(X)] is an estimator for A* [G (X) p (X)] in the sta-
tistical sense. This is the basic result which justify Monte Carlo integration. More

generally, we may be interested in integral optimization problems, i.e.

sup Pg (X),

ge®
where g : S¥— R is a function in some class of functions &. We have in mind the
maximization of expected utility and many other simulation problems in financial
economics. This procedure requires uniform convergence over &.

In most financial applications, SX = R¥. In this case, the usual MC integral
for functions with infinite support requires us either to simulate data from a mul-
tivariate kernel density function, or to truncate the support to a level, say AX,
where }AK ! < oo such that PAX = 1 — ¢ for € very small. A measure P which
satisfies this requirement for A®¥ compact and arbitrary € > 0 is called tight (e.g.
van der Vaart and Wellner, 2000, for details). Tightness of measures allows us to
apply MC integration to random variables with infinite support by truncation to a

suitable level.



Consistency of MC integration follows from results in the statistical literature
and in particular from the empirical process theory. In particular, the MC integral
can be shown to be Glivenko-Cantelli (i.e. uniformly almost surely convergent) over
a wide class of functions and Donsker (i.e. converges weakly to a Gaussian process).
The reader is referred to van der Vaart and Wellner (2000) for general details
on uniform convergence. Weak convergence (i.e. convergence in distribution) is
a desirable property used to bound the error in the integration by probabilistic
arguments when pseudo-random numbers are used.

However, it is well known that the convergence rate attained using uniform
random numbers is of order N~2 as opposed to the rate attained by the use
of quasi-random numbers. In this case, the error is O (N “1(nN )K> whenever
the integrand with respect to the Lebesgue measure is of bounded variation (e.g.
Spanier and Maize, 1994). The method used in this paper is clearly not restricted
to the use of pseudo-random numbers. However, for simplicity of exposition, we

will usually only refer to the use of uniform pseudo-random numbers.

2.1 Linear Transformations for MC Integration

Let X := (X, ..., Xk) be a random vector with values in (SK,SK) andg: SK — S.
Let P be a probability measure (clearly, the discussion is valid for any positive
finite measure). Suppose that the Radon-Nikodyn derivative of P with respect to

M exists. Then, consider the following
Py(X)= [ 9(p(x)dx.
SK

where p (x) is the density corresponding to P. If }SK } < 00, then there exist a linear
transformation 7 : [0,1] — S¥X such that x :=7u <u € [0, 1]K> and

Pg (X) = 2\ [p (Tu) |SK} G (Tu)] ;

e.g. for SK :=[0,b]"
(.1'1,...,33]() = (bul,...,buK).

Then we can generate uy, ..., uy, which are [0, 1]K pseudo-uniform random numbers.
The Monte Carlo integral is then defined as

Py [p(Tu) [S*|g(Tu)].

Whenever possible, one may generate a sample X, ..., x from p (x) and define the

MC integral as Py ¢ (X) directly. This is an importance sampling MC integral.
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2.2 Importance Sampling via Non-Linear Change of Vari-

ables

Under the same conditions of the previous subsection, there exist a non-linear
transformation Q : [0,1]* — S¥ such that for x :=Qu and the Jacobian J (u) :=
det |dx/dul

Pg (X) = A< [p(Qu) J (u) g (Qu)].

This transformation does not require }SK ‘ < 00. Then, by usual MC integration,
we generate uy, ..., uy, which are [0, 1]K uniform pseudo random numbers. The MC

integral is then defined as

Py [p(Qu) J (u) g (Qu)].

A natural non-linear transformation is based on the quantile transform, which is
related to the copula representation of joint distributions. We recall the definition
of copula function. Let P be a K dimensional distribution function with one
dimensional marginals F1, ..., Fx. There then exists a function C' from the unit K

cube to the unit interval such that

P(z1,...,xx) = C (Fi(x1), ..., Fk(zK)) ;

C' is referred to as the K-Copula. If each Fj is continuous, the copula is unique
(e.g. Sklar, 1973).

Since the whole theory and construction of copula functions is independent of
the marginals we may define joint distributions by looking at the copula and the
marginals separately. There are many different copulae. For financial applications,
one would look at those that allow us to model increasing dependence as we move
to the tails together with asymmetry between lower and upper tail (see Joe, 1997,
for a list of copulae). More details on the copula function can be found in Appendix
A.

Let P (x) be the joint distribution of the vector random variable X = (X1, ..., Xx)
with respective marginal distribution functions F (x1), ..., Fx (xk). Further, let
C (uq,...,ugx) be their copula with copula density c(uy,...,ux). If the marginals
are continuous, we know that the copula is unique. Let g : S — S be a uniformly
integrable function, and suppose we want to compute Pg (X). If X had compact

support, it would be quite simple to compute the corresponding integral. However,



if SK = RX using the copula function, Pg (X) can be written as

Pg(X) = / g (%) p (%) dx

RK

= / g (F7M (w) ooy Fict (uk)) e (un, ooy uge) dug, ..., ug,

[0,1)%

where Fj_1 is the quantile function, i.e. the inverse of Fj. This shows that the
Riemann Stieltjes integral over R® can be transformed into an equivalent integral

over [0, 1]K. Therefore, the above integral is just the expectation of

g (FrH (w) o, it (uk)) e (g, . ug) (1)

with respect to the Lebesgue measure A\X in [0,1]% . We can directly solve the
integral by Monte Carlo simulation. This is done by simulating N (K x 1)-vectors
of iid uniform [0, 1] random variables and evaluating (1) at these points under the
empirical measure, i.e. Py. This makes the solution of such a problem trivial. (This
procedure implicitly requires that F~! can be computed either in closed form or
numerically at each simulated point. Choosing a marginal distribution with closed
form quantile function may considerably simplify the procedure.) It is apparent the
similarity of our approach to importance sampling MC integration. The non-linear
change of variables is such that the uniform marginal density over [0, 1]K becomes
the natural choice of kernel density from which to simulate.

If the copula is not differentiable, we can simulate from C (uy, ..., ux) and then
use those N simulated (K x 1)-vectors of [0, 1] uniforms to compute the expecta-
tion of g (Qu) under the empirical measure. Simulation from a copula is a standard
procedure. (For convenience we collect some of the results in Appendix C.) How-
ever, simulation from a copula may lead to several problems. In fact, a closed
form solution for the inverse of a conditional copula may not exist, and this would
also require further numerical computations. However, (1) allows us to circumvent
these problems, only requiring a large enough sample of iid [0, 1]K uniform random
variables. (Notice that simulating from a copula requires it to be differentiable.
Therefore, there is no advantage in computing the expectation of g with respect to
dC instead of using (1) as integrand and computing its expectation with respect to
the Lebesgue measure. However, when using data simulated from a copula, we have
to evaluate a simpler function, i.e. g, instead of a more complicated one, i.e. (1).)
Clearly, the simulated sample may be the same from application to application,

keeping the implementation simple and similar to the calculation of mean statis-
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tics. Moreover, our method is perfectly viable even when quasi-random numbers

are used in order to further reduce the error.

3 Properties of the Method

In this section we look more in depth at the properties of the method by both
theoretical and numerical evidence. In the case of pseudo random numbers, the

error in the MC integral can be estimated by

sy = —Nl_ 1 ;9 (Xi)2 - —N]\_f 1 [;9 (Xz)]
- T L o) k)

1<i<j<N

To provide more intuition on our results, suppose g is Lipschitz of order one in
each argument (e.g. DeVore and Lorentz, 1993, for definitions). Let (,) be the
inner product and Cg a K-dimensional vector such that (C,C) < oo. Then, for

Cgk being the Lipschitz constant of g,

g (%:) = 9 (x)] < (Ch, [xi = %) (2)

so that s depends on both the smoothness of g and on the points x, ..., xy. On
the other hand, should we use quasi-random numbers, then the Koksma-Hlawka
inequality gives an upperbound in terms of the variation of g and the discrepancy
of X1, ..., Xy (e.g. Spanier and Maize, 1994, for an excellent review and definitions).

From (2), we may deduce that for a given N, it is reasonable to use a high
proportion of data for those areas where the integrand is less smooth, and a rela-
tively smaller proportion for the rest, in order to improve on the MC methodology.
After discussing some of the properties of the method in details, we will outline a
procedure that takes advantage of previous knowledge concerning the smoothness

of the integrand in order to reduce the error.

3.1 Comparing the Error of the MC Integral under Differ-

ent Transformations

As mentioned above, the error involved in MC integration can be bounded using

probabilistic arguments if iid random numbers are used, or the Koksma-Hlawka



inequality in the case of quasi-random numbers. Here we will compare the usual

MC integral with our new approach. Consider the following integral

f(x)dx

AK

and a discrete approximation of AX (}AK ‘ < o0) by N hyperrectangles h;, i =
1,..., N such that |h;| < h%. Therefore, f (x)dx ~ f(x) |h;|. Consider the integral
transformation Qu := (F{ ' (w1) ..., Fg' (uk)) for Fj, : R —[0, 1] and write f}, for
the derivative of F} with respect to the Lebesgue measure (k =1, ..., K),

/ f(x)det
[0,1)%

Then, we consider a discrete approximation of [0, 1]K by N hyperrectangles h}, i =
1,..., N such that |h}| < h*/|AX|. Therefore, f (x)det|2|du ~ f(x)det |2| hy,
and f(x)|h;| — f (x)det | 2| |h;| = f(x)h" (1 — det | 2| /| AX]). We need to con-
sider (1 —det|%|/|AX|) or equivalently to det|%2| — 1/|AK|. If F} is a distri-

bution function, then det !Z—;‘! = HkK:1 fr is a joint pdf of random variables which

dx

du.
duu

are independent, while 1/ ’AK ! corresponds to the joint pdf of random variables
that are independent and uniformly distributed over AX. Therefore, the sign of
(1 — det }%‘ / }AKD will depend on the shape of the marginals f, £ = 1,..., K,
and the size of the set AX. For example, suppose the f,’s are monotonically de-
creasing in z. Then, det | 22| —1/|AX| > 0 for [|x|| — 0 and det | 22| -1/ |A%| <0
for ||x|| — oo. Clearly, as either K — oo or |A| — oo, det |22 — 1/|AX| > 0.
These remarks show that we may expect the copula based MC integral to be prone

to error in the tails of the distribution.

3.2 A Modified Integration Procedure

The copula based MC integral leads to a change of variables that produces the
Jacobian J (9x) = [Hszl pdfi (xk)] _1. Therefore, J(u) — oo on any edge of
0, 1]K for any pdf with support on the real line (this is just a consequence of the
integrability condition for pdf’s). This makes the integration possibly unstable in
these areas. For this reason, we may advocate the following modified procedure,

which is further justified in light of the previous remarks. Consider the following
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integral transformation

PG (X) — / G (Fr (wr) s oo Fi () € (utt, o i)

[e,1—€ %

+ / G (Fr (w1) ooy Fie' (ur)) € (ua, ooy uy) du

[0,1%\[e,1—¢)

so that each integral can be approximated by a copula based MC integral. For
s > 1, generate sN uniform random variables in [0,1]%, say (uy, ..., u,y) . Choose
€ > 0 such that AKX = [¢1 —e]K C |0, 1]K. For j =1,...,sN, if u; € [¢1 —e]K
delete u;. Then, we would end up with a new series, say (uj,...,u}y,) where u} ¢
e, 1 —e]K, j=1,..,N' and PN’ = sN |[0, 1]K—AK . Then, define N = N —
sN ‘[0, 115\ A% ), and generate N” uniform random variables in [e,1 — ¢
(uf,...,u}). Therefore, N = PN’ + N”. Then, we perform the MC integral over
the two regions AX and [0,1]% \ AK:

) say

PG (X) ~ P [p (Qu) J (u) )[o, 1% \AK‘ G (Qu)} +PY, [p(Qu) J (u) [AX] G (Qu)] .

(3)
For s = 1, the procedure collapses to the direct copula based MC integration, i.e.
AE =0, 1]K. Therefore, s is used to increase the proportion of uniform pseudo-

random in [0,1]% \ AX, where the integrand has larger variation.

3.3 Some Numerical Evidence

Let X and Y be two random variables with values in R. Suppose we are facing the
following problem PXY. We consider three different cases for the joint density of
X and Y:

1. the bivariate standard normal density with correlation p,

1 exp { (2® + y* — 2pzy) }
21y/1 — p2 2(1-p?)

2. the Kimeldorf-Sampson (KS) copula density with standard normal marginals

I

¢ (z,y;p) =

(14 06) (uv)_5_1 (u_‘5 +o0 0 — 1) " "¢(x)p(x), (4)

where ¢ is the univariate standard normal density, u = ® (z), v = ® (y), and P is

the Gaussian distribution;
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3. the translated Kimeldorf-Sampson (KS) copula density with exponential marginals
(1+6) (@) (@t + 0 —1) 77 “exp{—a}exp{—y}, (5)

where v = (1 —u), v = (1 —v) withu =1 —exp{—2z}, and v =1 — exp{—v}.
Notice that this is just the usual KS copula density (e.g. Joe, 1997), but rotated
by an angle equal to 7, so that the lower tail (at [0,0]) now corresponds to the
upper one (at [1,1]).

The normal density is the most common choice of density and results are often
derived under normality assumptions. For this reason we think it is necessary to
evaluate the properties of our copula based approach in this case despite the fact
that this distribution is found to be not particularly appropriate to model financial
returns.

The second choice of joint density retains the normal distribution for the marginals,
but allows for a more complex dependence in the variables. In fact, the KS cop-
ula captures non-linear dependence in terms of lower tail dependence. This means
specifically that random variables become more dependent as they tend to mi-
nus infinity (i.e. large losses). This appears to be an important property when
modelling joint financial returns: asset returns are more dependent when they are
negative (Silvapulle and Granger, 2000, Fortin and Kuzmics, 2002 for the case of
daily financial returns). To give a feeling of this parametric specification, Figure I

shows the counterplot of the KS copula.
[Figure I

For our third choice of joint density we had financial applications in mind. We
were thinking about financial losses, so that we model positive random variables.
For example, if we were to model daily financial returns, the modified Weibull
distribution or the double gamma could be good choices (e.g. Knight et al., 1995,
and Laherrere and Sornette, 1998). The exponential distribution is nested into
these distributions, so it might provide a suitable choice to model losses in real
problems. Again, the choice of KS copula is of interest. We notice that, once
it is translated, this copula density exhibits upper tail dependence. This means
specifically that random variables become more dependent as they tend to infinity
(i.e. as losses increase).

In our numerical examples we choose N = 10,000, 100, 000. Then, for each N,
we compute the expectation of the MC integral and its standard deviation by use

of 500 simulations of size N. Further we just set ¢ = .05, and s = 1.5; while it could

12



be interesting to try different values of s and e, for simplicity we do not pursue this
route.

Then, results are reported for the mean and the variance of the following 5
approaches:

1. The approximate MC integral (AMC,), truncated over a set A2

| A2| P [zyp (x,9)]
where z := |A| (u; — min (A)) y := |A| (uz — min (A)). In this case the standard
errors are not reliable as they are computed over a finite subset of the actual support
of the functions considered.
2. The importance sampling MC integral (ISMC), where the marginals are used

as kernel densities to simulate the random points, i.e.
PR [wye (Fx (x), Fy (y))],

where p (z,9) = ¢ (Fx (2), Fy (1)) fx (2) fy (y) and Fy (z) , fx (x) are the marginal
distribution and density of X (similarly for Y').

3. The copula based MC integral (CMC),
Py [Fx' (u1) Fy' (us) e (ug, ug)] -
4. The modified CMC (MCMC) defined as MCMC:=MCMC,+MCMC, where

MCMC; is the modified CMC over A%, and MCMC, is the modified CMC over
[0,1]*\ A2 (see (3) above).

3.3.1 The Bivariate Normal

In this numerical investigation, we consider the following sets A% = [—2.5,2.5]°,
[—5, 5]2, [—10, 10]2, and the following values for p = .2, .5, .8.

[Table I

3.3.2 The KS Copula with Normal Marginals

Again, we consider the following sets A2 = [—-2.5,2.5]%, [=5,5]*, [~10, 10]* and the
following values for the dependence parameter in the copula, 6 = .31, .76, 1.55,
3.19, which correspond to the following values of Spearman’s rho pg = .2, 4, .6,
.8. Spearman’s rho is a measure of dependence that is invariant of the marginals,
as it corresponds to the covariance between distribution functions (Joe, 1997, for
details). Results are reported in Table II.

[Table I1]

13



3.3.3 The KS Copula with Exponential Marginals

In this other numerical investigation, we consider the following sets A2 = [0, 10]2,
[0, 20]2 , 10, 30]2 and the following values for the dependence parameter in the cop-
ula, 6 = .31, .76, 1.55, 3.19, which are the same values as in the previous example.

Results are reported in Table III.

[Table II1]

3.3.4 Comments on Results

The results from Tables I-III show that the AMC has lower variance, but this
is just due to truncation of the support. Therefore, the standard error is not a
reliable indicator of the error. Further, as we increase the size of the approximating
support (i.e. A?), the variance appears to grow linearly in |A?|. In a sense, AMC
corresponds to an extreme case of importance sampling, i.e. we just do not sample
from the region outside the truncation. As mentioned in the introduction, this
approach can be ”"dangerously” inaccurate when the dimension increases due to
the curse of dimensionality.

Using the copula function, a more natural approach is the ISMC integral, where
we use the marginal pdfs as kernel density functions from which to sample the
data. The results show that this is a clear competitor to our method. However, the
following is worth noticing. Our integral transformation leads to surfaces which are
usually simpler to characterize. For example consider (4). Then, our integrand, is

given by

1
—1-2

ry(1+6) (@@ o) (2@ +ew) " 1) F oo @),

and Figure II shows its plot before and after the transformation. The surface
becomes much more regular with a clear monotonic behaviour on the tails. Though
we do not claim that this may always be the case, the discussion in Section 3.1
shows that this pattern can be expected when our approach is used. This makes
automatic use of importance sampling in our approach. Our integrand will be
expected to exhibit higher variation on the edges of the hypercube under most
standard integral problems. Therefore, one can directly use this previous knowledge
to achieve fast and simpler MC integral estimates. While we did not make any
attempt to ”calibrate” the parameters of the MCMC integral, results appear to
be quite promising as the sample increases, providing similar answers but with a

(usually) lower error. We might further reduce the error in the MCMC integral
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from O <N_%) to O ((ln N)¥ N‘l) by use of quasi-random numbers.

[Figure II]

4 Further Discussion and Financial Applications

The scope and application to finance of the method presented in this paper is quite
large. In fact, the copula function allows us to model financial problems in a fashion
that is more realistic and flexible. It is convenient to discuss some further details
about the copula function in a time series context and the use of distributions
with close form quantile function. This discussion is required in order to enhance
the possibility of solving many financial problems. The Section concludes with

examples of applications.

4.1 Conditional Integration for Discrete Time Stationary

Markov Processes

The copula based MC integration can be applied to financial problems of differ-
ent nature, e.g. discrete time stationary Markov processes. Let p (Xo, X1, ..., X7)
be the joint density of the Markov process (X;),., with invariant distribution
function F'(X;) and density f (X;). Further let C (_ut,utH) and C;; (ut, ut+1) be,
respectively, the copula function and the partial derivative of the i = 0,1 7 = 0,2
argument of the copula of (X;, X;11),t—1 < T. Let g : R*— R be some uniformly
integrable function. Again we may want to compute its expectation, but this time
conditional on the information at time 0, i.e. P[g (X7, ..., X1) |Fo] with respect to
the joint density p (Xo, X1, ..., Xr), where Fy is the filtration at 0. Using the fact

that the process is Markovian,

]P|:g(X1,...,XT) X0:| = /g(l‘l,...,Z’T)p(m(],ml"”’xT)d.Tl"'d.?ZT
f(iUo)
RT
T-1
= /9 (xla ‘e QUT) H 0,12 (F (xt) F ($t+1)) f ($t+1) dl’t+1
BT t=0
T-1
= / g (F Y(ur) s, B (UT)) C12 (ug, ugy1) dttgyr.
t=0
[0,1)"
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By the same argument as above, this integral is just the expectation of

T-1

g (F~" (), ... F " (ur)) T Coaz (e wa41)

t=0

with respect to the Lebesgue measure over [0,1]" and it can be dealt exactly as
in (1). If one had to solve the integral, simulating from the copula, the procedure
would be simplified by the Markov condition, but difficulties would be likely to

arise in an arbitrary context.

4.2 Expectations of Functions of Continuous Martingales

We would not provide a complete setup for our integral transform if we did not
consider the continuous time framework which is central to the theoretical devel-
opment of mathematical finance.

Let (Xt),>( be a continuous process which admits the following decomposition
Xt — At + Mt,

where A; is increasing and deterministic, while M; is a martingale. This setup is

equivalent to
My = X; — Ay,

i.e., it only requires us to consider expectation with respect to M;. From (16) in
Appendix A.2, M; has time copula

C|t—s| (u, U) _ / ) (\/ <M>t(I)_1 (U) TV <M>8CI)_1 (h)) dh,
VI, — (M),

with copula density (see (18) in Appendix A.2 and (13) for the definition of (M),)

O () — 6 ((W@ﬂrl (v) — /), 0 <u>)> (1), |
| VIO, = (M) ] & (@1 (0)) V/I(M), = (M),]

where ¢ (...) defines the standard normal density.

[0,4]

Let g : R — R be a uniformly integrable function, then P [g (X;) |Fs], s < t, can

be written as

Plg (4 + M) |F] = /g(At+y> <M>1_<M>¢< <My>__“””<M>>dy

R t

- / g (A4 27" (v)) C"{;S‘ (u,v) dv.

(0,1]
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Therefore, we can calculate the Monte Carlo integral of

g (A + @71 (v) O (u,0)

using a series of iid uniform [0, 1] random variables where u = ® < (”J”M > ) .

s

4.3 Closed Form Quantile Functions

Monte Carlo integration based on our proposed transformation can be further sim-
plified if the quantile function of the random variables has a closed form. Here we
provide a family of distributions that satisfies these requirements and is particu-
larly well suited as a distribution for financial returns. We only need to consider
unconditional marginal distributions. The following modified Weibull distribution

can be used for the assets’ geometric returns z,

pdf () = ql>pab(z — ,u)b_l exp {—a (x — u)b}
+ (1 = q) Ipepya'd (1 — m)b/_l exp {—a/ (u— m)b/}

where x € R, ¢ = Pr(xz > p). (Although in some cases it is appropriate to use
arithmetic returns, we use geometric returns. This is the common approach in
econometrics. Appendix C comments on this and simple extensions of the modified
Weibull that would allow us to describe arithmetic or relative returns.) The returns
are seen to be possibly asymmetric. In the symmetric case, the following alternative
can be considered,

A b—1 b
Sab |z — ] +6) exp{—a(lz—ul+8)'},

1
where 6 = (b;—bl)” and \ = exp{b_Tl} ifb>1, 6 =0 and A = 1 otherwise.

Therefore, the general model can be written as

pdf () = alpswab(e—p+0) " exp{—a(e - p+6)'}
+ (1 —q) Igey X't (p — z + 8" Lexp {—a’ (b —z+ 6)b,}

(6)

where the two possible models are embedded. A particular case of (6) has already
appeared in Sancetta and Satchell (2001). Further, as mentioned in the Introduc-

tion, the use of rational powers of the argument of the exponential function has
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been advocated for modelling unconditional financial returns by Frisch and Sor-
nette (1997) and Laherrere and Sornette (1998), particularly for the intermediate
time scale.

The following features emerge from (6). For b > 1, the distribution is not
unimodal, unless we use ¢, in which case symmetry must be assumed. Therefore,
we can allow for unimodality only at the cost of giving up asymmetry. Fortunately,
data at higher frequencies tend to have b < 1, in which case the density is unimodal
and asymmetry is more common at high frequencies. On the other hand, data at
lower frequencies have b > 1 in which case it is known that they converge to normal,
and asymmetry is less of a problem. Notice that the degree of bimodality is very
low for b greater than, but close to, one. (There is no general evidence about the
extent of unimodality in financial returns; in fact some series may exhibit some
bimodality. Therefore, being able to capture bimodality, if required, can turn out
to be an advantage.)

It is important to notice that the quantile function of (6) has a closed form. This
property has important consequences for the computational issues discussed here.
To our knowledge, other flexible parametric specifications for the unconditional
distribution of asset returns do not have a closed form for the distribution function.
Among these, we recall the double gamma of Knight et al. (1995) and the modified
version of the Weibull distribution as given in Sornette et al. (1999) and Andersen
and Sornette (1999).

4.4 Financial Applications

We conclude the section with three illustrative examples, which highlight the range
of financial applications: 1. the optimal portfolio for an agent with linear plus
exponential Bernoulli utility function, 2. the optimal VaR portfolio, 3. the value

of an Asian option.

4.4.1 Example 1: Optimal portfolio with the linear plus exponential
Bernoulli utility

k
Assume we have a portfolio Z;, := ) w;X; and we want to find the optimal weights
j=1
(w1, ..., wg) restricted to be in the simplex for an agent with the linear plus utility

u(Zy) = aZy — Bexp{—vZ}, (7)
where «a, 3,7 € R, . This Bernoulli utility function has been considered by Bell
(1988). Let ' stands for first derivative of u(Zy) and similarly for the higher
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derivatives u” and «”. Then, (7) is one of the only two possible Bernoulli utility
functions that satisfy u’ > 0, v’ < 0, v"u” < w'u" (i.e. increasing, concave, and
decreasingly risk averse) and allow us to rank gambles in terms of riskiness in a
way that is independent of wealth (Bell, 1988). Further, (7) is the only Bernoulli
utility function that satisfies what is called the strong one switch condition. The
strong one switch condition says that the independence axiom can be violated
because of a change in perception of risk after an equal certain amount of money
has been added to each lottery. However, such a change can occur only once (see
Bell and Fishburn, 2001). Similar conditions lead to the identification of specific
Bernoulli utility functions in the case of multiplicative gambles, i.e. relative prices
(see Pedersen and Satchell, 2001, for an exhaustive treatment). Because of these
optimal properties, (7) has been proposed by Bell (1995) as the reference Bernoulli
utility for financial economics when gambles are additive. (Clearly, our framework
works equally well for relative prices.)

Using the notation above, the optimal portfolio problem for an agent with
Bernoulli utility (7) is given by

sy LG ol )

1<k<K (RK

dP (%1, ...,xK)

with
K
k=1

Using the simple quantile change of variables, we just need to compute

/ [oz (Z wp ! (uk)> — Bexp {—7 (Z wp (uk)> }] c(ug, ..., ug) duy - - - dug.

[0,1]%

(8)
This can be done very easily by Monte Carlo integration if we have an iid sample
of uniform [0, 1]% random variables. For arbitrary distributions P (z1, ..., zx) , the
problem would require us to compute the Laplace transform of a portfolio, and

closed form solutions might not exist.

4.4.2 Example 2: Optimal value at risk portfolio

Tail probabilities and quantiles are of great interest to risk managers. Here we

consider how our simulation procedure can be applied in this context.
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Let X, = —Xj, where X;,1 <k < K, is a random variable with values in R.
Consider the cumulant generating function of

K

Zi =Y wp Xy,
k=1

K
In (Pexp {aZkak_}> ,
k=1

which is a convex function in . We define

G = argmax{az—ln <Pexp{a2kak_}>} 9)

for some real z > 0. By the usual saddlepoint approximation for tail probabilities
(see Daniels, 1954, or Barndorff-Nielsen and Cox, 1989, p. 182) we have

1.e.

Pr (Zk_ > Z) ~ eXp{_f (@,2_710)}

, (10)

N

a (2mg (&, w))

f(a,z,w):= {ézz —1In (Pexp {&Zkak_}> } ,
g (G, w) = [(%) In (]P’exp {dZkak_}>] R

(The formal validity of (10) requires a four times differentiable cuamulant generating

where

and

function. In which case, if w; — 0, Vj € J, as card (J) — oo (i.e. as the number
of assets in the portfolio tends to infinity), the approximation can be shown to be
asymptotically valid. In particular, we require 24 — 0, where x4 is the kurtosis of
the portfolio and 2 is its variance. The quality of the approximation is determined
by the speed at which the fourth cumulant converges to zero. It is interesting to
compare the condition 24 — 0 with the remarks in Sornette et al. (1999) and the
problems related to straight minimization of o2 due to its negative influence on =,
i.e. large portfolio risk.) Notice that we are using a leading term approximation
for the distribution and not the density; for this reason we standardize by & (see
Daniels, 1987, equation 3.3). This result is very much related to the large deviation

principle. In fact, by Markov’s inequality,
Pr(Z; > z) < exp(—az)Pexp (aZy) (11)

20



and we need to find the optimal «, i.e. minimize with respect to a. The only
difference lies in the fact that we are not standardizing by a factor proportional to
g (&, w), which is a function of the portfolio weights. Results related to (11) have
been considered by Stutzer (2002) in a utility context.

If we want to minimize the probability of our portfolio being below some level
K

z, we need to compute (9) where Pexp {a >owp Xy } can be calculated exactly in
k=1

the same way as in (8). Then, the optimization part is standard and consistency

is assured by uniform convergence.

4.4.3 Example 3: The Value of an Asian Option

Here we provide a specific example on how the quantile transform can be used
to value an Asian option under the Esscher transform in a discrete time setting.
Although many pricing kernels could be used, the one obtained via the Esscher
transform is a popular one that can be justified on an expected utility ground.
Indeed this approach can be seen as a special case of a more general approach
based on utility optimization (see Jackwerth, 2000, and the applications in Knight
et al., 2000).

Assume that we want to price, at time 0, a contingent claim written on some

arbitrary payoff function g (St), where

T
Sr="S+> X

t=1
and (X;),.p is a discrete time homogeneous Markov process which has a financial
interpretajcion as a price increment process. This means that the price process
is not Markovian, i.e. the increments are not independent. However, these price
increments are assumed to be stationary. By appropriate choice of copula function,
this set up may cover cases where relatively high and low returns are likely to be
followed by large absolute returns allowing also for asymmetry. (For example, this

would capture the salient features of models like the asymmetric GARCH.) Let
T

Zr =Y X, Foy be the natural filtration of St at time 0, and write pdf (Zr|F) for
=1

the pdf under the objective probability. Then, using the Esscher transform (e.g.

Biithlmann et al., 1998, for this specific application of the conjugate density) a risk
neutral density is given by

exp {&Sr}

pdf* (Sr|Fo) = P lexp {&ST}]pdf (Sr|Fo) (12)
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where

& = argmax (aZr — InPlexp {aZr}]) ,

and Zp := PZp. The expectation of the payoff function g (Sr) will have to be
calculated with respect to pdf* (zr|Fo). Now, define

Z——KO]

+

g(S7) = max

S,
2K
T

t=1

)

which is the payoff function for a discrete time Asian option. (Notice that in reality,
Asian options can only be in discrete time, and not in continuous time as usually

postulated in theory.) Since we condition at time 0, we can write

so that we have

Plg (Pr)|F] =

T
T exp {&zr}
;t— — (K — Sp) mpdf (27| Fo) d2r
T

I
%\ T~
Fﬁ
ks
|
N
83

T
exp { Z xt}
t .
. [exp {CVZ }] pdf (xlﬂ s Z’T’fg) dflj'l de,

but using the Markov property, we have

T
pdf (@1, ..., x7|Fo) = H%

=1
where pdf (z) is the time invariant density for any X. If the process (X;),., has

copula density ¢ (u, ugy1) , and writing F’ () for the invariant distribution function,

Plg(Sr)] = /

[0,1]"

T
e {a X P (w)} o
t=0
d
Plop @z AL w)dus

t=1

we have

) %F_l (ur) — (K — 50)]

t=1
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where we assume & had been previously calculated in a way very similar to the
previous example. Clearly, the integral may be very complex, but amenable to

Monte Carlo integration. With a simulated sample of iid uniform [0, 1]T random
T

variables, the integral with respect to [] du; can be calculated straightforwardly
=1
as a mean-like statistic, and the error bounded by means of probabilistic argu-

ments.(Unless « is given, using the a obtained by a previous maximization of a
Monte Carlo integral leads to an incidental parameter problem. Since we may con-
trol the standard deviation of a by choosing the size of the simulation, this is not a

problem in practice.) Again, no simulation from the joint distribution is required.

5 Conclusion

We have shown that the quantile transform arises as a natural application of the
copula function. The copula representation allows us to transform arbitrary inte-
grals into integrals on the hypercube. The copula based MC integration is concep-
tually related to importance sampling MC integration, but simpler to use in general
situations. Moreover, we showed that the transformation leads to a somehow pre-
dictable shape of the integrand, i.e. more mass and variability can be expected on
the tails, while little variability on the centre of the hypercube. In a sense this is
the opposite of what happens when we deal with integrands like the one depicted
on the top panel of Figure II. This predictability can be further exploited by a
modified copula based Monte Carlo approach as described in the paper. Numerical
results support the use of this approach. While we did not focus on using quasi-
random numbers, it is clear that the theory about quasi-random numbers directly
applies within the context of our approach.

Since integrals on the hypercube are amenable to numerical computation via
Monte Carlo integration, a great number of problems in finance can be solved by
simply using this technique. The technique can be employed in cross sectional
kind of problems, discrete time Markov processes and for continuous martingales.
In particular, to show the scope of the applications in finance, we provided several
illustrative examples in the context of portfolio optimization and contingent claims
valuation. The procedure is further simplified if marginal distributions with closed
form quantile function are considered. We have shown that a family of distributions
very naturally arises in this context, i.e. modified versions of the Weibull distribu-
tion. Since modified versions of the Weibull distribution have been advocated by

some authors to model daily asset returns, this choice provides both computational
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simplicity and a realistic parametric specification.
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Copula Representation of Multivariate Distri-
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The purpose of this appendix is to present some results about the copula function

and Markov processes. At first, we recall a few properties of the copula function
itself (e.g. Scarsini, 1989):
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(1) C is increasing in all its arguments. Notice that we use increasing to mean
nondecreasing;
(2) C satisfies the Fréchet bounds, i.e.

max (0,u1 + ... + uxg — (K — 1)) < C (w1, ...,ux) < min (uy, ..., ug) ,

which implies Cp is grounded: i.e. C(uy,...,ux) =0 if u; =0 for at least one j,

and C(1,...,1,u;,1,...,1) = uy;, Vj;
K
(3) Il u; is a copula for independent random variables, i.e. the product copula;

7=1
(4) C is Lipschitz with constant one, i.e.

K
|C($17 "'7IK) - C(yh "'7yK)| < Z |mj - yj| )
j=1

(5) For j =1,..., K, let uj = Fj(x;) be the distribution function of x; and v; =
G, (y;) be the distribution function of y; = g; (z;), where g; (...) is an increasing

function , then uq,...,ux and vy, ..., vg have same copula function.

A.1 Discrete Time Markov Processes and the *-Product

Financial time series are obtained in discrete time. For this reason, it is com-
mon in econometrics to use discrete time models. Given the copula C (u,v), the
conditional copula is given by
oC (u,v)

ou

To see this, in the case of random variables with differentiable and strictly increasing

C (vlu) =

distribution functions, use the chain rule,

9C (u,v)  9C (u,v) Ou (x)
or  Ou or

and notice that ag;m) is the density of = (see Theorem 3.1 in Darsow et al., 1992,

for the proof in the general case). In the sequel, we will write C; to denote the
partial derivative of C' with respect to its j** argument. In order to define Markov
processes in terms of the copula function we need to define the *-product and use
results from Darsow et al. (1992).

Definition 1. (Darsow et al., 1992 ). Let A and B be 2-copulae, then

(A% B) (uy,uy) := /A,g (u1,v) By (v, u2) dv.
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Theorem 1. (Theorem 3.2 in Darsow et al., 1992) Let (X;),.r, be a real
stochastic process where for each s < u < t, X, and X; have copula Cy. Then, the
following are equivalent:

(i.) the transition probabilities P (s,z,t, A) = Pr (X; € A|X; = z) satisfy the Chapman-

Kolmogorov equations

P(s,w,t,A):/P(u,ﬁ,t,A)P(s,x,u,df)
for all Borel sets A, s <u <t, s,u,t €T, and = € R,
(13.) for s <u<t, s,u,t €T,

Cst = Csu * Cut-

We note the following generalization of the *-product (see Darsow et al., 1992,
for details).
Definition 2. (Darsow et al., 1992 ). Let A (uq, ..., up_1,v) and B (v, Upi1, oy Unsm)

be, respectively, a n-copula and a m-copula, then

(Ax B) (U, oy Upym) 1= /A,n (U1, ooy Un—1,0) By (0, Unt1, .o, Untm) dV,
0
where (A% B) (U1, ..., Uptm) 1S a n+m-copula.
Remark. Clearly (A% B) (u,1,v) = (A x B) (u,v).
Theorem 1 is a necessary condition for the existence of a Markov process. For
this reason we need the following.
Theorem 2. (Theorem 8.3 in Darsow et al., 1992). (Xi),cp is a Markov

process if and only if
Ctl...tn = Ctm * Ct2t3 ko ok Ctn_ltn-

The set of all 2-copulae defines a Markov algebra with respect to the *-product
(Darsow et al., 1992). This result is very useful for applications where one defines
a dynamical system that can be characterized in terms of Markov processes.

Let C be the set of all copulae. Then, the following establishes that any copula
generated through means of the *-product is a copula.

Theorem 3. (Darsow et al., 1992). If A,Be C, then A*Be C.

Theorem 1 and 3 allows us to generalize multiplication of finite dimensional
discrete time Markov chains to infinite dimensional ones. This isall we need in order
to work with the transition densities of discrete time Markov processes. (Issues in
terms of continuity may arise when working with the *-product, see Darsow et al.
(1992).)
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A.2 The Time Copula for the Transition Distribution of

Continuous Martingales

While the discrete time setting is quite natural and common in econometrics, a
great part of financial mathematics uses continuous time Markov processes for the
price dynamics. This implies that returns are independently distributed. The
copula for continuous time Markov processes is also referred to as the time copula.
Darsow et al. (1992) appear to be the first to have given an example of the
time copula, i.e. the copula for Brownian motion. Following Kéllezi and Webber
(2001), we can identify the conditional copula function for continuous martingales.
These last authors derived the time copula for some semimartingales. Here we
only consider the case of continuous martingales. Let (M;),5,, be an F; adapted

continuous martingale such that lim; ., (M), = oo almost surely, where

(M), = / (M,)? ds (13)

is the quadratic variation. Then, we have the following well known representation
for (Mt)tZO
(14)

almost surely for 0 < t < oo, where B; is Brownian motion at time ¢ (e.g. Karatzas
and Shreve, 1991, p. 174). Now, following Darsow et al. (1992) the time copula
for the |t — s| increments of a Brownian motion is given by

<(V€®_1“0__VG®_IUO)>dh (15)

c*ﬂmwy=/¢

[0,4]

VIt = sl

where @ (...) is standard normal cumulative distribution and ®!(...) its quantile
function. Using (14) and (15), we have that the |t — s| increments of (M;),-, have

the following time copula

(VO (v) - )2 <h>)) @ (16

Clt=l (u,v) =
(. 0) /q)( Vo, = n.

(0,4]

which is a special case of quantile transform for Gaussian random variables.

The copula density is directly obtained from (16) by differentiating with respect

(M)

to each argument and making the change of variables u = ® and v =

s
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1 -1
Yy ith dz — z dy _ Yy
() o - )] st )]
where ¢ (...) is the standard normal density, i.e.
exp (y—a:)2 22
2|(M),—(M),| [ €XP { (M), }
Ver (M), — (M),| \/2m (M),

xy/ (M), |6 | —— (M), ¢ [ —= (17)
(M) VO,
(9_1)2 -1
eXp{2|<M>t—<M>s } o0 [¢< y )

VM),
|

()

o~

)
VI, =\ VI, — (M), (M),

_ (1), ¢(\/Z<I>‘1(v>—<1>‘1(u>>' 18
6 (@71 () VIO, =D\ VM), — (M) ]

B Simulating from Multivariate Distributions

We give some information on how to simulate observations from an arbitrary K
dimensional multivariate joint distribution. A recent reference is Li et al. (1996).
At first, K independent vectors of independent uniform pseudo random numbers
are generated. The j** vector of random variables is then generated by inverting
a copula function conditional on an increasing number of variables. If P is a K
dimensional distribution function with one dimensional marginals Fi, ..., Fk, the

copula function C' is such that
P(xl, ceny xK) = C(Fl(ﬂj'l), RPN FK(xK))

Let (X1, ..., Xk) be a K vector of random variables with joint distribution P and
marginals F;, 1 < j < K, and (Uy, ..., Uk ) be a vector of independent uniform [0, 1]

random variables. Then,

(U17"'7UK) - \I]P (X17"'7XK)
= (FlaF2\1>"'7FK|1,...,K—1)7

where Fj);,. ;1 stands for the conditional distribution of X given o (X1, ..., X;_1),

and o (Xy,...,X;_1) is the sigma algebra generated by (Xj,..., X;_1). Denoting
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FjTll i1 to be the inverse of Fj; . ;_1, we can recursively define our simulated

sample from the distribution P to be

X1 = F'(w)

Xk = FI;|11,...,K—1 (ug|X1,..., XK-1).

Let Ck(...) be the copula of Fi(X;), ..., Fx(Xk), and Ck_4(...) be the copula of
Fl(Xl), ceny FK—l(XK—l)a ie.

CK—l(Fl(Xl)a ey FK—l(XK—l)) = CK(Fl(Xl), ceey FK—l(XK—1)> FK(OO))

then

8K_1C’K(u1,...,uK) 6u1 ---6uK_1
0u1---6uK_1 6K—1CK_1 (ul,...,uK_l)’

where uy, ..., ug are the univariate marginals. If K = 2, then

GC(ul, UQ)
6u1

See Darsow et al. (1992) for the proof when K = 2.

While it is conceptually simple, sometimes it may not be possible to invert the

Frp,.ok—1 (X1, ..., Xk) =

Fypp (X1, Xp) =

conditional copula. In these cases, the values have to be obtained by numerical

solution of the nonlinear equation; e.g. Newton-Raphson iteration.

C Geometric Versus Arithmetic Returns and Rel-

ative Prices

Geometric returns may lead to some problems, and in some cases it is preferable
to use arithmetic returns. Actually, if z is a log-return, we could just substitute
exp {z} — 1 for the arithmetic returns or just exp {z} for relative prices. Since this
changes only the integrand, there is no difficulty involved. However, it is well known
that evaluation of exponential functions is slower. Therefore, from a computational
point of view, it would not be advisable to use this method when time is an issue.

Because of this and possibly other theoretical problems, it may be convenient
to model arithmetic returns directly. Fortunately, arithmetic returns can still be
represented using (6) by simple truncation below -1. The model can be written in

more general terms as

wab (|z — p| + 6)" " exp {—a(|m — pul + 6)b} yifr <z <oo (19)
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where 7 is the truncation level, i.e. 7 = —1; however, we may also find it convenient
to use 7 = 0 when dealing with relative prices. Further, w serves the same purpose
as A in (6) and is given by exp{a (u — 7 + )}, where all the variables have already
been defined in (6). Notice that this specification is symmetric. A more general

asymmetric model can be defined by modification of w.
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Figure I. KS Copula (6 = 0.76).
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Figure II. Integrand Transform

Original Integrand.
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Table I. Bivariate Normal.

AMC[_2_512_5] AMC[_515] AMC[_10’10] |SMC CMC MCMC] MCMCQ MCMC
rho N=10000

0.2 0.1624 0.1998 0.2010 0.2005 0.2002 0.0639 0.1357 0.1996
sd 0.0075 0.0155 0.0290 0.0127 0.0123 0.0064 0.0090 0.0113

0.4 0.3272 0.3999 0.4011 0.4009 0.4002 0.1349 0.2645 0.3994
sd 0.0081 0.0173 0.0329 0.0203 0.0195 0.0071 0.0159 0.0178

0.6 0.4974 0.6001 0.6012 0.6012 0.6000 0.2216 0.3777 0.5993
sd 0.0093 0.0206 0.0402 0.0356 0.0346 0.0085 0.0308 0.0322

0.8 0.6778 0.8001 0.8014 0.8009 0.7991 0.3371 0.4630 0.8001
sd 0.0122 0.0273 0.0535 0.0666 0.0655 0.0113 0.0642 0.0651

rho N=100000

0.2 0.1624 0.2000 0.1998 0.1999 0.1999 0.0641 0.1360 0.2001
sd 0.0020 0.0046 0.0093 0.0038 0.0039 0.0020 0.0027 0.0034

0.4 0.3272 0.3999 0.3996 0.3997 0.3997 0.1352 0.2649 0.4001
sd 0.0021 0.0052 0.0107 0.0060 0.0065 0.0022 0.0046 0.0052

0.6 0.4974 0.5999 0.5994 0.5990 0.5992 0.2221 0.3780 0.6002
sd 0.0025 0.0063 0.0129 0.0108 0.0123 0.0025 0.0090 0.0096

0.8 0.6776 0.7998 0.7990 0.7975 0.7979 0.3378 0.4623 0.8002
sd 0.0035 0.0083 0.0170 0.0219 0.0246 0.0034 0.0185 0.0192

Table II. KS Copula with Normal Marginals.

AMC[_2_512_5] AMC[_515] AMC[_10’10] |SMC CMC MCMC] MCMCQ MCMC
delta N=10000

0.31 0.1709 0.2165 0.2176 0.2166 0.2159 0.0663 0.1499 0.2162
sd 0.0077 0.0161 0.0296 0.0248 0.0196 0.0065 0.0223 0.0233

0.76 0.3499 0.4227 0.4242 0.4231 0.4208 0.1512 0.2706 0.4217
sd 0.0090 0.0195 0.0361 0.0613 0.0463 0.0078 0.0508 0.0514

1.55 0.5339 0.6184 0.6210 0.6198 0.6182 0.2612 0.3555 0.6167
sd 0.0119 0.0260 0.0494 0.1087 0.0813 0.0106 0.0786 0.0792

3.19 0.6952 0.7876 0.7915 0.7889 0.7916 0.3755 0.4094 0.7849
sd 0.0172 0.0363 0.0723 0.1759 0.1158 0.0155 0.1158 0.1171

delta N=100000

0.31 0.1709 0.2166 0.2163 0.2159 0.2160 0.0666 0.1501 0.2167
sd 0.0020 0.0047 0.0096 0.0079 0.0087 0.0020 0.0068 0.0072

0.76 0.3499 0.4228 0.4223 0.4205 0.4207 0.1516 0.2714 0.4230
sd 0.0025 0.0059 0.0120 0.0216 0.0197 0.0023 0.0173 0.0177

1.55 0.5339 0.6185 0.6175 0.6157 0.6152 0.2621 0.3569 0.6190
sd 0.0035 0.0081 0.0165 0.0384 0.0318 0.0032 0.0301 0.0307

3.19 0.6948 0.7867 0.7850 0.7842 0.7830 0.3769 0.4108 0.7877
sd 0.0053 0.0118 0.0234 0.0548 0.0503 0.0049 0.0466 0.0472
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Table III. KS Copula with Exponential Marginals.

AMCj10) AMCpzq AMCpao  ISMC CMC  MCMC, MCMC, MCMC
delta N=10000

0.31 1.2805 1.2858 1.2863 1.2892 1.2867 0.6841 0.6016 1.2857
sd 0.0258 0.0550 0.0817 0.2058 0.1156 0.0129 0.1117 0.1125

0.76 1.5484 1.5556 1.5570 1.5682 1.5607 0.7614 0.8023 1.5636
sd 0.0308 0.0670 0.1001 0.6286 0.3573 0.0185 0.3320 0.3322

1.55 1.7646 1.7728 1.7773 1.7733 1.7890 0.8777 0.9067 1.7844
sd 0.0425 0.0892 0.1346 0.6919 0.6889 0.0288 0.5035 0.5031

3.19 1.9044 1.9182 1.9320 1.8835 1.9407 1.0063 0.9035 1.9098
sd 0.0623 0.1276 0.1919 0.6562 1.1167 0.0452 0.6764 0.6762

delta N=100000

0.31 1.2806 1.2859 1.2860 1.2892 1.2842 0.6844 0.5997 1.2841
sd 0.0079 0.0169 0.0253 0.0648 0.0454 0.0041 0.0305 0.0308

0.76 1.5485 1.5554 1.5553 1.5691 1.5527 0.7618 0.7895 1.5513
sd 0.0094 0.0208 0.0310 0.2251 0.1399 0.0058 0.0870 0.0872

1.55 1.7648 1.7710 1.7705 1.7953 1.7722 0.8779 0.8902 1.7681
sd 0.0132 0.0280 0.0413 0.3674 0.2544 0.0090 0.1518 0.1521

3.19 1.9040 1.9088 1.9072 1.9354 1.9155 1.0055 0.9028 1.9083
sd 0.0201 0.0392 0.0582 0.3838 0.3885 0.0144 0.2438 0.2441
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