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issued from December 2009 to May 2018 is used. We find that random forest has at least as good 
prediction performance as our benchmark-linear regression in the temporal context, and better prediction 
performance in the non-temporal one. Random forest also performs better than the benchmark when 
multiple predictors are excluded in accordance with the importance rankings or at random, which 
indicates that random forest extracts information from existing predictors more effectively and captures 
interactions better without the need to specify them. The results of random forest, in terms of prediction 
accuracy and the minimal depth importance are stable. There is only a small divergence between the 
drivers of catastrophe bond spread in the predictive versus explanatory framework. We believe that the 
usage of random forest can speed up investment decisions in the catastrophe bond industry both for 
would-be issuers and investors.
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1. Introduction

Catastrophe bonds are Insurance-Linked Securities (ILS), first 
developed in 1990s, in an effort to provide additional capacity to 
the reinsurance industry post mega-disasters. The pricing of these 
instruments is particularly challenging as most of these securities 
are traded over the counter. Over the last years, there have been 
several empirical papers trying to address this difficulty by study-
ing the price of catastrophe bonds using real-market data, mainly 
in the explanatory framework, see Lane (2000), Lane and Mahul 
(2008), Lei et al. (2008), Bodoff and Gan (2009), Gatumel and Gue-
gan (2008), Dieckmann (2010), Jaeger et al. (2010), Papachristou 
(2011), Galeotti et al. (2013), Braun (2016), Gürtler et al. (2016), 
Götze and Gürtler (2018), Trottier et al. (2018), and only very re-
cently in the context of comparative studies for machine learning 
algorithms, Götze et al. (2020).

The main orientation of the explanatory based approach was 
to explain catastrophe bond price via means of identification of 
variables having a theoretically material and statistically significant 
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link to it. This was mostly achieved through the use of explanatory 
statistical models. Certainly, the aforementioned works have shed 
light on the drivers of catastrophe bond prices in the presence of 
causal theory. However, there are certain limitations, namely, selec-
tion bias, predictor interactions, non-linearities, and a non-purely-
predictive study goal. Starting from selection bias, the data samples 
used previously often excluded bonds of certain characteristics, un-
usual issuances were eliminated as outliers, and observations with 
missing entries were excluded from data sets, leading to a po-
tential significant loss of information. See Bodoff and Gan (2009), 
Götze and Gürtler (2018), Galeotti et al. (2013), Braun (2016) and 
Lane and Mahul (2008). Meanwhile, in Papachristou (2011), con-
cerns about interactions between independent variables were ex-
pressed but not investigated. Another limitation is the extensive 
use of linear regression without justification of its suitability in 
a catastrophe bond market setting. This was recognised in some 
cases, see Lane and Mahul (2008) and Papachristou (2011). Finally, 
as Major (2019) mentioned, in terms of study goal, past works did 
not aim directly at spread prediction, although there is a business 
need for it.

In this manuscript, we suggest a supervised machine learning 
method called random forest (Breiman 2001) to predict spreads 
in the primary catastrophe bond market. Some reasons about the 
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model specification are discussed below. The model choice is par-
tially based on the fact that random forest is widely considered 
as one of the most successful machine learning methods to date, 
see Berk (2008), and Biau and Scornet (2016) among others. It 
should be noted that random forest success in providing highly 
accurate predictions is mainly achieved by resolving the trade-off 
between over-fitting and prediction accuracy, as discussed in vari-
ous works such as these of Breiman (2001), Díaz-Uriarte and De 
Andres (2006), Oh et al. (2003). Moreover, the recent novel re-
search of Götze et al. (2020) compared different machine learning 
methods in a catastrophe bond market setting, which provides ev-
idence that random forest outperforms neural networks, and linear 
regression which is combined with variable selection via Lasso and 
Ridge penalisations. In addition, we believe that the random for-
est method has a number of particular aspects which could help 
overcome some of the limitations presented previously in the ex-
planatory framework in the literature. Firstly, random forest is a 
flexible method in a sense that makes no assumptions about the 
underlying data generative process. This is an important advantage 
that could help us effectively tackle the issue of non-linearities 
in the catastrophe bond market. Secondly, because the building 
blocks of the method are regression trees, random forest is reason-
ably robust to outliers. This is very useful given that catastrophe 
bonds can be extremely heterogeneous and losing information is 
particularly “costly” in this opaque market segment. Thirdly, once 
again, due to the tree structure of the method, variables are con-
sidered in such a way that allows to capture interactions without 
the need to specify them (Breiman et al. 1984). Fourthly, internal 
measures of variables’ importance can be derived solely in a pre-
diction context, and selection of the most important variables is 
feasible. Finally, there is only a small number of hyperparameters 
to tune, and the need for data pre-processing is minimal because 
many steps are integrated in the method itself, ensuring time effi-
ciency from a business perspective.

Here, we apply the random forest method to predict spreads 
in the full spectrum of primary non-life catastrophe bond market. 
We aim to generate accurate spreads’ predictions of new catastro-
phe bond observations on both temporal and non-temporal bases. 
Comparisons are made with highly competitive benchmark mod-
els. In absence of causal theory, we assess how spread predictors 
rank in terms of importance using two different methods, namely, 
permutation importance and minimal depth, where the latter is 
random forest specific. To our best knowledge, this work is among 
the first to apply the minimal depth method as described in Ish-
waran et al. (2010) in a financial application. In addition, we ex-
plore whether the variables found by now to be good at explaining 
catastrophe bond spreads in the explanatory framework are sim-
ilar to those good at prediction in absence of causal theory. As 
mentioned in Shmueli (2010), one should not expect these two to 
be exactly the same and indeed we find some small level of di-
vergence. From an empirical perspective, we aim at random forest 
prediction accuracy and variables’ importance results to be stable 
thus this aspect is also evaluated subject to multiple iterations of 
random subsampling. Besides, we assess the degree at which the 
prediction accuracy of random forest versus benchmark model is 
sensitive to simultaneous missingness of more than one predic-
tor. By doing so we also check the degree to which the random 
forest captures predictors’ interactions without specifying them, as 
well as its ability to extract information from existing variables to 
recover the loss of predictive power in the absence of other impor-
tant predictors.

With regards to the benchmark model, first we reproduce and 
then improve the model of Braun (2016) to account for non-rated 
catastrophe bond issuances. Braun (2016) is chosen as it indicates 
the best out of sample performance to date in the relevant ex-
planatory literature. Next, we build a new simple linear regression 
2

model based on the same set of variables we use for the random 
forest generation. For the first time, we include the risk modelling 
company and coverage type in the analysis as potential catastro-
phe bond spread drivers making a contribution in the explanatory 
framework. A potential reason for lack of prior works taking into 
account these variables is most probably due to the difficulty of 
finding information about them as they pin-point to very detailed 
aspects of a transaction - a view that Braun (2012) already ex-
pressed regarding the risk modelling company. The newly built re-
gression model outperforms the improved version of Braun (2016)
and thus is used as our benchmark in this manuscript.

The rest of the paper is organised as follows. In Section 2, we 
briefly introduce machine learning concepts. We explain our re-
search methodology in Section 3 and present our catastrophe bond 
data set details in Section 4. Benchmark models are discussed 
in Section 5. We then demonstrate the random forest generation 
based on our catastrophe bond data in Section 6, followed by the 
evaluation of the random forest’s performance in Section 7, and 
the importance analysis of catastrophe bond spread predictors in 
Section 8. Furthermore, in Section 9, we provide an example of 
how the random forest could be used in practice to assist is-
suers’ and investors’ decision making when they examine a new 
catastrophe bond issuance. Finally, concluding remarks follow in 
Section 10.

2. Machine learning preliminaries

In this section, we introduce some machine learning concepts 
that will be useful for the comprehension of methods used later on 
in our study. The explanations to be given are limited to a regres-
sion problem because catastrophe bond spread is a quantitative 
response variable.1

2.1. Supervised learning

Machine learning includes a set of approaches dealing with the 
problem of finding or otherwise learning a function from data 
(James et al. 2013). Supervised learning is a machine learning task 
where a function, otherwise called a hypothesis, is learned from 
a data set - often referred to as training set. The latter consists 
of a number of input-output pairs where for every single input in 
the training set the correct output is known. An algorithm is going 
through all data points in the training set identifying patterns and 
finding how to map an input to an output. Because the desired an-
swer for the output is known, the algorithm modifies this mapping 
based on how different algorithm generated outputs are compared 
to the original ones in the training set (Friedman et al. 2001). Ul-
timately, the aim is that by the time the learning process finishes, 
this difference will be small enough for the algorithm to be able to 
map any set of new inputs the algorithm will come across in the 
future in a reasonable manner.

2.2. Ensemble learning

Sometimes instead of learning one mapping, it is useful to 
have a collection of mappings which merge their predictions to 
create an ensemble (Russell and Norvig 2016). Individual approx-
imation functions in the ensemble are usually called base learn-
ers and predictions combination can happen in various ways with 
most usual ones being voting or averaging. Such techniques have 

1 We clarify that in machine learning literature, the term “regression problem” 
often refers to prediction using a continuous response variable, see James et al. 
(2013). We distinguish this from the term linear regression that is used throughout 
this work to describe either the linear regression models in the literature or our 
benchmark model.
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been investigated quite early on, see for example Breiman (1996c),
Clemen (1989), Perrone (1993) and Wolpert (1992). The main ben-
efit of ensembles is that if each single hypothesis is characterised 
by high degree of accuracy and diversity then the ensemble is 
going to produce more accurate predictions than any of the in-
dividual hypotheses on its own, see Zhou (2012). Here, accuracy 
means that a hypothesis results in a lower error rate as opposed 
to one that would be derived from random guessing on new input 
values, while diversity means that each hypothesis in the ensem-
ble makes different errors on new data points (Dietterich 2000a). 
Ensembles are usually built by utilising methods to derive various 
data sets out of the original data set for each base learner. One 
of the most famous methods to construct an ensemble is briefly 
discussed below.

2.3. Bagging

Bagging, an acronym for bootstrap aggregating presented by 
Breiman (1996a), is a powerful ensemble learning method. As the 
name indicates, the ensemble uses the bootstrap, see Efron (1992), 
as resampling technique to take multiple data samples from which 
multiple base learners will be then generated. At the same time, 
aggregation, which is simple averaging for regression, is the way 
to combine the predictions of these individual base learners. There 
are various merits in using bagging for building ensembles. First, 
using a bootstrap sample to build each base learner means that 
a part of the original data (normally two third by default) are 
not used in its construction. Then, these unseen data points can 
constitute an unbiased test data to quantify how well each base 
learner generalises (Breiman 2001). Secondly, the method is useful 
when data is noisy (Opitz and Maclin 1999). Thirdly, and probably 
most importantly, by aggregating base learners which individu-
ally suffer from high variance, e.g. decision trees (Breiman et al. 
1984), the ensemble as a whole achieves a variance reduction; 
see Breiman (1996a), Bauer and Kohavi (1999), Breiman (1996c), 
Breiman (1996b) and Dietterich (2000b). A pitfall of the method 
though is that whilst bagging reduces the ensemble variance, there 
are diminishing returns in variance reductions as the computa-
tional cost increases. This is because all bootstrap samples are 
drawn from the same original data set, meaning that base learn-
ers will inevitably be correlated. This latter point is where the idea 
of random forest is based on and it will be further discussed in 
Section 3.

3. Research methodology

Having provided necessary background information about cer-
tain machine learning concepts, the purpose of this section is 
twofold. We start by stating our catastrophe bond spread predic-
tion problem introducing notations that will be used later in our 
study. We then continue by presenting our research methodology.

3.1. Problem statement with notations

Broadly, we use an ensemble algorithmic method to perform a 
supervised learning task for the primary catastrophe bond market. 
For now, let x generally denote2 the input which reflects character-
istics of catastrophe bonds available in the offering circular at the 
time of issuance and ILS market conditions. At the same time, let 
symbol y denote catastrophe bond spreads at the time of issuance. 
A function f of the form y = f (x) relates catastrophe bond char-
acteristics, conditions in the economic environment and possibly 
random effects to their spreads, however f is unknown. Based on 

2 Our convention is that bold lowercase letters reflect random vectors.
3

past primary catastrophe bond data including information both for 
x = (x1, x2, . . . , xP ) where p = 1, 2, . . . , P and y, we first want to 
find a function that approximates f so that we can predict spreads 
given new catastrophe bond input.

In particular, experience about past catastrophe bond issuances 
is captured by collecting n = 1, . . . , N distinct input-output pairs. 
The input is a vector of predictors, also called features, covari-
ates or independent variables, xn = (x1n, x2n, . . . , xPn) indexed by 
dimension p = 1, 2, . . . , P and it is a element of Rp . The output, 
also called response or dependent variable, is a real-valued scalar 
denoted by yn indexed by example number n = 1, . . . , N . By as-
sembling these N pairs, we collectively form a catastrophe bond 
data set D = {(xn, yn), n = 1, 2, . . . , N} based on which the en-
semble algorithmic method will search the space H of all feasible 
functions, in a process called learning, and find a function, denoted 
by hen , that is able to predict the response y′ given a new input 
x′ as accurately as possible. Because, we use an ensemble method, 
hen is in reality a collection of functions approximating f . We are 
also interested in assessing the importance of each input of x in 
predicting the spread. Finally, all results will be evaluated on the 
grounds of them being stable subject to random subsampling of 
the whole data set.

3.2. Random forest

The ensemble method that we use is called random forest. It is 
developed by Breiman (2001) and is used to solve prediction prob-
lems. Below we present the rationale behind the method, random 
forest construction process, main hyperparameters, and lastly how 
random forest is used to make predictions.

3.2.1. Underlying logic
As James et al. (2013) mentioned, the underlying logic of ran-

dom forest is to “divide and conquer”: split the predictor space 
into multiple samples, then construct a randomised tree hypoth-
esis on each subspace and end with averaging these hypotheses 
together. Generally, random forest can be seen as a successor of 
bagging when the base learners are decision trees. This is because 
random forest addresses the main pitfall of bagging; the issue of 
diminishing variance reductions discussed earlier in Section 2.3. 
This is achieved by injecting an additional element of randomness 
during decision trees construction for them to be less correlated to 
one another. At the same time, since the base learners are decision 
trees there are not many assumptions about the form of the target 
function resulting in low bias.

3.2.2. Random forest construction process
The process of constructing a random forest involves various 

steps which are summarised in Fig. 1 and discussed straight after.
The first step in the random forest generation process is boot-

strap sampling. In particular, from a data set, like D , we take 
1, . . . , K samples with replacement each of them having the same 
size as the original data set. The second stage is regression trees 
development. From each bootstrap sample, K regression trees are 
grown using recursive partitioning as done in Classification And
Regression Trees (CART) (Breiman et al. 1984) but with a smart 
twist which further randomises the procedure. At each level of the 
recursive partitioning process, the best predictor to conduct the 
splitting is considered based on a fresh, each time, random sub-
sample of the full set of predictors denoted as mtry. The best split 
is chosen by examining all possible predictors in this sub-sample 
and all possible cut-points as of their ability to minimise the 
residual sum of squares for the resulting tree. A tree stops grow-
ing when a minimum number of observations in a given node is 
reached but generally speaking trees comprising the random forest 
are fully grown and not pruned. By constructing these K trees we 
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Fig. 1. Random forest construction scheme. For each regression tree, light grey cir-
cles indicate the root node, dark grey circles intermediate nodes and white colour 
circles terminal nodes.

effectively get K estimators of function f namely h1, h2, . . . , hK . 
The average of these individual estimators hen = 1

K

∑K
k=1 hk(xn) is 

the random forest.

3.2.3. Hyperparameters
From the above process description, it is evident that there are 

three parameters whose value needs to be fixed prior to random 
forest development; namely the number of trees grown, node size, 
and number of variables randomly selected at each split. Each of 
them respectively control the size of the forest, the individual tree 
size and an aspect of the within tree randomness. There are certain 
default values that have been suggested following empirical exper-
iments on various data sets but one can use an optimising tuning 
strategy with respect to prediction performance to select the most 
suitable values specifically for the data set under study (Probst et 
al. 2018).

3.2.4. Making predictions
After the random forest is built, it can be used to provide pre-

dictions of the response variable. To make predictions though, it 
is necessary to feed the method inputs that have never been seen 
before during the construction process. As we have briefly men-
tioned in Section 2.3, due to bootstrap sampling, we can refrain 
from keeping aside in advance a portion of the original data set for 
testing purposes. The reason for this is that each tree uses more or 
less two thirds of the observations, from now on called in-bag ob-
servations, whilst the remaining one third of the observations are 
never used to build a specific tree, from now on called out of bag 
(OOB) observations. For each tree, the out of bag observations act 
as a separate test set. To predict the response variable value for 
the nth observation, one should drop its corresponding input down 
every single tree in which this observation was out of bag. This 
means that by doing so one will end up having in hand on av-
erage K/3 predictions for any n = 1, . . . , N observation. Then, in 
order to derive a single response prediction for the nth observa-
tion, the average of these predictions is taken. The same procedure 
is repeated for all other observations. Whether these predictions 
are good enough or not needs to be evaluated based on certain 
metrics as shown next.
4

3.3. Performance evaluation criteria for random forest

To assess the performance of any machine learning algorithm, 
one needs to set in advance the criterion upon which judgement 
will be made. In this paper, we employ two criteria for the per-
formance evaluation of our random forest; prediction accuracy and 
stability. They are discussed below.

3.3.1. Prediction accuracy
Prediction accuracy is one of the most used performance indi-

cators in machine learning algorithms aiming at prediction. This is 
no different for random forest algorithm as originally presented 
in Breiman (2001). In the current study, prediction accuracy is 
assessed based on two different perspectives: a temporal and a 
non-temporal one. We believe that such a distinction highlights 
different prediction needs and could add value in a practical con-
text.

By employing a non-temporal approach, one can assess random 
forest predictions robustness when at the time of the spread pre-
diction, the general catastrophe bond market conditions have been 
relatively stable over a time period prior the prediction, thus the 
time element could potentially be ignored. A non-temporal per-
spective would also be meaningful when simply the character of 
the prediction is not time relevant. With regards to the latter, an 
instance would be when there is ambiguity around the accuracy of 
spread information a company holds for a transaction or in cases 
that the spread information for a given transaction is unavailable 
resulting in a company having to face the issue of an incomplete 
data base. In both cases, the element of time may appear to be 
less important compared to the need of having a bigger and more 
diverse training set in the analysis. On the other hand, a tem-
poral approach considers the robustness of the random forest in 
accurately predicting spreads over time. Effectively, such a point of 
view allows us to account for regime shifts and examine the de-
gree at which an industry participant would be able to predict a 
new catastrophe bond spread no matter its features and risk pro-
file. For this purpose, we need to split the data into separate train 
and test sets for various time periods and then assess the random 
forest and benchmark model prediction accuracy performance.

In the non-temporal context, prediction accuracy is primarily 
measured by means of the proportion of the total variability ex-
plained by the random forest, here denoted as R2

OOB. Following 
Grömping (2009), the latter metric is defined as R2

OOB = 1 − SEOOB
TSS

where SEOOB stands for the total out of bag squared errors and 
TSS for the total sum of squares. In addition, we denote the 
out of bag mean squared error as MSEOOB = SEOOB/N . With re-
spect to MSEOOB, it shows the variability in the response variable 
that is not forecasted by the random forest. It is calculated as 
MSEOOB = {∑N

n=1(yn − ŷnOOB
)2}/N where ŷnOOB

is the mean pre-
diction for the nth observation where n = 1, . . . , N for all trees for 
which the nth data point was out of bag. In effect, MSEOOB is a 
sound approximation of the test error for the random forest be-
cause every single data point is predicted based solely on the trees 
that were not constructed using this observation. Actually, when 
the number of trees K is very large then the MSEOOB is roughly 
equivalent to leave one out cross validation James et al. (2013). 
With regards to TSS, as in linear regression, it reflects the degree 
at which the response variable, here the catastrophe bond spread, 
deviates from its mean value. It is defined as TSS = ∑N

n=1(yn − y)2

where yn is the response variable value for the nth observation 
where n = 1, . . . , N and y the mean value of the response vari-
able. In this study, R2

OOB is going to be expressed in percentage 
terms. The higher the R2

OOB, the better the prediction accuracy of 
the random forest is. Whilst for random forest, it is somehow nat-
ural to use the R2 , see Breiman (2001), we deem useful to also 
OOB
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present the prediction accuracy results derived by two “more stan-
dard” statistical approaches, i.e. 10 fold cross validation and leave 
one out cross validation even though we expect that results may 
be fairly similar. In the temporal context, prediction performance 
will be assessed on the basis of out of sample R2 denoted as R2

OOS. 
The metrics presented here both in the non-temporal, and tempo-
ral context will be also used for the benchmark model to allow for 
a fair comparison.

3.3.2. Stability
The term stability here refers to how repeatable random for-

est results are when different samples taken from the same data 
generative process are used for its construction, see Turney (1995)
and Philipp et al. (2018) for the rationale behind this approach. 
The rationale for investigating stability is rooted from the fact that 
consistent results are deemed more reliable, see Stodden (2015), 
Turney (1995), Yu (2013) and Philipp et al. (2018) for a discussion.

Various ways of measuring the stability of algorithmic results 
have been presented in Turney (1995), Lange et al. (2004), Ntoutsi 
et al. (2008), Lim and Yu (2016) and Philipp et al. (2018). In this 
study, we are inspired by the works of Turney (1995) and Philipp 
et al. (2018) with regards to stability and its empirical measure-
ment. In particular, the idea is that by obtaining two sets of data 
from the same phenomenon sampled from the same underlying 
distribution the algorithm needs to produce fairly similar results 
from both data sets for it to be considered stable. One way to 
achieve this is to randomly partition the whole data set into two 
separate data sets multiple times. An important decision though 
is how to take the samples. Here, we propose taking the samples 
using the split-half technique as described in Philipp et al. (2018)
meaning that the whole catastrophe data set will be split into two 
disjoint data sets of roughly equal size. This sampling method en-
sures that a similarity between the results is not attributed to the 
same observations being in both samples as this could result in 
similar results without meaning that the algorithm is actually sta-
ble. By choosing a small learning overlap it is possible to examine 
the degree of a result generalisation for independent draws from 
the catastrophe bond data generative process.

In particular, following Turney (1995) and Philipp et al. (2018), 
we obtain two sets of data from the same phenomenon and same 
underlying distribution with as little learning overlap as possi-
ble, then construct two random forests from each one and check 
whether prediction accuracy is fairly similar. To be more specific, 
we take a random 50% of the observations without replacement 
from the initial catastrophe bond data set, namely Sample A. The 
rest of the original data set observations, not included in Sample A, 
forms Sample B. Then, two separate random forests are grown out 
of Sample A and Sample B to assess the stability of random forest 
prediction accuracy to changes in the initial data set. We repeat 
this process 100 times. Optimal values for the number of variables 
randomly selected to be considered at each split are sought in both 
cases.

3.4. Evaluation of predictors’ importance

The random forest algorithm allows for assessing how impor-
tant each predictor is with respect to its ability to predict the 
response, a concept that is briefly called as variables importance. 
Its assessment is executed empirically (Grömping 2009) and see 
Chen and Ishwaran (2012) for a comprehensive review of various 
methods that can be used to achieve this. Here, the focus lies on 
two widely used approaches namely permutation importance, and 
minimal depth importance.
5

3.4.1. Permutation importance
The central idea of permutation importance, also known as 

“Breiman-Cutler importance” (Breiman 2001), is to measure the 
decrease in the prediction accuracy of the random forest resulting 
from randomly permuting the values of a predictor. The method 
provides a ranking for predictors’ importance as end result and it is 
tied to a prediction performance measure. In particular, the permu-
tation importance for xp predictor is derived as follows. For each of 
the K trees: firstly, record the prediction error MSEOOBk ; secondly, 
noise up, i.e. permute, the predictor xp in the out of bag sam-
ple for the kth tree; thirdly, drop this permuted out of bag sample 
down the kth tree to get a new MSE

xp perm

OOBk
after the permutation 

and calculate the difference between these two prediction errors 
(before and after the permutation). In the end, average these dif-
ferences over all trees. The mathematical expression of the above 
description is Ixp = ∑K

k=1[ 1
K (MSE

xp perm

OOBk
− MSEOOBk )] where Ixp is 

the importance of variable xp , K the number of trees in the forest, 
MSE

xp perm

OOBk
the estimation error with predictor xp being permuted 

for the kth tree, and MSEOOBk the forecasting error with none of the 
predictors being permuted for the kth tree. The larger the Ixp the 
stronger the ability of xp to predict the response. Generally speak-
ing a positive permutation importance is associated with decrease 
in prediction accuracy after permutation whilst negative permuta-
tion importance is interpreted as no decline in accuracy.

3.4.2. Importance based on minimal depth
The other approach for measuring predictors importance is 

based on measure named minimal depth, presented in Ishwaran et 
al. (2010) with the latter being motivated by earlier works of Strobl 
et al. (2007) and Ishwaran (2007). The minimal depth shows how 
remote a node split with a specific predictor is with respect to the 
root node of a tree. Thus, here the position of a predictor in the kth

tree determines its importance for this tree. The latter means that 
unlike permutation importance, the importance of each predictor 
is not tied on a prediction performance measure. Also, in addition 
to ranking variables, the method also performs variable selection -
a very useful feature for elimination of less important predictors.

Specifically, Ishwaran et al. (2010) have formulated the concept 
of minimal depth based on the notion of maximal sub-tree for fea-
ture xp . The latter is defined as the largest sub-tree whose root 
node is split using xp . In particular, the minimal depth of a pre-
dictor xp , a non-negative random variable, is the distance between 
the kth tree root node and the most proximate maximal sub-tree 
for xp , i.e. the first order statistic of the maximal subtree. It takes 
on values {0, . . . , Q (k)} where Q (k) the depth of the kth tree re-
flects how distant is the root from the furthermost leaf node, i.e. 
the maximal depth (Ishwaran et al. 2011). A small minimal depth 
value for predictor xp means that xp has high predictive power 
whilst a large minimal depth value the opposite. The root node is 
assigned with minimal depth 0 and the successive nodes are se-
quenced based on how close they are to the root. The minimal 
depth for each predictor is averaged over all trees in the forest. 
Ishwaran et al. (2010) showed that the distribution of the minimal 
depth can be derived in a closed form and a threshold for pick-
ing meaningful variables can be computed, i.e. the mean of the 
minimal depth distribution. In particular, variables whose forest 
aggregated minimal depth surpasses the mean minimal depth ceil-
ing are considered irrelevant and thus could be excluded from the 
model. However, since Ishwaran et al. (2010) suggests that variable 
selection using the minimal depth threshold is more meaningful 
for problems with high dimensionality, this aspect is not consid-
ered relevant in the current study.
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3.4.3. Other evaluation factors
After calculating the importance of predictors using the meth-

ods described above, we consider useful to examine the results 
based on two additional criteria. Firstly, we want to ensure that 
primarily the importance rankings and secondarily the selected 
variables are repeatable. Because both permutation and minimal 
depth importance are linked to the random forest constructed, 
the stability of predictors’ importance results is evaluated in line 
with the random forest stability evaluation for the catastrophe 
bond data set, as mentioned in Section 3.3.2. Secondly, we check 
whether the predictors’ importance results reflect investors’ knowl-
edge from an empirical perspective. In a business context, it would 
be uncomfortable for an investor to see good catastrophe bond 
predictions but with importance rankings of the predictors outside 
their empirical knowledge, even though this type of agreement is 
not necessary from a statistical viewpoint.

4. Catastrophe bond data

In this section, we present how the catastrophe bond data used 
in this study have been collected and processed whilst details are 
given with respect to the choice of variables and their role in our 
study.

4.1. Collection

The core of catastrophe bond pricing cross sectional data has 
been collected from a leading market participant enabling us to 
work with a data set that is substantially larger than those used 
in the literature. The websites of ARTEMIS, Lane Financial LLC and 
Swiss Re Sigma Research have been also extensively used to cross 
validate data entries that were unclear or non-available in the 
main data body. Historical values of the Synthetic Rate on Line 
index have been given by Lane Financial LLC. To the best of our 
knowledge, our data set refers to all non-life catastrophe bonds is-
sued in the primary market from December 2009 to May 2018, 
a total of 934 transactions. This time period is particularly inter-
esting since it coincides with the restart of the catastrophe bond 
sector after almost two years of low activity following the collapse 
of Lehman Brothers, which played a counterparty role in several 
bonds and therefore ignited concerns and reflection around the 
structuring of transaction as to ensure security of collateral, see 
Hills (2009). The information gathered was related to investors’ re-
turn, loss potential of the securitized risk, i.e. expected loss and 
attachment probability, various design characteristics of the risk 
transfer, i.e. issuance size, coverage period, coverage type, trigger, 
region, peril, credit score, risk modelling company, price cyclicality 
in ILS market, and BB corporate bond spreads level.

4.2. Preparation

Since we consolidated data from various sources there were 
pieces of information referring to the same concept but measured 
in different units across different data providers. Such scaling is-
sues have been appropriately addressed to maintain consistency. 
With regards to the spread at issuance, it was derived from the 
coupon by subtracting the element of the money market rate. In 
the case of zero coupon catastrophe bonds the spread was derived 
from the implied coupon by subtracting the element of the money 
market rate.

Through validating the data across various sources, we ensured 
that there are no missing values in the study, a pitfall in many 
previous works. On this note, it needs to be acknowledged that 
an exception in the above non-missing values claim is very few 
catastrophe bonds for which there was no information regarding 
the risk modelling firm because these transactions were privately 
6

placed even though our data set contains other private placement 
deals for which we did not have missing values. For these few 
deals for which vendor information was missing, we created a sep-
arate category level to capture this specific reason for missingness, 
i.e. private placement. Including this level is considered important 
via means that the developed algorithmic method will be able to 
predict spreads for these circumstances also. Further information 
on this category level can be found in Appendix A.

4.3. Discussion about the choice of variables

The variables included in the data set can be seen in Table 1, 
presented along with the definition, type, and their role in this 
study. In Appendix A, one can find basic statistical information and 
histograms for all variables along with a discussion to enhance the 
understanding of catastrophe bond data intricacies. With regards 
to the role of each variable in our research, the spread was cho-
sen as dependent variable as it is an industry wide accepted lens 
through which one can see catastrophe bond pricing. The spread is 
of utmost interest to the investors as it indicates how much they 
could earn on the top of the risk free rate if they decided to em-
ploy their capital in this alternative risk transfer segment.

Since the goal of this study lies on the prediction of spread, a 
major consideration is that the independent variables need to be 
available at the time of the prediction. This is indeed the case here, 
as the predictors constitute information included in the placement 
material offered to investors prior to a new catastrophe bond is-
suance. Also, in the case of predictor RoL, investors are also aware 
of the general ILS market conditions and possibly we could assume 
that the Financial Lane LLC Synthetic Rate on Line index values are 
readily available at an investment company level. Similar rationale 
applies for the BB spread regarding its availability at the point of 
the prediction. The reason why we have incorporated RoL and BB 
spread in the study is because the prior literature shows that such 
macroeconomic variables have a relevant influence on catastrophe 
bond spreads, see Braun (2016) and Gürtler et al. (2016) for exam-
ple.

We note that there are previous works (see Galeotti et al. 
(2013), Braun (2016), Gürtler et al. (2016), and Trottier et al. 2018, 
among others) refraining from using the attachment probability 
(AP) as a predictor for the spread forecast, even though the rea-
son was not mentioned explicitly. A potential explanation for why 
the EL was preferred over the AP in these works is because the EL 
is a coherent risk measure, meaning that if we were to examine 
catastrophe bonds in a portfolio context, then the EL contributes 
proportionately to the portfolio EL. This is not the case when a 
risk measure such as Value at Risk (VaR) is developed using AP 
as basis because there are instances where the subadditivity con-
dition of coherent risk measures, i.e. V aR A P (X) + V aR A P (Y ) ≥
V aR A P (X + Y ), is not satisfied; see Galeotti et al. (2013). Having 
said that, whether or not AP might be appropriate for assessing 
catastrophe bonds at the portfolio level is not examined in the 
current study. It should also be mentioned that for our purpose, 
it may be helpful to include the variable AP, thanks to the fact that 
the correlation between EL and AP appears heterogeneous in this 
dataset. For example, whilst it is somehow expected that EL and 
AP are highly correlated, if we were to focus on transactions with 
large spreads, then the correlation between EL and AP is around 
70%, indicating that AP contains information which is not captured 
by EL for these cases. Moreover, since our study aims at prediction, 
the addition of an extra variable is not an issue for the random 
forest. In addition, including AP does not materially affect the per-
formance of LR model in this example either.

With regards to the variable loc_peril, we use a location - peril 
code categorisation closely in line with the data provided to reflect 
industry practice. In Appendix A, we provide details regarding all 
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Table 1
Catastrophe bond data set glossary.

Variable Description Type Role

spread The amount of interest earned on the top of the risk free rate. continuous response

AP (Attachment Probability). The probability of incurred losses surpassing the attachment point. 
For catastrophe bonds with parametric triggers, AP is translated as the probability that 
measured parameters will surpass the agreed trigger point.

continuous predictor

BB spread U.S. High Yield BB Option-Adjusted Spread for the examined time period computed as the 
difference between a yield index for the BB rating category and the Treasury spot curve, as in 
Braun (2016). It reflects the BB rated corporate bond spread, with the BB rating being chosen 
because, because out of the rated catastrophe bonds, the vast majority of them exhibit this 
rating. It can be considered as a macroeconomic variable.

continuous predictor

coverage Contract term indicating whether protection is offered for a string of loss events or a single 
loss event.

categorical predictor

EL (Expected Loss). The annual expected loss within the layer in question divided by the layer 
size.

continuous predictor

rating A dummy variable indicating the credit rating quality of the bond (granular rating), or 
whether it has not been rated at all.

categorical predictor

iss_year The year of issuance of a given catastrophe bond to capture cyclical effects. continuous predictor

loc_peril A location-peril combination. categorical predictor

RoL (Rate on Line). Quarterly values of Lane Financial LLC Synthetic Rate on Line Index for the 
examined time period capturing the level of rates in the ILS, and ILW markets. It can be 
considered as a macroeconomic variable, see Fig. 8.

continuous predictor

size Catastrophe bond nominal amount. continuous predictor
term Years passed from issuance to maturity date. continuous predictor
trigger Mechanism through which a loss payment is activated. categorical predictor
vendor Catastrophe risk modelling software firm. categorical predictor
location peril combinations we have considered. Finally, the reason 
why we have incorporated the issuance year in the predictors set 
is to account for any other unknown drivers of spread related to 
a particular issuance year. As an example, one possible instance of 
such a driver would be the release of an updated model by a risk 
model vendor which would significantly influence underwriting as 
it happened in 2011 when RMS released its software Version 11.

To the best of our knowledge, one of the novelties in our study 
is that we explore the association between coverage type and 
catastrophe bond spreads. This is in line with current sector dis-
cussions as expressed in ILS3 speciality articles, such as Risk (2019)
and Muir-Wood (2017). There, the need to incorporate the cov-
erage type in catastrophe bond pricing was highlighted following 
the extensive capital freezes investors experienced after Califor-
nia wildfires in 2018. Briefly touching upon this topic, wildfires, 
a not well understood peril, has been mostly transferred to in-
vestors with a provision that losses are covered on an aggregate 
basis. By design, aggregate deals tend to obtain losses easier, even 
from small events, compared to their per occurrence counterparts, 
as a string of loss events triggers the bond. The incapacity of the 
models to account for this to date led to big losses from aggre-
gate deals and pressure for spreads to incorporate this transaction 
aspect. This signifies the importance of considering this variable. 
A further addition into the variables kit for studying the spread is 
the incorporation of information regarding the modelling company 
employed to calculate the frequency and severity of the securi-
tised catastrophe risks. The software used for this purpose is firm 
specific thus it is interesting to explore whether by knowing this 
information part of the spread can be predicted.

A final note for the variables of this study regards credit ratings. 
Following Braun (2016), we initially thought to consider whether 
an issuance was allocated an investment grade by an independent 

3 ILS is an abbreviation for Insurance Linked Securities or Insurance Linked Secu-
ritisation depending on the context in which it is used.
7

credit rating agency and add an additional categorical value to ac-
count for transactions which were not rated as in our data set the 
majority of catastrophe bonds were issued without a credit rating 
attached to them. However, as we explain in Section 5, our bench-
mark model performed better when used granular rating for the 
rated transactions with the extra categorical value for the non-
rated deals - thus our analysis follows this set up. It is worth 
noting that the absence of credit rating in new issuances is not 
solely an observation in the current data set. In ILS professional 
circles, the popularity of non-rated catastrophe bonds is justified 
from a catastrophe bond market evolution perspective; investors 
feel more comfortable and trust the risk modelling companies for 
the calculation of loss and the analysis of the risk return profile 
more. As a result, credit ratings are somehow no longer seen as 
essential as they used to be in the past and this is reflected in the 
increasing issuance pace of non-rated bonds, see ARTEMIS (2019). 
In the following sections, we choose our benchmark model out of 
two alternative ones and then apply the research methodology of 
Section 3 to the catastrophe bond data set that we have just dis-
cussed here.

5. Benchmark models

Before we report the random forest generation and prediction 
accuracy results, we discuss the benchmark models we consid-
ered. Even if random forest is not a new approach, it would be 
helpful to use a benchmark model for its performance assessment 
and evaluation as its rationale somehow differs from the methods 
used in most of the previous studies. In search for a benchmark, 
we looked into the models of Galeotti et al. (2013), Gürtler et 
al. (2016), Braun (2016), and Trottier et al. (2018), as they are 
non-fragment4 and exhibit high out of sample performance. Given 

4 By non-fragment, we mean that multiple peril - territory coding has been con-
sidered.
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that the majority of catastrophe bond transactions in our data set 
are non-rated transactions, we decided to slightly alter the model 
of Braun (2016) to account for non-rated transactions in addition 
to those having attached an investment or non-investment grade 
credit quality tag. Such an alteration allows us to use all 934 obser-
vations in our data set. However, the results of the original Braun 
(2016) model can be found in Appendix C.5

As an alternative benchmark model, we also built a new lin-
ear regression model (from now on denoted as LR) using the set 
of variables we consider for the random forest generation, as pre-
sented in the previous section.6 The improved Braun (2016) model 
is then compared to our LR model by means of in sample overall 
R2 and out of sample R2 resulting from 10 fold cross validation, 
leave one out cross validation, and bootstrap.7 The results are pre-
sented in Tables 2 and 3.

It appears that LR model outperforms the improved model of 
Braun (2016) both in terms of in sample and out of sample perfor-
mance. The overall in sample R2 for LR is around 85% compared to 
80% when using the improved Braun (2016) model. LR also gives 
consistently better R2

OOB, R2
10CV, and R2

LOOCV results compared to 
the improved model of Braun (2016). Consequently, the random 
forest model will be compared to the more competitive LR regres-
sion model when we examine its prediction accuracy.

6. Random forest generation

In order to build8 the random forest using our catastrophe 
bond data set, we first needed to decide the hyperparameters’ val-
ues that we will use, i.e. number of trees, number of variables 
randomly selected at each split and node size. Breiman (2001)
has suggested certain default values that seem to work well after 
multiple empirical experiments; still we have incorporated certain 
tuning strategies for the most important hyperparameters. Our ap-
proach in choosing these values is explained below.

6.1. Number of trees

The number of trees in the random forest controls its size. Gen-
erally, it is good to have a large number of trees as their resulting 
decisions will be complementing each other more, having a pos-
itive impact on random forest prediction accuracy. At the same 
time, a large number of trees is a safe option in case the opti-
mal value of hyperparameter mtry is small so that each variable 
has enough of a chance to be included in the forest prediction 
process. However, except for the computational cost which is asso-
ciated with growing large random forests, it was found by Breiman 
(2001) that there are diminishing returns in the prediction accu-
racy increase by adding a bigger number of trees. Taking these 
reflections into account, we start the random forest development 
process by growing 2000 trees and in Fig. 2 one can see how the 

5 Both the in sample, and out of sample results of the improved Braun (2016)
model are very similar to those of the original Braun (2016) model, even though 
the improved model performs slightly better.

6 For an alternative, yet worse performing, linear regression model where, instead 
of the variable rating as described in Table 1, we include the variable Investment 
grade (IG) as per the improved model of Braun (2016), see Appendix B.

7 The reason why we present the bootstrap results here is because it is used as 
measure of prediction performance in the following sections.

8 The statistical software used is R, version 3.5.1. The statistical packages em-
ployed to perform computations are the following. randomForest (Liaw and 
Wiener, 2002) for developing the random forest as well as calculating permutation 
importance values, randomForestSCR (Ishwaran and Kogalur, 2019) for calcu-
lating minimal depth importance measures, and caret (Kuhn, 2008) for tuning 
the main hyperparameter using grid search methodology. It should be mentioned 
that whenever packages randomForestSCR and Kuhn (2008) were used, algo-
rithm arguments used agreed to those used in package randomForest to avoid 
inconsistencies.
8

MSEOOB converges for various values of random forest size up to 
this level (the plot is produced on a logarithmic scale for the ease 
of readability). From a first sight, it does not take a large number 
of trees for MSEOOB to stabilise. Before even reaching 100 trees, 
MSEOOB drops from around 35000 to less than 5500. By the time 
we reach to 200 trees, it seems that the MSEOOB is almost sta-
bilised. Finally, we find that 500 trees, i.e. the default value that 
Breiman (2001) suggests, is adequate for our problem as it corre-
sponds to virtually the same R2

OOB as when using 2000 trees and 
has a much smaller computational cost. Therefore, we choose 500
as the number of trees in the random forest.

6.2. Node size

The hyperparameter node size, i.e. the minimum number of 
data points in the terminal nodes of each tree, controls the size 
of the tree in the random forest and effectively determines when 
the recursive partitioning should stop. A large node size results 
in shallower trees because the splitting process stops earlier. This 
has the advantage of lower computation times, but it effectively 
means that the tree will not learn some patterns resulting in lower 
prediction accuracy. A small node size translates to a higher com-
putational cost but more thorough learning of patterns and conse-
quently a more accurate base learner. The recommended value for 
node size given by Breiman (2001) is 5 for regression problems. 
This default value was also suggested and used by many other au-
thors, as Wang et al. (2018), Grömping (2009), and Berk (2008)
and therefore we also employ it as node size value here. The ran-
dom forest needs to consist of trees which are fully or almost fully 
grown, see Breiman (2001), thus there is not much added value 
in exploring this aspect further as 5 meets this requirement and 
there is a general consensus for its appropriateness.

6.3. Number of variables selected at each split

The number of candidate predictors getting randomly consid-
ered at each split, mtry, is the most important hyperparameter. 
This is because it mostly affects the performance of the random 
forest and the predictors’ importance measures, see Berk (2008). 
The significance of mtry lies on the fact that it influences at the 
same time both the prediction accuracy of each individual tree but 
also the diversity of the trees in the forest. To get the most out 
of the random forest, one wants each tree to have good predic-
tion performance but at the same time trees not to be correlated 
to one another. However, these two goals are conflicting. An indi-
vidual tree will be the most accurate when mtry has a high value 
but this would result in high correlation for the ensemble. In par-
ticular, an extreme case of mtry = P would force the process to 
account to simple bagging (James et al. 2013). Generally, a small 
mtry is preferable as, for a sufficiently large number of trees, each 
predictor will have higher chance to get selected and thus con-
tribute to the forest construction. All in all, the trade-off between 
individual learner accuracy and diversity needs to be managed by 
finding an optimal value which secures balance for the data set we 
study.

In Breiman (2001), the default value of mtry = P/3 (rounded 
down) is suggested for regression problems. This means that in our 
problem where P = 12, the algorithm would consider 3 predictors 
at each potential split. We have investigated the relevance of this 
empirical rule using a tuning strategy called grid search followed 
by 5-fold cross validation. The goal was to ensure that the most 
appropriate mtry is chosen. The process started by specifying the 
range of all possible values that mtry can take, namely the grid. In 
the current study, this is between 1 and 12, i.e. as many as the 
number of predictors. Then, 12 different versions of the random 
forest algorithm were built one for each possible value of mtry. 
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Table 2
In sample fit of the improved linear regression model of Braun (2016) versus the new linear regression model LR. Further 
information on the category levels of the LR variables can be found in Appendix A.

Improved LR model of Braun (2016) Estimate Std. error t value Pr(> |t|)
(Intercept) −801.78 41.53 −19.30 0.000 ***
Swiss Re 16.56 13.31 1.24 0.210
RoL index 6.90 0.40 17.52 0.000 ***
BB spread 68.55 8.35 8.21 0.000 ***
Investment grade no (baseline)
Investment grade yes −180.01 92.74 −1.94 0.050 *
Investment grade nr 62.68 14.74 4.25 0.000 ***
Peak territory 196.42 17.36 11.31 0.000 ***
Expected Loss 1.13 0.02 44.20 0.000 ***

R2 80.04%
Adjusted R2 79.89%
Res. Std. Error 183.70 (df = 926)
F Statistic 530.60 (df = 7; 926)

LR Estimate Std. error t value Pr(> |t|)
(Intercept) 55940.00 9396.00 5.95 0.000 ***
RoL 6.25 0.41 15.10 0.000 ***
BB spread 46.24 8.39 5.51 0.000 ***
term −28.83 8.57 −3.36 0.001 ***
size 0.00 0.00 2.521 0.012 *
trigger industry loss index (baseline)
trigger indemnity −21.10 14.49 −1.46 0.146
trigger model −69.30 38.66 −1.79 0.073
trigger multiple −44.55 42.70 −1.04 0.297
trigger parametric index −28.88 40.60 −0.71 0.477
trigger parametric −167.60 36.55 −4.59 0.000 ***
coverage aggregate (baseline)
coverage both 52.27 82.10 0.64 0.525
coverage occurrence −49.45 13.56 −3.65 0.000 ***
vendor AIR (baseline)
vendor AON 98.50 87.51 1.13 0.261
vendor EQECAT −0.82 32.80 −0.03 0.980
vendor pp 9.08 71.18 0.13 0.899
vendor RMS 27.97 18.73 1.49 0.136
AP −13.99 5.90 2.37 0.018 *
EL 1.26 0.09 14.91 0.000 ***
iss_year −27.95 4.65 −6.01 0.000 ***
APAC_Quake (baseline)
loc_peril APAC_Typh −63.60 43.11 −1.48 0.141
loc_peril Europe_APAC_Multi_Peril −105.00 125.50 −0.84 0.403
loc_peril Europe_Quake 8.94 55.94 0.16 0.873
loc_peril Europe_Wind −148.20 39.36 −3.77 0.000 ***
loc_peril NA_APAC_Multi_Peril 55.08 47.07 1.17 0.242
loc_peril NA_Europe_APAC_Multi_Peril 139.00 41.14 3.38 0.001 ***
loc_peril NA_Europe_Multi_Peril 118.10 39.79 2.97 0.003 **
loc_peril NA_Multi_Peril 158.90 27.33 5.82 0.000 ***
loc_peril NA_Quake −23.64 34.40 −0.69 0.492
loc_peril NA_Wind 86.64 29.74 2.91 0.004 **
loc_peril SA_Quake 139.90 103.80 1.35 0.178
rating B (baseline)
rating BB −146.80 18.05 −8.13 0.000 ***
rating BBB −346.70 83.25 −4.16 0.000 ***
rating CCC −45.11 94.25 −0.48 0.632
rating nr −2.09 18.90 −0.11 0.912

R2 85.07%
Adjusted R2 84.52%
Res. Std. Error 161.10 (df = 900)
F Statistic 155.40 (df = 33; 900)

Note for signif. codes: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01
Observations number: 934
Table 3
Out of sample performance measured in terms of R2

OOB, R2
10CV, and R2

LOOCV for the 
improved linear model of Braun (2016) versus the new linear regression model LR.

Model R2
OOB R2

10CV R2
LOOCV

Improved Braun (2016) 79.71% 80.81% 79.40%
LR 83.30% 84.42% 83.84%

The prediction accuracy of each random forest version, measured 
by means of R2 , was evaluated through a 5-fold cross validation.
OOB

9

The results, shown in Fig. 3, reveal that there is considerable 
improvement in random forest performance when the mtry value is 
increased from 1 to 2, and then 3 to 4. No real advantage in terms 
of prediction accuracy seems to be yielded from further increas-
ing the mtry value above 4 which also happens to be the default 
value mtry = 12/3 as per the suggestion of Breiman (2001). More-
over, since variable importance measures are to be calculated later 
on, we deem preferable to choose the smaller value of mtry = 4, 
by discipline, as this would lead to less correlated trees giving the 
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Fig. 2. Out of bag mean squared error convergence with respect to random forest size. The line corresponds to the mean squared error based on out of bag samples (MSEOOB) 
versus the number of trees in random forest. The plot is produced on a logarithmic scale for the ease of readability.

Fig. 3. Tuning of main random forest hyperparameter through grid search followed by 5-fold cross validation. Out of bag based R2 (R2
OOB) for random forest versus number 

of candidate predictors getting randomly considered at each split (mtry) during forest generation.
Table 4
Description of final random forest in terms of sample size, 
predictors number, and hyperparameters values.

Final random forest description

sample size 934
number of predictors 12
random forest type regression
number of trees 500
no. of variables tried at 

each split (mtry)
4

node size 5

opportunity to see the influence of weaker predictors to catastro-
phe bond spreads prediction. Also, a smaller mtry value would lead 
to a simpler model which would be less costly in terms of com-
putational time. Having decided on the hyperparameter values, the 
final random forest was generated and a summary description is 
provided in Table 4. The next section investigates how well the 
random forest performed in our catastrophe bond setting.

7. Random forest performance evaluation

In this section, we evaluate how well our random forest per-
forms with regards to its prediction accuracy and stability.

7.1. Random forest prediction accuracy

As mentioned in Section 3.3.1, the ability of the random forest 
to predict catastrophe bond spreads on new inputs is investigated 
from both a non-temporal and a temporal point of view. In the 
10
former case, the prediction accuracy metrics we consider are R2
OOB, 

R2
10CV, and R2

LOOCV whilst in the latter case R2
OOS is used to assess 

the out of sample performance. The prediction accuracy results of 
the random forest versus the benchmark model are presented and 
discussed below for each of the two perspectives.

7.1.1. Non-temporal prediction accuracy
We start by clarifying what we regarded as new inputs followed 

by how the catastrophe bond spread predictions were made for 
the computation of R2

OOB as it may appear to be a less standard 
approach (especially for the benchmark model) compared to 10 
fold, and leave one out cross validation.

Starting from the random forest, as new inputs for a given tree, 
we have accounted its out of bag observations. Due to the property 
of sampling with replacement, only around two thirds of N = 934
data points were used to build each of the 500 unpruned and al-
most fully grown (node size = 5) regression trees. For a given tree, 
the remaining one third of N = 934 data points were never used 
during the building process and as a result they formed a reliable 
test set for it. Secondly, a prediction for the spread at issuance 
for the n = 1 observation, ŷ1, was produced by dropping its corre-
sponding input down every single tree in which the n = 1 observa-
tion was out of bag. This resulted on average to around one third 
of 500 catastrophe bond spread predictions for the n = 1 obser-
vation. Then, a single spread prediction for the n = 1 observation 
was made by taking the average value of these predictions. After 
having predicted the catastrophe bond spread value for the obser-
vation n = 1, the same process has been repeated for the n = 933
observations left. Finally, in order to evaluate the prediction accu-
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Table 5
Prediction accuracy performance measured in terms of R2

OOB, R2
10CV, and R2

LOOCV
versus in sample performance measured in terms of R2 for random forest (RF), and 
linear regression (LR).

Model R2
OOB R2

10CV R2
LOOCV R2

RF 96.57% 96.49% 96.59% 99.25%
LR 83.30% 84.43% 83.84% 84.52%

racy of our random forest, the metrics discussed in Section 3 were 
calculated. In particular, we have computed the mean squared er-
ror based on the out of bag data as SEOOB = ∑934

n=1(yn − ŷnOOB
)2, 

the total sum of squares as TSS = ∑934
n=1(yn − y)2 and, the variabil-

ity explained by our random forest as R2
OOB = 1 − SEOOB

TSS .
With respect to the benchmark model, the calculation of R2

OOB
was done as it was described in the case of random forest; we 
used 500 bootstrap samples to refit the model and for each obser-
vation, we only considered predictions from bootstrap samples not 
including that observation. The results for the prediction accuracy 
metrics both for the random forest,9 and the benchmark model are 
presented in Table 5. Note that in Table 5, we have also included 
the in sample R2 for both models as reference.

It stands out that our random forest explains more than 96%
of the total variability in the non-temporal context no matter 
whether using the bootstrap or one of the other two cross val-
idation methods. At the same time, the non-temporal predictive 
performance of our benchmark model, i.e. linear regression, is 
lower - the highest total variability it explains across all metrics is 
84.43%. Once again the prediction accuracy results for the bench-
mark model are very similar across different resampling methods. 
As a result, from now on we will be focusing on the out of bag 
related metrics in the non-temporal context.

With regards to the in sample R2, it seems that random forest 
may lead to some degree of overfitting which is expected as the 
individual regression trees are fully grown. The latter signifies the 
fact that measuring performance in terms of R2 for random forest 
in this instance might not be as appropriate as in the case of linear 
regression.10

An important aspect is to evaluate whether the 96.57% random 
forest non-temporal prediction accuracy is high enough given the 
nature of the problem under study. On a broader perspective, mak-
ing predictions in a financial market setting is not an easy task. 
Inefficiencies, multiple market participants and, the influence of 
psychology on their behaviour are only few of the factors making 
the prediction task complex. Consequently, one might claim that 
achieving an R2

OOB of more than 96% here corresponds to a very 
satisfactory level of prediction accuracy. Of course this also holds 
true for the around 84% benchmark model prediction performance 
but since there is a considerable difference in the reported R2

OOB, 
we would conclude that using random forest in a non-temporal 
context may be preferable.

7.1.2. Temporal prediction accuracy
In a temporal context, we focus on the forecasting ability of the 

random forest versus the linear regression model over time. In this 
case, the training data is not picked randomly thus we are able 
to assess robustness towards potential regime shifts. Regime shifts 

9 In a robustness check, see Appendix D, we provide the prediction accuracy of 
the random forest when the categorical variables in the catastrophe bond data set 
are pre-processed with categorical dummies as in the case of linear regression. As 
we see the two random forest versions, i.e. with and without dummies, lead to very 
similar results.
10 It should be noted that this problem is not specific to random forest but more 

general and lies in the use of in-sample performance measures in case of over-fitted 
models and therefore can also be seen in a linear regression context.
11
Table 6
Prediction accuracy of random forest (RF) versus linear regression (LR) measured in 
terms of R2

OOS for various train-test sets by issuance year.

Train set Test set RF R2
OOS LR R2

OOS

2009-2010 2011 64.42% < 0.00%
2009-2011 2012 58.04% 71.36%
2009-2012 2013 45.64% 16.84%
2009-2013 2014 88.74% 72.90%
2009-2014 2015 55.12% 70.47%
2009-2015 2016 84.23% 89.55%
2009-2016 2017 91.24% 91.06%
2009-2017 2018 88.59% 91.69%

Average R2
OOS across 

all train sets
72.00% 62.98%

in the catastrophe bond market can include regulatory changes, 
issuances with unusual features, demand forces etc but their iden-
tification for the time period we study is beyond the goals of this 
study. Our aim here is simply to examine the degree by which 
the trained models (random forest, and linear regression) can ac-
curately predict catastrophe bond spreads even in presence of such 
changes. The temporal prediction performance challenge between 
random forest and linear regression is designed by using the train-
test data set split approach in eight cycles of operation so that 
we can have a more complete picture of how models performance 
compare as the catastrophe bond market evolves. We start by us-
ing as train data set, the data from December 2009 to December 
2010. We fit the random forest and linear regression models to this 
train data set and we make spread predictions using data from 
2011. The second cycle of operation includes adding bonds from 
2011 into the train data set and using bonds from 2012 as test set. 
The aforementioned process is repeated up until the train data set 
reflects the period up to 2017 and the test data set includes the 
catastrophe bond issuances in 2018. The prediction accuracy re-
sults measured in terms of out of sample R2 (R2

OOS) for each cycle 
of operation are presented in Table 6. It should be mentioned that 
assessing the prediction performance on a temporal context has a 
particular limitation. That is, new observations in a given test set 
cannot (directly) include categorical variable levels which did not 
appear in the respective train set. Thus, in order to avoid delet-
ing deals having new levels in some of the categorical predictors 
in any given test year, we have imputed these values based on the 
most commonly observed categories in the corresponding training 
set accordingly.

We note that there seem to be some noticeable regime shifts 
especially in the first few cycles of operation. However, we can-
not be definite about which model, the random forest or linear 
regression, handles regime changes best as in some years random 
forest does better than linear regression and vice versa. By look-
ing at the variability of the R2

OOS across all cycles for both models, 
it appears that the R2

OOS range for random forest is between 45%
and 91% whilst the respective range for the linear regression model 
is around between below 0% and 91%. It should be noted that in 
the first year, LR exhibits a very low temporal predictive power 
but we believe that this may be the result of the imputation in a 
small data set sample and perhaps the fact that some categorical 
variables contain quite granular information; see Table 13 in Ap-
pendix A. It is worth mentioning that the worst performance for 
both models is observed for the 2013 test set. By looking into how 
the regression model is parameterized for the test sample in 2013, 
it appears that the poor performance of the regression model on 
this test sample is largely due to the fact that catastrophe bonds 
in 2013 indicated record high EL values, i.e. the largest of them al-
most doubled the maximum EL value that was observed prior to 
2013, for which models based on earlier observations might not be 
entirely suitable for the purpose of prediction. A potential reason 
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Table 7
A typical realisation regarding random forest prediction accuracy stability results.

Random forest summary Sample A Sample B

sample size 467 467
number of predictors 12 12
random forest type regression regression
number of trees 500 500
no. of variables tried at each split 5 6
node size 5 5
MSEOOB 13855.34 14744.59
R2

OOB 92.14% 90.71%

Table 8
Random forest stability measured in terms of minimum, mean, and maximum ab-
solute difference of R2

OOB between Sample A and Sample B across 100 iterations.

R2
OOB Min Abs. Dif. R2

OOB Mean Abs. Dif. R2
OOB Max Abs. Dif.

0.01% 2.19% 6.92%

is the largest version change in the history of RMS model, imple-
mented towards the end of 2012, which affected all 2013 renewals 
in having the potential to increase insured loss results even above 
100% in some cases. Overall, it appears that the random forest is 
relatively more robust than linear regression in this respect. More 
comparisons between RF and LR when taking into account miss-
ingness of more than one predictor at a time follow in Section 8.5.

7.2. Random forest stability

We now examine the stability of random forest prediction ac-
curacy results over the entire time period of interest. This is mea-
sured empirically from a practitioner’s point of view as presented 
in Section 3.3.2 and in Table 7, we present a typical realisation of 1 
out of 100 iterations with respect to the repeatability of prediction 
accuracy results.

As we observe in Table 8, across all 100 iterations, the recorded 
mean absolute difference of R2

OOB between Sample A and Sample 
B for the catastrophe bond data set is 2.19% with the minimum 
and maximum absolute differences being 0.01% and 6.92% respec-
tively.11 Given that our problem sits in the intersection of financial 
and insurance market spheres where many behavioural aspects can 
affect prices, we consider the reported difference for the catastro-
phe bond data set being small. In essence, it is unlikely that an 
ILS fund would reject the use of the method solely for such a level 
of dissimilarity. In fact, the repeatability of prediction results here 
means that we can fairly safely say that our initial random forest 
prediction accuracy result, i.e. of an R2

OOB of 96.57% presented in 
Table 5, is reliable, in the non-temporal context.

This finding is beneficial for the usage of the method in the 
industry. With new catastrophe bonds being issued, the random 
forest would need to be validated at some point in time as any 
other model in an insurance related firm. Surely, in a business con-
text, there is no point in investing time and capital to introduce a 
new model if the latter provides accurate predictions strictly for 
one particular data set. Having gone through the examination of 
prediction accuracy results stability, we proceed with determining 
the importance of each independent variable in the study.

11 As a robustness check, we have also repeated the random forest stability evalua-
tion using two popular Open Source data sets, namely Boston Housing and Abalone, 
which are also used in the original paper of Breiman (2001) for the empirical as-
sessment of the random forest method and are available at the UCI repository. The 
results are close with those derived for the catastrophe bond data set.
12
8. Predictor importance analysis

The importance of predictors is assessed using the methodolo-
gies of permutation and minimal depth importance presented in 
Section 3. It should be highlighted that the goal here is to find how 
powerful each independent variable is in predicting catastrophe 
bond spreads at issuance. No kind of relationship between spread 
at issuance and the predictors is to be established - the focus lies 
solely on their prediction ability. We then compare the stability 
of predictors’ importance results for both methods. Then based on 
the ranking of the most stable predictors importance method, we 
examine the sensitivity of the random forest versus the benchmark 
to simultaneous missingness of multiple predictors in an effort to 
reveal and understand variables interactions. Next, by considering 
once again the most stable importance method, we examine the 
degree of similarity in predictors importance results in the predic-
tive versus explanatory modelling frameworks. Finally, we discuss 
whether the rankings make empirical sense from investors’ view-
point.

8.1. Permutation importance

The importance of each independent variable in predicting 
catastrophe bond spreads has been here assessed on the basis of a 
percentage increase in MSEOOB when a predictor is randomly per-
muted from the out of bag data whilst others remain untouched. 
First, the MSEOOB for each of the 500 trees comprising the ran-
dom forest, was recorded. The same process was repeated after 
randomly shuffling the values of a particular xp across all observa-
tions. Then, the change between these two mean squared errors, 
before and after xp permutation, has been calculated and averaged 
across the 500 trees after being normalised by the standard de-
viations of the differences. In this way, the importance score for 
xp has been derived. Finally, based on these scores, an importance 
ranking has been produced. The ranking of catastrophe bond pre-
dictors based on their permutation importance score is shown in 
Fig. 4. Variables higher on the vertical axis are more important in 
predicting catastrophe spread at issuance with respect to this mea-
surement.

One of the first observations is that all scores have posi-
tive value, indicating that each of the independent variables pre-
sented here does contribute towards prediction of catastrophe 
bond spreads. The predictors EL and RoL followed closely by term 
appear as the most important predictors of spread at issuance. In 
particular, when EL is shuffled, the out of bag mean squared error 
increases by around 41% whilst the respective percentages for RoL 
and term are slightly lower between 33% and 34%. Next, had any of 
the predictors; loc_peril and AP been randomly permuted, the pre-
diction performance of the random forest would have been dete-
riorated between 31% and 32%. By shuffling the predictor iss_year, 
we see an almost 28% decrease in random forest prediction accu-
racy whilst the respective percentages for BB spread and size are in 
the range between 27% and 28%. Rating contributes to the reduc-
tion in the prediction accuracy of the random forest by around 19%
and the least important predictors are coverage and vendor result-
ing in an approximately 16% and 13% prediction accuracy decrease 
respectively.

8.2. Minimal depth importance

The focus is now shifted from using a specific prediction perfor-
mance measure to assess variables importance to a criterion based 
on the way that the forest was constructed, namely, the minimal 
depth. A tour over the constructed random forest was made to find 
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Fig. 4. Permutation importance based ranking of predictors. Predictors being permuted versus percentage increase in MSEOOB as a result of the permutation.

Fig. 5. Minimal depth importance based ranking of predictors. Predictors and their forest averaged minimal depth.
the maximal subtree12 within each of the K = 500 trees for a par-
ticular xp predictor. From there, the minimal depth for xp within 
each tree was identified following the rationale explained in Sec-
tion 3. Then, the forest level minimal depth for xp was derived by 
averaging the minimal depth for xp within each tree among all 500
trees. Fig. 5 illustrates the ranking of the covariates with respect to 
their average minimal depth; higher values of minimal depth cor-
respond to less predictive variables.

Predictors EL and AP, with random forest average minimal 
depths of 1.45 and 1.60 respectively, have the largest impact in 
predicting catastrophe bond spreads. In particular, such small val-
ues of minimal depth demonstrate that these two variables were 
mostly used to split either the root node or any of its child nodes 
at least in most of the trees in the forest. Straight after in rank-
ings comes the variable RoL followed closely by iss_year which on 
average were chosen to split a node for the very first time at a 
depth equal to 2.17 and 2.23 respectively. At similar level of im-
portance stand the loc_peril and size with a level of depth still 
closer to 2.00 rather than 3.00 implying that they also have a con-
siderable forecasting power. It appears that predictors BB spread, 
term, rating, and trigger were on average chosen to split the third 
node in the regression trees comprising the random forest. The 
aforementioned predictors appear as not being as powerful be-
cause they split nodes which naturally have less data points due 
to their proximity to the terminal nodes. Then the remaining vari-
ables, coverage and vendor, have minimal depth measurements of 

12 See Section 3.4.2 for an explanation of what constitutes a maximal subtree.
13
5.08 and 5.21 respectively. These values are the highest among all 
predictors, revealing that coverage and vendor have the most lim-
ited forecasting ability out of all predictors.

8.3. Divergence between permutation and minimal depth importance 
results

Permutation and minimal depth importance procedures pre-
sented for ranking or selecting catastrophe bond spread predictors 
above are not directly comparable. This is because, as it has been 
seen, each of them follows a different approach in defining and 
quantifying the importance in prediction. However, empirically we 
would expect that there should be some consensus between the 
two methods. What we see is that whilst there is indeed a degree 
of agreement for the very top and bottom of the rankings, there is 
some divergence at the upper middle ranks. This realisation makes 
us think which of the two variable importance approaches leads 
to the most trustworthy results for our catastrophe bond spread 
prediction problem. Indeed, empirically, an answer to this ques-
tion would be to examine which ranking makes more sense from 
a practitioner’s perspective. However, we believe that it is also 
preferable to bring our attention back to the concept of stability, 
but this time for the catastrophe bonds features importance. If one 
of the two methods is unstable, then we can shift our focus to the 
other one that is more robust and then discuss whether the rank-
ing it provides makes sense from an investor’s perspective. In the 
following, we present the stability checks for the importance re-
sults derived by both permutation and minimal depth importance.
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Fig. 6. Bar plots showing the percentage frequency where a given predictor was ranked as top, second from top and in the last two positions for the most stable variable 
importance method in terms of ranking, i.e. minimal depth.
Table 9
Stability of ranking of predictors by different importance ranking method.

Ranking position Agreement % Agreement %
(Permutation) (Mimimal depth)

Top 98% 100%
Second from top 36% 46%
Second from bottom 27% 69%
Bottom 22% 69%
Last two 10% 100%

8.4. Stability checks for predictors importance results

Here a predictor ranking method will be considered reliable if 
its importance ranking for catastrophe bond spread predictors is 
fairly robust to certain type of changes in the data set, such as 
random splitting. If a change in the catastrophe bond data set from 
which the random forest is constructed lead to a big change at the 
top and at the bottom of predictors importance rankings, then that 
particular importance ranking method will be considered unstable 
and thus probably unreliable.

Towards this direction, since both permutation importance and 
minimal depth importance are procedures derived internally after 
the construction of the random forest, the stability of permuta-
tion and minimal depth importance has been mainly examined 
based on the 100 random forests pairs grown out of 100 Sam-
ple A and Sample B pairs which have been previously used when 
the stability of the random forest was investigated in Section 7.2. 
In Table 9, we report by variable importance method, the per-
centage of times where there was an agreement between Sample 
A and Sample B in the predictor chosen at the top, second, and 
bottom positions of the ranking for all data sets. As bottom po-
sitions of the rankings we consider the last two positions jointly. 
This is because we understand that the further we go down the 
ranking, the more susceptible variables may jump from the posi-
tion to its neighbours across different iterations. It is evident that 
14
minimal depth importance method provides more stable ranking 
results for both top, and bottom positions compared to permu-
tation importance method. The biggest differences between the 
two methods are recorded for the second from bottom, bottom, 
and last two ranking positions combined where the discrepancy in 
the agreement percentage reaches 42%, 47% and 90% respectively. 
As previously highlighted in Chen and Ishwaran (2012), the com-
plex randomisation element of permutation importance procedure 
makes it difficult to assess the underlying cause for it being rela-
tively more unstable. However, it should be mentioned that this is 
not the first work when this measure showed an irregular conduct. 
As an example from bioinformatics, Calle and Urrea (2010) showed 
that permutation importance rankings were unstable to small per-
turbations of a gene data set related to the prognosis bladder 
cancer. All in all, it should be acknowledged that the appropri-
ateness of a feature importance method is mostly data set specific 
and at least for the catastrophe bond set in hand it seems that per-
mutation importance is not as reliable.13 Based on the above, any 
discussion from now on which is relevant to predictors importance 
will be based on results of minimal depth importance as presented 
in Section 8.2.

Moving forward, it is interesting to examine stability within the 
minimal depth importance output with respect to which variable is 
chosen at a given position of the minimal depth importance rank-
ings. In order to do so, we considered the number of counts out 
of 200 sub-samples taken in 100 iterations (or 400 samples taken 
in 100 iterations when we consider the last two ranking positions 

13 We have also examined the robustness of the predictors importance stability 
results using the Boston Housing and Abalone Open Source data sets, as we did in 
the case of random forest stability evaluation. The results align with those derived 
for the catastrophe bond data set, i.e. the minimal depth method, at least for the 
top ranking positions, appears to be more reliable compared to the permutation 
importance one.
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Table 10
Sensitivity analysis for random forest (RF) versus linear regression (LR) to missing predictors using R2

OOB as performance 
measure. The performance is examined by removing predictors sequentially based on the minimal depth importance rank-
ing. Here we also report the R2

OOB of RF and LR without any missing predictors to facilitate comparison.

Missing predictors RF R2
OOB LR R2

OOB

no missing predictors 96.57% 83.30%
EL 95.74% 79.98%
EL, AP 87.69% 50.68%
EL, AP, RoL 87.86% 47.30%
EL, AP, RoL, iss_year 84.83% 43.65%
EL, AP, RoL, iss_year, loc_peril 84.56% 33.33%
EL, AP, RoL, iss_year, loc_peril, size 68.81% 30.76%
EL, AP, RoL, iss_year, loc_peril, size, BB spread 30.86% 21.18%
EL, AP, RoL, iss_year, loc_peril, size, BB spread, term 18.89% 17.69%
EL, AP, RoL, iss_year, loc_peril, size, BB spread, term, rating 12.23% 10.40%
EL, AP, RoL, iss_year, loc_peril, size, BB spread, term, rating, trigger 7.60% 7.69%
EL, AP, RoL, iss_year, loc_peril, size, BB spread, term, rating, trigger, coverage 5.67% 6.03%
Table 11
Sensitivity analysis for random forest (RF) versus linear regression (LR) to missing 
predictors using R2

OOB as performance measure. The performance is examined by 
randomly removing M predictors from the original data set for M = 1, . . . , 11. For 
each M , this experiment is repeated 100 times, and the average R2

OOB is reported. 
Here we also report the R2

OOB of RF and LR without any missing predictors to facil-
itate comparison.

Number of missing 
predictors at random - M

RF R2
OOB LR R2

OOB

no missing predictors 96.57% 83.30%
1 96.21% 82.47%
2 95.87% 80.58%
3 95.19% 78.19%
4 92.84% 73.56%
5 91.01% 70.78%
6 89.28% 67.34%
7 73.76% 59.74%
8 67.49% 51.74%
9 60.08% 43.45%
10 45.02% 29.22%
11 28.09% 16.97%

jointly), where a given predictor was ranked as top, second from 
top, or in last two positions in terms of importance by variable 
importance method. The results are shown in Fig. 6 in terms of 
percentage frequency. We see that minimal depth method is also 
fairly stable with regards to its predictors’ choices for the exam-
ined ranking positions. That said, in the top position the predictor 
EL was chosen 100% of the times and only a small variation is vis-
ible for the second from top and last two ranking positions. In the 
next section, we provide some further analysis on how well the 
random forest handles missingness of important predictors as op-
posed to LR model.

8.5. Further analysis - on handling missingness of important variables

We now assess the sensitivity of prediction accuracy of random 
forest in the absence of important predictors, and contrast the out-
comes with those from the benchmark model. Doing so also allows 
us to understand and characterise interactions between predictors. 
Here we consider removing more than one predictor each time and 
then report the resulting prediction accuracy of both random for-
est and the benchmark model. The removal of predictors is made 
firstly, sequentially based on the minimal depth ranking presented 
in Section 8.2, from the most important one to the least important 
one, and secondly, by (uniformly) randomly dropping M predic-
tors from the original data set for M = 1, . . . , 11. For each M , the 
second experiment is repeated 100 times, with the average R2

OOB
computed for both RF and LR. The sensitivity results are presented 
in Table 10 and Table 11.

When predictors are removed sequentially according to the 
minimal depth ranking, it appears that random forest prediction 
15
accuracy results seem to be considerably more robust compared 
to the ones derived from LR when the most important predictors, 
as identified in the minimal depth analysis, such as EL and AP, 
are jointly missing. For example, when the most important predic-
tors EL and AP are excluded from the analysis, the RF prediction 
accuracy drops by around 8% as opposed to 29% in the case of 
LR compared to the respective prediction performances when only 
EL, i.e. the most important predictor, is missing. This may be an 
indication that there are potentially interactions, as well as non-
linearities, between the predictors, which random forest appears 
to be capturing whereas the linear regression model struggles. An-
other observation is that we see a significant drop in random forest 
prediction accuracy when size and even more so BB spread are 
included in the missing predictors set. In particular, when size 
is removed, RF prediction accuracy deteriorates by 16%, i.e. the 
biggest drop up to this point since the beginning of the mini-
mal depth based sequential removal of predictors. When BB spread 
is excluded, RF prediction accuracy declines by an additional 38%
which is the highest drop in RF prediction accuracy across the 
whole experiment. A potential interpretation is that there is a cer-
tain degree of information redundancy among all the predictors. 
Here the predictors size and BB spread contain a large amount of 
useful information of all its predecessors found to be of higher 
importance in catastrophe bond spread prediction, which can be 
effectively extracted by random forest.

Similar observations are made when randomly removing M
predictors from the original data set for M = 1, . . . , 11 repeated 
100 times and taking the average of R2

OOB for the RF and LR re-
spectively. RF still shows a better predictive performance than LR 
having an average R2

OOB of around 90% even by randomly drop-
ping half of the variables, again forcing the impression that RF is 
more flexible than LR and is likely better at capturing interactions 
and dealing with possible missingness of the predictors. It should 
be noted that thanks to the random dropping mechanism, the re-
sults in Table 11 appear smoother than these in Table 10 where 
we exclude the most important variables first - a strategy which 
acts more like assessing the worst case scenario. In summary, ran-
dom forest is better at borrowing strength from existing predictors 
to (partially) recover the predictive power lost due to the absence 
of important predictors.

8.6. Predictive versus explanatory importance

Now we discuss whether the importance results in our predic-
tive framework agree with those presented in explanatory models 
of past works but also the LR model in the current study.

As mentioned in Shmueli (2010), variables which are consid-
ered important in explaining the response are tied to theoretical 
hypotheses which are set at the beginning of the study, and on 
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the notion of statistical significance. These aspects are immaterial 
in a purely predictive modelling framework as the one we present 
by using random forests. Exploring the level of this divergence is 
meaningful, as it can add value in understanding the full spectrum 
of catastrophe bond spread drivers for both prediction, and expla-
nation. It should be mentioned that this is an exercise that shall 
be made with extra caution as, to our best knowledge, every study 
in the explanatory catastrophe bond pricing literature to date and 
our predictive study has utilized different data sets and made dif-
ferent assumptions (apart from the LR model). However, given the 
fact that satisfactory level of agreement has been recorded in the 
past for certain variables in the explanatory framework, even un-
der these constraints, it merits a short discussion.

The starting point is independent variables where harmony 
with respect to predictive and explanatory importance between 
this and previous studies has been observed. In particular, in Sec-
tion 8.2, it is seen that EL is the most major contributor in pre-
dicting spreads in the primary catastrophe bond market. This re-
sult comes in agreement with our LR model presented in Table 3, 
and the majority of the previous explanatory oriented literature, 
see Lane (2000), Lane and Mahul (2008), Bodoff and Gan (2009), 
Dieckmann (2010), Braun (2016), Galeotti et al. (2013), and Jaeger 
et al. (2010). In Lei et al. (2008), the conditional expected loss is 
considered instead of expected loss, despite the fact that the for-
mer is not found to be statistically significant, while other variables 
related to the loss distribution are.

At the same time, in this study we observe that the probabil-
ity of losses outstripping the attachment point has almost equal 
forecasting power as the expected loss. Moreover, we see that the 
predictor AP is statistically significant in LR too. Lane (2000) also 
supports that the catastrophe bond premium is derived through 
an interplay between frequency and severity of catastrophe bond 
expected losses. On the top of this, Lei et al. (2008) and Jaeger 
et al. (2010) agree with the view that the attachment probabil-
ity is of high significance in explaining catastrophe bond spreads. 
Moving forward, the importance of variables reflecting the cycli-
cality of the market is high both in a predictive, and explanatory 
context, see LR, Lane and Mahul (2008), and Braun (2016). At the 
same time, peril-territory combination which is found particular 
importance for its ability to forecast spreads here and in the ex-
planatory framework. In particular, alike results are obtained by 
LR, Gatumel and Guegan (2008), Jaeger et al. (2010), and Götze 
and Gürtler (2018). Similarly, trigger is predictive in the current 
research whilst Dieckmann (2010), Götze and Gürtler (2018) and 
Papachristou (2011) also commented about the explanatory signif-
icance of this variable in their models. Finally, the predictor rating 
which is found to be predictive in our study (although not of top 
importance), is seen as major determinant of spread in our LR 
model, and also in Lei et al. (2008), and Götze and Gürtler (2018); 
even though Götze and Gürtler (2018) have examined rating from 
a different perspective to the one we employ, i.e. the variable re-
lated to rating does not refer to the credit quality of the bond but 
to that of the cedent instead.

With respect to the predictor term, no general consensus on its 
statistical significance has been reached in the literature up until 
now, although here it appears to be relevant for both prediction 
and explanatory purposes as LR reveals. For example, Papachris-
tou (2011) and Braun (2016) exclude the variable term from their 
analysis whilst on the other hand Dieckmann (2010), Galeotti et al. 
(2013), and Gürtler et al. (2016) highlight its importance. At the 
same time, the predictor size is minded as less influential or not 
significant at all by the models of Papachristou (2011), Lei et al. 
(2008), Braun (2016), and LR (zero coefficient even if the variable 
is significant) but it is considered sufficiently important for predic-
tion purposes in our study. This divergence may once again stem 
from the way weak predictors are treated in a typical linear re-
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gression model versus random forests. As it is mentioned by Berk 
(2008), in a traditional regression framework a variable having a 
very small association with the response is most often excluded 
from the model being regarded as noise. Nevertheless, a big num-
ber of small associations when considered not on an individual 
basis but on an aggregate level can have a substantial impact on 
fitted values. That is not to say that linear regression is not capable 
of capturing interactions, however to do so any interactions need 
to be explicitly specified - a complicated task when the number 
of predictors in the study starts increasing. On the contrary, ran-
dom forests, as a tree based method, is naturally able to capture 
associations between predictors without the need to specify them. 
Indeed, Papachristou (2011) also acknowledges that in the context 
of his study, the fact that the term is not considered as important 
enough to be included in the suggested model may be due to the 
challenge of capturing complex effects between covariates. Com-
ing back to the discrepancy between explanatory and predictive 
power for predictor size, we recall that in Section 8.5 the inter-
acting behaviour of this variable is also observed in the predictive 
framework.

Finally, our study indicates that the variables vendor and cov-
erage are predictive despite of their appearance at the bottom of 
the ranking. Since this is the first time that these variables are 
studied, we can only compare them with LR in the explanatory 
framework. In particular, vendor does not appear as a statistically 
significant variable whilst coverage is. Overall, we can conclude 
that explanatory (based on LR and past literature) and predictive 
power appears to coexist for all catastrophe bond spread drivers 
considered in our study apart from size and vendor.

8.7. Discussion of predictors’ importance results from an industry 
perspective

Looking broadly at the minimal depth ranking presented in 
Fig. 5, we observe that the predictors may fall into three groups: 
those of utmost (the top two), medium (the next seven) and 
low prediction strength (the last two). We acknowledge that the 
bounds of where medium and lowest importance variables groups 
start may be subjective. The distinction here is made looking at 
the ranking from the perspective of a practitioner. The reason why 
we want to avoid focusing on individual importance scores is that 
explaining results in such a detailed way would neither be appro-
priate nor meaningful for a prediction oriented study. This section 
is not about interpreting results but seeing whether the results 
capture somehow investors’ perception and knowledge of the mar-
ket.

Having explained our rationale, the group of top importance 
predictors comprises from the two fundamental ingredients in any 
risk quantification process, that is the product of severity and fre-
quency of losses, i.e. EL, and AP. This is something that would 
most probably not surprise insurance professionals, risk managers 
or even investors if the variable importance results were to be pre-
sented to them. Especially with respect to investors, it is well com-
prehended that the return to be earned by investing into a catas-
trophe bond deal needs to surpass the expected value of catas-
trophe bond payouts. Thus, from an empirical viewpoint, investors 
would expect that by knowing the expected loss and probability of 
them losing the first dollar, at least a part of the spread value can 
be predicted.

The second group refers to some cyclical market elements and 
catastrophe bond features which could influence investors’ interest 
in a deal. The high importance of cyclical aspects in the predic-
tion of a new issuance spread is somehow natural since a hard 
or soft market directly sets some bounds on the top of which a 
deal’s specific loss profile and characteristics would be assessed. 
One reason why certain catastrophe bond features could influence 
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an investor’s appetite considering a deal, is the effect that these 
features could have on investors’ portfolio returns. In particular, 
investors would most probably agree with the predictor loc_peril 
having a high position in the ranks, as this type of information 
acts as the window shop for them entering the transaction. The 
rarity of the peril combined with the coverage territory indirectly 
informs investors about the diversification effect that the particu-
lar security can bring into their portfolio; a significant incentive for 
them to invest in this asset class. We acknowledge that this may 
not be true for new or rare perils, for which the existing catas-
trophe models are not yet trusted, however even in this case the 
peril-territory combination is informative in this sense. Another 
reason why the predictors of the second group could trigger in-
vestment interest is because some of these features are typical 
in traditional bond types traded in the financial markets and in-
vestors are already accustomed to this type of information such as 
issuance size, BB spread level, time between issuance and matu-
rity date, credit rating related information, and trigger of payment. 
Consequently, one can say that the location of these variables in 
the ranking supports the way an average investor would think even 
for a typical non-insurance linked investment.

Finally, the last group of predictors in the importance ranking 
comprises from variables having strong technical weight in the se-
curitization process and being insurance sector specific. The first 
predictor in this group, i.e. coverage type, refers to a contract term 
found in insurance contract whilst the second one, i.e. vendor, to 
the software company used to calculate the expected loss and var-
ious loss probabilities. Whilst this may not be immaterial informa-
tion, there is not direct equivalent of such features in the financial 
markets. Thus, the average investor not specialising in insurance 
linked securities would not really dig deep into analysing vendor 
model updates, and historical loss catalogues, or even the wording 
of the transaction when thinking of returns prediction. Especially 
for vendor, it is a matter of fact that there is a global oligopoly in 
firms offering catastrophe risk modelling solutions in the insurance 
industry. Although the software developed by each of these com-
panies is based on different assumptions, their scientific grounds 
are not disputed in the marketplace. This can be mostly attributed 
to the fact that these companies have been founded years before 
the birth of the first catastrophe bond and also that they have a 
long track record of being used in the traditional insurance and 
reinsurance markets. Thus, there is a contract of trust between 
them and the market participants as all vendors are perceived to 
be of equivalent reputational standing. Having said that, it does 
not mean that investors are sure about the reliability of the ex-
pected loss computation. It is just that most likely they would not 
believe that one vendor will have a much more valid estimate of 
loss compared to another. Similarly, coverage type really matters 
from an investor’s perspective when seen in conjunction with the 
trigger or the combination of peril and geography. For example, 
catastrophe bonds with indemnity triggers or not well understood 
risks when combined with aggregate coverage terms can be risky 
in trapping investors’ capital, as it was seen after 2018 Califor-
nian wildfires (Risk 2019). Taking into account all the above, the 
minimal depth predictors’ importance ranking seem to reasonably 
reflect investors’ current understanding of the market.

9. Example of random forest application in the industry

In this section, we present some possible examples of how the 
random forest could add value to ILS industry participants’ daily 
operations. In particular, we discuss how the random forest could 
assist a would-be catastrophe bond issuer or investor in making 
faster and more informed decisions. In other words, we attempt 
to showcase examples of random forest applicability both from the 
“buy” and “sell” sides of the catastrophe bond market.
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Starting from the sell side, a would-be catastrophe bond issuer 
along with their investment advisors, prior to finalising the terms 
of a new catastrophe bond issuance, would use the random forest 
to predict the likely spread at which investors would accept the 
offering. Getting to know this information is important as it allows 
for exploration of terms which would make the deal appear more 
attractive to an investor. In case this would not be feasible, the 
would-be issuer would realise faster that it may be preferable to 
explore alternative risk financing options.

From the buy side point of view, the random forest could also 
be beneficial to investors. In particular, just before a new catas-
trophe bond is issued, potential investors are provided with an 
offering circular. This document includes information about the 
deal which is to be launched and an invite for them to attend a 
road show, post which the issuance pricing will be settled. The in-
formation disclosed in this package refers to risk details, various 
design characteristics of the issuance and a price guidance. In-
vestors want to make sure that the suggested spread compensates 
them enough for the true element of risk that they would under-
take had they entered the transaction. However, a detailed analysis 
of this aspect can be time consuming as various departments and 
sometimes even external risk modelling firms get involved in the 
process. Whilst this process is undoubtedly important, investors 
would like to have a first flavour for a new deal’s potential faster. 
Then, let’s imagine how useful a straightforward prediction tool 
like random forest would be, where investors could plug in de-
tails provided in the circular of the new issuance the moment they 
receive it to get a quick spread prediction for the new transac-
tion they investigate on the spot. This prediction would then be 
compared with the spread guidance offered and give investors an 
initial idea on whether the bond is overpriced, under-priced or 
“fairly” priced based on past catastrophe bond experience. This 
would direct investors to identify bargains faster and ask more 
relevant questions about the deal whilst on the road show. Then 
if the deal would be of interest, they could send all information 
needed to their modelling teams to perform the usual tasks of re-
modelling the underlying risk exposure and calculate the marginal 
impact that this new investment would bring into their portfolio. 
Overall, random forest is a solution that can speed up the invest-
ment decisions and help ILS investment firms not to use their 
valuable human resources for irrelevant catastrophe bond deals. As 
mentioned in Section 3.3.1, random forest could also be used to 
populate incomplete catastrophe bond deals databases when there 
is uncertainty or missingness of spread values for past transactions. 
We believe that its suitability for this purpose is very likely given 
the fact that we have some evidence about its high non-temporal 
prediction accuracy (see Section 7.1.1), and its “robustness” when 
information for more than one predictor is missing simultaneously 
(see Section 8.5) - a relatively usual phenomenon in an opaque 
market setting.

Besides, one note that needs to be made is that when assessing 
the discrepancy between the predicted spread value provided by 
the random forest (which for the buy side is the price guidance, 
and for the sell side it is the price for which the issuer would think 
that investors would accept the deal), one might first want to look 
back at what happened in the past, i.e. the historical discrepancy 
between the predicted and actual values recorded in the prediction 
phase post the random forest training. This may shed some light 
on the level at which a mispriced deal according to random forest 
is due to the portion of variability that the random forest could not 
explain or merely due to the fact that the new catastrophe bond 
has characteristics that have never been recorded in the past. The 
latter problem, could be mitigated if the random forest would be 
re-trained at frequent intervals, as part of the model validations 
taking place at least annually in a business context, enriching the 
training data set with more deals.
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Finally, although many other parameters could be taken into ac-
count for random forest to be incorporated into internal business 
processes, here we give an idea of how the prediction power of 
random forest can liaise with issuers and investors’ personal judge-
ment to make faster and more informed decisions. It should be 
highlighted that recent developments in the catastrophe risk mar-
ket also support the use of machine learning techniques. Prime 
examples are the new cyber risk model of AIR vendor, see AIR 
(2018), and a new platform for analysing deals and facilitating 
transparency in the catastrophe bond market, see Jones (2019).

10. Concluding remarks and future research

Until recently, the data-driven catastrophe bond pricing litera-
ture was mainly focused on building statistical models with an aim 
to test causal theory. The centre of interest lied on identification 
of variables which have a theoretically material and statistically 
significant link to catastrophe bond price, i.e. hypotheses of rela-
tionship between price and each independent variable were made. 
Then a statistical model, mostly linear regression, was applied to 
observed data to compute the size of this effect and the statis-
tical significance of each independent variable in relation to the 
causal hypotheses set at the beginning. For model evaluation, in 
sample R2 has been the classical way to assess model success, 
even though few more recent studies, such as Galeotti et al. (2013), 
Gürtler et al. (2016), and Braun (2016) have also considered out of 
sample model performance, and in some cases robustness checks 
for stability over different time periods. Model selection happened 
on the basis of keeping statistically significant factors and some-
times those non-significant ones having large coefficients to match 
the function connecting catastrophe bond spread and factors to the 
true underlying catastrophe bond data generation process.

The approach presented in the current research study was fun-
damentally different. A machine learning method called random 
forest was applied to a rich primary market catastrophe bond data 
set with a goal to predict catastrophe bond spreads at issuance 
given information in the offering circular and knowledge about 
current market conditions available at the time of prediction. Here, 
we did not focus on the underlying data generation process instead 
we learned the association between catastrophe bond spreads and 
predictors from the data directly using the random forest. The 
performance of our method was assessed on how accurately it pre-
dicted spreads based on unseen catastrophe bond observations on 
both temporal and non-temporal bases as well as the sensitivity of 
this prediction accuracy when possibly interacting predictors are 
missing. Variable importance measures referred to predictive abil-
ity and not the power to explain how the spreads are generated in 
this universe. There was also interest in securing repeatable pre-
diction accuracy and predictors’ importance results because of the 
multiple levels of randomness incorporated in random forests thus 
relevant checks were performed. The degree of divergence between 
predictive and explanatory importance was also of interest.

It was found that random forest has at least as good prediction 
performance as linear regression in the temporal context, and bet-
ter prediction performance in the non-temporal one. Random for-
est performed better than linear regression when multiple predic-
tors were missing from the model, as it has the ability to capture 
and extract interactions between existing variables. By assessing 
variables’ importance on a non-explanatory basis, we found that 
all examined predictors have a say in the prediction of spread even 
if this is in varying degrees. The prediction accuracy, and predic-
tors’ importance results of random forest were stable. Taking prior 
explanatory literature and LR model into account, it appeared that 
predictive and explanatory power coexist for all catastrophe bond 
spread drivers considered in our study apart from size and vendor. 
There is potential for random forest to be used in the catastro-
18
phe bond industry to fast track investment decisions from both 
the buying and selling sides.

Based on the above findings there are certain aspects that 
would be interesting to research in the future. Although by us-
ing random forest as presented here, an investor, for instance, can 
see whether a new issuance of any type has a competitive price 
guidance or not, they do not get informed about the suitability of 
a new deal given their current portfolio composition. Addressing 
this need is a significant and important topic for future research. 
Another subject for future study is to extend our data set prior to 
2009 to focus on the years of the financial crisis, and also addi-
tionally examine whether the drivers of private placements differ 
compared to those of non-private catastrophe bond deals. Finally, 
for the explanatory framework, another direction is for the vari-
ables size and BB spread to be further investigated as they stand 
out due to their potential interactions with other variables when 
other important variables are missing in the context of random 
forest.

In conclusion, our research provides some evidence that util-
ising both predictive and explanatory modelling can enhance the 
understanding of catastrophe bond market segment, increase its 
transparency and contribute to its development.
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Appendix A. Summary statistics for the catastrophe bond data 
set

We now provide further information about the catastrophe 
bond data set used in this research paper. Summary statistics are 
presented for all variables, both continuous and categorical ones. 
Starting from the continuous variables, we present histograms in 
Fig. 7 and measures of central tendency and spread of the observa-
tions in our data set in Table 12. In Fig. 7, we see that all continu-
ous variables have a right skewed distribution except variables RoL, 
BB spread, iss_year, and term. In particular, we see that the major-
ity of catastrophe bond issuances in our data set corresponded to 
a RoL value of less than 100 indicating a soft market. Moreover, 
most of catastrophe bonds were issued in the year 2012-2013. It 
appears that term distribution has two peaks reflecting that most 
catastrophe bond issuances have a 3 to 5 year time horizon. Look-
ing at Table 12, we notice that the range between minimum and 
maximum values for all continuous variables as well as the in-
terquartile range are rather broad indicating that data points are 
well spread out. Such a data structure is anticipated in a catastro-
phe bond market setting. In essence, each issuance is a bespoke 
product developed to meet a very specific risk transfer need and 
consequently the population of catastrophe bond deals is hetero-
geneous.

Moving forward to categorical variables in Table 13, we present 
for each of them the number of level and number of observations 
under each level, with the latter quantity also being expressed as a 
percentage of the total number of observations. All variables levels 
are those used by the industry unless otherwise stated. Some com-
ments regarding each categorical variable follow. With regards to 
coverage type, we find that the majority of catastrophe bonds dur-
ing the studying period were issued to provide compensation in 
situations where a single large-scale loss event would activate the 
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Fig. 7. Histograms for the continuous variables. Percentage of total observations versus different ranges of a given numerical variable.

Table 12
Continuous variables summary statistics. The unit in which each continuous variable is measured is provided in brackets.

Continuous variable Min. 1st Qu. Median Mean 3rd Qu. Max.

spread (in basis points) 50.00 375.00 590.0 687.70 871.50 2200.00
EL (in basis points) 1.00 111.00 188.50 274.60 333.80 1735.00
AP (%) 0.02 1.36 2.51 3.72 4.68 25.04
RoL (in basis points) 83.57 91.73 96.06 106.97 124.57 159.73
BB spread (%) 2.12 2.61 3.41 3.46 4.14 5.98
iss_year (as numeric value) 2009.00 2012.00 2014.00 2014.00 2016.00 2018.00
size (in million US dollars) 3.00 75.00 130.00 164.70 200.00 1500.00
term (in years) 1.00 3.02 3.18 3.49 4.02 5.12
trigger, i.e. per occurrence coverage, as opposed to this happening 
due to a collection of insured loss events i.e. aggregate coverage. 
In very few instances in the data set, such as tranches A and B of 
Riverfront Re Ltd Series 2017-1 for example, per occurrence and 
annual aggregate coverage co-existed.
19
With respect to loc_peril, we shall start by providing some ex-
planations in terms of abbreviations. The first part in each loc_peril 
level name indicates (a) geographical region(s). In particular, APAC 
stands for perils specific to Asia Pacific region, NA for perils rele-
vant to North America, SA for prominent perils in South America, 
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Table 13
Summary statistics for all the categorical variables. Levels of each categorical variable are presented by 
number of observations and percentage of total observations. Abbreviations are explained in the text.

Categorical 
variable

Levels No. of 
observations

Percentage (%)

coverage aggregate 303 32.4
occurrence 627 67.1
both 4 0.5

loc_peril APAC_Quake 51 5.46
APAC_Typh 22 2.36
Europe_APAC_Multi_Peril 2 0.21
Europe_Quake 12 1.28
Europe_Wind 54 5.78
NA_APAC_Multi_Peril 26 2.78
NA_Europe_APAC_Multi_Peril 36 3.85
NA_Europe_Multi_Peril 39 4.18
NA_Multi_Peril 425 45.50
NA_Quake 80 8.57
NA_Wind 184 19.70
SA_Quake 3 0.32

rating B 141 15.09
BB 286 30.62
BBB 4 0.43
CCC 4 0.43
nr (not rated) 499 53.43

trigger indemnity 511 54.7
parametric 29 3.1
industry loss index 325 34.8
parametric index 23 2.5
model 22 2.4
multiple 24 2.6

vendor AIR 741 79.3
AON 4 0.4
EQECAT 42 4.5
RMS 141 15.1
pp 6 0.6

Fig. 8. Historical development of the Lane Financial LLC Synthetic Rate on Line Index (measured in percentage terms). Values above 100 indicate a hard market.
and Europe for perils in the aforementioned region. What follows 
the geographical region code, for instance APAC, is the peril type 
covered in the aforementioned location. There, except for those 
that are self-explanatory, Typh stands for typhoon and Multi_Peril 
includes various individual perils in the earlier indicated regions. 
For instance, one out of the NA_Europe_APAC_Multi_Peril tagged 
transaction provide cover against US named storms, Canadian 
earthquake, European earthquake, Australian wind and Australian 
earthquake. We see that almost half of the catastrophe bond deals 
in the data set had a mixture of perils in NA geographical territory 
which is quite expected since the perils in the area are gener-
ally considered to be more well understood and there is a longer 
heritage of issuances there. For example, bonds covering wind in 
20
North America are very popular even if the assumption of losses in 
the area is more likely due to the effect of hurricane seasons. Nev-
ertheless, the high frequency of events had allowed risk modelling 
companies to understand the risk better, and build more trustwor-
thy models with investors feeling more secure to buy exposures in 
this region. Looking into the credit quality allocation of the bonds 
issued, it is evident that more than 99% of catastrophe bonds in 
the data set either were characterised as non-investment grade se-
curities or they did not receive a rating by any independent credit 
quality agency - the latter point has already been discussed more 
thoroughly in Section 4.3.

With regards to triggers, indemnity ones were the most popu-
lar among the bonds included in the study followed by industry 
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indices. This clearly shows a preference from cedents’ perspective 
to get compensated for the exact level of losses that they antici-
pate to experience or at least to be compensated in line to industry 
losses. Deals which are triggered when pre-determined event pa-
rameters are satisfied or surpassed accounted only for 5.6% of the 
total market in the period under study. Examples of parametric 
index deals in the current data set is Atlas VI Capital Ltd. Series 
2010-1 and Bosphorus Ltd. Series 2015-1 whilst IBRD CAR 118-
119 is an example of pure parametric trigger deal issued by the 
International Bank for Reconstruction and Development for Mexi-
co’s natural disaster fund named FONDEN. The least used triggers 
were those combining different trigger types such as Fortius Re 
II Ltd. Series 2017-1 and those based on the modelled losses of 
the cedent’s exposure portfolio calculated based on event parame-
ters gathered from specified agencies, such as Akibare II Ltd. single 
tranche.

With respect to the risk modelling company used to calculate 
the expected loss of investors’ exposure to underlying peril, we see 
that AIR Worldwide is the most widely used followed by RMS. To-
gether, they account for the 94.4% of all non-life securitisations in 
the data sample followed by EQECAT, AON and pp accounting for 
the rest 5.6%. It is worth to note that pp abbreviation is not a risk 
modelling firm but it stands for private placement. Examples are 
the single tranches of Merna Re Ltd. Series 2016-1, 2017-1, 2018-1
Table 14
In sample fit of the linear regression model with Investment G
opposed to variable rating presented in Table 1 and Table 13 in

Estimate

(Intercept) 61540
RoL 6.05
BB spread 50.34
IG 0 (baseline)
IG 1 −253
IG nr (not rated) 87.99
term −27.25
size 0.00
trigger industry loss index (baseline)
trigger indemnity −0.58
trigger model −92.47
trigger multiple −44.9
trigger parametric index −23.9
trigger parametric −122.6
coverage aggregate (baseline)
coverage both 55.80
coverage occurrence −59.95
vendor AIR (baseline)
vendor AON 101.1
vendor EQECAT −0.68
vendor pp 21.33
vendor RMS 15.4
AP −16.32
EL 1.33
iss_year −30.79
APAC_Quake (baseline)
loc_peril APAC_Typh −77.74
loc_peril Europe_APAC_Multi_Peril −9.11
loc_peril Europe_Quake −13.43
loc_peril Europe_Wind −138.1
loc_peril NA_APAC_Multi_Peril 100.1
loc_peril NA_Europe_APAC_Multi_Peril 152.7
loc_peril NA_Europe_Multi_Peril 149.9
loc_peril NA_Multi_Peril 166.8
loc_peril NA_Quake −19.79
loc_peril NA_Wind 97.83
loc_peril SA_Quake 133.1

R2 83.96%
Adjusted R2 83.41%
Res. Std. Error 166.8 (df = 902)
F Statistic 152.3 (df = 31; 90

Note for signif. codes: ∗p < 0.1; ∗∗p < 0
Observations number: 934
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which were privately purchased by specialized ILS funds. Finally, 
the internal model of AON was used for very few deals where the 
aforementioned company had acted as the structuring and place-
ment agent, such as in the case of Windmill I Re series 2013-1.

Appendix B. In sample and out of sample performance of LR 
model using the variable Investment Grade (IG) instead of the 
variable (granular) rating

See Tables 14 and 15.

Table 15
Out of sample performance measured in terms of R2

OOB, R2
10CV, and R2

LOOCV for the 
improved linear model of Braun (2016) versus the linear regression model with
Investment Grade (IG) variable to indicate credit quality (LR with IG), and the 
benchmark linear regression model (LR) which includes the variable rating pre-
sented in Table 1 and Table 13 in Appendix A.

Model R2
OOB R2

10CV R2
LOOCV

Improved Braun (2016) 79.71% 80.81% 79.40%
LR with IG 82.22% 82.35% 82.72%
LR (with granular rating) 83.30% 84.42% 83.84%
rade (IG) variable to indicate credit quality (LR with IG) as 
 Appendix A.

Std. error t value Pr(> |t|)
9677 6.36 0.000 ***
0.43 14.15 0.000 ***
8.66 5.81 0.000 ***

85.34 −2.96 0.003 **
15.71 5.6 0.000 ***
8.86 −3.07 0.002 **
0.00 3.06 0.002 **

14.77 −0.04 0.969
39.91 −2.32 0.021 *
40.13 −1.12 0.264
42.02 −0.57 0.570
37.4 −3.28 0.001 **

85.00 0.66 0.512
13.95 −4.3 0.000 ***

90.59 1.11 0.265
33.96 −0.02 0.98
73.65 0.29 0.772
19.25 0.8 0.424
6.09 −2.68 0.008 **
0.09 15.22 0.000 ***
4.79 −6.42 0.000 ***

44.6 −1.74 0.082
129.2 −0.07 0.944
57.83 −0.23 0.816
40.7 −3.4 0.001 ***
47.48 2.1 0.035 *
42.51 3.6 0.000 ***
40.96 3.66 0.000 ***
28.25 5.9 0.000 ***
35.59 −0.55 0.57
30.72 3.18 0.002 **
107.4 1.24 0.216

2)

.05; ∗∗∗p < 0.01
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Appendix C. In sample and out of sample performance of Braun 
(2016) model using a subset of our catastrophe bond data

See Tables 16 and 17.

Table 16
In sample fit of candidate benchmark models specification. Here, the linear regres-
sion model of Braun (2016) was applied on our catastrophe bond data set. We 
notice that only 434 data points are considered as the binary Investment grade 
variable does not take into account non-rated transactions.

Estimate Std. error t value Pr(> |t|)
(Intercept) −665.97 40.33 −16.51 0.000***
Swiss Re −20.12 14.57 −1.38 0.168
RoL index 5.24 0.44 12.02 0.000***
BB spread 57.18 11.66 4.91 0.000***
Investment grade −39.17 73.32 −0.53 0.593
Peak territory 224.95 19.22 11.70 0.000***
Expected Loss 1.64 0.07 23.85 0.000***

R2 79.97%
Adjusted R2 79.69%
Res. Std. Error 143 (df = 428)
F Statistic 284.8 (df = 6; 428)

Note for signif. codes: ∗p < 0.1;
∗∗p < 0.05;
∗∗∗p < 0.01

Observations number: 434

Table 17
Out of sample performance measured in terms of R2

OOB, R2
10CV, and R2

LOOCV for the 
linear model of Braun (2016) versus the linear regression (LR) in this study.

Model R2
OOB R2

10CV R2
LOOCV

Braun (2016) 79.20% 80.40% 79.12%
LR 83.30% 84.43% 83.84%

Appendix D. Prediction accuracy performance of RF 
with categorical dummy variables

See Table 18.

Table 18
Prediction accuracy performance measured in terms of R2

OOB, R2
10CV, and R2

LOOCV for 
random forest (RF) when converting all the categorical variables into dummies in 
the catastrophe bond data set.

Model R2
OOB R2

10CV R2
LOOCV R2

RF 96.57% 96.49% 96.59% 99.25%
RF_dummies 96.48% 96.16% 96.63% 99.18%
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