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ABSTRACT 
The structural response of a segmental grey cast iron (GCI) tunnel lining ring under distortion 

was investigated by means of finite element (FE) analysis. Building on previous experimental 

investigations, a 3D numerical model, capable of reproducing accurately the behaviour 

observed in the laboratory, was developed with the aim of providing guidelines for the structural 

assessment of GCI linings in engineering practice. A comprehensive validation of the segmental 

ring model with the laboratory data was first completed. Subsequently, a parametric study was 

conducted using a set-up that replicated the widely adopted elastic continuum method, so that 

differences between the numerical and the analytical solution could be attributed to the 

presence of the longitudinal joints. In this manner, the influence of the joints on the ring 

response was quantitatively established and recommendations for routine engineering 

calculations developed. A set of bending stiffness reduction factors are proposed as a function 

of the tunnel ovalisation, providing upper and lower limits of the bending stiffness, as well as a 

global reduction factor which is an average measure of the bending stiffness reduction. These 

factors can be integrated into the calculation procedure of closed-form solutions in order to 

account for the segmental nature of GCI linings. 

 

Keywords: grey cast iron, segmental lining, tunnel joints, bending stiffness reduction factor 

1. Introduction 
During the late 19th and early 20th centuries London underwent a major development of 

the underground railway with the construction of deep tunnels in the London Clay strata. In 

those early times of tunnel construction, from 1894 to 1937, bolted GCI linings were routinely 

specified for the deep tunnels in the London Underground (LU) network (Craig and Muir Wood, 

1978). As a general description, a bolted GCI lining is built as a succession of rings, each ring 

formed by six (or more) larger segments and a smaller closing key. The segments and rings are 

bolted together at the longitudinal and circumferential joints, respectively. Since there are 

numerous tunnels of this kind across the LU space, these are routinely affected by newly 

constructed underground structures such as excavations, deep foundations and tunnels. When 

such interactions take place, an estimation of how the existing tunnel deforms and additional 

internal forces develop from the new construction works is required in order to establish whether 

their magnitudes remain within the limits prescribed by LU and to determine whether special 

protective measures are required. This assessment, however, requires knowledge of the 

existing tunnel lining stiffness in both circumferential and axial directions, which are difficult to 

determine due to the presence of the tunnel joints. There is also considerable uncertainty about 

current internal forces within the GCI tunnels and their response to further ground movements.  

A major research project was undertaken between 2010 and 2014 at Imperial College 

London (Standing et al.), comprising laboratory testing of bolted GCI segments, field 

instrumentation and FE modelling, to gain a better understanding of the response of GCI 

tunnels during tunnelling works in their near vicinity. The experimental investigation involved 

testing half-scale GCI tunnel segments bolted together and cast with a similar chemical 
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composition as that in Victorian tunnel linings. Three sets of experiments were conducted: tests 

on two segments bolted together under zero hoop force (Tsiampousi et al., 2017); tests on a 

segmental ring imposing only elastic distortions (Yu et al., 2017); and, large distortion tests in 

which the segmental ring was taken to failure (Afshan et al., 2017). Thus, the response of a 

bolted GCI ring could be investigated in the laboratory providing invaluable information 

regarding the behaviour of the joints and their influence on the ring response. Among other 

findings, it was shown that a segmental GCI ring behaves similarly to a continuous ring for small 

ovalisations at high overburden pressures (24 m depth) while under a large ovalisation, it 

experiences significant stiffness reductions near the joint locations. The first part of the study 

presented here was to model the tests numerically. 

The behaviour of GCI linings has also been investigated numerically by others. Li et al. 

(2015) conducted an extensive parametric study on the structural response of a segmental GCI 

ring surrounded by springs to model the soil reaction. The authors demonstrated that the 

segmental GCI ring was significantly more flexible than a continuous ring by comparing the 

numerical results with an analytical solution. However, they did not demonstrate that a similar 

numerical model of a continuous ring (i.e. without joints) could replicate the analytical solution, 

and therefore it is not clear whether the differences in the results are attributable solely to the 

influence of the joints. Moreover, the behaviour of the bolted joint was calibrated (Li et al., 2014) 

using results from two-segment laboratory tests conducted by Thomas (1977) with no hoop 

force and therefore not akin to the conditions modelled in their segmental ring investigation.  

Analytical solutions (Morgan, 1961, Muir Wood, 1975, Duddeck and Erdmann, 1985) 

play a significant role in the structural analysis of tunnel linings because of their ability to 

produce estimates of internal forces and displacements without the complexities involved in 

more sophisticated methods, such as FE analysis. These solutions are usually formulated 

assuming a continuous lining structure in segmental linings, with a reduction factor h applied to 

the bending stiffness (EI) to account for the influence of the joints. Muir Wood (1975) proposed 

an empirical reduction factor h related to the number of joints per ring which is widely adopted in 

practice. However, the recent experimental evidence (Yu et al., 2017, Afshan et al., 2017) 

suggests that its applicability to GCI linings might be limited. Reduction factors h have also 

been derived analytically (Lee and Ge, 2001, Blom, 2002), based on the results of parametric 

numerical studies (Teachavorasinskun and Chub-uppakarn, 2010) and from laboratory model 

tests (Ye et al., 2014), however, the specific geometry and behaviour of bolted GCI joints are 

yet to be considered and therefore, the development of reduction factors for segmental GCI 

tunnel linings remains an open question.  

This paper presents a number of 3D FE analyses carried out to model a segmental GCI 

ring with the Imperial College FE program ICFEP (Potts and Zdravkovic, 1999). The calibration 

and validation of the numerical model is first introduced with a series of analyses aiming to 

replicate the laboratory tests performed at Imperial College on the half-scale GCI segmental 

ring. Thus, a comprehensive validation process was achieved providing confidence in the 

capabilities of the numerical model to make engineering predictions. Subsequently, a series of 
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analyses was conducted with boundary conditions replicating those in the elastic continuum 

method of Duddeck and Erdmann (1985). A parametric study was then performed to evaluate 

quantitatively the influence of the joints on the structural response of a prototype LU tunnel at 

varying degrees of tunnel ovalisation. By comparing the segmental ring response with that of a 

comparable continuous ring, a set of reduction factors h that accounts for the influence of the 

joints in commonly adopted analytical solutions is proposed. 

2.  Description of the experimental set-up 
The experimental set-up and testing programme have been described in detail by Yu et 

al. (2017) and Afshan et al. (2017). A summary focusing on the aspects governing the boundary 

conditions used in the numerical analysis is provided here for clarity.	
The testing was performed on a single half-scale ring (internal diameter of 1781 mm 

and width of 254 mm) that was formed by six equally sized segments, omitting the key segment 

for simplicity, connected with three bolts at each of the longitudinal joints. Ball bearing roller 

pads minimised friction between the ring and the floor where it rested horizontally. The load was 

applied radially by computer-controlled actuators acting on spreader pads with a 5° spacing 

between them transmitting the load to the ring extrados, to achieve a uniformly distributed load 

(Figure	1). The 0º angle (q) is set at the nominal crown of the ring and increases clockwise, 

such that joints are located at 0º, 60º, 120º, 180º, 240º and 300º.  To prevent rigid-body 

movement, the actuators at 250º and 290º were replaced by reaction rods and ring rotation was 

restrained at 90º by a rod acting tangentially to it. Loading involved two stages: a confinement 

stage, where equal normal loads were applied via the actuators to generate hoop force; and a 

distortion stage, where the displacement of the actuator at axis level (90º) was controlled to 

achieve the desired radial distortion. During the latter stage, the load on all other actuators was 

maintained, with the exception of the one between the two reaction rods (270º), where the 

average load measured by load cells on the two rods was applied.  

Regarding instrumentation, the force applied by each actuator was recorded with load 

cells and radial displacement at corresponding positions on the intrados of the lining by 

displacement transducers. Joint opening was measured at four joints using LVDT transducers 

attached to both the intrados and extrados of the ring at three locations along the longitudinal 

flange width (at the outer edge of the flange and aligned with the outer and middle bolts); forces 

in the bolts were measured using strain gauges; and axial forces and bending moments within 

the segments were estimated from strain gauge measurements at selected cross-sections 

around the ring.  
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Figure 1 Schematic drawing of the laboratory setup (modified from Yu et al., 2017)  

In the small distortion tests reported by Yu et al. (2017) the influence of tunnel depth and 

bolt preload under essentially elastic conditions was investigated by applying actuator loads of 

10 kN, 20 kN and 40 kN (equivalent to overburden pressures at 6, 12 and 24 metres, 

respectively, assuming isotropic stresses) and preloading the bolts to 5, 7.5 and 10 kN, in series 

of parametric studies. Tests for each load combination were performed three times to assess 

the repeatability of control and measurements. The bending moments for 40 kN confinement 

load compared well with the analytical solution of a continuous ring (Young and Budynas, 

2002), which in conjunction with the observation that negligible joint opening occurred, suggests 

that, despite its segmental nature, the ring behaviour approached that of a continuous ring for 

the highest confinement load. The experimental results revealed that joint opening increased as 

the confinement reduced, diverging from the analytical solution of a continuous ring. 

Furthermore, it was shown that with a compressive hoop force acting on the joints, the 

magnitude of the bolt preload was not significant with little differences in the ring response for 

the different values considered. Based on these observations, the case for 40 kN confinement 

load and 5 kN bolt preload was simulated as a calibration exercise, as explained later, while the 

remaining tests by Yu et al. (2017) were used to validate the numerical model.  

 Afshan et al. (2017) report on additional tests performed to assess the ultimate capacity 

of the ring, under 40 kN confinement load. The distortion stage was continued until failure was 

reached, in either the segment or the joint. During the first attempt (Test 1), a diametric 

distortion of 42.1 mm (2.36% diametric distortion) was reached without signs of failure. This was 

more than double the magnitude (18.7 mm) at which the authors predicted the ring would fail at 

two symmetrical joint locations. After a fifteen-hour shift, the test had to stop for health and 

safety reasons and the ring was unloaded completely. Before repeating the test (Test 2), the 
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bolts at the most compromised joint locations were replaced by new ones to ensure that 

potential yielding during Test 1 would not cause premature failure of the joints. In Test 2, the 

ring fractured at a diametric distortion of 35.3 mm (1.98% diametric distortion), in both 

circumferential flanges of the segment on one side of the joint at q=180o, very close to the 

intersection of the circumferential and the longitudinal flanges, propagating from the intrados 

towards the skin. Only Test 1 was used in the validation of the numerical model, because of 

uncertainties about the effect of the unloading-reloading cycle in Test 2.  

3. Description of the numerical model 

3.1 Geometry and finite element mesh 
The 3D finite element mesh employed in the analyses is shown in Figure 2a. Due to 

symmetry around the axis of the ring, only the top half was modelled. The geometry of the 

segments, in particular the connections at the joints, was reproduced in detail, including the 

caulking groove, the bolting system comprising the bolt, nut and washer and the corresponding 

bolt holes. The geometry and dimensions of the joint are included in Figure 2b.  The contact 

between the segments at the longitudinal joints was modelled with zero thickness interface 

elements (Day and Potts, 1994). Tsiampousi et al. (2017) demonstrated the need to calibrate 

their stiffness carefully, as it has considerable impact on the analysis results. For this reason, 

rather than including interface elements between the different components of the bolting system 

and between the washers and the longitudinal flanges, physical compatibility was assumed. 

High-order 20-noded solid elements were employed for the segments and bolting system and 

16-noded interface elements for the contact between segments.  

 

 
(a) Finite element mesh 

 
(b) Longitudinal joint (dimensions in mm) 

Figure 2 Geometry of the finite element model 
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3.2 Boundary conditions  
Due to symmetry, the nodes on the cross-sections at 90º and 270º were fixed in the 

normal direction (Figure 3). The nodes along the contact area where the circumferential flanges 

rested on the floor were also fixed in the normal direction. It was assumed that, for the test 

conditions, the self-weight could be neglected in the analysis. 

Each analysis was performed over three stages comprising bolt preload, confinement 

and distortion as in the experiment. To simulate the bolt preload, the nuts on one side of each 

joint were removed from the mesh prior to the start of the analysis. A tensile load representative 

of the bolt preload was then applied on the exposed surface of the threads, with an equal and 

opposite load applied on the exposed surface of the corresponding washers. Subsequently, the 

nuts were activated, completing the bolt preload sequence. In the confinement stage, a radial 

stress pact was applied to the extrados of the ring over surface areas (each 250x250 mm) 

corresponding to those of the plates employed in the laboratory to transfer the load from the 

actuators (see Figure 3a). Two different boundary conditions, applied over the same surface 

area as for the actuator loads, were investigated to model the presence of the two reaction rods: 

a radial fixity, assuming an infinitely stiff reaction bar; and a radial spring, representing a finite 

stiffness of the reaction system. This process formed part of the calibration of the numerical 

model and is discussed in a subsequent section. 

 
 

(a) Confinement stage 

 
 

(b) Distortion stage 

Figure 3 Schematic plan view of boundary conditions and loading 
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The distortion of the ring was applied by reducing the load on the axis level (90º) actuator, see 

Figure 3b, in small increments until the target distortion was reached within reason, while 

maintaining the confinement stage load at all other locations, including the actuator at 270º 

where the load in the test was adjusted according to the measured load changes in the reaction 

rods. This simplification means that all the load changes in the analysis were taken by the two 

segmental areas relating to the reaction rods rather than being distributed over a larger area of 

the segment as in the experiment.  

 

3.3 Material properties 

3.3.1 GCI segments 

A number of elastoplastic models (Hjelm, 1994, Altenbach et al., 2001, ABAQUS, 2014) 

have been proposed in the literature to reproduce the observed mechanical response of GCI: 

uniaxial strength in compression is typically 3-4 times higher than in tension (Angus, 1976); the 

stress-strain relationship in tension is nonlinear and permanent strains are generated from early 

stages of loading; significant permanent volume increases occur under tensile stress states 

(Gilbert, 1972, Coffin, 1950).  

For reasons of convenience, the constitutive model implemented in ICFEP by Schutz 

(2010) was adopted and modified to reproduce the behaviour of GCI. Originally developed for 

the modelling of shotcrete, it is formulated as a multi-surface, associated plasticity model. In 

tension, the yield surface is derived from the Rankine failure criterion, while in compression the 

option of employing the von Mises failure criterion, which is appropriate for GCI, is available. 

The two surfaces are allowed to evolve independently, with the principal plastic strains 𝜀"
# and 

𝜀$
# being the hardening variables for the tension and compression surfaces, respectively. 

The modification of the model relates to the pre-peak hardening behaviour, which was 

adjusted to capture adequately the nonlinearity of the experimental GCI stress-strain curve, as 

summarised in Appendix A1. The modified model was validated using results from tests 

performed by Coffin (1950) under a range of loading paths, demonstrating very good overall 

correspondence with the experimental data (Appendix A2) .  

In Figure 4 the stress-strain response from the constitutive model in a single element 

simulation of uniaxial tensile loading is compared with those from coupon tests conducted by Yu 

(2014) on the same GCI used for casting in the ring segments. The new hardening law 

reproduced well the stress-strain curves measured in the laboratory. A Young’s modulus E of 

100 GPa and a Poisson’s ratio n of 0.26 were adopted, while the remaining model parameters 

are presented in Table A1 (Appendix A3). As no data are available for the compressive 

behaviour of this GCI, it was assumed that yield and peak strength in compression are four 

times larger than those in tension (Angus, 1976). Strain-softening was not considered, even 

though the constitutive model could account for it (see Appendix A1), since the analyses 

presented in this paper were not intended to model fracturing of the GCI. 
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Figure 4 – Uniaxial tensile test simulation compared with the results from coupon tests 

conducted by Yu (2014) – black crosses mark test failure points 

3.3.2 Interface elements 

Interface elements (Day & Potts, 1994) were employed to model the segment to 

segment contact at the joints. The elastic perfectly-plastic Mohr-Coulomb model was adopted 

with an angle of shearing resistance of 40º, as in Tsiampousi et al. (2017). While in 

compression, the joint elements were elastic and their behaviour governed by their normal and 

shear stiffness. When in tension, the interface elements were open and their stiffness was zero. 

Using appropriate stiffness values is crucial for obtaining accurate results in contact problems. 

Ideally, they should be high enough to minimise penetration between contacting bodies, but 

values that are too high may result in numerical instabilities.  

 Tsiampousi et al. (2017) established through calibration an interface stiffness value of 

107 kN/m3 for the two-segment test under zero hoop force. However, as a hoop force was 

imposed in the full ring tests simulated here this value was not necessarily appropriate and so 

further calibrations to obtain the interface stiffness were performed as discussed in Section 4.2.  

 

3.3.3 Mild steel bolts 

The mechanical behaviour of the bolting system was modelled with the elastic perfectly-

plastic von Mises model. The Grade 4.6 mild steel bolts employed in the experiments have a 

yield strength of 240 MPa, which is the only plastic parameter required by the model.  

Although the elastic modulus of Grade 4.6 mild steel is 210 GPa, Tsiampousi et al. 

(2017) concluded that the stiffness of the bolting system should be reduced to 50 GPa in the 

numerical analysis to account for compliance, when the bolts are modelled as a single 

component, ignoring the interfaces between the individual components. Hence, the elastic 

modulus of the bolting system was set to 50 GPa. 

4. Calibration of the numerical model 
When translating the experimental set-up into a numerical model there was uncertainty 

regarding the boundary condition that should be used to simulate the presence of the reaction 
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rods that replaced actuators at 250º and 290º. In phase one of the calibration different 

approaches are explored to decide on the most effective boundary condition. Furthermore, the 

stiffness of the interface elements at joints needed to be calibrated. This is done in phase two.  

The small distortion test by Yu et al. (2017) at 40 kN confinement load and 5 kN bolt 

preload was selected to calibrate the numerical model. The fact that a stiffness similar to that of 

a continuous ring was established in the test (due to negligible joint openings) allowed the use 

in phase one of a continuous ring model, similar to that in Figure 2 but without interface 

elements. Having eliminated the need to quantify the interface element stiffness, focus was 

placed on selecting an appropriate boundary condition for the reaction rods. In phase two, the 

selected boundary condition was applied to the segmental ring model (i.e. with interface 

elements), progressively increasing the interface stiffness in successive analyses, until the 

analysis results matched the continuous ring and the experimental results.  

4.1 Phase one: Reaction rod boundary condition 
Three different boundary conditions were considered at the reaction rod locations along 

the extrados: 1) radial fixity; 2) radial spring (i.e. normal to the surface) with a stiffness 

representative of the dimensions and material of the bar in the laboratory; and 3) radial spring 

with a stiffness reduced to 1/10 of the stiffness employed in 2). The latter condition was to 

account for the potential compliance of the system connecting the bar to the external reaction 

ring.  

The results from the three simulations were compared with the laboratory data in terms 

of the change in radius at nine locations around the ring (Figure 5a) and the change in bending 

moment during the distortion stage (Figure 5b), note that the numerical results from 90º to 180º 

were obtained by symmetry. To be consistent with Yu et al. (2017), the radius change was 

taken as the change in diameter divided by two, such that the results are a measure of the 

distortion all around the ring. It can be observed that all three analyses reproduced adequately 

the distortion around the ring, with the case of reduced spring stiffness giving the best 

comparison with the laboratory data at 10º (170º) and 50º (130º), where the analyses slightly 

overestimate the change in radius. The same analysis provided the best match to the 

experimental data of change in bending moment around the ring. As expected, the bending 

moment became progressively larger as the rigidity of the boundary condition increased. 

Furthermore, the boundary condition affected the shape of the bending moment distribution, 

particularly near 0º, 90º and 180º. Based on these observations, it was concluded that the radial 

spring with reduced stiffness was the most appropriate condition and was adopted in all 

subsequent analyses (the other two cases provided an excessively rigid restraint).  
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(a) (b) 

Figure 5 Evaluation of reaction rod boundary condition (a) radius change (mm) (positive 
outwards) and (b) bending moment change (kNm) (M+ tension intrados) 

 
 
 

4.2 Phase two: Interface element stiffness 
The normal and shear stiffness of the interface elements in the segmental ring model 

were changed parametrically considering values of 108 kN/m3, 109 kN/m3 and 1010 kN/m3. The 

unloading force (at q=90º) required to achieve the target distortion in phase one was applied in 

all the simulations. Figure 6 compares the change in radius obtained from the three analyses 

and for a continuous ring. It can be observed that with increasing interface element stiffness the 

distortion around the ring converges towards that of the continuous ring, with the analysis using 

1010 kN/m3 reproducing accurately the continuous ring model. Hence, the normal and shear 

stiffness of the interface elements was set to1010 kN/m3 in all subsequent analyses, a much 

stiffer value being required than that established by Tsiampousi et al. (2017). 

 

	
	

Figure 6 Radius change (mm) around the ring for varying interface element stiffness (positive 

outwards) 
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5. Validation of the numerical model 
Once the model parameters controlling the rigidity of the segmental GCI ring were 

calibrated, the ability of the numerical model to reproduce the joint opening and stiffness 

reduction observed in the experimental ring was assessed. The validation considered distortion 

magnitudes under (elastic) serviceability and (near) ultimate state conditions and therefore, 

included a series of analyses simulating the parametric study conducted by Yu et al. (2017) and  

the large distortion test (Test 1) carried out by Afshan et al. (2017).  

5.1 Small distortion tests 
In the small distortion tests by Yu et al. (2017) the magnitude of the bolt preload had a 

negligible impact in the ring response, and therefore, in the validation of the numerical model 

only the set of tests with bolt preload of 5 kN was considered. Actuator loads of 10 and 20 kN, 

equivalent to overburden pressures at 6 and 12 m, respectively, were considered in addition to 

the 40 kN (24 m overburden) which was used in the calibration.  

The predicted changes in radius for the three confinement loads are presented in Figure 

7a. Due to the negligible differences in the laboratory data of the three tests, only one set of 

measurements representative of all the tests is included in Figure 7a for clarity. The numerical 

results were evaluated at the analysis increment where the computed distortion matched the 

experimental at 90º. Negligible differences between the three numerical analyses and good 

agreement with the experimental data are observed.  

Figure 7b depicts the change in bending moment around the ring corresponding to the 

distortion level presented in Figure 7a. The experimental bending moments were determined 

from the strain gauge measurements at 20º, 100º and 140º for the three laboratory tests (note 

that only the results from one of the three repeated tests performed is included). The 

experimental results show a reduction in the ring stiffness with decreasing confinement load. 

The numerical results indicate a smaller variation of bending moment with confinement load 

than that observed experimentally, with the results obtained for 20 and 40 kN confinement load 

being identical and comparable to the laboratory data for 40 kN. Although the change in 

bending moment for the analysis with 10 kN confinement load showed a slight reduction around 

0º and 180º with respect to the other two analyses, this was less than the reduction observed in 

the laboratory. Consequently, the segmental ring model did not capture the entire extent to 

which the ring stiffness reduced with reducing confinement loads in the laboratory.  
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(a) (b) 

Figure 7 Small distortion test at confinement loads of 10 kN, 20 kN and 40 kN (a) radius change 
(mm) (positive outwards) and (b) bending moment change distribution (M+ tension intrados) 

 

The circumferential displacement at the intrados of the upper edge of the joints on the 

right half of the ring (0º-180º) for the three confinement loads is presented in Figure 8a. Positive 

displacement signifies opening of the joint. The laboratory measurements of the repeated tests 

are all included in the figure. Although repeatability is not as good as in the case of change in 

bending moment, larger circumferential displacements (opening of the joints at 0º and 180º and 

closing at 60º and 120º) for smaller confining loads were consistently measured in the 

experiments. The influence of the confinement load on the joint opening is also evident in the 

analysis, however, for 20 and 40 kN confinement load, in addition to the joints at 60º and 120º, 

the joints at 0º and 180º remained closed, explaining the similarity in the computed bending 

moments between the two analyses. On the contrary, the joints at 0º and 180º for the analysis 

with 10 kN confinement load opened, justifying the stiffness reduction observed in Figure 7b 

compared with the other two analyses.  

The opening of the joint at 0º (positive bending moment) for 10 kN confinement load is 

further investigated in Figure 8b, which depicts the displacement along the intrados at the three 

locations indicated in the figure: aligned with the middle bolt centreline (0 mm), with the edge 

bolt centreline (76 mm) and with the edge of the joint (127 mm). The model response shows a 

qualitative agreement with the laboratory data, with maximum opening at the edge of the joint 

and negligible movement at the middle bolt location. This behaviour is associated with the 

geometry of the segment cross-section, as the stress transfer along the height of the 

longitudinal flange is influenced by the presence of the circumferential flanges at the joint edge 

and the tension causing joint opening originates from there.  
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 (a) 

	

	
	 (b) 

Figure 8 Displacement (µm) at the intrados (a) at the upper edge location of joints around the 
ring for all confinement cases (b) along the intrados of the 0º joint in the 10 kN load case 

(opening is positive) 
 

It can be concluded that the numerical model captures the reduction in the ring stiffness with 

joint opening as observed in the laboratory. The underestimation of the joint movements at 

small distortions and, as a consequence, the overestimation of the ring stiffness when joint 

opening occurred, could be attributed to imperfections in stress transfer across the joint, which 

were not included in the numerical model, where joint plates were perfectly flat and segments 

perfectly aligned. This is further explored in Appendix B, where a small perturbation of 5% in the 

applied confinement load applied by some of the actuators is shown to produce numerical 

results in excellent agreement with the laboratory data.  

5.2 Large distortion test 
The validation exercise was extended to the large distortion Test 1 by Afshan et al. 

(2017). Following bolt preloading to 7.5 kN and radial confinement of 40 kN, unloading in the 

numerical analysis was performed incrementally until the radial displacement at 90º matched 

the laboratory data (42.1 mm). 

Figure 9a presents the change of radius all around the ring, exaggerated ten times for 

illustration purposes. Due to symmetry, the numerical results were mirrored around the ring 

axis. Overall, excellent agreement is found between the numerical and laboratory results; the 
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distorted shape illustrates the influence of the reaction bars at 250º and 270º, highlighting the 

importance of having selected an appropriate boundary condition from the calibration.  

The computed change in bending moment during the distortion stage is compared with 

the laboratory data in Figure 9b. Despite under-predicting the bending moment at 90º, the 

shape of the numerical curve is reasonable and in excellent agreement with the experimental 

results at all other locations (20º, 40º, 100º, 140º and 160º). Yu (2014) discussed the potential 

for relative errors up to 15% in bending moments obtained from strain gauge measurements, 

which could partly explain the discrepancy with the laboratory data at 90º.  

Figure 10a presents the opening of the joint at 0º/180º (where the maximum 

movements were recorded) with the increase in displacement at 90º during the distortion stage 

of the test at three locations at the intrados: at the upper outer edge of the longitudinal flange 

and aligned with the top and middle bolt centrelines (similar to the sketch in Figure 8b). The 

numerical results compare remarkably well with the laboratory data, capturing accurately the 

gradual change in joint opening from the outer edge (about 2 mm) towards the middle bolt 

(approximately 0.2 mm), which was also observed for small distortions albeit with much smaller 

magnitudes (Figure 8b). The behaviour of the 0º joint is further examined in Figure 10b where 

the change in bolt load for the outer and middle bolts during distortion at 90º is presented. 

Consistent with the observations made for joint opening, the change in bolt force is significantly 

larger for the outer than for the middle bolt. The numerical results for the outer bolt match very 

well with the experimental measurements up to a displacement of about 30 mm, where the bolt 

in the numerical analysis yielded and reached a plateau (as perfect plasticity was adopted). The 

corresponding experimental curve gives no evidence of yield, potentially because it was derived 

from strain gauge measurements considering linear behaviour (Afshan et al. (2017). This 

reveals a failure mode of the joint, not realized during the experimental investigation, where the 

outer bolts yield in tension prior to the GCI reaching its ultimate tensile strength at the 

circumferential flange near the joint. Regarding the middle bolt, the predicted increase in force 

again agrees well with the experimental data up to a displacement of 30 mm, but increases 

rapidly subsequently, as the outer bolts yield and additional tensile loads are transferred to the 

middle bolt, diverging from the experimental data which show a gentler increase and transfer of 

loads.  
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(a) (b) 

Figure 9 (a) Radius change (mm) and (b) bending moment change (kNm) (M+ tension intrados) 
around the ring at the end of Test 1 

	

  
(a) (b) 

Figure 10 Evolution at 0º/180º of (a) opening (mm) along the intrados and (b) bolt force (kN) 
change during the distortion stage 

 
The evolution of plasticity in the ring with increasing distortion was studied in the 

numerical analysis. Contours of the deviatoric plastic strain Ed
p at four distortion levels are 

presented in Figure 11. Plastic strains first appear due to tension at the intrados near 0º and at 

the extrados near 90º. With further distortion, the plastic zone gradually propagates, including 

yielding in compression at the intrados at 90º and in compression and extension at the intrados 

and extrados respectively from 270º to 300º. By the end of the test (Figure 11d), the maximum 

plastic strains are concentrated around the 0º joint, at the connection between the longitudinal 

and circumferential flanges. This is where the segment fractured in Test 2 (in the symmetric 

segment at 180º).  

Maximum principal strains 𝜀" at this section are shown in Figure 12, with the upper plots 

focusing on the intrados of the segments in the vicinity of the joint and the lower plots on the 

face of the longitudinal flange in contact with the neighbouring segment. Significant tensile 

strains develop along the intrados of the circumferential flanges, propagating along the edges of 

the joint, at the intersection between the longitudinal and circumferential flanges, and the 

intrados of the skin where it joins with the longitudinal flanges. The maximum tensile strains 𝜀" 

(0.45% and 0.42%) occur at the intrados of the circumferential flange, in the numerical 
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integration points closest to the longitudinal flange and were slightly smaller than the lowest 

axial strain (0.57%) at which any of the GCI coupons tested by Yu (2014) failed (see black 

crosses in Figure 4), consistent with Test 1 where failure did not occur. The views of the 

longitudinal flange in the lower plots of Figure 12 reveal that plasticity was initially generated by 

the action of the outer bolts and only later by the middle bolt, towards the end of the test (Figure 

12c). This can be correlated with the evolution of bolt forces in Figure 10b and the yielding of 

the outer bolts. 

The results from the model validation are very encouraging as the model captures well 

the stiffness reduction experienced by the experimental ring at small (see also Appendix B) and 

large distortion levels. The stiffness reduction is adequately captured because of the good 

correspondence with the laboratory data in terms of joint opening and bolt forces as well as the 

ability of the constitutive model to reproduce the material response. The validation exercise 

provided confidence in the model’s predictive capabilities and so an additional investigation was 

conducted aiming to quantify the influence of the joints within the context of the elastic 

continuum model, as is presented in the next section. 

 
 

 
(a) 10 mm radius change at 90º 

 
(b) 21 mm radius change at 90º 

 
(c) 30 mm radius change at 90º 

 
(d) 42 mm radius change at 90º 

 
Figure 11 Predicted deviatoric plastic strain 𝐸)

# (%) at various distortion levels during Test 1 
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(a) 21 mm radius 

change at 90º 

 
(b) 30 mm radius 

change at 90º 

 
(c) 42 mm radius 

change at 90º 

 
Figure 12 Predicted maximum principal strain 𝜀" (%) around the 0º joint at various 

distortion levels during Test 1 

 

6. Bending stiffness reduction due to longitudinal joints 
As pointed out in the introduction, recent experimental evidence (Yu et al., 2017, Afshan 

et al., 2017) shows that the influence of the joints on the stiffness of a GCI tunnel ring crucially 

depends on the degree of ovalisation that it has experienced. Field measurements indicate that 

many of these tunnels develop significant squatting (i.e. enlargement of the horizontal diameter) 

over time, with horizontal diametric distortions ranging between 0.5 and 1% (Wright, 2013). 

Clearly, the stiffness reduction of GCI linings should be investigated at the ovalisation range 

usually observed in the field. The study presented here examined the influence of the joints at a 

range of squatting levels, comparing the structural response of the segmental GCI ring with that 

of a continuous ring in order to determine the appropriate reduction factor h for a given tunnel 

ovalisation. The analyses were conducted within the framework of the elastic continuum method 

(Duddeck and Erdmann, 1985) which is widely adopted for assessing the internal forces within 

GCI linings. 
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6.1 Model set-up 
	

The geometry of the model followed that of the half-scale experimental ring, in this case 

the model took advantage of symmetry such that only half of the segments width and a quarter 

of the ring circumference (from crown to axis level) were considered. The dimensions were 

doubled to replicate the size of a prototype tunnel (in particular the Central Line running tunnels 

beneath Hyde Park) with an internal diameter of 3.56 m. This tunnel geometry corresponds to a 

standard GCI running tunnel of the LU network (TfL, 2020). The ring was formed of six 

segments bolted together with joints spaced at 60º, with one of them aligned at the crown. This 

is the typical configuration employed in tunnels constructed in the 19th century and early 20th 

century where the longitudinal joints align between rings allowing for the analysis of a single ring 

to investigate the response along the axis of the tunnel. Note that the small key segment 

located at the crown was not considered allowing for symmetry conditions around the axis level 

to be applied. 

Regarding the boundary conditions, at the axes of symmetry (i.e. crown, axis level and 

circumferentially along the middle of the segment) the displacements were restricted in the 

normal direction to the boundary. Furthermore, the outer boundary of the circumferential flange 

was fixed in the direction of the tunnel axis (i.e. perpendicular to the circumferential flange), this 

is then consistent with the continuum method, which considers a plane-strain condition. The soil 

loading can be divided into primary loading from the soil active pressures, and secondary 

loading from the ground reaction stresses. The primary loading was modelled by applying 

normal and shear stresses to the ring extrados. Only full bond conditions, where soil shear 

stresses are fully transmitted to the lining, were considered. A tunnel with its crown at 20 m 

depth was considered and, assuming that the full overburden acts on the lining, a total vertical 

stress sv of 400 kPa and a total horizontal stress sh of 280 kPa were applied, such that the ratio 

between sh and sv is adopted as 0.7 (as recommended by Tube Lines (2008)). A constant 

stress profile with depth along the tunnel height (see Figure 13) was adopted to enable a direct 

comparison with the analytical solution. The secondary loading was modelled with constant 

stiffness radial and tangential springs acting on the extrados. The stiffness of the radial and 

tangential springs, 𝐾+ and 𝐾,, respectively, was determined with the following expressions 

(Duddeck and Erdmann, 1985, Plizzari and Tiberti, 2006): 

𝐾+ = 0.6
𝐸1
𝑅

 

𝐾, =
𝐾+
3

 

where 𝐸1 is the constrained elastic modulus: 

𝐸1 =
𝐸4 ∙ (1 − 𝜈)

(1 − 2𝜈) ∙ (1 + 𝜈)
 

where Ec and n are the elastic modulus and Poisson’s ratio of the ground and R is the external 

radius of the tunnel. The stiffness of the springs was varied parametrically in order to assess the 

response at varying squatting magnitudes. The self-weight of the GCI ring was neglected to 



	 20 

comply with the assumptions of the analytical solution. A bolt preload determined from 25% of 

the bolt yield stress was applied in line with the laboratory findings described by Tsiampousi et 

al. (2017).The properties calibrated above for the GCI and the interface elements were adopted 

in the analyses. Although the elasto-plastic model for GCI described above was adopted for the 

longitudinal flanges, all other parts of the segments were modelled as linear elastic, such that 

differences with respect to the elastic continuum solution can be solely attributed to the 

influence of the joints. The bolts employed in the LU tunnels are often made of wrought iron with 

a characteristic ultimate tensile strength of 342 MPa (Tube Lines, 2008), the tensile yield stress 

for the elastic perfectly-plastic von Mises model was adopted as 239 MPa (70% of the ultimate 

strength as assumed by Yu (2014)). The calibrated value of 50 GPa for the elastic modulus of 

the bolting system was adopted (preliminary analyses revealed little sensitivity of the overall ring 

stiffness to the bolt stiffness value). 

 
Figure 13 Sketch of the FE model set-up  

	
6.2 Numerical results 
 

Before making any comparisons between the results from the numerical analysis of the 

segmental ring and the analytical solution for the continuous ring, which would highlight the 

influence of the joints, the numerical model was checked to make sure that it could replicate the 

analytical solution. To this end, a numerical analysis using a continuous ring (i.e. without 

longitudinal flanges, but similar to the segmental ring in all other respects) was conducted, 

adopting ground properties of 𝐸4 = 20 MPa and 𝜐 = 0.2. The numerical and analytical results 

are compared in Figure 14 in terms of (a) displacements, (b) bending moments and (c) axial 

forces. Note that the analytical results are only shown at the crown and axis level locations as 

the expressions given by Duddeck and Erdmann (1985) only considered the maximum values 

around the lining. There are only small discrepancies between the numerical and analytical 

solutions for the continuous model, and therefore any differences between the numerical 
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analysis of the segmental ring and the analytical solution of the continuous ring can be 

attributed to the presence of joints and not to inherent discrepancies between the numerical and 

analytical approaches. 

 

 

 
  

(a) Deformed shape (b) Bending moment 

 
 

(c) Axial force 

 
Figure 14 Validation of the continuous ring model (𝐸4 = 20 MPa and 𝜐 = 0.2)  

 

The bending moment distribution for the segmental and continuous ring models at 

approximately 1% squatting is depicted in Figure 15. Note that TfL (2017) recommends that 1% 

squatting be taken as the existing tunnel ovalisation when field data are not available. Starting 

with the continuous ring, the bending moment is highest at 0° and 90° (i.e. at the crown and the 

axis level), as expected. The ring experiences tension at the intrados at the crown and at the 

extrados at the axis level, as indicated by the bending moment signs in Figure 15. In 

comparison, the segmental ring experiences considerable stiffness reduction around the 0° 

joint, which opened by 0.68 mm at the intrados according to the analysis. Conversely, the 

stiffness at the 60° joint, which opened at the extrados but by a smaller degree (0.03 mm) than 
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the 0° joint, is very similar to that of the continuous ring. The difference in behaviour of the two 

joints is expected: the bending moment at which the joint opens is lower for the positive bending 

mode (tension at the intrados) as the section modulus is greater under this mode, and also the 

soil loading causes higher moments at the crown/invert (because of the ratio between sh and 

sv). Consequently, under squatting, the 0° joint seems to be dominating the distribution of 

bending moments around the segmental ring, but its influence tends to diminish away from the 

joint. The bending moment at 90° is only slightly smaller than that of the continuous ring.  

In order to assess the ring response under a range of ovalisations, the radial and 

tangential stiffnesses for the ground reaction were changed in a parametric study. In Figure 16 

the bending moments at the crown and at the axis are plotted against the percentage of 

squatting for the segmental ring analyses along with the analytical solution adopting full bending 

stiffness (‘rigid ring’) and a reduced bending stiffness (‘flexible ring’) using Muir Wood’s 

reduction formula. Note that data points plotted for each squatting magnitude correspond to 

individual FE simulations using different spring stiffness values. The squatting of the segmental 

ring cases varies between 0.23% and 1.81% which covers the range observed for the majority 

of LU tunnels (0.5-1%) and beyond. The stiffness reduction initially manifests itself more clearly 

at the crown for the reasons given when discussing the 1% squatting case (Figure 15). The 

segmental ring response is similar to that of the rigid ring for squatting levels below about 0.25% 

and becomes progressively softer for larger ovalisations. The bending moment at the axis level 

remains comparable to the rigid ring solution up to a squatting of approximately 0.7%, where it 

starts deviating from it more prominently because of the opening at the extrados of the 60° joint. 

The predicted segmental ring response is considerably stiffer than that of the flexible ring. Even 

at the crown (softest section) the bending moment approaches the flexible ring solution only at 

squatting levels outside the range usually encountered.  

In addition to comparing the bending moments of the segmental ring to the analytical 

solution at the same ovalisation as discussed above, comparisons for the same ground stiffness 

can be made. The results are presented in Figure 17 in terms of the factor 𝑚 = ?
@A∙BC

 (where M is 

the bending moment) and the relative stiffness factor 𝛼 = EF∙BG

E∙H
, (where E is the Young’s modulus 

of the lining and I is the second moment of area of the segment cross-section), defined in 

Duddeck and Erdmann (1985). The relative stiffness a can be thought of as the factor governing 

the magnitude of the maximum lining bending moment. Since the ground stiffness provides a 

restriction to the deformation, as it reduces (and so does a) the ring undergoes larger 

deformations and a greater stiffness degradation. This is illustrated in Figure 17 as, for reducing 

values of a, the curve corresponding to the crown gradually diverges from the rigid ring solution 

and corresponds to lower m values from the point at which the 0° joint first opens (a » 55m-1). At 

the axis level, on the other hand, the analytical solution is followed for almost the full range of 𝛼 

values under consideration, with a slightly higher factor m towards the low end of 𝛼, which 

suggests that this cross-section is attracting an increasing amount of load due to the large 

stiffness reduction at the 0° joint. The above observations about Figure 17 can be summarised 
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as follows: for the same ground stiffness, in the segmental ring the bending moment at the 

crown tends to be lower (if the joint is open) than that of the rigid ring; at the axis level the 

bending moment tends to be of similar magnitude or higher than that of the rigid ring (for very 

low ground stiffness); and finally, the segmental ring undergoes larger squatting than the 

continuous ring (see Figure 16), reflecting the stiffness degradation occurring all around the 

ring. As such the difference in squatting can be employed as an overall measure of the ring 

stiffness reduction.  

 
Figure 15 Bending moment (kNm) distribution at approx. 1% squatting (M+ tension intrados) 

Figure	16	Bending	moment	(kNm)	at	crown/invert	and	axis	level	for	a	range	of	
squatting	magnitudes	(%	diameter)	–	segmental	ring	model	vs	elastic	continuum	
	
	

Enlarged view 
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Figure 17 Moment factor m against relative 

stiffness a – segmental ring model vs elastic 
continuum 

 

6.3 Discussion 
	
The numerical results presented above indicate that the stiffness at the crown and the axis of 

the segmental GCI ring reduce nonlinearly with increasing ovalisation, which can be attributed 

to the gradual opening of the joints. Furthermore, it is shown that the degradation of the bending 

stiffness is significantly more pronounced around the crown than at the axis (these are the two 

sections where the maximum bending moments are expected under normal field conditions and 

therefore critical for engineering assessments). It should be noted that the stiffness degradation 

observed relates to the joint orientation considered in this study (joint aligned with the crown, 

middle segment aligned with axis level) and this needs to be taken into account when 

extrapolating to other GCI geometries where the joint orientations are different. Due to the 

inhomogeneous stiffness around the ring, the internal forces at the crown and the axis cannot 

be determined accurately by applying a unique bending stiffness to the elastic continuum model 

or to any other method that assumes that the lining is continuous. Thus, the use of the reduction 

formula proposed by Muir Wood (1975) may not be appropriate for GCI linings, as it predicts 

equal bending moments at the crown and the axis, and results in bending moments that are too 

low compared with those predicted numerically.  
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An alternative approach is proposed here, with different reduction factors h for the 

crown and axis, which allow the structural forces at those two locations to be determined from 

continuous ring solutions independently. The evolution of the reduction factor h with squatting at 

the crown and the axis, as well as the factor h of the global response are given in Figure 18. 

The crown and axis factors are obtained from the ratio of the bending moment in the segmental 

ring model to that in the rigid ring model for the same squatting magnitude: 

𝜂4 =
𝑀4
1

𝑀4
+ (1) 

𝜂K =
𝑀K
1

𝑀K
+ (2) 

where subscripts c and a denote crown and axis level respectively and superscripts s and r 

denote segmental and rigid respectively. Note that the rigid ring model was preferred over the 

analytical solution in order to obtain these factors, such that the small discrepancies between 

the two could be accounted for. The global reduction factor, hg, on the other hand, is 

determined as the bending stiffness in the analytical solution required to match the squatting in 

the segmental model (for a given ground stiffness), divided by the bending stiffness of the 

segment cross-section (i.e. EI per m): 

𝜂L =
1

12𝐸𝐼
∙

𝜎O − 𝜎P 𝑅Q

𝑢ST∗
−

(3 − 2𝜐)𝐸4𝑅$

(1 + 𝜐)(3 − 4𝜐)
 (3) 

where 𝑢ST∗  is the radial horizontal displacement obtained from the numerical model1. This factor 

constitutes a global measure of the ring stiffness reduction.  

Generally, when assessing a tunnel in-situ condition, the only reliable field data relate to 

the horizontal ovalisation of the tunnel (in the absence of in-tunnel measurements of the tunnel 

in question, TfL (2017) recommends assuming 1% squatting), therefore, it seems reasonable to 

																																																								
1	Note	that	in	order	to	comply	with	the	assumptions	of	the	analytical	solution	where	u2j	is	the	deviatoric	component	of	the	radial	
displacement	(i.e.	that	attributed	to	the	difference	between	the	soil	primary	stresses),	the	value	uSX∗ 	stands	for	the	total	radial	
displacement	from	the	numerical	model	minus	that	attributed	to	the	isotropic	component	of	the	soil	primary	stresses.	

Enlarged view 

Figure 18 Reduction factor h for the crown, axis level sections and global response of 

the GCI ring 
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determine the tunnel internal forces according to the adopted ovalisation value. With this in 

mind, a simple methodology for the evaluation of the internal forces of GCI tunnels can be 

elaborated integrating the abovementioned reduction factors to account for the segmental 

nature of the tunnels. First, given the ovalisation of the tunnel, the bending moments at the 

critical sections (i.e. crown and axis level) are determined assuming a rigid ring (full bending 

stiffness). This is straightforward as analytical solutions predict the evolution of bending 

moments with tunnel ovalisation (see Figure 16). Second, the reduction factors hc and ha for the 

adopted tunnel squatting are obtained from the numerically-derived chart presented in Figure 

18. The reduction factors can then be applied to correct the initial estimate of bending moments 

at both sections (see equations (1) and (2)). An analogous strategy can be applied to establish 

the change of internal forces in response to additional ground movements because in practice 

this calculation usually relies on soil displacements being obtained by some other method and 

subsequently applied to the solution given by Morgan (1961) to obtain the change in bending 

moments, the proposed factors can be adopted to correct the latter. Furthermore, the global 

factor can be employed to adjust the bending stiffness of the lining in geotechnical FE analyses 

where a continuous beam/shell approach is adopted to model the lining when the aim of the 

analysis is to assess the displacements of a GCI tunnel due to nearby construction/excavation 

works. Even though the conditions considered in this study are representative of a prototype LU 

running tunnel, additional studies should be performed in order to apply this methodology to a 

wider range of conditions, such as different tunnel depths, applying radial stresses only between 

the soil and the lining (i.e. full slip), and different joint configurations including the number 

(mainly relevant for station and crossover tunnels) and location of the joints. With respect to the 

latter, in cases where the rings are ‘rolled’, i.e. the longitudinal joints are not aligned along the 

tunnel axis, it would be necessary to consider a succession of several individual rings, with 

appropriately connected circumferential flanges. 

7. Conclusions 
This paper presents a number of FE analyses of a segmental GCI ring. In order to model failure 

of the GCI segments, a constitutive model, originally developed for shotcrete, was modified to 

be suitable for the modelling of GCI. The numerical model was carefully calibrated and validated 

with a series of laboratory tests conducted on a half-scale GCI ring at small and large 

distortions. The overall excellent ability of the numerical analysis to reproduce the 

experimentally observed behaviour in terms of the local behaviour of the longitudinal joints and 

of the stiffness reduction around the ring, inspires confidence in the predictive capabilities of the 

segmental ring model when subjected to field conditions.  

Subsequently, a series of analyses replicating the assumptions of the elastic continuum method 

was conducted in order to evaluate the influence of the longitudinal joints on the structural 

response of a prototype GCI tunnel and to produce recommendations as how to account for the 

segmental nature of these tunnels in routine engineering calculations. Based on the differences 

established between the response of the segmental ring model and that of a continuous ring, a 
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set of reduction factors h were produced for the range of squatting expected in the field. The 

factors derived for the crown and the axis can be adopted to ‘correct’ the bending moments 

estimated at those sections from analytical solutions, as well as to provide bounds to the 

bending stiffness of the lining at a given percentage of squatting. A global reduction factor was 

also provided as an average measure of the bending stiffness reduction which may be more 

appropriate for estimating distortions from ground movements in the GCI tunnel vicinity. These 

factors are strictly applicable only to the conditions (joints orientation, depth, etc.) encountered 

in a standard LU tunnel as adopted in this work, however, the developed methodology can be 

repeated under a wider range of conditions to produce generally applicable guidelines for 

assessing the influence of the longitudinal joints on the bending stiffness and internal forces of 

segmental GCI linings. 
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Appendix A Constitutive modelling of GCI 
A1 Model formulation 

 
The main equations of the constitutive model implemented by Schutz (2010) and adapted by 

the authors for the modelling of GCI are presented below. 

The tension yield surface 𝐹, is defined by a modified expression of the classical Rankine 

criterion: 

 𝐹, = 𝑝 +
2 ∙ 𝐽
3
∙ 𝑠𝑖𝑛	(𝜃 +

2𝜋
3
)
b

+ 𝑎 ∙ 𝑓, b

"
b
− 𝑓, (A1) 

 

where p is the mean pressure, J is the deviatoric stress, θ is the Lode angle and ft is the uniaxial 

tensile strength of the material. 𝑎 is the apex tolerance and determines the distance between 

the apex of the original and the modified Rankine surface along the hydrostatic axis, while n 

controls the rounding of the surface. The compression yield surface 𝐹4 follows that proposed by 

Chen and Chen (1975) which is defined by the following expression: 

 

 𝐹4 = 𝐽S + 𝛼e ∙ 𝑓4 ∙ 𝑝 − 𝛽4 ∙ 𝑓4S (A2) 

 

where fc is the uniaxial compressive strength and parameters 𝛼e and 𝛽4 are defined as follows: 

 

 
𝛼4 =

𝑒S − 1
2 ∙ 𝑒 − 1

 (A3) 

 

 
𝛽4 =

2 ∙ 𝑒 − 𝑒S

3(2 ∙ 𝑒 − 1)
 (A4) 

 

e is a dimensionless biaxial strength parameter. Note that if e is set to 1, the yield surface 

expression reduces to the von Mises criterion. Note that associated conditions are assumed 

such that the plastic potentials for tension and compression adopt expressions A1 and A2, 

respectively. Regarding the hardening behaviour of the model, the evolution of the yield 

surfaces depends on the uniaxial stress-strain behaviour in tension and compression such that 

𝑓, and 𝑓4 evolve with respect to the major and minor principal plastic strains, 𝜀"
# and 𝜀$

#, 

respectively. The hardening curve of both surfaces consist of several sections, as shown 

schematically in Figure A1: strain-hardening from yield to peak strength and strain-softening 
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from peak to residual strength (linear and exponential softening available for tension) followed 

by constant residual strength.  

 

 
Figure A1 Sketch of model hardening curve 

The pre-peak hardening expression originally implemented in the model was found inadequate 

for the modelling of GCI and it was replaced, for tension and compression, by the expression 

introduced by Puzrin and Burland (1996), which was meant to reproduce the pre-yield nonlinear 

behaviour of soils but is also suitable for the modelling of GCI as shown in this work. The 

formula of the new hardening law is presented below: 

 

𝑓 = 𝑓h + 𝐾i ∙ 𝜀# ∙ 1 − 𝛼 ∙ ln	(1 +
𝐾i ∙ 𝜀#

𝑓# − 𝑓h
)

Bl

 (A5) 

 

where 𝜀# is the plastic strain (hardening variable), 𝑓 is the uniaxial strength, 𝑓h is the uniaxial 

yield strength, 𝑓# is the uniaxial peak strength, 𝐾i is the initial tangent stiffness of the hardening 

curve. 𝛼 and 𝑅m are constants defined by the expressions: 

 

𝑅m =
𝑐 ∙ (1 + 𝑥m) ∙ ln	(1 + 𝑥m)

𝑥m ∙ (𝑥m − 1)
 (A6) 

 

𝛼 =
(𝑥m − 1)

𝑥m ∙ ln	(1 + 𝑥m) Bl
 

(A7) 

 

 

where c is a fitting parameter and 𝑥m	is determined from: 

 

𝑥m =
𝐾i ∙ 𝜀#

#

𝑓# − 𝑓h
 (A8) 

 

where 𝜀#
# is the plastic strain at peak strength. The new hardening law therefore requires five 

parameters: the uniaxial yield stress 𝑓h, the uniaxial peak strength 𝑓#, the plastic strain at peak 

strength 𝜀#
# and the fitting parameters 𝐾i and 𝑐.  
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Due to the presence of graphite flakes embedded in the steel matrix, GCI exhibits brittle 

behaviour in tension as it fractures at low levels of plastic strain (see Figure 4), this behaviour 

can be modelled within a continuum framework by strain-softening. However, it is well known 

that adopting standard strain-softening models leads to finite element solutions that are 

pathologically dependent on the spatial discretization when strain localization occurs. In order to 

overcome this limitation, the constitutive model needs to be complemented with a regularization 

technique that, in some way or another, incorporates a characteristic length into the formulation. 

In order to model fracturing of GCI, the model by Schutz (2010) has been extended with two 

different regularization methods: the fracture energy approach (i.e. mesh-dependent softening 

modulus) and the nonlocal method (Summersgill et al., 2017).  

 

A2 Validation of the model 

The constitutive model above was validated through comparison with the element tests 

conducted by Coffin (1950). Four single element simulations were performed aiming to validate 

the model under tensile yielding: uniaxial tensile test, biaxial tensile test with equal stresses 

s1=s2, biaxial tensile test with non-equal stresses s1=2s2, and pure shear test. The elastic 

modulus was 100 GPa, the Poisson’s ratio was 0.227, the tensile yield stress was 56 MPa, the 

tensile peak strength was 225 MPa and the plastic strain 𝜀"
# at peak strength was 0.25%. 

Figure	A2 shows an overall good agreement between the numerical results and the laboratory 

data, with the exception of the pure shear test where the strains predicted by the model 

underestimate the laboratory measurements. The performance of the constitutive model is 

considered satisfactory for its use in boundary value problems. 
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Uniaxial tensile test 

  
Equal s1=s2 biaxial test 

  
Non-equal s1=2s2 biaxial test 

  
Pure shear test 

Figure A2 Series of single element simulations under different loading paths, comparison 

between numerical predictions and experimental data (Coffin, 1950) 
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A3 Parameters adopted for GCI segments 

 
 

Model parameters Value 

Tensile yield stress 𝑓,h 40 MPa 

Tensile peak strength 𝑓,# 140 MPa 

Plastic tensile strain at peak 𝜀,#
#  0.55% 

Compressive yield stress 𝑓4h 160 MPa 

Compressive peak strength 𝑓4# 560 MPa 

Plastic compressive strain at peak 𝜀4#
#  0.55 % 

Biaxial strength parameter e 1.0 (von Mises) 

Hardening parameter tension 𝐾i,, 106 MPa 

Hardening parameter tension ct 1.0 

Hardening parameter compression 𝐾i,4 106 MPa 

Hardening parameter compression cc 1.0 

Table A1 Plastic parameters for the modelling of GCI segments  

Appendix B Analyses at small distortions with loading perturbations 
	

	
Figure B1 Sketch of the loading configuration 

Imperfections in stress transfer across the joint in the experiment, which are not included 

in the numerical model, where joint plates were perfectly flat and segments perfectly aligned in 

the experiment, may explain the slight disagreement with laboratory data at small distortions. To 

demonstrate this, a set of analyses including a degree of perturbation in the model conditions 

was conducted, where the confinement load was varied at a number of actuators by 5% 

above/below their prescribed value (Figure B1). The bending moment change (Figure B2) and 

the joint opening (Figure B3) are very well captured for all confinement loads.  
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Figure B2 Bending moment change (kNm) distribution for different confinements with loading 

perturbation (M+ tension intrados) 

	

	

	
	 (a) 

 

	

	

	
	 (b)	

Figure B3 Displacement (µm) at the intrados with loading perturbation (a) at the upper edge 
location of joints around the ring for all confinement cases (b) along the intrados of the 0º joint in 

the 10 kN load case (opening is positive) 


