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Sliced Lattice Gaussian Sampling: Convergence
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Abstract—Sampling from the lattice Gaussian distribution
has emerged as a key problem in coding and decoding while
Markov chain Monte Carlo (MCMC) methods from statistics
offer an effective way to solve it. In this paper, the sliced lattice
Gaussian sampling algorithm is proposed to further improve
the convergence performance of the Markov chain targeting
at lattice Gaussian sampling. We demonstrate that the Markov
chain arising from it is uniformly ergodic, namely, it converges
exponentially fast to the stationary distribution. Meanwhile,
the convergence rate of the underlying Markov chain is also
investigated, and we show the proposed sliced sampling algorithm
entails a better convergence performance than the independent
Metropolis-Hastings-Klein (IMHK) sampling algorithm. On the
other hand, the decoding performance based on the proposed
sampling algorithm is analyzed, where the optimization with
respect to the standard deviation σ is given. After that, a
judicious mechanism based on distance judgement and dynamic
updating for choosing σ is proposed for a better decoding
performance Finally, simulation results based on multiple-input
multiple-output (MIMO) detection are presented to confirm the
performance gain by convergence enhancement.

Index Terms—Lattice Gaussian sampling, slice sampling, M-
CMC methods, lattice coding and decoding, MIMO detection.

I. INTRODUCTION

NOwadays, the large-scale multiple-input multiple-output
(MIMO) system has become a promising extension of

MIMO in 5G, which boosts the network capacity on a much
greater scale without extra bandwidth [1]–[4]. However, the
dramatically increased system size also places a pressing
challenge on the signal detection, which actually belongs
to the closest vector problem (CVP) in lattice decoding.
On one hand, the advanced detection schemes designed for
traditional MIMO systems like lattice-reduction-aided detec-
tion show a substantial performance loss with the increment
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number of antennas [5]–[9]. On the other hand, a number
of maximum-likelihood (ML) decoding schemes that aim to
reduce the computational complexity of sphere decoding (SD)
turn out to be impractical due to the unaffordable complexity
in high-dimensional systems [10]–[14]. As for those near-
ML decoding schemes like fixed-complexity sphere decoding
(FCSD), K-best decoder, etc., they are also inapplicable due to
the intensive complexity increment and terrible performance
deterioration [15]–[19].

To this end, a number of works have been made by
either improving the performance or lowing the complexity
[20]–[24]. Among them, sampling detection has become the
promising one, which performs lattice decoding by sampling
from a discrete Gaussian distribution over lattices (i.e., lat-
tice Gaussian distribution) [25]–[28]. Essentially, sampling
detection converts the traditional detection problem into a
sampling problem, where the optimal decoding solution with
the smallest Euclidean distance entails the largest probability
to be sampled. Therefore, if sampling can be efficiently
implemented, the decoding problem would be addressed in
an effective way. However, the problem of sampling detection
chiefly lies on how to successfully sample over the target
lattice Gaussian distribution.

In sharp contrast to the continuous Gaussian density, it is
by no means trivial even to sample from a low-dimensional
discrete Gaussian distribution. Because of this, the pioneer
work of sampling detection based on Klein’s algorithm on-
ly performs the sampling over a Gaussian-like distribution,
which means the performance loss due to the distortion by
the Gaussian-like distribution is inevitable [27]–[29]. On the
other hand, the classic Gibbs algorithm from Markov chain
Monte Carlo (MCMC) methods has also been adopted to
MIMO detection through sampling from the lattice Gaussian
distribution [30]–[34]. However, since the convergence rate
of the Markov chain is hard to determine, the Markov mixing
turns out to be untractable so that the related decoding analysis
is still lacking. Fortunately, a remarkable progress has been
made by the independent Metropolis-Hastings-Klein (IMHK)
algorithm given in [35], which is not only uniformly ergodic
in tackling with lattice Gaussian sampling but also enjoys an
accessible convergence rate. In [36], IMHK algorithm was
further applied into lattice decoding to solve the CVP, where a
better trade-off between performance and complexity in terms
of bounded distance decoding (BDD) has been achieved.

Besides lattice decoding, lattice Gaussian sampling has
already become a common theme in various research fields.
Specifically, in mathematics, Banaszczyk used it to prove
the transference theorems for lattices [37]. In coding, it was
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applied to achieve the full shaping gain for lattice coding [38],
and to achieve the capacity of the Gaussian channel and the
secrecy capacity of the Gaussian wiretap channel, respectively
[39], [40]. In cryptography, lattice Gaussian distribution has
already become a central tool in the construction of many
primitives. Specifically, Micciancio and Regev applied it to
propose the lattice-based cryptosystems based on the worst-
case hardness assumptions [41]. Meanwhile, it also has under-
pinned the fully-homomorphic encryption for cloud computing
[42]. Moreover, lattice Gaussian distribution has been adapted
to bidirectional relay network under the compute-and-forward
strategy for the physical layer security [43]. Additionally, it
is also applied to realize the probabilistic shaping for optical
communication systems [44], [45].

In this paper, the state of the art of sampling decoding is
advanced from two perspectives. On one hand, in order to
improve the convergence performance of MCMC-based sam-
pling algorithm, the proposed sliced lattice Gaussian sampling
algorithm is given. Compared to IMHK sampling, auxiliary
variables are employed by the proposed sliced sampling to
enhance the convergence rate with negligible computational
increment. We demonstrate that the Markov chain induced
by it is uniformly ergodic, which means the Markov chain
converges to the target distribution in an exponential way.
Then the convergence analysis is carried out and we show
that the convergence rate of the proposed sampling is superior
to that of IMHK, thus making it a better choice for lattice
Gaussian sampling. Consequently, the performance of sam-
pling decoding can be improved by a more efficient lattice
Gaussian sampling algorithm.

On the other hand, in sampling decoding based on MCMC
methods there is a latent trade-off with respect to the standard
deviation σ of the lattice Gaussian distribution: a large choice
of σ naturally leads to a faster convergence rate but the
sampling probability of the target point in lattice Gaussian
distribution would decrease accordingly, and vice versa. To
this end, the selection of σ is fully investigated for a better
sampling decoding performance. First of all, a near-optimal
choice of σ = d(Λ, c)/

√
n is derived and we show it is better

than the choice σ = mini ‖b̂i‖/2
√
π provided in [36] when

d(Λ, c) ≥
√
nmin ‖b̂i‖/2

√
π (n is the system dimension, b̂i’s

are the Gram-Schmidt vectors of the lattice basis B, d(Λ, c) =
minx∈Zn ‖Bx−c‖ stands for the Euclidean distance between
the query point c and the lattice Λ with basis B). Based on
it, the related decoding complexity as well as decoding radius
in terms of BDD is derived, and we show that CVP can be
solved with complexity O(e

n
2 ) if d(Λ, c) ≤

√
n
2π · |det(B)| 1n .

Moreover, a judicious judgement mechanism for choosing
σ based on d(Λ, c) is proposed, where dinitial(Λ, c) based
on the output of suboptimal decoding scheme is applied to
approximate d(Λ, c). By dynamically updating dlearning(Λ, c)
through the sampled candidates, considerable performance
gain can be achieved.

The rest of this paper is organized as follows. Section
II introduces the lattice Gaussian distribution and briefly
reviews the basics of sampling detection as well as IMHK
sampling algorithm. In Section III, based on the traditional
slice algorithm in MCMC, the proposed sliced lattice Gaussian

sampling algorithm is presented. In Section IV, with respect
to the proposed algorithm, the related convergence analysis
is carried out, where the demonstration of uniform ergodicity
and the convergence rate diagnose are given. The decoding
analysis regarding to optimizing the choice of σ in sampling
decoding is presented in Section V and simulation results for
MIMO detection are illustrated in Section VI. Finally, Section
VII concludes the paper.

Notation: Matrices and column vectors are denoted by upper
and lowercase boldface letters, and the transpose, inverse,
pseudoinverse of a matrix B by BT ,B−1, and B†, respec-
tively. We use bi for the ith column of the matrix B, bi,j
for the entry in the ith row and jth column of the matrix B.
Meanwhile, b̂i’s are the Gram-Schmidt vectors of the matrix
B. In addition, we use the standard small omega notation ω(·),
i.e., |ω(g(n))| > k · |g(n)| for every fixed positive number
k > 0. Finally, in this paper, the computational complexity is
measured by the number of Markov moves.

II. PRELIMINARIES

In this section, we introduce the background and mathemat-
ical tools needed to describe and analyze the proposed sliced
lattice Gaussian sampling algorithm.

A. Lattice Gaussian Distribution

Let matrix B = [b1, . . . ,bn] ⊂ Rn consist of n linearly
independent column vectors. The n-dimensional lattice Λ
generated by B is defined by

Λ = L(B) = {Bx : x ∈ Zn}, (1)

where B is called the lattice basis. We define the Gaussian
function centered at c ∈ Rn for standard deviation σ > 0 as

ρσ,c(z) = e−
‖z−c‖2

2σ2 , (2)

for all z ∈ Rn. When c or σ are not specified, we assume that
they are 0 and 1 respectively. Then, the discrete Gaussian
distribution over Λ is defined as

DΛ,σ,c(x) =
ρσ,c(Bx)

ρσ,c(Λ)
=

e−
1

2σ2 ‖Bx−c‖2∑
x∈Zn e

− 1
2σ2 ‖Bx−c‖2

(3)

for all x ∈ Zn, where ρσ,c(Λ) ,
∑

Bx∈Λ ρσ,c(Bx) is just a
scaling to obtain a probability distribution. We remark that
this definition differs slightly from the one in [41], where
σ is scaled by a constant factor

√
2π (i.e., s =

√
2πσ). In

fact, the discrete Gaussian resembles a continuous Gaussian
distribution, but is only defined over a lattice. It has been
shown that discrete and continuous Gaussian distributions
share similar properties, if the flatness factor is small [40].

B. Decoding by Sampling

Consider the decoding of an n × n real-valued system.
The extension to the complex-valued system is straightfor-
ward [27]. Let x ∈ Zn denote the transmitted signal. The
corresponding received signal c is given by

c = Bx + w (4)
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Algorithm 1 IMHK Sampling Algorithm
Require: B, σ, c,x0, tmix(ε);
Ensure: x ∼ DΛ,σ,c;

1: let X0 = x0

2: for t =1,2, . . . , do
3: let x denote the state of Xt−1

4: sample y from the proposal distribution q(x,y) in (8)
5: calculate the acceptance ratio α(x,y) in (9)
6: generate a sample u from the uniform density U [0, 1]
7: if u ≤ α(x,y) then
8: let Xt = y
9: else

10: Xt = x
11: end if
12: if t ≥ tmix(ε) then
13: output x
14: end if
15: end for

where w is the noise vector with zero mean and variance σ2
w,

B is an n×n full column-rank matrix of channel coefficients.
Typically, the conventional maximum likelihood (ML) reads

x̂ = arg min
x∈Zn

‖c−Bx‖2 (5)

where ‖·‖ denotes the Euclidean norm. Clearly, ML decoding
corresponds to the closest vector problem (CVP) in lattices. If
the received signal c is the origin, then ML decoding reduces
to shortest vector problem (SVP).

Intuitively, the CVP given in (5) can be solved by the lattice
Gaussian sampling. Since the distribution is centered at the
query point c, the closest lattice point Bx to c is assigned the
largest sampling probability. Therefore, by multiple samplings,
the solution of CVP is the most likely to be returned. It
has been demonstrated that lattice Gaussian sampling is e-
quivalent to CVP via a polynomial-time dimension-preserving
reduction [46]. Meanwhile, the standard deviation σ of the
discrete Gaussian distribution can be optimized to improve
the sampling probability of the target point. By adjusting the
sample size, the sampling decoder enjoys a flexible trade-off
between performance and complexity. However, the premise
behind decoding by sampling relies on how to successfully
sample from lattice Gaussian distribution.

In [29], Klein’s algorithm that samples from a Gaussian-like
distribution was proposed for lattice decoding. Specifically,
by sequentially sampling from the 1-dimensional conditional
Gaussian distribution DZ,σi,x̃i in a backward order from xn
to x1, the Gaussian-like distribution arising from Klein’s
algorithm is given by

PKlein(x) =

n∏
i=1

DZ,σi,x̃i(xi) =
ρσ,c(Bx)∏n
i=1 ρσi,x̃i(Z)

. (6)

In [47], PKlein(x) has been demonstrated to be close to
DΛ,σ,c(x) within a negligible statistical distance if

σ ≥ ω(
√

log n) ·max1≤i≤n‖b̂i‖. (7)

Unfortunately, such a requirement of σ is sufficiently large,
rendering Klein’s algorithm inapplicable to most cases of
lattice Gaussian sampling.

C. IMHK Sampling for Lattice Gaussian Distribution

In order to sample from a target lattice Gaussian distri-
bution, Markov chain Monte Carlo (MCMC) methods were
introduced [35], [36]. In principle, it randomly generates the
next Markov state conditioned on the previous one; after the
burn-in time, the Markov chain will step into a stationary
distribution, where samples from the target distribution can be
obtained thereafter [48]. From MCMC perspective, DΛ,σ,c(x)
can be viewed as a complex target distribution lacking direct
sampling methods, and the independent Metropolis-Hastings-
Klein (IMHK) sampling that fully exploits the potential of
MCMC was therefore proposed in [35].

In particular, given the current Markov state Xt = x,
PKlein(x) from Klein’s algorithm is used to serve as the
proposal distribution q(x,y) in IMHK:

q(x,y) = PKlein(y) =
ρσ,c(By)∏n
i=1 ρσi,ỹi(Z)

, (8)

where the generation of the state candidate y is actually
independent of x. Then, regarding to the state candidate y,
the acceptance ratio α is calculated by

α(x,y)=min
{
1,
π(y)q(y,x)

π(x)q(x,y)

}
=min

{
1,

∏n
i=1 ρσi ,̃yi(Z)∏n
i=1 ρσi,x̃i(Z)

}
,

(9)
where π = DΛ,σ,c. In the sequel, the decision for whether
accept Xt+1 = y or not is made based on α(x,y), thus
completing a Markov move. Overall, the transition probability
of the IMHK sampling over two Markov states is

PIMHK(x,y)=q(x,y)·α(x,y)=min
{
PKlein(y),

π(y)PKlein(x)

π(x)

}
(10)

Theorem 1 ([35]). Given the invariant lattice Gaussian dis-
tribution DΛ,σ,c, the Markov chain established by the IMHK
algorithm is uniformly ergodic:

‖P t(x, ·)−DΛ,σ,c(·)‖TV ≤ (1− δ)t (11)

with
δ ,

ρσ,c(Λ)∏n
i=1 ρσi(Z)

(12)

for all x ∈ Zn.

Clearly, the exponential decay coefficient δ is the key to
determine the convergence rate. More specifically, the conver-
gence rate of a Markov chain is dominated by its spectral gap
τ = 1 − |λmax|, where |λmax| 6= 1 denotes the second largest
eigenvalue of the transition matrix (the largest eigenvalue is
always 1) [48].

III. SLICE SAMPLING FOR LATTICE GAUSSIAN
DISTRIBUTION

In this section, we present the conventional slice sampling in
MCMC and give the proposed sliced lattice Gaussian sampling
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Fig. 1. Illustration of a two-dimensional lattice Gaussian distribution and a
slice (blue plane) with u ≥ 0 over it.

algorithm. Note that the Markov chain that we are concerned
with here has a countably infinite state space, i.e., the lattice
Λ with x ∈ Zn.

A. Slice Sampling

The classical slice sampling was generalized by Neal in
[49]. In principle, it relies on the fact that uniformly sampling
from the region under the curve of a density function is
actually equal to drawing samples directly from that distri-
bution. Take a multi-dimensional target distribution π(x) as
an example, auxiliary variable u ≥ 0 is introduced to sample
from target distribution π(x) by sampling from the uniform
distribution over the set S = {(x, u) : 0 ≤ u ≤ π(x)} and
marginalizing out u coordinate. To achieve this, slice sampling
alternatively updates x and u from uniform distributions
p(x | u) ∼ Uni(S) and p(u | x) ∼ Uni(0, π(x)) respectively,
thus forming a valid Markov chain with joint distribution
Π(x, u). Consequently, samples of x can be easily drawn
from the marginal distribution π(x)/Z, where Z > 0 is a
constant scalar. Overall, the operation of slice sampling can
be summarized as follows:

1) Sample ut from the conditional distribution

p(ut | xt−1) ∼ Uni(0, π(xt−1)). (13)

2) Sample xt from the conditional distribution

p(xt | ut) ∼ Uni(Su), (14)

where Su = {x : π(x) ≥ u}.
Clearly, the samples of x are obtained by simply ignoring

the values of u while only uniform sampling is required over
the set Su. However, in many cases of interest, determining the
set Su may be tricky especially for multi-modal distributions.
Compared to the conventional Metropolis-Hastings (MH) sam-
pling, a salient feature of slice sampling is that the sampled
candidate x from (14) will be accepted as Xt = xt without un-
certainty. In this way, the underlying Markov chain effectively
avoids the risk of getting stuck, thus making the traverse of the
state space of the Markov chain more efficiently. Hence, if the

identity of Su can be carried out, then slice sampling becomes
preferable due to the considerable convergence gain. In fact,
as lattice Gaussian distribution DΛ,σ,c(x) is simply unimodal,
finding the slice and sampling from it could be straightforward,
which motivates us to incorporate slice sampling into lattice
Gaussian distribution for a better sampling performance.

B. Sliced Lattice Gaussian Sampling Algorithm

Inspired by the works of slice sampling [50]–[52], we now
present the proposed sliced sampling algorithm for lattice
Gaussian distribution. First of all, a Markov chain {Xt, Ut}∞t=0

with joint distribution Π(x, u) should be set up. Typically,
given the factorization of the target distribution

π(x) = DΛ,σ,c(x) = PKlein(x) · l(x) (15)

with

l(x) ,

∏n
i=1 ρσi,x̃i(Z)

ρσ,c(Λ)
, (16)

we can establish the joint distribution as

Π(x, u) = PKlein(x) · Iu<l(x)(x), (17)

where ρσ,c(Λ) is a scalar and IA(x) is the indicator function
of the set A. Compared to the original slice sampling, the
factorization of the target distribution in (15) is adopted to the
proposed slice sampling, which results in a slightly different
expression shown in (17). In fact, it was pointed out by
Besag & Green in [53] that the usage of decomposition
is rather effective in multidimensi onal problems (especially
when PKlein(x) has a simpler structure than π(x)).

More specifically, the conditional uniform distribution of
u lies on the interval (0, l(x)) by incorporating u and l(x)
together. By doing this, u and x are iteratively updated by
respectively sampling from uniform distribution on (0, l(x))
given x and from PKlein(x) restricted to the set Au = {x :
l(x) > u}, i.e.,

1) Sample ut from the conditional distribution

p(ut | xt−1) ∼ Uni(0, l(xt−1)). (18)

2) Sample xt from the conditional distribution

p(xt | ut) ∼ P
Aut
Klein(x), (19)

where x ∈ Aut = {x : l(x) > ut}.
Following [53], it is straightforward to verify that the itera-

tive samplings from (18) and (19) lead to the joint distribution
Π(x, u) in (17).

Intuitively, with respect to (19), sampling from PKlein(x)
can be efficiently implemented by Klein’s algorithm with
complexity O(n2), whereas the restriction of x ∈ Aut can
be simply addressed by resorting to rejection sampling. If
x /∈ Aut , then repeat the sampling until a qualified candidate
is found for xt. In fact, since the candidates x with large
sampling probabilities are most likely to be obtained by
Klein’s sampling, the rejection ratio of the rejection sampling
normally turns out to be low. Meanwhile, to avoid the risk of
being rejected, one also can sample x from PKlein(x) under the
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restriction x ∈ Aut directly1. Interestingly, the numerator in
(16) has already been calculated by Klein’s algorithm during
the sampling while the denominator in (16) only serves as a
scalar that can be set free for non-negative values. Therefore,
the computational cost by incurring rejection sampling tends
to be quite low.

To summarize, the proposed sliced lattice Gaussian sam-
pling algorithm is presented in Algorithm 2. More precisely,
the complexity of slice sampling in each single Markov move
is easily accepted with O(n2), which is the same order with
the IMHK and Gibbs sampling algorithms. For this reason,
in MCMC the complexity of each Markov move is often
insignificant, whereas the number of Markov moves is more
critical. Additionally, we emphasize that the framework of
slice sampling actually contributes several degrees of freedom:
the choice of the conditional distribution of the auxiliary
variable p(ut | xt−1), the decomposition way of DΛ,σ,c(x),
and the update schedule scheme between x and u. Here, for
convenience, the systematic update scheme that updates x and
u sequentially is considered through the context. In a word,
reasonable performance gain is available by further exploiting
these freedom degrees.

IV. CONVERGENCE ANALYSIS

In this section, convergence analysis with respect to the
proposed sliced lattice Gaussian sampling algorithm is given.
The uniform ergodicity is firstly demonstrated, followed by the
convergence diagnosis to show the superiority of the proposed
sampling algorithm over IMHK.

A. Uniform Ergodicity

Consider the marginal distribution π(x) = DΛ,σ,c(x) with
respect to the joint distribution Π(x, u), clearly, the marginal
chain {X1,X2, ...} regarding to x is not only a valid Markov
chain with transition probability PSlice(xt,xt+1) > 0, but also
turns out to be reversible (also known as detailed balance) due
to

π(xt)PSlice(xt,xt+1)=π(xt)

∫
Π(ut+1|xt)Π(xt+1|ut+1)dut+1

=

∫
Π(xt|ut+1)Π(ut+1|xt)Π(xt+1|ut+1)p(ut+1)dut+1

=π(xt+1)

∫
Π(ut+1|xt)Π(xt|ut+1)dut+1

=π(xt+1)

∫
Π(ut|xt+1)Π(xt|ut)dut

=π(xt+1)PSlice(xt+1,xt), (20)

where π(x) =
∫

Π(x, u)du =
∫

Π(x|u)p(u)du. Subsequent-
ly, based on the sub-Markov chain {X1,X2, ...}, its transition
probability can be derived as

PSlice(xt,xt+1)=

∫ l(xt)

0

p(xt+1|ut+1)p(ut+1|xt)dut+1

=

∫ l(xt)

0

P
Aut+1

Klein (xt+1)p(ut+1|xt)dut+1

1For more details of implementing Klein’s sampling at each layer with
finite searching space, reader are referred to [27].

Algorithm 2 Sliced Lattice Gaussian Sampling Algorithm
Input: B, σ, c,x0, tmix(ε);
Output: x ∼ DΛ,σ,c;

1: for t =1,2, . . . , do
2: calculate l(xt−1) according to (16)
3: uniformly draw ut from the interval (0, l(xt−1))
4: for k =1,2, . . . , do
5: sample xt from Pklein(x) shown in (6)
6: calculate l(xt) according to (16)
7: if l(xt) > ut then
8: break
9: end if

10: end for
11: if t ≥ tmix(ε) then
12: output xt
13: end if
14: end for

=
1

l(xt)

∫ l(xt)

0

P
Aut+1

Klein (xt+1)dut+1

(a)
=

1

l(xt)

∫ l(xt)

0

PKlein(xt+1)Iut+1<l(xt+1)(xt+1)

PKlein(Aut+1
)

dut+1

=
PKlein(xt+1)

l(xt)

∫ l(xt)∧l(xt+1)

0

1

PKlein(Aut+1)
dut+1

(21)

where (a) recalls Bayes’ theorem and “∧” yields the smaller
choice between two terms. Moreover, it follows that

1

PKlein(Aut+1
)

=
1∑

x∈{x:l(xt)>ut+1} PKlein(x)
≥ 1, (22)

where the equality happens if and only if ut+1 is selected to
be 0. Therefore, the following relationship holds∫ l(xt)∧l(xt+1)

0

1

PKlein(Aut+1
)
dut+1=β

∫ l(xt)∧l(xt+1)

0

dut+1 (23)

with the constant β ≥ 1. Here, we point out that the case of
ut+1 = 0 would rarely happen as it is randomly generated
from the interval (0, l(xt)), which means the constant β is
normally larger than 1 in practice.

According to (23), we can rewrite PSlice(xt,xt+1) as

PSlice(xt,xt+1)=β · PKlein(xt+1)

l(xt)

∫ l(xt)∧l(xt+1)

0

dut+1

=β · PKlein(xt+1)

[
1 ∧ l(xt+1)

l(xt)

]
=β ·

[
PKlein(xt+1)∧ π(xt+1)PKlein(xt)

π(xt)

]
=β · PKlein(xt+1) · α(xt,xt+1)

=β · PIMHK(xt,xt+1)

(b)

≥β · δ · π(xt+1), (24)

where the inequality (b) follows the fact that [41]

PKlein(x)

π(x)
=

ρσ,c(Λ)∏n
i=1 ρσi,x̃i(Z)

≥ δ (25)
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for all Markov state x ∈ Zn.
Actually, the result of PSlice(xt,xt+1) ≥ β · δ · π(xt+1) for

all the Markov states is accordance with the definition of small
set in literatures of MCMC [48]. Furthermore, given (24), for
a reversible Markov chain, it is straightforward to demonstrate
the uniform ergodicity of the underlying Markov chain through
coupling technique. Here, for the consideration of simplicity,
the related proof is omitted while more details about the proof
can be found in [36].

Theorem 2. Given the invariant lattice Gaussian distribution
DΛ,σ,c, the sub-chain {X1,X2, ...} established by the pro-
posed sliced lattice Gaussian sampling algorithm is uniformly
ergodic as:

‖P t(x, ·)−DΛ,σ,c(·)‖TV ≤ (1− δ′)t (26)

with δ′ = β · δ for all x ∈ Zn.

Intuitively, compared to the convergence rate given in The-
orem 1, the convergence performance of the proposed sliced
sampling is better than that of IMHK sampling due to a larger
size δ′.

B. Convergence Improvement

Similar to IMHK sampling, the proposed sliced sampling
for lattice Gaussian distribution is uniformly ergodic as well,
where the convergence advantage can be found from

PSlice(xt,xt+1) ≥ PIMHK(xt,xt+1). (27)

For a better understanding, we now recall the concept of
Peskun ordering to verify the convergence improvement of
the proposed sliced sampling. Specifically, with respect to
sampling from DΛ,σ,c(x), it always follows that

PSlice(Xt=x,Xt+1=y) ≥ PIMHK(Xt = x,Xt+1 = y) (28)

for x 6= y, which means each off-diagonal element in
transition matrix PSlice is no smaller than that of PIMHK. From
literatures of MCMC, such a case is known as Peskun ordering
written by

PSlice(Xt,Xt+1) � PIMHK(Xt,Xt+1). (29)

We then invoke the following Theorem to show the conver-
gence performance from Peskun ordering. Here, L2(π) denote
the set of all function f(·) that are square integrable with
respect to π and v(f,P) is defined as sampler’s asymptotic
efficiency by

v(f,P) = lim
n→∞

1

n
var

{
n∑
t=1

f(Xt)

}
, (30)

where X0, . . . ,Xt establish the corresponding Markov chain.

Theorem 3 ([54]). Suppose P1 and P2 are reversible transi-
tion matrices with the same invariant distribution and P2 ≥
P1. Then, for all any function f ∈ L2

0(π) = {f ∈ L2(π) :
E{f} = 0}, we have

v(f,P1) ≥ v(f,P2). (31)

Clearly, from Theorem 3, the proposed sliced sampling has
a smaller asymptotic variance of sample path averages than
IMHK for every function that obeys the central limit theorem
(CLT). Theoretically, the insight behind Peskun ordering is
that a Markov chain has smaller probability of remaining in the
same position explores the state space more efficiently. Hence,
convergence performance is improved by shifting probabilities
off the diagonal of the transition matrix, which corresponds to
decreasing the rejection probability of the proposed moves.
Moreover, in [50], Mira shows that if two transition matrices
are Peskun ordered as P2 ≥ P1, then their corresponding
second largest eigenvalues satisfy

|λmax,1| ≥ |λmax,2|, (32)

where convergence rate in uniform ergodicity is exactly char-
acterized by the second largest eigenvalue |λmax|. Therefore,
we can easily arrive at the following result to show the
convergence gain of the proposed sliced sampling.

Corollary 1. The proposed sliced sampling algorithm is more
efficient than the IMHK sampling algorithm to converge to the
target lattice Gaussian distribution due to a better convergence
rate by

|λmax|Slice ≤ |λmax|IMHK (33)

for all x ∈ Zn.
As an important parameter to measure the time required by

a Markov chain to get close to its stationary distribution, the
mixing time is defined as [48]

tmix(ε) = min{t : max‖P t(x, ·)− π(·)‖TV ≤ ε}. (34)

Obviously, given the value of δ′ < 1, the mixing time of the
Markov chain can be calculated by (34) and (26), that is,

tmix(ε) =
lnε

ln(1− δ′)
≤ (−lnε) ·

(
1

δ′

)
, ε < 1 (35)

where we use the bound lnc < c−1 for 0 < c < 1. Therefore,
the mixing time is proportional to 1/δ′, and becomes O(1)
as δ′ → 1. From this point of view, the superiority of
the proposed sliced sampling over IMHK is determined by
β ≥ 1. On the other hand, it is straightforward to see that
PKlein(Aut+1) decreases with the improvement of σ. This is
actually in line with the fact that a larger σ corresponds to a
faster convergence rate. Clearly, if σ is sufficiently large, then
sampling from DΛ,σ,c(x) can be realized immediately.

V. DECODING ANALYSIS

In this section, we apply the proposed sliced sampling to
solve the CVP and analyze its complexity with respect to the
choice of the standard deviation σ. As mentioned before, the
decoding complexity of MCMC is evaluated by the number
of Markov moves. In MCMC, samples from the stationary
distribution tend to be correlated with each other. Thus one
leaves a gap, which is the mixing time tmix, to pick up
the desired independent samples (alternatively, one can run
multiple Markov chains in parallel to guarantee i.i.d. samples).
Therefore, following the configuration in [36], the complexity
of solving CVP by MCMC is defined as follows.
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Definition 1. Let d(Λ, c) = minx∈Zn ‖Bx − c‖ denote the
Euclidean distance between the query point c and the lattice
Λ with basis B, and let x̂ be the lattice point achieving d(Λ, c).
The complexity (i.e., the number of Markov moves t) of solving
CVP by MCMC is

CCVP ,
tmix

DΛ,σ,c(x̂)
. (36)

According to (35) and (36), the decoding complexity of the
proposed sliced sampling for CVP can be upper bounded by

Cslice < log

(
1

ε

)
· 1

δ′
· ρσ,c(Λ)

ρσ,c(Bx̂)

≤ log

(
1

ε

)
· 1

β
·
∏n
i=1 ρσi(Z)

ρσ,c(Λ)
· ρσ,c(Λ)

ρσ,c(Bx̂)

= log

(
1

ε

)
· 1

β
·
∏n
i=1 ρσi(Z)

ρσ,c(Bx̂)

= log

(
1

ε

)
· 1

β
· C(σ), (37)

where

C(σ) ,

∏n
i=1 ρσi(Z)

ρσ,c(Bx̂)
=

(
n∏
i=1

∑
xi∈Z

e−
‖b̂i‖

2

2σ2 ·x
2
i

)
· e

d2(Λ,c)

2σ2 .

(38)
Clearly, given B and d(Λ, c), the decoding complexity

is determined by the choice of σ. Note that since slice
sampling achieves a better mixing time than IMHK sampling,
its decoding complexity is also superior to that of IMHK
sampling for a better decoding performance [36]. Based on
(38), further analysis is given to optimize the choice of the
standard deviation σ in what follows, thus leading to a better
decoding performance.

A. Optimization of σ

In [36], the choice of σA = mini ‖b̂i‖/2
√
π is proposed

as a suboptimal choice for solving CVP by IMHK sampling
decoding. By simply substituting it into (38) for the proposed
sliced sampling, we have

C(σA) = e
2π

min2 ‖b̂i‖
·d2(Λ,c) ·

n∏
i=1

ϑ3

(
2‖b̂i‖2

min2 ‖b̂i‖

)
(39)

with Jacobi theta function ϑ3(τ) =
∑+∞
n=−∞ e−πτn

2

. Since
ϑ3(τ) is monotonically decreasing with τ > 0, it is shown
that

C(σA)≤e
2π

mini ‖b̂i‖2
·d2(Λ,c)·ϑn3 (2)=1.0039n ·e

2π

mini ‖b̂i‖2
·d2(Λ,c)

.
(40)

Nevertheless, C(σA) is sensitive with d(Λ, c) due to the
exponentially increasing component ed

2(Λ,c).
In order to obtain a better σ for solving CVP, we start with

considering the optimal choice of σ with respect to

C ′(σ) ,

(
n∏
i=1

∫ ∞
−∞

e−
‖b̂i‖

2

2σ2 ·x
2
i dxi

)
· e

d2(Λ,c)

2σ2 , (41)

which is a continuous version of (38). According to the fact

TABLE I
VALUES OF ϑ3 .

ϑ3(1)
∑+∞
n=−∞ e−1πn2 4

√
π

Γ( 3
4 )

1.087

ϑ3(2)
∑+∞
n=−∞ e−2πn2 4

√
6π+4

√
2π

2Γ( 3
4 )

1.0039

ϑ3(3)
∑+∞
n=−∞ e−3πn2 4

√
27π+18

√
3π

3Γ( 3
4 )

1.00037

ϑ3(4)
∑+∞
n=−∞ e−4πn2 4√8π+2 4

√
π

4Γ( 3
4 )

1.0002

ϑ3(5)
∑+∞
n=−∞ e−5πn2 4

√
225π+100

√
5π

5Γ( 3
4 )

1.0001

∫∞
−∞ e−

x2

2σ2 dx =
√

2πσ, it follows that

C ′(σ) =
(2π)

n
2

|det(B)|
· σn · e

d2(Λ,c)

2σ2 (42)

and the derivative of function C ′(σ) with respect to σ can be
easily obtained. Furthermore, by letting

∂C ′(σ)

∂σ
= 0, (43)

then we have
σ =

d(Λ, c)√
n

. (44)

Here, for notational simplicity, we apply σB = d(Λ, c)/
√
n

as the choice for C(σ) shown in (38), and it follows that

C(σB) = e
n
2 ·

(
n∏
i=1

∑
xi∈Z

e
− n‖b̂i‖

2

2d2(Λ,c)
·x2
i

)

= e
n
2 ·

n∏
i=1

ϑ3

(
n‖b̂i‖2

2πd2(Λ, c)

)
. (45)

Clearly, the choice σB = d(Λ, c)/
√
n is still suboptimal

because it was found through the continuous case. Neverthe-
less, significant potential still can be obtained. More precisely,
according to

∫∞
−∞ e−

x2

2σ2 dx =
√

2πσ, C(σB) is upper bounded
by

C(σB) ≤ en2 ·

(
n∏
i=1

∫ ∞
−∞

e
− n‖b̂i‖

2

2d2(Λ,c)
·x2
i dxi

)

= e
n
2 ·

n∏
i=1

(
√

2π · d(Λ, c)
√
n‖b̂i‖

)

=

(
2πe

n

)n
2

· d
n(Λ, c)

|det(B)|
. (46)

Intuitively, when n > 2πe (i.e., n ≥ 18), C(σB) is mainly
dominated by the relationship between d(Λ, c) and |det(B)|.
More precisely, according to (46), the complexity of O(e

n
2 )

for solving CVP can be achieved by C(σB) if

d(Λ, c) ≤
√

n

2π
· | det(B)| 1n . (47)

Furthermore, by substituting (46) into (37), the complexity
of solving CVP via the proposed sliced sampling decoding
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Fig. 2. C(σB) versus d(Λ, c) = γ ·
√
nmin ‖b̂i‖

2
√
π

for the lattice basis
B ∈ R8×8 with Gaussian coefficients.

can be derived as

CCVP ≤ log

(
1

ε

)
·
(

2πe

n

)n
2

· dn

|det(B)|
(48)

and its decoding radius follows that

dσB(Λ, c) =

√
n

2πe
·
(
CCVP

log( 1
ε )

) 1
n

· | det(B)| 1n , (49)

which is comparable to the one based on σA as

dσA(Λ, c) =

√
1

2π
· ln CCVP

log
(

1
ε

) · min
1≤i≤n

‖b̂i‖. (50)

B. Relationship between σA and σB
In order to investigate the relationship between σA and σB ,

we arrive at the following Proposition, whose proof is omitted
due to simplicity. From it, the following analysis can be carried
out thereafter.

Proposition 1. Given C(σA) and C(σB) in (39) and (45)
respectively, it follows that

1) If d(Λ, c) =
√
nmin ‖b̂i‖

2
√
π

, the choices σA and σB are
equivalent due to the same value of C(σ).

2) If d(Λ, c) <
√
nmin ‖b̂i‖

2
√
π

, then the choice σA is better
than σB due to a smaller C(σ).

3) If d(Λ, c) >
√
nmin ‖b̂i‖

2
√
π

, then the choice σB is better
than σA due to a smaller C(σ).

Insight into C(σA) and C(σB), both of them increase with
the improvement of d(Λ, c). In particular, due to the constant
term en/2, C(σB) is less efficient than C(σA) when d(Λ, c) is
small. However, given an increasing d(Λ, c), the product term∏n
i=1 ϑ3

(
n‖b̂i‖2

2πd2(Λ,c)

)
in C(σB) is not as sensitive as the term

e
2π

mini ‖b̂i‖2
·d2(Λ,c)

in C(σA), thus leading to a significant supe-
riority in decoding complexity for d(Λ, c) >

√
nmin ‖b̂i‖

2
√
π

. To
summarize, in order to achieve a better decoding performance,

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

γ
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)
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B
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16×16 C(σ
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B

)

20×20 C(σ
A

)

20×20 C(σ
B

)

Fig. 3. C(σ) versus d(Λ, c) = γ ·
√
nmin ‖b̂i‖

2
√
π

for 8×8, 12×12, 16×16

and 20× 20 lattice basis B with Gaussian coefficients.

σ should obey the following choice

σ =

σA = mini ‖b̂i‖/2
√
π if d(Λ, c) ≤

√
nmin ‖b̂i‖

2
√
π

;

σB = d(Λ, c)/
√
n if d(Λ, c) >

√
nmin ‖b̂i‖

2
√
π

.
(51)

For a better understanding, the average value of C(σB)

versus d(Λ, c) = γ ·
√
nmin ‖b̂i‖

2
√
π

, γ > 0 for an 8×8 lattice basis
B with Gaussian coefficients is illustrated by Monte Carlo
methods in Fig. 2. Intuitively, when d(Λ, c) >

√
nmin ‖b̂i‖

2
√
π

(i.e., γ > 1), the average value of C(σB) grows rapidly.
Moreover, the comparisons between C(σA) and C(σB) with
respect to various lattice basis B with Gaussian coefficients are
further presented in Fig. 3. As expected, C(σA) and C(σB)

are same when d(Λ, c) =
√
nmin ‖b̂i‖

2
√
π

, i.e., γ = 1. Meanwhile,

it is clear that C(σA) < C(σB) when d(Λ, c) <
√
nmin ‖b̂i‖

2
√
π

and C(σA) > C(σB) for d(Λ, c) >
√
nmin ‖b̂i‖

2
√
π

. Most
importantly, compared to C(σA), the increment of C(σB)
is much milder, thus making C(σB) a promising choice for
d(Λ, c) >

√
nmin ‖b̂i‖

2
√
π

.

Another point should be emphasized is the application of
lattice reduction technique. It is well known that after Lenstra-
Lenstra-Lovász (LLL) reduction, vectors in the matrix B
(i.e., lattice basis) become relatively short and orthogonal to
each other. Meanwhile, LLL reduction is able to significantly
improve mini ‖b̂i‖ while reduce maxi ‖b̂i‖ [55]. To this end,
LLL reduction is encouraged to serve as a preprocessing stage
with polynomial computational complexity O(n3 log n) since
it could significantly improve the decoding performance of
the choice σA [56]. Note that as shown in (45) and (49),
LLL reduction does not alter the volume of lattice, which
corresponds to a constant |det(B)|. In this condition, since
C(σA) is better than C(σB) when d(Λ, c) <

√
nmin ‖b̂i‖

2
√
π

, the
usage of LLL reduction also expands the active range of the
choice σA.
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Fig. 4. Bit error rate versus average SNR per bit for the uncoded 8 × 8
MIMO system using 16-QAM.

C. Dynamic Update of σ

However, given the choice of σ in (51), two natural ques-
tions raise, which should be considered carefully:
• A judgement based on d(Λ, c) is required to determine

the choice of σ.
• The premise d(Λ, c) corresponds to solving the CVP,

which is difficult to obtain at the very beginning.
Therefore, we now try to answer these two questions in what
follows.

Specifically, as d(Λ, c) is hard to get, the initial distance
dinitial(Λ, c) = ‖Bxsic-lll − c‖ is applied as an approxima-
tion, where xsic-lll is the decoding result of SIC-LLL de-
coding2. Note that other decoding results x̂ of sub-optimal
decoding schemes can also be applied, and the more accu-
rate dinitial(Λ, c) to d(Λ, c), the better decoding performance.
Meanwhile, the result of xsic-lll can also be applied as the
initial starting state of the Markov chain, which is helpful to
the Markov mixing [57].

Then, given the fact d(Λ, c) ≤ dinitial(Λ, c), the related
judgement can be carried out to determine the choice of σ.
Clearly, if dinitial(Λ, c) ≤

√
nmin ‖b̂i‖

2
√
π

, then σA is selected as a
judicious choice. Otherwise, σ = dinitial(Λ, c)/

√
n is applied

at the beginning, and σ is updated dynamically by learning
from the collected samples as

σdynamic =
dupdate(Λ, c)√

n
,

minx∈S ‖Bx− c‖√
n

, (52)

where set S contains all the samples of x collected by the
sampling. Undoubtedly, along with the sampling, dupdate(Λ, c)
shrinks gradually, thus leading to a more accurate estimation
of σ to σB .

Proposition 2. Given d(Λ, c) >
√
nmin ‖b̂i‖

2
√
π

, the choice σ =
dinitial(Λ,c)√

n
is better than σA due to a smaller C(σ) if

2The successive interference cancelation (SIC) decoding is also known as
Babai’s nearest plane algorithm in lattice decoding.
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Fig. 5. Bit error rate versus average SNR per bit for the uncoded 12× 12
MIMO system using 16-QAM.

dinitial(Λ, c) ≤ |det(B)| 1n ·
√

n

2πe
· e 2πα2

n . (53)

Proof: First of all, by substituting σinitial = dinitial(Λ,c)√
n

into
(46), we have

C(σinitial) ≤
(

2πe

n

)n
2

· d
n
initial(Λ, c)

|det(B)|
. (54)

Then, given (39), in order to make sure C(σinitial) < C(σA),
it follows that(

2πe

n

)n
2

· d
n
initial(Λ,c)

|det(B)|
<e

2π

min2 ‖b̂i‖
·d2(Λ,c)·

n∏
i=1

ϑ3

(
2‖b̂i‖2

min2 ‖b̂i‖

)
(55)

so as to

dinitial(Λ, c)<|det(B)| 1n ·
√

n

2πe
·e

2π·d2(Λ,c)

n·min2 ‖b̂i‖ ·
n∏
i=1

ϑ3

(
2‖b̂i‖2

min2 ‖b̂i‖

)

≤|det(B)| 1n ·
√

n

2πe
· e

2π·d2(Λ,c)

n·min2 ‖b̂i‖ · ϑn3 (2)

≈|det(B)| 1n ·
√

n

2πe
· e

2π·d2(Λ,c)

n·min2 ‖b̂i‖ , (56)

completing the proof.
From Proposition 2, the choice of σ = dinitial(Λ,c)√

n
is superior

to σA when dinitial is close to d(Λ, c) >
√
nmin ‖b̂i‖

2
√
π

within a
certain level. Nevertheless, as the initial distance dinitial(Λ, c)
may be quite far away from d(Λ, c) due to a poor suboptimal
detection, the estimation of σ in (52) has the risk to be
excessively large. To prevent such a problem, it is necessary
to set an upper bound for σ as

σdynamic = min

{
dupdate(Λ, c)√

n
, γ · min ‖b̂i‖

2
√
π

}
, (57)

where d(Λ, c) = γ ·
√
nmin ‖b̂i‖

2
√
π

and the coefficient γ is
suggested to choose from the range [1.2, 1.4]. We emphasize
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Fig. 6. Bit error rate versus average SNR per bit for the uncoded 16× 16
MIMO system using 64-QAM.

the significance of the above upper bound, which is important
especially for decoding cases with limited state space, i.e.,
x ∈ Xn ⊆ Zn.

To summarize, the proposed choice of standard deviation
σmix is given as follows, where the judgement is carried out
based on dinitial(Λ, c).

Remark 1. • If dinitial(Λ, c) ≤
√
nmin ‖b̂i‖

2
√
π

, let σmix = σA
for the sampling decoding.

• If dinitial(Λ, c) >
√
nmin ‖b̂i‖

2
√
π

, update σmix = σdynamic

dynamically for the sampling decoding.

Note that updating σ by learning dynamically is compatible
with the mechanism of MCMC, which is known as adaptive
MCMC (see [58], [59] for more details). Meanwhile, this is
also in line with the concept of simulated annealing (SA) by
gradually cooling down the temperature of the Markov chain,
which is widely applied in various research fields [60].

VI. SIMULATIONS

In this section, the performances of MCMC-based sampling
schemes are exemplified in the context of MIMO detection,
whose system model can be expressed as

c = Hx + w. (58)

Here, the ith entry of the transmitted signal x, denoted as
xi, is a modulation symbol taken independently from an M -
QAM constellation X with Gray mapping. The channel matrix
H contains uncorrelated complex Gaussian fading gains with
unit variance and remains constant over each frame duration
and w is the Gaussian noise with zero mean and variance σ2

w.
Intuitively, this decoding problem of x̂ = arg min

x∈Xn
‖Hx −

c‖2 can be solved by sampling over the discrete Gaussian
distribution

PL(H),σ,c(x) =
e−

1
2σ2 ‖Hx−c‖2∑

x∈Xn e
− 1

2σ2 ‖Hx−c‖2
, (59)
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Fig. 7. Bit error rate versus average SNR per bit for the uncoded 24× 24
MIMO system using 16-QAM.

and the closest lattice point Hx will be returned with the
highest probability.

In Fig. 4, the bit error rates (BERs) of MCMC sampling
detectors are evaluated against the number of Markov moves
(i.e., iterations) in a 8 × 8 uncoded MIMO system with 16-
QAM. Here, LLL reduction-aided SIC decoding serves as
a performance baseline for a better comparison. Meanwhile,
LLL reduction is also applied to other decoding schemes as a
fair comparison, where the trade-off coefficient 1/4 < η < 1
in Lovász condition is set as 0.99 for a relatively orthogonal
lattice basis. Clearly, there is a substantial performance gap be-
tween lattice reduction-aided decoding scheme and sampling
decoding schemes. In particular, with the standard deviation
σA = mini ‖b̂i‖/(2

√
π), the proposed sliced lattice Gaussian

sampling algorithm achieves a better decoding performance
than IMHK under the same number of Markov moves (i.e.,
K = 50). On the other hand, with the increase of Markov
moves, the decoding performance improves gradually due to
a larger decoding radius. As expected, near-optimal decoding
performance can be obtained when K = 200. In addition,
Gibbs sampling from MCMC is also added for the comparison,
whose setting of standard deviation σdistance comes from [61].
However, as LLL can not be perfectly adopted to Gibbs sam-
pling, considerable performance loss turns out to be inevitable
compared to sliced or IMHK samplings.

In Fig. 5, the BERs of MCMC sampling decoding schemes
are evaluated against the number of Markov moves in a 12×12
uncoded MIMO system with 16-QAM. Clearly, the proposed
sliced lattice Gaussian sampling algorithm is still superior
to IMHK sampling in terms of decoding performance, thus
implying a better convergence rate. Note that with the increase
of the system dimension, the performance gap between ML
and sampling decoding schemes is enlarged, and more com-
plexity cost will be consumed. Therefore, to achieve the near-
optimal decoding performance, a larger number of Markov
moves is required. In other words, the proposed sliced lattice
Gaussian sampling is flexible, where its decoding trade-off
between performance and complexity can be adjusted through
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Fig. 8. Choice percentage of σmix versus average SNR per bit for the uncoded
16× 16 MIMO system with 64-QAM and 24× 24 MIMO system with 16-
QAM respectively.

the number of Markov moves.
In order to show the performance comparison with different

choices of the standard deviations, Fig. 6 is given to illustrate
the BER performance of σA and σdynamic in a 16×16 uncoded
MIMO system with 64-QAM. As shown in Proposition 1,
σA is only advantageous in a limited range with d(Λ, c) <√
nmin ‖b̂i‖

2
√
π

, which means considerable decoding potential can
be further exploited. For this reason, σdynamic shown in (57) is
given, and it takes the advantages of the initial starting state
(i.e., x0 = xsic-lll) of the underlying Markov chain, thereby
leading to the mixed version σmix based on the judgement of
dinitial(Λ, c). More specifically, the coefficient γ we choose in
dinitial(Λ, c) is 1.3. In Fig. 6, as expected, compared to the
sliced sampling with σA, considerable decoding performance
can be obtained by the sliced sampling with σmix under the
same number of Markov moves K = 50. In particular, the gain
of the choice σmix with K = 50 is approximately 1 dB for a
BER of 10−4, which can be further improved with the increase
of the Markov moves. Additionally, the decoding performance
of the fixed candidates algorithm (FCA) in [62] and iterative
list decoding in [63] with 50 samples are also presented as a
comparison.

In Fig. 7, the performance comparison with different choices
of the standard deviations is presented to show the BER
performance in a 24 × 24 uncoded MIMO system with 16-
QAM. This corresponds to a lattice decoding scenario with
restricted state space in dimension n = 48. It is clear that
under the help of LLL reduction, all the decoding schemes
are able to achieve the full receive diversity. However, with the
increase of system dimension, more number of Markov moves
is needed for approaching the ML performance. Nevertheless,
the decoding gain of the choice σmix over σA still can be
observed, which is further improved with the increase of
Markov moves. Note that as a mixed strategy for choosing σ,
σmix selects σA or σdynamic according to the judgement based
on dinitial(Λ, c), where the related details will be explicitly
described in the following.

To further study the choice of σmix between σA and σdynamic,
Fig. 8 is given to show the choice percentage of σmix in two
different decoding cases, namely, 16 × 16 uncoded MIMO
system with 64-QAM and 24×24 uncoded MIMO system with
16-QAM. Both the numbers of Markov moves of the sliced
sampling algorithm in these two cases are set as K = 50 with
coefficient γ = 1.3. Clearly, in the low SNR region, the choice
percentages of σA for σmix are rather limited. This is because
dinitial(Λ, c) normally turns out to be relatively large due to
the effect of noises. With the increase of SNR, the effects of
noises are constrained gradually, thus resulting in a smaller
size of dinitial(Λ, c). In this case, the choice of σA becomes a
better choice than σdynamic and its percentage of being selected
goes up subsequently. On the contrary, the choice percentages
of σdynamic decrease with the increase of SNR. When the SNR
per bit is larger than 27dB, the percentage of choosing σdynamic
is approaching to 0. Nevertheless, it still plays a dominant
role especially in the low SNR regions. For this reason, the
decoding performance gain of σdynamic over σA is reliable
in most cases of MIMO detection. Another thing should be
pointed out is that the modulation scheme also has an impact
upon the choice of σ since the high order modulation suffers
from the noises more severely in average.

VII. CONCLUSION

In this paper, the sliced lattice Gaussian sampling algorithm
was proposed to sample from the lattice Gaussian distribution.
By introducing an auxiliary random variable, the underlying
Markov chain of the proposed sliced sampling not only
achieves uniformly ergodicity, but also shows a better mixing
performance than that of the independent Metropolis-Hastings-
Klein (IMHK) sampling algorithm. On the other hand, with
respect to lattice decoding by the sliced lattice Gaussian
sampling algorithm, comprehensive analysis is carried out
while a better choice of the standard deviation σ is derived
for certain cases. To further exploit the decoding potential,
a judicious judgement based on the Euclidean distance is
proposed for a better choice of σ. By doing this, the proposed
sliced lattice Gaussian sampling algorithms suits well for the
various decoding requirements, where the decoding trade-off
between the performance and complexity is flexibly adjusted
through the number of Markov moves.
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