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In metal forming physical field analysis, finite element method
(FEM) is a crucial tool, in which the mesh-density has a sig-
nificant impact on the results. High mesh density usually con-
tributes authentic to an increase in accuracy of the simulation
results but costs more computing resources. To eliminate this
drawback, we propose a data-driven mesh-density boosting
model named SuperMeshingNet that uses low mesh-density
physical field as inputs, to acquire high-density physical field
with 2D structured grids instantaneously, shortening com-
puting time and cost automatically. Moreover, the Res-UNet
architecture and attention mechanism are utilized, enhanc-
ing the performance of SuperMeshingNet. Compared with
the baseline that applied the linear interpolation method, Su-
perMeshingNet achieves a prominent reduction in the mean
squared error (MSE) and mean absolute error (MAE) on the
test data. The well-trained model can successfully show an im-
proved performance than the baseline models on the multiple
scaled mesh-density, including 2×, 4×, and 8×. Enhanced by
SuperMeshingNet with broaden scaling of mesh density and
high precision output, FEM can be accelerated with seldom
computational time and cost with little accuracy sacrificed.

Nomenclature
x input data set.
y output data set.
R data space.
F neural network model.
w weights of the neural network model.
w∗ optimal weights of the neural network model.
Mc channel attention map.
Ms spatial attention map.
σ activation function.
f standard convolution layer.
Loverall overall loss.
Lc content loss.

∗Please address all correspondences to this author (zhen-
guonie@tsinghua.edu.cn).

Lp perceptual loss.
Lg geometric loss.

1 Introduction
Numerical methods, for instance, finite element method

(FEM), are widely used in the engineering domain [1, 2]
for quantitative solutions. Compared with the traditional
experimental approaches, numerical methods can optimize
the design and process parameters at a low cost. As shown in
Fig. 1, especially the refined finite element mesh provides an
essential mesh density for FEM to reach high precision [3, 4].

However, to promote the accuracy of the simulation,
higher mesh-density is required to be implemented during
numerical simulation, which escalates the requirement of cal-
culation resources, leading to the increase in computing time.
Therefore, it is critical for FEM to generate the results that
have high mesh-density while scaling down time consump-
tion.

The prediction tasks for physical field analysis based on
data-driven technology are inspired by contemporary achieve-
ment of deep learning for computer vision, natural language
processing, and control [5, 6, 7]. Machine learning methods
have been predominantly examined and investigated in multi-
ple aspects of FEM. To predict steady flows in a representative,
a capsule neural network was established in the area of fluid
dynamics [8]. Besides, deep neural networks (DNN) also
have been utilized to learn the structural features to boost the
performance in topology optimization [9,10,11]. Furthermore,
to estimate stress distribution, a fast deep learning approach
is developed [12, 13]. However, the generalization and there-
fore accuracy when presented with new data is compromised,
since real world data could be vastly different from data used
to train a surrogate model. On the other hand, to accelerate
computing productivity, deep learning models [14, 15] are
exploited to generate mesh automatically but without time-
saving during the process of FEM calculation. Therefore,
against the experimental success of traditional meshing meth-

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Applied Mechanics. Received May 30, 2021;
Accepted manuscript posted August 13, 2021. doi:10.1115/1.4052195
Copyright © 2021 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/doi/10.1115/1.4052195/6740439/jam
-21-1240.pdf by Im

perial C
ollege London, N

an Li on 01 Septem
ber 2021

https://crossmark.crossref.org/dialog/?doi=10.1115/1.4052195&domain=pdf&date_stamp=2021-08-18


Fig. 1. Physical fields computed by FEM in low (32*32) and high
(256*256) mesh density.

ods and machine learning methods, the following key chal-
lenges still persist. One of the drawbacks is lacking ability of
generalization, which measures the performance of the model
to learn finite samples of the data distribution to reconstruct
other samples. Secondly, the computing time is inevitable
to be tremendous while aiming to generate a high-quality
outcome.

Inspired by the deep learning works on physical field pre-
diction, a refined finite element simulation model based on a
deep neural network is developed, named SuperMeshingNet.
SuperMeshingNet is trained with low mesh-density FEM
results as input which are corresponding to the high mesh-
density FEM results as targets, while the same high mesh-
density FEM results as outputs. SuperMeshingNet learns
the mapping relationship from the low mesh-density to the
high mesh-density, which can be utilized to instantaneously
generate various version of higher mesh-density FEM results.
To boost our approach, multiple deep learning techniques
have been manipulated on SuperMeshingNet, in which Re-
sUNet [16, 17] constitutes the main structure, the attention
mechanism [18, 19, 20] provides focus on training, and the
perceptual feature [21, 22] promotes visual quality.

By using the proposed model, a variety of high mesh
density finite element meshes can be calculated by only con-
suming computational resources on the order of minutes on
generating lower mesh density finite element method results
and model pre-training, which can immediately give feedback

to the designer for saving time. Meanwhile, by assessing the
test data set, which consists of distinctive data compared with
the training set, the precision and the ability of generalization
are validated. Moreover, the experiments validate SuperMesh-
ingNet by competing for performance with baseline models at
diverse scaling factors, including 2×, 4×, and 8×. SuperMe-
shingNet achieves superior performance on all used measure
metrics, contrasted with the baseline approaches in the ex-
periment. In addition, since deep learning network training
is more dependent on matured learning infrastructures, the
deep learning model migrates the calculation of finite element
grids from traditional CPUs to cheaper GPUs, significantly
reducing the computational cost.

Our main contributions are:

• A new method employing deep network models to generate
high mesh-density simulation results through low mesh-
density simulation results with seldom time-consuming.

• A new design of the output metrics measuring the quality
of mapping relationship among various mesh-density
scale of FEM results and evaluation matrices involving
the geometric feature and perceptual feature of the FEM
results.

• A hybrid neural network architecture with channel and
spatial attention mechanism as the main structure of Su-
perMeshingNet that enable high accuracy.

2 Related Work
Mesh density expands the information of an FEM result

and preserves physical field details which can only be cap-
tured, similar to an image super-resolution work that deep
learning based approaches have become the dominant po-
sition since the advance of convolution neural network for
processing image. Meanwhile, the attention mechanism that
used in CNN achieves outstanding performance. This trend
also shows in finite element analysis topics. Therefore, we
review four parts of knowledge that related to our work: mesh
density increasement, image-based super-resolution, attention
mechanism in deep learning, and related knowledge about
deep learning.

2.1 Image Based Super-resolution
Supervised neural networks have become state-of-the-

art work in super-resolution. In recent times, numerous
works [21] have sought to improve the efficiency of learn-
ing pairs of LR-HR images by adopting sub-pixel convolu-
tions. The first CNN architecture to recover high-resolution
(HR) images by low-resolution (LR) images was proposed by
Dong [23] named Super-resolution Convolutional Neural Net-
work (SRCNN). Moreover, Lim. [24] applied ResNet to super-
solution and brought substantial improvement compared with
previous work that named Enhanced Deep Super-Resolution
Residual Network (EDSR). By utilizing residual block, the
depth of the network is increased with fewer extra param-
eters [16], which yields better performance. Furthermore,
dense networks are used to boost detail, such as Residual
Dense Network (RDN) [25]. Image resolution increasing
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and FEM meshing density improving face a key problem:
completion of missing information. Therefore, drawing on
the approach of image processing is of considerable signif-
icance to the information completion process in the finite
element analysis process. The knowledge about image super-
resolution, such as texture feature, also benefits further FEM
process.

From the aspect of human perception, texture usually
describes the quality of the HR images. To reconstruct rea-
sonable texture detail, an edge-directed Super-resolution (SR)
algorithm integrated with the strengths of the detail synthesis
approach was proposed by Tai et al. [26]. Capturing redun-
dancies of similar image groups in various scopes by building
a multi-scale dictionary shows the contribution of gaining
texture detail [27]. Besides, Wang et al. employ spatial fea-
ture transform layers to generate more realistic and visually
pleasing texture [28].

2.2 Attention Mechanism
Commonly, to inform the model where to focus attention

can be claimed as an instruction to allocate inclinable avail-
able computing and storage resources towards the most de-
scriptive components of source data with visual attention [18].
Newly, the attention mechanism has been applied to deep
neural networks in some excellent works, covering natural
language processing [29] and understanding in images [20].
To rebuild the feature and attention maps, these works are
combined with a gating function [19].

The representation of interests is also improved by the
attention mechanism. Providing appropriate attention to dif-
ferent regions, spatial locations and channels can acquire
better performance. SelNet [30] attaches selected units at
the end of CNN layers. These units control the feature infor-
mation that can be passed to the next layer. Separately, the
Residual Channel Attention Networks (RCAN) [31] focuses
on channel attention. RCAN proposes RIR modules with
a long skip connection to achieve channel attention which
contains a similar structure with SqueezeNet. [32]. However,
few techniques of attention mechanism have been developed
to assist FEM.

2.3 U-Net and ResNet
Figure 2 shows the U-Net architecture [33], which con-

nects the down-sampling layers and up-sampling layers at
various resolutions to deliver context information in previous
layers. To predict the missing information in lower resolution,
the skip-connection structure reflects the input data to extrapo-
late missing context, which is important to the generator [34].

Deep network architectures have shown great contribu-
tion in performance, while they are difficult to train. A pow-
erful design strategy is the concept of residual blocks [35].
The researchers claim that stacking layers by residual block
should not damage the performance of network because the
useless layers can be simplified with same performance [35].

Fig. 2. Architecture of the U-Net. The skip connections between
layers are illustrated as dotted arrows [17].

Fig. 3. Workflow of proposed method and traditional method.

3 Technical Approach
Fig. 3 presents the difference of our method and tradi-

tional method. Compared with traditional FEM method which
only has one step to generate high mesh density physical field,
our method contains two parts, using FEM to generate low
mesh density physical field, and utilizing SuperMeshingNet
on the FEM result, and therefore predict a high quality physi-
cal field. For both methods, boundary condition is input and
high mesh density data is output. For SuperMeshingNet, the
input source data set is represented as x ∈ RL×W , and the
target output data set is y ∈ RkL×kW , where L and W donate
the length and width of input data, and k donates the scaling
factor. The goal of the training process is to find the optimal
weights w in a neural network model F, which performs as a
nonlinear regression function y = F(x,w), where x donates
the low mesh-density data and F(x,w) represent the proce-
dure of reconstructing high mesh-density data. To acquire the
optimal weight w∗, the distance between the target y and the
output of deep learning model F(x,w) is measured by Mean
Absolute Error (MAE) and minimized as demonstrated in Eq.
(1).

w∗ = arg minw
1
n

n∑
i=1

| yi − F(xi,w) | (1)

SuperMeshingNet is applied on the FEM to boost the
mesh-density. For the purpose of reconstructing the high
mesh-density data, the low mesh-density data is utilized for
training the SuperMeshingNet model.
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3.1 Network Architecture
As shown in Fig. 4, the main structure of the model is

composed of ResNet with the channel and spatial attention
modules, and the down-sampling layer and the up-sampling
layer are connected by a structure that named skip-connection.

At the beginning of the model, the input is up-sampled
to the same size as the output through a bilinear interpolation
method, which can maintain the symmetry of the convolu-
tion process and contribute to achieving skip-connections.
Another benefit of applying the bilinear interpolation before
convolution is avoiding a CNN-based up-sampled process,
and optimizing the complexity of the model. Three scaling
factors are also processed by interpolation, one linear interpo-
lation operation can increase in sizes by two times. Therefore,
scaling factors of 2×, 4×, and 8× use 1, 2, 3 bilinear in-
terpolation layer respectively. The data at the beginning of
down-sampling maintains the same size as the ground truth,
which decreasing to a half through a Res + Attention module.
Behind the four down-sampling Res + Attention modules, we
added a Res34 structure, which supports the model to train
extremely deep neural networks with more than 50 layers.
The implementation of ResNet is able to avoid the notorious
vanishing gradient problem during training and enhance the
performance by increasing the network depth [35].

Up-sampling process appearances mirror the architecture
of the down-sampling process. Besides, a geometric atten-
tion map that contains the information of geometric features
generated from the training set is learned by a geometric
feature extractor and added on the last third up-sampling mod-
ule to highlight the geometric attention of the model on the
image of the FEM results. Moreover, a perceptual feature
extractor composed by ResNet is implemented to optimize
the model by the perceptual loss [36, 37, 38], which enhances
the performance in feature space. To lighten the parameters
of SuperMeshingNet and advance the training efficiency, two
down-sampling layers are used by the geometric extractor and
perceptual feature extractor.

Fig. 4. Architecture of the SuperMeshingNet.

3.2 Attention Module
Channel and Spatial Attention Module. To increase

the representation power, the model focuses on important fea-
tures and suppresses unnecessary ones by varying the weights

of channels and spatial features. The attention approach is
integrated into the two ResBlocks. The overall explanation
of the attention module constructed with ResBlock is shown
in Fig. 5. The channel and spatial attention can change the
weight of different channels and spatial during the training.
Therefore, the channel and spatial that contribute to accuracy
are located higher weights, improving training efficiency and
boosting performance. The feature map can be defined as
F ∈ RC×H×W . Subsequently, the 1D channel attention map
and the 2D spatial channel attention map are characterized as
Mc ∈ R

C×1×1 and Ms ∈ R
1×H×W , respectively.

F′ = Mc (F) ⊗ F (2)

F′′ = Ms
(
F′

)
⊗ F′ (3)

where ⊗ is element-wise multiplication. As shown in Fig.
5, the final clarified output F′′ comes from the model with
channel attention value and spatial attention value multiplied.

The channel attention module detects the meaningful
features of a given input [39]. The previous implementation
also proves that the representation ability of networks can
be promoted significantly by appealing both average-pooled
and max-pooled features simultaneously [40]. Average pool-
ing and max pooling are sample-based discretization process,
in which average pooling [41] uses average value of the fil-
ter while max pooling [42] uses max value. Therefore, we
employ both technologies in channel attention:

Mc (F) = σ
(
W1

(
W0

(
Fc

avg

))
+ W1

(
W0

(
Fc

max
)))

(4)

where the sigmoid function is represented as σ, Fc
max and Fc

avg
are the max-pooled features and average-pooled features. W0
and W1 share the weights for inputs followed by Leaky ReLU
activation function σ.

Dissimilar with the channel attention mechanism, the spa-
tial attention mechanism pays more attention to the location
of the effective informative part. After two pooling operations
on the feature map, there are two 2D maps: F s

avg ∈ R
1×H×W

and F s
max ∈ R

1×H×W . Subsequently, a standard convolution
layer f with a 7 × 7 kernel is utilized to process the concate-
nated inputs and followed by σ. The final refined output can
be described as:

Ms (F) = σ
(

f 7×7
([

F s
avg; F s

max

]))
(5)

Physical Attention Map At the same time, we find that
when FEM is applied in the physical simulation process, the
geometric shape has a salient feature that is easily observed
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Fig. 5. Implement of Res + Attention Module.

as shown in Fig. 6. These positions are often places where
the value changes drastically, increasing the difficulty of pre-
diction and decreasing in global accuracy. Therefore, features
related to geometry should be highlighted to assist the training
and enhance the performance.

Fig. 6. The geometric feature shown in FEM result of stamping.

Meanwhile, from the visualization aspect, the texture and
edge in physical field can be the area that fluctuate in value
dramatically. These special areas contain more complicate
physical features compared with flat area.

To highlight the physical feature, we employ the percep-
tual loss ,which enhance the performance and compute in
latent feature level, to improve perceptual quality. On the
other hand, the geometric feature map represents the perfor-
mance of geometric attention on the training set, and in the
reconstruction experiment after training, then the attention
map will no longer need to be optimized.

3.3 Loss Function
The loss function of our approach contains three parts,

which can be interpreted as:

Loverall = λcLc + λpLp + λgLg (6)

where Lc, Lp and Lg denote the content loss, perceptual loss
and geometric loss respectively. λc, λp and λg denote the loss
coefficient of each part of the loss function.

Content Loss. The first and the most important part of
the overall loss is content loss which describes the quality of

reconstruction. The Lc Loss [43] is described as:

Lc =
1

L ×W × N

N∑
i=1

| xi − yi | (7)

where L and W donate the size of the data, N means the batch
size. x, y represents the high mesh-density data generated
by our model and ground truth, respectively. The L1 Loss
has been indicated to be sharper for performance and more
accessible for convergence compared to L2 Loss. Therefore,
we choose L1 Loss to optimize the content performance.

Perceptual Loss. Some works [36, 37, 38] in image
super-resolution have adopted perceptual loss, which has been
proved effective in improving quality in edge and texture,
where is hard to reconstruct. To advance the local perfor-
mance, we address the perceptual feature and enhance the
similarity in feature space. We take advantage of perceptual
loss, supplementing the loss function in feature space. The
perceptual loss can be described as:

Lp =
1

Li ×Wi × N
| φNN

i (x) − φNN
i (y) |2 (8)

where the Li,Wi are the shape of the feature map φNN
i in the

i-th layer’s of neural network (NN) model. As shown in Fig.
4, the target feature map φNN

i (y) are acquired by perceptual
feature extractor that is composed by three Res + Attention
modules, and the input feature map φNN

i (x) comes from the
up-sampling process. Here the perceptual loss constraints the
predicted high-resolution data to have similar detail to the
ground truth in feature dimension, such as flatness and texture
of the output.

Geometric Loss. FEM is a simulation of the objective
physical world, so its geometric features are salient features
that can be observed by humans. We extract obvious geomet-
ric features by adding geometric attention to the model and
apply them. In order to optimize the geometric attention map,
we introduced geometric loss combining the Kullback-Leibler
divergence [44] loss:

Lg =
1

L ×W × N

N∑
i=1

yi
(
log yi − log xi

)
(9)

where yi comes from the distribution of the ground truth, xi is
acquired by the distribution of geometric extractor.

4 Experiments
The proposed SuperMeshingNet and the control group

are trained on the same data set that contains aligned low
mesh-density data and high mesh-density data. Three interpo-
lation methods (linear, quadratic, cubic) are implemented as
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the baselines to measure and compare the performance of Su-
perMeshingNet. We publicly share our work with full detail
of implementation at https://github.com/zhenguonie/
2021_SuperMeshing_2D_Metal_Forming.

4.1 Data set
In this study, the data set is comprised of the thinning

fields of the cold stamping process, generated by PAM-
STAMP respectively with low and high mesh-density. As
the symmetry of the simulation component, shown in Fig. 6,
Figure 7 displays the data for the experiment, which is con-
structed by a quarter of the simulation result, and as-formed
components expand into 2D images. There are 1,980 cases
in the training set and 220 cases in the test set, which differ
in the size of C1, C2, C3, the curvature of R1, R2, R3, and
stamping velocity as shown in Fig. 7. The top view of data is
shown in Fig. 8. The stamping direction is along the z axis
with stamping velocity set to 100mm/s. All the thinning value
are normalized in (0,1).

Fig. 7. The CAD model and FEM model of a sample metal forming
simulation [45].

Fig. 8. The top view FEM model of a sample metal forming simula-
tion [45].

4.2 Evaluation Metrics
To evaluate the model, we use MAE shown in Eq.(10)

and MSE shown in Eq.(11) for measuring the divergence
between the predicted high mesh-density data and the ground
truth.

MAE =
1
n

n∑
i=1

| y(i) − ŷ(i) | (10)

MSE =
1
n

n∑
i=1

(y(i) − ŷ(i))2 (11)

where n represents the number of test data, y donates the
real value of the physical field, and ŷ donates the predicted
value of the physical field. Meanwhile, the distribution of the
MAE and MSE of test cases are presented, which explains
the performance at the level of the single case.

Moreover, some state-of-art processing results are exhib-
ited to demonstrate the superior performance of the recon-
struction process.

5 Results and Discussions
Our model is implemented by PyTorch, and trained on

GPU (NVIDIA GeForce GTX 2080Ti). Adam optimizer [46]
is used to train the model for optimization. To convince the
achievement of SuperMeshingNet, three aspects of the result
is shown and discussed. Firstly, we present the performance
of SuperMeshingNet that is trained with the data set on vari-
ous test cases to examine the effectiveness and generalization
of our model. Subsequently, the performance of SuperMe-
shingNet, various deep learning models with different archi-
tecture, and three interpolation methods are compared and
discussed. Finally, aiming to explain the ability of compu-
tation resource-saving, the computing time under the same
scenario is collected and presented.

5.1 Model Evaluation
As shown in Fig. 9, the loss trend of SuperMeshingNet

in training, the validation loss restrains at 800 epochs, and
train loss convergence after 1000 epochs, which proves that
SuperMeshingNet performs reasonable convergence ability
and indicates that the state-of-art training strategy should stop
at 600 epochs to avoid over-fitting.

Fig. 9. The loss of the SuperMeshingNet during training.
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Fig. 10. Samples comparing result of our model with target and lin-
ear interpolation.

After completing the training of the model, we observe its
performance in the form of pictures on shape and texture and
compare the results of the model reconstruction with the re-
sults obtained by the linear interpolation approach and the re-
sults obtained by the finite element calculation (ground truth).
Figure 10 displays three cases from each method, where our
model is SuperMeshingNet. Both our model and linear inter-
polation use the FEM result with the size of 32 × 32 as input
to reconstruct an 8× larger contemporary image which shape
is 256 × 256. From the picture, it is apparent that although
the linear interpolation method can retain part of the shape in-
formation in the target data, the overall performance has been
completely roughened due to the inaccuracy of details and
textures, and the result is quite blurred, which is obviously
not able to provide the further application. On the contrary,
our model’s results of reconstruction are consistent with the
ground truth in terms of texture and shape, as well as the
values. Compared with the linear interpolation average MAE
error, the analytical product of our model is six times as low
as, reaching 0.0007. The analytical results are similar to FEM
calculations, which can predict the distribution trend of the
value, and the error is minimal, so from the user’s point of
view, it will not affect the prediction of the thinning field
trend.

A more visual comparison is presented in Fig. 11, where
various examples are reconstructed by our model to manifest
the high quality of the outcomes. These examples include the
32×32 sizes to 2×, 4×, and 8×mesh density of growth process.
The results suggest that our model can match the true value
with their respective reconstruction methods in the process of
boosting the mesh density of the input data. Therefore, the
final 8× reconstruction results based on all methods perfectly
fit the fundamental values in terms of overall details.

Fig. 11. Cases randomly selected from the test data set.

5.2 Accuracy and Performance
In this section, we verify the effectiveness of SuperMesh-

ingNet on various scaling factors through comparing seven
techniques, including baseline 1 - linear interpolation, base-
line 2 - quadratic interpolation, baseline 3 - cubic interpola-
tion, ResNet, ResNet with skip-connection (ResUNet), Re-
sUNet with attention mechanism, and SuperMeshingNet. In
addition, the accuracy is presented by comparing various mod-
els. SuperMeshingNet contains five parts: skip-connection,
attention module, perception feature extractor for feature syn-
thesis, channel and spatial attention module, and the geomet-
ric feature attention map. The ablation of the experiment also
can be suggested in Tab. 1. After the skip-connection is em-
ployed, the MAE dropped to 4.758 × 10−4 from 6.495 × 10−4

when the scaling factor is 2. When channel and spatial at-
tention module are utilized, the MAE can be decreased to
4.152 × 10−4, which verifies the effectiveness of the attention
mechanism. Subsequently, when the feature synthesis and
geometric feature attention are progressively added, percep-
tual features will be enhanced, amplifying the performance to
3.203 × 10−4. Furthermore, the similar trend can be summa-
rized from the scaling factor of 4× and 8×.

Figure 12 illustrates the distribution of MSE after figur-
ing out all test cases. Contrasting the cases acquired by linear
interpolation in Fig. 12 (d), in which most cases range in
10−4 to 3 × 10−3, the deep learning models constrain MSE
lower than 1 × 10−5, proving that the deep learning methods
perform more outstanding outcome compared with traditional
linear interpolation. Furthermore, from Fig. 12 (a), except
for a few exceptions, SuperMeshingNet restricts the MES
of three-quarters test set to be lower than 10−6. At the same
time, other cases tend to be lower than ResUNet with atten-
tion mechanism in Fig. 12 (b) and ResNet in Fig. 12 (c),
convincing the superior generalization of SuperMeshingNet.
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Table 1. The result of multiple mesh density with MAE (×10−4)
PPPPPPPPModel

k
8× 4× 2×

Baseline 1 76.94 35.81 12.71

Baseline 2 76.46 34.98 12.32

Baseline 3 76.91 35.75 12.83

ResNet 9.714 7.923 6.495

Res+U 7.770 6.174 4.758

Res+U+A 5.957 5.412 4.152

SMNet 5.465 4.682 3.203

Note: 8×, 4×, and 2× are the scaling factors, and the
metrics used is MAE. Baseline 1 represents the linear
interpolation, Baseline 2 represents the quadratic
interpolation, Baseline 3 represents the cubic
interpolation, U is the skip-connection structure, A is
the attention module.

Fig. 12. The distribution of the MSE of the four models, a: Super-
MeshingNet, b: ResUNet+Attention Mechanism, c :ResNet, and d:
linear interpolation.

The complementary justification is demonstrated in Tab.
2, which shows both MAE and MSE of five techniques on
training and test set, including interpolation methods, SR-
CNN [23], EDSR [24], RDN [25] and SuperMeshingNet. SR-
CNN, EDSR and RDN are three state-of-art super-resolution
networks. All experiments in Tab. 2 are performed with a
scaling factor of 2× low mesh-density and high mesh-density
data pair. SuperMeshingNet performs the lowest error. As
displayed in the comparison results, SuperMeshingNet sig-
nificantly outperforms both MAE and MSE on training and
test data sets than popular super-resolution techniques. Other
super-resolution works focus on image quality from human
perceptual that measured by SSIM and PSNR rather than the
value prediction. Therefore, these methods perform poorly
in physical filed value prediction. The MAE and MSE com-

parison results demonstrate the superiority of our proposed
SuperMehsingNet over the other approaches.

5.3 Computation Allocation
Another superior character of our model is time-saving.

For each FEM calculation which the mesh density is 256×256
in PAM-STAMP, TF256 spends 15.21 seconds on CPU (R7-
4800HS), but only 0.41 seconds is cost by FEM computation
with the size of 32×32, TF32. For SuperMeshingNet. With the
trained model, the time required to reconstruct the low mesh-
density data to high mesh-density is extremely small, Tr, only
0.012 seconds is spent. Our method TS and traditional FEM
method TF shown in Fig. 3 can be claimed as:

TS = N × Tr + N × TF32 (12)

TF = N × TF256 (13)

where N donates the number of data to be processed, which
is named workload. In addition, because SuperMeshingNet
breaks the limitations of standard finite element calculations
on the CPU and migrates it to the GPU-based deep learning
framework for calculation. Therefore, the cost required for
calculation is reduced because of time and the reduction in
equipment prices.

Tab. 3 shows the performance of the time. As shown in
Tab. 3, with the continuous increase of processing tasks, it can
clearly be seen that the time of traditional finite element calcu-
lation are at a considerable disadvantage. Therefore, using the
low mesh-density finite element analysis result under the con-
dition of ensuring absolute accuracy and then reconstructing
it to high mesh-density using SuperMeshingNet can signif-
icantly reduce the time and cost of the entire finite element
analysis process.

5.4 Limitations and Future Work
SuperMeshingNet has an excellent performance in au-

tomatically improving the density of finite element analysis.
This technology can significantly reduce the calculation time
and cost while maintaining a low MAE and extreme deviation.
However, future works can still be extended.

The Transformer [47] structure with attention as the main
structure has developed rapidly, and critical applications have
been born in various fields, including the super-resolution
field [48, 49]. The complete Transformer structure can be
utilized to build the model and promote model innovation.
In addition, though SuperMeshingNet accomplishes superior
performance on 2D data with a regular grid, solving the prob-
lem of unstructured mesh which consumes more computing
resources is valuable as a future direction. To reconstruct
unstructured mesh and 3D data, it is appropriate to replace
the network architecture with a graph neural network (GNN),
which will be more applicable on the 3D data.
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Table 2. Result comparison of the super-resolution methods with SuperMeshingNet

Metrics MAE MSE

No. Model Training Test Training Test

1 Baseline 1 1.256 × 10−3 1.271 × 10−3 1.753 × 10−5 1.783 × 10−5

2 Baseline 2 1.224 × 10−3 1.232 × 10−3 2.078 × 10−5 2.068 × 10−5

3 Baseline 3 1.268 × 10−3 1.283 × 10−3 1.817 × 10−5 1.808 × 10−5

4 SRCNN 5.341 × 10−4 5.792 × 10−4 1.072 × 10−6 1.476 × 10−6

5 EDSR 5.428 × 10−4 5.432 × 10−4 4.403 × 10−6 4.406 × 10−6

6 RDN 5.496 × 10−4 5.650 × 10−4 3.611 × 10−6 4.187 × 10−6

7 SMNet 3.145 × 10−4 3.203 × 10−4 4.495 × 10−7 5.138 × 10−7

Note: Baseline 1 represents the linear interpolation, Baseline 2 represents the
quadratic interpolation, Baseline 3 represents the cubic interpolation; SRCNN [23],
EDSR [24], and RDN [25] are prior and superior super-resolution networks;
SMNet is SuperMeshingNet.

Table 3. The time and cost on different workload

SuperMeshingNet FEM

N× Size Time(s) Time(s)

1 × (256, 256) 0.422 15.21

102 × (256, 256) 42.2 1.52 × 103

104 × (256, 256) 4.22 × 103 1.52 × 105

6 Conclusions

We present a new deep learning model named SuperMe-
shingNet to reconstruct the FEM outcomes from low mesh-
density to high mesh-density in physical fields. With the
trained model, the high mesh-density results can be produced
immediately with high accuracy, contributing to the efficiency
of FEM in physical fields.

SuperMeshingNet draws the self-attention module and
perceptual features, and employs the deepened ResNet and
skip-connections to boost the model performance. Integrated
with these gainful techniques, SuperMeshingNet is proven
to be constructive to outperform the three baseline models
and other Super-resolution models in generalization and ac-
curacy by comparative experiments. Extensive experiments
demonstrate the superiority of our work when compromising
scaling factors of 2×, 4×, and 8×. Concurrently, compared
with the FEM computation, our model can effectively save
computational time and cost. Embedding the proposed model
into FEM, our approach can ensure expeditious computational
process and marvelous spatial precision simultaneously under
multiple scaling factors for high mesh-density.
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