
16

TaDA Live: Compositional Reasoning for Termination
of Fine-grained Concurrent Programs

EMANUELE D’OSUALDO, Imperial College London and MPI-SWS Saarbrücken

JULIAN SUTHERLAND, Imperial College London

AZADEH FARZAN, University of Toronto

PHILIPPA GARDNER, Imperial College London

We present TaDA Live, a concurrent separation logic for reasoning compositionally about the termination of

blocking fine-grained concurrent programs. The crucial challenge is how to deal with abstract atomic block-

ing: that is, abstract atomic operations that have blocking behaviour arising from busy-waiting patterns as

found in, for example, fine-grained spin locks. Our fundamental innovation is with the design of abstract

specifications that capture this blocking behaviour as liveness assumptions on the environment. We design a

logic that can reason about the termination of clients that use such operations without breaking their abstrac-

tion boundaries, and the correctness of the implementations of the operations with respect to their abstract

specifications. We introduce a novel semantic model using layered subjective obligations to express liveness

invariants and a proof system that is sound with respect to the model. The subtlety of our specifications and

reasoning is illustrated using several case studies.

CCS Concepts: • Theory of computation → Program verification; Program specifications; Separation

logic;

Additional Key Words and Phrases: Fine-grained concurrency, linearisability, busy-waiting, termination, live-

ness, concurrent separation logics

ACM Reference format:

Emanuele D’Osualdo, Julian Sutherland, Azadeh Farzan, and Philippa Gardner. 2021. TaDA Live: Composi-

tional Reasoning for Termination of Fine-grained Concurrent Programs. ACM Trans. Program. Lang. Syst. 43,

4, Article 16 (November 2021), 134 pages.

https://doi.org/10.1145/3477082

This research was supported by the EPSRC Programme Grant “REMS: Rigorous Engineering for Mainstream Systems”

(EP/K008528/1); by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-

Curie project “VeSPA,” grant agreement no. 795218; by a Department of Computing PhD Scholarship from Imperial; by

the UKRI Established Fellowship “VeTSpec: Verified Trustworthy Software Specification” (EP/R034567/1); and in the final

stages by the ERC Consolidator Grant for the project “RustBelt,” also funded under EU Horizon 2020, grant agreement

no. 683289.

Authors’ addresses: E. D’Osualdo, Imperial College London, MPI-SWS Saarbrücken; email: dosualdo@mpi-sws.org; J.

Sutherland and P. Gardner, Imperial College London; emails: julian.sutherland10@ic.ac.uk, pg@doc.ic.ac.uk; A. Farzan,

University of Toronto; email: azadeh@cs.toronto.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2021 Copyright held by the owner/author(s).

0164-0925/2021/11-ART16 $15.00

https://doi.org/10.1145/3477082

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

https://doi.org/10.1145/3477082
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3477082

16:2 E. D’Osualdo et al.

1 INTRODUCTION

Compositional reasoning for fine-grained concurrent programs interacting with shared memory is
a fundamental, open research problem. We are beginning to obtain a good understanding of how to
reason about safety properties of concurrent programs: i.e., if the program terminates and the input
satisfies the precondition, then the program does not fault and the result satisfies the postcondition.
O’Hearn and Brookes [4, 36] introduced concurrent separation logic for reasoning compositionally
about course-grained concurrent programs. Since then, there has been a flowering of work on
modern concurrent separation logics for reasoning compositionally about safety properties of fine-
grained concurrent programs: e.g., CAP [10], TaDA [7], Iris [24], and FCSL [34]. With these modern
logics, it is possible to provide abstract specifications that match the intuitive software interface
understood by the developer and to verify both implementations and client programs.

We have comparatively little understanding of how to reason compositionally about progress
(liveness) properties for fine-grained concurrent algorithms: i.e., something good eventually hap-
pens. Examples of progress properties include termination, livelock-freedom, or that every user
request is eventually served. The intricacies of the design of concurrent programs often arise pre-
cisely from the need to make the program correct with respect to progress properties. The goal of
this article is to design a program logic to reason compositionally about the safety and termination
of fine-grained concurrent programs: i.e., to be able to prove that if the input satisfies the precon-
dition, then the program terminates without faulting and the result satisfies the postcondition. As
with safety, the aim is to provide abstract specifications and to verify implementations and clients.

A truly compositional approach would achieve proof scalability through the reduction of large
complex proofs into a composition of smaller, more tractable proofs, and proof reuse through the
ability to define abstract interfaces between independent sub-proofs. Proof scalability for concur-
rent systems is achieved through thread-local reasoning: i.e., the proof of the parallel composition
of threads should be the composition of smaller, separate proofs of each thread. Proof reuse is
achieved when the right abstract interface for a module is identified, so the proof of correctness of
the implementation of the module and the proof of its clients is decoupled: A proof of a client can
be reused when swapping the implementation of the module for one satisfying the same specifi-
cation; a proof of an implementation can be reused when the specification is general enough to
support arbitrary correct clients.

For safety, thread-local reasoning can be obtained through rely/guarantee proofs: A protocol on
shared state is specified in terms of the set of allowed updates, and each thread is verified to respect
the protocol under the assumption that the environment respects the protocol. There have been
successful attempts at using rely/guarantee reasoning to prove progress properties, such as termi-
nation, of non-blocking concurrent programs [5, 8, 13, 14, 21, 32], which are the programs where
the progress of a thread does not depend on the progress of other threads. For example, the To-
tal TaDA concurrent separation logic [8] was introduced to provide compositional reasoning about
the safety and termination of non-blocking programs. It provided thread-local reasoning and ab-
stract specification of module interfaces without the need to extend the rely/guarantee reasoning.

Standard rely/guarantee reasoning is not enough to prove progress properties for blocking pro-
grams. In a blocking program, termination of a thread may depend on other threads performing
some updates to the shared state. For example, if a thread t is requesting a lock that has been ac-
quired by another thread, then the lack of progress of the thread currently owning the lock would
hinder the progress of t . Thread t is blocked, waiting for the lock owner to release the lock. In such
situation, a safety abstraction of the environment is insufficient to support a termination argument
for t : Knowing that the release of the lock is always allowed to happen does not imply that it is
eventually happening.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:3

There has been some work [3, 22, 27] on proving progress properties for programs where block-
ing is caused solely by blocking primitives such as built-in locks or channels. However, it is very
common, especially for fine-grained programs, to use ad hoc busy-waiting patterns. For example,
consider a thread running while(v� 1){v� [x]}. The termination of this thread is entirely de-
pendent on the environment eventually storing 1 in x. This form of blocking is completely different
from a call to a blocking primitive that cannot take a step in the current state. It instead corresponds
to code executing steps without making real progress. We call this pattern of behaviour abstract
blocking.

We have identified two ways to reason about progress in the presence of abstract blocking in
the literature: the history-based approach and the refinement-based approach. The history-based
approach [15, 25, 37] is very general but results in complex and indirect specifications with com-
plicated reasoning involving explicit trace manipulations. We discuss this approach further in Sec-
tion 6. In the refinement-based approach, the LiLi logic [30, 31] is the work most closely related
to our goals. LiLi extends rely/guarantee with liveness information to prove a progress-preserving
contextual refinement between the implementation of a module’s operations and simpler code rep-
resenting their specifications. LiLi’s extension of rely/guarantee requires, however, heavy use of
global auxiliary shared state manipulated through ghost code, which makes the proofs less local.
Moreover, the specification code associated with abstractly atomic operations that are blocking
is not atomic and exposes implementation details, which hinders scalability and reuse. We give a
detailed comparison with our work and LiLi in Sections 2, 5.4, 6.

The refinement approach does not prove termination directly, but instead relates termination
of implementation code with termination of specification code. By contrast, our goal is to develop
a program logic with which we are able to verify specifications that describe termination directly,
without the manipulation of histories, with proofs that keep auxiliary state as local as possible
without requiring the addition of ghost code, and with specifications that allow the abstraction of
implementation details while representing precisely the abstract termination guarantees.

Contributions. Our starting observation is that just as safety rely/guarantee arguments are cen-
tred around invariants, i.e., facts of the form always P, so liveness rely/guarantee arguments
for proving progress in the presence of blocking should be centered around liveness invariants,
i.e., facts of the form always eventually P. TaDA Live’s design is based on the idea that this is not a
fluke: The dependence on liveness invariants might be considered a definition of abstract blocking.
To capture this observation within a program logic, we introduce a number of key innovations:

• subjective obligations, a new form of logical ghost state to express liveness invariants in
a thread-local way without the need for ghost code;

• obligation layers, to express dependencies between liveness invariants and avoid unsound
circular reasoning;

• abstract specifications for atomic blocking operations, to express termination guaran-
tees conditionally on an environment liveness assumption of the form “always eventually P .”

We obtain TaDA Live, a concurrent separation logic that uses liveness invariants to provide
compositional reasoning for establishing safety and termination for blocking programs. The logic
makes extensive use of abstract specifications for atomic blocking operations to achieve proof
scalability and reuse. This article presents the following contributions:

• the TaDA Live logic and its specification format;
• a novel semantic model and soundness proof for the logic: the new model is a substantial re-

definition of the TaDA model to allow for the non-trivial extensions needed to incorporate
the liveness content of the TaDA Live specifications;

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:4 E. D’Osualdo et al.

• TaDA Live proofs for several paradigmatic case studies: two fine-grained implementations
of locks showcase abstraction in the specifications and the obligation mechanism; a program
mixing locks and busy-waiting illustrates common proof patterns for clients; two counter
modules illustrate TaDA Live’s ability to hide internal blocking and proof reuse; and a set
module using a lock-coupling pattern illustrates the generality of the layer system.

Outline. Section 2 provides an example-driven overview of the main innovations of TaDA Live.
Section 3 introduces the assertion language and the semantics of the TaDA Live specifications. Sec-
tion 4 presents the crucial proof rules of TaDA Live, with a running example to illustrate their use.
Section 5 presents TaDA Live proofs of several key case studies and a discussion on the limitations
of the TaDA Live reasoning. Section 6 contains related work, and Section 7 ends with conclusions
and future work.

2 AN OVERVIEW OF TADA LIVE

We introduce the main ideas of TaDA Live in this section, leaving the complex technical de-
tails for the following sections. Consider a simple example program with non-primitive blocking
behaviour:

C1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

var v= 0 in
while(v� 1){
v� [x]

}

[x]� 1
}
C2 .

We use a first-order, fine-grained concurrent while language for manipulating shared state.
The shared state comprises heap cells that have addresses and store values (addresses, integers,
Booleans). The [x] notation denotes the value stored at the heap cell with address x. The thread on
the left (C1) is busy-waiting on the value stored at the shared heap cell at x. Under fair scheduling,
the program is guaranteed to terminate: Eventually, the right-hand thread (C2) will be scheduled
and will set the heap cell to 1; after that, eventually the left-hand thread will read the value 1 into
the local variable v and the while loop will terminate. Since we are aiming at a thread-local proof
method, we should be able to break the proof of termination of the program into two separate
proofs for the two threads.

We first explore how to provide a thread-local proof of safety for this example program using the
TaDA logic [7]. We then extend the reasoning with the ingredients needed to prove termination.
TaDA is a concurrent separation logic, so it uses the standard separation logic assertions. Let us
assume the precondition P = ∃v . x �→ v and, for simplicity, aim at the postcondition True. TaDA
uses the standard parallel rule for concurrent separation logics, where the precondition is separated
into two preconditions P = P1 ∗P2, one for each thread. Since both threads dereference x, we need
a means to share the heap cell in the assertions, turning x �→ v into a duplicable assertion, called
a shared region in TaDA. For our example, we define a shared region exr (x,v) with an associated
interpretation I (exr (x ,v)) � x �→ v , which specifies which resource is being shared. The region
type ex (for “example”) is the name associated with this interpretation, and the region identifier r
is an abstract identifier associated with this specific instance of the region type ex. The arguments
(x,v) of the region are called the abstract state of the region. The definition of a region is completed
by an interference protocol Tex that restricts, in rely/guarantee style, the allowed updates to the
abstract state. Here, we encode the facts that (a) only C2 can update x and (b) v can only be
updated to 1. Although such strong invariants are not required to just prove safety, they will be
useful for the termination proof later. To encode fact (a), we introduce a form of ghost state called a
guard, e, which gives exclusive permission to update x. Formally, guards (probably first introduced

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:5

in deny-guarantee reasoning [11]) form a partial commutative monoid (PCM), where in this
case e • e is undefined to capture exclusive permission: If a thread owns e, then no other thread
can own it at the same time. To link e with the ability to change x, the protocol Tex allows the
guarded update

e : (x,v)� (x, 1). (1)

Fact (b) is encoded by this being the only allowed update.
In TaDA and other modern separation logics such as Iris, implication is generalised to the view-

shift construct (�) from Reference [9], which can be used to consistently update ghost informa-
tion, purely within the logic (as opposed to through ghost code). Here, it can be used to turn the
owned resource x �→ v into a shared resource P = ∃v . x �→ v � ∃r . (∃v . exr (x,v) ∗ �e�r) ≡
∃r . (P1 ∗ P2) where P1 = ∃v . exr (x,v) and P2 = ∃v . exr (x,v) ∗ �e�r . The guard assertion �e�r in-
dicates ownership of the guard e for the region with identity r . Using standard reasoning, one

can then prove 	
{
P1

}
C1

{
True

}
and 	

{
P2

}
C2

{
True

}
, which entails, by the parallel rule

	
{
P1 ∗ P2

}
C1 ‖ C2

{
True ∗ True

}
. By consequence and existential elimination on r , we obtain

our goal 	
{
P
}
C1 ‖ C2

{
True

}
.

Let us now turn to termination. A thread-local approach would proceed by first proving that C1

and C2 terminate separately, and then concluding that their parallel composition terminates. In
the case of non-blocking code, it is possible to obtain a proof of this form: By definition, a non-
blocking thread does not need the progress of another thread to terminate. For non-blocking code,
a rely/guarantee protocol that only asserts safety facts about the extent of the interference of the
threads is all that is needed to prove termination. This is exploited by virtually all the program
logics that prove total specifications for non-blocking programs [5, 8, 21, 32]. The non-blocking
case allows the use of a while rule that is essentially the one of total Hoare logics:

∀β ≤ β0. 	
{
P (β) ∧ B

}
C
{
∃γ .P (γ) ∧ γ < β

}
	
{
P (β0)

}
while(B){C}

{
∃γ .P (γ) ∧ ¬B ∧ γ ≤ β0

} WhileNB.

Here, β is an ordinal-valued variant that is shown to strictly decrease after each iteration. By well-
foundedness of ordinals, there can only be finitely many iterations, and hence the loop terminates.
However, this rule is completely inadequate for blocking code: In our example, the loop of C1

admits no variant, since the iterations do not achieve any sort of progress. Indeed, none of the cited
works can handle this simple example. Reasoning about progress for blocking programs requires
a whole set of new reasoning principles and a genuine extension of rely/guarantee with liveness
information.

In TaDA Live, the while rule has a more general form:1

�L ⇒ ��T
∀β ≤ β0. 	

{
P (β) ∧ B

}
C
{
∃γ . P (γ) ∧ γ ≤ β

}
∀β ≤ β0. 	

{
P (β) ∗T ∧ B

}
C
{
∃γ . P (γ) ∧ γ < β

}
	
{
P (β0) ∗ L

}
while(B){C}

{
∃γ . P (γ) ∗ L ∧ ¬B ∧ γ ≤ β0

} WhileB.

The crucial difference is that the rule uses a set of target statesT : When an iteration starts in a target
state, the variant must be shown to strictly decrease, γ < β (i.e., the iteration needs to produce
measurable progress); when an iteration starts from a non-target state, the variant is only required

1We simplify the rule for this introductory section, informally using the standard LTL notation � P for always P (i.e., P

holds at every point of a trace) and � P for eventually P (i.e., P holds at some point of a trace). The full rule is given in

Section 4.6.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:6 E. D’Osualdo et al.

not to increase, γ ≤ β (i.e., no progress is undone). These two conditions alone do not prove the
termination of the loop: The execution may be constantly in a non-target state. In our example, the
T is exr (x, 1). To conclude that the loop terminates, the first premise requires �L ⇒ ��T : That is,
in traces where L holds constantly, with the help of the environment, we will be eventually always
in a target state. The assertion L captures facts that hold at any point of the iterations of the loop,
as it is in the triple of the conclusion but framed off the triples in the premises. When T finally
happens, by fairness of the scheduler the loop will execute, and will do so from a state where, by
the third premise, the iterations will make progress towards termination.

To make this reasoning work, the first problem we encounter is that none of the information
in a standard rely/guarantee specification supports proving ��T . Indeed, nothing in the protocol
defined by ex expresses the idea that at some point the environment will help C1 by setting x to 1.
A safety rely merely expresses that an update is allowed, not that it will be eventually executed.
In other words, a safety rely alone is too imprecise an abstraction: It cannot distinguish between
environments that make the local thread terminate from the ones that do not. The first question
we have to answer is: How can “help” from the environment be represented in a rely/guarantee proof?

Innovation 1: Subjective Obligations for Liveness Invariants

Safety arguments are centred around invariants: That is, facts of the form always P, encoded using
regions in TaDA. TaDA Live’s basic observation is that to represent help from the environment, all
that is needed is liveness invariants: That is, facts of the form always eventually P. By combining
liveness invariants and safety invariants one can encode more complex progress conditions such
as ��T . To represent liveness invariants in a thread-local way, TaDA Live introduces a new kind
of ghost state called obligations. Similarly to guards, they form a PCM. The interference protocol
is augmented by a component that explains how an update affects the obligations. In our example,
we want to represent the liveness invariant always eventually exr (x, 1), which, together with the
invariant that x can only be set to 1, implies ��(exr (x, 1)). We therefore introduce an obligation
u (for update-to-1), where again u • u undefined captures exclusivity, and extend the protocol to
link u to the update:

e : ((x,v),u)� ((x, 1), 0). (2)

This transition to update the region can be executed by a thread with both the e guard and the u
obligation; the effect of the update is to “consume” the u resource, as the obligation resulting from
the update is the unit 0. We say the update fulfils the obligation u.

A safety rely, as expressed by specification (1), says: Verify a thread under the assumption that
the environment steps will obey the protocol. As a first approximation, our liveness rely, as ex-
pressed by Equation (2), additionally says: Verify a thread under the assumption that the environ-
ment will always eventually fulfil the obligations it owns. (We will refine this idea in the next
section to avoid unsound circular reasoning.) We say an obligation O is assumed live if the envi-
ronment always eventually fulfils O . In other words: If, at any time, the environment owns O , it
eventually fulfils O .

This idea introduces a complication: We need to locally keep track of which (relevant) obliga-
tions are owned by the environment to make use of the liveness rely assumption. We solve this
problem by taking inspiration from the concept of subjective separation of Reference [29]. We in-

troduce subjective obligation assertions: local obligations, �u�L
r , asserting local ownership of the

obligation u associated with region r , and environmental obligations, �u�E
r , asserting environment

ownership of the obligation u. What makes these assertions interesting is the way they compose:

That is, �u�L
r ⇔ �u�L

r ∗ �u�E
r . If we start with local obligation u and we want to fork into two

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:7

threads, then we use ∗ to give responsibility of u to one thread and knowledge that the environ-
ment has this responsibility to the other.

To complete the proof sketch for our example, we first need to extend the region interpretation
by adding the obligation protocol:2

I (exr (x,v)) � x �→ v ∗ (v = 1
.
⇒ �u�L

r).

When the value at x is 1, the obligation u is owned by the interpretation, and hence owned by no
thread. A thread owning u and setting x to 1 fulfils the obligation precisely by leaving it inside
the interpretation. There is no other way of losing ownership of an obligation, because we adopt

a classical interpretation of separation: That is, P ∗ �u�L
r �⇒ P . For soundness, the interpretation of

a region with ID r is only allowed to own obligations of r .
The TaDA Live proof starts by using viewshift to transform the resource in the precondition

into this new region that is shared between the two threads:

∃v . x �→ v � ∃r .
(
∃v . exr (x,v) ∗ �e�r ∗ (v � 1

.
⇒ �u�L

r)
)

≡ ∃r . (P1 ∗ P2),

where P1 = ∃v . exr (x,v) ∗ v � 1
.
⇒ �u�E

r and P2 = ∃v . exr (x,v) ∗ �e�r ∗ v � 1
.
⇒ �u�L

r are the
preconditions of the proofs of C1 and C2, respectively. To discharge ��(exr (x, 1)) in the proof of

the while loop of C1, we can use L = ∃v . exr (x,v) ∗ v � 1
.
⇒ �u�E

r , which holds throughout the
loop: If we are in a state exr (x,v), then either v = 1, in which case we are in a target state and

the value of v will remain 1 forever; or v � 1, in which case we know �u�E
r . By the liveness rely,

when the environment owns u, it will eventually fulfil it, which by Equation (2) can only be done
by setting v = 1. Section 4 explains in detail how this argument is carried out formally in TaDA
Live.

At this point, we are able to prove the total triples 	
{
P1

}
C1

{
True

}
and 	

{
P2

}
C2

{
True

}
.

However, the standard parallel rule is unsound in the sense that the two triples can be proven
even with C2 = skip, but, in this case, the parallel composition would not terminate! TaDA Live’s
parallel rule can recover soundness by checking that the postconditions of the two threads do not

own pending obligations, which we can show by proving the stronger triples 	
{
P1

}
C1

{
exr (x, 1)

}
and 	

{
P2

}
C2

{
exr (x, 1) ∗ �e�r

}
. This condition is too restrictive in general, and we will relax it

appropriately in the next section.

Innovation 2: Obligation Layers to Avoid Circular Arguments

Structuring liveness invariants through obligations, as sketched, presents a significant problem for
soundness due to the possibility of making unsound circular liveness assumptions. Consider the
following variant of our busy-waiting example:

C′1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

var v1 = 0 in
while(v1 � 1){
v1� [x1]

}

[x2]� 1

var v2 = 0 in
while(v2 � 1){
v2� [x2]

}

[x1]� 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
C′2.

2The assertion B
.
⇒ Q stands for (B ∧Q) ∨ (¬B ∧ emp).

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:8 E. D’Osualdo et al.

There are two shared heap cells at x1 and x2, respectively. The thread on the left (C′1) is busy-
waiting on x1, which is supposed to be set by the thread on the right (C′2), and vice versa, causing

a classic high-level deadlock3 situation: The program does not terminate.
Let us try to replicate the argument we used for the busy-waiting example. We require a region

sharing both cells, dexr (x1, x2,v1,v2), wherevi is the value stored at xi . We use two guards e1 and
e2, and two obligations, u1 and u2 linked to the update of x1 and x2, respectively:

e1 : ((x1, x2,v1,v2),u1)� ((x1, x2, 1,v2), 0), (3)

e2 : ((x1, x2,v1,v2),u2)� ((x1, x2,v1, 1), 0). (4)

Without additional precautions, we would be able to derive the triples (for i = 1, 2)

	
{
Pi

}
C′i

{
dexr (x1, x2, 1, 1) ∗ �ei �r

}
, (5)

where Pi = ∃v1,v2. dexr (x1, x2,v1,v2) ∗ �ei �r ∗
(
vi � 1

.
⇒ �ui �E

r

)
∗

(
v3−i � 1

.
⇒ �u3−i �L

r

)
. Given

the interpretation we sketched earlier, these triples mean: Thread i terminates provided its envi-
ronment (i.e., thread 3−i) always eventually fulfils obligation u3−i . This leads, in the application of
the parallel rule, to an unsound circular argument: To show thread i fulfils obligation ui , thread i
is relying on the assumption about the eventual fulfilment of u3−i by the environment, which, in
turn, relies on the eventual fulfilment of ui by thread i itself. The question is then: How can we
rule out circular arguments, while keeping the proof thread-local? In particular, we want a solution
that allows us to keep the abstraction of the environment as local and abstract as possible, without
revealing unnecessary structure of the other threads.

Our solution is to specify dependencies between liveness invariants. We do this by imposing a
partial order on obligations: Each obligation O is associated with a layer, denoted lay(O), which
is an element of a user-defined well-founded partial order, L. Using layers, we can refine our
reasoning principle and gain soundness: To be allowed to assume O is live, one has to show all
the locally owned obligations have layers greater than lay(O). The intuition is that local fulfilment
of O2 can depend on the environment’s fulfilment of O1 only if lay(O1) < lay(O2).

In our deadlocking example, layers expose the circularity issue and prevent the triples (5) from
being derivable. Specifically, the proof of the loop of C′1 requires us to prove ��(dexr (x1, x2, 1, _)).
At this point, we are continuously holding the obligation u2, so, to be able to assume u1 live,
we require lay(u1) < lay(u2). However, the proof of the loop of C′2 would require the symmetric
constraint, lay(u2) < lay(u1), leading to a contradiction.

If we replace C′2 with C′′2 �
(
[x1]� 1; var v2 = 0 in while(v2 � 1){v2� [x2]}

)
, then the

program C′1 ‖ C′′2 terminates and indeed the proof goes through with lay(u1) < lay(u2). This is be-
cause the first instruction of C′′2 fulfils u1 so the loop no longer constantly owns it while assuming
u2 live. The structure of C′′2 does not impose any dependency on the two liveness invariants.

The generalisation of the liveness rely to use obligations with layers enables us to give a general
parallel rule: Instead of just forbidding pending obligations in the postconditions, we require that
the postcondition of each thread only owns obligations with layers greater than the layers of
obligations assumed live in the other thread’s proof.

3This liveness form of deadlock is also known as “livelock,” since every thread is always taking steps, although no global

progress is made by any of those steps. This is not to be confused with the safety property of “global” deadlock, as found

in languages with blocking primitives.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:9

Let us contrast our layered obligations with other solutions found in the literature. The LiLi
logic cannot verify the above examples, as it lacks support for parallel composition.4 LiLi’s while
rule does share the same high-level structure as WhileB, a structure that can be traced as far back
as Reference [37]. The main crucial difference is in how ��T is proven. LiLi proposes the idea of
definite actions, a reincarnation of “leads-to” assertions of Reference [37], to build a liveness rely.
Definite actions require the identification of a logical global “queue” of threads where the thread
at the front is always able to execute its action and that action implies global progress. In LiLi,
the target states are the ones where the local thread is at the head of this queue, and the ��T
condition is proven by showing that when the head of the queue executes an action, there is some
local well-founded progress measure that decreases. Definite actions have a number of drawbacks:

• they require heavy introduction of ghost code for manipulating globally shared ghost state
to construct the queue of threads; and

• the progress reasoning on the queue requires analysing all possible ways the other threads
may finally produce the target states.

Layered obligations are key to resolving these problems:

• they remove the need for ghost code altogether and make liveness invariants local using the
local/environmental obligation assertions; and

• by only relying on the eventual fulfilment of layered obligations, the proof of ��T can
ignore how the environment is going to implement such fulfilment; the only important fact
to retain about the how is which liveness invariants are assumed to guarantee the fulfilment.

There has been work on proving various safety (e.g., global deadlock-freedom) [16, 27] and
progress (e.g., deadlock-freedom, termination) [3, 22, 26, 28] properties of concurrent programs,
which assume the only source of blocking behaviour comes from the use of blocking primitives
(e.g., built-in locks or channels). Although none of them can handle busy-waiting patterns like
our previous examples, they typically detect deadlocks using “tokens” (often also called obliga-
tions) that represent the responsibility to call a blocking primitive. These tokens are arranged in
an acyclic graph of dependencies. Superficially, these tokens are related to our layered obligations
in that they both are devices to rule out cyclical dependencies. There are, however, deep differences
between the two. Tokens are linked (ad hoc in the operational semantics and through ghost code) to
blocking primitive operations calls, and dependencies between the tokens represent causal depen-
dencies between these primitive events. By contrast, our layers represent dependencies between
liveness assumptions and reflect a purely logical structure. This makes our layered obligations par-
ticularly general and flexible: They are able to express arbitrary high-level blocking patterns and
not just primitive blocking operations, enabling truly abstract specifications.

Innovation 3: Abstract Atomic Specifications for Blocking Operations

Understanding blocking behaviour as the need for an abstraction of the environment that includes
liveness invariants unlocks a novel approach in giving abstract, precise and reusable total specifi-
cations for abstractly atomic operations. Building on Total TaDA, we propose a new specification
format that expresses the atomic effect of a linearisable operation, and succinctly states the liveness
invariant required for ensuring termination, at the right level of abstraction. To see the problem
and our solution, let us consider the paradigmatic example of two fine-grained implementations
of a lock module.

4Indeed, LiLi’s goal is limited to proving that a module’s implementation refines its specification. The code of the module

cannot fork threads, but any multi-threaded client of the module is guaranteed not to be able to distinguish the implemen-

tation from the specification.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:while-blocking

16:10 E. D’Osualdo et al.

Fig. 1. Two fine-grained lock implementations.

Two Lock Implementations. Consider the spin lock and the CLH lock given in Figure 1. The im-
plementations enable threads to compete for the acquisition of a lock at address x by running
concurrent invocations of the lock(x) operation. Only one thread will succeed, leaving the oth-
ers to wait until the unlock(x) operation is called by the winning thread.

The primitive commands, such as assignment, lookup and mutation, are primitive atomic and
non-blocking: every primitive command, if given a CPU cycle, will terminate in one step. Since
reads and writes may race, the language is equipped with a compare-and-swap primitive command,
CAS(x,v1,v2), which checks if the value stored at x is v1: If so, it atomically stores v2 at x and
returns 1; otherwise it just returns 0. Similarly, the fetch-and-set primitive command, FAS(x,v),
stores v at x returning the value that was stored at x just before overwriting it.

The spin lock in Figure 1 is standard. Its state comprises a heap cell at x that stores either 0
(unlocked) or 1 (locked). The Craig-Landin-Hagersten (CLH) lock [18] in Figure 1 serves threads
competing for the lock in a FIFO order. It queues requests, keeping a head and a tail pointer (at x
and x+1, respectively). The predecessor pointers are stored in each thread’s local state (in p). The
lock can be acquired by a thread once its predecessor signals release of the lock by setting its queue
node to 0. Unlocking the lock corresponds to setting the queue’s head node value to 0.

Let us focus on the lock operation of the CLH lock. The interesting aspect is that lock displays
blocking behaviour that is observable by the client of the module (it is indeed the quintessence
of blocking). We cannot just provide a total triple for it: The operation does not always terminate.
The challenge is to design a specification format that accurately captures the abstract functionality
of the operation and its subtle termination properties.

First off, one would like a specification that hides the implementation details and only exposes
the abstract state of the lock to the client: A lock instance is represented by an abstract resource
L(x, l),5 where l = 1 indicates the lock is locked, and l = 0 means it is unlocked. It is worth
noting that traditional Hoare triples are not able to represent the useful behaviour of lock(x).

The triple 	
{
L(x, 0)

}
lock(x)

{
L(x, 1)

}
requires the client to establish that the lock is unlocked

before calling the operation, defying the very purpose of the operation’s functionality. The triple

	
{
L(x, 0) ∨ L(x, 1)

}
lock(x)

{
L(x, 1)

}
allows the operation to be called in the locked state, but

is not precise enough, since the same triple holds for a simple assignment [x] � 1. It does not

5We omit the region identifier to simplify the discussion.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:11

express the property that, upon termination of the operation, we can claim that we have acquired
the lock. A partial specification of a lock is already a challenge; a total specification more difficult
still.

Proposed solutions in the literature can be divided into history-based, refinement-based, and
abstract atomicity-based approaches. The history-based approach (e.g., Reference [38] for safety,
References [15, 25] for progress) is expressive but at the price of complex and indirect specifica-
tions; the verification requires explicit manipulation of the histories, complicating client reasoning.
The only progress-aware refinement-based approach that can modularly verify the CLH lock is the
LiLi logic [31]. LiLi’s refinement � is progress-preserving and contextual, allowing the result to
be reused in arbitrary client contexts. For example, the LiLi proof for CLH lock (under weak fair
scheduling) shows that

lock(x) � spec_lock(x),

where spec_lock(x) is defined (in pseudocode) as6

spec_lock(x) {

enqueue(x.queue, self);
await (head(x.queue)= self ∧ x.state= 0) {

〈x.state� self; x.queue� tail(x.queue)〉
}

}

The abstract state of the lock is represented by x.state, but to represent the fact that threads will
not be starved, an abstract FIFO queue at x.queue keeps track of the threads to be served; self
is the thread ID of the caller. The command await(B){C} is a blocking primitive introduced to
express the non-primitive blocking of the implementation. The potential absence of progress of
the implementation’s busy-waiting steps is represented by potential absence of a step ahead in the
specification.

LiLi’s specification style has three major drawbacks:

(1) the specification code is not much simpler than the original implementation and is not able
to hide the implementation detail of the thread queue;

(2) the specification code is not atomic: It produces one step for entering the queue and one step
for acquiring the lock;

(3) since the termination properties are represented through the behaviour of code, a client
proof that wants to make use of these properties must reprove them on the specification
code before being able to use them in the argument.

These problems limit the abstraction capabilities, proof reuse, and scalability of the approach.
The abstract atomicity approach has been pioneered by the TaDA logic. It directly influenced

logical atomicity in Iris [24] and was extended to provide total specification for non-blocking pro-
grams in Total TaDA [8]. The aim of the TaDA approach is to keep the Hoare-triple style of speci-
fication while being able to give precise and abstract specifications to fine-grained code like CLH
lock. The TaDA solution is to provide a Hoare triple for lock, which embraces the fact that, be-
tween the invocation of the operation and the execution of the atomic update of the lock, there
is a phase of interference where the environment can change the value of the lock. It is impor-
tant to be able to distinguish the imprecise precondition that holds during the interference phase,

6In Reference [31], this is the result of applying the appropriate wrapper to the lock specification: wrwfair
PSF

(await(l=0) {l � cid}).

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:12 E. D’Osualdo et al.

L(x, 0) ∨ L(x, 1), and the precise precondition, L(x, 0), that holds just before the atomic update
performed by the lock operation at its linearisation point [20].

The TaDA safety specification for lock is the partial atomic triple:

	

A

l ∈ {0, 1}.
〈
L(x, l)

〉
lock(x)

〈
L(x, 1) ∧ l = 0

〉
. (6)

The interference precondition

A

l ∈ {0, 1}.〈L(x, l)〉 describes the interference phase. It states that
the environment must preserve the existence of the lock at x but may change the value of l ,
and the implementation of the lock must tolerate these environmental changes. The pseudo-
quantifier

A

l ∈ {0, 1} is unusual, behaving like an evolving universal quantifier in that the en-
vironment is able to keep changing l over time and behaving like an existential quantifier in that
the implementation can assume that the lock always exists with l ∈ {0, 1}. The triple (6) states
that, if the environment satisfies the interference precondition and the operation terminates, then
the implementation guarantees that, just before the linearisation point, the lock must have been
available for locking (l = 0) and, just afterwards, the lock has been locked by the operation (L(x, 1)).
Exclusive ownership of the lock after the operation terminates can be derived from the l = 0 as-
sertion in the postcondition: Just before we locked it, nobody else could claim that they owned the
lock. The TaDA safety specification for unlock is the partial atomic triple

	

A

l ∈ {1}.
〈
L(x, l)

〉
unlock(x)

〈
L(x, 0)

〉
.

This triple7 states that, to be used correctly, the unlock operation requires the lock to be locked and
not changed by the environment during the interference phase; in return, the operation promises
to atomically set the lock to be unlocked.

TaDA Live builds on the TaDA specification format. To turn the TaDA triple for lock into a to-
tal specification, the termination guarantee must depend on the environment: If the environment
decides to hold the lock indefinitely, then no lock implementation should allow the lock opera-
tion to terminate. Hence, we express blocking as a liveness condition on the environment during
the interference phase of an abstractly atomic operation. The CLH lock operation will terminate
under weak fairness, provided that, if the lock is locked by the environment during the interfer-
ence phase, then the environment will eventually unlock it. In general, a blocking operation will
require an environment that is live: It will always eventually bring the abstract state to a good
(e.g., unlocked) state.

The TaDA Live total specification of the CLH lock operation is:

	

A

l ∈ {0, 1} � {0}.
〈
L(x, l)

〉
lock(x)

〈
L(x, 1) ∧ l = 0

〉
. (7)

The interference precondition is

A

l ∈ {0, 1} � {0}.〈L(x, l)〉 with the pseudo-quantifier now incor-
porating the environment liveness condition. As well as stating that the environment can keep
changing the lock, the interference precondition also states that if the lock is in a bad state
(l ∈ {0, 1} \ {0}), then the environment must always eventually change it to a good state (l ∈ {0}).
The implementation needs to ensure termination under the assumption that the lock always even-
tually returns to the unlocked state. Note that the environment is allowed to change l back to 1
arbitrarily many times, provided it always eventually sets it back to 0. To see why this is enough to
ensure termination, consider Figure 2(a), where we chart the evolution of the abstract state induced
by a live environment in the interference phase of lock. Progress towards termination of lock is
guaranteed by the progress measure charted in Figure 2(b): Every time the environment unlocks,
the value of l decreases from 1 to 0; when the environment locks, although l increases to 1, the

7We typically omit the pseudo-quantifier in the case where the set has just one element, e.g.,

	
〈
L(x, 1)

〉
unlock(x)

〈
L(x, 0)

〉
.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:13

Fig. 2. Live environment (a); measure of progress for CLH lock where q is the number of threads ahead in

the queue (b); live environment with bounded impedance (c); measure of progress for spin lock (d).

number q of threads in front of us in the queue decreases. One crucial aspect of our specification
design is that we do not want to expose the progress argument to the client unless part of the ar-
gument needs to be made by the client. With CLH, the part of the argument appealing to the queue
of threads is completely internal to the implementation of the operation, while the argument for
the environment’s liveness must be provided by the client (the implementation has no power over
this). We prove this formally in Section 5.

Now let us consider the spin lock implementation. The spin lock operation cannot promise to
terminate just by relying on a live environment. The problem is that when the environment locks
the lock, there is no measure of progress that decreases: We are genuinely delayed by this action.
We call this effect impedance. We conceptualise impedance as a greater leaking of the progress
argument to the client. In the spin lock example, the whole of the progress argument needs to
be provided by the client: The client needs to ensure that the environment will always eventually
unlock the lock and that it will only impede the operation a bounded number of times. To represent
this extra bounded impedance requirement (depicted in Figure 2(c)), we extend the abstract state of
the lock with an ordinal α , an impedance budget that strictly decreases when the lock state is set
to 1. We arrive at the following TaDA Live specification for spin lock:

∀ϕ . 	

A

l ∈ {0, 1} � {0},α .
〈
L(x, l ,α) ∧ ϕ (α) < α

〉
lock(x)

〈
L(x, 1,ϕ (α)) ∧ l = 0

〉
. (8)

The lock is now represented by the predicate assertion L(x, l ,α) with ordinal α , which can also be
changed by the environment during the interference phase. As well as expressing the dependency
on a live environment on l , this triple states that every lock operation consumes the budget α by
a non-trivial amount, thus providing a logical measure of progress from good to bad states. The
initial value of the budget and the function ϕ from ordinals to ordinals is determined by the client,
which must demonstrate that the budget is enough to make all its calls.

The TaDA Live total specification of unlock for the CLH lock is the same as the TaDA partial
specification. By contrast, the TaDA Live specification of unlock for the spin lock needs to incor-

porate the ordinals: 	
〈
L(x, 1,α)

〉
unlock(x)

〈
L(x, 0,α)

〉
. The impedance budget α is preserved by

unlock. This encodes the fact that unlock does not impede the other operations, but also that by
unlocking we cannot increase the budget. By combining these assumptions about the budget (it
decreases when locking, stays constant when unlocking), it is possible to conclude that the imple-
mentation of the spin lock terminates using the progress measure in Figure 2(d). Crucially, for spin
lock, the whole of the progress argument is provided by (and thus visible to) the client.

The impedance budget technique was first introduced to concurrent separation logics for non-
blocking operations in Total TaDA [8]. Here, we smoothly integrate ordinals into TaDA Live, which
fully supports blocking.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:14 E. D’Osualdo et al.

2.1 Abstraction and Proof Reuse

The TaDA Live program logic works with hybrid triples of the form:

	

A

x ∈ X � X ′.
〈
Ph

��� Pa (x)
〉
C

〈
Qh (x) ���Qa (x)

〉
,

which generalises both Hoare triples and abstract atomic triples. This triple comprises: a pseudo-
quantifier with its environment liveness condition; atomic pre-/post-conditions Pa (x) and Qa (x);
and Hoare pre-/post-conditions, Ph and Qh (x). The Hoare pre-/post-conditions describe stable re-
sources that are owned locally by C and can be updated non-atomically. Hoare triples correspond
to the case where X = X ′ = {1} and Pa = Qa = emp. Abstract atomic triples correspond to the
case when Ph and Qh (x) are empty. We have omitted some details from the hybrid triples, such
as layers and levels, since they are not important for the ideas of this section; the full details are
given in Section 3.8.

The integration of the liveness annotations in triples achieves the goal of keeping the specifica-
tion abstract and atomic. To obtain the goal of reuse of proofs, there are two missing ingredients:
a mechanism to make use of the X � X ′ assumption in a proof of an implementation of the
specification; and a way to reuse the specification in an arbitrary client context.

Imagine proving the CLH lock implementation correct with respect to specification (7). The
while loop needs to discharge that “finally, the current thread is at the head of the queue, and
the lock is unlocked.” This can only be proven with the help of the l ∈ {0, 1} � {0} liveness
assumption coming from the lock specification. To this end, in addition to liveness assumptions
given by obligation assertions, TaDA Live extends judgements to allow contexts with X � X ′

liveness assumptions, used to discharge the ��T condition in the while rule. The full details are
given in Section 3.8.

Now consider proving a client of a lock using the specifications of the lock operations for the
calls to these operations. This requires the Liveness Check rule:

�L ⇒ ��T ∀x ∈ X . 	 Pa (x) ∗T ⇒ x ∈ X ′

	

A

x ∈ X � X ′.
〈
Ph

��� Pa (x)
〉
C

〈
Qh (x) ���Qa (x)

〉
	

A

x ∈ X .
〈
Ph ∗ L ��� Pa (x)

〉
C

〈
Qh (x) ∗ L ���Qa (x)

〉 LiveC’.

The rule’s crucial effect is to remove the liveness annotation X � X ′, which can only be done in a
situation where the corresponding liveness assumption �(x ∈ X) ⇒ ��(x ∈ X ′) is satisfied. Just
like the WhileB. rule, we frame an assertion L, which is information that holds for the duration
of the call. Typically, L asserts the existence of some shared region and that the environment
holds some obligations depending on the state of the region. We also need to provide a set of
target states T capturing when x ∈ X ′ (second premise). The crucial check of the rule is the first
premise, which examines the traces where L holds everywhere, and asks us to prove that in those
traces we see T satisfied infinitely often (and thus x ∈ X ′ infinitely often). If that is true, then we
can conclude that the command terminates in the current context without the extra assumption
in the pseudo-quantification. The resulting triple can then be manipulated using standard TaDA
reasoning.

Take the typical use of (CLH) locks C = lock(x);. . .;unlock(x) in a client C ‖ · · · ‖ C. To
share the lock resource L(x, l), the client proof would specify some region clientr (x, l) where l
is the abstract state of the lock. A typical client would include the abstract state of other shared
resources, too, but for simplicity, we focus here on the lock. The client needs to specify in its
protocol that the lock will be always eventually unlocked by the threads sharing it. We therefore
introduce an exclusive obligation k (the key of the lock), which is obtained when locking the lock

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:15

and fulfilled when unlocking it:

((x, 0), 0)� ((x, 1), k) ((x, 1), k)� ((x, 0), 0).

The protocol is mirrored in the region’s interpretation I (clientr (x , l)) � L(x , l) ∗ (l = 0
.
⇒ �k�L

r).
With the application of standard TaDA reasoning, it is possible to derive

	

A

l ∈ {0, 1} � {0}.
〈
L(x, l)

〉
lock(x)

〈
L(x, 1) ∧ l = 0

〉
	

A

l ∈ {0, 1} � {0}.
〈
emp

��� clientr (x, l)
〉
lock(x)

〈
�k�L

r
��� clientr (x, 1) ∧ l = 0

〉 ,
which amounts to saying that if lock(x) atomically locks the lock region, then it also atomically
updates the client region containing the lock. Notice that the {0, 1} � {0} annotation is propagated
as is. In other words, the update on the lock is put in the context of the current client. In such

context, we can set the frame L to be ∃l ∈ {0, 1}. clientr (x, l) ∗ l = 1
.
⇒ �k�E

r : according to the
protocol of the current client, the environment holds an obligation k when l = 1. Because of
the liveness invariant encoded by k, it is true that the environment will always eventually unlock
the lock, allowing us to discharge the side condition of LiveC’:

�
(
∃l ∈ {0, 1}. clientr (x, l) ∗ l = 1

.
⇒ �k�E

r

)
⇒ ��(clientr (x, 0)).

Indeed, if l = 1, then the precondition gives us �k�E
r , which means that the environment owns k

and will therefore eventually fulfil it, which can only be done by setting l = 0. The environment is
allowed to then lock x again, but that is fine: As we discussed, a CLH lock can promise termination
under this milder condition.

Thanks to the smooth integration of liveness annotations in the specifications and liveness in-
variants expressed as obligations, TaDA Live proofs can properly abstract and encapsulate be-
haviour. Consider a module implementing a counter that can be safely used concurrently, thanks
to the internal use of locks to protect access to the shared cell holding the value of the counter. For
example, the increment operation can be implemented as

def incr(x){var v in lock(x); v� [x+1]; [x+1]� v+1; unlock(x)} .

While the use of locks involves blocking behaviour, the blocking is handled completely internally
and a client of the counter cannot observe it. The TaDA Live specification of the increment opera-
tion thus does not leak this implementation detail:

	

A

n ∈ N.
〈
C(x,n)

〉
incr(x)

〈
C(x,n + 1)

〉
.

A client of the counter does not need to worry about the internal blocking, since the specification
does not entail any liveness proof obligation. The proof of incr discharges the liveness assumption
of the specification of lock by using obligations analogous to k above, specified in an internal pro-
tocol that is not exposed to the client proof. In Section 4.9, we discuss the encapsulation properties
of TaDA Live’s specifications in more detail.

Our approach contrasts significantly with previous work [3, 22] where blocking is represented
in specifications by the acquisition of tokens acting as obligations. In this work, the specification
style fixes an expected protocol to be followed by the client. For example, the axiom for a built-in
lock acquisition operation returns a built-in token representing the need for calling a lock release
primitive.

In contrast, our lock specification does not impose on the client any particular way in which its
environment liveness assumption should be enforced. It is the job of the client to devise a protocol
that ensures the environment liveness assumptions of the lock specifications will be provable.
For locks, this is indeed often achieved by making sure every thread that locks a lock eventually
unlocks it. Such a protocol is encoded by the liveness invariants of the client’s region (e.g., client in

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:livec-simpl

16:16 E. D’Osualdo et al.

the example above) and the k-obligation pattern. The specification of the lock, however, does not
transfer obligations to the client, leaving open the possibility for clients to use completely different
protocols. The following example client illustrates the added flexibility of our approach:

lock(x);

[y]� 1

var b= 0 in
while(b� 1){ b� [y] };

unlock(x)

The code assumes a lock has been allocated at x, and y initially stores 0. In the specification style
where the expected (liveness) protocol is built-in, the lock call in the left-hand thread would return
a built-in token that can only be consumed by calling unlock. This, in turn, requires an extension
of the logic—as done, e.g., in Reference [17]—providing some mechanism for the sound delegation
of tokens from one thread to the other. In TaDA Live, there is no need for such an extension. The
protocol of this client does not need to associate obligations with the lock; one can simply define
an obligation (owned initially by the left-hand thread) that is fulfilled when y is set to 1 and use it
to prove the appropriate environment liveness conditions for the proof.

In this informal overview, we used temporal logic formulas to represent the key liveness con-
ditions in the WhileB and LiveC’ rules. The formal versions of these TaDA Live rules, however,
implement those checks with what we call the environment liveness condition, which reduces these
liveness properties to safety checks via a dedicated set of rules (explained in Section 4). Remarkably,
the liveness checks of both rules can be phrased in terms of the environment liveness condition,
which therefore provides a uniform proof principle for blocking termination.

2.2 A Guide for the Reader

The rest of the article proceeds by introducing the assertion language and the semantic model of
TaDA Live in full detail (Section 3), then presenting the proof rules through the proof of an example
(Section 4), then walking through the proofs of our case studies and commenting on limitations
(Section 5), and finally discussing related work (Section 6). A reader interested in the proof rules
can skim through Sections 3.3 to 3.5 and 3.8 and the beginning of Section 3.9 to familiarise with
the basic definitions, and then move to Section 4 to understand how the rules themselves work,
and the typical proof patterns.

3 THE TADA LIVE SEMANTIC MODEL

We introduce the semantic model that justifies TaDA Live, defining:

• the operational semantics of commands and their fair traces;
• the assertion language, regions, guards, obligations, and protocols;
• the semantics of assertions and viewshifts;
• the specification format; and
• the trace semantics of specifications.

In Section 2, we introduced hybrid triples that generalise Hoare and atomic triples. For our
formal semantics, we separate triples into two components: the command C and the specifica-
tion S, comprising the pseudo-quantifier, the precondition, and the postcondition. We introduce

the semantic judgement, � C : S with S =

A

x ∈ X � X ′.
〈
Ph

��� Pa (x)
〉
·
〈
Qh (x) ���Qa (x)

〉
, which

captures the semantic properties of a command that satisfies a specification: i.e., safety and termi-
nation of its fair traces. This required a complete reformulation of the model of TaDA. First, we
give a trace semantics to specifications independently of commands. This enables us to define the
semantic judgement to hold when �C� ⊆ �S�: that is, when the concrete traces of a command are

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:while-blocking
rule:livec-simpl

TaDA Live 16:17

allowed by the specification traces. This approach is unusual for separation logics based on Hoare-
style triples and brings the semantics nearer to approaches based on refinement. Second, the trace
model is an “open-world” semantics where traces include both individual local steps made by the
command and individual arbitrary environment steps. Other models typically model the environ-
ment interference indirectly, representing a sequence of environment steps as a single big jump.
Our “open-world” approach is crucial to capture the assumptions on the liveness of the environ-
ment stipulated by the specifications. Third, the trace semantics of the specification is given in a
style that is closely related to alternating automata [40]. The specification is seen as an automaton
that traverses a concrete trace and only accepts those traces that satisfy the specification. This
enables us to cleanly separate the (alternating) safety constraints from the (linear time) liveness
constraints, imposed by a specification.

3.1 Notation

We write X ⇀ Y for the set of partial functions from X to Y , and X ⇀f Y for the set of finite
partial functions. Given f : X ⇀ Y , we write f (x) = ⊥ if f is undefined on x , and dom(f) �
{x | f (x) � ⊥}. We write [x1 �→ y1, . . . , xn �→ yn] for the finite function that maps each of
the xi to yi and is undefined on any other input. We write f [x �→ y] for the partial function that
coincides with f except on x where it returns y, and write f [x �→ ⊥] analogously. The disjoint
union between partial functions f � д is defined if their domains are disjoint. In contexts where
the expected type is a function, we write ∅ for the empty function.

3.2 Fair Trace Semantics of Commands

We present a standard first-order imperative language, called While, with shared-memory con-
currency and fine-grained non-blocking primitives, and we define the fair concrete trace seman-
tics of its commands. Our While language is parametrised by the following sets: the Booleans,
Bool � {true, false} � b; the values, Val � Z ∪ Bool � v ; the program variables, PVar � x, y, . . . ;
and the function names, FName � f. The set PVar contains a special element, ret, the name of a
local variable that holds a function’s return value.

Definition 3.1 (Commands). The set of commands, Cmd � C, is defined by the grammar in
Figure 3, where x ∈ PVar, �x ∈ PVar∗ is a list of pairwise distinct variables, and f ∈ FName. The
notation var x1,x2. . .,xn in C denotes var x1= 0 in var x2= 0 in . . . var xn= 0 in C.

We place some restrictions on these commands to simplify exposition. We write pv(C) for the
free program variables of a command. The set mods(C) is the set of free variables that are poten-
tially modified by a command, i.e., any free x of C appearing in instructions of the form x� . . .;
in particular, mods(var x=E in C) = mods(C) \ {x}. In a command C1 ‖ C2, we apply the mild
syntactic restriction that mods(C1) = mods(C2) = ∅. Each individual thread is still able to modify
variables that are created locally and to modify shared heap cells, but are not allowed to modify
the free variables.8 In a function definition let f(x1,. . .,xn)=C1 in C2, we use the natural re-
striction pv(C1) ⊆ {x1, . . . , xn , ret}. Also for simplicity, we assume each function name is given
at most one definition. The function fn : Cmd → ℘(FName) returns the function names occurring
in Cmd that are not bound by a let. Although function definitions may be recursive, we will dis-
allow recursion in our logical rules to simplify the development. In the programs we consider, all

8To lift this restriction, one can use the “variables as resources” technique [2]. Our restriction simplifies the handling of

the local state without sacrificing expressivity: Any local variable in the scope common to both threads that needs to be

modified can be instead implemented by using a shared memory cell.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:18 E. D’Osualdo et al.

Fig. 3. Syntax of commands C ∈ Cmd and basic semantic domains.

potentially divergent behaviour stems from while. It is straightforward to reformulate the While
rule into a Let rule that supports terminating recursion.

Commands manipulate heaps h ∈ Heap � Addr ⇀f Val (where Addr � N and ∅ is the empty
heap) and local variable stores, σ ∈ Store � PVar ⇀ Val. A command can contain free function
names, so we use a function implementation context, φ ∈ FImpl � FName⇀ (PVar∗,Cmd), to map
function names to pairs comprising a finite list of distinct variables (the formal arguments) and a
command (the body of the function).

A command induces transitions over program configurations c ∈ PConf � (Store × Heap ×
PState) � {�} that keep track of the current variable store and global heap, and the program states
C ∈ PState (see Figure 3) that represent the set of the active threads and their execution state. The�
program configuration represents a faulty configuration, e.g., the one reached after dereferencing
an unallocated address. For the details of program states, we refer to Appendix D; what is relevant is
that� is the program state of a terminated thread, and we can define a function threads : PConf →
℘(TId) that computes the set of thread identifiers (t ∈ TId) of the active threads of a program
configuration (details in Appendix).

To model fair traces of commands, we use a small-step operational semantics, parametrised by
a function implementation context φ and defined by a relation −→φ ⊆ PConf × Sched × PConf.
In a transition (c1,π ,c2), the scheduling annotation, π ∈ Sched, keeps track of who executed the
step:

Sched � {loct | t ∈ TId} � {env},

that is, either a local active thread t or the environment. Environment steps can have arbitrary
effects on the heap and can generate faults at any time:

h′ ∈ Heap

σ ,h,C
env−−−→φ σ ,h′,C

c ∈ PConf

c
env−−−→φ �

.

The full definition of the transition semantics is defined in Figure 36 and Figure 37 of the Appendix.
We call program traces the infinite sequences of the form c0 π0 c1 π1 · · · where, for all i ∈ N,

ci ∈ PConf and πi ∈ Sched. We use τ to range over infinite suffixes of program traces and PTrace

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:while

TaDA Live 16:19

for the set of all program traces. We define the set of φ-program traces

PTraceφ � {c0 π0 c1 π1 · · · | ∀i ∈ N. ci
π i−−−→φ ci+1}.

Definition 3.2 (Fairness). A φ-program trace (c0 π0 c1 π1 · · ·) ∈ PTraceφ is fair if:

∀i ∈ N.∀t ∈ threads(ci). ∃j ≥ i . (π j = loct ∨ c j = �), (9)

∀i ∈ N. ∃j ≥ i .π j = env. (10)

That is: A trace is fair if, at any point in time, every thread that can take a step (and the environment)
will eventually be scheduled.

The open-world program semantics defines the behaviour of a command when run concurrently
with an arbitrary environment. It corresponds to the fair program traces of a command, with the
information about program states and thread identifiers removed.

Definition 3.3 (Open World Semantics). We call traces the infinite sequences c0 π0 c1 π1 · · ·where,
for all i ∈ N, ci ∈ Conf � (Store × Heap) ∪ {�} and πi ∈ {loc, env}. We use τ for ranging over
infinite suffixes of traces and Trace for the set of all traces. For a trace τ = c0 π0 c1 π1 · · · , we
define τ (i) � (ci ,πi), and τ/i � ci πi ci+1 πi+1 · · · . The function [·] : PTrace → Trace is defined
by [c0 π0 c1 π1 · · ·] � c0 π0 c1 π1 · · · where

ci �
⎧⎪⎨⎪⎩

(σ ,h) if ci = (σ ,h, _)

� if ci = �
πi �

⎧⎪⎨⎪⎩
loc if πi ∈ Sched \ {env}
env if πi = env

.

The open-world program semantics function, � · �φ : Cmd → ℘(Trace) is defined by

�C�φ �
{

[c0τ]
��� (c0τ) ∈ PTraceφ , fv(C) ⊆ dom(σ0),c0 = (σ0, _,C),c0τ is fair

}
.

The notation �C� is syntactic sugar for �C�∅.

The goal of TaDA Live is to prove termination of the local command.

Definition 3.4 (Local Termination). A trace τ ∈ Trace is locally terminating, written lterm(τ), if
it contains finitely many occurrences of loc.

It might seem odd that our program semantics only contains infinite traces, since our goal is
proving termination. Traces that locally terminate simply have an infinite tail of environment
steps. To simulate a closed system, one can select for the traces where the environment steps are
all identity steps.

Remark 1 (On Primitive Blocking). It is important to remember that the primitives of our pro-
gramming language are non-blocking, in the sense that they can always take a step if scheduled:
For all h ∈ Heap,C ∈ PState, for all σ with dom(σ) ⊇ pv(C), and every t ∈ threads(C), there is a

c ∈ PConf such that (σ ,h,C)
loct−−−→φ c . Hence, a trace is locally terminating only if all the threads

terminated.
For languages that have blocking primitives (e.g., built-in locks/channels), traces may be locally

terminating, because a non-terminated thread may not have a local successor (i.e., it is not en-
abled) at any point in the future (e.g., if a built-in lock remains locked forever, then an acquire
operation would not have local successors). With blocking primitives, fairness also comes in two
variants: strong and weak. Strong fairness requires that if an operation is infinitely often enabled
it is infinitely often executed. Strong and weak fairness coincide for languages like ours where
every primitive is enabled at all times.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:20 E. D’Osualdo et al.

Notice that our lack of blocking primitives does not make our setting less general: Block-
ing primitives can be implemented on top of non-blocking ones, both with weak and strong
fairness assumptions for termination, as illustrated by our spin and ticket lock examples. In
other words, blocking primitives can be given TaDA Live specifications and be treated uniformly
by the logic. The addition of built-in blocking primitives to the language does not pose new
challenges.

3.3 TaDA Live Assertions and Worlds

We formally introduce the TaDA Live assertion language, and its semantics in terms of its mod-
els, called worlds. The TaDA Live assertions are built from the standard classical connectives and
quantifiers of separation logic,9 TaDA region and guard assertions, and new TaDA Live obligation
and layer assertions. To formalise the assertions, we assume a number of basic domains:

• a set of logical variables, denoted LVar, disjoint from PVar;
• an enumerable set of region types, RType � t;
• an enumerable set of region identifiers, RId � r ;
• the set of levels, Lvl � N � λ, to stratify regions to avoid the problem of re-entrancy10

(explained in Remark 2);
• a set of abstract states, AState � a, including sets and lists of values;
• a set of guards, Guard � G, which will offer the support for the guard algebras defined later;
• a well-founded partial order (L, �,�,⊥) of layers, which will be associated to special guards

called obligations; and
• a set of ordinals, O.

For layers, we use the abbreviations k1 < k2 � (k1 � k2∧k2 �� k1) and k ·	 n � (∀k ′ > k .k ′ 	 n).
The set of abstract values is AVal � Val ∪ AState ∪ Guard ∪ RId ∪ L.

As is standard, when used in assertions, we extend numeric and Boolean expressions to use
logical variables and abstract values, too. A logical variable store, l ∈ LStore � LVar ⇀ AVal,
assigns values to logical variables. Given a logical and a program variable store l ,σ , the evaluation
of expressions E�E�l,σ ∈ AVal and of Boolean expressions B�B�l,σ ∈ Bool are standard.

Assertions and worlds are built using partial commutative monoids.

Definition 3.5 (PCM). A (multi-unit) partial commutative monoid (PCM) is a tuple (X , •,E)
comprising a set X , a binary partial composition operation • : X × X ⇀ X and a set of unit
elements E, such that the following axioms are satisfied (where either both sides are defined and
equal, or both sides are undefined):

∀x ,y, z ∈ X . (x • y) • z = x • (y • z) (associativity),

∀x ,y ∈ X . x • y = y • x (commutativity),

∀x ∈ X .∃e ∈ E. x • e = x (identity).

For x ,y ∈ X , we write x # y if x • y � ⊥, and x � y if ∃x1.y = x • x1. A PCM is cancellative when,
for any x ,y1,y2 ∈ X , if x • y1 = x • y2, then y1 = y2.

The partial heaps form a PCM (Heap,�, {∅}), as standard in separation logics. We also use guard
algebras and obligation algebras, which are PCMs for describing auxilary ghost state, specified by
the user of the logic.

9TaDA interprets the separating conjunction intuitively. With TaDA Live, we interpret it classically to not lose information

about the obligations.
10In Iris, levels roughly correspond to masks.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:21

Fig. 4. Syntax of assertions. Logical expressions, E, and logical Boolean expressions, B, are standard.

Definition 3.6 (Guard Algebras). A guard algebra is a PCM (Grd, •, {0}) with Grd ⊆ Guard.
TaDA Live is parametrised by a function G (·) mapping a region type t to a guard algebra
G (t) = (Gt, •t, {0t}). The t subscript is omitted from •t and 0t when it is clear from the
context.

As discussed, the obligations represent ghost state for describing liveness invariants. They form
an obligation algebra that is little more complicated to define due to the association of obligations
with layers.

Definition 3.7 (Obligation Algebras). TaDA Live is parametrised by a set of atoms AOb and a
layered obligation structure: that is, a pair (Oblig, lay) where Oblig = ℘(AOb) ⊆ Guard and
lay : Oblig → L such that ∀O ∈ Oblig.⊥ < lay(O) � �. We will implicitly coerce atoms a ∈
AOb into obligations {a} ∈ Oblig. An obligation algebra is a guard algebra (Obl, •, {0}) where
Obl ⊆ Oblig, 0 = ∅, • is union of disjoint sets and ∀O1,O2 ∈ Obl.O1 � O2 ⇒ lay(O1) ≥ lay(O2).

TaDA Live is parametrised by a function O (·) mapping a region type t to an obligation algebra
O (t) = (Ot, •t, {0t}). The t subscript is omitted from •t and 0t when its clear from the context.

In Section 2, we have seen examples of obligation algebras. For instance, the C′1 ‖ C′′2 exam-
ple used two atoms u1 and u2, giving rise to the obligation algebra with elements {u1}, {u2}, and
{u1,u2}. As mentioned, we make no difference between an atom u1 and the obligation {u1} us-
ing the symbol of the former for both. For our examples, it is enough to assign layers to atoms,
e.g., lay(u1) < lay(u2), and extend the layers to obligations by taking the minimum layer of the
composed atoms, for example lay(u1 • u2) = lay(u1). Note that, by construction, each obligation
is incompatible with itself: O •O = ⊥.

Definition 3.8 (TaDA Live Assertions). The set of TaDA Live assertions, Assrt � P ,Q, . . . , is defined
by the grammar in Figure 4. The only binder is ∃. The function fv : Assrt → (PVar� LVar) returns
the free variables of an assertion and its definition is standard. We also define pv(P) � fv(P)∩PVar

and lv(P) � fv(P) ∩ LVar. We write P (x1, . . . ,xn) to indicate that lv(P) ⊆ {x1, . . . ,xn } and, for
v1, . . . ,vn ∈ AVal, write P (v1, . . . ,vn) for P[v1/x1, . . . , vn/xn].

We summarise the intuitive meaning of our assertions before giving their formal semantics.

• TaDA region assertion tλ
r (a) asserts the existence of a shared region with type t, identity r ,

level λ, and abstract state a. Region assertions represent shared resources and, hence, are
duplicable. We have 	 tλ

r (a) ⇔ tλ
r (a) ∗ tλ

r (a).
• TaDA atomicity tracking assertion r �⇒
 gives permission to perform a single atomic change

of the state of region r . Once the change is performed, the assertion becomes r �⇒ (a1,a2)
recording the abstract states just before and after the change (the linearisation point). The
assertion r �⇒ ♦ asserts that the environment has the permission to do the atomic update.
We have 	 r �⇒
 ∗ r �⇒
⇒ False, and 	 r �⇒
⇔ (r �⇒
 ∗ r �⇒ ♦).

• TaDA guard assertion �G�r asserts that the guard G is held locally. Guard composition is
reflected by separation: 	 �G1 •G2�r ⇔ �G1�r ∗ �G2�r .

• TaDA Live local obligation assertion �O�L
r asserts that obligation O is held locally. We have

	 �O1 •O2�L
r ⇔ �O1�L

r ∗ �O2�L
r . Separating conjunction is interpreted classically precisely

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:22 E. D’Osualdo et al.

so we do not lose local obligation information: That is, 	 �O�L
r �⇒ emp. It is often useful to

use the same guard algebra for guards and obligations. We write [O]L
r � �O�r ∗ �O�L

r .

• TaDA Live environment obligation assertion �O�E
r asserts that O is held by the environment:

	 �O1 • O2�E
r ⇔ �O1�E

r ∗ �O2�E
r . Unlike for local obligations, it is possible to lose this

information, 	 �O�E
r ⇒ emp, because we do not need to keep track of the full obligations

held by the environment, just a lower bound. The composition of environment and local
obligation assertions is subtle, inspired by the subjective separation of Reference [29]. The

existence of the local obligation can be recorded in a frame: 	 �O�L
r ⇔ �O�L

r ∗ �O�E
r . We also

have the derived law 	 �O1 •O2�L
r ⇔ (�O1�L

r ∗ �O2�E
r) ∗ (�O1�E

r ∗ �O2�L
r), giving knowledge

to each thread of the obligations delegated to the other.
• TaDA Live empty obligation assertion empR

Ob
(respectively, empλ

Ob
) asserts that no obligation

is locally held for regions with identifiers in R (respectively, regions of level < λ).
• TaDA Live layer assertion r � m asserts that the layer of the obligations held locally for

region with identifier r is greater or equal thanm. We often use notation such as r �m ≤ m′

to denote r �m ∧m ≤ m′.

We introduce the worlds of TaDA Live, which are instrumented heaps providing the models of
the assertions of TaDA Live. A world is a local model in the sense that it reflects the state as seen
from the perspective of a single thread. It is built from a local heap and a set of shared regions
with associated guards and obligations. Worlds are parametrised by a set of region identifiers R
that, intuitively, are the regions that the current operation is supposed to update abstractly exactly
once. We say the regions in R are tracked for proving atomicity, using special ghost state given by
the atomicity tracking algebra that supports the semantics of the atomicity tracking assertions.

Definition 3.9 (Atomicity Tracking Algebra). The atomicity tracking algebra is a PCM defined

by ATrack �
(
(AState × AState) � {
, ♦}, ·, Emp

)
, where the composition is
 · ♦ =
 = ♦ ·
,

♦ · ♦ = ♦ and ∀a,b ∈ AState. (a,b) · (a,b) = (a,b) (undefined otherwise), and the set of unit
elements is Emp
 � (AState × AState) � {♦}. The expression evaluation function is extended to
map expressions d in the atomicity tracking assertions to the corresponding elements of ATrack:

E�
�ς =
, E�♦�ς = ♦, E�(E1,E2)�ς = (E�E1�ς ,E�E2�ς).

Definition 3.10 (Worlds). LetR ⊆ RId. A world,w ∈ WorldR , is a tuplew = (h, ρ ,γ, χ,θ , ξ) where

• h ∈ Heap is the local heap, i.e., the cells owned locally;
• ρ ∈ RMap � RId⇀f (RType × Lvl × AState) describes the shared regions;
• γ ∈ GMap � RId⇀f Guard describes the local guards;
• χ ∈ AMapR � R → ATrack describes the local atomicity tracking components;
• θ ∈ OMap � RId⇀f Oblig describes the local obligations;
• ξ ∈ OMap � RId⇀f Oblig describes the environment obligations, known to be held locally

by the environment;

satisfying the following well-formedness constraints:

• dom(ρ) = dom(γ) = dom(θ) = dom(ξ) ⊇ R,
• ∀r ∈ RId. if ρ (r) = (t, _, _), then γ (r) ∈ Gt, θ (r) ∈ Ot, ξ (r) ∈ Ot,
• ∀r ∈ dom(θ). θ (r) # ξ (r).

A shared region with identifier r , given by ρ (r) = (t, λ,a), has type t and abstract state a. For a
world w , we write hw and ρw and so on, for the corresponding components of w . We also define
rtyw (r) � t, lvlw (r) � λ, and astw (r) � a, if ρw (r) = (t, λ,a).

We define a PCM on worlds (called world algebra). We define how worlds compose by first
definining composition on each component of a world. Heap composition is disjoint union. Region

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:23

maps only compose if they are equal. Given ρ ∈ RMap, the compositions •ρ : GMap × GMap ⇀
GMap and ◦R : AMapR × AMapR ⇀ AMapR are:

γ1 •ρ γ1 � λr ∈ dom(ρ).γ1 (r) •t γ2 (r) if ∀r ∈ dom(ρ). ρ (r) = (t, _, _) ∧ γ1 (r) •t γ2 (r) � ⊥
χ1 ◦R χ2 � λr ∈ R . χ1 (r) · χ2 (r) if ∀r ∈ R . χ1 (r) · χ2 (r) � ⊥

and undefined otherwise. The composition •ρ on OMap is defined analogously to •ρ on GMap.
The local and environment obligation maps compose in a subtle way inspired by the subjec-

tive separation of Reference [29]. To express this interaction, we define a composition on pairs of
local/environment obligation maps. Given θ1,θ2, ξ1, ξ2 ∈ OMap, we define

(θ1, ξ1) #ρ (θ2, ξ2) �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(θ1 •ρ θ2, ξ) if ξ = min� {ξ | ξ1 � (θ2 •ρ ξ) ∧ ξ2 � (θ1 •ρ ξ)}

and (θ1 •ρ θ2) � ⊥
⊥ otherwise.

Note that, for obligation algebras, the minimum taken by the definition is always unique if it exists.
Indeed, in general one can set ξ (r) = ξ1 (r) \ θ2 (r) ∪ ξ2 (r) \ θ1 (r). For example, assuming a, b, c, d,
e, and f are distinct atoms, we have(

[r �→ a • b], [r �→ c • e]
)
#ρ

(
[r �→ c • d], [r �→ a • f]

)
=

(
[r �→ a • b • c • d], [r �→ e • f]

)
,

provided the composition a•b•c•d is defined. Furthermore, this definition supports the implica-

tion �O�L
r ⇒ �O�L

r ∗ �O�E
r , since

(
[r �→ O], [r �→ 0]

)
#ρ

(
[r �→ 0], [r �→ O]

)
=

(
[r �→ O], [r �→ 0]

)
.

Definition 3.11 (World Algebras). The PCM of world algebras, (WorldR , #, EmpR), is defined by
the set of worlds WorldR ,

— the subjective world composition, #, given by:

(h1, ρ1,γ1, χ1,θ1, ξ1) # (h2, ρ2,γ2, χ2,θ2, ξ2) = (h1 � h2, ρ ,γ1 •ρ γ2, χ1 ◦R χ2,θ , ξ),

if h1 # h2, ρ = ρ1 = ρ2, γ1 •ρ γ2 � ⊥, χ1 ◦R χ2 � ⊥, and (θ1, ξ1) #ρ (θ2, ξ2) = (θ , ξ), undefined
otherwise; and

— the set of unit elements given by:

EmpR �
{

(∅, ρ ,γ , χ,θ , ξ) ∈ WorldR
�����
∀r . ρ (r) = (t, _, _) ⇒ γ (r) = 0t ∧ θ (r) = 0t,
∀r ∈ R . χ (r) ∈ Emp

}
.

Notice that the units are worlds with arbitrary shared regions, atomicity components from Emp
,
and arbitrary environment obligations.

Subjective composition of worlds (#) is lifted to composition of sets of worlds (∗), defined as
p1 ∗ p2 � {w1 #w2 | w1 ∈ p1,w2 ∈ p2,w1 # w2}.

We want the region and environment obligations assertions to enjoy the elimination rule,
e.g., tλ

r (a) ∗Q ⇒ Q . Assertions therefore denote sets of worlds that are upward-closed with respect
to adding regions and adding environment obligations. Formally, we define the world ordering $R
as the smallest reflexive and transitive relation such that:

(h, ρ ,γ , χ,θ , ξ) $R (h, ρ[r �→ (t, λ,a)],γ[r �→ 0t], χ,θ[r �→ 0t], ξ[r �→ 0t]) r � dom(ρ)

(h, ρ ,γ, χ,θ , ξ) $R (h, ρ ,γ , χ,θ , ξ[r �→ ξ (r) •O]) θ (r) # O # ξ (r)

The upward-closed sets of worlds World�R �
{
p ⊆ WorldR �� ∀w,w ′.w $R w ′ ∧w ∈ p ⇒ w ′ ∈ p

}
are the semantic domain of our assertions.

Definition 3.12 (Satisfaction Relation). Let ς : (PVar � LVar) ⇀ AVal be the union of a program
and logic variable store. For a world w ∈ WorldR and an assertion P , the assertion satisfaction
relation, ς ,w �R P , is defined in Figure 5.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:24 E. D’Osualdo et al.

Fig. 5. Definition of assertion satisfaction.

We write 	R P if, for ∀ς : (PVar � LVar) ⇀ AVal,w ∈ WorldR , we have ς ,w �R P , and write

W�P�
ς

R �
{
w �� ς ,w �R P

}
for any assertion P . It is easy to check that W�P�

ς

R ∈ World�R for
every P and ς .

3.4 Protocols: Interference and World Rely

A world describes the state of the current thread, both the local state owned by the thread (the
heap, guards, local obligations, and atomity tracking components), the shared state (the regions)
and the environment obligations describing obligations owned locally by the environment. We
define the world rely relation, which describes how the world may change as a result of the “well-
behaved” interference of the environment characterised by the region interference relations, the
atomicity tracking components, and the environment obligations. To define the world rely, we
need to introduce two other components of TaDA Live: the region protocols, expressed by the
region interference function, and atomicity contexts.

The type of each region is associated with a region interference function that establishes which
updates to a shared region are allowed by the owner of which guards.

Definition 3.13 (Region Interference). TaDA Live is parametrised by the region interference func-
tion, T , which takes a region type t ∈ RType and returns a function Tt : Gt → ℘((AState × Ot) ×
(AState × Ot)). Every function Tt is required to satisfy three properties:

• reflexivity: ((a, 0t), (a, 0t)) ∈ Tt (0t), for all a ∈ AState;
• monotonicity in the guards: ∀G1,G2 ∈ Gt.G1 � G2 ⇒ Tt (G1) ⊆ Tt (G2);
• closure under obligation frames: for all O1,O2,O ∈ Ot, if ((a1,O1), (a2,O2)) ∈ Tt (G) and
O1 # O and O2 # O , then ((a1,O1 •t O), (a2,O2 •t O)) ∈ Tt (G).

We write Tt (_) for
⋃

G ∈Gt
Tt (G). For anyT ⊆ (AState×Oblig)× (AState×Oblig), we write io(T) �

{(a,b) | ((a, _), (b, _)) ∈ T }.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:25

The final concept we need before introducing the world rely relation is the atomicity context, A.
In TaDA Live proofs, we keep in the context of the judgement information about which updates we
are currently proving are abstractly atomic. The rule driving this bookkeeping is the MkAtom rule.
Although we will properly explain the rule in Section 4.7, we sketch the main idea as a motivation
for the atomicity context now. The relevant “skeleton” of the rule is as follows:

r � dom(A) T ⊆ Tt (G) R = io(T) . . .

m; λ′;A[r �→ (X ,k,X ′,T)] 	
{
∃x ∈ X . tλ

r (x) ∗ r �⇒

}
C
{
∃x ,y.R (x ,y) ∧ r �⇒ (x ,y)

}
m; λ′;A 	

A

x ∈ X �k X ′.
〈
tλ
r (x) ∗ �G�r

〉
C

〈
∃y. tλ

r (y) ∗ �G�r ∧ R (x ,y)
〉

The judgements include the context information such as the layerm, the level λ′ and the atomicity
context A, and the pseudo-quantifier includes a layer k . We formally introduce these details in
Section 3.8. Here, we focus on motivating the use of the atomicity context A. This rule describes
how an update to the state of a region r can be declared atomic even if it was realised through a
series of steps. It does this by converting a Hoare triple to an atomic triple, provided the Hoare
triple bears evidence (through the atomicity tracking assertions of the premise) that, although
many steps might have been taken, the abstract state was changed by the command exactly once.
The atomic triple may constrain the environment interference with a non-trivial pseudo-quantifier.
The proof of the premise in general needs to make use of these assumptions about the environment,
but the conversion to a Hoare triple means we cannot use pseudo-quantification to represent them.
These assumptions are instead made available to the proof of the Hoare triple using the atomicity
context, which records the (X ,k,X ′) information from the pseudo-quantifier and the relation T
that stores the update that we are proving happens atomically.

Definition 3.14 (Atomicity Context). An atomicity context A is a finite partial function from RId

to tuples of the form (X ,k,X ′,T), where X ,X ′ ⊆ AState, k ∈ L, and T ⊆ (AState × Oblig) ×
(AState × Oblig) are closed under obligation frames (as in Definition 3.13).

Assuming A (r) = (X ,k,X ′,T), we write safe(A, r) � X , good(A, r) � X ′, live(A, r) �
(X ,k,X ′), which we write X �k X ′, and tr(A, r) � T . For every r ∈ dom(A), we require
{x | (x , _) ∈ io(T)} ⊆ safe(A, r). The set dom(A) declares the regions for which we are tracking
atomicity: For r ∈ dom(A), the environment will only change the abstract state within safe(A, r)
and will obey the liveness condition given by live(A, r) that the environment will always eventu-
ally return to a good state in good(A, r) � X ′; and the local thread will only change the abstract
state at most once according to the relation io(tr(A, r)). We write �A for �dom(A) , and similarly

for 	A , W�P�
ς

A , WorldA and EmpA .

Definition 3.15 (World Rely). The world rely relation, RA ⊆ WorldA × WorldA , is the smallest
reflexive and transitive relation satisfying the rules in Figure 6.

Rule wr1 describes the case where the environment can update the abstract state of a region
according to the interference relation Tt. Notice that, for this rule, when χ (r) ∈ {
, ♦}, the envi-
ronment can only change the abstract state to something in safe(A, r). When χ (r) is undefined
or a pair of abstract states, then the environment does not have this restriction and can do any
update consistent with Tt. Also, notice how the environment obligations map ξ is affected by the
transition. Rule wr2 describes the case where the atomic update given by A has been delegated
to the environment (χ[r �→ ♦]) in which case the current thread can observe the abstract state
change corresponding to the update.

So far, we have introduced assertions and worlds as their models. These structures express in-
formation mostly over ghost state, that is, state that is purely logical and has no representation in

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:make-atomic
rule:rely-interf
rule:rely-linpt

16:26 E. D’Osualdo et al.

Fig. 6. World rely rules.

concrete executions. For example, the notion that there is some shared region is purely fictional,
as in the concrete machine there is no special way to mark a portion of the heap as shared. We in-
troduced interference protocols and the world rely as a way to specify the expected well-behaved
transformations shared resources may be subjected to. Since well-behaved interference from the
environment can change the state of shared regions, a single world (describing a single state for
each region) cannot capture the logical state we may be in when interleaved with environment
actions. Views are the sets of worlds that can explain the logical state we may be in after being
suspended for an arbitrary number of environment steps. Views represent information about the
logical state, which cannot be invalidated by a well-behaved environment.

Definition 3.16 (Views, Stability). An upward-closed set of worlds,p ∈ World�A , is anA-view if it
is closed under RA : that is, ∀w ∈ p,w ′ ∈ WorldA .w RA w ′ ⇒ w ′ ∈ p. An assertion P is A-stable,
written A � P stable, if and only if, for all ς : (PVar � LVar) ⇀ AVal, W�P�

ς

A is an A-view.

We write ViewA for the set of all A-views and StableA for the set of all A-stable assertions.

Definition 3.17 (View Algebra). The PCM of view algebras, (ViewA , ∗, {EmpA}), is formed from
the set ViewA , and the composition p1 ∗ p2 � {w1 #w2 | w1 ∈ p1,w2 ∈ p2,w1 # w2}.

Notice that the composition of views always gives rise to a view: In the case where there are no
compatible pairs of worlds in the views, the result is the empty view (the denotation of False).

On checking stability. TaDA Live proofs require checking stability of assertions in some crucial
steps. The notion of stability of Definition 3.16 is given in terms of the semantics of assertions, but
it is possible, in principle, to provide a set of lemmas to prove stability of common cases without
reasoning at the level of the model. For example, any traditional separation logic assertion (such
as emp, x �→ v , pure formulas) is always stable; guard and local obligation assertions are also
automatically stable; stability is preserved by ∗, ∧, ∨, and existential quantification. The crucial
sources of instability are region assertions, environment obligation assertions, and r �⇒ ♦. Stability
of the first two can be established by inspecting the protocol of regions. A rule that would be
expressive enough to prove most stability checks for our examples is:

∀x ∈ X ,x ′,G ′,O ′. (G ′ # G (x)) ∧ ((x ,O (x)), (x ′,O ′)) ∈ Tt (G
′) ⇒ x ′ ∈ X ∧O ′ = O (x ′)

A � ∃x ∈ X .tλ
r (x) ∗ �G (x)�r ∗ �O (x)�E

r stable .

It is similarly easy to extract from Figure 6 rules involving the atomicity context information:

safe(A, r) = X

A � ∃x ∈ X .tλ
r (x) ∗ r �⇒
 stable

r ∈ dom(A)

A � r �⇒ ♦ ∨ r �⇒ (_, _) stable .

3.5 Linking Levels of Abstraction: Interpretations and Reification

As we mentioned, worlds and views represent ghost information about state. Ultimately, however,
we want to use this information to express properties of concrete execution traces. To do so, we
need to formalise the link between worlds with their logical instrumentation and concrete states

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:27

comprising variable stores and heaps. The first component that contributes to this link is a region
interpretation, which specifies the implementation-dependent content of a shared region: For ex-
ample, for a shared spin lock, the interpretation of the abstract shared region spinλ

r (x , l) is the view
given by x �→ l , a single cell storing l at x .

Definition 3.18 (Region Interpretation). TaDA Live is parametrised by a region interpretation func-
tion It� · � : RId × Lvl × AState → View∅ for each t ∈ RType, such that, for every r ∈ RId, λ ∈ Lvl,
a ∈ AState, ∀w ∈ It�r , λ,a�.∀r ′ ∈ dom(θw) \ {r }. θw (r ′) = 0. We also require the interpre-
tation to be λ-safe, a technical condition explained in Section 4.3 that is usually immediate to
check (see Lemma 4.2). A region interpretation’s companion is the syntactic region interpretation

It = (r , l ,a, P), where r , l ,a ∈ LVar, fv(P) ⊆ {r , l ,a}, ∅ � P stable, and 	∅ P[λ/l] ⇒ empRId\{r }
Ob

. We

write I (tλ
E1

(E2)) for P[E1/r , λ/l , E2/a]. We require that It�r , λ,a� = W�I (tλ
r (a))�∅; in practice,

we will define region interpretations by writing syntactic interpretations and using the previous
equation as a definition for the corresponding region interpretation functions.

It is important to understand that interpretations are not merely an indirect way of writing as-
sertions. In our spin lock example, the crucial difference between the two assertions spinλ

r (x , l ,α)
and x �→ l is that the first is subjected to interference, while the latter expresses ownership of the

cell at x . The requirement that the interpretation of some region with ID r must imply empRId\{r }
Ob

forbids an intepretation to own local obligations of other regions. This is necessary for sound-
ness: If we removed the restriction, then we could fool ourselves into thinking that we fulfilled an

obligation �O�L
r by creating another region with the obligation in its interpretation.

Remark 2 (On “Opening” Regions and Levels). As in TaDA, the region interpretation is used to
“open” a region: That is, import the region interpretation as local state to do a single atomic update.
The idea is to obtain instantaneously the ownership of the content of the region for the atomic
update, and to re-establish the region interpretation for the updated abstract state, before imme-
diately relinquishing ownership by “closing” up the region. As in TaDA, this opening and closing
mechanism depends on the level of the region, which is a device to avoid inconsistencies. With a
specification at level λ, the rules enable a region to be opened at level λ′ < λ to obtain a resulting

specification at level λ′. This means that, although a region can be shared (tλ′
r (a) ⇔ tλ′

r (a)∗tλ′
r (a)),

it cannot be opened twice, which would result inI (tλ′
r (a))∗I (tλ′

r (a)) with a potential contradictory
duplication of non-duplicable resources.

The second component that expresses the link between the instrumented worlds and concrete
states is the reification function. Reification has two main purposes. First, at level λ, all the regions
with level lower than λ are closed, which means that the resources in their interpretation do not
exist as far as the world is concerned. The concrete heap cells accounted for inside these interpre-
tations will, however, correspond to cells in the concrete heap. To bridge this gap, the reification
opens all closed regions importing the resources in their interpretation as local resources, obtain-
ing a “collapsed” world. Second, all the “ghost” components of collapsed worlds (such as regions,
guards, or obligations) do not have any representation in memory, so reification erases them.

Definition 3.19 (Reification). Let λ ∈ Lvl and let closed(λ,w) � {r ∈ RId | lvlw (r) < λ}. The

region collapse function, (·)↓λ : WorldA → ℘(WorldA), is defined by:

w0↓λ �
⎧⎪⎪⎨⎪⎪⎩
w0 #w1 # . . . #wn

�������
closed(λ,w0) = {r1, . . . , rn },
ρw0 (ri) = (ti , λi ,ai),wi ∈ Iti

�ri , λi ,ai�,
∀i ≤ n.∀r ∈ dom(ξw0#...#wi

). ξw0#...#wi
(r) = 0

⎫⎪⎪⎬⎪⎪⎭
.

The function �w�
λ
� {h ∈ Heap | (h, _, _, _, _, _) ∈ w↓λ } is called the world reification ofw at level λ.

For any p ∈ World�A , the function �p �λ �
⋃

w ∈p �w�λ is called reification of p at level λ.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:28 E. D’Osualdo et al.

To understand if a world w1 can represent local resources consistent with some global heap h,
we need to identify if there is a worldw2 representing the resources of the environment such that
h ∈ �w1 # w2�λ . That would mean that it is possible to factor h as h = hw1 � h′ � hw2 , where hw1

are the cells fully owned by the local thread, hw2 are the ones fully owned by the environment,
and the cells in h′ are the ones that are shared and come from opening the interpretations of
closed regions in the world collapse. When collapsing, we are assuming, conceptually, that we are
collapsing a world that represents every resource in the system. Correspondingly, the definitions
that use reification—crucially, Definitions 3.20 and 3.22—always complete the local resources with
some “global” frame before applying reification.

In addition to opening shared regions, the collapse function also checks that no environment
obligations are assumed. To understand this, consider a worldw1 representing local resources, and
a world w2 completing it to a world w = w1 # w2 representing the global resources. The global
worldw cannot assert the existence of obligations in the environment: all those have been already
accounted for in w2. The definition of collapse explicitly enforces this constraint by the condition
on the environment obligation map. We explain why this condition is important in Section 3.7.

3.6 Frame Preservation

Having established the link between worlds/views and concrete state, we can move to establish-
ing a link between concrete steps in a trace and their logical justification in terms of logical state.
The fundamental driver of this link is the notion of frame-preserving update, inspired by the frame-
preserving update from Reference [24], which represents the essence of the Rely/Guarantee reason-
ing in TaDA Live. The frame-preserving update looks at a specific concrete update from some h1

to h2 and states under which conditions this logical update can be described as an update from log-
ical state p1 to logical state p2. The p1 and p2 are sets of worlds describing local resource, whereas
the h1 and h2 are global concrete heaps. We therefore need to complete p1 with some frame f
and use reification to relate this logical state to h1: That is, h1 ∈ �p1 ∗ f �λ . There will usually be
more than one such f . The frame-preserving update requires that any such f that is a view should
remain a valid frame after the update: That is, h2 ∈ �p2 ∗ f �λ .

Definition 3.20 (Frame-preserving Update). Given h1,h2 ∈ Heap, p1,p2 ∈ World�A and λ ∈ Lvl,
we define (h1,h2) �λ;A p1 �

∗ p2 to hold if and only if

∀f ∈ ViewA .h1 ∈ �p1 ∗ f �λ ⇒ h2 ∈ �p2 ∗ f �λ .

TaDA Live implements the Rely/Guarantee proof principle by requiring every update to be
frame-preserving. Views are resources that are preserved by protocol-compliant environment in-
terference. The idea of a Rely, a set of allowed environment updates, is represented by assuming
environment steps are frame-preserving updates on resources that are compatible with our cur-
rent view. By frame preservation, any such update would preserve our view. Conversely, the idea
of a Guarantee, an over-approximation of the effects of local steps under the assumption of Rely, is
encoded by requiring every local step to be a frame-preserving update, and thus unable to disrupt
any view held by the environment.

To see how this works more concretely, let us consider an example. We use the notation �λ p �∗

q to mean ∀h ∈ �p ∗ True�. ∃h′. (h,h′) �λ p �∗ q, that is, �λ p �∗ q holds when p to q can be used
to justify some concrete update.

Example 3.21. Assume we have a region type t with abstract states a,b, c,d , a single guard e
(with e • e = ⊥) and interference protocol consisting of transitions e : (a, 0) � (b, 0) and e :
(b, 0) � (c, 0). We want to show that (for λ < λ′) �λ′ tλ

r (a) ∗ �e�r �∗ tλ
r (c) ∗ �e�r holds, but

�λ′ tλ
r (a) ∗ �e�r �

∗ tλ
r (d) ∗ �e�r and �λ′ tλ

r (a) �∗ tλ
r (b) do not. Consider any view f that is a frame

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:29

of tλ
r (a) ∗ �e�r . The f cannot hold �e�r because e is not compatible with itself. As a consequence,

since f is a view, it needs to be closed under world rely, which means that it is closed under
the interference, which can transform a into b and b into c . For f to be compatible with tλ

r (a), it
needs to contain some world associating a to r ; to be a view, f needs to contain some other world
associating c to r , which makes it compatible with tλ

r (c) ∗ �e�r . Therefore, �λ′ tλ
r (a) ∗ �e�r �∗

tλ
r (c) ∗ �e�r holds.
Now, the view f above is not required to contain any world associating d to r . Such an f is a

counterexample to �λ′ tλ
r (a) ∗ �e�r �

∗ tλ
r (d) ∗ �e�r holding.

Finally, consider tλ
r (a): We can construct a frame fa in which all worlds associate a to r and own

the guard e. Such set of worlds can be a view, because owning e disables the transition from a to b.
However, fa would be compatible with tλ

r (a) but not with tλ
r (b), which means �λ′ tλ

r (a) �∗ tλ
r (b)

does not hold.

This definition of frame-preserving update simplifies drastically the semantics of TaDA spec-
ifications. For TaDA Live, however, we need to introduce the stronger notion of atomic frame-
preserving update. To see the motivation behind the stronger condition, consider the region inter-
ference relation e : (a, k) � (b, 0) and e : (b, 0) � (c, k). The update from a to c via b is very
different from a direct update from a to c . The intermediate step to b fulfils the obligation k, which
may be crucial information for the progress argument. We therefore want to enforce that if we are
justifying a step as going from p to q, then all the allowed transitions between region states need
to match a single transition in the interference protocol.

Definition 3.22 (Atomic Frame-preserving Update). Given h1,h2 ∈ Heap, p1,p2 ∈ World�A and
λ ∈ Lvl, we define (h1,h2) �λ;A p1 � p2 to hold if and only if

∀f ∈ World�A .h1 ∈ �p1 ∗ f �λ ⇒ h2 ∈ �p2 ∗ Ra
A (f)�λ ,

where the atomic world rely relation, Ra
A , is defined to be the smallest reflexive relation closed

under the rules of Figure 6, with the restriction that rules wr1 and wr2 can be applied at most
once per region identifier. It is formally defined in Appendix E.1.

Intuitively, this says that if the environment has some resource f compatible with p1, then it
should expect that after a step, the resource f might be transformed into Ra

A (f). When f is a view,
one gets back Definition 3.20, as views are precisely the resources that cannot be invalidated by
any number of updates of the environment. We will use atomic frame-preserving updates to check
the safety of logical traces with respect to some specification in Definition 3.28.

3.7 Viewshifts and “Classical” Resources

Before moving to specifications, we define viewshift, a semantic generalisation of implication,
which is a prime example of application of frame-preserving update, used in our Cons rule. They
correspond to “purely logical” updates in that they update the ghost resources without affecting
the concrete memory.

Definition 3.23 (Viewshift). Given p1,p2 ∈ World�A , the judgement λ;A � p1 � p2, holds if
∀h ∈ Heap. (h,h) �λ;A p1 �

∗ p2. For two assertions P ,Q , the assertion P viewshifts to Q , written
λ;A � P�Q , if and only if, ∀ς : (PVar � LVar) ⇀ AVal, λ;A �W�P�

ς

A�W�Q�
ς

A .

Viewshifts are typically employed to “allocate” a new region by sharing some local resource (a

form of weakening). For example, assume I (tr (x ,v)) � x �→ v ∗ �a�L
r . We have that P0 = (x �→ 0)

viewshifts to ∃r . tr (x , 0): The underlying reification does not change, and any frame of P0 with
non-empty reification must only have regions reifying to cells disjoint from x ; moreover, such

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:rely-interf
rule:rely-linpt
rule:consequence

16:30 E. D’Osualdo et al.

frame will only have finitely many regions allocated, so it is always possible to draw a fresh r from
the infinite set RId to satisfy the existential quantification over r .

Viewshifts also ensure that obligation information is not updated inconsistently. For example, in

the “region allocation” step above, we cannot viewshift P0 to P1 = ∃r . tr (x , 0) ∗ �k�E
r , which would

mean we are pretending there is an obligation k in the environment without any evidence of that
being true. To show that the viewshift does not hold, we can choose h = [x �→ v] and show that
(h,h) �λ;A P0 � P1 is false. To see this, pick f = emp as the global frame; h is in the reification

of P0 ∗ emp but the reification of ∃r . tr (x , 0) ∗ �k�E
r ∗ emp is empty: The frame emp has empty

local obligation map, so every world w considered by the region collapse of P1 ∗ emp has ξw � 0.
The idiomatic, and correct, pattern of creation of environment obligations would viewshift P0 to,

say, ∃r . tr (x , 0) ∗ �b�L
r for some relevant obligation b compatible with a, and then with implication

obtain ∃r . tr (x , 0) ∗ �b�L
r ∗ �b�E

r : In this case, the environment obligation has been created from the
evidence of the existence of a corresponding local obligation.

It is important to note that, in a logic with the ability to share assertions, as regions in TaDA or
invariants in Iris allow, having classical resources does not have the expected effect. By definition,
a classical resource P cannot be “forgotten,” i.e., P ∗ Q �⇒ Q . By using viewshift, however, it is
possible to create a region with interpretation defined so it contains P and immediately discard
it (regions are not classical resources), obtaining P ∗ Q � Q . This, for example, makes TaDA
Live incapable of proving absence of memory leaks even if its heap assertions are classical. We,

however, manage to avoid this issue for local obligation assertions �O�L
r because of their specific

semantics. First, �O�L
r can only ever be part of the interpretation for the region r , as imposed by our

restrictions on region interpretations. Second, the very notion of fulfilling the obligation is defined
as transferring its ownership to the interpretation. Moreover, the region protocol constrains the
loss of an obligation to happen only in correspondence with some region state change, so the only
way to get rid of a local obligation is to induce the desired state change in the region and transfer
the obligation to the interpretation. We need obligations to be classical resources for this to be the
only way of losing them. We made heaps and guards behave classically for the sake of uniformity,
but this is not essential.

The issue of having genuinely classical resources in a logic with regions/invariants has been
tackled in Reference [1], with the main use cases being proving absence of memory leaks. The
techniques presented there could provide the basis for an alternative way of handling TaDA Live-
style obligations.

3.8 Specification Format

With all these definitions in place, we can now proceed to define TaDA Live specifications and
their trace semantics. Most of the time, TaDA Live proofs manipulate triples of two forms:

m; λ;A 	

A

x ∈ X �k X ′.
〈
P (x)

〉
C

〈
Q (x)

〉
, (11a)

m; λ;A 	
{
P
}
C
{
Q
}
, (11b)

called atomic triples and Hoare triples, respectively. It is, however, possible for a command to ma-
nipulate some resources Ph non-atomically, and some other resources Pa (x) atomically, at the same
time. In general, specifications use hybrid triples:

m; λ;A 	

A

x ∈ X �k X ′.
〈
Ph

��� Pa (x)
〉
C ∃y.

〈
Qh (x ,y) ���Qa (x ,y)

〉
,

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:31

a minor generalisation11 of hybrid triple discussed in Section 2.1. Intuitively, the Hoare precondi-
tion Ph is a resource that is owned by the command and, as such, cannot be invalidated by actions
of the environment. The command is allowed to manipulate this owned resource non-atomically,
provided it satisfies the Hoare postconditionQh upon termination. The atomic precondition Pa (x)
represents the resource that can be shared between the command and the environment. The en-
vironment can update it, but only with the effect of going from Pa (x) for some x ∈ X to Pa (x ′)
for some x ′ ∈ X . The command is allowed to update it exactly once from Pa (x) to perform its
linearisation point, transforming it to a resource satisfying the atomic postcondition Qa (x). The
atomic postcondition only needs to be true just after the linearisation point, as the environment is
allowed to update it immediately afterwards. The pseudo-quantified variable x has two important
uses: It represents the “surface” of allowed interference by the environment; it is bound in the
postcondition to the value of the parameter of the atomic precondition just before the linearisation
point.

The atomic and Hoare triples in Equations (11a) and (11b) are then special cases of the hybrid
triple:12

∀�v0.m; λ;A 	

A

x ∈ X �k X ′.
〈
�v0 � �v0

��� P ′(x)
〉
C ∃�v1.

〈
�v0 � �v0 ∧ �v1 � �v1

���Q ′(x)
〉
, (12a)

m; λ;A 	
〈
P ��� emp

〉
C

〈
Q ��� emp

〉
, (12b)

respectively, where �v0 = pv(P (x)), �v1 = pv(Q (x)) \ �v0, P
′(x) = P (x)[�v0/�v0] and Q ′(x) =

Q (x)[�v0/�v0, �v1/�v1] (for technical reasons the atomic pre-/post-conditions in the general triples
cannot contain program variables). We omit the pseudo-quantifier from an atomic triple (as above)
when the pseudo-quantified variable does not occur in the triple, and thus could be quantified as

A
x ∈ {1} �⊥ {1}. We also use the abbreviated form

A
x ∈ X when the liveness assumption is triv-

ial, i.e.,

A

x ∈ X �⊥ X .

Definition 3.24 (Specification). Specifications, S ∈ Spec, have the form:

A

x ∈ X �k X ′.
〈
Ph

��� Pa (x)
〉
· ∃y.

〈
Qh (x ,y) ���Qa (x ,y)

〉
m;λ;A

(�)

where

• m ∈ L, λ ∈ Lvl and A ∈ ACtxt;
• x ,y ∈ LVar;
• X ′ ⊆ X ⊆ AVal and k ∈ L;
• Ph,Qh (v,v ′) ∈ StableA for all v ∈ X and v ′ ∈ AVal;
• Pa (v),Qa (v,v ′) ∈ Assrt for all v ∈ X and v ′ ∈ AVal, and pv(Pa) = pv(Qa) = ∅.
• ∀x ∈ X . 	A Pa (x) ⇒ empλ

Ob
.

• ∀x ∈ X ,y. 	A Qa (x ,y) ⇒ empλ
Ob

.

In addition to the atomicity context A, the context of a specification m, λ,A consists also of
a layer m, and a level λ. These components record information about the proof context of the
judgement. The layerm indicates that we are in a context where we are forbidden from assuming
as live obligations with layers ≥ m (or incomparable to m). The level λ indicates that the regions
with level ≥ λ are open (and cannot be re-opened).

11The difference is the ∃y , which is used in the uncommon case when the linearisation point is non-deterministic and the

Hoare postcondition depends on this non-deterministic choice.
12We use the standard notation a � b to mean a = b ∧ emp.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:32 E. D’Osualdo et al.

3.9 Trace Semantics of Specifications

Finally, we can define the semantics of a specification. The idea of the semantics is to collect all
traces that are deemed as acceptable to a specification S, so we can later say a command satisfies S
if its traces are all accepted by the semantics of S. The general principle in accepting a trace is
the following: The local steps are only expected to be correctly implementing the functionality
declared by S if the environment satisfies the assumptions implied by the (safety and liveness) pro-
tocols and S itself. If a trace has gone wrong as a consequence of the environment making moves
outside of the assumptions, then that trace is accepted, as the problem is not the responsibility of
the local command itself. If a trace has gone wrong as a consequence of local steps, then the trace
is rejected.

The semantics of a specification therefore traverses a trace to decide whether to accept or reject
it by determining who is to blame for failures. We decouple the traversal needed for checking the
safety constraints and the one checking the liveness ones. In terms of safety, a specification like
(�) (in Definition 3.24) expects that:

• the precondition holds: The starting resource satisfies Ph ∗ Pa (x), for some x ∈ X ;
• the interference precondition holds: Every step of the environment, before the local lineari-

sation point takes place goes from a resource satisfying Pa (x1), for some x1 ∈ X , to a resource
satisfying Pa (x2), for some x2 ∈ X .

If any of the above are violated, then the blame is on the environment. In return, the local steps
are expected to:

• respect atomicity: transform the resources of Pa (x) exactly once to resources satisfying
Qa (x ,y), for any x ∈ X and some y;

• respect the pre-/post-conditions: transform (in possibly many steps) the resources in Ph to
resources satisfying Qh (x ,y) at the end of the execution.

In this sense, the resources in Pa (x) should be understood as shared: The environment can use them
to change the value of x , and the local steps can use them atomically to perform the linearisation
point. Note that Qa (x ,y) is only guaranteed to hold immediately after the linearisation point.

Key idea of the liveness semantics. In terms of termination, the specification (�) guarantees local
termination only if the environment is live, i.e., it satisfies the layered liveness invariants repre-
sented by the pseudo-quantifiers (of the specification and in A) and the obligations. The idea is
again to identify when non-termination is caused by a bad environment or by bad local steps. Con-
sider the case of liveness invariants encoded by obligations. Imagine we annotate each position
of a trace indicating which obligations are held at that point by the environment and which are
held locally. Now suppose the environment always eventually fulfils every obligation (i.e., for each
obligation O there are infinitely many positions where O is not held by the environment). This
environment is certainly live, so it cannot be blamed for non-termination. The layer structure,
however, allows the environment to fulfil obligations of layer k by relying on eventual fulfilment
of obligations at layer < k . Therefore, if there is an obligationO that is locally held forever, the en-
vironment is still considered live if it never fulfils obligations at layer > lay(O). In this scenario, the
local steps are blamed for non-termination: By holding O forever, the local steps are not allowed
to rely on the environment being live at higher layers than lay(O).

This scheme leads to the following semantic interpretation of layers. The local steps can blame
the environment for non-termination by waiting for the fulfilment of some environment obliga-
tionO1 indefinitely; in turn, the environment can blame the local steps for the inability to fulfilO1

by claiming to be waiting for the fulfilment of some local obligation O2 with lay(O1) > lay(O2);

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:33

the local step can justify the indefinite postponement of the fulfilment of O2 by shifting blame on
the environment again, appealing to an environment obligation with even lower layer, and so on.
This blame-shifting cannot be unbounded: Every time the blame is shifted, the layers considered
are strictly lower and, by well-foundedness of layers, this cannot happen ad libitum. Ultimately,
the blame is unambiguously placed on the environment or the local steps and the trace is accepted
or rejected accordingly.

This intuition about obligations extends to liveness assumptions attached to pseudo-
quantifications in the triple and in the atomicity context. All these assumptions need to be layered
to avoid unsound circularities, which is why the pseudo-quantifier carries a layer k . The specifi-
cations mention another layer, m, which represents a (strict) upper bound on the layers that we
may consider live when proving some command satisfies the specification. An environment is still
considered live by the specification if it keeps an obligation of layer 	 m forever unfulfilled.

We now define the formal semantics of specifications, as set of concrete traces that satisfy the
specification. To check if a concrete trace τ satisfies a specification, the semantics first collects all
the possible “logical” justifications of the trace in a set T. To justify a trace means to instrument
each step with sets of worlds that show how the trace respects the (safety) logical constraints of
the specification. The set T is then further analysed to check that every instrumented trace where
the environment satisfies the liveness assumptions is locally terminating.

We begin by defining the trace safety judgement, of the form τ �S ph,pa,v : T, the purpose of
which is to check the safety constraints implied by S. The judgement formalises the idea of a specifi-
cation S as a trace acceptor, that is, an automaton reading a trace step-by-step, and either accepting
or rejecting it. If we ignore T for a moment, then the trace safety judgement represents a snapshot
of the state of this imaginary automaton at a point when some prefix of the trace has been already
successfully processed, and τ is the suffix that remains to be processed. The automaton traverses
the trace producing a guess for an instrumentation, i.e., logical resources corresponding to the
concrete memory contents that explains why the trace is acceptable. The instrumentation needs
to describe, for instance, when the linearisation point is thought of taking place, what portions
of the state are considered as shared and which owned. Let (σ ,h) be the current concrete state,
i.e., τ = (σ ,h) τ ′. The triple (ph,pa,v) in the judgement encode the automaton’s current state, rep-
resenting the current guess for the instrumentation of (σ ,h). The resources currently considered
as locally owned are represented by the view ph; the v can be either an abstract value, in which
case the automaton thinks that we are still in the interference phase, or it can be a pair 〈v1,v2〉,
which means we are past the linearisation point, which updated the abstract state from v1 to v2;
the pa (v) is a set of worlds parametric on v and corresponds to the shared atomic resources if we
are before the linearisation point, or it is the empty resource if we are past it. The judgement as-
sumes that h ∈ �ph ∗pa (v) ∗ f �λ for some frame f , i.e., the current concrete state is consistent with
the current instrumentation guess. The initial state of the automaton will be chosen so this holds
at the beginning of the trace, and each transition of the automaton will by construction preserve
this correspondence.

As it walks down a trace, the automaton updates ph, pa, and v , trying to construct a consistent
instrumentation for the whole trace. Such a sequence of automaton states constitute its run over
the trace. Specification traces augment each state of a trace with the instrumentation from a run of
the automaton.

Definition 3.25 (Specification Traces). Define AVal′ � AVal � {〈v1,v2〉 | v1,v2 ∈ AVal}, the set of
specification states to be SStateA � ViewA × (AVal′ → World�A)×AVal′ and the set of specification

configurations to be SConfA � Store × Heap × SStateA . The set of specification traces, STraceA ,

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:34 E. D’Osualdo et al.

Fig. 7. Safety specification semantics.

is the set of infinite sequences of the form ĉ1 π1 ĉ2 π2 · · · where ĉi ∈ SConfA and πi∈ {loc, env}.
Given a set of specification traces T ⊆ STrace, we write ĉ π T for the set {ĉ π τ̂ | τ̂ ∈ T}.

The trace safety judgement accumulates, as it traverses a trace, all the successful instrumen-
tations of the trace in T, which we can later check against liveness properties. Let us define the
judgement formally, and then explain it in detail.

Definition 3.26 (Trace Safety). Let S ∈ Spec with components named as (�), τ ∈ Trace, T ⊆
STrace, and (ph,pa,v) ∈ SState such that

pa (x) =Wa�Pa� (x) �
⎧⎪⎨⎪⎩
W�Pa (x) ∧ x ∈ X �A if x ∈ AVal

EmpA otherwise.

The trace safety judgement is the relation τ �S ph,pa,v : T defined coinductively in Figure 7.13 We
write term(τ) if the trace τ contains no local steps.

The judgement τ �S ph,pa,v : T assumes the initial configuration (σ0,h0) of the trace τ satisfies
h0 ∈ �ph ∗ pa (v) ∗ True�λ . Rule Stutter checks that any local step other than the linearisation
point updates the local Hoare view (to some p ′

h
) in a frame-preserving manner; this implies that,

before the linearisation point, the abstract state v needs to be preserved by such step. Rule LinPt
checks that the linearisation point is frame-preserving and consistent with the atomic postcon-
dition Qa. Both rules Stutter and LinPt check that the Hoare postcondition is satisfied if we
are considering the last local step of the trace (i.e., if term(τ) holds). Rule Env checks whether
the current environment step, assumed to happen before the linearisation point, can be seen as a
transition changing the abstract state from v to v ′ in a way that does not disrupt any frame (in-
cluding ph). If that is the case, then the rest of the trace is checked for safety. Rule Env’ performs
the same check but after the linearisation point. In both cases, if the environment step cannot be
seen as frame-preserving, then the trace is accepted, since the environment did not respect the
assumptions. Similarly, Rule Env� accepts the trace after a fault caused by the environment.

13Here, τ ranges over subsequences of traces.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:stutter
rule:linpt
rule:stutter
rule:linpt
rule:env
rule:env2
rule:env-fault

TaDA Live 16:35

As we briefly mentioned, Definition 3.26 is inspired by alternating automata [40]. The “alterna-
tion” aspect is necessary because of the angelic/demonic duality between local and environment
steps: When processing an environment step, we need to be prepared to handle every possible in-
terpretation of the update that took place; for local steps, we are allowed to pick any interpretation
of the update. Note that these ambiguities arise purely from the fact that we are instrumenting the
trace with “ghost” logical state: At each step there is no ambiguity in a trace about how the con-
crete state has been updated. This dual interpretation gives rise to the two kinds of transitions in
an alternating automaton. An automata-based presentation of the trace safety judgement would
use existentially branching transitions for local steps and universally branching transitions for en-
vironment steps. We further mimic alternating automata in the way we factor safety and liveness
constraints. Alternating automata impose safety constraints by constructing sets of runs that lin-
earise the choices for the existential transitions and the branching due to universal transitions. In
our setting these sets of runs correspond to T. The liveness constraints can then be checked by,
for example, requiring each run in the set to visit final states infinitely often, the usual Büchi-style
acceptance condition. Here, we also examine the instrumented traces of T individually and im-
pose a liveness acceptance condition; the condition in our case is more complex, as it has to take
into account layers, pseudo-quantifiers, and obligations. One key simplification introduced by this
approach is that we can cleanly separate the branching (safety) aspect—the quantifier alternation
due to duality environment/local steps—from the linear-time liveness aspect.

Building on trace safety, we can now define the semantics of a specification �S� as the set of
traces that are safe and that additionally satisfy the liveness constraints implied by the obliga-
tions and the liveness assumptions of S. Conceptually, we want to require local termination if the
environment satisfies the layered liveness invariants represented by pseudo-quantifiers and obli-
gations. To harmonise the pseudo-quantification and obligation-related liveness assumptions of a
specification, S, we collect all of them in a set of so-called pseudo-obligations:

PObS � { (r ,O) | r ∈ RId,O ∈ AOb } � { (r , live(A, r)) | r ∈ dom(A) } � {X �k X ′},

where A,X ,X ′, and k are taken from the specification.

We extend the layer function to lay : PObS → L by setting lay(a) = k if a = (r ,O) and lay(O) =
k , or a = (r ,X �k X ′), or a = (X �k X ′). Furthermore, define

PObS<k � {Ô ∈ PObS | lay(Ô) < k }, AOb<k � {O ∈ AOb | lay(O) < k }.

Now, we want to understand, for each position of a specification trace, which pseudo-obligations
we are holding locally and which are held by the environment. This information is contained in
the single worlds, so as a first step, we extract, from a specification trace, the set of traces of worlds
that it represents.

Definition 3.27 (World Traces). Given an atomicity context, A, we call world traces,
WTraceA , ranged over by τ̄ , τ̄ ′, . . ., the infinite sequences of the form (h0,w

0
h
,w0

a,w
0
e ,v

0) π0

(h1,w
1
h
,w1

a,w
1
e ,v

1) π1 . . ., where, for all i ∈ N, hi ∈ Heap, w i
h
,w i

a,w
i
e ∈ WorldA and vi ∈ AVal′.

We define the function:

Wλ (σ ,h,ph,pa,v) �
{

(h,wh,wa,we,v) ��� wh ∈ ph,wa ∈ pa (v),h ∈ �wh #wa #we�λ
}
,

which we extend to specification traces by Wλ (ĉ0 π0 ĉ1 π1 . . .) � {c0 π0 c1 π1 . . . |∀i .
ci ∈ Wλ (ĉi)}. A world trace (h0,w

0
h
,w0

a,w
0
e ,v

0) π0 (h1,w
1
h
,w1

a,w
1
e ,v

1) π1 . . . is Ra
A-respecting

if for all i ∈ N:

πi = env ⇒ w i
h Ra

A w i+1
h ∧ πi = loc ⇒ w i

e Ra
A w i+1

e .

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:36 E. D’Osualdo et al.

Given specification trace τ̂ ∈ STraceA , the set �τ̂	λ;A is the set of world traces of τ̂ , defined by

�τ̂	λ;A � {τ̄ ∈ Wλ (τ̂) | τ̄ is Ra
A-respecting}.

We lift � · 	λ;A to apply to sets of specification traces in the obvious way.

We can now define two predicates indicating when a pseudo-obligation is considered to be held
by the environment (envheldλ) or locally (locheldλ) in a position of a world trace:

envheldλ (Ô, (_,wh, _,we,v)) �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
θwe (r) & O ∧ lvlwh

(r) < λ if Ô = (r ,O)

astwh
(r) � X2 ∧ lvlwh

(r) < λ if Ô = (r ,X1 �k X2)

v ∈ X1 \ X2 if Ô = (X1�kX2)

locheldλ ((r ,O), (_,wh, _, _, _)) � θwh
(r) & O ∧ lvlwh

(r) < λ.

Equipped with these definitions, we can state the liveness constraints associated with a specifi-
cation. The idea is that one can assign the “blame” for local non-termination either to the environ-
ment or to the local behaviour. If we deem the environment responsible for non-termination, then
the specification will classify the trace as acceptable, otherwise it will reject it. The idea behind
this “blame” assignment is to examine the world traces justifying the safety of a trace and consider,
for each position, which obligations are held by the environment and which are held locally. To
understand the intuition, consider the case of liveness invariants encoded by obligations. Suppose
the environment always eventually fulfils every obligation, i.e., for each obligation O there are in-
finitely many positions whereO is not held by the environment. This environment is certainly live,
i.e., it respects the liveness assumptions and the local code is responsible for any non-terminating
behaviour. But what if the environment itself is blocking on some locally held obligation, and as a
consequence is not able to fulfil some O? Whether the environment or the local code is to blame
depends on the layers. The environment is to blame if, from some point in the trace, it never fulfils
some O but the local steps always eventually fulfil every obligation of layer strictly lower than
lay(O). Conversely, an environment that keeps O unfulfilled because of some forever-unfulfilled
obligation O ′ held locally with lay(O) > lay(O ′) cannot be blamed for local non-termination.

This intuition about obligations extends to liveness assumptions attached to pseudo-
quantifications in the triple and in the atomicity context. The liveEnv predicate given in Defini-
tion 3.28 formalises the above blame-assigning mechanism. A world trace that satisfies liveEnv is
one where the environment cannot be blamed for local non-termination. The specification seman-
tics then is the set of safe traces where, if liveEnv is satisfied, then the trace is locally terminating.

Definition 3.28 (Specification Semantics). Fix a specification S ∈ Spec with components named
as in (�). The liveEnvS (τ̂) predicate checks whether the environment is satisfying the liveness
assumptions of the specification:

liveEnvS (τ̄) � ∀Ô ∈ PObS<m . if ∀r ,O ∈ AOb≤lay(Ô) .∀i ∈ N. ∃j ≥ i .¬ locheldλ ((r ,O), τ̄ (j))

then ∀i ∈ N. ∃j ≥ i .¬ envheldλ (Ô, τ̄ (j)).

Let ph =W�Ph�
σ0

A , and pa =Wa�Pa�. We define the trace semantics �S� ⊆ Trace of specifica-
tion S as the set:

�S� �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(σ0,h0) τ

��������
∀v0 ∈ X . if h0 ∈ �ph ∗ pa (v0) ∗ True�λ

then ∃T. (σ0,h0) τ �S ph,pa,v0 : T

∧ ∀τ̄ ∈ �T	λ;A . liveEnvS (τ̄) ⇒ lterm((σ0,h0) τ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

where λ and A are the level and atomicity context from the specification S.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:37

The more precise intuition behind the specification semantics is as follows: Once it has been
established that there is a way to instrument the trace to justify why the local steps satisfy the
safety constraints of S, we consider the set of valid instrumentations T. First, we extract the set of
world traces represented by the traces of T. Each such world trace should either be locally termi-
nating, in which case the trace is accepted, or, if it is non-terminating, the non-termination should
be due to the environment not satisfying the liveness assumptions of S. The predicate liveEnvS (τ̂)
holds for a specification trace τ̂ if the environment always eventually fulfils any pseudo-obligation
with layer k and if no obligation of layer < k is constantly held by the local thread. Blame for non-
termination can be unambiguously assigned, thanks to well-foundedness of layers: If there is a
forever-unfulfilled local obligationO0, then we can try to blame the environment by identifying a
lower-layer obligationO1 that is forever-unfulfilled by the environment; the environment can shift
the blame back to the local steps if one can find a lower-layer local obligation O2 that is forever-
unfulfilled. Well-foundedness implies this blame-shifting game must be bounded in length and
the ultimate culprit can always be identified. This effectively encodes the acyclicity of the layered
termination argument.

3.10 The Semantic Judgement

We are now ready to define the semantic version of our judgements, �Φ C : S, indexed by a
function specification context, Φ, which, for each function, provides the arguments of the function
and the specification of the function body.

Definition 3.29 (Function Specification Context). A function specification context, Φ, is a partial
function Φ ∈ FSpec � FName⇀ (PVar∗, Spec).

Definition 3.30 (Semantic Triple). Given φ ∈ FImpl and Φ ∈ FSpec, a function implementation
context φ is a correct implementation of Φ, written � φ : Φ, if and only if ∀f,�x,S.Φ(f) = (�x,S) ⇒
∃C.φ (f) = (�x,C) ∧ �C�φ ⊆ �S�. The semantic triple �Φ C : S, stating that command C satisfies

specification S under any correct implementation of the functions specified in Φ, is defined by:

�Φ C : S if and only if ∀φ. � φ : Φ ⇒ �C�φ ⊆ �S�.

Note that when C has no free function names, the judgement �Φ C : S is equivalent to �C� ⊆ �S�.

Since the semantics of our triples is a complex conditional termination statement, it is useful
to show when it corresponds to unconditional termination. Intuitively, to state facts about the be-
haviour of a command in an “empty” environment, we should be using a Hoare triple (no resource
needs to be shared, no interference experienced) and there should be no assumption of obligations
being owned by the environment. We characterise the preconditions that ensure this as the ones
that always admit empλ

Ob
as a global frame.

Definition 3.31 (Grounded View). Fix an arbitrary level λ. We say p ∈ View∅ is λ-grounded if

∀h.h ∈ �p ∗ True�λ ⇒ h ∈ �p ∗ empλ
Ob�λ .

We say a stable assertion P is λ-grounded if, for all σ ∈ Store, the view W�P�σ
∅ is λ-grounded.

Examples of grounded assertions are standard separation logic assertions like emp or x �→ v .
Unconditional termination applies to programs running in isolation. Note that, technically, we

cannot consider traces without environment steps as the fairness constraint requires infinitely
many of those. We therefore model the isolated executions of a command as the executions where
the environment steps do not modify the current state. It is easy to check that, for each finite or
infinite sequence of local steps of C, there is a corresponding fair trace of C with only identity
environment steps and vice versa.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:38 E. D’Osualdo et al.

Definition 3.32 (Closed-world Semantics). Given a commandC, its closed-world semantics C�C� ⊆
Trace is the subset of the open-world semantics �C� of the traces where every environment step is

an identity step, i.e., of the form c
env−−−→ c . Additionally, for an assertion P , we define C�C�(P)λ �

{(σ ,h)τ ∈ C�C� | h ∈ �W�P�σ
∅ ∗ True�λ }, which is the closed-world traces of C that start from a

state satisfying the precondition P .

Theorem 3.33 (Adeqacy). For every λ-grounded assertion P , if m; λ; ∅ �
{
P
}
C
{
Q
}
, then all

traces in C�C�(P)λ are locally terminating.

Proof. Take a trace (σ ,h)τ ∈ C�C�(P)λ and let p = W�P�σ
∅ . From the semantic triple, we

know that C�C�(P)λ ⊆ �C� ⊆ �
{
P
}
·
{
Q
}
�. We have h ∈ �p ∗ True�λ and, since P is λ-grounded,

h ∈ �p ∗ empλ
Ob
�λ . By the definition of the specification trace semantics, we therefore know that

(σ ,h) τ �S p, emp, 1 : T for some T. Note that a frame-preserving update on a grounded view keeps
it grounded, and that identity environment steps can always be justified as a frame-preserving
update that does not update the resources. In particular, from these facts, we can deduce that there
is some τ̂ ∈ T such that at each point in time the global frame is empλ

Ob
. From this, we can extract

a world-trace τ̄ ∈ �T	λ;∅ such that ∀Ô ∈ POb<m .∀i ∈ N.¬ envheldλ (Ô, τ̄ (i)) which implies
liveEnv(τ̄). By the definition of the specification’s semantics this implies local termination of our
concrete trace (σ ,h)τ . �

As a corollary, we have that if m; λ; ∅ �
{
emp

}
C
{
True

}
holds, then every isolated execution

of C from the empty heap and arbitrary store terminates.

4 TADA LIVE RULES

We now introduce the rules of TaDA Live, summarised in Figure 9, using a simple but tricky run-
ning example to motivate and explain them.

Example 4.1 (Distinguishing Client). Consider the following client of a lock module:

lock(x);

[done]� true;

unlock(x);

var d= false in

while(¬d){
lock(x); d� [done]; unlock(x);

}

The code is interesting in that it can distinguish whether the lock implementation is a spin or CLH
lock. Under weak fairness, when x is a spin lock, this client program does not always terminate. It
is possible for the lock invocation of the left thread to be scheduled infinitely often but always in
a state in which the lock is locked. As a result, done will never be set to true, making the while
loop spin forever. The spin lock has been starved by the other thread. In contrast, when x is a CLH
lock, this client program is guaranteed to terminate: A fair scheduler will eventually allow the left
thread to enqueue itself in the internal queue of the lock; from then on, the thread on the right
can only acquire the lock at most once; after unlocking, the next lock(x) call of the right thread
would enqueue it after the left thread, which is now the only unblocked thread. The CLH lock is
starvation free.

It is worth noting that none of the proof principles of References [5, 8, 13, 14, 21, 32] are powerful
enough to handle this example due to the blocking behaviour it displays. Even replacing locks with
primitive locks, due to the mix of busy-waiting blocking and locks, the example cannot be handled
by any of the proof systems of References [3, 22, 26, 28]. Since LiLi does not have a rule for parallel,
this client cannot be proven within the LiLi logic.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:39

We show that the distinguishing client terminates with the CLH lock by proving the Hoare triple

� 	
{
L(x, 0) ∗ done �→ false

}
C� ‖ Cr

{
True

}
, where C� and Cr are the left and right threads of

the example, respectively. Since our triples are total, this triple immediately guarantees termination
of the program. Our overall argument is as follows: The CLH specification guarantees termination
of a call to lock(x) if the lock is always eventually unlocked by the environment. This is intuitively
true for both threads: They always unlock the lock after having acquired it. The call to lock(x)
will therefore terminate in both threads. The only other potentially non-terminating operation is
the while loop in the right thread. The loop is implementing a busy-wait pattern on done and
needs the help of the left thread to terminate. We will be able to prove that, since done is going to
be eventually set to true (and never reset to false), the loop will terminate.

4.1 The Basics: Regions

Let us formalise the argument in TaDA Live, introducing the proof rules as they are needed. Recall
the specifications of CLH lock:

1 	

A

l ∈ {0, 1} �0 {0}.
〈
L(x, l)

〉
lock(x)

〈
L(x, 1) ∧ l = 0

〉
,

0 	
〈
L(x, 1)

〉
unlock(x)

〈
L(x, 0)

〉
,

where we make explicit the previously omitted layers 1 > 0 (we justify the choice of layers in the
proof of CLH lock). These specifications will be available in the proof as “axioms” stored in a func-
tion specification context Φ parametrising every triple of the client proof; we omit the parametri-
sation to aid readability. The predicate L(x, l) is given a definition in the proof of the lock module,
and, in the spirit of CAP, the client proof should not be relying on the Definition of the predicate
but in its abstract properties. Here, we rely on the fact that L(x, _) ∗ L(x, _) is false, expressing that
a lock is an exclusively owned resource—see Section 4.8 for the other properties of L exposed to
the client.

The two threads of the distinguishing client both access the lock x and the heap cell done.
Consider the precondition L(x, 0) ∗ done �→ false. Both resources in the precondition are non-
duplicable, so if we give them to C� , then the other thread would not be able to also have them.
As we anticipated, shared state in TaDA is handled using regions. We therefore introduce a new
region type dc (for distinguishing client) that encapsulates the resources in the precondition:
dcr (x , done, l ,d) is the shared resource encapsulating a lock at x with state l and a cell at done
storing the Boolean d . Although in this case the abstract state is not hiding any detail, since both l
andd are visible, in general the abstraction of the contents is an essential mechanism for reasoning
about abstract atomicity. In the proof of CLH lock, for example, to be able to see the operations as
abstractly atomic, it is essential to hide the queue from the abstract state.

Assuming the lock region encapsulated by the L predicate has level λ, the lock specifications
will have level λ + 1 in the context, indicating they consider the lock region closed. To allow dc

to encapsulate the lock region and use the lock specifications to derive updates to its own state,
we let it have level λ + 1. The top-level triples for the distinguishing client have level λ + 2 as a
consequence. We will elide all details about levels, as they can be mechanically inferred from the
applications of the LiftA and UpdReg rules.

We now design the protocol of the region, with the intent of encoding the following safety
invariants:

(I1) the addresses of the lock and the flag never change;
(I2) only the thread that acquired the lock can unlock it;
(I3) only the left thread will ever modify done, and at most once from false to true;

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:lift-atomic
rule:update-region

16:40 E. D’Osualdo et al.

and the following liveness invariants:

(I4) the lock will always eventually be unlocked;
(I5) the value at done will always eventually be true.

Note that, together, invariants (I3) and (I5) imply that eventually the value at done will always be
true. To encode invariants (I2) and (I3), we introduce a guard algebra for dc generated from two
guards k (for key) and d (for done), with k • k = ⊥ and d • d = ⊥ to represent exclusivity of
the permissions they give on the lock and flag, respectively. We can reuse the same guard algebra
for the obligation algebra associated with dc: The atom obligations k and d will represent liveness
invariants (I4) and (I5), respectively. The protocol Tdc formalises all the invariants:

0 : ((x , done, 0, d), 0)� ((x , done, 1, d), k), (13)

k : ((x , done, 1, d), k)� ((x , done, 0, d), 0), (14)

d : ((x , done, l , false),d)� ((x , done, l , true), 0). (15)

The fact that no transition can change x and done encodes (I1); this is such a common pattern
that we adopt the convention to declare which are the fixed components of the abstract state and
omit them from the protocol transitions completely. The choice for the guards of Equations (14)
and (15) reflects (I2) and (I3), respectively; we will give d to the left-hand thread, and k will be
obtained by locking the lock. The obligation k is obtained by locking and fulfilled by unlocking;
the obligation d is fulfilled by setting done to true; these facts encode (I4) and (I5).

We assign layers to the obligations to reflect the intuitive dependency: The lock needs to be
assumed live in the process of fulfilling the obligation on the flag. We therefore set ⊥ < 0 =

lay(k) < lay(d) = 1 < �.
To complete the definition of shared region dc, we link its abstract state to the actual heap

content that it encapsulates using the region interpretation:

I (dcr (x , done, l ,d)) � L(x , l) ∗ done �→ d ∗
(
l = 0

.
⇒ [k]L

r

)
∗

(
d

.
⇒ [d]L

r

)
.

This assertion describes a portion of the heap being shared (the lock at x and the cell at done) and
the linking of the ghost state (the guards and obligations) with the abstract state. The assertion [k]L

r

is an abbreviation for �k�r ∗ �k�L
r , which indicates local ownership of the guard k and obligation k.

The interpretation of a region establishes the invariant that, when l = 0, the guard and obligation k
will be “owned” by the region (and by no thread as a consequence). Similar links are established
between the value of d and d.

Now that we set the scene, we can proceed with the proof, outlined in Figure 8. The first op-
eration to do is to transform the precondition L(x, 0) ∗ done �→ false to an assertion about the
dcr (x, done, l ,d) region. We can do that by using the consequence rule:

A � P stable A � Q stable

λ;A � P� P ′ m; λ;A 	Φ

{
P ′
}
C
{
Q ′} λ;A � Q ′�Q

m; λ;A 	Φ

{
P
}
C
{
Q
} ConsH

which allows the use of viewshift to logically manipulate the assertions. Since triples are only
well-defined if the Hoare pre-/post-conditions are stable, the rule asks to check stability of the
assertions of the conclusion, as this does not follow from stability of the assertions of the triple in
the premise. An analogous rule, called Cons, holds for hybrid triples—with no stability checks on
the atomic pre-/post-conditions—so viewshifting is available at any point in a derivation.

In our example, we want to create the guards and obligations needed to match the interpretation
of dcr (x, done, l ,d) and create the region, replacing its interpretation. Here, we might be tempted

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:consequence

TaDA Live 16:41

Fig. 8. Proof sketch of the distinguishing client. Here, L = (∃l ,d . dcr (x, done, l ,d) ∗ (l = 1
.
⇒ �k�E

r)).

to match the interpretation with l = 0 and d = false, L(x, 0) ∗ done �→ false ∗ [k]L
r ∗ [d]L

r to

viewshift to dcr (x, done, 0, false)∗�d�L
r . While this viewshift holds, there is an issue: In TaDA Live,

all the assertions in Hoare triples (or in Hoare position in hybrid triples) need to be stable for the
triple to have well-defined semantics. The proof system enforces the stability of these assertions,
by inserting stability checks in crucial rules. This means that if we viewshift now to a non-stable
assertion, then we would fail at some point in the derivation to satisfy a stability check. While
L(x, 0) ∗ done �→ false is stable, as we own these resources, the assertion dcr (x, done, 0, false) ∗
�d�L

r is not stable: A region is subjected to the transitions of the protocol. Since we have the guard
d (from [d]L

r) the environment cannot own it, hence cannot fire the transitions guarded by d; this
makes d = false stable. The transitions changing the state of the lock, however, can affect the

region. This leads us to14 ∃r , l . dcr (x, done, l , false) ∗ [d]L
r ∗

(
l = 1

.
⇒ �k�E

r

)
where we also add

�k�E
r when l = 1, a stable fact.

4.2 The Parallel Rule

We now want to proceed with an application of the parallel rule:

m1; λ;A 	Φ

{
P1

}
C1

{
Q1

}
	A Q1 �m2 � m

m2; λ;A 	Φ

{
P2

}
C2

{
Q2

}
	A Q2 �m1 � m

m; λ;A 	Φ

{
P1 ∗ P2

}
C1 ‖ C2

{
Q1 ∗Q2

} Par

The abbreviation 	A P � k means ∀r ∈ RId. 	A P ⇒ r � k , that is, all the obligations owned by P
have layer 	 k . 	A P � k � k ′ means 	A P � k and k � k ′. The intuition behind these constraints

14Recall that B
.
⇒ Q stands for (B ∧Q) ∨ (¬B ∧ emp).

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:42 E. D’Osualdo et al.

is as follows: The layer in the context of the triples indicates a strict upper bound on the layers
that can be assumed live in the proofs of the triples. If thread 2 needs layers lower than m2, then
if thread 1 has unfulfilled obligations by the end of its execution, these cannot conflict with the
assumptions made by the proof of thread 2. It is not, however, sound to leave an obligation O2

of layer < m2 unfulfilled by thread 1: If thread 1 terminates first, leaving O2 unfulfilled in its
postcondition, then thread 2 may be assumingO2 live in a situation where it will never be fulfilled.

In our example, we need to apply consequence again to massage the viewshifted precondition

into an assertion of the form P1 ∗ P2. The region assertion is duplicable, as is l = 1
.
⇒ �k�E

r , but
we want to give the non-duplicable resource [d]L

r to the thread on the left, as it is the one that will
fulfil the d obligation. This has a side-effect though: Since the d guard is given to the left thread,
the value of d from the right thread’s perspective is not stably false. Moreover, we want to know

that the left thread has the obligation d. So, we use [d]L
r ⇔ [d]L

r ∗ �d�E
r to give �d�E

r to the thread

on the right, and we stabilise the assertion to ¬d
.
⇒ �d�E

r . All in all, we obtain:(
∃r , l . dcr (x, done, l , false) ∗ [d]L

r ∗
(
l = 1

.
⇒ �k�E

r

))
⇒ ∃r . P1 ∗ P2,

P1 � ∃l . dcr (x, done, l , false) ∗ [d]L
r ∗

(
l = 1

.
⇒ �k�E

r

)
,

P2 � ∃l ,d . dcr (x, done, l ,d) ∗
(
l = 1

.
⇒ �k�E

r

)
∗

(
¬d

.
⇒ �d�E

r

)
,

which allows us to apply consequence and the standard ∃Elim rule to obtain a precondi-
tion in the form required by the Par rule. For both threads, we are aiming at postcondition
∃l . dcr (x, done, l , true) which has no obligation, so it satisfies the layer conditions trivially.

To see why the layer conditions are important for soundness, imagine we forgot to unlock x in

the left thread, obtaining a non-terminating program. We would obtain �k�L
r in the postcondition

of C� , but the check would fail as 0 = lay(k) �	 �. Choosing 0 for the context layer of the triple
for Cr would not work: In its proof, we need to assume d live, and lay(d) = 1.

4.3 Handling a Call to lock

Let us focus on the proof of the left-hand thread first. The difficult step is the execution of the first
instruction, since this is the only potentially non-terminating instruction of the thread. If we let

L = ∃l ,d . dcr (x, done, l ,d) ∗
(
l = 1

.
⇒ �k�E

r

)
, then Step 1 can be derived as follows:

1 	

A

l ∈ {0, 1}.
〈
L ��� ∃d . dcr (x, done, l, d)

〉
lock(x)

〈
L ∗ [k]L

r
��� ∃d . dcr (x, done, 1, d)

〉
1 	

〈
L ��� ∃l, d . dcr (x, done, l, d)

〉
lock(x)

〈
L ∗ [k]L

r
��� ∃d . dcr (x, done, 1, d)

〉 A∃Elim

1 	
{
L ∗ ∃l, d . dcr (x, done, l, d)

}
lock(x)

{
L ∗ [k]L

r ∗ ∃d . dcr (x, done, 1, d)
} AtomW

1 	
{
∃l, d . dcr (x, done, l, d) ∗

(
l = 1

.
⇒ �k�E

r

)}
lock(x)

{
∃d . dcr (x, done, 1, d) ∗ [k]L

r

} Cons

1 	
{
∃l . dcr (x, done, l, false) ∗ [d]L

r ∗
(
l = 1

.
⇒ �k�E

r

)}
lock(x)

{
dcr (x, done, 1, false) ∗ [d]L

r ∗ [k]L
r

} FrameH

� 	
{
∃l . dcr (x, done, l, false) ∗ [d]L

r ∗
(
l = 1

.
⇒ �k�E

r

)}
lock(x)

{
dcr (x, done, 1, false) ∗ [d]L

r ∗ [k]L
r

} LayWH

Let us unpack the derivation. As a first step, we would like to frame the irrelevant resources, in

this case �d�L
r . In TaDA Live, this step is more subtle and interesting than usual, because of the

layer-related side-conditions of rule FrameH (a special case of rule Frame):

fv(R) ∩mod(C) = ∅
	A R �m m; λ;A 	Φ

{
P

}
C
{
Q

}
A � R stable

m; λ;A 	Φ

{
P ∗ R

}
C
{
Q ∗ R

} FrameH

With this rule, one can only frame obligations if they are of layer greater or equal the context layer.
Here, we can use consequence (omitted) to obtain a stable frameR = ∃l . dcr (x, done, l , false)∗[d]L

r

of the pre- and postconditions. We have 	 R � 1 but �	 R � �; since the layer in the context of

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:parallel
dist-client:left-lock-1
rule:atomic-exists-elim
rule:atomicity-weak
rule:consequence
rule:frame-hoare
rule:layer-weak
rule:frame-hoare
rule:frame

TaDA Live 16:43

the goal is �, before we can apply FrameH, we need to artificially lower the layer using LayWH
before applying frame:

m1 � m2

m1; λ;A 	Φ

{
P
}
C
{
Q
}

m2; λ;A 	Φ

{
P
}
C
{
Q
} LayWH

Notice that lowering the layer in the context is always sound (even for hybrid triples): If we can
prove the triple assuming live only layers < k1 � k2, then the proof is valid in contexts where
layers up to k2 can be assumed live.

The layer constraint of Frame is crucial for soundness. Suppose we remove the constraint. Then,
we would be able to frame a locally held obligation O with layer k < m, i.e., one of the layers
that might be assumed live by the proof. This would allow the proof to assume live environment
obligations that have layer 	 k , the eventual fulfilment of which might depend on the eventual
fulfilment of O . But, since O is in the frame, it is constantly held and not fulfilled for the whole
duration of the execution of the command we are proving. The frame condition forces us to record
the “minimum” layer of the frame in the context, ruling out unsound circular reasoning.

After framing, we use the rule of consequence to massage the assertions to prepare them to the
form required for the later application of LiveC.

The rest of the derivation does not involve liveness reasoning and follows a standard TaDA
proof pattern. We use A∃Elim and AtomW to turn the Hoare triple into an atomic triple:

m; λ;A 	Φ

A

x ∈ X �k X ′, z ∈ Z .
〈
Ph

��� Pa (x , z)
〉
C

〈
Qh

���Qa (x , z)
〉

m; λ;A 	Φ
A

x ∈ X �k X ′.
〈
Ph

���∃z ∈ Z . Pa (x , z)
〉
C

〈
Qh

���∃z ∈ Z .Qa (x , z)
〉 A∃Elim

A � P ′ stable m; λ;A 	Φ

〈
P ��� P ′〉 C 〈

Q ��� Q ′〉 A � Q ′ stable

m; λ;A 	Φ

{
P ∗ P ′

}
C
{
Q ∗Q ′} AtomW

Rule A∃Elim says that if one can prove the command is resilient to interference on z and does not
affect the resource on z until its atomic update, then we can relax the specification to state that the
command allows changes to z and might also affect z during the interference phase. Rule AtomW
says that if you prove a command is atomic, then you can relax the specification not to insist on
atomicity; this can be done provided the atomic pre- and postcondition are stable, as required for
the Hoare triple to be well-defined.

The combination of A∃Elim and AtomW simply states that if we can prove a command per-
forms an update atomically, and the pre- and postconditions are stable, then we can prove that the
command also performs the update non-atomically.

Now let us consider the derivation for Step 2, which lifts the specification of CLH lock to the
context of the client:

1 	

A

l ∈ {0, 1} � {0}.
〈
L(x, l)

〉
lock(x)

〈
L(x, 1) ∧ l = 0

〉
1 	

A

l ∈ {0, 1} � {0}, d ∈ Bool.
〈
L(x, l)

〉
lock(x)

〈
L(x, 1) ∧ l = 0

〉 SubPqA

1 	

A

l ∈ {0, 1} � {0}, d ∈ Bool.
〈
I (dcr (x, done, l, d))

〉
lock(x)

〈
I (dcr (x, done, 1, d)) ∗ [k]L

r

〉 Frame

1 	

A

l ∈ {0, 1} � {0}, d ∈ Bool.
〈
emp

��� dcr (x, done, l, d)
〉
lock(x)

〈
[k]L

r
��� dcr (x, done, 1, d)

〉 LiftA

1 	

A

l ∈ {0, 1} � {0}.
〈
emp

��� ∃d . dcr (x, done, l, d)
〉
lock(x)

〈
[k]L

r
��� ∃d . dcr (x, done, 1, d)

〉 A∃Elim

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:frame-hoare
rule:frame
rule:liveness-check
rule:atomic-exists-elim
rule:atomicity-weak
rule:atomic-exists-elim
rule:atomicity-weak
rule:atomic-exists-elim
rule:atomicity-weak
dist-client:left-lock-2
rule:frame
rule:lift-atomic
rule:atomic-exists-elim

16:44 E. D’Osualdo et al.

Rule SubPqA simply gives a way to manipulate the pseudo-quantified variable and its domain:

f : X → Y Y ′ = f (X ′)
∀x ∈ X . 	A P ′(x) ⇔ P (f (x)) ∀x ∈ X . 	A Q (f (x)) ⇔ Q ′(x)

m; λ;A 	Φ

A

y ∈ Y �k Y ′.
〈
P (y)

〉
C

〈
Q (y)

〉
m; λ;A 	Φ

A

x ∈ X �k X ′.
〈
P ′(x)

〉
C

〈
Q ′(x)

〉 SubPqA

These are manipulations that would normally be carried out using consequence, but need to be
done specially, since the pseudo-quantifier is a component of triples and not of assertions. In our
example, we simply use it to remove the unused variable d , choosing f : {0, 1} × Bool → {0, 1} to
be the first projection.

The interesting step of the derivation of Step 2 is the application of LiftA:

r ∈ dom(A) ⇒ R = id A � P (x), Q (x, z) λ-safe
A � P (x), Q (x, z) λ+1-obl. free { ((x, O1), (z, O2)) | x ∈ X ∧ R (x, z) } ⊆ Tt (G)

m; λ; A 	Φ

A

x ∈ X �k X ′ .
〈
I (tλ

r (x)) ∗ �G �r ∗ P (x) ∗ �O1 �L
r

〉
C

〈
∃z . I (tλ

r (z)) ∗Q (x, z) ∧ R (x, z) ∗ �O2 �L
r

〉
m; λ+1; A 	Φ

A

x ∈ X �k X ′ .
〈
�O1 �L

r
��� tλ

r (x) ∗ �G �r ∗ P (x)
〉
C

〈
�O2 �L

r
��� ∃z . tλ

r (z) ∗Q (x, z)
〉 LiftA

Let us unpack it. The purpose of the rule is to take an atomic specification that applies to some
resource and lift it to the effect the atomic update has on some region that contains that resource
in its interpretation. In our example, it says: You have proven that the command locks the lock;
the lock is part of the interpretation of dcr (s, x, done, l ,d) and the update to the lock amounts to
going from the interpretation with l = 0 to the interpretation with l = 1. The rule needs to make
sure that the region update is among the ones permitted by the associated protocol. It does so by
checking:

(1) that there is a transition in the protocol matching the update;
(2) that such transition is guarded by a guard that is owned;
(3) that the local obligations are updated as the protocol mandates.

To check the first condition, the rule uses a relation R between abstract states of the region; by the
fourth premise, R can only include updates that the owner ofG is allowed to perform. The second
condition is enforced by requiring the precondition to own G. The third condition is ensured by
going from owningO1 to owningO2, which, according to the fourth premise, is the expected update
of obligations. In our example, we haveO1 = 0 andO2 = k and the update matches transition (13).
The third premise uses the abbreviation “A � P λ-obl. free,” which stands for 	A P ⇒ empλ

Ob
.

This implies that P and Q cannot own obligations of r , and so O1 and O2 capture the whole of
the updated obligations. Note that because of the well-formedness restrictions on triples, in the
conclusion of the rule the obligations are transferred to the Hoare pre-/post-conditions: There they
belong to a closed region. The first premise says: If the region we are updating is tracked by the
atomicity context, then this needs to be a trivial update, or else it would count as a linearisation
point (which is instead handled using rule UpdReg). In our example A = ∅, as we are not proving
atomicity of the client, we are allowed any protocol compliant update.

Finally, the second premise A � Q (x , z) λ-safe requires Q to preserve its meaning at level λ+1.
The formal definition of λ-safety is given in Appendix B.2.1; all the λ-safety conditions in our
proofs can be immediately discharged by applications of the following lemma:

Lemma 4.2. The properties below hold, for arbitrary λ ∈ Lvl:

(1) emp, E1 �→ E2 and B are λ-safe.

(2) �G�r and �O�L
r are both λ-safe.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

dist-client:left-lock-2
rule:lift-atomic
rule:update-region

TaDA Live 16:45

Fig. 9. Key TaDA Live rules. Abbreviations: 	A P � k means ∀r ∈ RId. 	A P ⇒ r � k ; A � P λ-safe can be

discharged using Lemma 4.2; A � P λ-obl. free means 	A P ⇒ empλ
Ob

; k ·	 n means (∀k ′ > k .k ′ 	 n).

(3) If λ′ < λ, then tλ′
r (a) ∗ �O�E

r is λ-safe.
(4) If P ,Q are both λ-safe, then so are P ∧Q , P ∨Q , and P ∗Q .
(5) If P (v) is λ-safe for all v ∈ AVal, then ∃x . P (x) is λ-safe.

4.4 The LiveC Rule

In a TaDA safety proof, the derivations of Step 1 and Step 2 could be plugged together: The safety
specification of the lock operation does not contain the {0, 1} � {0} component, and the premise

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:liveness-check
dist-client:left-lock-1
dist-client:left-lock-2

16:46 E. D’Osualdo et al.

of Step 1 matches exactly the conclusion of Step 2 (modulo framing L, which would anyway not be
used in a safety proof). In TaDA Live, the discrepancy between the two steps expresses the need
for a termination argument for this call. What needs to be proven is the fact that, in the current
context of the dc protocol, during the interference phase of this call to lock(x), the environment
will always eventually unlock the lock. The LiveC rule allows to remove the liveness condition of
the specification in a context where the corresponding liveness invariant can be proven to hold:

n; λ;A 	 L M−−� T m 	 n k ·	 n ∀x ∈ X . 	λ;A Pa (x) ∗T ⇒ x ∈ X ′

m; λ;A 	Φ

A

x ∈ X �k X ′.
〈
Ph

��� Pa (x)
〉
C ∃y.

〈
Qh (x ,y) ���Qa (x)

〉
m; λ;A 	Φ

A

x ∈ X .
〈
Ph ∗ L ��� Pa (x)

〉
C ∃y.

〈
Qh (x ,y) ∗ L ���Qa (x)

〉 LiveC

The first premise n; λ,A 	 L
M−−� T is called the environment liveness condition, and it roughly

corresponds to checking �L ⇒ ��T (with M acting as a certificate of the property holding,
explained later). Here, we pick:

L � ∃l ∈ {0, 1},d . dcr (x, done, l ,d) ∗
(
l = 1

.
⇒ �k�E

r

)
, (16)

T � ∃d . dcr (x, done, 0,d), (17)

and we can conclude �L ⇒ ��T , because whenT does not hold, i.e., l = 1, then we know, from L,
that �k�E

r holds; if we can show k is live, then the protocol says that if the environment holds k,
then it will eventually fulfil it; under the protocol the transition fulfilling it is setting l = 0, which
brings us toT . The environment can always set l = 1 again after that, but the same argument then
applies.

To show k is live, we have to look at the layers. Here, we havem = 1 and k = 0 = lay(k). Recall
that k ·	 n holds if ∀k ′ > k .k ′ 	 n. We can therefore set n = 1: 0 ·	 1 holds, since ∀k ′ > 0.k ′ 	 1.
Since we do not own any obligation locally (d has been framed, recording this fact in the context
layerm), we can consider k live when proving the environment liveness condition.

The environment liveness condition is the central component of both LiveC and While; we
explain it in depth now, and then resume our proof of the distinguishing client.

4.5 The Environment Liveness Condition

The essence of the termination argument is captured in LiveC and While by the conditions of

the form m; λ;A 	 L
M−−� T . They establish “always eventually T holds” facts. The condition

is parametrised by L, an assertion that holds at any point in the traces we are considering, an
assertion T , characterising the so-called target states, and an assertion M (α) parametric on some
ordinal α , which represents the environment progress measure. Intuitively, the condition states
that, from any state satisfying L∗M (α), for someα , we can find an environment transition that must
eventually happen that would take us either toT , or to some state satisfying L∗M (α ′) with α ′ < α .
Additionally, any transition from L to L that may happen does not strictly increase the progress
measure, unless they end in a target state. The transitions that must happen are characterised by
being those that either: (1) fulfil some obligation known to be in the environment and with layer
lower than the ones we may hold locally, or (2) fulfil some environment liveness assumption stored
in A with layer lower than the ones we may hold locally. This entails that, under an environment
that always eventually fulfils the obligations we are assuming live, �L ⇒ ��T holds, as desired.

In the While rule, an environment liveness condition is combined with the condition

∀α .A � ∃α ′. L ∗M (α ′) ∧ α ′ ≤ α stable,

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

dist-client:left-lock-1
dist-client:left-lock-2
rule:liveness-check
rule:liveness-check
rule:while
rule:liveness-check
rule:while
rule:while

TaDA Live 16:47

Fig. 10. Environment liveness condition rules.

which requires us to prove that any protocol-compliant step from a state satisfying L ∗M (α0) for
some α0 will take us to a state satisfying L ∗ M (α1) for some α1 ≤ α0. In other words, in traces

satisfying �L the progress measure never increases. This, in conjunction withm; λ;A 	 L M−−� T ,
entails �L ⇒ ��T , as needed for soundness of rule While.

Take the environment liveness condition required by the application of LiveC in the proof of
the distinguishing client. Givenm = 1 and M (α) = (α = 0), we have to prove:

m; λ;A 	 ∃l ∈ {0, 1}. dcr (x, done, l , _) ∗
(
l = 1

.
⇒ �k�E

r

) M−−� dcr (x, done, 0, _).

That is, during the interference phase, we know that at any point in time the lock will be in some
state l ∈ {0, 1}; we want to prove that the environment will always eventually set l to 0. Here, this
is particularly easy to show: L states that when l = 1 the obligation k is held by the environment;
since lay(k) = 0 < 1 = m (and L does not hold obligations), we can assume the obligation will
be eventually fulfilled; the only transition that can fulfil it is the one that sets l = 0, so in exactly
one such step we reach T . This justifies the trivial definition of M : We do not need to keep track
of progress towards T , as we reach it in exactly one of the steps that must eventually happen.

The environment liveness condition can be proven using the rules in Figure 10. The only rule
that applies directly is EnvLive, which checks that in a state satisfying L one can always mea-
sure progress (second premise), and then asks to discharge an auxiliary judgement of the form

m; λ;A 	 L(α) : L(α)
M−−� T , which is best explained with the help of the illustration in Figure 11.

The condition works under the hypothesis that the assertion L holds at any point of the traces un-
der consideration, so in the picture we are considering infinite sequences of steps within the outer
rectangle. The target statesT describe some subset of L, which we want to show is visited infinitely
often15 by any infinite trace that complies with the liveness rely as specified by the region proto-
cols and pseudo-quantifiers. Rule ECase allows the splitting of the invariant L into a disjunction
of, say, L1,L2,L3, andT , as in the picture. We need to prove there is going to be eventual progress

15Notice that “T is visited infinitely often” is equivalent to ��T .

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:while
rule:liveness-check
rule:envlive
rule:envlive-case

16:48 E. D’Osualdo et al.

Fig. 11. Illustration of rule EnvLive and the imprA condition.

towards reachingT from each of these cases. If we start fromT , then we already reached the target,
and this case can be discharged by rule LiveT. The other cases are covered by Rule LiveO, which
justifies progress by appealing to an environment-owned atomic obligationO that is live (premises
two and three); and Rule LiveA, which justifies progress by appealing to a liveness assumption
stored in the atomicity context. The EQuant rule is a generalisation of rule ECase.

To see how progress is justified, consider the trace of Figure 11 starting from w0. Assume the
progress measure atw0 is α1 (i.e., L∗M (α1) holds inw0). Each case Li can be discharged with either
rule LiveO or rule LiveA. Imagine L1 is discharged using LiveO: The rule requires us to find an

obligation a that, in every state of L1, is necessarily owned by the environment (�a�E
r) for some

region tr (_). Then the imprA condition checks that the progress measure will improve when the
environment will fulfil a; formally:

Definition 4.3 (imprA). Given assertions L(α), L′(α) and T , the condition imprA (L′,L,T) holds
if and only if, for arbitrary σ ∈ Store, letting

l (α) =W�L(α)�σ
A , l ′(α) =W�L′(α)�σ

A , t =W�T ∗ True�σ
A ,

the following holds:
∀α1,α2 ≥ α1. R

a
A (l ′(α1)) ∩ l (α2) ⊆ l ′(α1) ∪ t .

Intuitively, the imprA condition considers an arbitrary transition (w1,w2) from the current
case L′ to L, obeying the atomic rely (thus allowed by the safety constraints of the protocols).
It then compares the progress measure α1 and α2, taken before and after the transition, checking
that:

(1) the measure strictly improved (α1 > α2); or
(2) the measure stalled (α1 = α2) but we remained within case L′, and thus the pending obliga-

tion O/liveness assumption are still pending; or
(3) we reached T (allowing the measure to vary arbitrarily)

Examine the trace fromw0 in Figure 11. While the trace stays within L1 the environment obliga-
tion a stays unfulfilled (steps are labelled with the obligation they fulfil, if any), and imprA requires
the measure α1 to decrease, or in the worst case stay constant. Since a is live, the environment will
eventually fulfil it, thus taking us outside of L1. If such transition takes us to another case, L2 in the
illustration, then imprA requires the measure to strictly decrease to some α2 < α1. This process

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:envlive
rule:envlive-target
rule:envlive-obl
rule:envlive-pq
rule:envlive-quant
rule:envlive-case
rule:envlive-obl
rule:envlive-pq
rule:envlive-obl

TaDA Live 16:49

cannot repeat ad libitum: The progress measure is an ordinal and hence well-founded. The effect is
that, eventually, the only option is to reach the target. Note that transitions that end in the target
are allowed by imprA to increase the progress measure: In the picture the transition reaching T
increases the measure from α2 to α3. This allows the “reset” of the measure so the trace can go
outside of T and the whole process of reaching T again can be repeated an unbounded number of
times.

The idea behind Rule LiveA is analogous to the above description, but progress is justified by
appealing to an environment liveness assumption stored in A. The layer of the assumption needs
to be lower than any layer we may be holding. Since the environment liveness assumptions only
hold in the interference phase of an update, the rule needs evidence that the linearisation point
on r has not occurred yet, which is provided by r �⇒ ♦.

In the proof of the distinguishing client, the environment liveness condition for the application
of rule LiveC between Step 1 and Step 2, is proved by:

∀α . 	∅ L0 (α) ⇒ T

1; ∅ 	 L(α) : L0 (α) −−� T
LiveT

impr∅ (L1,L,T)

1; ∅ 	 L(α) : L1 (α) −−� T
LiveO

1; ∅ 	 L(α) : L0 (α) ∨ L1 (α) −−� T
ECase

1; ∅ 	 L M−−−� T
EnvLive

where L and T are defined in Equations (16) and (17), and M (α) = (α = 0). Since L trivially
implies L ∗ ∃α .M (α), we can apply EnvLive, setting L(α) = (L ∧ α = 0). Then, we apply ECase
to split on the value of l : L(α) = L0 (α) ∨ L1 (α) where L0 (α) = dcr (x, done, 0, _) ∧ α = 0 and

L1 (α) = dcr (x, done, 1, _) ∗ �k�E
r ∧α = 0. If l = 0, then we can apply LiveT, as we are already inT ;

if l = 1, L1 entails �k�E
r , so we can apply LiveO with tr = dcr and O = k. The atomic obligation k

is live: 1 > lay(k) = 0, and L1 holds no obligations. To check that the imprA condition is satisfied,
we need to consider the transitions allowed by the protocol dc:

• l = 1 to l = 1 keeps the measure constant but keeps us in L1,
• l = 1 to l = 0 brings us directly in T .

Although in this case the progress measure is trivial and the proof of the environment liveness
condition simple, the generality provided by non-trivial progress measures is needed for more
interesting examples. For instance, our proofs of spin lock (Section 5.1) and CLH lock (Section 5.2)
do make use of this added generality.

We chose to state the imprA condition as a semantic check; while this achieves full generality,
in typical proofs the environment liveness condition only involves a single region, and imprA can
be checked by examining the region’s protocol.

4.6 The While Rule

By using the rules we described so far, one can justify most of the proof outline of the distinguishing
client in Figure 8. For instance, the proof of lock(x) for the left thread can be reused as is to prove
the lock(x) call in the body of the loop of the right-hand thread.

The main missing step is the application of the While rule:

∀β ≤ β0 .m (β); λ; A 	 L
M−−� T (β) ∀β ≤ β0 . 	A P (β) � m (β) � m

∀α . A � ∃α ′. L ∗ M (α ′) ∧ α ′ ≤ α stable pv(T , L, M) ∩mod(C) = ∅
∀β ≤ β0 . ∀b ∈ Bool.m; λ; A 	Φ

{
P (β) ∗ (b

.
⇒ T (β)) ∧ B

}
C
{
∃γ . P (γ) ∧ γ ≤ β ∗ (b

.
⇒ γ < β)

}
m; λ; A 	Φ

{
P (β0) ∗ L

}
while(B){C}

{
∃γ . P (γ) ∗ L ∧ ¬B ∧ γ ≤ β0

} While

Let us review the main differences with the simplified WhileB rule presented in Section 2. First,
the two triples in the premises of WhileB (corresponding to the blocked and unblocked case) are

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:envlive-pq
rule:liveness-check
dist-client:left-lock-1
dist-client:left-lock-2
rule:envlive-target
rule:envlive-obl
rule:envlive-case
rule:envlive
rule:envlive
rule:envlive-case
rule:envlive-target
rule:envlive-obl
rule:while
rule:while-blocking
rule:while-blocking

16:50 E. D’Osualdo et al.

compressed here in a single triple: This is convenient in proofs, as the proof of the two triples
only differs on the treatment of the variant. When b = false, (b

.
⇒ T) = emp = (b

.
⇒ γ < β),

obtaining the first triple of WhileB, when b = true, we obtain the other triple. Second, the target
states T are parametrised over the variant β : Each value of the variant may represent a different
“phase” of the local progress of the while loop; in each of these phases the loop may be blocked
waiting for a different set of target states to be reached. Third, as anticipated, the �L ⇒ ��T
condition is expressed as the conjunction of the first and third premise.

There are two additional side-conditions. Since T ,L, and M assert facts about arbitrary inter-
mediate states of an iteration, they cannot refer to any local variable that may be modified by the
body of the loop, hence the fourth premise.

The most important addition is the layer condition of the second premise. The idea is that we
should be forbidden from constantly owning obligations of layers that we might assume live in
the proof of the environment liveness condition. By requiring P (β) � m(β), we make sure that
the loop invariant only owns obligations of layer higher than m(β), and the m(β) in the context
of the environment liveness condition indicates that only layers lower than that may be assumed
live. The layerm in the context of the triple in the conclusion is an upper bound for any layer that
may be assumed live in the proof of the loop.

Consider the application of While in the proof of the distinguishing client. The while loop
of the right-hand thread is busy-waiting until done is set to true. The target states are therefore
T � dcr (x, done, _, true). In this example, the target states do not depend on the variant β , which
itself is quite trivial: when the loop is finally unblocked, it needs at most one iteration to terminate.
The local variant can simply be β = (d?0 : 1), i.e., when d is false there needs to be one unblocked
iteration to terminate, and when d is finally true the loop will take no more iterations. The loop
invariant is

P (β) � ∃l ,d . dcr (x, done, l ,d) ∗
(
l = 1

.
⇒ �k�E

r

)
∧ d⇒ d ∧ β = (d ? 0 : 1),

on which we can frame the stable assertion

L � T ∨ dcr (x, done, _, false) ∗ �d�E
r .

Since the loop invariant owns no obligations, we can set m(β) = � = m, and we need to prove

the environment liveness condition �; ∅ 	 L M−−� T ; here, as for the application of LiveC, with the
fulfilment of the environment obligation d, we immediately reach the target, so M can be trivial
(M (α) = (α = 0)). The derivation is as follows:

�; ∅ 	 L(α) : T −−� T
LiveT

imprA (dcr (x, done, _, false) ∗ �d�E
r ,L,T)

�; ∅ 	 L(α) : dcr (x, done, _, false) ∗ �d�E
r −−� T

LiveO

�; ∅ 	 L(α) : L(α) −−� T
ECase

�; ∅ 	 L M−−−� T
EnvLive

where L(α) = L ∧ α = 0. We split L into two cases using ECase. In the first caseT holds, so LiveT
applies. In the second, d = false and, since lay(d) = 1 < ', d is a live obligation. The imprA
condition is satisfied: The allowed transitions either keep d constant or set it to false, taking us
directly to T .

The stability of ∃α ′. L ∗M (α ′) ∧α ′ ≤ α holds trivially, as α is constantly 0. The condition is this
trivial in this case, because it checks that transitions to and from T are not resetting the progress
measure; here, once done is set to true, it will not be set to false anymore, so once T is reached
there is no way to leave it.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:while-blocking
rule:while
rule:liveness-check
rule:envlive-target
rule:envlive-obl
rule:envlive-case
rule:envlive
rule:envlive-case
rule:envlive-target

TaDA Live 16:51

Non termination of distinguishing client with spin lock. If the lock at x is implemented as a spin
lock, then the distinguishing client may not terminate. Indeed, there is no TaDA Live proof for
the distinguishing client if one assumes the spin lock specifications: In the precondition, we need
to specify an impedance budget α for the lock L(x, 0,α); whatever ordinal we may choose for α ,
there is no way to consume some budget at every potential iteration of the loop of Cr and never
exhaust the budget, as the number of iterations is effectively unbounded.

4.7 Other Rules

The rules in Figure 9 are the most important TaDA Live-specific rules. We have omitted standard
rules, such as the axioms for primitive atomic commands, the rules handling sequencing, function
calls (recall that for simplicity, we restrict to non-recursive function definitions), and structural
manipulations. They are reproduced in full in the Appendix.

Let us conclude with an explanation of the two TaDA Live-specific rules of Figure 9 that are
not illustrated by the proof of distinguishing client: rules UpdReg and MkAtom. While the goal
of LiftA is to lift an atomic update on a resource inside the interpretation of a region to the
corresponding update on the region itself, UpdReg obtains the same effect but on a region r that
is supposed to be updated once atomically (i.e., r ∈ dom(A)). While LiftA applies to regions with
r ∈ dom(A), the update allowed in that case needs to be an identity step from the point of view of
the abstract state of the region. A genuine update to the region needs to be recorded as the unique
linearisation point on that region; this is precisely the purpose of UpdReg. Most of the premises
of UpdReg have the same function as in LiftA: checking that the update of the abstract state
and the obligations comply with the protocol. The difference is that here the update expected to
take place in the linearisation point is recorded in tr(A, r) (i.e., the components of A (r) recording
the expected update to abstract state and obligations of r). To be able to claim the linearisation
point took place exactly once, the precondition of the triple requires the r �⇒
 resource, which
represents the unique permission to perform the linearisation point. The postcondition allows for
two cases: Either the update was successful, in which case the atomicity tracking component is
recording the update (x , z); or the update was not performed (x = z) and the r �⇒
 resource is
still available for future updates.

Rule MkAtom is another crucial rule for proving abstract atomicity: It states that a Hoare triple
can be promoted to an atomic triple if it contains a “certificate,” in the form of r �⇒
 being up-
dated to r �⇒ (x ,y), that the region in question was updated atomically exactly once, with the
expected update. The expected update and the additional interference assumptions given by the
pseudo-quantifiers need to be stored in the atomicity context so the triple in the premise can
make use of the interference precondition assumptions and certify the right update took place.
Any expected update must be protocol-compliant (T ⊆ Tt (G)). Notice how the atomicity context
records the liveness assumption expressed by the pseudo-quantifier, so it is available for termina-
tion proofs in the proof of the triple in the premise; in particular, they can be used by applications
of LiveA. The proof of spin lock and CLH lock in Section 5 illustrate applications of MkAtom and
UpdReg.

4.8 Abstract Predicates

In the spirit of CAP, abstract resources provided by a library should be presented to clients by only
exposing their abstract properties, and not their definition.

In our example, the L(x , l) predicate is defined internally to the proof of the lock module, say,
using internal regions (of some maximum level λ) expressing the internal protocols of the module.

The proof of our distinguishing client only relies on the following abstract properties:

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:update-region
rule:make-atomic
rule:lift-atomic
rule:update-region
rule:lift-atomic
rule:update-region
rule:update-region
rule:lift-atomic
rule:make-atomic
rule:envlive-pq
rule:make-atomic
rule:update-region

16:52 E. D’Osualdo et al.

(L1) L(x, _) ∗ L(x, _) is false, expressing that a lock is an exclusively owned resource;
(L2) L(x, l) is stable for all l ;
(L3) L(x, l) is λ-safe for all l ;
(L4) L(x, l) is obligation-free, i.e., L(x, l) ⇒ empRId

Ob
(which also entails L(x, l) ⇒ r �m for all r ∈ RId andm ∈ L).

For instance, the interpretation I (dcr (x , done, l ,d)) is well-formed, thanks to properties (L2)
and (L4). The proof also involves side conditions on layers, stability, and λ′-safety, which can be
discharged by appealing to (L2), (L3), and (L4).

More generally, a module would typically expose to clients viewshifts representing separation
properties of the abstract predicates (e.g., duplicability), stability properties, λ-safety, obligation
freedom, and relevant P �m facts.

4.9 What Is Leaked by TaDA Live Specifications?

TaDA Live’s triples are rather expressive: They support strong specifications of updates via log-
ical atomicity, and conditional termination properties via liveness assumptions. It is natural to
ask whether our triples force the leak of any unnecessary detail about the implementation. In
particular, there are three components of the proof system that have a “global” flavour: the level
and layer in the context of the judgement and the layer decorating the liveness assumption of the
pseudo-quantification. Although necessary for soundness, the management of levels is tedious but
relatively straightforward. Iris introduced namespaces for invariants to ease the management of
so-called masks, which serve essentially the same function as levels in TaDA. A similar construc-
tion could be used to ease management of layers. Here, we keep it simple and require proofs of
clients to use layers high enough to be able to reuse the libraries specifications.

The layers decorating a triple, however, are a more delicate matter. The main complication arises
from the choice of parametrising TaDA Live with a global layer structure. If a specification insists
on the use of a specific subset of layers, then that could seem like an unnecessary leak of imple-
mentation details. For example, there could be two valid implementations of a module that use
wildly different internal layer structures to justify their internal blocking behaviour. Should the
abstract specification of the module insist on a specific layer structure for the internal layers, that
would rule out valid implementations for no good reason. In TaDA Live modularity of the layers
can be achieved by exploiting a crucial property of derivations: Their validity is invariant under a
strict-ordering-preserving remapping of layers. This allows a style of specification that generalises
the one we have seen in our examples until now, where the layer structure relevant for the proof
of an implementation is parametrised over a client-provided remapping of layers. To avoid clutter-
ing the proofs, we do not explicitly parametrise the proofs in Section 5. In Section 5.5, where the
construction becomes relevant and used in a non-trivial way, we explain how to convert a proof
so it is parametric on the layer remapping.

In terms of behaviour, TaDA Live’s specifications are able to hide internal blocking, as shown
by the blocking counter example of Section 2.1 (formalised in Appendix 5.3). There is, in fact,
one progress property leaked by the specification layers that is currently not exploited by TaDA
Live. In the special case when the layer in the context is the globally smallest layer ⊥, the proof
of the triple cannot rely on any liveness assumption at all. This can be used to differentiate, for
example, a wait-free counter implemented as a hardware-atomic fetch-and-add (which admits a
proof with ⊥ in the context) and a blocking counter (which only admits proofs with layer > ⊥).
This is a useful distinction: Wait-freedom is an important progress property, asserting termination
without assumptions on liveness of other threads and without fairness assumptions on the sched-
uler [19]. Currently, however, TaDA Live’s semantics does not support deriving wait-freedom as a

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:53

consequence of ⊥ as the context layer: The current triple semantics only implies termination of
the fair traces. Extending TaDA Live’s semantics to encompass wait-freedom is left as future work.

4.10 Soundness

We have proven soundness of TaDA Live rules against the semantic judgement of Definition 3.30.

Theorem 4.4 (Soundness). If 	Φ C : S, then �Φ C : S.

The detailed proofs of the liveness-related rules are produced in Appendix E. The soundness
of most rules is an adaptation of the soundness arguments of the corresponding TaDA rules. The
rules that drive the liveness argument are rule Par, rule LiveC, and rule While.

The soundness of the parallel rule follows from the layered liveness invariants semantics ex-
plained in Section 3.9. The argument is roughly as follows: There are two possible ways the parallel
composition C1 ‖ C2 may fail to terminate: Either one thread terminates and the other does not,
or they both do not terminate. In the first case, when the terminating thread, say, C1, terminated,
we are in a state where thread 1 does not own any obligation of layers that may be assumed live
by C2 (this is from the conditions on the layers of the postcondition of C1). By the triple about C2

in the premises, C2 is only allowed not to terminate if the environment is constantly owning an
obligationO of layer lower thanm2. Since C1 cannot do that, we obtain that saidO must be owned
by the overall environment of the parallel composition. In such case the triple of the conclusion
allows the program to diverge.

In the second case, both threads are not terminating. Each of the threads, say, 1, is allowed to
keep an obligation constantly unfulfilled, as long as it can blame thread 2 by showing an obligation
of strictly lower layer that is kept constantly unfulfilled by 2. Since layers are well-founded there
needs to be some thread that will not be justified in not fulfilling some of its obligations. This
cannot be, as we were able to prove the two triples in the premises.

The soundness of rule While considers the worst-case scenario for progress: an infinite se-
quence of iterations, all of which do not start from a target state in T (β), and therefore do not
decrease the variant β . In such case, we know that the assertion L holds at every point of the trace:
it has been framed so the local steps and the environment steps must preserve it, and it is stable (as
checked by EnvLive). We are thus within the hypothesis of the environment liveness condition,
which proves, together with the premise asking the progress measure α to never increase, that
eventually the target states will be reached. Although they may be reached in the middle of an
iteration, instead of at the beginning, as it would be required to invoke the triple that decreases
the variant β ; in the worst case this can happen boundedly many times (the progress measure is
well-founded and must always decrease). Therefore, we eventually reach T (β) and do not leave it
until the next iteration starts from a state satisfying P (β) ∗T (β) ∧ B, which matches the premise
that ensures the variant decreases. This can only happen boundedly many times, as the variant is
well-founded.

Rule LiveC’s soundness argument is a variation of the one for While.

As a simple corollary of soundness and Theorem 3.33, if we can provem; λ; ∅ 	
{
emp

}
C
{
True

}
,

thenC run in isolation terminates from the empty heap. For our distinguishing client (Example 4.1)
for instance, we can wrap up the proof by initialising the state and prove

� 	
{
emp

}
var done= false, x in x� makeLock();(C� ‖ Cr)

{
True

}
,

which implies termination of the program.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:parallel
rule:liveness-check
rule:while
rule:while
rule:envlive
rule:liveness-check
rule:while

16:54 E. D’Osualdo et al.

5 EVALUATION

In the previous section, we introduced the TaDA Live proof system, explaining the rules on the
distinguishing client, which showcases in a simple setting the proof mechanics of the logic.

In this section, we consider more challenging case studies to demonstrate how TaDA Live
achieves proof scalability and reuse in practice.

We start by proving correctness of the spin and CLH lock implementations against the specifica-
tions we discussed in Section 2. The proof of spin lock highlights the use of the liveness assumption
of a pseudo-quantifier in a proof and the handling of impedance through the impedance budget.
The proof of CLH has a number of interesting features. The CLH code exhibits both internal block-
ing, i.e., blocking that is resolved internally and does not leak to the client, and external blocking,
i.e., blocking that has to be resolved by the client and thus leaks in the liveness assumption of the
pseudo-quantifier. As a consequence, the termination argument requires using a combination of
obligations (for internal blocking) and the liveness assumption of the pseudo-quantifier (for exter-
nal blocking). Moreover, the obligations (and their layers) are not simple tokens like the ones for
the simple examples of Sections 2 and 4, but form an infinite set. This reflects the unboundedness
of the internal queue of threads.

The two lock examples demonstrate TaDA Live’s ability to abstract from implementation details
and only leak to the client the parts of the termination argument that depend on the choices of the
clients. In the same vein, we will follow this with a counter module using a spin lock to protect
access to a cell holding the value of the counter. Interestingly, since the blocking due to the use of
a lock is internal, the specification of the counter will not be blocking. The impedance suffered by
the internal spin lock does, however, leak to the interface for the counter: The counter will have
its own impedance budget that will be internally spent to call operations on the lock.

To exhibit TaDA Live’s ability to reason about liveness locally, we will verify a double blocking
counter, showing that for simple common programming patterns, the layer system leads to natural
and modular client proofs.

Finally, we comment on a proof of a lock-coupling set, produced in full in Appendix C. The
example considers a data structure implemented as a linked list with CLH locks guarding the single
cells. The example is challenging for the presence of a dynamic number of locks. At first sight it
might seem it is impossible to represent this using the static association of layers to obligations of
TaDA Live.

Obligations, however, as demonstrated in this case study, are a very general form of ghost state
and can easily represent dynamic properties of state.

Other case studies. Ticket lock and MCS lock [18] are alternative implementations of starvation-
free locks; they can be given the same specification as the CLH lock, and their liveness argument
can be carried out in the same way as the one we present for CLH.16 A paradigmatic example of fine-
grained data structure is the Treiber stack [18], which, in its standard form, is non-blocking and has
been proven in Total TaDA already. It is easy to adapt the code to have a pop operation that blocks
on an empty stack. Such operation would be blocking and suffers impedance. Its specification and
proof mirrors closely the proof of the spin lock. Challenging variants of the lock-coupling set are
the “optimistic” and “lazy” sets. The proof of optimistic set uses a combination of the proof of
the lock-coupling set and the impedance budget technique (optimistic set operations impede each
other).

These case studies cover all the proof patterns needed to prove all the examples of the LiLi
papers [30, 31]. Notably, proofs in LiLi involving modules that use locks require in-lining some

16The proof of ticket lock requires some minor ghost code to side-step the lack of support for helping.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:55

Fig. 12. Code of spin lock operations.

non-atomic implementation of the lock operations in the client, resulting in non-modular proofs
and unnecessarily intertwined termination arguments.

5.1 Spin Lock

Code. The spin lock module implements a lock by storing a single bit in a heap cell; locking is
implemented by trying to CAS the heap cell from 0 to 1 until the CAS succeeded; unlocking simply
sets the cell back to 0. In Figure 12, we give all the operations of a spin lock module.

Specifications. We will prove the module satisfies the following specifications:

∀α . 0 	
{
emp

}
makeLock()

{
∃r . L(r , ret, 0,α)

}
,

∀ϕ . 1 	

A

l ∈ {0, 1} �0 {0},α .
〈
L(r , x, l ,α) ∧ α > ϕ (α)

〉
lock(x)

〈
L(r , x, 1,ϕ (α)) ∧ l = 0

〉
,

0 	
〈
L(r , x, 1,α)

〉
unlock(x)

〈
L(r , x, 0,α)

〉
,

where L(r , x, l ,α) abstractly represents the lock resource at abstract location r (omitted for read-
ability in Section 2) and concrete address x, with abstract state l ∈ {0, 1} and impedance budget α
(an ordinal). The purpose of the impedance budget, as described in Section 2, is to prevent the en-
vironment from taking possession of the lock an unbounded number of times. Without this bound,
the CAS operation in the implementation of lock could be indefinitely preempted by the environ-
ment locking the lock, preventing it from ever taking its possession and terminating, even if the
environment always unlocks the lock when it is locked. This is enforced by requiring the lock
operation to strictly decrease the impedance budget using ϕ : O→ O, a function that can be freely
instantiated by the client upon usage of the specification, which indicates precisely how much the
budget will decrease after this call (which is client-dependent information). The specification of
makeLock then allows the client to pick an arbitrary ordinal as the initial budget.

Shared Region. The abstract shared lock resource will be represented by a region spinr (x , l ,α)
where x ∈ Addr, l ∈ {0, 1}, α ∈ O. Here, x is a fixed parameter of the region.

Convention 1. An exclusive guard, e, is very commonly used to express some exclusive per-
mission on some shared resource, which cannot be composed with itself: i.e., e • e = ⊥. Local
ownership of e is exclusive in that no other thread can at the same time assert ownership of e. A
ubiquitous use of this guard is in representing the resource offered by a module.

Take for example the current spin lock module. Since this is a concurrent module it uses inter-
nally shared resources. We therefore have a region spinr (x , l ,α) encapsulating the shared internal
resources of the counter. From the perspective of the client, however, at the moment of creation
of a lock by, say, a makeLock() operation, the lock is exclusively owned by the client. This, for
example, is reflected in the fact that, until the client shares the lock or invokes operations on it, it
remains unlocked. To represent this fact, one typically defines an exclusive guard e guarding each
transition of the region interference: e.g., e : (0,O1) � (1,O2), e : (1,O1) � (0,O2). Then the

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:56 E. D’Osualdo et al.

makeLock() operation can be given the specification above, which gives to the client the stable as-
sertion spinr (ret, 0,α) ∗ �e�r , wrapped in the predicate L(r , ret, 0,α). (Note how spinr (ret, 0,α)
is not stable on its own.) To re-share the lock, the client will create its own region encoding the
invariants governing the interaction over the lock (and the other resources of the client), the in-
terpretation of which will contain the guard �e�r .

Note that assertions have very different meanings if occurring in the atomic precondition of
a triple, as opposed to the Hoare precondition: The resources in the atomic precondition are not
owned by the local thread, but only acquired instantaneously at the linearisation point. For exam-
ple, in the triple

∀ϕ . 	 A

l ∈ {0, 1} �0 {0},α .
〈
spinr (x, l ,α) ∗ �e�r ∧ α > ϕ (α)

〉
lock(x)

〈
spinr (x, 1,ϕ (α)) ∗ �e�r ∧ l=0

〉
,

the exclusivity of e is only granted instantaneously to the thread acting on it atomically, i.e., either
the environment during the interference phase as allowed by the pseudo-quantifier or the local
thread at the linearisation point.

Since this pattern is ubiquitous, we reserve the e guard constructor for this use and will omit
the e • e = ⊥ axiom when specifying guard algebras.

Guards and Obligations. For the spin region, we only have the exclusive guard e, and no obliga-
tion constructors, as the implementation has no internal blocking. All the blocking behaviour is
represented by the liveness assumption in the pseudo-quantifier of the specification of lock. Note
that without the exclusive guard, the specification of makeLock would not hold as the lock would
not be stably unlocked.

Region protocol. The interference protocol for spin is very simple:

e : ((0,α), 0)� ((1, β), 0) only if β < α ,

e : ((1,α), 0)� ((0,α), 0).

It states that whoever owns e can freely acquire or release the lock, provided that at each acquisi-
tion, some budget is spent (β < α), preventing the lock from being locked an unbounded number
of times.

Region interpretation. The implementation uses a single cell stored in the heap, and we have no
non-trivial guards/obligations; the interpretation is thus straightforward:

I (spinr (x , l ,α)) � x �→ l .

Note how α is pure ghost state in that it is not linked to any information in the concrete memory.

Predicates. The lock resource is abstractly represented by the predicate

L(r ,x , l ,α) � spinr (x , l ,α) ∗ �e�r .

Verification of lock. Figure 13 is the proof of the lock operation. The only step that involves
reasoning about liveness is the application of the While rule. To apply this rule, we must first
define the loop invariant, P (β), the target states, T (β), the persistent loop invariant, L, m(β), and
the environmental progress measure, M (α).
The loop invariant is

P (β) � ∃l ,α . spinr (x, l ,α) ∧ β ≥ α ∗ �
(
d = 0 ∧ r �⇒
 ∧ α > ϕ (α)

)
∨

(
∃l ′,α ′. d = 1 ∧ r �⇒ ((l ′,α ′), (1,ϕ (α ′))) ∧ l ′ = 0

)��,
which contains:

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:while

TaDA Live 16:57

Fig. 13. Spin lock: proof of lock.

• the safety information to prove the uniqueness of the linearisation point, namely, that if the
CAS failed, i.e., d = 0, then we have not touched the resource yet and we still have permission
to perform the linearisation point (r �⇒
); whereas if the CAS succeeded, i.e., d = 1, then we
did perform the linearisation point with the expected effect.

• the definition of the local variant β as an upper bound on the impedance budget α .

Indeed, whenever some budget is spent, the loop approaches termination, as, eventually, the ex-
haustion of the budget prevents further interference, allowing the CAS operation to succeed and
the loop to terminate. Therefore, decreasing the upper bound to the interference budget corre-
sponds to progress for the while operation. Without additional information, however, we cannot
show the local variant must eventually strictly decrease, indeed, in the case l = 1, we cannot exit
the loop and the environment is not forced to spend budget. Therefore, the termination argument
will need the assumption that the environment always eventually unlocks the lock to allow the
termination of the while loop or further decrease of the variant due to the environment locking
the lock. This guarantee is given by the atomicity context A = [r �→ ({0, 1} × O, 0, {0} × O,R)]
with R = ((0,α), 0)� ((1,ϕ (α)), 0).

The target states, T , must clearly include unlocked states, where l = 0, but, as it must even-
tually be stable, this is insufficient, since once the lock is unlocked, the environment can lock it
again. However, when the lock is unlocked, if the environment takes possession of it, then the
environment must also simultaneously decrease the impedance budget, i.e., β > α .

The argument that T is always eventually true relies on the assumption from the atomicity
context that the environment will always eventually unlock the lock. However, this assumption
only holds before the linearisation point. In particular, as the loop variant must contain r �⇒
,
since the loop body may perform the linearisation point, the persistent loop invariant cannot, and
therefore T must also contain a disjunct where the linearisation point has occurred and T holds a
witness r �⇒ (_, _).

We therefore declare the target states as the ones where either the linearisation point has been
performed, the lock is unlocked, or some budget was spent:

T (β) � ∃l ,α . spinr (x, l ,α) ∧ (r �⇒ (_, _) ∨ l = 0 ∨ β > α).

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:58 E. D’Osualdo et al.

The persistent loop invariant here is simply L = spinr (x, _, _), which is a valid stable frame of
the loop.

To apply While, we also need to specify m(β), which in this case is simply 1, which satisfies
the layer constraints of the rule; and the environment progress measure M :

M (αe) � ∃l ,α . spinr (x, l ,α) ∧ αe = 2α + l .

(Here, we use the variable αe for the environment progress measure variable to avoid clashes
with the impedance budget α .) This environmental progress measure is decreased by both the
environment locking and unlocking the lock:

• Unlocking the lock decreases l from 1 to 0, so as 2α +1 > 2α +0, the environmental progress
measure decreases.

• Locking the lock decreases the impedance budget from α to α ′ < α , while also increasing l
from 0 to 1. Since α ′ < α implies α ′ + 1 ≤ α , 2α + 0 ≥ 2α ′ + 2 > 2α ′ + 1, the environmental
progress measure decreases.

Given these parameters, the proof first establishes the loop invariant holds at the beginning for
some β0, by applying Cons:

∃l ,α . spinr (x, l ,α) ∧ α > ϕ (α) ∗ r �⇒
 ∧ d = 0 =⇒ ∃β0. P (β0) ∗ L,
∃β0, β . P (β) ∗ L ∧ d � 0 ∧ β0 ≥ β =⇒ ∃α . spinr (x, _, _) ∗ r �⇒ ((0,α), (1,ϕ (α))) ∧ l = 0.

Note that we will often implicitly apply the Cons rule in proofs, only detailing the application
when emphasis is desired. Next, ∃Elim on β0 gets rid of the existential quantification, so we are
ready to apply While.

To complete the application of the rule, we need to show

1;A 	 L M−−� T (β), (18)

∀α .A � ∃α ′. L ∗M (α ′) ∧ α ′ ≤ α stable, (19)

pv(T ,L,M) ∩mod(C) = ∅. (20)

Condition (19) is easily seen to hold, as we showed above, all possible environmental interference
on the region decreases the environmental progress metric, which is sufficient for this to hold.

Condition (20) is also easily seen to hold, as the only program variable predicated over in T , L
and M is x, which is not modified by the body of the loop.

Finally, condition (18) is proven as follows. We observe that:

L(αe) = L ∗M (αe) ≡
(
∃l ,α . spinr (x, l ,α) ∗ (r �⇒ (_, _) ∨ l � 0) ∧ αe = 2α + l

)
(L1 (αe))

∨ (∃α . spinr (x, 1,α) ∗ r �⇒ ♦ ∧ αe = 2α + 1). (L2 (αe))

We can then derive the environment liveness condition:

∀αe . 	A L1 (αe) ⇒ T (β)

∀αe . 1; A 	 L(αe) : L1 (αe) −−� T (β)
LiveT

imprA (L2, L, T (β))

∀αe . 1; A 	 L(αe) : L2 (αe) −−� T (β)
LiveA

∀αe . 1; A 	 L(αe) : L(αe) −−� T (β)
ECase

1; A 	 L
M−−−� T (β).

EnvLive

Formally, the application of EnvLive requires us to prove 	A L ⇒ L∗∃αe.M (αe),which is trivial.
An application of the ECase rule then splits between the cases where L1 and L2 hold. Intuitively,
L1 represents the case where we performed the linearisation point or the lock is unlocked, while
L2 the case where we still have not performed the linearisation point and the lock is locked. If

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:while
rule:consequence
rule:consequence
rule:while
rule:envlive-target
rule:envlive-pq
rule:envlive-case
rule:envlive
rule:envlive
rule:envlive-case

TaDA Live 16:59

L1 holds, then T holds, so no progress of the environment is required, therefore, this case can be
discharged via an application of rule LiveT. In the case where L2 holds, we can apply rule LiveA
to invoke the liveness assumption stored in A: If the lock is unlocked, then the metric strictly
decreases.

To show that the liveness assumption encoded in the atomicity context for the region spinr ,
live(A, r) = {0, 1} × O�k {0} × O is active, the LiveA rule requires that in the current case:

• The abstractly atomic update being tracked on r has yet to occur:

∀αe . 	A L2 (αe) ⇒ ∃(l ,α) ∈ ({0, 1} × O) \ ({0} × O). spinr (x, l ,α) ∗ r �⇒ ♦ ∗ True.

• No obligations of layer less than or equal to k is continuously held locally:

m > k,

∀α . 	A L′(α) � k .

If these hold, then the imprA (L2,L,T (β)) predicate shows that discharging the liveness invariant
will strictly decrease αe . To show this holds, taking σ ∈ Store arbitrary and letting

l (α) =W�L(α)�σ
A , l ′(α) =W�L2 (α)�σ

A , t =W�T (β) ∗ True�σ
A ,

we need to show

∀α1,α2 ≥ α1. R
a
A (l ′(α1)) ∩ l (α2) ⊆ l ′(α1) ∪ t .

This holds, as, given an arbitrary α1 ∈ O, any step taken from l ′(α1) by the atomic world rely rela-
tion either leaves the state of the region spinr unchanged, preserving the state l ′(α1), or releases
the lock, decreasing the metric. Therefore, for any α2 ≥ α1, Ra

A (l ′(α1)) ∩ l (α2) ⊆ l ′(α1) holds,
which implies the goal.

To conclude the argument, we briefly comment on the proof of the body of the while loop. The
full proof of the body can be found in Figure 14. The applications of rules UpdReg and Frame lift
the concrete atomic CAS to a (potential) update to the spinr region. An application of Cons allows
us to introduce γ as an upper bound to the impedance budget, initially δ after the linearisation
point.

Then, we apply rule A∃Elim to remove the pseudo-quantification on l and α . At this point, the
abstract state l ,α of the region spinr in the postcondition is weakened to any state that might be
reached before or after the linearisation point. However, we keep record of what happened exactly
at the linearisation point because of the r �⇒ _ assertions. The later application of MkAtom will be
able to fetch the atomic update witness r �⇒ ((l ,α), (1,ϕ (α))) and declare the appropriate atomic
update in the overall specification. Note that the overall Hoare postcondition after the application
of AtomW is stable.

Finally, Figure 15 shows the proof outlines for the makeLock and unlock operations. The only
notable step of the proof of makeLock is the last application of Cons to viewshift the postcondition
from ret �→ 0 to ∃r . spinr (x , 0,α) ∗ �e�r , which is possible because the interpretation of the region
matches with this resource, so the reifications of the two assertions coincide.

The proof of unlock is a straightforward lifting of the atomic reset of the cell at x to the region
spinr . Neither proof involves a liveness argument.

5.2 CLH Lock

Code. A CLH lock is an implementation of a fair lock module that guarantees fairness by queuing
the threads that are waiting to take its possession. Its implementation is shown in Figure 17.

The diagram in Figure 16 describes the state of the queued threads, t1, t2, . . . , tn , waiting to take
possession of the lock, as well as the module’s head and tail pointers into the queue.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:envlive-target
rule:envlive-pq
rule:envlive-pq
rule:update-region
rule:frame
rule:consequence
rule:atomic-exists-elim
rule:make-atomic
rule:atomicity-weak
rule:consequence

16:60 E. D’Osualdo et al.

Fig. 14. Spin lock: Proof of while loop body.

Fig. 15. Spin lock: proof of makeLock and unlock. Here, Step 3 is LiftA, Frame, SubPq.

Fig. 16. Illustration of the memory layout of CLH lock.

As described in Section 2, this queue is represented by associating each of the n threads queuing
on the lock with the heap cells cell1, cell2, . . . , celln−1, celln in memory. Each thread executing the
lock operation to take possession of the lock then holds in its local state the address of its cell and

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

step:spin-unlock
rule:lift-atomic
rule:frame
rule:subst

TaDA Live 16:61

Fig. 17. Code of CLH lock operation.

that of its predecessor’s cell. These are held in the program variables c and p, respectively, in the
implementation of lock. The local instance of these program variables for each queued threads
and the cells they are pointing to can be seen in Figure 16.

The thread associated with the cell at the head of the queue is said to hold the lock, and the
value stored in its cell determines the state of the lock, l . When a thread first takes possession of
the lock, the lock will be locked. Therefore, the initial value in these cells, when the associated
threads join the queue, is 1. This can be seen in the implementation of the lock operation, which
allocates and sets its associated cell to value 1 on line 3 before enqueuing itself. Once the thread
holding the lock wishes to release it, it can do so by setting the value of its cell to 0, unlocking
the lock and signalling to the next thread in the queue that it can now take possession of the lock.
This can be seen in the implementation of the unlock operation, which fetches the address of the
cell associated with the lock’s owner from the queue’s head pointer and then sets its value to 0.

In Figure 16, the thread t1 is at the head of the queue, waiting for the lock to be released. If the
lock is released by its owner, t1 then gains the exclusive permission to take possession of the lock
by setting the value of the module’s head pointer to the address of its associated cell. t1 detects the
lock has been released by repeatedly reading the value of its predecessor’s cell in the while loop
on line 6 and then sets the head pointer to the address of its cell, c, on line 7.

Once the lock is released, only the thread at the head of the queue (if any) has the permission
to take possession of the lock next. Due to this, if the owners of the lock continuously eventually
release it, then the threads waiting on the lock take possession of it in the order they are enqueued.

To enqueue itself, the lock operation performs a FAS operation on the tail pointer, placing the
cell it has allocated with value 1 at the tail of the queue and writing the address of its predecessor to
the p program variable. The order in which the lock operations are enqueued is then the order in
which they executed line 4. Any weakly fair scheduler will eventually give each thread executing
the lock operation the opportunity to execute this FAS operation, allowing it to enqueue itself.

As long as the client then guarantees that every thread holding the lock eventually releases it,
the thread will eventually take possession of the lock once it reaches the front of the queue and
the lock operation will terminate, guaranteeing fairness.

To be able to provide the same guarantee, that every thread requesting the lock will eventually
be able to take its possession as long as the lock is always eventually released, the spin lock requires
that its client only call the lock operation concurrently a finite number of times. This is exposed
in the spin lock specification via ordinals bounding the impedance on the lock.

An interesting aspect of this example is that it features a combination of internal and external
blocking: The client needs to always eventually unlock the lock—external blocking, requiring the
client to provide a guarantee—and the lock operation needs to eventually take possession of the

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

line:clh-lock-alloc
line:clh-lock-wait
line:clh-lock-lin
line:clh-lock-enqueue

16:62 E. D’Osualdo et al.

lock once the previous thread signals its release—internal blocking, guaranteed by the implemen-
tation. This second guarantee will be enforced using obligations not exposed in the specification.
The proof will therefore involve an environment liveness condition discharged using both LiveO
and LiveA.

Specifications. We will prove the following fair lock module specifications:

1 	

A

l ∈ {0, 1} �0 {0}.
〈
L(s, x, l)

〉
lock(x)

〈
L(s, x, 1) ∧ l = 0

〉
,

0 	
〈
L(s, x, 1)

〉
unlock(x)

〈
L(s, x, 0)

〉
,

where L(s, x, l) abstractly represents the lock resource at abstract location s (omitted for readability
in Section 2) and concrete address x, with abstract state l ∈ {0, 1}.

To abstract the representation of a thread’s position in the queue, we will associate, through
ghost state, to each thread requesting the lock, a ticket number t ∈ N that corresponds to the order
of arrival of the lock implementation at line 4. Every time a thread joins the queue, it gets assigned
the next available ticket.

This example shows a common proof pattern of TaDA Live: There is an inner region that exposes
all the information needed for the termination argument (here, the value of the next ticket to be
handed out, t , so individual threads can reason about the threads queuing on the lock) and an outer
one that hides enough information to make the operation abstractly atomic. This pattern nicely
separates the concerns in the proof: proving atomicity is done via the outer region, termination
via the inner one. Because of this, the abstract location of the lock s will consist of the pair of inner
and outer region identifiers. This is not a concern for modularity, however: The type of s can be
made opaque to the client, which just threads it through the proof unmodified.

Shared Regions. The abstract shared lock resource will be represented by a region
clhr (r ′,x ,h, l ,o), where r ′ ∈ RId, x ,h ∈ Addr, l ∈ {0, 1}, o ∈ N. Here, r ′, the region identifier
of the inner region and x , the address of the lock, are the fixed parameters of the region. The ab-
stract state of the region includes l , which represents the lock’s state, o, which is the ticket number
of the thread holding the lock, and h is the address of the cell associated with the owner.

Once a lock operation has enqueued itself, the difference between the ticket of the lock’s
owner, o and the operation’s ticket, t , t − o, corresponds to the thread’s current position in the
queue.

The internal region lclhr ′ (x ,h, l ,o, t) also exposes the next ticket to be handed to the next thread
queuing on the lock, t ∈ N.

Notation. Lists will frequently be used in the ghost state for the proof of the CLH lock. We
introduce notation to manipulate lists to simplify the exposition of the reasoning. Given n ∈ X
and ns,ns ′ ∈ X ∗ lists of elements ofX , we write n⊕ns , ns ⊕n, and ns ⊕ns ′ for prepend, append, and
concatenation, respectively; |ns | is the length ofns , andns (i) = n states that the ith element (from 0)
in ns is n and i < |ns |; fst(ns) and last(ns) are the first and the last element of ns , respectively, and
tail(ns) represents the list ns without the first element when ns is non-empty.

Guard algebra: Take p, c ∈ Addr,ns ∈ Addr∗,o, t ∈ N arbitrary. For this proof, two guards will
be necessary. First t(p, c, t), which encodes the current thread’s ticket, t , once it has joined the
queue, as well as p, c ∈ Addr, pointers to the thread’s predecessor’s cell in the queue and its own,
respectively. The second guard we require is q(ns,o), which is used to track the overall queue, by
tracking the cells associated with enqueued threads, ns ∈ Addr∗, and the ticket number of the
current owner, o ∈ N.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:envlive-obl
rule:envlive-pq
line:clh-lock-enqueue

TaDA Live 16:63

To use this as intended, a few axioms on the guard algebra will be required. First, an axiom to
create new tickets, adding a new cell to the queue and associating a new, unique ticket number to
the thread:

q(ns ⊕ [p],o) = q(ns ⊕ [p, c],o) • t(p, c,o + |ns | + 1).

This will be used to create the relevant guard resources t when a lock operation enqueues itself
on line 4. Similarly, an axiom to remove a thread’s predecessor from the queue once it can take
possession of the lock:

q([p, c] ⊕ ns,o) • t(p, c,o + 1) = q([c] ⊕ ns,o + 1).

This will be used to update the relevant guard resources q with the relevant t when a lock oper-
ation takes possession of the lock on line 7, placing its associated cell, c , at the head of the queue.
Finally, an axiom to guarantee that a ticket guard, t, is well-formed with respect to the queue in a
guard q:

q(ns,o) • t(p, c, t) � ⊥ ⇔ ns (t − o − 1) = p ∧ ns (t − o) = c .

Obligation algebra: Take o,o′, t , t ′ ∈ N arbitrary. As mentioned above, to verify the totality of
the CLH lock operation, once a thread is enqueued, if its predecessor relinquishes possession of the
lock, then it must eventually take its possession. Otherwise, although the lock will be permanently
unlocked, no other thread waiting for the lock can take its possession, as they are not at the head
of the queue.

To encode this liveness invariant that must be fulfilled, we associate an atom obligation p(t)
with the ownership of the ticket t ∈ N. The CLH lock’s transition system will then require that
this obligation be discharged by taking possession of the lock once it is unlocked by the thread
with ticket t − 1.

The layer associated with p(t) is then t , so these obligations are resolved in the order the associ-
ated threads are enqueued. Finally, as with the guard algebra, we have an obligation o(o, t), which
will remain in the shared region’s state and track the owner’s ticket, o, and the next ticket to be
handed out, t , associated with the obligation p via the obvious axioms.

o(o, t) = o(o, t + 1) • p(t), o(o + 1, t) = o(o, t) • p(o + 1),

o(o, t) • p(t ′) � ⊥ ⇔ o ≤ t ′ < t ,

L � N ∪ {1, 0}, ∀i ∈ N. 1 > i > 0, lay(o(o, t)) = 0, lay(p(t)) = t .

Region protocols. The interference protocol for the lclh region is as follows:

e : ((h, l ,o, t), 0)� ((h, l ,o, t + 1), p(t))

e : ((h, 0,o, t), p(o + 1))� ((h′, 1,o + 1, t), 0)

e : ((h, 1,o, t), 0)� ((h, 0,o, t), 0)

The first transition allows a thread to place itself in the queue waiting to obtain the CLH lock,
updating the next ticket to be handed out from t to t + 1. While doing so, the thread acquires
an obligation, p(t), requiring it to eventually take possession of the lock once it is at the head
of the queue. The second allows the thread at the head of the queue to take possession of the
lock by changing the state, l , incrementing the owner ticket, o, to its own (tracked by the thread’s
obligation) and changing the owner pointer of the lock to that of its own associated cell. This
discharges the obligation p(o + 1), as the thread then leaves the queue to take possession of the
lock. Finally, the third transition allows the lock to be unlocked.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

line:clh-lock-enqueue
line:clh-lock-lin

16:64 E. D’Osualdo et al.

The interference protocol for the clh region is then:

e : ((h, l ,o), 0)� ((h, l ,o), 0),

e : ((h, 0,o), 0)� ((h′, 1,o + 1), 0),

e : ((h, 1,o), 0)� ((h, 0,o), 0).

This hides the enqueuing step of the lock operation, allowing the operation to appear atomic.

Region interpretation. As explained above, the CLH lock associates a cell with each thread queu-
ing on it, as well as its owner. The list of each of these cells in the order in which the associated
threads are queued, with the owner’s cell as the head, will be denoted ns. tail(ns) is then the list of
cells queueing on the lock. While threads are queuing, the associated cells must have value 1; this
is represented using the predicate ones:

ones(ns) � ns (1) �→ 1 ∗ · · · ∗ ns (|ns | − 1) �→ 1.

The inner shared region, lclh, holds the cells associated with each queued thread, this is repre-
sented by the resource ones(ns) in the region interpretation.

The shared region also holds a pointer to the tail of the queue, ns, as well as a pointer to its
owner’s cell, whose value is the state of the lock, l , as described above. This is represented by the
resource:

x �→ h, last(ns) ∗ h �→ l .

The shared region’s ghost state then comprises:

• �q(ns,o)�r ′ the guard keeping track of the list of cells, ns ∈ Addr∗ and the current owner of
the lock, o ∈ N.

• �o(o, t)�L
r ′ the obligation keeping track of the next ticket to hand out, t ∈ N, and the current

owner’s ticket, o ∈ N.

Finally, the invariant t − o = |ns | is used to guarantee that each thread that holds a ticket is
associated with a cell in the queue ns and h = ns (0), associates the head of ns and the address of
the owner’s cell. All of this ties together to give the following region interpretation:

I (lclhr ′ (x ,h, l ,o, t)) � ∃ns ∈ Addr∗. x �→ h, last(ns) ∗
h �→ l ∗ ones(ns) ∗ �q(ns,o)�r ′ ∗ �o(o, t)�L

r ′ ∧ t − o = |ns | ∧ ns (0) = h.

The outer shared region then holds full permission to update the inner region, �e�r ′ , and asserts
that each thread queuing on the lock, with ticketso+1 to t−1, holds an obligation to take possession
of the lock once their predecessor releases it,∗t−1

i=o+1
�p(i)�E

r ′ , where r ′ is the identifier of the inner
region:

I (clhr (r ′,x ,h, l ,o)) � ∃t ∈ N. lclhr ′ (x ,h, l ,o, t) ∗ �e�r ′ ∗∗t−1

i=o+1
�p(i)�E

r ′ .

Predicates. The lock resource is then abstractly represented by the predicate:

L(s,x , l) � ∃r , r ′. s = (r , r ′) ∧ ∃o ∈ N. ∃h ∈ Addr. clhr (r ′,x ,h, l ,o) ∗ �e�r ′,

which abstracts away the CLH lock’s implementation details: the ticket and cell address associated
with the lock’s current owner.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:65

Fig. 18. Outline of CLH lock proof.

Proof of lock. Figure 18 gives an outline of the proof of the clh lock operation implementation;
the definition of the loop invariant P (β) will be given later. The steps involving liveness are the
FAS operation, which enqueues the thread, hence obtaining the obligation to take possesion of
the lock once the previous thread relinquishes possession of it; the while loop, which waits for the
previous thread to release the lock, whose liveness depends on the previous threads in the queue
taking possession and then releasing the lock in turn; and the write operation at line 7, which takes
possession of the lock. We begin with the details of the FAS operation’s proof, shown in Figure 19.

There, Step 4 is composed of the rules: FrameH, AtomW, A∃Elim, LiftA, A∃Elim, LiftA,
A∃Elim. The application of the FrameH rule frames off the view r �⇒
, the AtomW rule trans-
fers all the remaining resources to the atomic precondition and postcondition, the A∃Elim rule
pseudo-quantifies l , o, and h, LiftA then opens up the region clhr , the applications of A∃Elim and
LiftA then pseudo-quantify t and open the region lclh and the final application of A∃Elim rule
pseudo-quantifies ns.

After using LayWH to decrease the level of the assertion to 0 and Frame to frame off everything
except the region interpretation’s tail pointer, the FAS operation atomically updates it. After every-
thing is framed back on, the consequence rule is then applied to the postcondition to re-establish
the invariant. The axioms

q(ns ⊕ [p],o) = q(ns ⊕ [p, c],o) • t(p, c,o + |ns | + 1),

o(o, t) = o(o, t + 1) • p(t),

are used to update the queue ns , by enqueuing c—the local thread’s cell—at its tail, and updating
the next ticket to t ′ + 1. While doing so, the thread acquires the guard t(p, c, t ′), the obligation,
p(t ′), which represent the thread’s position in the queue and its obligation to take possession of
the lock once its predecessor reliquishes it, respectively.

As environmental obligations can always be duplicated, the thread also obtains∗t ′−1

i=o+1
�p(i)�E

r ′

locally. These environmental assertions will be necessary for the application of the While rule. To

finish reestablishing the invariant, as the thread is retaining �p(t ′)�L
r locally, it can leave �p(t ′)�E

r ′

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

line:clh-lock-lin
proof:clh-lock-enqueue
rule:frame-hoare
rule:atomicity-weak
rule:atomic-exists-elim
rule:lift-atomic
rule:atomic-exists-elim
rule:lift-atomic
rule:atomic-exists-elim
rule:frame-hoare
rule:atomicity-weak
rule:atomic-exists-elim
rule:lift-atomic
rule:atomic-exists-elim
rule:lift-atomic
rule:atomic-exists-elim
rule:layer-weak
rule:frame
rule:while

16:66 E. D’Osualdo et al.

Fig. 19. Proof outline of the FAS call of CLH lock.

in the region invariant. Finally, using the axiom

o(o, t) • p(t ′) � ⊥ ⇔ o ≤ t ′ < t ,

as we hold p(t ′) locally, the assertion o < t ′ holds stably.
Next, consider the proof of the while loop. The loop invariant is:

P (β) � ∃l ,o, t ′,h. clhr (r ′, x,h, l ,o) ∗ �t(p, c, t ′)�r ′ ∧ o < t ′

∧ (v = 0 ⇒ (t ′ = o + 1 ∧ l = 0 ∧ h = p)) ∧ β = v,

which asserts that:

• �t(p, c, t ′)�r ′ , the local thread is queueing for the lock with ticket t ′ and with the address of
the predecessor’s cell and the current thread’s cell in p and c, respectively.

• o < t ′, the current owner must come before the local thread with ticket t ′. This is stable due
to the t guard.

• v = 0 ⇒ (t ′ = o+1∧l = 0∧h = p), if v, the last read of the value of the predecessor cell, is 0,
then the owner is the predecessor of the current thread has unlocked the lock, as only then
can it set its cell to 0. Therefore, t ′ = o + 1, and, consequently, the lock is unlocked, l = 0.
The owner’s cell, h, will also take the value of that of the predecessor.

• β = v, which asserts that β = 0 once the thread has observed that its predecessor has taken
possession of and then unlocked the lock (by reading the cell at address p into v). β will have
value 1 otherwise.

A thread with ticket t ′ can take possession of a CLH lock once its predecessor has taken possession
of and relinquished the lock. Once the lock reaches this state, o = t ′ − 1 and l = 0 hold stably, as
all transitions from this state would set o ≥ t ′, however, we know that, o < t ′.

The intent of this loop is to wait till this occurs, allowing the thread to safely take possession of
the lock once the loop terminates. Hence, the goal state is:

T = ∃l ∈ {0, 1},o ∈ N,h ∈ Addr. clhr (r ′, x,h, l ,o) ∧ t ′ = o + 1 ∧ l = 0 ∧ h = p.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:67

Fig. 20. Application of While in the CLH lock proof.

Once the lock reaches this state, a subsequent iteration of this while loop will terminate with v = 0,
breaking the loop. To reach the goal state, threads that come before the current thread must both
take possession and then unlock the lock. The first is guaranteed due to obligations p(t ′) for t ′ < t
and the second due to the pseudo-quantifier, guaranteeing that the lock must always eventually
be released. The progress measure

M (α) = ∃l ∈ {0, 1},o ∈ N,h ∈ Addr. clhr (r ′, x,h, l ,o) ∧ α = 2(t ′ − o − 1) + l

is decreased by both of these actions and, as t ′ > o implies 2(t ′ − o − 1) + l ≥ 0, the progress
measure, α , is a natural number, and therefore well-founded.

The use of the difference between t ′, the local thread’s ticket and the owner’s ticket, o, to bound
the number of threads that can take possession of the lock before the local thread removes the
necessity for the impedance bound, α , required in the proof of the spin lock module, and that must
leak in the associated specification (as it imposes a restriction on any client).

To support this argument, the persistent loop invariant, L, must contain the resource r �⇒
 to
make use of the liveness assumptions of the pseudo-quantifier, guaranteeing that the lock is always
eventually unlocked, and the relevant environmental liveness assertions guaranteeing the threads
queued before the current thread will take possession of it once their predecessor relinquishes it:

L = ∃l ∈ {0, 1},o, t ′ ∈ N,h ∈ Addr. clhr (r ′, x,h, l ,o) ∗ �p(t ′)�L
r ′ ∗∗t ′−1

i=o+1
�p(i)�E

r ′ ∗ r �⇒
 ∧ o < t ′.

The While rule is applied as in Figure 20. The rule ∃Elim is applied to quantify t and β0 over
the antecedent. To complete the application of the rule, we need to show

1;A 	 L M−−� T (β), (21)

∀α .A � ∃α ′. L ∗M (α ′) ∧ α ′ ≤ α stable. (22)

Condition (22) holds trivially, as seen above, all the possible operations on the module decrease
the environmental metric.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:while
rule:while

16:68 E. D’Osualdo et al.

To prove Condition (21), take

L′′o (α) =
�
∃l ∈ {0, 1},h. clhr (r ′, x,h, l ,o) ∗ �p(t ′)�L

r ′ ∗∗t ′−1

i=o+2
�p(i)�E

r ′ ∗ r �⇒
 ∧ l = 0 ∧ o + 1 < t ′
�
� ∗M (α)

L′0 (α) =
�
∃l ∈ {0, 1},o,h. clhr (r ′, x,h, l ,o) ∗ �p(t ′)�L

r ′ ∗∗t ′−1

i=o+2
�p(i)�E

r ′ ∗ r �⇒
 ∧ l = 0 ∧ o + 1 < t ′
�
� ∗M (α)

L′1 (α) =
�
∃l ∈ {0, 1},o,h. clhr (r ′, x,h, l ,o) ∗ �p(t ′)�L

r ′ ∗∗t ′−1

i=o+1
�p(i)�E

r ′ ∗ r �⇒
 ∧ l = 1
�
� ∗M (α)

L(α) = L ∗M (α)

First split on α = 0 ∨ α > 0:

∀α . 	A L(α) ∧ α = 0 ⇒ T

1; A 	 L(α) : L(α) ∧ α = 0 −−� T
LiveT

(23) (24)

1; A 	 L(α) : (L′0 (α) ∨ L′1 (α)) ∧ α > 0 −−� T
ECase

1; A 	 L(α) : L(α) −−� T
ECase

1; A 	 L
M−−� T

EnvLive

In the case α = 0, the rule LiveT applies directly. To show 1;A 	 L(α) : L′(α) ∧ α > 0
M−−� T

holds, split on the state of the lock, l = 0 ∨ l = 1.
In the case l = 0, for each o ∈ N, the ticket of the current owner of the lock, the environment is

guaranteed to eventually take possession of the lock due to the environmental obligation assertion

�p(o + 1)�E
r ′ . To consider each case for o ∈ N, we first apply the rule EQuant and then the LiveO

rule:

imprA (L′′o ,L,T) ∀α . 	A L′′o (α) ⇒ clhr (_, _, _,o) ∗ �p(o + 1)�E
r ′ ∗ True

∀α . 	A L′′o (α) � lay(p(o + 1)) 1 > lay(p(o + 1))

∀o ∈ N. 1;A 	 L(α) : L′′o (α) −−� T
LiveO

1;A 	 L(α) : ∃o ∈ N. L′′o (α) −−� T .
EQuant

(23)

With the exception of imprA (L′0 (o),L,T), all of these conditions hold trivially. This last condition
holds as, given α0 ∈ O, all possible transitions either preserve L′0 (α) or decrease the metric.

In the case l = 1, progress is guaranteed due to the assumptions in the atomicity context, A,
that eventually, the lock must be released, so the LiveA rule is applied:

imprA (L′1,L,T) 1 > 0 ∀α . 	A L′1 (α) � k
(X1 �0 X2) = live(A, r) 	A L′1 (α) ⇒ ∃x ∈ X1 \ X2. clhr (r ′, x,x) ∗ r �⇒ ♦ ∗ True

1;A 	 L(α) : L′1 (α) −−� T .
LiveA

(24)

Once again, with the exception of imprA (L′1,L,T), all of these conditions hold trivially. This last
condition holds as, given α0 ∈ O, all possible transitions either preserve L′1 (α) or decrease the
metric.

To conclude the proof of lock, the argument for the body of the while loop’s proof is purely a
safety argument; the full proof is in Figure 21.

The key step uses the axiom

q(ns,o) • t(p, c, t) � ⊥ ⇔ ns (t − o − 1) = p ∧ ns (t − o) = c .

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:envlive-target
rule:envlive-case
rule:envlive-case
rule:envlive
rule:envlive-target
rule:envlive-quant
rule:envlive-obl
rule:envlive-obl
rule:envlive-quant
rule:envlive-pq
rule:envlive-pq

TaDA Live 16:69

Fig. 21. Proof outline of the CLH lock’s loop body.

Since we hold the guard t(p, c, t), we can infer p ∈ ns . Then, after the value of the cell at
p has been read, if the value, v, is 0, then, since only the thread holding the lock can change
the value of their associated cell to 0, then, t = o + 1 ∧ l = 0 ∧ h = p. As a consequence, if b
holds initially, then v = 0 after the body of the loop is executed, therefore the loop variant in
the postcondition, γ = 0. As initially, we know v � 0 from the loop condition, β = 1, therefore
γ < β .

Finally, in Figure 22, we consider the details of the linearisation point, when the lock oper-
ation takes possession of the lock. First ∃Elim rule is applied to quantify the ticket of the cur-
rent owner, o, (the predecessor of the current thread) over the antecedent. Then the AtomW and
UpdReg rules are applied to atomically update the region state by acting on its interpretation. The
rules A∃Elim, LiftA, and A∃Elim are then applied to pseudo-quantify t and ns , the two variables
that are existentially quantified within the region invariants and open the region lclh. Finally,
the Cons rule is applied to re-establish the invariant in the postcondition by adjusting the ghost
state. Specifically, the guard T and the obligation P are reabsorbed into Q and O, respectively, to
update the list of threads waiting on the lock and increment the owner. This is done using the
axioms:

q([p, c] ⊕ ns,o) • t(p, c,o + 1) = q(c ⊕ ns,o + 1),

o(o, t) • p(o + 1) = o(o + 1, t).

The inner part of the proof then decreases the layer and frames off unnecessary resources to
apply the update. Note that this step of the proof discharges the obligation p(t ′). This concludes
the verification of the lock operation.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:atomicity-weak
rule:update-region
rule:atomic-exists-elim
rule:lift-atomic
rule:atomic-exists-elim
rule:consequence

16:70 E. D’Osualdo et al.

Fig. 22. Proof outline for the linearisation point of CLH lock. Step 5 is Cons, ∃Elim, AtomW, UpdReg,

A∃Elim, LiftA, A∃Elim, Cons.

The CLH lock proof is able to internally encode the impedance bound enforced by thread
queueing using ghost state: the local ticket numbers of each thread queueing for the lock and the
owner’s ticket number that is visible in the abstract state of the region clh, but hidden from the
client.

Proof of unlock. Let X = {(h, 1,o) | h ∈ Addr,o ∈ N} and R = {((h, 1,o), (h, 0,o)) | h ∈ Addr,o ∈
N}. The proof of the unlock operation is as follows:

0; ∅ 	〈
L(r , x, 1)

〉

C
o
n

s;
A
∃E

li
m

;M
k
A

t
o
m 0; [r �→ (X , 0,X ,R)] 	{

∃o ∈ N,h ∈ Addr. clhr (x ,h, 1,o) ∗ r �⇒

}

h� [x];{
∃o ∈ N. clhr (x , h, 1,o) ∗ r �⇒

}
[h]� 0;{
∃o ∈ N. r �⇒ ((h, 1,o), (h, 0,o))

}
〈
L(r , x, 0)

〉

5.3 Blocking Counter

We sketch the proof of a blocking counter module: A single cell storing a natural number that can
be incremented, guarded by a non-fair lock for concurrent access. The example illustrates how the
TaDA Live specifications and proofs neatly support hiding blocking when it is unobservable by the
client, while still leaking the requirement of bounded impedance from the lock. This requires any
client to only call operations making use of the lock (in this case, the incr operation) a bounded
number of times.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

proof:clh-lock-wait
rule:consequence
rule:exists-elim
rule:atomicity-weak
rule:update-region
rule:atomic-exists-elim
rule:lift-atomic
rule:atomic-exists-elim
rule:consequence

TaDA Live 16:71

Code. The implementation of the module’s operations is:

1 def makeCounter(x) {

2 var x, l in

3 x� alloc(2);

4 l� makeLock();

5 [x]� l;

6 [x + 1]� 0;

7 ret� x;

8 }

1 def incr(x) {

2 var l in

3 l� [x];

4 lock(l);

5 v� [x + 1];

6 [x + 1]� v + 1;

7 unlock(l);

8 ret� v;

9 }

1 def read(x) {

2 var l in

3 l� [x];

4 lock(l);

5 ret� [x + 1];

6 unlock(l)

7 }

Specifications. The abstract predicate C(s,x ,n,α) represents a blocking counter at addressx with
value n and impedance bound α .

∀α . 1 	
{
emp

}
makeCounter()

{
∃s .C(s, ret, 0,α)

}
∀ϕ . 1 	

A

n ∈ N,α .
〈
emp

���C(s, x,n,α) ∧ α > ϕ (α)
〉
incr(x)

〈
ret = n ���C(s, x,n + 1,ϕ (α))

〉
1 	

A

n ∈ N,α .
〈
emp

���C(s, x,n,α)
〉
read(x)

〈
ret = n ���C(s, x,n,α)

〉

Shared Regions. This proof will use two region types: cntr (r ′,x , s, la,n,α) and
lcntr ′ (x , s, la, l ,n,α) where r , r ′ ∈ RId, x , la ∈ Addr, l ∈ {0, 1}, n ∈ N, α ∈ O and s is the
abstract location of the lock guarding the counter resource. Here, r ′, x , s, and la are the fixed
parameters of the regions, representing, respectively, the region identifier of the inner region, the
address of the blocking counter and the abstract location, and address of the associated lock.

As in the CLH lock example, we will use two nested regions. The region type lcnt will be used as
an inner region revealing sufficient information to prove desired liveness properties, in particular,
exposing the state of the lock, l . The region type cnt will be used to prove linearisability of our
operations; to this end, it only exposes the value of the blocking countern and the lock’s impedence
bound α .

Guards and Obligations. We associate the exclusive guard e with both cnt and lcnt. Besides this,
this proof will also require the guards u, l(n,n′) and k(n,n′), where n,n′ ∈ N, for the latter region.
These guards will be used to record the update to the value of the counter that will occur at the
moment the module’s lock is locked in the proof of incr. Since other threads cannot observe the
value of the counter without first holding the lock, performing this abstract update on the state of
the outer region, cnt, and then updating the concrete state of the counter before releasing the lock
results in a linearisable implementation.

To allow this, once the lock is locked, the concrete value of the counter, n′ ∈ N, and the updated
value of the counter, n ∈ N, are stored in the guard l(n,n′) within the region cnt. The thread
holding the lock then holds the guard k(n,n′), which keeps a local record of the concrete and
updated counter values; the values are required to match with those stored in l(n,n′) within the
region by the axiom:

l(n,n′) • k(m,m′) is defined ⇔ n =m ∧ n′ =m′.

When the lock is unlocked, the guard u is stored within the region cnt. When a thread takes
possession of the lock, it can be split into the guards l(n,n′) and k(n,n′) using the axiom:

u = l(n,n′) • k(n,n′).

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:72 E. D’Osualdo et al.

Finally, if a thread holds the guard k(n,n′), then it holds the lock, which can be inferred from the
axiom:

u • k(n,n′) is undefined.

This pattern of three guards is often used as a TaDA pattern to encode mutual exclusion on
some resource when a thread has possession of a shared lock.

We also associate a single atom obligation k with the region type lcnt. This obligation encodes
ownership of the blocking counter’s lock, as well as the obligation to unlock it. We set lay(k) = 0.

Region Protocols. The guard-labelled transition system of the region cnt is:

e : ((n,α), 0)� ((n + 1, β), 0) α > β,

and the guard-labelled transition system of the region lcnt is:

e : ((0,n,α), 0)� ((1,n, β), k) α > β

e : ((1,n,α), 0)� ((1,n + 1,α), 0)

e : ((1,n,α), k)� ((0,n,α), 0).

Region Interpretations. The interpretation of the locked counter region lcnt links the state of the
lock and counter to the abstract state of the region and the ownership of k.

The region cnt is a wrapper around the lcnt region that hides the state of the lock and allows
the counter value of the region lcnt to be disconnected from that of the outer region when the
lock is locked.

I (lcntr (x , s, la, l ,n,α)) � x �→ la,n ∗ L(s, la, l ,α) ∗ (l = 0
.
⇒ �k�L

r)

I (cntr (r ′,x , s, la,n,α)) � ∃n′ ∈ N, l ∈ {0, 1}. lcntr ′ (x , s, la, l ,n
′,α) ∗ �e�r ′

∗
(
(l = 0 ∧ n = n′ ∧ �u�r) ∨ (l = 1 ∧ �l(n,n′)�r ∗ �k�E

r ′)
)

Predicates. The counter resource is abstractly represented by the predicate

C((r , r ′, s, la),x ,n,α) � cntr (r ′,x , s, la,n,α) ∗ �e�r .

Verification of incr. The proof of incr can be found in Figure 24. The only step requiring live-
ness reasoning is the call lock(x), which is handled very similarly to the same call in the left
thread of the distinguishing client where the environment liveness condition of the LiveC rule

application is discharged using the fact that when l = 1 holds, then �k�E
r , which, in this case,

is obtained from the interpretation of the outer region, cnt. The details of the proof of the lock
operation cab be found in Figure 23.

Verification of the makeCounter and read operations. The proof of makeCounter proceeds, us-
ing standard steps on Hoare triples, by establishing the postcondition ∃x , la, lr ,α . x �→ la, 0 ∗
L(lr , la, 0,α), which can be viewshifted to ∃x , la, r , r ′, lr ,α .C((r , r ′, lr , la),x , 0,α).

The proof of read is almost identical to the proof in Figure 24. The reader might wonder if
the lock acquisition in the code is strictly necessary. Indeed, it is not given the current set of
operations available to the client. To prove the version where read does not acquire the lock,
however, we would need to change the region’s protocol to encode the fact that while holding a
lock a single write to it is possible. Since one would conceivably want to extend the module with
other operations that write to the counter multiple times while holding the lock, we formalised the
more general protocol. In the presence of such additional operations, read would need to acquire
the lock to be correct.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:liveness-check

TaDA Live 16:73

Fig. 23. Details of the proof of the lock(l) call of incr. Step 6 is LiftA, Frame.

Fig. 24. Blocking counter: proof of incr.

5.4 Double Blocking Counter

We now develop the proof of a double blocking counter module, that is, a module encapsulating
two integers each protected by a fair lock. The module offers linearisable operations to incremen-
t/read each counter in isolation and an incrBoth operation to atomically increment both. The

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

step:incr-lock-inner
rule:lift-atomic
rule:frame

16:74 E. D’Osualdo et al.

Fig. 25. Code of the double blocking counter operations.

implementation of incrBoth needs to deal with the ubiquitous pattern of locking multiple locks
in a nested fashion, which is one of the most common sources of deadlocks in coarse-grained
concurrent programs. The example illustrates how the specification format and layer system of
TaDA Live allow for modular proofs of deadlock-freedom. In particular, verifying the example in
LiLi would require: (i) replacing the calls to the lock operations with some non-atomic abstract
code (ii) building a termination argument that talks about the queues of the two fair locks; in par-
ticular, the variant argument would need to consider both queues at the same time and argue about
all the possible ways the threads in the environment may enter and exit both queues. We avoid
these complications by: (i) reusing the (fair) lock specifications that are truly atomic and properly
hide the queues, (ii) arguing about termination by means of two obligations with layers the order
of which reflect the order of acquisition of locks. These obligations only represent the liveness in-
variant that each lock is always eventually released; the layers represent the dependency between
the two locks. The proof requires no detail about why, thanks to the internal queues, this is suffi-
cient to ensure global progress: That part of the argument has already been made in proving the
lock specifications!

Code. The implementation of the module’s operations is in Figure 25 using the following abbre-
viations for readability:

x.lock1 � [x], x.lock2 � [x+1], x.cnt1 � [x+2], x.cnt2 � [x+3].

Specifications. The fair lock module specifications assumed in this example are

1r 	

A

l ∈ {0, 1} �0r
{0}.

〈
L(r , x, l)

〉
lock(x)

〈
L(r , x, 1) ∧ l = 0

〉
,

0r 	
〈
L(r , x, 1)

〉
unlock(x)

〈
L(r , x, 0)

〉
,

where 1r and 0r are layers parametrised on the region identifier r of the shared lock. It is a common
TaDA Live pattern to parametrise the layers of specifications so they can be instantiated differently
for each instance of the module. In Section 5.5, we explain this parametrisation in general and how
to parametrise the implementation proof accordingly.

The abstract predicate DC(t ,x ,n,m) represents a double counter at address x with abstract
location t and values n and m, respectively. We wish to the show the implementations of the

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:75

module’s operations satisfy the following specifications:

1 	
{
emp

}
makeDCounter()

{
∃t .DC(t , ret, 0, 0)

}
,

1 	

A

n,m ∈ N.
〈
DC(t , x,n,m)

〉
incrBoth(x)

〈
DC(t , x,n + 1,m + 1)

〉
,

1 	

A

n,m ∈ N.
〈
emp

���DC(t , x,n,m)
〉
incr1(x)

〈
ret = n ���DC(t , x,n + 1,m)

〉
,

1 	

A

n,m ∈ N.
〈
emp

���DC(t , x,n,m)
〉
incr2(x)

〈
ret =m ���DC(t , x,n,m + 1)

〉
.

It is important to note here that we are making explicit the parametrisation of the layers in the
region identifiers s , because we will need to associate different layers with the two instances of the
lock. As we will see later, we will have two region identifiers s1 and s2, one per lock, with associated
layers 1s1 , 0s1 , 1s2 , 0s2 . The lock specifications themselves only require 1s1 > 0s1 and 1s2 > 0s2 but
we will additionally impose, for this client proof, 0s1 > 1s2 . This represents the fact that, in this
client, the release of lock 1 will depend on the acquisition of lock 2.

Shared Regions. Like for the single counter example, we need two nested regions, one to prove
the atomicity of the operation (dcnt) and an inner one to prove termination (ldcnt). They differ
in that dcnt only records the abstract states of the counters, while ldcnt includes the abstract
states of the locks. Formally: dcntr1 ((r0, t0),x ,n,m) and ldcntr0 (t0,x , l1, l2,n,m) where r0, r1 ∈ RId,
x ∈ Addr, l1, l2 ∈ {0, 1}, and n,m ∈ N, and t0 is a tuple (la1, la2, s1, s2) with la1, la2 ∈ Addr and
s1, s2 ∈ RId. Here, (r0, t0),x , and t0,x are the fixed parameters of the two regions, respectively. The
double blocking counter resource is abstractly represented by the predicate DC((r1, t1),x ,n,m) �
dcntr1 (t1,x ,n,m) ∗ �e�r1

.

Guards and Obligations. We introduce the guard constructors bi , ci , and wi , for i ∈ {1, 2}, for
bookkeeping of the value of the counters. We need this ghost state, because in incrBoth there is
an intermediate state where one counter has been updated but the other has not; we cannot update
the abstract state in two steps, because we are proving atomicity of the operation, so we need to
update both counter values in the abstract state in one go. We record the intermediate concrete
state in these guards so the information is there locally without affecting the shared abstract state
prematurely. The guard composition satisfies the axioms

b1 = c1 (n,n′) •w1 (n,n′), b2 = c2 (n,n′) •w2 (n,n′).

Here, ci (n,n′) tracks the reference value (left in the region interpretation) for the ith counter’s
abstract (n) and concrete (n′) value and wi is a local “witness” for the same information about
the ith counter, which can only be obtained when locking the ith lock (otherwise, it would not be
stable information). This is enforced by the interpretation given later.

We associate two atom obligations k1 and k2 with the region type ldcnt, encoding ownership
of the double counter’s locks, respectively, as well as the obligation to unlock them.

As anticipated, we choose the layers of the lock specifications in a way that represents the
dependency between the two locks. We have a (double-counter-local) top (1) and a bottom (0)
layer, and intermediate layers for the locks:17

0 = 0s2 = lay(k2) < 1s2 < 0s1 = lay(k1) < 1s1 = 1.

Region Protocols. The interference protocol of the region dcnt trivially allows for any change to
the counter values:

e : ((n,m), 0)� ((n′,m′), 0).

17The proof works with 1s2 = 0s1 , too, but the ordered version better emphasises the dependency between the locks.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:76 E. D’Osualdo et al.

The interference protocol of the region ldcnt encodes the constraint that we can update a counter
only by holding the corresponding lock:

e : ((0, l ,n,m), 0)� ((1, l ,n,m), k1), e : ((l , 0,n,m), 0)� ((l , 1,n,m), k2),

e : ((1, l ,n,m), k1)� ((0, l ,n,m), 0), e : ((l , 1,n,m), k2)� ((l , 0,n,m), 0),

e : ((1, l ,n,m), k1)� ((1, l ,n′,m), k1), e : ((l , 1,n,m), k2)� ((l , 1,n,m′), k2).

Region Interpretations. The interpretation of dcnt formalises the fact that the outer region simply
hides the state of the locks for the atomicity argument, while the actual internal protocol of the
module is encoded in the interpretation of the inner region ldcnt:

I (dcntr1 ((r0, t0),x ,n,m)) � ∃l1, l2 ∈ {0, 1}. ldcntr0 (t0,x , l1, l2,n,m) ∗ �e�r0
∗

l1 = 1
.
⇒ �k1�E

r0
∗ l2 = 1

.
⇒ �k2�E

r0

I (ldcntr0 ((la1, la2, s1, s2),x , l1, l2,n,m)) � ∃n′,m′ ∈ N.
x �→ la1, la2,n

′,m′ ∗ L(s1, la1, l1) ∗ L(s2, la2, l2)

∗ �
(l1 = 0 ∧ �k1�L

r0
∗ �b1�r0

∧ n = n′)

∨ (l1 = 1 ∧ �c1 (n,n′)�r0
)

�
�

∗ �
(l2 = 0 ∧ �k2�L

r0
∗ �b2�r0

∧m =m′)

∨ (l2 = 1 ∧ �c2 (m,m′)�r0
)

�
�.

Proof of incrBoth. The proof outline of incrBoth is reproduced in Figure 26. Most of the proof
is routine; the derivation for the acquisition of the first lock follows closely the pattern we already
explained in Sections 4 and 5.3. We show the proof of the acquisition of the second lock in more
detail to show the interplay between the layers. At that point, we are continuously holding the
obligation of the first lock, with layer greater than 1s2 , so apply LayWH to lower the layer to 1s2

enabling the application of Frame to frame r1 �⇒
 ∗ �k1�L
r0
∗ �w1 (n,n)�r0

. The obligation k2 has
layer lower than 1s2 so we are allowed to invoke it to discharge the environment liveness condition
of the LiveC application in a way that is analogous to the derivations of the distinguishing client
and Appendix 5.3.

A comparison with LiLi. As we have seen in Section 2 (Innovation 3), the call of a CLH lock in
LiLi involves two distinct atomic actions: requesting the lock and acquiring it. Requesting a lock x
is a non-blocking action, as it just enqueues the current thread in the (concrete) queue for x, but the
acquisition is represented with a (primitive) blocking operation that waits until the current thread
is at the head of the lock’s queue, and the lock is unlocked. When proving the call to lock(l1) in
incrBoth, the LiLi proof would require arguing about termination of acquisition by appealing to
progress of the threads in the environment.

To do so, in the LiLi methodology, one has to identify the threads in the environment that will
be able to make progress and show how this progress is bringing us closer to acquiring lock l1.
Consider the case when there are n1 > 0 threads ahead of us in the queue for l1. Assume thread t1
is the head of the queue for l1. It can make progress in three ways:

• if l1 is unlocked, then it can acquire it;
• if l1 is locked it, then can unlock it;
• if l1 is locked, then it can request l2.

How do these actions represent progress for us? The first case makes progress by moving to the
second or third case. The second case removes t1 from the queue of l1, bringing us closer to

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:layer-weak
rule:frame
rule:liveness-check

TaDA Live 16:77

Fig. 26. Double blocking counter: proof of incrBoth. Step 7 is LiftA, Frame.

the front of the queue. The third case complicates matters: In this case, t1 is enqueued in the
queue of l2 with a non-deterministic number n2 of threads ahead of it. The thread t1 is now
blocked, and to track progress, we need to consider the head of the queue for l2, which can only
make progress by acquiring the lock when unlocked, or releasing the lock when locked. What
progress had been made towards us acquiring l1? The measure of progress needs to consider the
contents of the queues for both threads: The measure before t1 requests l2 needs to be (n1,ω)
(ordered lexicographically) so we can lower the measure to (n1,n2) once t1 joined the queue of l2.
Whenever t1 reaches, finally, the head of the queue of l2, the measure of progress would become
(n1, 0), and the only option for t1 is to release l2. Now thread t1 is back to the three options as

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

step:dc-lock2
rule:lift-atomic
rule:frame

16:78 E. D’Osualdo et al.

above. This is a problem, because nothing would prevent t1 from requesting l2 again. This could
repeat ad libitum, leaving us to starve on l1. To rule this out, the argument needs to place a bound
b on the number of times l2 can be acquired while holding l1; in our example, this bound can be
1. By mixing this bound in the measure (n1,b,n2), the action of t1 releasing l2 brings real progress
by taking b from 1 to 0. When that happens, the only option for t1 is to release the lock. This brings
down n1, the number of threads ahead of us; at the same time, we want to reset n2 to ω and b to 1
to allow the new head of the queue of l1 to request l2.

This substantiates our claim that LiLi’s rely/guarantee reasoning lacks in scalability; the key
reason for this is that the progress argument is forced to walk through all the possible ways the
environment could be implementing progress. This, in turn, requires to expose the internal state
of both locks (their queues) to be used in the client’s proof. In other words, the abstraction of the
environment is not abstract enough. By comparison, TaDA Live’s atomic specifications allow for
the termination of the lock calls in the double blocking counter to be reasoned about individually,
without direct reference to the termination of the other, nor to internal state, using layers to pre-
vent circular reasoning. The appeal to obligation k1 being live to justify why the call to lock(l1)
terminates abstracts away how the environment may be keeping it live. The layers capture the
essential information: The only thing that is important is that to keep k2 live, the environment
does not assume k1 live.

5.5 Lock-coupling Set

To conclude this series of examples, we present a challenging fine-grained lock-based implemen-
tation of a linearisable finite set. A lock-coupling set implements a set by maintaining an ordered
linked list of the elements with fair locks (here, CLH locks) guarding each individual element. The
module exposes an add and remove operation to add and remove elements from the abstract set it
represents. To make modifications to the nodes of the linked list, the operations traverse the list
using a lock-coupling pattern. In this pattern, all threads start the traversal at the head of the list.
To be at position i a thread must acquire the lock at that position. To move to position i + 1 the
thread would first acquire the lock at i + 1 and then release the lock at position i . This way, the
threads cannot overtake each other, and owning a lock allows the owner to safely perform modi-
fications at that position. We sketch here the main points of interest of our proof; the full details
can be found in Appendix C.

This example is challenging, because it makes use of a dynamically changing list of locks with
non-trivial liveness dependencies between them. In particular, the termination of the acquisition
of each lock depends on the usage of the locks further down the list. Although these dependencies
are acyclic, they change over time as the list grows or shrinks. At first sight, it is unclear how the
seemingly static layer structure of TaDA Liveand the fixed layers decorating the specifications of
lock operations can cope with this complexity without breaking modularity.

The TaDA Live proof of this example relies on solving two key challenges:

• How can we modularly coordinate the choice of layers needed for the proof of a module and
the ones needed for the proofs of its clients?

• How can we dynamically reassign layers to resources?

We solve the first challenge by introducing a style of specification that allows the client to
“remap” the layers of the implementation into a larger layer structure and the implementation
to prove correctness with respect to a “local” layer structure that is opaque to the client. The
key observation is that a TaDA Live derivation’s validity is preserved by transformations of the
layer structure that preserve the strict order between layers. This leads to the following proof
style. Given two partial orders (L1, �1,�1,⊥1) and (L2, �2,�2,⊥2), a function η : L1 → L2 is

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:79

strictly monotone if ∀m,n ∈ L1.m <1 n ⇒ η(m) <2 η(n). A layer map η : L1 →lay L2 is a strictly
monotone function between the two partial orders. Using this notion, we generalise the client-
facing CLH lock specifications as follows:

∃(Lclh, �clh,�clh,⊥clh).∀η : Lclh →lay L.

η(�clh) 	

A

l ∈ {0, 1} �η (⊥clh) {0}.
〈
Lη (s, x, l)

〉
lock(x)

〈
Lη (s, x, 1) ∧ l = 0

〉
,

η(⊥clh) 	
〈
Lη (s, x, 1)

〉
unlock(x)

〈
Lη (s, x, 0)

〉
.

From the perspective of the implementation, a proof of correctness would start by defining the
partial order of the “internal” layers. In the case of CLH, as we have seen in Section 5.2, we would
let Lclh = N∪{1, 0} with�clh = 1 and⊥clh = 0. Then, to be able to prove the triples with the layers
remapped by the arbitrary layer mapη, we would reproduce the derivation presented in Section 5.2
but with η applied to every occurrence of an internal layer. For example, the lclh region type would
also be parametrised by the layer map, lclhr ′ (η,x ,h, l ,o, t), so its associated obligations and their
layers can depend on η, e.g., lay(pη (t)) = η(t). Since the map preserves the strict order of Lclh, the
proof goes through exactly as in the un-parametrised case.

From the perspective of the client, to use these specifications one would first obtain the arbi-
trary Lclh from the existential quantification. Then the client would be able to choose a layer map
from Lclh to L. Here, L could be the global layer structure, in the case of a closed proof, or itself
being the internal layer structure of a module using the lock module internally. Note that the client
needs to define η parametrically on Lclh, since it has no control on the inner structure of Lclh. For
example, in the case of a client with a static list of locks, one would use as L the lexicographically
ordered set of pairs from (N∪{',⊥})×Lclh where the first component corresponds to the position
of the lock from the end of the list. Then, for the lock at position i ∈ N, the client would instantiate
the specifications choosing ηi (k) � (i,k).

The second challenge is also solved by a slight generalisation of the lock specifications, following
a proof pattern that, if adopted, always increases the generality of module specifications: adding
some fractional permissions to control the update of ghost parameters of the resource. The idea is
that the layer map is ghost state, and as such, we should be able to update it using a viewshift. To
do this without invalidating the other thread’s information about the region we are updating, we
add standard fractional permissions to the lock specifications. We introduce the abstract predicate
P(s,π) representing ownership of the fraction 0 ≤ π ≤ 1 of permissions for a lock at abstract
location s . To split permissions, the predicate satisfies, for 0 ≤ π1 + π2,π1,π2 ≤ 1, P(s,π1 + π2) ⇔
P(s,π1) ∗ P(s,π2). The generalised lock specifications would then be:

∃(Lclh, �clh,�clh,⊥clh).∀η : Lclh →lay L.

η(⊥clh) 	
{
emp

}
makeLock()

{
∃s . Lη (s, x, 0) ∗ P(s, 1)

}
,

∀π>0.η(�clh) 	

A

l ∈ {0, 1} �η (⊥clh) {0}.
〈
P(s,π) ��� Lη (s, x, l)

〉
lock(x)

〈
P(s,π) ��� Lη (s, x, 1) ∧ l = 0

〉
,

η(⊥clh) 	
〈
Lη (s, x, 1)

〉
unlock(x)

〈
Lη (s, x, 0)

〉
.

When creating a new lock, one gets a local resource representing an unlocked lock and full per-
missions. Typically, then permissions are distributed to the threads by splitting the full permission
into smaller fractions. A non-trivial fraction of permission is now needed to perform the lock
operation. We can then provide the viewshift Lη (s, l) ∗ P(s, 1) � Lη′ (s, l) ∗ P(s, 1), which allows
to change the layer map without invalidating the knowledge about it in any other thread: If we
own P(s, 1), then no other thread can race on the lock. Adapting the proof of CLH to support

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:80 E. D’Osualdo et al.

permissions and the viewshift above follows standard (safety) proof patterns that we explain in
Appendix C.

Let us briefly explain how we can use this viewshift in the lock-coupling set example. Concep-
tually, we want to organise the layers of the lock-coupling set module as for a static list of locks:
They go in decreasing order from the head of the list to the tail. A thread holding a lock at po-
sition i will be able to eventually acquire the lock at position i + 1, because the release of such
lock is associated with an obligation of strictly lower layer than the one associated with the lock
at i . Each operation of the module inserts at most one element to the set per traversal of the list.
We therefore arrange the proof invariants so each thread traversing the list will shift up the layer
of the lock at the thread’s current position by one. This way, when the thread finally finds the
position where the new element has to be inserted, there is already a gap of 1 between the layers
associated with the positions being altered by the thread. The layer sitting at the gap will be the
one we associate with the lock of the new element. The layer-map-altering viewshift we explained
above is used at each step of the traversal to shift up the layer of the current lock. This is possible
without breaking the information owned by other threads, because when the current thread holds
the lock at position i and the lock at i + 1 finally becomes available, the current thread is the only
thread with access to the reference (and the associated resources) of the lock at i +1. Formally, this
means that when we obtain the lock at i + 1, we are able to obtain full permissions for it until we
unlock the lock at i . With the full permissions, we can apply the viewshift and effectively shift up
the layers associated with the lock at i + 1.

The only exception to this scheme is the lock at the head of the queue: This is the only lock
that does not need a remapping of layers, as its associated layer can be (',⊥clh), which is always
bigger than any layer ever associated with the locks at the other positions.

It is worth noting that the LiLi proof of the same example does not use the specifications of the
fair locks modularly, but instead inlines the code of the lock operations, allowing for a non-modular
handling of the internal state.

Interestingly, the same lock-coupling set specifications can be implemented by using spin locks
instead of CLH locks, for each element except the one at the head. In fact, the locks in the tail of
the list do not experience any impedance. At first sight, it seems impossible to represent this fact
using our specifications for spin lock: The lock operation needs to consume non-trivial budget,
but there is no bound on the number of calls to it. The TaDA Live way of expressing the absence of
impedance in this example uses a viewshift similar to the one we introduced above, which allows
us to reset the budget (and the layer map) when we own full permissions. The proof in LiLi of this
variant of the lock-coupling set again inlines the lock code, with the effect of being able to redefine
which internal steps are susceptible of impedance and which do not, breaking modularity.

5.6 Limitations

Non-local linearisation points. As with other total program logics, TaDA Live does not support
helping/speculation. Such patterns are challenging for the identification of the linearisation point,
which is entirely a safety property. Extensions to TaDA that could support such patterns are dis-
cussed in Reference [6]. Such extensions are orthogonal to the termination argument. We therefore
choose, in line with the related literature, to explore termination in a simpler logic.

Non-structural thread creation. TaDA Live currently supports only structural parallel composi-
tion. We believe the support of non-structural fork/join would not require substantial new ideas.
For comparison, LiLi does not support parallel nor fork/join.

Scheduling non-determinism. A more interesting limitation comes from our approach to spec-
ifying impedance. For non-blocking programs, the ordinal-based approach is complete. It is not

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:81

complete for blocking programs. Consider C2 � (C1 ‖ [done]� true) where C1 is the distin-
guishing client with a spin lock. Scheduler fairness guarantees the right-hand thread of C2 will be
eventually executed. The specification of spin lock, however, states that every call to lock needs
to consume budget, forcing the client to provide an upper bound for the total number of calls to
initialise the budget. Unfortunately, C2 will call lock an arbitrary unbounded number of times,
determined only by the choices of the scheduler. It is, thus, not possible to provide the initial bud-
get, and TaDA Live cannot prove that the program terminates. The impedance on the lock is only
relevant when the client is unblocked (i.e., done is true) but the specifications do not allow for
the distinction. To accommodate this behaviour, we could introduce α (d) to represent a prophecy
of the number of steps it will take to fulfil live obligation d. This would solve the problem for
C2, because α (d) + 1 (where d is fulfilled by setting done to true) would be the required budget.
How to introduce this extension soundly is future work. To the best of our knowledge, none of the
approaches in the literature can handle this example.

Loop body specifications. Consider a loop invariant asserting the possession of obligation k. We
cannot distinguish, by only looking at the specification of the loop body, the case where k is con-
tinuously held throughout the execution of the body, from the case where k is fulfilled and then
reacquired before the end of an iteration. The current While rule conservatively rules out the use
of assumptions with layer higher than or equal to lay(k); doing otherwise would be unsound in the
case when k is held continuously. A solution would be to introduce an assertion live(k), certifying
that an obligation is fulfilled at some point in a block of code. It would allow the While rule to
only forbid layers that may depend on obligations one holds in the loop invariant and for which
it was not possible to prove live(k).

More Expressive Layers. Advanced examples like the lock-coupling set of Section 5.5 need pow-
erful parametric specifications to work around the fact that the lay function is statically specified.
We are not aware of any example that cannot be proved using static layers and critically requires
more expressive layers. Even for current proofs, however, being able to constrain layers through
assertions and allowing them to change as result of interference would allow for more concise and
intuitive proofs. The lay function could in principle be encoded as “regular” ghost state and the
crucial relative order between layers be enforced through invariants. It is, however, not clear how
to ensure soundness if interference on layers is allowed. We leave this exploration as future work.

6 RELATED WORK

Primitive Blocking. There has been work on termination and deadlock-freedom of concurrent
programs with primitive blocking constructs. Starting from the seminal work of Reference [27],
the idea of tracking dependencies between blocking actions and ensuring their acyclicity has been
used to prove deadlock-freedom of shared-memory concurrent programs using primitive locks
and (synchronous) channels [3, 28]. Similar techniques have been used in Reference [16] to prove
global deadlock-freedom (a safety property requiring that at least some thread can take a step)
and Reference [22] to prove termination. This entire line of work assumes the invocation of lock-
/channel primitives as the only source of blocking. As a consequence, this methodology provides
no insight on the issue of understanding abstract blocking patterns arising from busy-waiting and
shared memory interference. Moreover, the specifications for blocking built-ins (hardcoded in the
logic as ad hoc axioms) impose a usage protocol in the client, instead of just capturing the abstract
effect of the operation: For instance, a call to lock(x) always entails an obligation to unlock the
lock, regardless of how the client intends to use the lock. This has had the side effect of requir-
ing ad hoc extensions of the reasoning principles to increase the expressivity of this hard-coded
protocol to allow, for example, for delegation of obligations [17]. Our solution uniformly handles

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:while
rule:while

16:82 E. D’Osualdo et al.

programs that mix blocking primitives and ad hoc synchronisation patterns and is not imposing
any specific protocol on the client.

The notion of “obligations” found in References [3, 16, 22, 28] is only superficially related to
our obligations. First, obligations found in the literature represent primitive blocking events (like
the acquisition of a lock). They are also typically equipped with a structure to represent causal
dependencies between these events to detect deadlocks. Our layered obligations are associated
with arbitrary abstract state changes, removing the need for ad hoc treatment of primitives and
supporting abstraction and abstract atomicity. Moreover, our layers do not represent causal depen-
dencies between events, but rather dependencies between liveness assumptions in a termination
argument. This reflects in our specifications, e.g., a lock operation does not return an obligation in
its post-condition. Whether there is a need for an obligation linked to that lock is entirely depen-
dent on how the client will decide to use the lock. Nevertheless, the specification precisely captures
the termination guarantees of lock operations. Finally, obligations in the literature have a purely
safety semantics, from which one can only derive safety properties as non-blocking or deadlock-
freedom. Our obligations explain how to express proper liveness invariants, how to blend them
with the layers, and how to use them for proving termination.

Temporal Logics. There is substantial literature on using temporal logics to prove liveness and
termination of concurrent programs, e.g., Reference [37]. By working directly at the level of traces
with liveness properties stated as temporal logic formulas, this approach is very general. It does,
however, provide less guidance on how to prove programs and does not tackle the problem of
abstract interfaces and proof reuse. Our adoption of concurrent separation logic as the basis of our
reasoning achieves superior compositionality of the reasoning including proof reuse.

History-based methods. The CertiKOS project [15, 25] developed mechanised techniques for the
specification and verification of fine-grained low-level code with explicit support for abstract atom-
icity and progress verification. The approach is based on histories: The abstract state is a log of the
abstract events of a trace; and the specification of an atomic operation inserts exactly one event
in the log. Local reasoning is achieved by rely/guarantee through complex automata product con-
structions. The framework is very expressive, with the downside that specifications are more com-
plex and difficult to read, and verification requires manipulation of abstract traces/interleavings.
Our work is similar in aim and scope, but our strategy is different. We try to specify/verify pro-
grams using the minimal machinery possible, keeping the specifications as close to the developer’s
intuition as we can. As a result, our specifications are more readable (compare our fair-lock spec-
ification with the corresponding 30-line specification from Figure 7 in Reference [25]), and our
reasoning is simpler (the layered obligation system leads to a more intuitive proof compared to
the proof of MCS locks in Reference [25]).18

Contextual refinement. Another approach to specify and prove progress of concurrent systems
is to prove refinement between the implementation and simpler, abstract code acting as a specifica-
tion [30, 31, 39]. By making sure the refinement preserves progress properties, one can represent
the salient termination properties of the implementation by the termination properties of the spec-
ification code. The Iris implementation of this idea [39] uses a non-contextual refinement, which
means that the refinement is proven between the closed-world behaviour of implementation and
specification code, and does not necessarily carry over contexts. This severely hinders proof reuse.
The only refinement-based work that is able to modularly verify blocking code is the LiLi logic,
discussed below.

18The proof is a variation of the one for CLH.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:83

There has been work on extending linearisability, characterised as a contextual refinement, to
support reasoning about progress properties, e.g., [14]. This work only supports non-blocking
operations. Liang et al. [33] studies the exact relationship between common progress properties of
fine-grained operations and contextual refinement. The study of the contextual refinement induced
by our triple semantics is future work.

LiLi. The work closest to ours is LiLi [30, 31]. LiLi was the first concurrent separation logic to
prove progress specifications for linearisable concurrent objects with internal blocking [30], and
it was then extended to handle external blocking [31]. Although we share most of our goals with
LiLi, our approach differs in two important ways.

First, LiLi’s goal is to prove a progress-preserving contextual refinement between the implemen-
tation of a module and its specification. Termination properties of implementation code are not
represented directly, but in terms of the termination properties of the specification code. Although
proof of clients of the module have to be done outside of the LiLi logic (there is no rule for parallel,
nor for calling a module’s operation) such proofs would need to reprove the relevant termination
properties of the specification code so the properties themselves become available in the proof.
Moreover, as we outlined in Section 2 for CLH lock, the specification code for blocking operations
may be non-atomic even in the case of linearisable operations. Instead, we aim at specifications
that directly represent termination properties as a logical statement that can be readily used in
a client proof and in the proof of the implementation. Our specification format obtains a crucial
advantage: It achieves abstraction and can represent atomicity for blocking operations, enabling
more scalable and reusable reasoning.

Second, LiLi’s rely/guarantee incorporates a form of liveness invariants through so-called defi-
nite actions. Definite actions require the identification of a logical global “queue” of threads where
the thread at the front is always able to execute its action and that action implies global progress.
This queue is maintained as shared auxiliary state manipulated through ghost code. It is due to
this global view that definite actions can side-step the issue of circular reasoning. Our layered
subjective obligations push the idea much further, obtaining sound liveness invariants that can
be represented thread-locally and without the need for ghost code, improving proof scalability.
The design choice of making both rely/guarantee and specification represent blocking via liveness
assumptions is the key to making the blocking specifications directly usable in the proof system.

7 CONCLUSIONS AND FUTURE WORK

We have introduced TaDA Live, a concurrent separation logic for reasoning compositionally about
the termination of fine-grained blocking concurrent programs and proved a substantial soundness
result. Our key contribution is our approach to abstract atomic blocking as the reliance of ter-
mination on the liveness properties of the environment. By wholly embracing this point of view,
we have designed a rely/guarantee principle that incorporates liveness invariants using layered
subjective obligations, a new form of local ghost state, and have extended TaDA’s abstract atomic
specifications to provide total specifications for blocking programs using environment liveness
assumptions. Through several case studies, we have illustrated how our formalisation of abstract
blocking allows for the right level of abstraction in specification and strong thread-locality of the
proofs. The result is a verification system with scalable and reusable proofs.

The work presented in this article opens a number of immediate directions for future work on
concurrent separation logics. A first direction is to extend TaDA Live to prove general liveness
properties beyond termination. A possible way to achieve this is to wrap a refinement calculus
around TaDA Live’s atomic specifications, as was done in the safety case in TaDA Refine [35].
Specifications would be able to sequentially compose atomic triples and take fixpoints, thus being

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:84 E. D’Osualdo et al.

able to specify linear-time temporal properties of infinite traces. A second direction is to study gen-
eral fork/join concurrency and provide a generalisation of the liveness rely/guarantee necessary
to accommodate patterns typical of distributed/reactive systems, where long-lived maintenance
threads interact with an environment to realise an operation’s effect. A third direction is to trans-
fer ideas from TaDA Live to the Iris framework [23] to provide a Coq-mechanised environment
for reasoning about the termination of concurrent programs. More widely, we hope that our em-
phasis on environment liveness invariants for proving termination will transfer to other forms of
reasoning about blocking concurrent programs.

APPENDICES

We present here omitted definitions and details of proofs. An extended version of this article is
also available at https://arxiv.org/abs/1901.05750 [12].

A SOME PROOFS CONVENTIONS

A.1 Specification Abbreviations

Here is a summary of all the abbreviations we use in writing specifications. The full hybrid speci-
fication format is

m; λ;A �

A

x ∈ X �k X ′.
〈
Ph

��� Pa (x)
〉
C ∃y.

〈
Qh (x ,y) ���Qa (x ,y)

〉
.

The ∃y quantification is a normal existential quantification, but its scope extends over both the
Hoare and the atomic post-conditions. We omit it when y does not occur in the triple.

A

x �

A

x ∈ Val

A
x ∈ X �

A
x ∈ X �⊥ X

A

x1 ∈ X1 �k X ′
1,x2 ∈ X2 �k X ′

2. �

A

(x1,x2) ∈ (X1 × X2) �k (X ′
1 × X ′

2).

An omitted pseudo-quantifier is to be understood as the trivial pseudo-quantifier

A

x ∈ AVal�⊥ AVal, for an unused x .
The triples

m, λ,A 	
{
P
}
C
{
Q
}

m, λ,A 	

A

x ∈ X �k X ′.
〈
P (x)

〉
C

〈
Q (x)

〉
are abbreviated with

m; λ;A 	
〈
P ��� emp

〉
C

〈
Q ��� emp

〉
∀�v0.m; λ;A 	

A

x ∈ X �k X ′.
〈
�v0 � �v0

��� P ′(x)
〉
C ∃�v1.

〈
�v0 � �v0 ∧ �v1 � �v1

���Q ′(x)
〉
,

respectively, where �v0 = pv(P (x)), �v1 = pv(Q (x)) \ �v0, P
′(x) = P (x)[�v0/�v0], and Q ′(x) =

Q (x)[�v0/�v0, �v1/�v1] (for technical reasons, the atomic pre-/post-conditions in the general triples
cannot contain program variables). In other words, the program variables mentioned in the atomic
pre-/post-conditions refer to the value stored in them at the beginning of the execution of the com-
mand. Most commonly, the program variables used this way are actually not modified by the
command.

A.2 Guard and Obligation Algebras

Defining a guard algebra can be tedious. In program proofs, we will define guard algebras by
generating them from some guard constructors and some axioms defining the guard operation.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

https://arxiv.org/abs/1901.05750

TaDA Live 16:85

Consider two common guard patterns in TaDA Live: the use of an exclusive guard and the u, l,
k pattern used to represent possession of a lock in ghost state.

An exclusive guard, e, is very commonly used to express some exclusive permission on some
shared resource, which cannot be composed with itself: i.e., e • e = ⊥. Local ownership of e is
exclusive in that no other thread can at the same time assert ownership of e. A ubiquitous use of
this guard is in representing the resource offered by a module.

The u, l, k pattern is commonly used to represent ownership of a lock guarding a resource. The
thread records its ownership of a lock by holding the ghost state k, which cannot be composed
with the guard u, recording the lock is unlocked: u • k = ⊥ The region holds the associated guard
l, which can be recombined with the guard k once the thread releases the lock to form the guard
u: u = l • k.

We explain the construction of a guard or obligations algebra from these axioms by introducing
some unsurprising auxiliary definitions.

Given a set X , the set M (X) � X → N is the set of multisets over X ; ∅ is the empty multi-
set (i.e., the function mapping every element to 0) and ⊕ : M (X) × M (X) → M (X) is multiset
union (i.e., the pointwise lifting of +). The expression
x1, . . . ,xn� denotes the multiset contain-
ing the elements x1, . . . ,xn . Given a set X , the free commutative monoid over X is the monoid
(M (X), ⊕, ∅). Given a commutative monoid (X , •, 0) and a congruence relation � ⊆ X × X , the
quotient (X/�, •/�, [0]�) is a commutative monoid. Given a commutative monoid (X , •, 0) and a
setU ⊆ X with 0 � U , the PCM over X induced by U is (X |U , •U , 0) where

X |U � {x ∈ X | ∀u ∈ U . �y ∈ X . x = u • y},

and for x ,y ∈ X |U , x •U y = x • y if x • y ∈ X |U , otherwise undefined.
For each guard algebra to be defined, we will introduce a number of symbols G1, . . . ,Gn , called

guard constructors, each with some guard domain dom(Gi) ⊆ AValki for some ki ∈ N. They induce
the set of guard terms GT �

⋃n
i=1 {Gi (�a) | �a ∈ dom(Gi)}. By specifying some guard constructors,

a congruence � ⊆ M (GT) × M (GT), and a set U ⊆ M (GT)/� , one obtains the guard algebra
((M (GT)/�) |U , (⊕/�)U , [∅]�).

The guard constructors are specified by listing their domains, writing Gi : Di to mean dom(Gi) =
Di ⊆ AValki , as, in certain cases, we may want to further restrict the domain of the guard construc-
tors to simplify the reasoning.

The congruence � is specified as the smallest congruence satisfying given axioms of the form

Gi1 (�ai1), . . . ,Gik
(�aik

)� �
Gj1 (�aj1), . . . ,Gjk′ (�ajk′)�,

which we write using the syntax

Gi1 (�ai1) • . . . • Gik
(�aik

) = Gj1 (�aj1) • . . . • Gjk′ (�ajk′).

The setU is specified as the smallest set satisfying given axioms of the form[

Gi1 (�ai1), . . . ,Gik

(�aik
)�
]
�
∈ U ,

which we write using the syntax

Gi1 (�ai1) • . . . • Gik
(�aik

) = ⊥.

Example A.1. The guard algebra used in Example 4.1, is expressed by using two guard construc-
tors with empty domain, k and d, and axioms: k • k = ⊥, d • d = ⊥ Note that with no congruence
axioms, the induced congruence relation is equality. These induce the guard algebra with elements{ ∅,
k�,
d�,
k,d� }

.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:86 E. D’Osualdo et al.

A.3 Levels

Region levels are used to remove the possibility of unsound duplication of resources by opening
regions. The presentation of the program proofs omits the level annotations to ease readability.
The levels can be unambiguously derived from the sequence of application of rules UpdReg and
LiftA.

To see the problem consider a generic region tλ
r (a); we have tλ

r (a) ≡ tλ
r (a) ∗ tλ

r (a): This is the
essence of what it means for a region to be a shared resource. When we open a region, however,
we obtain ownership of the contents of its interpretation I (tλ

r (a)); the interpretation can contain

resources that are not shared, for example, heap assertions, in which case, we have I (tλ
r (a)) �

I (tλ
r (a)) ∗ I (tλ

r (a)) ≡ False. Without constraining levels, one could start with tλ
r (a), produce the

equivalent tλ
r (a) ∗ tλ

r (a), open the first region assertion with UpdReg or LiftA, then open the
second region assertion and end up with False. Levels are a mean to avoid unsound derivations
that use the above chain of implications. A level λ in the context of a judgement records that all
the regions of level λ or higher might have been already opened and should not be opened again.
The rules that do open regions (rules UpdReg and LiftA) can only open a region of level λ if the
level in the context is λ + 1, and they record the operation by setting the context level to λ, so the
region cannot be opened again.

A.4 Region Type Specifications

—Abstract state domain. It can be tedious (and detrimental to readability) to always explicitly
write the domains of quantified variables in the assertions of program proofs, especially when
they can be easily inferred from context. Consider the case of regions. Some of the rules, for exam-
ple, MkAtom, need the precise domain of the abstract state (∃x ∈ X), because it needs to match
the pseudo-quantifier’s domain (

A

x ∈ X). To improve readability, we adopt the following strategy:
Suppose the region type t has abstract state in the domain A. We can define the interpretation
function so it constrains the domain of the abstract state accordingly: I (tλ

r (a)) = a ∈ A ∧ · · · .
Then, we trivially have that λ′;A � ∃a. tλ

r (a) � ∃a ∈ A. tλ
r (a). We thus can omit the domains

from existential quantification and implicitly apply rule Cons whenever the domain information
is needed in the proof.

To further ease the specification of region types, when defining a new region type, we will
introduce the domain of the corresponding abstract state and omit the obvious constraint from
the interpretation definition.

—Fixed parameters. It is very common to have a product domain as abstract state of regions, as
one needs to assemble in an abstract state many bits of information that characterise region’s state.
Typically, the abstract state domainA can be seen as the product of two domains F ×S , the domain
of the fixed parameters F and the domain of the non-fixed parameters S . (Both F and S can be them-
selves products of simpler domains.) The fixed parameters are set at the point of creation of the
region and can never be updated; they typically define the “interface” of the region. For example, if
the address of a lock module instance x is the fixed parameter of a hypothetical region lockr (x , l)
and l ∈ {0, 1} the non-fixed parameter representing the state of the lock. When introducing a
new region type, we will specify which parameters are fixed, and they will be omitted from the
region interference specification, as they are left untouched by every transition. For example, for
the region lockr (x , l) above, we may write g : (0, 0) � (1, k) and g : (1, k) � (0, 0) to denote
g : ((x , 0), 0)� ((x , 1), k) and g : ((x , 1), k)� ((x , 0), 0).

—Interference protocols and atomicity contexts. Definition 3.13 requires Tt to be monotone in the
guards, reflexive and closed under obligation frames. Since writing the whole function can be

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:update-region
rule:lift-atomic
rule:update-region
rule:lift-atomic
rule:update-region
rule:lift-atomic
rule:make-atomic
rule:consequence

TaDA Live 16:87

tedious and redundant, we will only write a number of expressions of the form

G : (a1,O1)� (a2,O2), (25)

which will set Tt (G) � {
(
(a1,O1), (a2,O2)

)
}, and implicitly complete the function by closing Tt

under the properties above.
Similarly, atomicity contexts associate to some region identifier records A (r) = (X ,k,X ′,R)

that have (unguarded) transition relations as their last component R. We therefore borrow the
syntax from Equation (25) and write R = (a1,O1) � (a2,O2) to specify R as the minimal relation
that includes such relations and is closed under obligation frames.

A.5 Proof Patterns

There are some recurring patterns in TaDA Live proofs, which we summarise here to help the
reader navigate the examples.

—The exclusive guard. Take for example a concurrent counter module. Abstractly, we have a
(fixed) location x for the module instance and an abstract state n ∈ N representing the current
value of the counter. Since this is a concurrent counter, it uses internally shared resources. We
therefore have a region cntr (x ,n) encapsulating the shared internal resources of the counter. From
the perspective of the client, however, at the moment of creation of the counter with, say, an opera-
tion makeCounter(), the counter is exclusively owned by the client. This, for example, is reflected
in the fact that, until the client shares the counter or invokes operations on it, the value of the
counter will be stably 0. To represent this fact, one typically defines an exclusive guard e guarding
each transition of the region interference: e.g., e : (n,O1) � (m,O2). Then the makeCounter()
operation can be given the specification

	
{
emp

}
x� makeCounter()

{
∃r . cntr (x, 0) ∗ �e�r

}
,

which gives to the client the stable assertion cntr (x , 0) ∗ �e�r . (Note how cntr (x , 0) is not stable.)
To re-share the counter, the client will create its own region encoding the invariants governing
the interaction over the counter (and the other resources of the client), the interpretation of which
will contain cntr (x , 0) ∗ �e�r .

Note that the assertion cntr (x , 0) ∗ �e�r has a very different meaning if occurring in the atomic
precondition of a triple, as opposed to the Hoare precondition: The resources in the atomic precon-
dition are not owned by the local thread, but only acquired instantaneously at the linearisation
point. For example, in the triple

	

A

n ∈ N.
〈
cntr (x,n) ∗ �e�r

〉
incr(x)

〈
cntr (x,n + 1) ∗ �e�r

〉
,

the exclusivity of e is only granted instantaneously to the thread acting on it atomically, i.e., either
the environment during the interference phase as allowed by the pseudo-quantifier or the local
thread at the linearisation point.

Since this pattern is ubiquitous, we reserve the e guard constructor for this use and will omit
the e • e = ⊥ axiom when specifying guard algebras.

A.6 Modules

TaDA Live is a logics that emphasises modularity of the proofs. One aspect of this is that when a
program is naturally structured as a collection of modules, one would want the proof of correctness
to be decomposed into independent proofs of each module exporting some specifications for the
externally accessible operations and a proof that the client of these modules is correct, which
depends only on these abstract module specifications.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:88 E. D’Osualdo et al.

In our model, a module is nothing but a conceptually related set of operations f1, . . . , fn that
are defined in a let statement: let f1(�x1)=C1 in . . .let fn(�xn)=Cn in C. Here, C is what
we call “client” of a module offering operations f1, . . . , fn . The operation deals with let statements
by populating a function φ associating each function name fi to its formal parameters �xi and its
implementation Ci .

Similarly, the proof of correctness of C, will need to fetch the abstract specifications of the func-
tions (which appear as free names in C) from some mapping Φ from function names to their spec-
ifications. The fact that the implementation of each operation satisfies its specification is checked
in the proof derivation for the let statement (rule Let) but then the proof of the client and of the
module are done separately.

For this reason, we present proofs of just a module against its abstract specifications, which
can be used as if they were axioms in the proof of any client using them. To talk about modules
independently of their clients, we introduce the notation def f(x) {C}, which can be understood
as populating an entry of φ for f. We will then prove some specification for f that will populate
an entry of Φ for f.

In the proof of some client, we will recall the module specifications that are assumed in Φ and
use rule Call to handle the calls to the operations of the module. We will omit from the proof
outlines Φ and the applications of rule Call for readability.

A.7 Proof Outlines

In program proof outlines, we adopt a number of notational conventions. First, unless it involves
a viewshift or we want to highlight it, we will apply rule Cons without mentioning it. Similarly,
we omit the obvious applications of rules Var, Call, and SubPq and the axioms (i.e., the rules
associated with primitive commands).

Next, in outline such as

m; λ;A 	

A

x ∈ X � X ′.〈
P (x)

〉

o
u
t
er

〈
P ′(x)

〉

in
n

er ...〈
Q ′(x)

〉
〈
Q (x)

〉

...

m; λ;A 	

A

x ∈ X � X ′.
〈
P ′(x)

〉
C

〈
Q ′(x)

〉 inner

m; λ;A 	

A

x ∈ X � X ′.
〈
P (x)

〉
C

〈
Q (x)

〉 outer

the specification of the inner step inherits the context and the pseudo-quantifier of the specification
of the outer step, as in the derivation on the right.

B THE TADA LIVE PROOF SYSTEM

In this section, we present the full proof system of TaDA Live.

For brevity, we use the metavariable
�
X to range over expressions of the form X1 �k X2

and is used in rules when the pseudo-quantification is simply copied verbatim from premise to
conclusion.

In the rules, we use the following abbreviation:

	A P � k � ∀r ∈ RId. 	A P ⇒ r � k

k ·	 n � ∀k ′ > k .k ′ 	 n.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:consequence

TaDA Live 16:89

The λ-safety condition is defined in Appendix B.2.1 and can be typically proven by using
Lemma 4.2.

B.1 Liveness Rules

For reference, we reproduce the liveness-related rules:

∀x ∈ X . 	λ;A Pa (x) ∗T ⇒ x ∈ X ′

n; λ;A 	 L M−−−� T m 	 n k ·	 n pv(L) ∩mod(C) = ∅
m; λ;A 	Φ

A

x ∈ X �k X ′.
〈
Ph

��� Pa (x)
〉
C ∃y.

〈
Qh (x ,y) ���Qa (x)

〉
m; λ;A 	Φ

A

x ∈ X .
〈
Ph ∗ L ��� Pa (x)

〉
C ∃y.

〈
Qh (x ,y) ∗ L ���Qa (x)

〉 LiveCG

∀β ≤ β0.m(β); λ;A 	 L M−−−� T (β) ∀β ≤ β0. 	A P (β) � m(β) � m
∀α .A � ∃α ′. L ∗M (α ′) ∧ α ′ ≤ α stable pv(T ,L,M) ∩mod(C) = ∅

∀β ≤ β0.∀b ∈ Bool.m; λ;A 	Φ

{
P (β) ∗ (b

.
⇒ T (β)) ∧ B

}
C
{
∃γ . P (γ) ∧ γ ≤ β ∗ (b

.
⇒ γ < β)

}
m; λ;A 	Φ

{
P (β0) ∗ L

}
while(B){C}

{
∃γ . P (γ) ∗ L ∧ ¬B ∧ γ ≤ β0

} While

m1; λ;A 	Φ

{
P1

}
C1

{
Q1

}
	A Q1 � m2 � m

m2; λ;A 	Φ

{
P2

}
C2

{
Q2

}
	A Q2 � m1 � m

m; λ;A 	Φ

{
P1 ∗ P2

}
C1 ‖ C2

{
Q1 ∗Q2

} Par

B.1.1— The Environment Liveness Rules. The Environment liveness rules use the imprA condition
(Definition 4.3) recalled here for convenience:

Definition B.1 (imprA). Given assertions L(α), L′(α), andT , the condition imprA (L′,L,T) holds
if and only if, for arbitrary σ ∈ Store, letting

l (α) =W�L(α)�σ
A , l ′(α) =W�L′(α)�σ

A , t =W�T ∗ True�σ
A ,

the following holds:

∀α1,α2 ≥ α1. R
a
A (l ′(α1)) ∩ l (α2) ⊆ l ′(α1) ∪ t .

We reproduce below for completeness the rules to prove the environment liveness condition.

λ;A � L stable 	λ;A L ⇒ L ∗ ∃α .M (α)
m; λ;A 	 L ∗M (α) : L ∗M (α) −−� T

m; λ;A 	 L M−−−� T
EnvLive

m; λ; A 	 L(α) : L1 (α) −−� T
m; λ; A 	 L(α) : L2 (α) −−� T

m; λ; A 	 L(α) : L1 (α) ∨ L2 (α) −−� T
ECase

∀x ∈ X .m; λ; A 	 L(α) : L(x, α) −−� T

m; λ; A 	 L(α) : ∃x ∈ X . L(x, α) −−� T
EQuant

∀α . 	A T ′(α) ⇒ T

m; λ; A 	 L(α) : T ′(α) −−� T
LiveT

imprA (L′,L,T) ∀α . 	A L′(α) � lay(O (x))

λ < λ′ ∀α . 	A L′(α) ⇒ ∃x . tλ
r (x) ∗ �O (x)�E

r ∗ True ∧m > lay(O (x))

m; λ′;A 	 L(α) : L′(α) −−� T
LiveO

imprA (L′,L,T) m > k ∀α . 	A L′(α) � k
(X �k X ′) = live(A, r) λ < λ′ 	A L′(α) ⇒ ∃x ∈ X \ X ′. tλ

r (x) ∗ r �⇒ ♦ ∗ True

m; λ′;A 	 L(α) : L′(α) −−� T
LiveA

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:90 E. D’Osualdo et al.

B.2 Atomicity Rules

We first give the formal definition of λ-safety and prove its properties, and then give the general
forms of rules LiftA, MkAtom, and UpdReg, which are the ones dealing with proving atomicity.

B.2.1— The λ-safety Condition. The rules of TaDA Live dealing with opening and closing regions
(rules UpdReg and LiftA) require the λ-safety side condition for the postcondition. While the
definition of λ-safety is technical, its intuition is simple: Those are the assertions that preserve their
meaning when interpreted at level λ or at level λ + 1. The only possible contradictions arising by
increasing the level come from assertions about the state and environment obligations of regions
that are open at λ but not at λ + 1.

Definition B.2 (Havoc). Let λ ∈ Lvl. The set closedλ2

λ1
(ρ) � {r | ρ (r) = (_, λ, _), λ1 ≤ λ < λ2} is

the set of region IDs of ρ that are closed at level λ2 but not at level λ1. We define the function on
worlds:

havocλ (h, ρ, γ, χ, θ, ξ) �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(h, ρ′, γ, χ, θ, ξ ′)

���������

closedλ+1
λ

(ρ) = {r1, . . . , rn },
ρ (ri) = (ti , _, _), bi ∈ AVal, wi ∈ Iti �ri , λ, bi �,
ρ′ = ρ [r1 �→ (t1, λ, b1), . . . , r1 �→ (tn, λ, bn)],
O ′

i • θwi (ri) = ξ (ri), ξ ′ & ξ [r1 �→ O ′
1, . . . , rn �→ O ′

n]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

We extend it to a function on sets of worlds in the obvious way: havocλ (p) �
⋃

w ∈p havocλ (w).

Definition B.3 (λ-safety). A set p ∈ World�A is λ-safe if p = havocλ (p). An assertion P is λ-safe,

written A � P λ-safe if, for all ς , W�P�
ς

A is λ-safe.

Since proving λ-safety in general involves meddling with the semantics of assertions, we provide
the following lemma that can be used to immediately prove all the λ-safety side conditions involved
in our program proofs:

Lemma B.4. The properties below hold, for arbitrary λ ∈ Lvl:

(1) emp, E1 �→ E2 and B are λ-safe.

(2) �G�r and �O�L
r are both λ-safe.

(3) If λ′ < λ, then tλ′
r (a) ∗ �O�E

r is λ-safe.
(4) If P ,Q are both λ-safe, then so are P ∧Q , P ∨Q , and P ∗Q .
(5) If P (v) is λ-safe for all v ∈ AVal, then ∃x . P (x) is λ-safe.

B.2.2— Generalised Atomicity Rules. The following rules are the general forms of rules LiftA,
MkAtom, and UpdReg of Figure 9.

λ < λ′ r � dom(A)

A′ = A[r �→ (X ,k,X ′,T)] T ⊆ Tt (G) R = io(T) ∀x ∈ X .A � tλ
r (x) ∗ �G�r stable

m; λ′;A′ 	Φ

{
Ph ∗ ∃x ∈ X . tλ

r (x) ∗ r �⇒

}
C
{
∃x ,y.R (x ,y) ∗Qh (x ,y) ∗ r �⇒ (x ,y)

}
m; λ′;A 	Φ

A

x ∈ X �k X ′.
〈
Ph

��� tλ
r (x) ∗ �G�r

〉
C ∃y.

〈
Qh (x ,y) ��� tλ

r (y) ∗ �G�r ∗ R (x ,y)
〉 MkAtomG

r ∈ dom(A) A′ = A[r �→ ⊥]

	A Ph ⇒ empr
Ob

	A Pa (x) ⇒ empλ+1
Ob

	A Qh (x, y) ⇒ empr
Ob

	A Qi (x, y, z) ⇒ empλ+1
Ob

A � Ph λ-safe A � Pa (x) λ-safe

A � Qh (x, y) λ-safe A �
(

(R (x, z) ∧Q1 (x, y, z))
∨(x = z ∧Q2 (x, y))

)
λ-safe{

((x, O0), (z, O1 (x, y))) �� x ∈ X ∧ (R (x, z) ∨ x = z) ∧ y ∈ Y (x)
} ⊆ tr(A, r)

m; λ; A′ 	Φ

A

x ∈
�
X .

〈
Ph

�������
I (tλ

r (x))

∗ Pa (x) ∗ �O0 �L
r

〉
C ∃y .

〈Qh (x, y) ∧ y ∈ Y (x)���� ∃z . I (tλ
r (z)) ∗ �O1 (x, y)�L

r ∗
(

(R (x, z) ∧Q1 (x, y, z))
∨(x = z ∧Q2 (x, y))

)〉

m; λ+1; A 	Φ

A

x ∈
�
X .

〈
Ph ∗ �O0 �L

r��� tλ
r (x) ∗ Pa (x) ∗ r �⇒

〉
C ∃y .

〈Qh (x, y) ∗ �O1 (x, y)�L
r ∧ y ∈ Y (x)���� ∃z . tλ

r (z) ∗
(

(R (x, z) ∧Q1 (x, y, z) ∗ r �⇒ (x, z))
∨ (x = z ∧ Q2 (x, y) ∗ r �⇒
)

)〉
UpdRegG

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:lift-atomic
rule:make-atomic
rule:update-region
rule:update-region
rule:lift-atomic
rule:lift-atomic
rule:make-atomic
rule:update-region

TaDA Live 16:91

	A Ph ⇒ empr
Ob 	A Qh (x ,y) ⇒ empr

Ob

	A Pa (x) ⇒ empλ+1
Ob 	A Qa (x ,y, z) ⇒ empλ+1

Ob
A � Ph λ-safe A � Pa (x) λ-safe

A � Qh (x ,y) λ-safe A � Qa (x ,y, z) ∧ R (x , z) λ-safe

r ∈ dom(A) ⇒ R = id
{

((x ,O1), (z,O2 (x ,y))) �� x ∈ X ∧ R (x , z) ∧ y ∈ Y (x)
} ⊆ Tt (G)

m; λ;A 	Φ

A

x ∈
�
X .

〈
Ph

��������
I (tλ

r (x)) ∗ Pa (x) ∗ �G�r ∗ �O1�L
r

〉
C ∃y.

〈Qh (x ,y) ∧ y ∈ Y (x)

��� ∃z.I (tλ
r (z)) ∗Qa (x ,y, z)

∗ �O2 (x ,y)�L
r ∧ R (x ,z)

〉

m; λ+1;A 	Φ

A

x ∈
�
X .

〈
Ph ∗ �O1�L

r

������ t
λ
r (x) ∗ Pa (x) ∗ �G�r

〉
C ∃y.

〈
Qh (x ,y) ∗ �O2 (x ,y)�L

r ∧ y ∈ Y (x)��� ∃z. tλ
r (z) ∗Qa (x ,y, z) ∧ R (x , z)

〉 LiftAG

B.3 General Forms

The following rules are the general forms of some of the rules in Figure 9:

∀x ∈ X . 	A Rh ∗ Ra (x) � m pv(Rh) ∩mod(C) = ∅, pv(Ra (x)) = ∅
A � Rh stable ∀x ∈ X .A � Ra (x) stable A � Ra (x) λ-obl. free

m; λ;A 	Φ

A

x ∈
�
X .

〈
Ph

��� Pa (x)
〉
C ∃y.

〈
Qh (x ,y) ���Qa (x ,y)

〉
m; λ;A 	Φ

A

x ∈
�
X .

〈
Ph ∗ Rh

��� Pa (x) ∗ Ra (x)
〉
C ∃y.

〈
Qh (x ,y) ∗ Rh

���Qa (x ,y) ∗ Ra (x)
〉 Frame

A � Ph ∗ P stable ∀x ∈ X ,y.A � Q (x ,y) stable

m; λ;A 	Φ

A

x ∈
�
X .

〈
Ph

��� P ∗ Pa (x)
〉
C ∃y.

〈
Qh (x ,y) ���Q (x ,y) ∗Qa (x ,y)

〉
m; λ;A 	Φ

A

x ∈
�
X .

〈
Ph ∗ P ��� Pa (x)

〉
C ∃y.

〈
Qh (x ,y) ∗Q (x ,y) ���Qa (x ,y)

〉 AtomWG

m; λ;A 	Φ

A

x ∈
�
X , z ∈ Z .

〈
Ph

��� Pa (x , z)
〉
C ∃y.

〈
Qh (x ,y) ���Qa (x ,y, z)

〉
m; λ;A 	Φ

A

x ∈
�
X .

〈
Ph

���∃z ∈ Z . Pa (x , z)
〉
C ∃y.

〈
Qh (x ,y) ���∃z ∈ Z .Qa (x ,y, z)

〉 A∃ElimG

k1; λ;A 	Φ

A

x ∈
�
X .

〈
Ph

��� Pa (x)
〉
C ∃y.

〈
Qh (x ,y) ���Qa (x ,y)

〉
k1 � k2

k2; λ;A 	Φ

A

x ∈
�
X .

〈
Ph

��� Pa (x)
〉
C ∃y.

〈
Qh (x ,y) ���Qa (x ,y)

〉 LayWG

B.4 Logical Manipulation Rules

The rules below allow for basic logical manipulation.

A � Ph stable

λ;A � Ph� P ′h
∀x ∈ X . λ;A � Pa (x)� P ′a (x)

∀x ∈ X ,y. A � Qh (x ,y) stable

∀x ∈ X ,y. λ;A � Q ′
h (x ,y)�Qh (x ,y)

∀x ∈ X ,y. λ;A � Q ′
a (x ,y)�Qa (x ,y)

m; λ;A 	Φ

A

x ∈
�
X .

〈
P ′h

��� P ′a (x)
〉
C ∃y.

〈
Q ′

h (x ,y) ���Q ′
a (x ,y)

〉
m; λ;A 	Φ

A

x ∈
�
X .

〈
Ph

��� Pa (x)
〉
C ∃y.

〈
Qh (x ,y) ���Qa (x ,y)

〉 Cons

∀v ∈ X . m; λ;A 	Φ

{
P (v)

}
C
{
Q
}

m; λ;A 	Φ

{
∃x ∈ X .P (x)

}
C
{
Q
} ∃Elim

∀k � m.k ; λ;A 	Φ

A

x ∈
�
X .

〈
Ph (k) ∧ k � m ��� Pa (k,x)

〉
C ∃y.

〈
Qh (k,x ,y) ���Qa (k,x ,y)

〉
∀k � m.m; λ;A 	Φ

A

x ∈
�
X .

〈
Ph (k) ��� Pa (k,x)

〉
C ∃y.

〈
Qh (k,x ,y) ���Qa (k,x ,y)

〉 QL

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:92 E. D’Osualdo et al.

f : X → Y Y ′ = f (X ′) ∀x ∈ X . 	A P ′a (x) ⇔ Pa (f (x))
∀x ∈ X ,z. 	A Qh (f (x),z) ⇒ Q ′

h (x ,z) ∀x ∈ X ,z. 	A Qa (f (x),z) ⇒ Q ′
a (x , z)

m; λ;A 	Φ

A

y ∈ Y �k Y ′.
〈
Ph

��� Pa (y)
〉
C ∃z.

〈
Qh (y, z) ���Qa (y, z)

〉
m; λ;A 	Φ

A

x ∈ X �k X ′.
〈
Ph

��� P ′a (x)
〉
C ∃z.

〈
Q ′

h (x , z) ���Q ′
a (x ,z)

〉 SubPq

m; λ;A 	Φ

A

x ∈ X �k X .′′
〈
Ph

��� Pa (x)
〉
C ∃y.

〈
Qh (x ,y) ���Qa (x ,y)

〉
X ′ ⊆ X ′′ ⊆ X

m; λ;A 	Φ

A

x ∈ X �k X ′.
〈
Ph

��� Pa (x)
〉
C ∃y.

〈
Qh (x ,y) ���Qa (x ,y)

〉 LiveW

B.5 Axioms

m; λ;A 	Φ

{
E ≥̇ 0

}
x� alloc(E)

{∗E−1
i=0 x + i �→ _

} Alloc

m; λ;A 	Φ

{
E �→ _

}
dealloc(E)

{
emp

} Dealloc

m; λ;A 	Φ

A

v .
〈
E �→ v

〉
x� [E]

〈
E �→ v ∧ x = v

〉 Read

m; λ;A 	Φ

A

v .
〈
E1 �→ v

〉
[E1]� E2

〈
E1 �→ E2

〉 Mutate

m; λ;A 	Φ

A

v .

〈
E1 �→ v

〉
x� CAS(E1,E2,E3)

〈
(x = 1 ∧ E1 �→ E3 ∧v = E2) ∨
(x = 0 ∧ E1 �→ v ∧v � E2)

〉 CAS

m; λ;A 	Φ

A

v .
〈
E1 �→ v

〉
x� FAS(E1,E2)

〈
E1 �→ E2 ∧ x = v

〉 FAS

B.6 Standard Hoare Rules

m; λ;A 	Φ

{
P
}
C1

{
R
}

m; λ;A 	Φ

{
R
}
C2

{
Q
}

m; λ;A 	Φ

{
P
}
C1;C2

{
Q
} Seq

m; λ;A 	Φ

{
P ∧ B

}
C1

{
Q
}

m; λ;A 	Φ

{
P ∧ ¬B

}
C2

{
Q
}

m; λ;A 	Φ

{
P
}
if(B){C1}else{C2}

{
Q
} If

x � fv(Ph) ∪ fv(Qh) ∪ fv(E) m; λ;A 	Φ

A

x ∈
�
X .

〈
Ph ∧ x = E ��� Pa (x)

〉
C

〈
Qh (x ,y) ���Qa (x ,y)

〉
m; λ;A 	Φ

A

x ∈
�
X .

〈
Ph

��� Pa (x)
〉
var x=E in C

〈
Qh (x ,y) ���Qa (x ,y)

〉 Var

(
�x,

A

x ∈
�
X .

〈
Ph

��� Pa (x)
〉
· ∃y.

〈
Qh (x ,y, ret) ���Qa (x ,y)

〉
m;λ;A

)
∈ Φ(f)

m; λ;A 	Φ

A

x ∈
�
X .

〈
Ph[�E/�x] ��� Pa (x)

〉
z� f(�E) ∃y.

〈
Qh (x ,y, z) ���Qa (x ,y)

〉 Call

pv(S) ⊆ �x ∪ {ret} f � dom(Φ) Φ′ = Φ[f �→ (�x,S)] 	Φ C1 : S1 	Φ′ C2 : S2

	Φ let f(�x)=C1 in C2 : S2
Let

P ,Q ∈ SL ∀x ∈ X .⊥; 0; ∅ 	Φ

{
P (x)

}
C
{
Q (x)

}
⊥; 0; ∅ 	Φ

A

x ∈ X .
〈
P (x)

〉
〈C〉

〈
Q (x)

〉 PrAt

B.7 On Stability Checks

A triple is well-defined, according to Definition 3.24, if the Hoare pre- and post-conditions are both
stable assertions. The rules all assume the triples in the premises are well-defined and ensure that
the triple in the conclusion is well-defined as well. The only exceptions are rules MkAtomG, SubPq,
and ∃Elim, where the Hoare pre-/post-conditions should be checked for stability to ensure the

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:93

conclusion is a well-defined triple. We omitted these stability checks from these rules to improve
readability.

In practice, however, this way of handling stability has a drawback: If one starts with a goal that
has unstable pre-/post-conditions, then one would only see the mistake much further up in the
proof, typically at applications of AtomW or Frame (which requires stability of the frames) just
before applications of the axioms. Therefore, in practice, to make the proof fail early in case of
mistakes, one would want to additionally check stability at the top-level goal and applications of
Par.

C CASE STUDY: LOCK-COUPLING SET

We develop the proof of a lock-coupling set module, which represents a set of integer numbers
using an ordered linked list. The module interface presents three operations, add, remove, and
member for adding and removing elements from the abstract set representing the module’s state,
as well as checking membership of an integer in this set.

Each cell of the linked list contains either a value from this set or ±∞ (representing dummy
beginning and end nodes, respectively), a pointer to a lock and a pointer to the next cell of the
linked list (null for the final cell, with value ∞). The values of the cells in the linked list are sorted
in strictly increasing order.

The value and lock associated with a cell in the linked list are immutable, however, the module’s
protocol allows a thread holding the lock associated with a cell to change the value of the pointer
to the next cell, allowing cells to be added and removed from the linked list.

The internal operation locate performs a traversal of the linked list using hand-over-hand
locking to, given some value v , find and lock the two adjacent cells with values v ′ and v ′′ such
thatv ′ < v ≤ v ′′. All the operations would use locate to obtain ownership of the nodes that they
need to modify.

To perform this hand-over-hand locking, the locate operation must hold the lock associated
with a cell while locking the lock associated with the next, therefore the layers of the locks associ-
ated with each cell of the linked list must strictly decrease as the list is traversed.

As we explained in Section 5.5, the example is challenging for the handling of layers. Intuitively,
we want to associate layers with each lock in the list, in strictly decreasing order. This represents
the dependencies between the locks introduced by the order of the traversal: The release of lock
at position i from the head depends on the liveness of the lock at position i + 1. This introduces
two challenges: We need to associate different layers to each instance of a lock while the lock
specifications mention fixed layers; and we need to dynamically reassign layers to locks as the list
grows. As we already anticipated, we can solve both challenges by a suitable generalisation of the
lock specifications. Let us first introduce this generalisation formally, and then use it for the proof
of the lock-coupling set.

C.1 Interlude: A Generalisation of Fair Lock Specifications

We generalise the fair lock specifications we used for the CLH lock in three ways:

(1) we parametrise the specifications with client-definable layer maps;
(2) we provide a viewshift to the client with which it is possible to reassign layers;
(3) we add the deleteLock operation, since the lock-coupling set’s remove operation disposes

of the removed cells; we omit its implementation and proof, as it is standard.

First let us recall the definition of a layer map. Given two partial orders (L1, �1,�1,⊥1) and
(L2, �2,�2,⊥2), a function η : L1 → L2 is strictly monotone if ∀m,n ∈ L1.m <1 n ⇒ η(m) <2

η(n). A layer map η : L1 →lay L2 is a strictly monotone function between the two partial orders.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:atomicity-weak
rule:frame
rule:parallel

16:94 E. D’Osualdo et al.

Let λclh − 2 be the level of the lclh region used in the proof of the CLH lock. We generalise the
client-facing CLH lock specifications as follows:

∃(Lclh, �clh,�clh,⊥clh).∀η : Lclh →lay L.

η(�clh); λclh 	

A

l ∈ {0, 1} �η (⊥clh) {0}.
〈
P(s,π) ��� Lη (s, x, l)

〉
lock(x)

〈
P(s,π) ��� Lη (s, x, 1) ∧ l = 0

〉
,

η(⊥clh); λclh 	
〈
Lη (s, x, 1)

〉
unlock(x)

〈
Lη (s, x, 0)

〉
,

η(⊥clh); λclh 	
{
emp

}
makeLock()

{
∃s . Lη (s, ret, 0) ∗ P(s, 1)

}
,

η(⊥clh); λclh 	
{
Lη (s, x, _) ∗ P(s, 1)

}
deleteLock(x)

{
emp

}
.

In particular, the abstract predicate Lη (s, x, l) represents a lock resource with abstract identifier s ∈
Sclh (i.e., a pair of region identifiers; the client will treat this type opaquely), concrete address x ∈
Addr, and abstract state l ∈ {0, 1}.

Moreover, the specifications would export to the client the following viewshifts, for every
λ ≥ λclh, and every η,η′ : Lclh →lay L:

λ � Lη (s,x , l) ∗ Lη′ (s,x
′, l ′)� False, (26)

λ � Lη (s,x , l) ∗ P(s, 1)� Lη′ (s,x , l) ∗ P(s, 1). (27)

Note that the naming choice here suggests CLH as the implementation to keep the discussion
grounded, but the specification would be the same for any other fair lock implementation.

We now sketch the modifications needed to adapt the proof of CLH presented in Section 5.2 to
prove the generalised specification.

First, we pick, just as in Section 5.2, Lclh = N � {⊥clh,�clh}. We then need to parametrise the
two regions with a layer map η : Lclh →lay L, for an arbitrary L. We include it in the regions
abstract state: clhr (r ′,x ,η,h, l ,o) and lclhr ′ (x ,η,h, l ,o, t). The abstract predicate for the lock can
the be defined as:

Lη (s,x , l) � ∃r , r ′. s = (r , r ′) ∧ ∃o,h. clhr (r ′,x ,η,h, l ,o) ∗ �e�r ′ .

We similarly parametrise every obligation with a layer map as well, obtaining obligations
oη (o, t) and pη (t) with layers lay(oη (o, t)) = η(⊥clh) lay(pη (t)) = η(t).

The protocol of the regions is extended by having each transition preserve the layer map. Be-
fore extending the protocol with a transition that can update the layer map, we motivate the need
for fractional permissions by showing what goes wrong without them. Suppose we just provide
a transition, guarded by e, to update the current layer map to an arbitrary new one, and define
P(s,π) = emp. With this protocol it would be impossible to prove the layer-map-altering view-
shift (27). The reason lies in the definition of the interpretation of clh:

I (clhr (r ′,x ,η,h, l ,o)) � ∃t ∈ N. lclhr ′ (x ,η,h, l ,o, t) ∗ �e�r ′ ∗∗t−1

i=o+1
�pη (i)�E

r ′ .

In the case where t � o, which represents the case where there are threads enqueued waiting to
acquire the lock, the interpretation ensures that the environment will contain obligations pη (i) for

each issued ticket i . When we try to prove the viewshift, we need to obtain �pη′ (i)�E
r ′ with the new

layer map, which can be obtained only by creating out-of-thin-air the corresponding �pη′ (i)�L
r ′

resources. These would be created in the local state, leaving us with clhr (r ′,x ,η,h, l ,o) ∗ �e�r ′ ∗∗t−1

i=o+1
�pη′ (i)�L

r ′ which cannot be viewshifted to the desired Lη′ (s,x , l) ∗ P(s, 1), since there is no
way to get rid of the local obligations. Conceptually this encodes the following fact: If we were to
remap the layers of the lock when other threads are queued, then the obligations held by those
threads would become unfulfillable, and we would inherit copies of them with the new mapping,
which we also would not be able to fulfil on behalf of the other threads.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:95

To resolve this impasse, we need to allow the layer map to be update only when there is no thread
queued to acquire the lock. This way, we would have t = o and so no environment obligation
laying around. We cannot achieve this by exposing the queue in the abstract state of the lock,
however, without losing the atomicity of the lock specifications. With the introduction of fractional
permissions, giving the right to enqueue to the lock, we can encode the emptiness of the queue by
asserting we are the only one with that right.

To achieve this technically, we start by encoding fractional permissions as a guard algebra. We
introduce guards fπ with the axioms f0 = 0 and fπ1+π2 = fπ1 • fπ2 . We then define the abstract
predicate P(s,π) = (∃r , r ′. s = (r , r ′) ∧ �fπ �r ′).

For technical reasons explained later, we introduce guards gπ with exactly the same axioms as
the f guards. To encode the fact that full permissions imply empty queue, we adapt the interpreta-
tion of lclh as follows:

I (lclhr ′ (x ,η,h, l ,o, t)) � ∃ns . x �→ h, last(ns) ∗ h �→ l ∗ ones(ns) ∗ �q(ns,o)�r ′ ∗ �oη (o, t)�L
r ′ ∗

∃π . �fπ �r ′ ∗ �r1−π �r ′ ∗ (π = 0
.
⇒ t = o) ∧ t − o = |ns | ∧ ns (0) = h.

From lclhr ′ (x ,η,h, l ,o, t) ∗ �f1�r ′, we can deduce that π = 0 inside the region interpretation, and
hence t = o.

Finally, we add to the protocol of lclh the possibility of updating the layer map when owning
full permissions:

f1 : ((η,h, l ,o, t), 0)� ((η′,h, l ,o, t), 0).

The reason for including the rπ is as follows: When a thread enqueues on the lock, it gives up
a non-trivial fraction of the fπ permission it owns to be able to make t � o. When it dequeues,
it should get back that fraction; the rπ guards are obtained as “leftovers” when putting fπ in the
region’s interpretation. Those are proof that the region interpretation has at least fπ in it when
we want to get it back.

Adapting the proof of Section 5.2 to use these generalised definitions is a routine application
of standard TaDA patterns. The satisfiability of the layer constraints is preserved by strict mono-
tonicity of layer maps.

C.2 Correctness of the Lock-coupling Set

—Code. The implementation of the module’s operations is in Figure 27 with the implementation
of the constructor makeSet in Figure 28. We write dealloc(c,3) for the deallocation of the three
contiguous cells from address c. The auxiliary operation locate (also in Figure 28) is meant to
only be used internally. The code uses a “record” syntax for readability, desugared as follows:

x.lock � [x], x.val � [x + 1], x.next � [x + 2].

—Specifications. The abstract predicate LCSet(s,x , S) represents a lock-coupling set at address x
abstractly representing the set S .

⊥lc 	
{
emp

}
makeSet()

{
∃s . LCSet(s, ret, ∅)

}
�lc 	

A

S ∈ ℘(Z).
〈
LCSet(s, x, S) ∧ e ∈ Z

〉
add(x,e)

〈
LCSet(s, x, S ∪ {e})

〉
�lc 	

A

S ∈ ℘(Z).
〈
LCSet(s, x, S) ∧ e ∈ Z

〉
remove(x,e)

〈
LCSet(s, x, S \ {e})

〉
�lc 	

A

S ∈ ℘(Z).
〈
LCSet(s, x, S) ∧ e ∈ Z

〉
member(x,e)

〈
LCSet(s, x, S) ∧ ret = (e ∈ S)

〉
—Region Types. This proof will utilise two region types: lcsetr (r ′,x ,hl , shl , S) and

lclistr (x ,hl , shl , ls) where r ′ ∈ RId, x ,hl ∈ Addr, shl ∈ Sclh, S ∈ ℘(Z), ls ∈

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:96 E. D’Osualdo et al.

Fig. 27. Implementation of the lock-coupling set operations.

Fig. 28. Implementation of makeSet and the internal locate operation.

((Z ∪ {∞,−∞}) × {0, 1} × (N ∪ {1}))∗. Here, r ′, x , hl , and shl are fixed parameters of both
regions. The lock-coupling set resource is abstractly represented by the predicate

LCSet(s,x , S) � ∃r , r ′,hl , shl . s = (r , r ′,hl , shl) ∧ lcsetr (r ′,x ,hl , shl , S) ∗ �e�r .

—Guards. We introduce a number of guards that are used to represent ownership of information
regarding nodes of the linked list. To ease readability, we will adopt a record notation for tuples
(i.e., tuples with named positions). In particular, we will make a record n with the following infor-
mation for each node: an address (n.addr ∈ Addr), a lock address (n.lck ∈ Addr), a lock abstract
identifier (n.lid ∈ Sclh), a value (n.val ∈ Z∪ {∞,−∞}), and a layer (n.lay ∈ N∪ {1}). A guard c(vs)

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:97

records the listvs of values represented by the linked list. An unlocked node is represented by the
guard u(n) where n is a record of the value, lock address/id, layer associated with the node of the
list at address n.addr. So, in particular, the cell at n.addr would store the tuple (n.lck,n.val,n.nxt)
and we will have the resource Lηn .lay

(n.lck,n.lid, l) associated with its lock (we will explain the

layer map ηn .lay when introducing the region interpretations). A locked node is represented by
two guards l(n,a) and k(n,a), following the usual pattern for locks. These guards additionally
store the address a of the next node, which is stable if we hold the lock at n.lck. Moreover, assum-
ing m is the node following n, if we hold the lock at n.lck, then we know that all the information
inm is stable (i.e., everything but the address of the node followingm). To represent this, we make
use of a guard w(m).

The following axioms reflect the operations we desire to perform on the nodes. For locking/un-
locking a non-terminal node, when vs′ � []:

c(vs ⊕ [n.val,m.val] ⊕ vs′) • u(n) • l(m,a′)

= c(vs ⊕ [n.val,m.val] ⊕ vs′) • l(n,m.addr) • k(n,m.addr) • l(m,a′) •w(m).

For locking/unlocking the last node:

c(vs ⊕ v) • u(n) = c(vs ⊕ v) • l(n, null) • k(n, null).

For inserting a nodem between n1 and n2:

c(vs ⊕ [n1.val,n2.val] ⊕ vs′) • l(n1,n2.addr) • k(n1,n2.addr) •w(n2)

= c(vs ⊕ [n1.val,m.val,n2.val] ⊕ vs′) • l(n1,m.addr) • k(n1,m.addr) • u(m) •w(m).

For deleting a nodem:

c(vs ⊕ [n.val,m.val] ⊕ vs′) • l(n,m.addr) • k(n,m.addr) • l(m,a) • k(m,a)

= c(vs ⊕ [n.val] ⊕ vs′) • l(n,a) • k(n,a).

Then, the following axioms keep the guard’s information for the nodes consistent:

n.val � vs ⇒ c(vs) • k(n) = ⊥,
n.val = n′.val ⇒ k(n, _) • u(n′) = ⊥,
n.val = n′.val ⇒ k(n, _) • k(n′, _) = ⊥,

(n.val = n′.val ∧ (a � a′ ∨ n � n′)) ⇒ k(n,a) • l(n′,a′) = ⊥,
(n.addr = n′.addr ∧ n � n′) ⇒ k(_,n.addr) •w(n) • l(n′, _) = ⊥.

—Layers and Obligations. We use the layer structure Llc � (N ∪ {1, 0}) × Lclh (where ∀n ∈
N. 1 > n > 0), ordered by the lexicographic ordering ≤ and with�lc � (1,�clh) and⊥lc � (0,⊥clh).
Roughly, take a non-initial node n that is at position � from the end of the list; we will associate
with it the layer (�,�clh), which is guaranteed to be strictly greater than any layer associated with
the nodes following n in the list. Intuitively, no matter what Lclh has been chosen for the proof
of the implementation of locks, there are enough layers between (�,�clh) and (� + 1,�clh) to allow
the proof of the lock of n not to conflict with the lock of the node ahead.

We construct obligations out of the atoms k(�) (representing the “key” of the lock associated
with the layer �) and f(�) (representing a “free” spot at layer �) for � ∈ N∪ {1}. We set lay(k(�)) �
(�,⊥clh) and lay(f(�)) = �lc. We also define an obligation acting as a “reservoir” of atoms:

r(�̄) � {k(�) | �̄ ≤ � ∈ N} ∪ {f(�) | �̄ ≤ � ∈ N} lay(r(�̄)) = (�̄,⊥clh).

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:98 E. D’Osualdo et al.

We can always split a pair of f and k atoms from the reservoir: r(�̄) = r(�̄ + 1) • k(�̄) • f(�̄).

—Interference protocol. The guard-labelled transition system of the region lcsetr (r ′,x ,hl , shl , S)
is:

e : ∀v . (S, 0)� (S ∪ {v}, 0),

e : ∀v . (S, 0)� (S \ {v}, 0),

and the guard-labelled transition system of the region lclistr (x ,hl , shl , ls) is:

e : ((−∞, 0, 1) ⊕ ls, 0)

� ((−∞, 1, 1) ⊕ ls, k(1) • f(�)),

k(n, _) : (ls ⊕ (n.val, 1, �) ⊕ (v ′, 0, �′) ⊕ ls ′, 0)

� (ls ⊕ (n.val, 1, �) ⊕ (v ′, 1, �′) ⊕ ls ′, k(�′)),

k(n, _) : (ls ⊕ (n.val, 1, �) ⊕ (v ′, 1, �′) ⊕ ls ′, k(�) • f(�†) • k(�′))

� (ls ⊕ (n.val, 0, �) ⊕ (v ′, 1, �†) ⊕ ls ′, k(�†) • f(�′)) � > �† > �′,

k(n, _) : (ls ⊕ (n.val, 1, �) ⊕ (v ′, 1, �′) ⊕ ls ′, k(�) • f(�†) • k(�′))

� (ls ⊕ (n.val, 1, �) ⊕ (v†, 0, �†) ⊕ (v ′, 1, �′) ⊕ ls ′, k(�) • k(�′)) � > �† > �′,v < v† < v ′,

k(n, _) : (ls ⊕ (n.val, 1, �) ⊕ (v ′, 1, �′) ⊕ ls ′, k(�) • f(�†) • k(�′))

� (ls ⊕ (n.val, 1, �) ⊕ ls ′, k(�)),

k(n, _) : (ls ⊕ (n.val, 1, �) ⊕ (v ′, 1, �′) ⊕ ls ′, k(�) • f(�†) • k(�′))

� (ls ⊕ (n.val, 1, �) ⊕ (v ′, 1, �′) ⊕ ls ′, k(�) • k(�′)) � > �† > �′,

k(n, _) : (ls ⊕ (n.val, 1, �) ⊕ ls ′, k(�))

� (ls ⊕ (n.val, 0, �) ⊕ ls ′, 0).

They represent, in order: the acquisition of the first lock, obtaining both the key for that lock and
a “free” layer spot; the acquisition of a next lock, obtaining its key; the release of the previous lock,
swapping layer of the next with the free one; the insertion of a node that gets assigned the free
layer between the two adjacent locks held (used by add); the deletion of a node that also drops the
non-needed free layer spot (used by remove); the drop of a non-needed free layer spot (used by
member); the release of a lock.

—Region interpretation. The lock-coupling set internally represents the elements of the set with
a lock-coupling linked list. To represent these in ghost state, we will use a list of quadruples of each
cell’s value, the state of the associated lock, as well as its layer and region identifier. We introduce
the predicate ord, which verifies that the value in the list are in strictly increasing order, while the
layers of the associated locks are in strictly decreasing order:

ord (ls) �
⎧⎪⎨⎪⎩

True if ls = [_]

v < v ′ ∧ � > �′ ∧ ord ((v ′, l ′, �′) : ls ′) if ls = (v, _, �) : (v ′, l ′, �′) : ls ′.

We also introduce a function that allows us to extract the associated set of values from such a list,
vals, and a function that similarly allows us to extract a list of just the values, retaining their order,

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:99

lvals:

vals(ls) �
⎧⎪⎨⎪⎩
∅ if ls = []

{v} � vals(ls ′) if ls = (v, _, _) ⊕ ls ′,

lvals(ls) �
⎧⎪⎨⎪⎩

[] if ls = []

v ⊕ vals(ls ′) if ls = (v, _, _) ⊕ ls ′.

The interpretation of the outer region is a straightforward wrapper around the inner one:

I (lcsetr (r ′,x ,hl , shl , S)) � ∃ls . lclistr ′ (x ,hl , shl , ls) ∗ �e�r ′ ∗ envKr ′ (ls) ∧
S � {−∞,∞} = vals(ls) ∧ ord (ls) ∧ ls = ((−∞, _, 1) ⊕ _),

envKr (ls) �
⎧⎪⎨⎪⎩

emp if ls = []

(l = 1
.
⇒ �k(�)�E

r) ∗ envKr (ls ′) if ls = (v, l , �) ⊕ ls ′.

As usual, the outer region has two purposes: hiding internal state so the operations can be seen as
abstractly atomic and keeping track of the obligations held by threads.

The interpretation of the inner region encapsulates the concrete heap cells and the lock-related
guards and obligations:

I (lclistr (x ,hl , shl, ls)) � ∃n0, l0, . . . ,nk+1, lk+1. ∃�̄ ∈ N.
�c(lvals(ls))�r ∗ ls = [(n0.val, l0,n0.lay), . . . , (nk+1.val, lk+1,nk+1.lay)]∧,
n0.val = −∞ ∧ nk+1.val = ∞∧ n0.lay = 1 ∧ nk+1.lay = 0∧,
n0.addr = x ∧ n0.lck = hl ∧ n0.lid = shl∧,
�r(�̄)�L

r ∧ �̄ > n1.lay ∗ Node0
r (n0, l0,n1.addr)∗,

Nodesr (�̄, l0, [(n1, l1), . . . , (nk+1, lk+1)], �̄),

where the resources associated with each node are described by the following auxiliary predicates:

Node0
r (n, l, a) � (n .addr �→ n .lck, −∞, a)∗

Lη1 (n .lid, n .lck, l) ∗ ∃π > 0. P(n .lid, π) ∗ �f(1)�L
r ∗(

(l = 0 ∧ �u(n)�r ∗ �k(1)�L
r) ∨ (l = 1 ∧ �l(n, a)�r)

)
,

Nodesr (�p, lp, [(n, l)]) � (n .addr �→ n .lck, n .val, null) ∗ Gapsr (�p, n .lay) ∗

Lηn .lay
(n .lid, n .lck, l) ∗ P(n .lid, (lp=1 ? ½ : 1)) ∗ �f(n .lay)�L

r ∗(
(l = 0 ∧ �u(n)�r ∗ �k(n .lay)�L

r) ∨ (l = 1 ∧ �l(n, null)�r)
)
,

Nodesr (�p, lp, [(n, l), (n′, l ′)] ⊕ ns) � (n .addr �→ n .lck, n .val, n′.addr) ∗ Gapsr (�p, n .lay) ∗

Lηn .lay
(n .lid, n .lck, l) ∗ P(n .lid, (lp=1 ? ½ : 1)) ∗ �f(n .lay)�L

r ∗(
(l = 0 ∧ �u(n)�r ∗ �k(n .lay)�L

r) ∨ (l = 1 ∧ �l(n, n′.addr)�r)
)
∗

Nodesr (n .lay, l, (n′, l ′) ⊕ ns),

Gapsr (�1, �2) �∗�2−1

�=�1+1

(
�k(�)�L

r ∨ �k(�) • f(�)�L
r

)
.

The layer map η� maps the layers of Lclh to the ones of Llc as follows:

η� (k) = (�,k).

—Proof of locate. We use the following specification for the internal operation locate:

�lc 	
{
∃S . lcsetr (r ′, x,hl , shl , S)

}
locate(x,e)

{
∃S . lcsetr (r ′, x,hl , shl , S) ∗ Loc(r ′, x, e, ret)

}
,

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:100 E. D’Osualdo et al.

where Loc(r ′, x, e,p) represents the ownership of two adjacent list nodes representing value v
and v ′ with v < e ≤ v ′ (where e is the value we wanted to locate in the list):

Loc(r ′, x, e,p) � ∃n1,n2,n3, �.n1.addr = p∧,
n1.val < e ≤ n2.val ∧ n1.lay > � > n2.lay∧,
�k(n1,n2.addr)�r ′ ∗ �k(n1.lay)�L

r ′ ∗ �f(�)�L
r ′∗,

�k(n2,n3.addr)�r ′ ∗ �k(n2.lay)�L
r ′ ∗ �w(n2)�r ′ ∗ P(n2.lid,½)∗,

(n3.addr � null
.
⇒ (�w(n3)�r ′ ∗ P(n3.lid,½))).

The proof of locate is shown in Figures 29, 30 and 31. In the outlines, we expand the record
notation to tuples, e.g., k(n.addr,n.lck,n.lid,n.val,n.lay,a). We detail here the application of LiveC.
The associated environment liveness condition is proved by:

∀α . 	A T ′(α) ⇒ T

(�′, �clh); λ; A 	 L(α) : T ′(α) −−� T
LiveT

(28)

(�′, �clh); λ; A 	 L(α) : L1 (α) −−� T
EQuant

(�′, �clh); λ; A 	 L(α) : L(α) −−� T
ECase

(�′, �clh); λ; A 	 L
M−−−� T ,

EnvLive

where L(α) � L ∗M (α) and

M (α) � ∃l . lclistr ′ (x,hl , shl , _ ⊕ (v ′′, l , _) ⊕ _) ∧ α = l ,

L � ∃l , �′′. lclistr ′ (x,hl , shl , _ ⊕ (v ′′, l , �′′) ⊕ _) ∗ �w(c’, cl’, snl ,v ′′, �′′)�r ′

∗ l = 1
.
⇒ �k(�′′)�E

r ∧ �′ > �′′,
L1 (α) � ∃�′′. L′�′′ (α),

L′�′′ (α) � lclistr ′ (x,hl , shl , _ ⊕ (v ′′, 1, �′′) ⊕ _) ∗ �w(c’, cl’, snl ,v ′′, �′′)�r ′

∗ �k(�′′)�E
r ∧ �′ > �′′ ∧ α = 1,

T ′(α) � ∃�′′. lclistr ′ (x,hl , shl , _ ⊕ (v ′′, 0, �′′) ⊕ _) ∗ �w(c’, cl’, snl ,v ′′, �′′)�r ′ ∧
�′ > �′′ ∧ α = 0.

imprA (L′�′′, L, T) ∀α . 	A L′�′′ (α) � lay(k(�′′))

∀α . 	A L′�′′ (α) ⇒ lclistλ′

r ′ (x, hl, shl, _ ⊕ (v ′′, 1, �′′) ⊕ _) ∗ �k(�′′)�E
r ∗ True ∧ (�′, �clh) > lay(k(�′′))

(�′, �clh); λ; A 	 L(α) : L′�′′ (α) −−� T
LiveO

(�′, �clh); λ; A 	 L(α) : L1 (α) −−� T .
EQuant

(28)

—Proof of add. The proof of the add operation builds on the specification of locate. We show
its outline in Figure 32 with a more detailed derivation showing how the first unlock operation is
handled in Figure 33.

—Proof of makeSet, member and remove. We omit the proofs of the makeSet, member, and remove
operations, as they do not add much to the presentation. makeSet can be proved as standard by
keeping track of the nodes created locally and with a final viewshift to create the two nested
regions representing an empty set. The hard part of the proofs of member and remove is the
call to locate, which has been already presented in detail. The rest is handled analogously to
add.

D PROGRAMMING LANGUAGE DEFINITION

We will make regular use of partial functions. We write X ⇀ Y for the set of partial function from
X toY andX ⇀f Y for the set of finite partial function. Given f : X ⇀ Y , we write f (x) = ⊥ if f is
undefined on x , and dom(f) � {x | f (x) � ⊥}. We will use the notation [x1 �→ y1, . . . , xn �→ yn]

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:liveness-check
rule:envlive-target
rule:envlive-quant
rule:envlive-case
rule:envlive
rule:envlive-obl
rule:envlive-quant

TaDA Live 16:101

Fig. 29. Proof outline of locate.

for the finite function that maps each of the xi to yi and is undefined on any other input. Given
elements x ∈ X and y ∈ Y , and functions f : X ⇀ Y and д : X ′ ⇀ Y ′, we define the functions

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:102 E. D’Osualdo et al.

Fig. 30. Details of while loop in locate.

f [x �→ y] and f � д by:

(f [x �→ y]) (z) �
⎧⎪⎨⎪⎩
y if z = x

f (z) otherwise,

(f � д) (x) �
⎧⎪⎨⎪⎩
f (x) if x ∈ dom(f)

д(x) if x ∈ dom(д)
if dom(f) ∩ dom(д) = ∅.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:103

Fig. 31. Details of lock in while loop of locate. Step 8 is ∃Elim, AtomW, A∃Elim, LiftA, QL, Frame. Step 9

is LiftA, QL, Cons, Frame.

We write f [x �→ ⊥] for the partial function that is undefined on x but otherwise behaves like f .
The union of two partial function f ∪ д is a well-defined partial function as long as f (x) = д(x)
where their domains overlap.

We use the set of Booleans, Bool � {True, False} � b,b1,b2, a set of values, Val � Z ∪ Bool �
v,v1,v2, . . ., a set of program variables, PVar � x, y, . . ., and a set of function names, FName �
f, g, The set PVar contains a special element, ret, that holds a function’s return value. Heap
addresses are represented by natural numbers, Addr � N. The natural numbers in Val represent
both numeric values and heap addresses.

Definition D.1 (Numeric and Boolean Expressions). Let Vars be an arbitrary set of variables and
Values an arbitrary set of values. The set of numerical expressions, Exp(Vars,Values) � E,E1,E2, . . .,
and the set of Boolean expressions, BExp(Vars,Values) � B,B1,B2, . . ., are defined by the
grammars:

E	 v | x | E + E | E − E | E ∗ E | · · · where v ∈ Values,x ∈ Vars,

B	 b | x | ¬B | B ∧ B | E = E | E < E | · · · where b ∈ Bool,x ∈ Vars.

The numeric and Boolean program expressions are defined by the sets Exp(PVar,Val) and
BExp(PVar,Val), respectively. In Section 3.3, we also work with logical expressions built from both

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

step:locate-lock-hoare
rule:exists-elim
rule:atomicity-weak
rule:atomic-exists-elim
rule:lift-atomic
rule:quantify-layer
rule:frame
step:locate-lock
rule:lift-atomic
rule:quantify-layer
rule:consequence
rule:frame

16:104 E. D’Osualdo et al.

Fig. 32. Proof outline of add operation.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:105

Fig. 33. Details of unlock(cl) in add. Step 10 is LiftA, Cons, Frame.

program and logical variables and values, hence the reason for the expression definition defined
over an arbitrary variable and value sets.

The functions fvE and fvB provide the sets of free variables for the numeric and Boolean ex-
pressions, respectively. They are defined inductively on the structure of expressions by:

fvE (v) = ∅ v ∈ Values

fvE (x) = {x} x ∈ Vars

fvE (E1 + E2) = fvE (E1) ∪ fvE (E2)
fvE (E1 − E2) = fvE (E1) ∪ fvE (E2)
fvE (E1 ∗ E2) = fvE (E1) ∪ fvE (E2)
· · ·

fvB (b) = ∅ b ∈ {True, False}
fvB (x) = {x} x ∈ Vars

fvB (¬B) = fvB (B)
fvB (B1 ∧ B2) = fvB (B1) ∪ fvB (B2)
fvB (E1 = E2) = fvE (E1) ∪ fvE (E2)
fvB (E1 < E2) = fvE (E1) ∪ fvE (E2)
· · ·

Definition D.2 (Commands). The set of commands, Cmd � C, is defined by the grammar in Fig-
ure 34 where E ∈ Exp(PVar,Val), B ∈ BExp(PVar,Val), x ∈ PVar, �x ∈ PVar∗ is a list of pairwise
distinct variables, and f ∈ FName.

We use [E] to denote the value of the heap cell with address given by E. In Figure 35, we define
operators fv and mods, which identify the variables that a command can access and the variables
that are potentially modified by a command, respectively. In a command C1 ‖ C2, we apply a
strong syntactic restriction that mods(C1) = mods(C2) = ∅. Each individual thread is still able to
modify variables that are created locally and to modify shared heap cells, but are not allowed to
modify the free variables.19 In a function definition let f(x1,. . .,xn)=C1 in C2, we use the

19To lift this restriction, one could use standard techniques, such as “variables as resources” [2]. Our restriction minimises

the noise generated by handling local state in the formalisation of the model and the assertions. Note that expressivity is

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

step:add-unlock-lift
rule:lift-atomic
rule:consequence
rule:frame

16:106 E. D’Osualdo et al.

Fig. 34. Syntax of commands.

Fig. 35. The sets of free and modified program variables.

natural restriction fv(C1) ⊆ {x1, . . . , xn , ret}. Also for simplicity, we assume each function name
is given a definition at most once. The function fn : Cmd → ℘(FName) returns the function names
occurring in Cmd that are not bound by a let.

Definition D.3 (Variable Store). A program variable store, σ ∈ Store � PVar ⇀ Val, is a finite
partial function from program variables to values. The right-biased union of variable stores, σ1 �σ2,
is defined by:

(σ1 � σ2) (x) =
⎧⎪⎨⎪⎩
σ2 (x) if x ∈ dom(σ2)

σ1 (x) otherwise.

Definition D.4 (Expression Evaluation). Let ς : Vars ⇀f Values be an arbitrary func-
tion from an arbitrary set of variables to values. The numeric expression evaluation func-
tion, E� · �ς : Exp(Vars,Values) → Values, and the Boolean expression evaluation function,

not really limited by our restriction: Any local variable in the scope common to both threads that needs to be modified can

instead be implemented by using a shared memory cell.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:107

B� · �ς : BExp(Vars,Values) → Bool, are defined by:

E�v�ς = v B�b�ς = b

E�x�ς = ς (x) B�¬B�ς = ¬B�B�ς

E�E1 + E2�ς = E�E1�ς + E�E2�ς B�B1 ∧ B2�ς = B�B1�ς ∧ B�B2�ς

E�E1 − E2�ς = E�E1�ς − E�E2�ς B�E1 = E2�ς = (E�E1�ς = E�E2�ς)

E�E1 · E2�ς = E�E1�ς · E�E2�ς B�E1 < E2�ς = (E�E1�ς < E�E2�ς)

· · · · · ·

The program expressions are evaluated using program store σ ∈ Store. In Section 3.3, we also
work with logical expressions that are evaluated over both program and logical variables and
values. The right-biased union of stores is used to describe how, when nesting scopes, a variable
occurrence is bound by the innermost binder surrounding it. The notation var x1,x2. . .,xn in C
denotes var x1= 0 in var x2= 0 in . . . var xn= 0 in C.

Definition D.5 (Heap). A heap, h ∈ Heap � Addr ⇀f Val, is a finite partial function from
addresses to values. The set of heaps, Heap, forms a PCM (Heap,�, {∅}) with h1 � h2 defined only
if dom(h1) ∩ dom(h2) = ∅.

Definition D.6 (Function Implementation Context). A function implementation context, φ ∈
FImpl � FName ⇀ (PVar∗,Cmd), is a finite partial function from function names to pairs com-
prising a finite list of distinct variables and a command.

We writeφ (f) = (�x,C),where variable list�x represents the function arguments andC represents
the function body. We use the notation φvar and φcmd to refer to the arguments and function body
of f, respectively.

To describe the behaviour of local variable binding and function calls, we define program states
that extend commands with variable stores. For example, the program state (σ ,C) indicates that
the command C is evaluated in the current store updated with the variables in σ .

Definition D.7 (Program States). The set of program states, PState � C,C1,C2, · · · is defined by
the grammar:

C 	 � | (σ ,C) | C;C | let f(�x)=C in C | C ‖ C | C

The � indicates a terminated program. It is a technical device, so every C ∈ Cmd, including
skip, takes at least one step.

In the operational semantics, we need to keep track of which thread is originating each step
to be able to define later concepts of fairness of the scheduling. We do this tracking using thread
identifiers t ∈ TId � {l, r}∗, which are strings of letters l (for the left thread) and r (for the right
thread). ϵ will be used to denote the thread identifier that is an empty sequence. Intuitively, such
a string identifies a single thread as the path in the syntax tree of parallel compositions at which
the thread is found.

Definition D.8 (Command Semantics). A scheduler annotation t is an element of the set

Sched � {loct | t ∈ TId} � {env}.
A program configuration c is an element of the set PConf � (Store × Heap × PState) � {�}. Let
φ ∈ FImpl. The operational semantics of the commands is given by the labelled relation, −→φ ⊆
PConf × Sched × PConf, defined in Figure 36 and Figure 37. We write a

t−→φ b for (a, t ,b) ∈ −→φ .

We also define
loc ∗−−−→φ � (∪t ∈TId

loct−−−→φ)∗.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:108 E. D’Osualdo et al.

To simplify the development, in our programming language the initial state’s store assigns arbi-
trary values to the free variables of a program. With such assumption, every reference to a local
variable will be in the domain of the current store. This ensures that in every application of the
rules in Figure 36 and Figure 37 to construct a trace, the evaluations of (Boolean) expressions are
well-defined.

Definition D.9 (Threads). Given a program statec ∈ PConf, the set threads(c) is the set of threads
of c that can take a step. The function threads : PConf → ℘(TId) is defined as follows:

threads(�) � ∅,

threads(c) � {t ∈ TID | c loct−−−→φ _}.

Definition D.10 (Program Traces and Fairness). We call program traces, the infinite sequences of
the form c0 π0 c1 π1 · · · where, for all i ∈ N, ci ∈ PConf, πi ∈ Sched. We use τ for ranging over
infinite suffixes of program traces and PTrace for the set of all program traces. For a program trace
τ = c0 π0 c1 π1 · · · , we define τ (i) � (ci ,πi), and τ /i � ci πi ci+1 πi+1 · · · . We define the set of
φ-program traces

PTraceφ � {c0 π0 c1 π1 · · · | ∀i ∈ N. ci
π i−−−→φ ci+1}.

A program trace (c0 π0 c1 π1 · · ·) ∈ PTraceφ is (weakly) fair if and only if:

∀i ∈ N.∀t ∈ threads(ci). ∃j ≥ i . (π j = loct ∨c j = �), (29)

∀i ∈ N. ∃j ≥ i .π j = env . (30)

That is: A trace is fair if, at any point in time, every thread that can take a step (and the environment)
will eventually be scheduled.

The open-world program semantics defines the behaviour of a command when run concur-
rently with an arbitrary environment. This semantics interleaves steps from two “players”: the
local thread given by the loc relation; and its environment given by the env relation, respectively.

Definition D.11 (Open World Semantics). We call traces the infinite sequences c0 π0 c1 π1 · · ·
where, for all i ∈ N, ci ∈ Conf � (Store × Heap) ∪ {�}, πi ∈ {loc, env}. We use τ for ranging
over infinite suffixes of traces and Trace for the set of all traces. For a trace τ = c0 π0 c1 π1 · · · , we
define τ (i) � (ci ,πi), and τ/i � ci πi ci+1 πi+1 · · · . The function [·] : PTrace → Trace is defined
by [c0 π0 c1 π1 · · ·] � c0 π0 c1 π1 · · · where

ci �
⎧⎪⎨⎪⎩

(σ ,h) if ci = (σ ,h, _, _)

� if ci = �
πi �

⎧⎪⎨⎪⎩
loc if πi ∈ Sched \ {env}
env if πi = env .

The open-world program semantics function, � · �φ : Cmd → ℘(Trace), is the function such that

�C�φ �
{

[c0τ]
��� (c0τ) ∈ PTraceφ , fv(C) ⊆ dom(σ0),c0 = (σ0, _,C),c0τ is fair

}
.

The notation �C� is syntactic sugar for �C�∅.

Definition D.12. A trace τ ∈ Trace is locally terminating, written lterm(τ), if it contains finitely
many occurrences of loc.

Remark 3 (Design of Semantics). We made some design choices in crafting this semantics, with
the motivation of making manipulation easier in the proofs. The first choice is to model environ-
mental steps explicitly. These steps drive the argument about progress in the presence of blocking,
where the local thread is not able to make progress in isolation but is relying on the environment
actively performing some state changes that would lead to local progress.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:109

Fig. 36. The small-step operational semantics.

The second choice we highlight is that the semantics of a program only contains infinite traces.
This might seem odd when the goal is proving termination. Traces that locally terminate simply
have an infinite tail of environment steps. To simulate a closed system, one can select for the traces
where the environment steps preserve the heaps. More importantly, we strip the information about

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:110 E. D’Osualdo et al.

Fig. 37. The small-step operational semantics, failure cases.

threads and program state, which means that information about when the local thread terminated
(in the form of � or endt) has been erased. However, by construction, traces obtained from fair
program traces can only contain finitely many local steps if the program terminated, justifying
our definition of local termination.

Example D.13. The traces in �[x] � y� can be characterised as follows: They all start from
some configuration (σ ,h0) with x ,y ∈ dom(σ). A (possibly zero) finite number of environment
steps follow; these steps preserve the store, but arbitrarily alter the heap, or they lead to a fault,
terminating the trace with an infinite tail of � env � env · · · steps. If no fault happened, then a
local step is taken from some configuration (σ ,h) for an arbitrary h ∈ Heap. If σ (x) � dom(h),
then the local step leads to a fault, leading again to a � env � env · · · tail. Otherwise, it leads to the
configuration (σ ,h[σ (x) �→ σ (y)]). After that, there is an infinite number of environment steps,
which again preserve the store but arbitrarily mutate the heap or lead to an infinite fault tail.

E SOUNDNESS

In this section, we provide the details of the soundness of three rules: LiveC, Par, While, Frame,
LiveO, and LiveA. These are the only proof rules in TaDA-Live that bring in non-trivial liveness
information. All other proof rules follow in the same way as for TaDA, with the liveness constraints
on the traces being identical between the antecedent and consequent of such rules or being trivial
in the case of command axioms. We will focus particularly on the liveness argument for these
rules.

We start by giving some technical definitions omitted from the main text and then move to the
soundness argument.

E.1 Atomic World Rely

Recall that the atomic world rely relation, Ra
A , coincides with the smallest reflexive relation closed

under the rules of the world rely (Figure 6), with the restriction that rules wr1 and wr2 can be
applied at most once per region identifier.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:liveness-check
rule:parallel
rule:while
rule:frame
rule:envlive-obl
rule:envlive-pq
rule:rely-interf
rule:rely-linpt

TaDA Live 16:111

Definition E.1 (Atomic World Rely Relation). The atomic world rely relation, Ra
A , is defined as

Ra
A =R∅A , where RR

A , taking R ⊆ RId, is defined to be the smallest reflexive relation closed under:

γ (r) # G ((a1,O1), (a2,O2)) ∈ Tt (G) χ (r) ∈ {
, ♦} ⇒ a2 ∈ safe(A, r)

O2 # θ (r) r � R (h, ρ[r �→ (t, λ,a2)],γ, χ,θ , ξ[r �→ O2]) R
R�{r }
A w ′

(h, ρ[r �→ (t, λ,a1)],γ, χ,θ , ξ[r �→ O1]) RR
A w ′ wr1

((a1,O1), (a2,O2)) ∈ tr(A, r)

O2 # θ (r) r � R (h, ρ[r �→ (t, λ,a2)],γ, χ[r �→ (a1,a2)],θ , ξ[r �→ O2]) R
R�{r }
A w ′

(h, ρ[r �→ (t, λ,a1)],γ, χ[r �→ ♦],θ , ξ[r �→ O1]) RR
A w ′ wr2

E.2 Environment Liveness Judgement Semantics

We give semantics to the judgements defined in Figure 10.

Definition E.2 (Auxiliary Environment Liveness Judgement Semantics). Let m ∈ L, λ ∈ Lvl,A ∈
ACtxt ,L,L′ ∈ O→ Assrt,T ∈ Assrt such that

• λ;A � ∃α . L(α) stable.
• ∀α . λ;A � L′(α)� L(α).

and let

tσ =W�T ∗ True�σ
A , lσ (α) =W�L(α)�σ

A , l ′σ (α) =W�L′(α)�σ
A .

Then, the auxiliary semantic environmental liveness judgementm; λ;A � L : L′ −−� T holds when,
for arbitrary σ ∈ Store, there exist P ⊆ ℘(O→ World�A) such that l ′σ (α) =

⋃
lf ∈P lf (α) and for all

lf ∈ P , either ∀α . lf (α) ⊆ t or there exists some r ∈ RId and

Ô ∈ AOb<m � {
live(A, r) �� lay(live(A, r)) < m

}
,

such that

• ∀α ∈ O,w ∈ lf (α). activer ;λ (w,Ô)
• ∀α1,α2 ≥ α1. R

a
A (lf (α1)) ∩ lσ (α2) ⊆ lf (α1) ∪ t

hold, where:

activer ;λ (w,Ô) �
⎧⎪⎨⎪⎩

depr ;λ (w,Ô) ∧ ξw (r) & Ô Ô ∈ AOb

depr ;λ (w,Ô) ∧ χw (r) # ♦ ∧ astw (r) ∈ X \ X ′ Ô = X �k X ′

and

depr ;λ (w,Ô) � ∀r ′ ∈ dom(θw). lay(θw (r ′)) > lay(Ô) ∧ lvlw (r) < λ.

Definition E.3 (Environment Liveness Judgement Semantics). The semantic environmental live-
ness judgement:

m; λ;A � L M−−� T ,

wherem ∈ L, λ ∈ Lvl,A ∈ ACtxt ,L ∈ Assrt,M ∈ O→ Assrt,T ∈ Assrt, holds when

λ;A � L stable,

	λ;A L ⇒ ∃α . L ∗M (α),

m; λ;A � L ∗M (α) : L ∗M (α) −−� T .

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:112 E. D’Osualdo et al.

Theorem E.4. For arbitrarym ∈ L, λ ∈ Lvl,A an atomicity context, L,L′ ∈ O→ Assrt,T ∈ Assrt

such that

λ;A � ∃α . L(α) stable, (31)

∀α . λ;A � L′(α)� L(α), (32)

if m; λ;A 	 L : L′ −−� T , thenm; λ;A � L : L′ −−� T .

Proof. Assuming m; λ;A 	 L : L′ −−� T and taking σ ∈ Store arbitrary, the proof proceeds by
induction on the structure of derivation trees of the auxiliary environmental liveness condition.
We start of with the bases cases: LiveO, LiveA, and LiveT.

—case LiveO. In this case, for some r ∈ RId, t ∈ RType, λ′ ∈ Lvl,O ∈ AOb,

imprA (L′,L,T), (33)

m > lay(O), (34)

∀α . 	A L′(α) � lay(O), (35)

λ′ < λ, (36)

∀α . 	A L′(α) ⇒ ∃x . tλ′
r (x) ∗ �O�E

r ∗ True (37)

hold. From this, we need to showm; λ;A � L(α) : L′(α) −−� T .
Let P = {l ′σ (α)}, clearly the union of the elements of this set equals l ′σ (α), as required. Assuming

l ′σ (α) � tσ and setting Ô = O, which is in AOb<m given (34), it suffices to show

∀α ∈ O,w ∈ l ′σ (α). activer ;λ (w,O), (38)

∀α1,α2 ≥ α1. R
a
A (l ′σ (α1)) ∩ lσ (α2) ⊆ l ′σ (α1) ∪ t (39)

hold to complete the proof.
We start off by showing that (38) holds. Taking α ∈ O and w ∈ l ′σ (α) arbitrary, given (35), it

is clear that lay(θw (r)) ≥ lay(O) holds and, given (36) and (37), lvlw (r) < λ holds. From these
two conclusions, we can infer that depr ;λ (w,O) holds. Then, from (37), it is clear that χw (r) #
♦ ∧ astw (r) ∈ X \ X ′ holds, and therefore, activer ;λ (w,X �k X ′).

Finally, (39) follows immediately from (33) and the definition of imprA .

—case LiveA. In this case, for some r ∈ RId, t ∈ RType, λ′ ∈ Lvl,

imprA (L′,L,T), (40)

m > k, (41)

∀α . 	A L′(α) � k, (42)

live(A, r) = X �k X ′, (43)

λ′ < λ, (44)

∀α . 	A L′(α) ⇒ ∃x . tλ′
r (x) ∗ r �⇒ ♦ ∧ x ∈ X \ X ′ ∗ True (45)

hold. From this, we need to showm; λ;A � L(α) : L′(α) −−� T .
Let P = {l ′σ (α)}, clearly the union of the elements of this set equals l ′σ (α), as required. Assuming

l ′σ (α) � tσ and setting Ô = X �k X ′, which is in
{
live(A, r) �� lay(live(A, r)) < m

}
given (41)

and (43), it suffices to show

∀α ∈ O,w ∈ l ′σ (α). activer ;λ (w,X �k X ′), (46)

∀α1,α2 ≥ α1. R
a
A (l ′σ (α1)) ∩ lσ (α2) ⊆ l ′σ (α1) ∪ t (47)

to complete the proof.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:envlive-obl
rule:envlive-pq
rule:envlive-target
rule:envlive-obl
rule:envlive-pq

TaDA Live 16:113

We start off by showing that (46) holds. Taking α ∈ O and w ∈ l ′σ (α) arbitrary, given (42), it
is clear that lay(θw (r)) ≥ lay(X �k X ′) holds and, given (44) and (45), lvlw (r) < λ holds. From
these two conclusions, we can infer that depr ;λ (w,X �k X ′) holds. Then, from (45), it is clear that
χw (r) # ♦ holds, and therefore, activer ;λ (w,X �k X ′).

Finally, (47) follows immediately from (40) and the definition of imprA .

—case LiveT. In this case ∀α . 	A L′(α) ⇒ T holds. From this, we need to showm; λ;A � L(α) :
L′(α) −−� T . Let P = {l ′σ (α)}, clearly the union of the elements of this set equals l ′σ (α), as required.
From ∀α . 	A L′(α) ⇒ T , clearly l ′σ (α) ⊆ tσ , therefore m; λ;A � L(α) : L′(α) −−� T holds, as
required.

Finally, we complete this theorem’s proof with a proof of the soundness of the one inductive
case, EQuant. Note that ECase can be derived directly from EQuant.

—case EQuant. In this case, L′(α) = ∃x ∈ X . L′′(x ,α) for some L′′ ∈ X × O→ Assrt and

∀x ∈ X .m; λ;A 	 L(α) : L′′(x ,α) −−� T (48)

hold. Letting

l ′x,σ (α) =W�L′′(x ,α)�σ
A .

From (48), for any x ∈ X there exists Px ⊆ P (WorldA) such that l ′x,σ (α) =
⋃

Px with the appro-
priate conditions holding for each lf ∈ ⋃

x ∈X Px .
Setting P =

⋃
x ∈X Px , given the definition of L′(α), clearly l ′σ (α) =

⋃
P and for each l ∈ P , there

exists some x ∈ X such that l ∈ Px and therefore, the appropriate properties hold due to (48), as
required.

By induction on the structure of derivation trees of the auxiliary environmental liveness condi-
tion,m; λ;A � L : L′ −−� T holds, as required.

�

Theorem E.5. Ifm; λ;A 	 L M−−� T , thenm; λ;A � L M−−� T .

Proof. This theorem follows trivially from Theorem E.4. �

E.3 Soundness of Frame

For the rest of the section, we let

S =

A

x ∈
�
X .

〈
Ph

��� Pa (x)
〉
· ∃y.

〈
Qh (x ,y) ���Qa (x ,y)

〉
m;λ;A

,

S′ =

A

x ∈
�
X .

〈
Ph ∗ Rh

��� Pa (x) ∗ Ra (x)
〉
· ∃y.

〈
Qh (x ,y) ∗ Rh

���Qa (x ,y) ∗ Ra (x)
〉

m;λ;A
,

such that

A � Rh stable,

∀x ∈ X .A � Ra (x) stable.

∀x ∈ X . 	A Ra (x) ⇒ empλ
Ob

Lemma E.6. For arbitrary λ ∈ Lvl, A and atomicity context, h0,h1 ∈ Heap, p,q ∈ World�A and
r ∈ ViewA :

(h0,h1) �λ;A p � q ⇒ (h0,h1) �λ;A p ∗ r � q ∗ r .

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:envlive-target
rule:envlive-quant
rule:envlive-case
rule:envlive-quant
rule:envlive-quant
rule:frame

16:114 E. D’Osualdo et al.

Proof. Assume (h0,h1) �λ;A p � q, which is equivalent to:

∀f ∈ World�A .h1 ∈ �p1 ∗ f �λ ⇒ h2 ∈ �p2 ∗ Ra
A (f)�λ .

Substituting f = r ∗ f ′, this is equivalent to:

∀f ′ ∈ World�A .h1 ∈ �p1 ∗ r ∗ f ′�λ ⇒ h2 ∈ �p2 ∗ Ra
A (r ∗ f ′)�λ .

As r ∈ ViewA , Ra
A (r ∗ f ′) = r ∗ Ra

A (f ′) holds, and therefore, as required:

∀f ′ ∈ World�A .h1 ∈ �p1 ∗ r ∗ f ′�λ ⇒ h2 ∈ �p2 ∗ r ∗ Ra
A (f ′)�λ . �

Lemma E.7. For arbitrary λ ∈ Lvl, A and atomicity context, h0,h1 ∈ Heap, p,q ∈ World�A and
f ∈ ViewA :

h0 ∈ �p ∗ f � ∧ (h0,h1) �λ;A p � q ⇒ h1 ∈ �q ∗ f �.

Proof. To start off, assumeh0 ∈ �p∗ f � and (h0,h1) �λ;A p � q. Clearly, this second assumption
entails (h0,h1) �λ;A p �∗ q, which is equivalent to:

∀f ∈ ViewA .h0 ∈ �p ∗ f �⇒ h1 ∈ �q ∗ f �.

Choosing the initial f and applying the first assumption yields h1 ∈ �q ∗ f �, as required. �

Definition E.8. For arbitrary V ⊂ PVar and τ ∈ Trace, we define the predicate noModsV (τ),
identifying traces that only modify the program variables in V :

noModsV ((σ0,h0) π (σ1,h1)τ ′) � noModsV ((σ1,h1)τ ′) ∧ ∀v ∈ V . σ0 (v) = σ1 (v).

Definition E.9. For V ⊆ PVar: TraceV � {τ ∈ Trace | noModsV (τ)}.

Lemma E.10. Given C ∈ Cmd,φ ∈ FImpl and V ⊆ PVar arbitrary such that V ∩ mods(C) = ∅,
then: �C�φ ⊆ TraceV .

Proof. Easy coinduction on the small-step operational semantics of commands. �

Definition E.11. We define an auxiliary operation that takes a Hoare frame rh ∈ ViewA and an
atomic frame ra ∈ World�A and applies the frames at each position of a specification trace if the
heaps at each position are compatible with said frames (and returns the empty set otherwise).

((σ ,h,ph,pa,v) π τ̂) � (rh, ra) �{
(σ ,h,ph ∗ rh,pa ∗ ra,v) π τ̂ ′

�����
τ̂ ′ ∈ (τ̂ � (rh, ra)) ∧

h ∈ �ph ∗ rh ∗ pa (v) ∗ ra (v) ∗ True�λ

}
.

This can be lifted to sets of specification traces, T ⊆ STrace:

T � (rh, ra) �
⋃
τ̂ ∈T

τ̂ � (rh, ra).

Lemma E.12. For arbitrary (σ0,h0)τ ∈ Tracefv(Rh) , ph ∈ ViewA , v0 ∈ AVal′ and T ∈ P (STrace),
then

h0 ∈ �ph ∗ rh ∗ pa (v0) ∗ ra (v0) ∗ True� ∧ (σ0,h0) τ �S ph,pa,v0 : T⇒
(σ0,h0) τ �S′ ph ∗ rh,pa ∗ ra,v0 : T � (rh, ra)

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:115

holds, where

rh =W�Rh�
σ0

A ,

pa (v) =
⎧⎪⎨⎪⎩
W�Pa (v) ∧v ∈ X �A if x ∈ AVal

EmpA otherwise,

ra (v) =
⎧⎪⎨⎪⎩
W�Ra (v) ∧v ∈ X �A if x ∈ AVal

EmpA otherwise.

Proof. Taking (σ0,h0)τ ∈ Tracefv(Rh)∩PVar,ph ∈ ViewA ,v0 ∈ AVal′ andT ∈ P (STrace) arbitrary
such that:

h0 ∈ �ph ∗ rh ∗ pa (v0) ∗ ra (v0) ∗ True�, (49)

(σ0,h0) τ �S ph,pa,v0 : T. (50)

The proof proceeds by coinduction on the structure of τ . We consider the rules can apply from
the trace safety judgement: Stutter, LinPt, Env, Env’, and Env�.

—Case Stutter. In this case, (σ0,h0)τ = (σ0,h0) loc (σ1,h1)τ ′ and T = (σ0,h0,ph,pa,v) loc T′.
From (50), for some p ′

h
∈ ViewA , the following hold:

(h0,h1) �λ;A ph ∗ pa (v0) � p ′h ∗ pa (v0), (51)

(σ1,h1) τ ′ �S p ′h,pa,v0 : T′, (52)

term(τ ′) ⇒ ∃v1,v2.v = 〈v1,v2〉 ∧ p ′h =W�Qh (v1,v2)�σ1

A . (53)

Given that rh, ra (v0) ∈ ViewA , using Lemma E.6, (51) implies

(h0,h1) �λ;A ph ∗ rh ∗ pa (v0) ∗ ra (v0) � p ′h ∗ rh ∗ pa (v0) ∗ ra (v0). (54)

By Lemma E.7, (49) and (51) imply:

h1 ∈ �p ′h ∗ rh ∗ pa (v0) ∗ ra (v0) ∗ True�. (55)

Given that (σ0,h0)τ ∈ Tracefv(Rh)∩PVar, ∀v ∈ fv(Rh) ∩ PVar. σo (v) = σ1 (v) holds, and therefore:

rh =W�Rh�
σ1

A . (56)

From this, given (56), (55), and (52) and using the inductive assumption, we derive:

(σ1,h1) τ ′ �S′ p ′h ∗ rh,pa ∗ ra,v0 : T′ � (rh, ra). (57)

Finally, assuming term(τ ′), given (53), we know ∃v1,v2.v = 〈v1,v2〉 ∧ p ′
h
= W�Qh (v1,v2)�σ1

A .

From this and (56), we infer that p ′
h
∗ rh =W�Qh (v,v ′) ∗ Rh�

σ1

A and therefore,

term(τ ′) ⇒ ∃v1,v2.v = 〈v1,v2〉 ∧ p ′h ∗ rh =W�Qh (v,v ′) ∗ Rh�
σ1

A . (58)

From (54), (57), and (58) by Stutter, (σ0,h0) τ �S′ ph ∗ rh,pa ∗ ra,v0 : T � (rh, ra) holds, as
required.

—Case LinPt. In this case, (σ0,h0)τ = (σ0,h0) loc (σ1,h1)τ ′ and T = (σ0,h0,ph,pa,v) loc T′.
From (50), the following hold for some v ′ ∈ AVal:

(h0,h1) �λ;A ph ∗ pa (v0) � q′h ∗W�Qa (v0,v
′)�A , (59)

(σ1,h1) τ ′ �S q′h, emp, 〈v0,v
′〉 : T′, (60)

term(τ ′) ⇒ q′h =W�Qh (v0,v
′)�σ1

A . (61)

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:stutter
rule:linpt
rule:env
rule:env2
rule:env-fault
rule:stutter
rule:stutter
rule:linpt

16:116 E. D’Osualdo et al.

Given that rh, ra (v0) ∈ ViewA , using Lemma E.6, (59) implies

(h0,h1) �λ;A ph ∗ rh ∗ pa (v0) ∗ ra (v0) � q′h ∗ rh ∗W�Qa (v,v ′)�A ∗ ra (v0). (62)

By Lemma E.7, (49) and (59) imply:

h1 ∈ �q′h ∗ rh ∗W�Qa (v0,v
′)�A ∗ ra (v0) ∗ True�. (63)

Given that (σ0,h0)τ ∈ Tracefv(Rh)∩PVar, ∀v ∈ fv(Rh) ∩ PVar. σo (v) = σ1 (v) holds, and therefore:

rh =W�Rh�
σ1

A . (64)

From this, given (64), (63), and (60) and using the inductive assumption, we derive:

(σ1,h1) τ ′ �S′ q′h ∗ rh,pa ∗ ra, 〈v0,v
′〉 : T′ � (rh, ra). (65)

Finally, assuming term(τ ′), given (61), we know q′
h
=W�Qh (v0,v

′)�σ1

A . From this and (64), we

infer that q′
h
∗ rh =W�Qh (v0,v

′) ∗ Rh�
σ1

A and therefore,

term(τ ′) ⇒ q′h ∗ rh =W�Qh (v0,v
′) ∗ Rh�

σ1

A . (66)

From (62), (65), and (66) by LinPt, (σ0,h0) τ �S′ ph ∗ rh,pa ∗ ra,v0 : T� (rh, ra) holds, as required.

—case Env. In this case, (σ0,h0)τ = (σ0,h0) env (σ1,h1)τ ′ and

T =
⋃{

(σ ,h1,ph,pa,v0) env T′v ′
��� v ′ ∈ X ,E (v ′)

}
.

From (50), we have that ∀v ′ ∈ X . E (v ′) ⇒ (σ ,h2) τ �S ph,pa,v
′ : Tv ′ . Taking v ′ ∈ X arbitrary and,

assuming E (v ′) given some pe,pe
′
, for the goal specification:

h0 ∈ �ph ∗ rh ∗ pa (v0) ∗ ra (v0) ∗ pe�λ ,

(h0,h1) �λ;A pa (v0) ∗ ra (v0) ∗ pe � pa (v ′) ∗ ra (v ′) ∗ pe
′
.

It then suffices to show that (σ1,h1) τ ′ �S′ ph∗rh,pa∗ra,v
′ : Tv ′ holds. This follows from Lemma E.6

by using pe = pe ∗ rh ∗ ra (v0) and p ′e = pe
′ ∗ rh ∗ ra (v ′), yielding:

h1 ∈ �ph ∗ pa (v) ∗ pe�λ , (h1,h2) �λ;A pa (v) ∗ pe � pa (v ′) ∗ p ′e,

as required.

—Case Env’. This case follows similarly to the Env case.

—Case Env�. This case is trivially true. �

Lemma E.13. Letting

rh =W�Rh�
σ0

A ,

ra (v) =
⎧⎪⎨⎪⎩
W�Ra (v) ∧v ∈ X �A if x ∈ AVal

EmpA otherwise,

and assuming 	A Rh ∗ Ra (x) �m, then, given T ⊆ STrace:

∀τ̄ ′ ∈ �T � (rh, ra)	. liveEnvS′ (τ̄
′) ⇒ ∃τ̄ ∈ �T	. liveEnvS (τ̄).

Proof. Taking τ̄ ′ ∈ �T � (rh, ra)	 arbitrary such that liveEnvS′ (τ̄
′). This implies that:

∀Ô ∈ PObS
′
<m . if ∀r ,O ∈ AOb≤lay(Ô) .∀i ∈ N. ∃j ≥ i .¬ locheldλ (r ,O, τ̄ ′(j))

then ∀i ∈ N. ∃j ≥ i .¬ envheldλ (Ô, τ̄ ′(j)).

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:linpt
rule:env
rule:env2
rule:env
rule:env-fault

TaDA Live 16:117

As τ̄ ′ ∈ �T � (rh, ra)	, there must be some τ̂ ∈ T such that τ̄ ′ ∈ �τ̂ � (rh, ra)	. Taking τ̄ ∈ �τ̂	
arbitrary, to show liveEnvS (τ̄), take Ô ∈ PObS<m arbitrary such that

∀r ,O ∈ AOb≤lay(Ô) .∀i ∈ N. ∃j ≥ i .¬ locheldλ (r ,O, τ̄ (j)).

Given 	A Rh ∗ Ra (x) �m and the definition of �, the following holds:

∀r ,O ∈ AOb≤lay(Ô) .∀i ∈ N. ∃j ≥ i .¬ locheldλ (r ,O, τ̄ ′(j)).

Now, from liveEnvS′ (τ̄
′):

∀i ∈ N. ∃j ≥ i .¬ envheldλ (Ô, τ̄ ′(j)).

From this, as required:

∀i ∈ N. ∃j ≥ i .¬ envheldλ (Ô, τ̄ (j)).

�

Theorem E.14 (Soundness of Frame). Assuming

∀x ∈ X . 	A Rh ∗ Ra (x) �m (67)

and given arbitrary C ∈ Cmd such that

pv(Rh) ∩mod(C) = ∅ (68)

and arbitrary Φ ∈ FSpec such that

�Φ C : S,

then

�Φ C : S′.

Proof. To start off, as A � Rh stable, clearly Ph ∗ Rh ∈ StableA and ∀x ∈ X ,y.Qh (x ,y) ∗ Rh ∈
StableA , ∀x ∈ X . 	A Pa (x) ∗ Ra (x) ⇒ empλ

Ob
and ∀x ∈ X ,y. 	A Qa (x ,y) ∗ Ra (x) ⇒ empλ

Ob
therefore, S′ ∈ Spec.

Taking C ∈ Cmd arbitrary such that (68) holds, Φ ∈ FSpec arbitrary such that �Φ C : S holds
and arbitrary φ ∈ FImpl such that � φ : Φ holds, then �C�φ ⊆ �S�. From Lemma E.10 and (68), we

can also infer that �C�φ ⊆ Tracepv(Rh) and therefore, it is clear that �C�φ ⊆ Tracepv(Rh) ∩ �S�. From

this, we know that it is sufficient to show that Tracepv(Rh) ∩ �S� ⊆ �S′�, to show that �C�φ ⊆ �S′�

holds, and therefore, �Φ C : S′, as required.
Therefore, taking (σ0,h0)τ ∈ �S� ∩ Tracepv(Rh) arbitrary, it is sufficient to show (σ0,h0)τ ∈ �S′�.
Let

ph =W�Ph�
σ0

A ,

rh =W�Rh�
σ0

A ,

pa (v) =
⎧⎪⎨⎪⎩
W�Pa (v) ∧v ∈ X �A if x ∈ AVal

EmpA otherwise,

ra (v) =
⎧⎪⎨⎪⎩
W�Ra (v) ∧v ∈ X �A if x ∈ AVal

EmpA otherwise.

To show (σ0,h0)τ ∈ �S′�, for some arbitraryv0 ∈ X , assumeh0 ∈ �ph∗rh∗pa (v0)∗ra (v0)∗True�λ ,
from which it follows that h0 ∈ �ph ∗pa (v0) ∗True�λ . Then, as (σ0,h0)τ ∈ �S�, for some T ⊆ STrace:

(σ0,h0) τ �S ph,pa,v0 : T, (69)

∀τ̄ ∈ �T	. liveEnvS (τ̄) ⇒ lterm(τ̄). (70)

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:frame

16:118 E. D’Osualdo et al.

From Lemma E.12 and (69), (σ0,h0) τ �S ph ∗ rh,pa ∗ ra,v0 : T � (rh, ra). To reach the goal now,
it suffices to show that for some arbitrary τ̄ ′ ∈ �T � (rh, ra)	:

liveEnvS′ (τ̄
′) ⇒ lterm(τ̄ ′).

This holds trivially from Lemma E.13, (67) and (70). �

Note that Theorem E.14 has the side condition pv(Rh) ∩ mod(C) = ∅ rather than ∀x ∈
X . pv(Rh,Ra (x)) ∩ mod(C) = ∅ as in Frame. This is because this theorem applies to TaDA Live
specifications without the syntactic sugar that permits program variables to be directly referenced
in the atomic pre-condition and post-condition of a TaDA Live hybrid triple. The side condition
present in the Frame rule permits it to be applied directly to sugared hybrid specifications, as it
guarantees that the necessary side condition for the corresponding desugared specification holds.

E.4 Soundness of LiveC

Let

S� =

A

x ∈ X �k X ′.
〈
Ph

��� Pa (x)
〉
· ∃y.

〈
Qh (x ,y) ���Qa (x ,y)

〉
m;λ;A

,

S =

A

x ∈ X .
〈
Ph ∗ L ��� Pa (x)

〉
· ∃y.

〈
Qh (x ,y) ∗ L ���Qa (x ,y)

〉
m;λ;A

,

where L ∈ StableA .

Definition E.15. For atomicity context A and layer m from the context of S and sets X and X ’
as well as the layer k from the pseudo-quantifier of S, let

PObS � { (r ,O) | r ∈ RId,O ∈ AOb } � { (r , live(A, r)) | r ∈ dom(A) } � {X �k X ′}.

Then liveEnvS (τ̂) predicate checks whether the environment is satisfying the liveness assumptions
of the specification:

liveEnvS (τ̄) � ∀Ô ∈ PObS<m . if ∀r ,O ∈ AOb≤lay(Ô) .∀i ∈ N. ∃j ≥ i .¬ locheldλ (r ,O, τ̄ (j))

then ∀i ∈ N. ∃j ≥ i .¬ envheldλ (Ô, τ̄ (j)).

Lemma E.16. Given M ∈ O→ World�A ,T ∈ Assrt,n ≤ m,k such that

n; λ;A � L M−−� T , (71)

∀x ∈ X . 	λ;A P (x) ∗T ⇒ x ∈ X ′ (72)

hold. Take (σ0,h0)τ ∈ Trace and let

pa (v) =
⎧⎪⎨⎪⎩
W�Pa (v) ∧v ∈ X �A if x ∈ AVal

EmpA otherwise,

l =W�L�σ0

A ,

l (α) =W�L ∗M (α)�σ0

A ,

t =W�T ∗ True�σ0

A .

Taking arbitrary p ′
h
∈ ViewA ,T ⊆ STrace and v0 ∈ X such that

h0 ∈ �p ′h ∗ l ∗ pa (v0) ∗ True�λ , (73)

(σ0,h0)τ �S� p ′h,pa,v0 : T, (74)

(σ0,h0)τ �S p ′h ∗ l ,pa,v0 : T � (l , emp), (75)

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:frame
rule:frame
rule:liveness-check

TaDA Live 16:119

for arbitrary τ̄ ′ ∈ �T � (l , emp)	λ;A such that

liveEnvS (τ̄ ′) (76)

there exists τ̄ ∈ �T	λ;A , such that, if

∀Ô ′ ∈ RId × AOb≤k .∀i ∈ N. ∃j ≥ i .¬ locheldλ (Ô
′
, τ̄ (j)), (77)

then ∀i ∈ N. ∃j ≥ i .¬ envheldλ (X �k X ′, τ̄ (j)).

Proof. Taking (σ0,h0)τ ∈ Trace,p ′
h
∈ ViewA ,T ⊆ STrace and v0 ∈ X arbitrary such that (73),

(74), and (75) hold and τ̄ ′ ∈ �T� (l , emp)	λ;A , satisfying (76). From this, we know that there exists

τ̄ ∈ �T	λ;A and ls ∈ lω , such that, for all i ∈ N:

ls(i) Ra
A ls(i + 1), (78)

∃h ∈ Heap,wh,wa,we ∈ ViewA ,v ∈ Val′.
τ̄ (i) = ((h,wh,wa,we # ls(i),v), _) ∧
τ̄ ′(i) = ((h,wh # ls(i),wa,we,v), _)

(79)

hold. If (77) does not hold, then our proof is complete, otherwise, from (71), there exists some
P ⊆ ℘(O→ World�A) such that ∀α . l (α) =

⋃
lf ∈P lf (α).

We now show by transfinite induction on α ∈ O, that

∀α ∈ O, i ∈ N. ls(i) ∈ l (α) ⇒ ∃j ≥ i .¬ envheldλ (X �k X ′, τ̄ (j)).

Base case (α = 0): Take i ∈ N and assume ls(i) ∈ l (0). Since l (0) =
⋃

lf ∈P lf (0), for some lf ∈ P ,
we have ls(i) ∈ lf (0). We now assume, towards a contradiction, that ∀j ≥ i . envheldλ (X �k

X ′, τ̄ (j)) and therefore ∀j ≥ i . ∃v ∈ X \ X ′. τ̄ (j) = ((_, _, _, _,v), _). We now demonstrate,
that under this assumption, by induction on j ≥ i that

∀j ≥ i . ls(j) ∈ lf (0). (80)

Assume that for j ≥ i , ls(j) ∈ lf (0) holds. From (78), ls(j+1) ∈ Ra
A (lf (0)) holds and from (71),

setting α1 = 0, Ra
A (lf (0)) ⊆ lf (0) ∪ t , therefore, either ls(j + 1) ∈ lf (0) or ls(j + 1) ∈ t hold.

In the latter case, from (72), ∃v ∈ X ′. τ̄ (j + 1) = ((_, _, _, _,v), _), a contradiction. Therefore,
ls(j + 1) ∈ lf (0) holds, proving (80).

From (71), there exists some r ∈ RId and Ô ∈ AOb<n �
{
live(A, r) �� lay(live(A, r)) < n

}
such that:

∀w ∈ lf (0). activer ;λ (w,Ô). (81)

Taking r ′ ∈ RId and O ∈ AOb≤lay(Ô) arbitrary, since lay(Ô) < n, lay(O) < n and there-

fore lay(O) < k and lay(O) < m hold. As lay(O) < k holds, given (77), for some j ′ ≥ i ,
¬ locheldλ ((r ′,O), τ̄ (j ′)) holds. Given (79), we know τ̄ (j ′) = (h,wh,wa,we # ls(j ′),v) and
τ̄ ′(j ′) = (h,wh # ls(j ′),wa,we,v) for some h ∈ Heap,wh,wa,we ∈ WorldA ,v ∈ X \ X ′, and
therefore, θwh

(r ′) �& O. Given (80), ls(j ′) ∈ lf (0) holds, and, therefore, given (81), we know
that:

lay(θls(j′) (r
′)) > lay(Ô), (82)

lvlls(j′) (r) < λ. (83)

Given (82), θls(j′) (r
′) �& O, as otherwise, lay(θls(j′) (r

′)) ≤ lay(O) and therefore, as lay(O) <

lay(Ô), we reach a contradiction. Then, from θwh
(r) �& O and θls(j′) (r) �& O, we know

θwh#ls(j′) (r) �& O, as O ∈ AOb, and therefore, ¬ locheldλ ((r ′,O), τ̂ ′(j ′)). From this, it follows
that

∀Ô ′ ∈ RId × AOb≤lay(Ô), i ∈ N. ∃j ≥ i .¬ locheldλ (Ô
′
, τ̄ ′(j)) (84)

holds.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:120 E. D’Osualdo et al.

Letting τ̄ ′(i) = ((hi ,w i
h
ls(i),w i

a,w
i
e,v

i), _), first, consider the case Ô ∈ AOb<n . As an
obligation’s composition with itself within the obligation algebra of the region type of the
shared region r must be undefined, one of

locheldλ (Ô, τ̄ ′(i)) ∧ ¬ envheldλ (Ô, τ̄ ′(i)),

¬ locheldλ (Ô, τ̄ ′(i)) ∧ envheldλ (Ô, τ̄ ′(i)),

¬ locheldλ (Ô, τ̄ ′(i)) ∧ ¬ envheldλ (Ô, τ̄ ′(i))

holds, as if both the environment and local worlds hold Ô , their composition would be un-
defined.

If ¬ locheldλ (Ô, τ̂ ′(i)) ∧ ¬ envheldλ (Ô, τ̂ ′(i)) holds, then θw i
h
#ls(i) (r) �& Ô and θw i

e
(r) �& Ô

hold. From (80), we know that ls(i) ∈ lf (0), which, given (81) and Ô ∈ AOb<n , implies that
ξls(i) (r) & Ô . Given (83) and the invariant on atomic resources, we also know that θw i

a
(r) �& Ô ,

and therefore, since we know that ξw i
h
#ls (i)#w i

a #w i
e
(r) = 0, given the definition of #, we reach

a contradiction, as required.
Otherwise, if ¬ locheldλ (Ô, τ̄ ′(i)) ∧ envheldλ (Ô, τ̄ ′(i)) holds, from (76)

if ∀Ô ′ ∈ RId × AOb≤lay(Ô), i ∈ N. ∃j ≥ i .¬ locheld(Ô
′
, τ̄ ′(j))

then ∀i ∈ N. ∃j ≥ i .¬ envheld(Ô, τ̄ ′(j))

holds, and therefore, given (84), there exists some minimal j ≥ i , such that¬ envheld(Ô, τ̄ ′(j+
1)) holds. Since j is minimal, ∀k ∈ N. i ≤ k ≤ j ⇒ envheld(Ô, τ̄ ′(k)) also holds. From this,
letting

τ̄ ′(j) = ((hj ,w j

h
ls(j),w j

a,w
j
e,v

j),π),

τ̄ ′(j + 1) = ((hj+1,w j+1
h

ls(j + 1),w j+1
a ,w

j+1
e ,v

j+1), _),

we know that θ
w

j
e
(r) & Ô and θ

w
j+1
e

(r) �& Ô . Then, given (83) and the invariant on atomic

resources, we know θ
w

j
a
(r) = 0 and θ

w
j+1
a

(r) = 0, and therefore, by the definition of #,

ξ
w

j

h
#ls(j)#w

j
a
(r) & Ô and ξ

w
j+1
h

#ls(j+1)#w
j+1
a

(r) �& Ô .

If π=loc, then by construction of τ̄ ′,w j
e Ra

A w j+1
e holds, and therefore, from the definition

of Ra
A , θ

w
j
e
(r) = θ

w
j+1
e

(r) a contradiction.

Otherwise, if π=env, then by construction of τ̄ ′, w j

h
ls(j) Ra

A w j+1
h

ls(j + 1) holds,
and therefore, from the definition of Ra

A , θ
w

j

h
#ls(j) (r) = θ

w
j+1
h

#ls(j+1) (r). Given (78), θls(j) (r) =

θls(j+1) (r), and therefore, from the definition of #, θ
w

j

h
(r) = θ

w
j+1
h

(r). Given that we know

that θ
w

j

h
#ls (j)#w

j
a
(r) # θ

w
j
e
(r), then clearly θ

w
j

h
#ls (j)#w

j
a
(r) �& Ô , from which it follows

that θ
w

j+1
h

#ls (j+1)#w
j+1
a

(r) �& Ô . From this and (80) it is clear that ξ
w

j+1
h

#ls (j+1)#w
j+1
a

(r) & Ô .

However, given that θ
w

j+1
e

(r) �& Ô , from the definition of #, it must be the case that

ξ
w

j+1
h

#ls (j+1)#w
j+1
a #w

j+1
e

(r) & Ô , a contradiction.

Finally, the case locheldλ (Ô, τ̄ ′(i))∧¬ envheldλ (Ô, τ̄ ′(i)) reaches a contradiction similarly.
To finish the base case, it now suffices to consider the case Ô = X �k X ′. Given (76) and

(84), we know that for some j ≥ i , ¬ envheldλ (Ô, τ̄ ′(j)) holds. Letting τ̄ ′(j) = ((_,w j

h
#

ls(j), _, _, _), _), given (81), lvlls(j) (r) < λ and astls(j) (r) ∈ X \ X ′ hold. Given lvlls(j) (r) < λ
and ¬ envheldλ (Ô, τ̄ ′(j)), astls(j) (r) ∈ X ′ holds, a contradiction.
By contradiction, the base case holds, as required.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:121

Inductive case: Take α ∈ O, i ∈ N and assume ls(i) ∈ l (α). Since l (α) =
⋃

lf ∈P lf (α) holds
for some lf ∈ P , we have ls(i) ∈ lf (α). Now assume, towards a contradiction, that ∀j ≥
i . envheldλ (X �k X ′, τ̄ (j)) and therefore ∀j ≥ i . ∃v ∈ X \ X ′. τ̄ (j) = ((_, _, _, _,v), _). We
now demonstrate that, under this assumption, the following holds:

(∀j ≥ i . ls(j) ∈ lf (α)) ∨ (∃j > i, β < α . ls(j) ∈ l (β)). (85)

To show this, it is sufficient to show that ¬(∃j > i, β < α . ls(j) ∈ l (β)) implies ∀j ≥ i . ls(j) ∈
lf (α). We proceed to prove ∀j ≥ i . ls(j) ∈ lf (α) by induction on j ≥ i . The base case
holds by our assumptions. Now for the inductive case, assume that for j ≥ i , ls(j) ∈ lf (α)
holds. From (78), ls(j + 1) ∈ Ra

A (lf (α)) holds and from (71), setting α1 = α , Ra
A (lf (α)) ⊆

lf (α) ∪⋃
β<α l (β) ∪ t , therefore, either ls(j + 1) ∈ lf (α), ls(j + 1) ∈ ⋃

β<α l (β) or ls(j + 1) ∈ t
hold. In the case where ls(j + 1) ∈ t holds, from (72), ∃v ∈ X ′. τ̄ (j + 1) = ((_, _, _, _,v), _),
a contradiction and in the case where ls(j + 1) ∈ ⋃

β<α l (β) holds, we reach a contradiction
with ¬(∃j > i, β < α . ls(j) ∈ l (β)), which implies ∀j > i, β < α . ls(j) � l (β). Therefore,
ls(j + 1) ∈ lf (0) holds, as required, completing the proof by induction.

The inductive case then follows from (85). The goal follows similarly to the base case for
the first disjunct and by inductive assumption in the second. �

Lemma E.17. Given M ∈ O→ World�A ,T ∈ Assrt,n ≤ m,k such that

n; λ;A � L M−−� T , (86)

∀x ∈ X . 	λ;A P (x) ∗T ⇒ x ∈ X ′ (87)

hold. Take (σ0,h0)τ ∈ Trace and let

∀v ∈ AVal.pa (v) =W�v ∈ X ∧ Pa (v)�A

l =W�L�σ0

A
t =W�T ∗ True�σ0

A .

Taking arbitrary p ′
h
,pe ∈ ViewA ,T ⊆ STrace and v0 ∈ X such that

h0 ∈ �p ′h ∗ l ∗ pa (v0) ∗ True ∗ pe�λ , (88)

(σ0,h0)τ �S� p ′h,pa,v0 : T, (89)

(σ0,h0)τ �S p ′h ∗ l ,pa,v0 : T � (l , emp), (90)

and arbitrary τ̄ ′ ∈ �T � (l , emp)	 such that

liveEnvS (τ̄ ′) (91)

holds, then, there exists τ̄ ∈ �T	, such that:

liveEnvS� (τ̄).

Proof. This lemma follows straightforwardly from lemma E.16. �

Theorem E.18. Taking n ∈ L,T ∈ Assrt and M ∈ O→ Assrt such thatm 	 n,k ·	 n and

n; λ;A � L M−−� T , (92)

∀x ∈ X . 	λ;A Pa (x) ∗T ⇒ x ∈ X ′. (93)

Then, for any Φ ∈ FSpec and C ∈ Cmd, if

pv(L) ∩mod(C) = ∅, (94)

�Φ C : S�, (95)

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:122 E. D’Osualdo et al.

then

�Φ C : S.

Proof. Taking n ∈ L,T ∈ Assrt and M ∈ O→ Assrt arbitrary such thatm 	 n,k ·	 n, (92) and
(93) hold. Then, to start off, given (92), A � L stable holds, and therefore, Ph ∗ L ∈ StableA . From
this, we can infer, S ∈ Spec.

Then, taking C ∈ Cmd arbitrary such that (68) holds, Φ ∈ FSpec arbitrary such that �Φ C : S�
holds and arbitrary φ ∈ FImpl such that � φ : Φ holds, then �C�φ ⊆ �S��. From Lemma E.10 and

(94), we can also infer that �C�φ ⊆ Tracepv(L) and therefore, it is clear that �C�φ ⊆ Tracepv(L)∩�S��.
From this, we know that it is sufficient to show that Tracepv(Rh) ∩ �S�� ⊆ �S�, to show that
�C�φ ⊆ �S� holds, and therefore, �Φ C : S, as required.

Therefore, taking (σ0,h0)τ ∈ �S�� ∩ Tracepv(L) arbitrary, it is sufficient to show (σ0,h0)τ ∈ �S�.
Let

ph =W�Ph�
σ0

A pa (v) =
⎧⎪⎨⎪⎩
W�Pa (v) ∧v ∈ X �A if x ∈ AVal

EmpA otherwise

m(α) =W�M (α)�σ0

A l (α) =W�L ∗M (α)�σ0

A
l =W�L�σ0

A t =W�T �σ0

A

To show (σ0,h0)τ ∈ �S�, assume for some v0 ∈ X , h0 ∈ �ph ∗ pa (v0) ∗ l ∗ True�λ . Then, given
(σ0,h0)τ ∈ �S��, for some T ∈ ℘(STrace):

(σ0,h0) τ �S� ph,pa,v0 : T ∧ ∀τ̄ ∈ �T	. liveEnvS� (τ̄) ⇒ lterm(τ̄).

Given Lemma E.12 and that the definition of the trace safety judgement does not depend on the
good states of a specification,X ′, clearly, (σ0,h0) τ �S ph∗l ,pa,v0 : T� (L, emp) holds. To complete
the proof, it suffices show that

∀τ̄ ∈ �T � (L, emp)	. liveEnvS� (τ̄) ⇒ liveEnvS (τ̄).

This follows straightforwardly from Lemma E.17. �

E.5 Soundness of While

Definition E.19 (Concrete Trace Sequence Operator).

τ = τ1 �τ2 ⇔
(¬ lterm(τ1) ∧ τ = τ1) ∨(
∃σ ∈ Store,h ∈ Heap,τ ′1 loc (σ ,h)τ ′′1 , (σ ,h)τ ′2 ∈ Trace.

τ1 = τ
′
1 loc (σ ,h)τ ′′1 ∧ τ2 = (σ ,h)τ ′2 ∧ term((σ ,h)τ ′′1) ∧ τ = τ ′1 loc (σ ,h) loc (σ ,h)τ ′2

)
.

A similarly defined overloading of this operator exists for specification traces, τ̂ 1 � τ̂ 2 and the
obvious lifting to sets T1 � T2.

Lemma E.20. For arbitrary φ ∈ FImpl, (σ0,h0)τ ∈ �while(B){C}�φ , either ¬B�B�σ0
and

(σ0,h0)τ ∈ �skip�φ , or B�B�σ0
and there exists (σ0,h0)τ ′ ∈ �C�φ and τ ′′ ∈ �while(B){C}�φ ,

such that (σ0,h0)τ = (σ0,h0)loc (σ0,h0)τ ′ � τ ′′.

Proof. Straightforward by induction on
_−→φ . �

Lemma E.21. Given an arbitrary specification

S =

A

x ∈ X � X ′.
〈
Ph

��� Pa (x)
〉
· ∃y.

〈
Qh (x ,y) ���Qa (x ,y)

〉
λ;A

for an arbitrary trace (σ0,h0)τ ∈ Trace, let

ph =W�Ph�
σ0

A , pa (v) =W�Pa (v)�σ0

A .

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:while

TaDA Live 16:123

If for some v ∈ X and T ∈ P (STrace), h0 ∈ �ph ∗ pa (v) ∗ True� and (σ0,h0)τ �S ph,pa,v : T, then:

∀τ̂ ∈ T.∀i ∈ N. term(τ̂ /i) ⇒ ∃h ∈ Heap,σ ∈ Store,ph ∈ ViewA ,v ∈ X ,v ′ ∈ AVal.

τ̂ (i) = (σ ,h,ph, emp, 〈v,v ′〉) ∧ ph =W�Qh (v,v ′)�σ
A ∧ h ∈ �ph ∗ True�λ (96)

Proof. Straightforward by induction on the specification semantics rules. �

For the rest of the section, let

S′(β,b) =
{
P (β) ∗ (b

.
⇒ T (β)) ∧ B

}
·
{
∃γ . P (γ) ∧ γ ≤ β ∗ (b

.
⇒ γ < β)

}
m;λ;A

,

S(β0) =
{
P (β0) ∗ L

}
·
{
∃β . P (β) ∗ L ∧ ¬B ∧ β0 ≥ β

}
m;λ;A

.

Lemma E.22. Take φ ∈ FImpl and β0 ∈ O arbitrary and take (σ0,h0)τ ∈ �while(B){C}�φ such

that B�B�σ0
. Let

p ′(β,b) =W�P (β) ∗ (b
.
⇒ T)�σ0

A , l =W�L�σ0

A .

As B�B�σ0
, by Lemma E.20, there exists (σ0,h0)τ ′ ∈ �C�φ and (σ1,h1)τ ′′ ∈ �while(B){C}�φ ,

such that (σ0,h0)τ = (σ0,h0)τ ′ � (σ1,h1)τ ′′. If, for arbitrary β ′ ≤ β ≤ β0 and T′,T′′ ∈ P (STrace),
then there exists b ∈ Bool, such that:

h0 ∈ �p ′(β,b) ∗ l ∗ True�λ ,

(σ0,h0)τ ′ �S′ (β,b) p
′(β,b), emp, 1 : T′,

(σ1,h1)τ ′′ �S(β ′) p
′(β ′, False) ∗ l , emp, 1 : T′′,

then:

(σ0,h0)τ �S(β) p
′(β, False) ∗ l , emp, 1 : T′ � T′′

and one of the following hold:

lterm((σ0,h0)τ),

∀τ̄ ∈ �T′ � T′′	.¬ liveEnvS(β) (τ̄),

∀τ̂ ∈ T′ � T′′.∀i ∈ N. ∃j ≥ i, β . τ̂ (j) = (σ ,h,p ′(β, False), emp, 1).

Proof. This lemma is proven by coinduction on the structure of (σ0,h0)τ . First, assume:

h0 ∈ �p ′(β,b) ∗ l ∗ True�λ , (97)

(σ0,h0)τ ′ �S′ (β,b) p
′(β,b), emp, 1 : T′, (98)

(σ1,h1)τ ′′ �S(β ′) p
′(β ′, False) ∗ l , emp, 1 : T′′. (99)

As, clearly, ∀β .p ′(β, True) ⊆ p ′(β, False), using (97), (98), (99), Lemma E.12 and Lemma E.21, by
coinduction, we can derive:

(σ0,h0)τ �S(β) p
′(β, False) ∗ l , emp, 1 : T′ � T′′.

Now, split on lterm((σ0,h0)τ). If lterm((σ0,h0)τ), then the goal holds, otherwise, split again
on lterm((σ0,h0)τ ′). If ¬ lterm((σ0,h0)τ ′), then T′ � T′′ = T′, so from (98), ∀τ̄ ∈ �T′ �
T′′	. liveEnvS′ (β,b) (τ̄) ⇒ lterm(τ̄), from this, we infer that ∀τ̄ ∈ �T′ � T′′	.¬ liveEnvS′ (β,b) (τ̄).
Given that the definition of liveEnv only references the pseudo-quantifier, context layer, and
atomicity context of the parametrising specification, this clearly implies our goal, ∀τ̄ ∈ �T′ �
T′′	.¬ liveEnvS(β) (τ̄), as required. Otherwise,¬ lterm((σ1,h1)τ ′′). To not terminate, the while loop
must iterate at least one more time, as (σ1,h1)τ ′′ is a fair trace, therefore B�B�σ1

holds. We can

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:124 E. D’Osualdo et al.

then use Lemma E.20 and our coinductive assumption to obtain h1 ∈ �p ′(β,b) ∗ l ∗True�λ and that
one of the following holds:

∀τ̄ ∈ �T′′	.¬ liveEnvS(β ′) (τ̄),

∀τ̂ ∈ T′′.∀i ∈ N. ∃j ≥ i, β . τ̂ (j) = (σ ,h,p ′(β, False), emp, 1).

If the first holds, then ∀τ̂ ∈ T′ �T′′. liveEnvS(β) (τ̂) ⇒ lterm(τ̂), so the goal is proven; if the second
holds, then from h1 ∈ �p ′(β,b) ∗ l ∗ True�λ :

∀τ̂ ∈ T′ � T′′.∀i ∈ N. ∃j ≥ i, β . τ̂ (j) = (σ ,h,p ′(β, False), emp, 1). �

Theorem E.23. Given

∀β ≤ β0.∀b ∈ {0, 1}. �Φ C : S′(β,b), (100)

∀β ≤ β0.m(β); λ;A � L M−−� T (β), (101)

∀α .A � ∃α ′. L ∗M (α ′) ∧ α ′ ≤ α stable, (102)

A � L stable, (103)

∀β ≤ β0. 	A P (β) �m(β) � m, (104)

pv(T ,L,M) ∩mod(C) = ∅, (105)

then:

�Φ while(B){C} : S(β0).

Proof. Taking φ ∈ FImpl arbitrary such that � φ : Φ and (σ0,h0)τ ∈ �while(B){C}�φ arbitary.

We need to show (σ0,h0)τ ∈ �S(β0)�. Let

p ′(β,b) =W�P (β) ∗ (b
.
⇒ T)�σ0

A , l =W�L�σ0

A .

To reach the goal, assume h0 ∈ �p ′(β0, False) ∗ l ∗ True�λ . By Lemma E.22, in the case that B�B�σ0
,

and our assumptions, there exists T ⊆ STrace:

(σ0,h0)τ �SW�P (β0) ∗ L�σ0

A , emp, 1 : T,

and one of the following holds:

lterm((σ0,h0)τ),

∀τ̂ ∈ T.¬ liveEnvS (τ̂),

∀τ̂ ∈ T.∀i ∈ N. ∃j ≥ i, β . τ̂ (j) = (σ ,h,p ′(β, False), emp, 1).

In the first case, ∀τ̂ ∈ T. lterm(τ̂), therefore, ∀τ̂ ∈ T. liveEnvS(β0) (τ̂) ⇒ lterm(τ̂), as required. In
the second, ∀τ̂ ∈ T. liveEnvS(β0) (τ̂) ⇒ lterm(τ̂) clearly also holds. Finally, we consider the third
case. Take τ̂ ∈ T arbitrary and assume liveEnvS(β0) (τ̂). Now, for a contradiction, assume ¬ lterm(τ̂).
In this case, due to (101), with an argument similar to that in the soundness of (LiveC), at every
point, every τ̂ ∈ T eventually reaches a state satisfying T (β0). This must eventually be stable due
to the metric stably decreasing due to assumption (102), holding till the next iteration, at which
point, the loop variant decreases due to (100) with b = True. By repeating this argument with the
continuation, by well-foundness of ordinals, the while loop must eventually terminate if liveEnv(τ̂)
holds, leading to a contradiction. Therefore, in all cases, ∀τ̂ ∈ T. liveEnvS(β0) (τ̂) ⇒ lterm(τ̂) holds,
as required, concluding the proof. �

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:liveness-check

TaDA Live 16:125

E.6 Soundness of Par

Definition E.24 (Bowtie Operator). The bowtie operator, ��, which interleaves the subjective
traces of two commands executed in parallel into a command from their combined perspective:

(σ ,h) env τ ′1 �� (σ ,h) env τ ′2 = (σ ,h) env (τ ′1 �� τ
′
2),

(σ ,h) env τ ′1 �� (σ ,h) loc τ ′2 = (σ ,h) loc (τ ′1 �� τ
′
2),

(σ ,h) loc τ ′1 �� (σ ,h) env τ ′2 = (σ ,h) loc (τ ′1 �� τ
′
2).

All other cases are undefined.

Definition E.25 (Specification Bowtie Operator). The specification bowtie operator,
s
��, which in-

terleaves the subjective specification traces of two commands executed in parallel into a command
from their combined perspective:

(σ ,h,p1, emp, 1) env τ ′1
s
�� (σ ,h,p2, emp, 1) env τ ′2 = (σ ,h,p1 ∗ p2, emp, 1) env (τ ′1

s
�� τ ′2),

(σ ,h,p1, emp, 1) env τ ′1
s
�� (σ ,h,p2, emp, 1) loc τ ′2 = (σ ,h,p1 ∗ p2, emp, 1) loc (τ ′1

s
�� τ ′2),

(σ ,h,p1, emp, 1) loc τ ′1
s
�� (σ ,h,p2, emp, 1) env τ ′2 = (σ ,h,p1 ∗ p2, emp, 1) loc (τ ′1

s
�� τ ′2).

All other cases are undefined.

Lemma E.26. For any φ ∈ FImpl:

∀τ ∈ �C1 | |C2�φ . ∃τ1 ∈ �C1�φ ,τ2 ∈ �C2�φ . τ = τ1 �� τ2.

Proof. Straightforward by induction on
_−→φ . �

Lemma E.27. For any trace (σ0,h0) τ (σ1,h1) τ ′ ∈ �C�φ , we have ∀x ∈ PVar \ mods(C). σ0 (x) =

σ1 (x).

Proof. Straightforward by induction on the length of the trace. �

For the rest of the section, we name the specifications involved in the Par rule as follows:

S1 =
{
P1

}
·
{
Q1

}
m1;λ;A

, S2 =
{
P2

}
·
{
Q2

}
m2;λ;A

, S =
{
P1 ∗ P2

}
·
{
Q1 ∗Q2

}
m;λ;A

.

Lemma E.28. For arbitrary (σ0,h0)τ , (σ0,h0)τ1, (σ0,h0)τ2 ∈ Trace, T1,T2 ∈ P (STrace), v1,v2 ∈
{1, 〈1, 1〉}, and, p ′1,p

′
2 ∈ ViewA , then:

(σ0,h0)τ = (σ0,h0)τ1 �� (σ0,h0)τ2

(σ0,h0)τ1 �S1 p
′
1, emp,v1 : T1

(σ0,h0)τ2 �S2 p
′
2, emp,v2 : T2

h0 ∈ �p ′1 ∗ p ′2 ∗ True�λ

term((σ0,h0)τ1) ⇒ p ′1 =W�Q1�
σ
A

term((σ0,h0)τ2) ⇒ p ′2 =W�Q2�
σ
A

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⇒

∃T ∈ P (STrace),v ∈ {1, 〈1, 1〉}.
(σ ,h)τ �S p ′1 ∗ p ′2, emp,v : T ∧

∀τ̂ ∈ T. ∃τ̂ 1 ∈ T1, τ̂ 2 ∈ T2. τ̂ = τ̂ 1
s
�� τ̂ 2 ∧

(v1 = 〈1, 1〉 ∧v2 = 〈1, 1〉) ⇔ v = 〈1, 1〉

.

Proof. This lemma is proven by coinduction on the structure of (σ0,h0)τ .
The trace either starts with a local, or an environment step. We split on the two cases:

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:parallel
rule:parallel

16:126 E. D’Osualdo et al.

Case (σ ,h)τ = (σ ,h) env (σ ,h′)τ ′: Take (σ0,h0)τ1, (σ0,h0)τ2 ∈ Trace, T1,T2 ∈ P (STrace),
v1,v2 ∈ {1, 〈1, 1〉}, and, p ′1,p

′
2 ∈ ViewA arbitrary, and assume:

(σ0,h0)τ = (σ0,h0)τ1 �� (σ0,h0)τ2, (106)

(σ0,h0)τ1 �S1 p
′
1, emp,v1 : T1, (107)

(σ0,h0)τ2 �S2 p
′
2, emp,v2 : T2, (108)

h0 ∈ �p ′1 ∗ p ′2 ∗ True�λ , (109)

term((σ0,h0)τ1) ⇒ p ′1 =W�Q1�
σ
A , (110)

term((σ0,h0)τ2) ⇒ p ′2 =W�Q2�
σ
A . (111)

Given (106) and the definition of ��:

(σ0,h0)τ1 = (σ0,h0) env (σ0,h
′)τ ′1,

(σ0,h0)τ2 = (σ0,h0) env (σ0,h
′)τ ′2,

(σ0,h
′)τ ′ = (σ0,h

′)τ ′1 �� (σ0,h
′)τ ′2 .

Now to prove the goal, consider the case v1 = 〈1, 1〉 and v2 = 〈1, 1〉. In this case, take
v = 〈1, 1〉, so Env’ must hold for the goal as well as (107) and (108). Note that this choice ofv
immediately satisfies the third conjunct of the goal. To show Env’ holds for the goal, given
some pe,p

′
e ∈ ViewA , assume:

h0 ∈ �p ′1 ∗ p ′2 ∗ pe� ∧ (h0,h
′) �λ;A p ′1 ∗ p ′2 ∗ pe � p ′1 ∗ p ′2 ∗ p ′e.

By substitution, this implies both:

∃pe,p
′
e.h0 ∈ �p ′1 ∗ pe� ∧ (h,h′) �λ;A p ′1 ∗ pe � p ′1 ∗ p ′e,

∃pe,p
′
e.h0 ∈ �p ′2 ∗ pe� ∧ (h,h′) �λ;A p ′2 ∗ pe � p ′2 ∗ p ′e.

Given (107) and (108), these imply:

(σ0,h
′)τ ′1 �S1 p

′
1, emp,v1 : T′1, T1 = (σ0,h0,p1, emp, 〈1, 1〉) env T′1,

(σ0,h
′)τ2 �S2 p

′
2, emp,v2 : T′2, T2 = (σ0,h0,p2, emp, 〈1, 1〉) env T′2.

Assumption (109) and (h0,h
′) �λ;A p ′1 ∗ p ′2 ∗ pe � p ′1 ∗ p ′2 ∗ p ′e yield:

h′ ∈ �p ′1 ∗ p ′2 ∗ True�λ . (112)

Now, by using the inductive assumption, as (110) and (111) clearly imply the same assertions
for (σ0,h

′)τ ′1 and (σ0,h
′)τ ′2, respectively, for some T′ ∈ P (STrace):

(σ0,h
′)τ ′ �S p ′1 ∗ p ′2, emp,v : T′, (113)

∀τ̂ ∈ T′. ∃τ̂ 1 ∈ T′1, τ̂ 2 ∈ T′2. τ̂ = τ̂ 1
s
�� τ̂ 2. (114)

From this first consequence:

(σ0,h)τ �S p ′1 ∗ p ′2, emp,v : T

holds, where T = (σ0,h,p
′
1 ∗ p ′2, emp,v) env T′. This is the first conjunct of the goal.

Finally, taking τ̂ ∈ T arbitrary, there exists τ̂ ′ ∈ T′ such that τ̂ = (σ0,h,p
′
1∗p ′2, emp,v) env

τ̂ ′. From the second consequence of our inductive assumption, it follows that there exist

τ̂ ′1 ∈ T′1 and τ̂ ′2 ∈ T′2 such that τ̂ ′ = τ̂ ′1
s
�� τ̂ ′2. Then, from the definitions of T1 and T2,

(σ0,h0,p1, emp, 〈1, 1〉) env τ̂ ′1 ∈ T1 and (σ0,h0,p2, emp, 〈1, 1〉) env τ̂ ′2 ∈ T2 hold, and τ̂ =

(σ0,h0,p1, emp, 〈1, 1〉) env τ̂ ′1
s
�� (σ0,h0,p2, emp, 〈1, 1〉) env τ̂ ′2 ∈ T2 holds, as required.

Other cases for v1, v2 follow similarly.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:env2
rule:env2

TaDA Live 16:127

Case (σ ,h)τ = (σ ,h) loc (σ ,h′)τ ′: Here, the variable store does not change as mods(C1 | |C2) =
∅, due to Lemma E.27 and the syntactic restriction on parallel commands, requiring both
threads to not modify the value of any variable. To prove the goal, take (σ0,h0)τ1, (σ0,h0)τ2 ∈
Trace, T1,T2 ∈ P (STrace), v1,v2 ∈ {1, 〈1, 1〉}, and, p ′1,p

′
2 ∈ ViewA arbitrary, and assume:

(σ0,h0)τ = (σ0,h0)τ1 �� (σ0,h0)τ2, (115)

(σ0,h0)τ1 �S1 p
′
1, emp,v1 : T1, (116)

(σ0,h0)τ2 �S2 p
′
2, emp,v2 : T2, (117)

h0 ∈ �p ′1 ∗ p ′2 ∗ True�λ , (118)

term((σ0,h0)τ1) ⇒ p ′1 =W�Q1�
σ
A , (119)

term((σ0,h0)τ2) ⇒ p ′2 =W�Q2�
σ
A . (120)

Given (115) and the definition of ��, either:

(σ0,h0)τ1 = (σ0,h0) loc (σ0,h
′)τ ′1,

(σ0,h0)τ2 = (σ0,h0) env (σ0,h
′)τ ′2,

or:

(σ0,h0)τ1 = (σ0,h0) env (σ0,h
′)τ ′1,

(σ0,h0)τ2 = (σ0,h0) loc (σ0,h
′)τ ′2,

and in both cases:

(σ0,h
′)τ ′ = (σ0,h

′)τ ′1 �� (σ0,h
′)τ ′2 .

Consider the first case, the second will follow symmetrically. Assume that the Stutter rule
holds for (σ ,h) loc (σ ,h′)τ1 �S1 p

′
1, emp,v1 : T1, then, for some p ′′1 ∈ ViewA :

(h0,h
′) �λ;A p ′1 � p ′′1 ,

(σ0,h
′) τ ′1 �S1 p

′′
1 , emp,v1 : T′1,

term((σ0,h
′)τ ′1) ⇒ v1 = 〈1, 1〉 ∧ p ′′1 =W�Q1�

σ0

A ,

where T1 = (σ0,h0,p1, emp,v1) loc T′1. Given (118) and (h0,h
′) �λ;A p ′1 � p ′′1 , h′ ∈ �p ′′1 ∗

p ′2 ∗ True�λ holds. Given (h0,h
′) �λ;A p ′1 � p ′′1 , (h0,h

′) �λ;A p ′1 ∗ p2 � p ′′1 ∗ p2, also holds.
Using this and Env or Env’:

(σ ,h′) τ ′2 �S2 p
′
2, emp,v2 : T′2,

where T2 = (σ0,h0,p2, emp,v2) loc T′2. Now using the inductive assumption, as, once again,
(119) and (120) clearly imply the same assertions for (σ0,h

′)τ ′1 and (σ0,h
′)τ ′2, respectively, for

some T′ ∈ P (STrace):

(σ0,h
′)τ ′ �S p ′′1 ∗ p ′2, emp,v : T′∧, (121)

∀τ̂ ∈ T′. ∃τ̂ 1 ∈ T′1, τ̂ 2 ∈ T′2. τ̂ = τ̂ 1
s
�� τ̂ 2∧, (122)

(v1 = 〈1, 1〉 ∧v2 = 〈1, 1〉) ⇔ v = 〈1, 1〉. (123)

The second and third consequents imply the equivalent conjuncts of the goal with the same
method as in the env case and directly, respectively. As we have shown, (h,h′) �λ;A p ′1∗p2 �
p ′′1 ∗ p2 holds, using the Stutter rule, to show that (σ0,h0)τ �S p ′1 ∗ p ′2, emp,v : T holds,

where T = (σ0,h0,p
′
1 ∗ p ′2, emp,v) loc T′, it suffices to show:

term((σ0,h
′)τ ′) ⇒ v = 〈1, 1〉 ∧ p ′′1 ∗ p ′2 =W�Q1 ∗Q2�

σ0

A .

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:stutter
rule:env
rule:env2
rule:stutter

16:128 E. D’Osualdo et al.

Assuming term((σ0,h
′)τ ′) holds, then term((σ0,h

′)τ ′1) and term((σ0,h
′)τ ′2) hold. From this

it follows that v1,v2 = 〈1, 1〉, so, due to (123), v = 〈1, 1〉.
Finally, due to term((σ0,h

′)τ ′1) and term((σ0,h
′)τ ′2), p ′′1 = W�Q1�

σ0

A and p ′2 = W�Q2�
σ
A

hold, respectively, yielding p ′′1 ∗ p ′2 =W�Q1 ∗Q2�
σ0

A , as required.
The LinPt rule follows similarly. �

Theorem E.29. Given

m1; λ;A �Φ
{
P1

}
C1

{
Q1

}
, (124)

m2; λ;A �Φ
{
P2

}
C2

{
Q2

}
, (125)

λ;A 	 Q1 �m2 � m, (126)

λ;A 	 Q2 �m1 � m, (127)

then:

m; λ;A �Φ
{
P1 ∗ P2

}
C1 | |C2

{
Q1 ∗Q2

}
.

Proof. Taking φ ∈ FImpl arbitrary such that � φ : Φ, from (124) and (125), �C1�φ ⊆ �S1� and

�C2�φ ⊆ �S2� hold. Given an arbitrary (σ0,h0)τ ∈ �C1 | |C2�φ , need to show (σ0,h0)τ ∈ �S�. Let

p1 =W�P1�
σ0

A , p2 =W�P2�
σ0

A .

To reach the goal, assume h0 ∈ �p1 ∗ p2 ∗ True�λ . Then, h0 ∈ �p1 ∗ True�λ and h0 ∈ �p2 ∗ True�λ

hold. From E.26 and the definition of ��, there exists (σ0,h0)τ1 ∈ �C1�φ and (σ0,h0)τ2 ∈ �C2�φ

such that (σ0,h0)τ = (σ0,h0)τ1 �� (σ0,h0)τ2. As �C1�φ ⊆ �S1� and �C2�φ ⊆ �S2�, (σ0,h0)τ1 ∈ �S1�

and (σ0,h0)τ2 ∈ �S2� hold. Now, as h0 ∈ �p1 ∗ True�λ and h0 ∈ �p2 ∗ True�λ , then for some
T1,T2 ∈ P (STrace):

(σ0,h0)τ1 �S p1, emp, 1 : T1, ∀τ̂ 1 ∈ �T1	. liveEnvS (τ̂ 1) ⇒ lterm(τ̂ 1),

(σ0,h0)τ2 �S p2, emp, 1 : T2, ∀τ̂ 2 ∈ �T2	. liveEnvS (τ̂ 2) ⇒ lterm(τ̂ 2).

As all commands must take at least one step, ¬ term((σ0,h0)τ1) and ¬ term((σ0,h0)τ2) hold, there-
fore:

term((σ0,h0)τ1) ⇒ p1 =W�Q1�
σ
A ,

term((σ0,h0)τ2) ⇒ p2 =W�Q2�
σ
A

hold. Now, using Lemma E.28, there exists T ∈ P (STrace) such that:

(σ0,h0)τ �S p1 ∗ p2, emp, 1 : T,

and for any τ̂ ∈ T, there exist τ̂ 1 ∈ T1 and τ̂ 2 ∈ T2, such that τ̂ = τ̂ 1
s
�� τ̂ 2. It now suffices to show

that ∀τ̄ ∈ �T	. liveEnvS (τ̄) ⇒ lterm(τ̄). Take τ̂ ∈ T arbitrary and τ̂ 1 ∈ T1 and τ̂ 2 ∈ T2 such that

τ̂ = τ̂ 1
s
�� τ̂ 2 and τ̄ ∈ �τ̂	, τ̄ 1 ∈ �τ̂ 1	, τ̄ 2 ∈ �τ̂ 2	. From above:

liveEnvS1 (τ̄ 1) ⇒ lterm(τ̄ 1), (128)

liveEnvS2 (τ̄ 2) ⇒ lterm(τ̄ 2) (129)

holds. To reach the goal, split on lterm(τ̄ 1) and lterm(τ̄ 2).

Case lterm(τ̄ 1) ∧ lterm(τ̄ 2): In this case, clearly lterm(τ̄) holds, therefore liveEnvS (τ̄) ⇒ lterm(τ̄)
holds trivially, as required.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

rule:linpt

TaDA Live 16:129

Case lterm(τ̄ 1) ∧ ¬ lterm(τ̄ 2): From ¬ lterm(τ̄ 2), by (129), ¬ liveEnvS2 (τ̄ 2) holds:

∃Ô ∈ PObS2
<m2
. (∀O ∈ AOb<lay(Ô) .∀i ∈ N. ∃j ≥ i .¬ locheld(O, τ̄ 2 (j))) ∧

(∃i ∈ N.∀j ≥ i . envheld(Ô, τ̄ 2 (j))).

As lterm(τ̄ 1), by Lemma E.21, there exists some i1 ∈ N, an index after which the trace τ̄ 1

only performs env steps, in particular, for any j ≥ i1, τ̄ 1 (j) = (σ ,h,w1
h
,w1

a, 〈1, 1〉), where

w1
h
∈ W�Q1�

A
σ and w1

a ∈ EmpA . Therefore, τ̄ (j) = (σ ,h,w1
h
w2

h
,w1

a # w2
a, 〈1, 1〉), where

τ̄ 2 (j) = (σ ,h,w2
h
,w2

a, 〈1, 1〉), such that w2
a ∈ EmpA . Given λ;A 	 Q1 �m2, it is clear that:

(∀O ∈ AOb<lay(Ô) .∀i ∈ N. ∃j ≥ i .¬ locheld(O, τ̄ 2 (j))) ⇒
(∀O ∈ AOb<lay(Ô) .∀i ∈ N. ∃j ≥ i .¬ locheld(O, τ̄ (j))),

and similarly as Ô ∈ PObS2
<m2

:

(∃i ∈ N.∀j ≥ i . envheld(Ô, τ̄ 2 (j))) ⇒ (∃i ∈ N.∀j ≥ i . envheld(Ô, τ̄ (j))).

As m2 ≤ m, Ô ∈ PObS<m . Finally, from this ¬ liveEnvS (τ̄) holds, implying liveEnvS (τ̄) ⇒
lterm(τ̄), as required.

Case ¬ lterm(τ̂ 1) ∧ lterm(τ̂ 2): Similarly to the previous case.
Case ¬ lterm(τ̄ 1) ∧ ¬ lterm(τ̄ 2): Given (128) and (129), we can infer ¬ liveEnvS1 (τ̄ 1) and

¬ liveEnvS2 (τ̄ 2). Assume liveEnvS (τ̄) for a contradiction. From ¬ liveEnvS1 (τ̄ 1), for some

Ô ∈ PObS<m1
:

(∀O ∈ AOb<lay(Ô) .∀i ∈ N. ∃j ≥ i .¬ locheld(O, τ̄ 1 (j))) ∧ (∃i ∈ N.∀j ≥ i . envheld(Ô, τ̄ 1 (j))).

From this and liveEnvS (τ̄), there is some i ∈ N such that:

∀j ≥ i . locheld(Ô, τ̄ 2 (j)).

From ¬ liveEnvS2 (τ̄ 2), for some Ô
′ ∈ PObS2

<m2
:

(∀O ∈ AOb<lay(Ô
′
) .∀i ∈ N. ∃j ≥ i .¬ locheld(O, τ̄ 2 (j))) ∧ (∃i ∈ N.∀j ≥ i . envheld(Ô

′
, τ̄ 2 (j))).

Given that∀j ≥ i . locheld(Ô, τ̄ 2 (j)), for∀O ∈ AOb<lay(Ô
′
) .∀i ∈ N. ∃j ≥ i .¬ locheld(O, τ̄ 2 (j))

to hold, it must be the case that lay(Ô) > lay(Ô
′
). This argument can be repeated ad-

infinitum, which, by the well-foundedness of layers, leads to a contradiction, and therefore
¬ liveEnvS (τ̄) holds. This implies liveEnvS (τ̄) ⇒ lterm(τ̄).

From these cases, we deduce that ∀τ̄ ∈ �T	. liveEnvS (τ̄) ⇒ lterm(τ̄).
From this, we can infer (σ0,h0)τ ∈ �S� and consequently, �C1 | |C2�φ ⊆ �S�, as required. �

E.7 Soundness of LiftAG

Recall the triples of the premise and conclusion of rule LiftAG:

S =

A

x ∈
�
X .

〈
Ph

������� I (tλ
r (x)) ∗ Pa (x) ∗ �G�r ∗ �O1 �L

r

〉
· ∃y .

〈Qh (x, y) ∧ y ∈ Y (x)��� ∃z .I (tλ
r (z)) ∗Qa (x, y, z)

∗ �O2 (x, y)�L
r ∧ R (x, z)

〉
m;λ;A

,

S′ =

A

x ∈
�
X .

〈
Ph ∗ �O1 �L

r

����� tλ
r (x) ∗ Pa (x) ∗ �G�r

〉
· ∃y .

〈
Qh (x, y) ∗ �O2 (x, y)�L

r ∧ y ∈ Y (x)��� ∃z . tλ
r (z) ∗Qa (x, y, z) ∧ R (x, z)

〉
m;λ+1;A

,

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:130 E. D’Osualdo et al.

and let us name the semantic counterparts of their atomic pre-/post-conditions as follows:

p̄a (v) =
⎧⎪⎨⎪⎩
W�I (tλ

r (v)) ∗ Pa (v) ∗ �G�r ∗ �O1�L
r ∧v ∈ X �A if v ∈ AVal

EmpA otherwise,

pa (v) =
⎧⎪⎨⎪⎩
W�tλ

r (v) ∗ Pa (v) ∗ �G�r ∧v ∈ X �A if v ∈ AVal

EmpA otherwise,

q̄a (v,v ′, z) =W�I (tλ
r (z)) ∗Qa (v,v ′, z) ∗ �O2 (v,v ′)�L

r ∧ R (v, z)�∅A ,

qa (v,v ′, z) =W�tλ
r (z) ∗Q ′

a (v,v ′, z) ∧ R (v, z)�∅A .

Definition E.30 (Lift).

lift((σ , h, ph, pa, v) π τ̂) �
⎧⎪⎪⎨⎪⎪⎩

(σ , h, ph ∗ �O1 �L
r , p′a, v) π τ̂ ′

�������
τ̂ ′ ∈ lift(τ̂),

∀v . p′a (v) ∗ �O1 �L
r ∗ It�r, λ, v� =

havocλ (pa (v)) ∗ tλ
r (v)

⎫⎪⎪⎬⎪⎪⎭
,

lift((σ , h, ph, pa, 〈v, v ′〉) π τ̂) �
{

(σ , h, ph ∗ �O2 (v, v ′)�L
r , pa, 〈v, v ′〉) π τ̂ ′ ��� τ̂ ′ ∈ lift(τ̂)

}
.

This can be lifted to sets of specification traces, T ⊆ STrace:

lift(T) �
⋃
τ̂ ∈T

lift(τ̂).

As a technical tool of our proofs, we use the function oblivλ (w), which removes the information
about states of regions that are open at level λ from w .

Definition E.31 (Obliv). Let λ ∈ Lvl, we then define the function on worlds:

oblivλ (h, ρ ,γ, χ,θ , ξ) �
⎧⎪⎪⎨⎪⎪⎩

(h, ρ ′,γ, χ,θ , ξ)

�������
closedλ+1

λ (ρ) = {r1, . . . , rn },
ρ (ri) = (ti , _, _),bi ∈ AVal,
ρ ′ = ρ[r1 �→ (t1, λ,b1), . . . , r1 �→ (tn , λ,bn)]

⎫⎪⎪⎬⎪⎪⎭
.

We extend it to a function on sets of worlds in the obvious way: oblivλ (p) �
⋃

w ∈p oblivλ (w).

Lemma E.32. For arbitrary p, f ∈ World�A ,v ∈ AVal:

�p ∗ tλ
r (v) ∗ f �λ+1 ⊆ �havocλ (p) ∗ tλ

r (v) ∗ f �λ+1.

Lemma E.33. For arbitrary h,h′ ∈ Heap, p̄, p̄ ′ ∈ ViewA ,v ∈ AVal such that

(h,h′) �λ;A p̄ ∗ p̄a (v) � p̄ ′ ∗ p̄a (v), (130)

then (h,h′) �λ+1;A havocλ (p̄ ∗ �O1�L
r ∗ pa (v)) ∗ tλ

r (v) � havocλ (p̄ ′ ∗ �O1�L
r ∗ pa (v)) ∗ tλ

r (v).

Proof. Given arbitrary f ∈ World�A , takeh ∈ �havocλ (p̄∗ �O1�L
r ∗pa (v))∗tλ

r (v)∗ f �λ+1 arbitrary.

Then, there exists wl ∈ havocλ (p̄ ∗ �O1�L
r ∗ pa (v)) ∗ tλ

r (v) and wf ∈ f such that h ∈ �wl # wf �Aλ+1
.

Given that wl # wf :

wl = (hl , ρl ,γl , χl ,θl , ξl), (131)

wf = (hf , ρl ,γf , χf ,θf , ξf), (132)

∀r ∈ dom(ρl).hl # hf ∧ γl (r) # γf (r) ∧ χl (r) # χf (r) ∧ θl (r) # θf (r). (133)

We also know that ρl (r) = (t, λ,v). Now, letting closedλ+1
λ (ρl) = {r , r1, . . . , rn } and ρl (ri) =

(ti , λ,ai), from the definition of �_�A
λ+1

and #, we also know:

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:131

∀r ∈ dom(ρl). θl (r) & ξf (r) ∧ θf (r) & ξl (r), (134)

h ∈ �wl #wr #w1 # . . . #wn #wf �Aλ , (135)

for some wr ∈ It�r , λ,v� and wi ∈ Iti
�ri , λ,ai�.

Given thatwl ∈ havocλ (p̄∗ �O1�L
r ∗pa (v))∗tλ

r (v), there exists w̄h ∈ p̄, w̄o ∈ �O1�L
r , w̄a ∈ pa (v), w̄l

such that wl ∈ havocλ (w̄l) and w̄l = w̄h # w̄o # w̄a. From the definition of havocλ , we know that
w̄l = (hl , ρ̄l ,γl , χl ,θl , ξ̄l), where ρ̄l and ξ̄l are such that dom(ρ̄l) = dom(ρl) and

∀r ∈ dom(ρl) \ closedλ+1
λ (ρl). ρl (r) = ρ̄l (r), (136)

∀r ∈ closedλ+1
λ (ρl). rtywl

(r) = rtyw̄l
(r) ∧ lvlw̄l

(r) = λ, (137)

∀r ∈ closedλ+1
λ (ρl). ∃wI ∈ Irtywl

(r)�r , λ, astwl
(r)�,O. ξ̄l (r) = O • θwI

(r) ∧ O � ξl (r). (138)

Let f̄ = oblivλ (f). From the definition of oblivλ , and from (136) and (137), we know that
(hf , ρ̄l ,γf , χf ,θf , ξf) ∈ f̄ .

Then, since all our the region interpretations at level λ are λ-safe, there exists w̄i ∈ Iti
�ri , λ,ai�,

such that h ∈ �w̄h# (w̄o #w̄a#w̄r)#w̄1# . . .#w̄n #w̄f �Aλ . As w̄o #w̄a#w̄r ∈ p̄a (v),h ∈ �p̄ ∗p̄a (v)∗
It�r , λ,v� ∗∗n

i=1
Iti
�ri , λ,ai� ∗ f̄ �λ . By (130), this implies that h′ ∈ �p̄ ′ ∗ p̄a (v)∗ Ra

A (Iλ
A,λ+1

∗ f̄)�λ .

As Iλ
A,λ+1

∈ ViewA , this is equivalent to h′ ∈ �p̄ ′ ∗ p̄a (v) ∗ Iλ
A,λ+1

∗ Ra
A (f̄)�λ .

From this, we can infer there exists w̄h
′ ∈ p̄ ′, w̄o

′ ∈ �O1�L
r , w̄a

′ ∈ pa (v), w̄ ′
r ∈ It�r , λ,v�, w̄

′
i ∈

Iti
�ri , λ,ai� and w̄ ′

f
∈Ra

A (f̄) such that:

h′ ∈ �w̄h
′ # w̄o

′ # w̄a
′ # w̄ ′

r # w̄ ′
1 # . . . # w̄ ′

n # w̄ ′
f �

A
λ
.

Then there exists some w ′
l
∈ havocλ (w̄h

′ # w̄o
′ # w̄a

′) and w ′
f
∈Ra

A (f), such that, from the

definition of reification and the fact that w̄ ′
r ∈ It�r , λ,v�, this implies:

h′ ∈ �w ′
l #w ′

f �
A
λ+1,

where ρw ′
l
(r) = (t, λ,v) and therefore:

h′ ∈ �havocλ (p̄ ′ ∗ �O1�L
r ∗ pa (v)) ∗ tλ

r (v)�λ+1,

as required. �

Lemma E.34. For arbitrary h,h′ ∈ Heap, q̄, q̄′ ∈ AVal × AVal → ViewA ,v,v
′ ∈ AVal such that

(h,h′) �λ;A q̄(v,v ′) � q̄′(v,v ′), (139)

then (h,h′) �λ+1;A havocλ (q̄(v,v ′) ∗ �O2 (v,v ′)�L
r) � havocλ (q̄′(v,v ′) ∗ �O2 (v,v ′)�L

r).

Proof. Proof follows similarly to Lemma E.33. �

Lemma E.35. For arbitrary h,h′ ∈ Heap, q̄ ∈ ViewA , q̄
′ ∈ AVal × AVal → ViewA ,v,v

′z, ∈ AVal

such that

(h,h′) �λ;A q̄ ∗ p̄a (v) � q̄′(v,v ′) ∗ q̄a (v,v ′, z), (140)

then

(h,h′) �λ+1;A havocλ (q̄∗�O1�L
r ∗pa (v))∗tλ

r (v) � havocλ (q̄′(v,v ′)∗�O2 (v,v ′)�L
r ∗qa (v,v ′, z))∗tλ

r (z).

Proof. Proof follows similarly to Lemma E.33. �

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:132 E. D’Osualdo et al.

Lemma E.36. For arbitrary h,h′ ∈ Heap,pe,p
′
e ∈ ViewA ,v,v

′ ∈ AVal such that

(h,h′) �λ+1;A pe ∗ havocλ (pa (v)) ∗ tλ
r (v) � p ′e ∗ havocλ (pa (v ′)) ∗ tλ

r (v ′), (141)

then there exists p̄e, p̄
′
e ∈ ViewA such that:

(h,h′) �λ;A p̄e ∗ p̄a (v) � p̄ ′e ∗ p̄a (v ′).

Lemma E.37. For arbitrary h,h′ ∈ Heap,pe,p
′
e ∈ ViewA such that

(h,h′) �λ+1;A pe � p ′e, (142)

then there exists p̄e, p̄
′
e ∈ ViewA such that (h,h′) �λ;A p̄e � p̄ ′e.

Lemma E.38. For arbitrary T:

(∃τ̄ ∈ �lift(T)	. liveEnvS′ (τ̄)) ⇒ (∃τ̄ ∈ �T	. liveEnvS (τ̄)).

Theorem E.39 (Soundness of Rule LiftAG). Assuming

	A Ph ⇒ empr
Ob, 	A Qh (x ,y) ⇒ empr

Ob,

	A Pa (x) ⇒ empλ+1
Ob 	A Qa (x ,y, z) ⇒ empλ+1

Ob ,

A � Qh (x ,y) λ-safe, A � Qa (x ,y, z) ∧ R (x , z) λ-safe,

r ∈ dom(A) ⇒ R = id

for R ⊆ AVal × AVal such that{
((x ,O1), (z,O2 (x ,y))) �� x ∈ X ∧ R (x , z) ∧ y ∈ Y (x)

} ⊆ Tt (G),

then, given arbitrary Φ ∈ FSpec such that

�Φ C : S, (143)

then

�Φ C : S′.

Proof. To reach the goal, it suffices to show that �S� ⊆ �S′�. Taking (σ0,h0)τ ∈ �S� arbitrary,
let

p̄h =W�Ph�
σ0

A ,

ph =W�Ph ∗ �O1�L
r �

σ0

A .

Then, assume that for arbitrary v0 ∈ X , h ∈ �ph ∗ pa (v0) ∗ True�λ+1 holds. Then, clearly h ∈
�p̄h ∗ p̄a (v0) ∗ True�λ , and therefore, from (143), for some T:

(σ0,h0) τ �S p̄h, p̄a,v0 : T, (144)

∀τ̄ ∈ �T	λ;A . liveEnvS (τ̄) ⇒ lterm((σ0,h0) τ). (145)

From (144), by coinduction over the structure of the trace safety judgement, using our assumptions
and Lemmas E.32 to E.37, the following holds:

(σ0,h0) τ �S′ ph,pa,v0 : lift(T).

Finally, taking τ̄ ∈ lift(T) arbitrary such that liveEnvS′ (τ̄) holds, from Lemma E.38, ∃τ̄ ∈
�T	. liveEnvS (τ̄). By (145), the following holds, as required:

∀τ̄ ∈ �lift(T)	λ;A . liveEnvS′ (τ̄) ⇒ lterm((σ0,h0) τ).

�

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

TaDA Live 16:133

ACKNOWLEDGMENTS

We would like to thank Hongjin Liang, Xinyu Feng, Martin Bodin, Shale Xiong and Petar Mak-
simovic, for the helpful discussions and comments. We also thank the anonymous reviewers for
their thorough critical reading of the article and insightful feedback.

REFERENCES

[1] Ales Bizjak, Daniel Gratzer, Robbert Krebbers, and Lars Birkedal. 2019. Iron: Managing obligations in higher-order

concurrent separation logic. Proc. ACM Program. Lang. 3, POPL (2019), 65:1–65:30.

[2] Richard Bornat, Cristiano Calcagno, and Hongseok Yang. 2005. Variables as resource in separation logic. In MFPS

(Electronic Notes in Theoretical Computer Science), Vol. 155. Elsevier, 247–276.

[3] Pontus Boström and Peter Müller. 2015. Modular verification of finite blocking in non-terminating programs. In

ECOOP. 639–663.

[4] Stephen D. Brookes. 2004. A semantics for concurrent separation logic. In CONCUR (Lecture Notes in Computer

Science), Vol. 3170. Springer, 16–34.

[5] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. 2007. Proving thread termination. In PLDI. ACM, 320–330.

[6] Pedro da Rocha Pinto. 2016. Reasoning with Time and Data Abstractions. Ph.D. Dissertation. Imperial College London.

[7] Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. 2014. TaDA: A logic for time and data abstrac-

tion. In ECOOP 2014–Object-Oriented Programming. Springer Berlin, 207–231.

[8] Pedro da Rocha Pinto, Thomas Dinsdale-Young, Philippa Gardner, and Julian Sutherland. 2016. Modular termination

verification for non-blocking concurrency. In ESOP (Lecture Notes in Computer Science), Vol. 9632. Springer, 176–201.

[9] Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew J. Parkinson, and Hongseok Yang. 2013. Views:

Compositional reasoning for concurrent programs. In POPL. ACM, 287–300.

[10] Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkinson, and Viktor Vafeiadis. 2010. Concur-

rent abstract predicates. In ECOOP (Lecture Notes in Computer Science), Vol. 6183. Springer, 504–528.

[11] Mike Dodds, Xinyu Feng, Matthew J. Parkinson, and Viktor Vafeiadis. 2009. Deny-guarantee reasoning. In ESOP

(Lecture Notes in Computer Science), Vol. 5502. Springer, 363–377.

[12] Emanuele D’Osualdo, Azadeh Farzan, Philippa Gardner, and Julian Sutherland. 2021. TaDA Live: Compositional

reasoning for termination of fine-grained concurrent programs. CoRR abs/1901.05750 (2021).

[13] Alexey Gotsman, Byron Cook, Matthew J. Parkinson, and Viktor Vafeiadis. 2009. Proving that non-blocking algo-

rithms don’t block. In POPL. ACM, 16–28.

[14] Alexey Gotsman and Hongseok Yang. 2011. Liveness-preserving atomicity abstraction. In ICALP. 453–465.

[15] Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman) Wu, Jérémie Koenig, Vilhelm Sjöberg, Hao Chen, David

Costanzo, and Tahina Ramananandro. 2018. Certified concurrent abstraction layers. In PLDI. ACM, 646–661.

[16] Jafar Hamin and Bart Jacobs. 2018. Deadlock-free monitors. In ESOP (Lecture Notes in Computer Science), Vol. 10801.

Springer, 415–441.

[17] Jafar Hamin and Bart Jacobs. 2019. Transferring obligations through synchronizations. In ECOOP (LIPIcs), Vol. 134.

Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 19:1–19:58.

[18] Maurice Herlihy and Nir Shavit. 2008. The Art of Multiprocessor Programming. Morgan Kaufmann.

[19] Maurice Herlihy and Nir Shavit. 2011. On the nature of progress. In Principles of Distributed Systems - 15th Interna-

tional Conference, OPODIS 2011, Toulouse, France, December 13-16, 2011. Proceedings. Springer, 313–328.

[20] Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A correctness condition for concurrent objects. ACM

Trans. Program. Lang. Syst. 12, 3 (1990), 463–492.

[21] Jan Hoffmann, Michael Marmar, and Zhong Shao. 2013. Quantitative reasoning for proving lock-freedom. In LICS.

IEEE Computer Society, 124–133.

[22] Bart Jacobs, Dragan Bosnacki, and Ruurd Kuiper. 2018. Modular termination verification of single-threaded and

multithreaded programs. ACM Trans. Program. Lang. Syst. 40, 3 (2018), 12:1–12:59.

[23] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from

the ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.

[24] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015.

Iris: Monoids and invariants as an orthogonal basis for concurrent reasoning. In POPL. ACM, 637–650.

[25] Jieung Kim, Vilhelm Sjöberg, Ronghui Gu, and Zhong Shao. 2017. Safety and liveness of MCS lock—layer by layer.

In APLAS (Lecture Notes in Computer Science), Vol. 10695. Springer, 273–297.

[26] Naoki Kobayashi. 2000. Type systems for concurrent processes: From deadlock-freedom to livelock-freedom, time-

boundedness. In IFIP TCS (Lecture Notes in Computer Science), Vol. 1872. Springer, 365–389.

[27] Naoki Kobayashi. 2006. A new type system for deadlock-free processes. In CONCUR (Lecture Notes in Computer

Science), Vol. 4137. Springer, 233–247.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

16:134 E. D’Osualdo et al.

[28] K. Rustan M. Leino, Peter Müller, and Jan Smans. 2010. Deadlock-free channels and locks. In ESOP (Lecture Notes in

Computer Science), Vol. 6012. Springer, 407–426.

[29] Ruy Ley-Wild and Aleksandar Nanevski. 2013. Subjective auxiliary state for coarse-grained concurrency. In POPL.

ACM, 561–574.

[30] Hongjin Liang and Xinyu Feng. 2016. A program logic for concurrent objects under fair scheduling. In POPL. 385–399.

[31] Hongjin Liang and Xinyu Feng. 2018. Progress of concurrent objects with partial methods. PACMPL 2, POPL (2018),

20:1–20:31.

[32] Hongjin Liang, Xinyu Feng, and Zhong Shao. 2014. Compositional verification of termination-preserving refinement

of concurrent programs. In CSL-LICS. 65:1–65:10.

[33] Hongjin Liang, Jan Hoffmann, Xinyu Feng, and Zhong Shao. 2013. Characterizing progress properties of concurrent

objects via contextual refinements. In CONCUR (Lecture Notes in Computer Science), Vol. 8052. Springer, 227–241.

[34] Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Delbianco. 2014. Communicating state tran-

sition systems for fine-grained concurrent resources. In ESOP. 290–310.

[35] Gian Ntzik, Pedro da Rocha Pinto, Julian Sutherland, and Philippa Gardner. 2018. A concurrent specification of POSIX

file systems. In ECOOP (LIPIcs), Vol. 109. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 4:1–4:28.

[36] Peter W. O’Hearn. 2004. Resources, concurrency and local reasoning. In CONCUR (Lecture Notes in Computer Science),

Vol. 3170. Springer, 49–67.

[37] Susan S. Owicki and Leslie Lamport. 1982. Proving liveness properties of concurrent programs. ACM Trans. Program.

Lang. Syst. 4, 3 (1982), 455–495.

[38] Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015. Specifying and verifying concurrent algorithms with

histories and subjectivity. In ESOP (Lecture Notes in Computer Science), Vol. 9032. Springer, 333–358.

[39] Joseph Tassarotti, Ralf Jung, and Robert Harper. 2017. A higher-order logic for concurrent termination-preserving

refinement. In ESOP (Lecture Notes in Computer Science), Vol. 10201. Springer, 909–936.

[40] Moshe Y. Vardi. 1995. Alternating automata and program verification. In Computer Science Today. Lecture Notes in

Computer Science, Vol. 1000. Springer, 471–485.

Received January 2020; revised February 2021; accepted June 2021

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 16. Publication date: November 2021.

