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Abstract

We describe a process for cross-calibrating the effective areas of X-ray telescopes that observe common targets.
The targets are not assumed to be “standard candles” in the classic sense, in that we assume that the source fluxes
have well-defined, but a priori unknown values. Using a technique developed by Chen et al. that involves a
statistical method called shrinkage estimation, we determine effective area correction factors for each instrument
that bring estimated fluxes into the best agreement, consistent with prior knowledge of their effective areas. We
expand the technique to allow unique priors on systematic uncertainties in effective areas for each X-ray astronomy
instrument and to allow correlations between effective areas in different energy bands. We demonstrate the method
with several data sets from various X-ray telescopes.

Unified Astronomy Thesaurus concepts: Flux calibration (544); Astronomical methods (1043); X-ray astronomy
(1810); Calibration (2179)

Supporting material: machine-readable tables

1. Introduction

We address a perennial issue in instrument performance, when
estimated fluxes using two or more instruments disagree. While
many instruments can safely rely on calibration traceable to
established standards, the performance of a space-based
telescope usually cannot be recalibrated, as the instruments are
not returned to the lab. Furthermore, space-based instruments
may be affected by the physical rigors of launch into space and
instrument performance can change with time due to gas
leakage, filter deterioration, component failure, contamination
buildup, and other reasons. Without absolute standards that may
be observed while in space, astronomers generally resort to the
use of secondary, astronomical standards that can be observed
while operating. Nonvariable sources are generally chosen as
secondary standards so that they can be reused by the telescope
team and observed by others. For example, in the 2–8 keV
energy range, the Crab Nebula was frequently used as a standard,
especially the observation by Toor & Seward (1974); for a recent
use of the Crab Nebula for cross-calibrating X-ray telescopes,
see Kirsch et al. (2005) for a comparison between many missions
and Madsen et al. (2017b) for a case of assessing the NuSTAR
telescope effective model. However, most astronomical sources
vary, even the Crab Nebula, at levels detectable by current
instruments, necessitating another approach: joint in-flight
observations for cross-calibration of instruments.

Our work is set upon the foundation established by the
International Astronomical Consortium for High Energy
Calibration (IACHEC). IACHEC was formed primarily to

assist X-ray telescope teams who cross-calibrate instruments
and to understand the sources used for this purpose. See recent
IACHEC reports for summaries of recent activity (Madsen
et al. 2019, 2020). All of the IACHEC working groups address
issues of cross-calibration of X-ray telescopes and often find
discrepancies between results for the same source. Examples of
IACHEC work include observations of the supernova remnants
(SNRs) G21.5 (Tsujimoto et al. 2011) and 1E 0102−7219
(Plucinsky et al. 2017), spectra of galaxy clusters (Nevalainen
et al. 2010; Kettula et al. 2013; Schellenberger et al. 2015),
spectra of white dwarfs and isolated neutron stars (Beuermann
et al. 2006), and simultaneous observations of active galaxies
such as 3C 273 and PKS 2155−304 (Ishida et al. 2011;
Madsen et al. 2017a). The studies had a common problem:
assessing how much any particular instrument’s effective area
should be adjusted so that the measurements might agree.
Ordinary weighting of measurements based on photon-count-
ing statistics would give the observations with large effective
areas and exposure times the greatest influence on the result but
without consideration of possible systematic errors. The
overarching goal of IACHEC is thus to bring the competing
adjustments to instrumental effective areas into concordance,
while simultaneously including prior knowledge of possible
systematic errors.
Here, we further develop the “shrinkage” method pioneered

by Chen et al. (2019), hereafter referred to as Paper I, to
compute objective corrections to effective areas of several
high-energy instruments. See Section 2.1 for the model setup
and notation. The method is extended to account for systematic
uncertainties specific to each instrument and incorporate
systematic correlations across passbands. We present the
method here in some generality, without the details of the
mathematical machinery presented in Paper I (Section 2.2),
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along with its extensions (Section 2.3), and apply it to a variety
of data sets (Section 3). We present the results in Section 4,
along with an assessment and simulation of the method, and a
simulation study that aims to validate the method, and discuss
the next steps in Section 5. We note that while we examine the
case of X-ray telescopes in this paper, the method is extendable
to most types of telescopes.

2. Method

2.1. Background

We start with an idealized calibration data set where M
objects are observed by each of N instruments, obtaining
photon counts, cij, where j= 1,K,M indexes the sources and
i= 1,K,N indexes the instruments.7 Each observation is
described by a set of observational parameters (e.g., exposure
time) that we encapsulate in a matrix T= {Tij}.

Denoting the true effective area of instrument i by Ai and the
true flux of source j by Fj, the expected counts Cij for each
object/detector combination is given by

=    C T A F i N j M, 1 , 1 , 1ij ij i j ( )

where Tij has units of seconds× counts per photon, Fj has units
of photons per unit area per second, and Ai has units of area.
We assume for now that the true exposure factors have
negligible error and equal the observed values, i.e., Tij= tij. We
follow the notation of Paper I by using lower case to indicate
measured quantities and upper case to indicate the “true” values
to be estimated. Note that, in fact, the multiplicative constant Tij
contains not only the exposure time but also other factors that
can be calculated precisely for any given observation.

We aim to estimate Fj using the calibration data, i.e., the
observed counts cij, and an external (prior) estimated effective
area, ai for each instrument. A naive procedure simply
substitutes each quantity in Equation (1) with its measured
counterpart, to obtain the “estimating equation,”

=c t a f 2ij ij i ij ( )

and solving Equation (2) for fij for each instrument–source
combination, thus yielding N different estimates of each flux.
The resulting estimator fij= cij/(aitij) is a ratio estimator, which
is known in statistical literature to be both seriously biased
and highly variable. More precisely, the variability in the
denominator can cause large uncertainty (considering dividing
by a value close to zero). Furthermore, the average, å = f

N i
N

ij
1

1 ,
is a biased estimator of Fj. We return to the issue associated
with ratio estimators in Section 4.4.1.
We can do much better by analyzing all data together using

more principled and sophisticated statistical methods, such as the
one given in Paper I. We can then achieve our goal to obtain
better estimates of the instrumental effective areas, Ai, that bring
our flux estimates, fij, closest to the Fj in some strict statistical
sense. Figure 1 gives a schematic representation of our goal.
In practice, estimating a flux from an observation is not as

simple an operation as merely counting events. A strictly
correct approach takes into consideration the response of the
instrument, especially when attempting to measure the flux in a
specific bandpass. It is often necessary to use a forward-folding
method, such as implemented in xspec, that takes a count
spectrum as input and effective area and response functions as
externally (and accurately) provided. Here, we approximate this
process using Equation (1) because the flux (as defined here) is
often a robustly computed quantity for any given observation.
In fact, we do not actually compute cij but a proxy for cij as
described below.
We now carefully examine the flux measurement process to

justify using the simplistic model represented by Equation (1).
Source j is assumed to have a photon spectrum nE(Θj) in units
of photons per unit area per unit energy at energy E. Each Θj

represents a vector of spectral parameters for a source, which
we assume to include an overall normalization nj with the same
units as nE, so q(E; θj)≡ nE(Θj)/nj defines the spectral shape as
a function of the remaining spectral parameters, θj. In the case
of a spectrometer measuring an emission line, the bandpass
may be so narrow that q is well approximated by a delta
function, in which case Fj= nj. Otherwise, the flux in a band
from E1 to E2 is

ò ò q= Q =F n dE n q E dE; 3j
E

E

E j j
E

E

j
1

2

1

2

( ) ( ) ( )

giving

ò q
= º

D
n

F

q E dE

F

q E;
4j

j

E

E
j

j

j
1

2 ( ) ˜
( )

where ΔE= E2− E1.
For most X-ray telescopes, the instrumental effective area

can be separated into two parts. There is the geometric area of
the optics, i.e., Ai

g, with losses due to mechanical obscuration,
reflections, and transmissions of the optics (including filters)
given by ri(E). The other part is due to the quantum efficiency
of the detector, Q(E), which gives the probability of a detecting

Figure 1. Goal of Concordance illustrated schematically. This schematic
supposes three sources and three instruments, and plots expected count rates,
Cij/Tij, on the vertical axis and plots true and estimated fluxes on the horizontal
axis. The three instruments are represented by different symbols, with solid
symbols representing the naive estimates of Fj, i.e., fij = cij/(Tijai), and open
symbols representing the same, but with ai replaced by the true effective area,
Ai. The estimates are systematically biased because the ai are inaccurate
estimates of Ai; compare the solid and dashed lines. (In the plot EA is used as
an abbreviation for effective area.) Our aim is to estimate the Ai values that
yield best agreement between instruments for each source.

7 We consider each unique combination of telescope and detector with any
filters or gratings to be an “instrument.”
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a photon. We characterize the (true) effective area of instrument
i as a function of energy in the bandpass of interest by

a= ºA E A r E Q E A Ei i
g

i i i i
˜ ( ) ( ) ( ) ( ), where αi(E) now gives the
shape of the effective area in the band and is defined such that
its integral over the band is unity, i.e.,

ò
a =E

r E Q E

r E Q E dE
. 5i

i i

E

E
i i

1

2
( ) ( ) ( )

( ) ( )
( )

Consequently,

ò=A A r E Q E dE 6i i
g

E

E

i i
1

2

· ( ) ( ) ( )

is the scale of the effective area and does not depend on E. We
take this approach because the model of the effective area
through the band is generally better known than its absolute
value.

The detector provides counts in K channels that are related to
the true photon energy, E, via a response function Φk(E), where

å F =
=

E 1. 7
k

K

k
1

( ) ( )

A given observation has an accurately determined exposure
time tij that sets the expected count in channel k:

ò= Q FC t A E n E dE 8ijk ij i E j k˜ ( ) ( ) ( ) ( )

ò a q= Ft A n E q E E dE; 9ij i j i j k( ) ( ) ( ) ( )

òa q
=

F

D
t A F

E q E E dE

q E

;
, 10ij i j

i j k

j

( ) ( ) ( )
˜

( )

º T A F , 11ijk i j˜ ( )

where Equation (10) follows from Equation (4). It is important
to point out that Equation (8) is well-known in the astronomy
literature but Equation (10) is an innovative way of simplifying
the expressions, which is essential for tackling the current
problem. Finally, the counts that are associated with the energy
band (E1, E2) are mostly in the range of channels (k1, k2), which
is chosen so that we have a reliable estimate of flux in the band
of interest, giving the expected count relevant to a particular
flux measurement:

å å= = º
= =

C C A F T T A F , 12ij
k k

k

ijk i j
k k

k

ijk ij i j

1

2

1

2

˜ ( )

which defines Tij in terms of tij, a normalized sum over the
response function, and the two shape functions. This is the
formal basis for Equation (1).

In actual data analysis, the observed counts, cijk, not the
expected counts, Cijk, are input into the iterative routine that
estimates the fluxes, fij, and, again, the estimated effective area,
ai, must be used because the true effective area is unknown.
Thus, in analogy to Equation (2), we replace Cij, Ai, and Fj in
Equation (12) with their observed counterparts to obtain the
estimating equation

å å= = =
= =

c c a f T a f T . 13ij
k k

k

ijk i ij ij i ij
k k

k

ijk

1

2

1

2

˜ ( )

Finally, naive, instrument-specific flux estimates are obtained
by solving Equation (13),

=f
c

T a
, 14ij

ij

ij i
( )

which is essentially a full derivation of the ratio estimator.
It is important to our analysis that the Tij values be

independent of Ai and Fj. There are two circumstances that
may cause a problem in this regard: (1) when there is some
nonlinearity of the detector response, such as pileup, where
Qi(E) depends on the source flux, and (2) when αi(E) is highly
nonlocal and the bandpass of integration in Equation (8) is
large, involving portions of the spectrum where q(E; θj) or
αi(E) are poorly determined. By choosing instrument data in
the linear regime, avoiding pileup, and restricting the
bandpasses of interest, we mitigate these potential issues.
The goal of our statistical modeling is to determine the best

estimates of Ai and Fj consistent with the data, cij with
uncertainties σij. If all the effective areas were precisely correct,
i.e., if Ai= ai, then we could estimate the Fj via a relatively
trivial regression model. However, we know that there are
systematic errors in our estimated effective areas because
observations show that the fij do not cluster about any given
value within their individual uncertainties. We addressed this
problem in Paper I by introducing estimates of the systematic
errors on the estimated effective areas and applying a statistical
method called shrinkage estimation.

2.2. Statistical Model and Shrinkage Estimates

Paper I proposes a linear regression model for the log count
rates, denoted ºy c Tlogij ij ij( ), such that

s
= + - +y B G e

2
, 15ij i j

i
ij

2

( )

where the ºB Alogi i, and the ºG Flogj j are the quantities to
be estimated, and the eij are noise terms that are assumed
normally distributed with mean 0 and (known) variance si

2.

The-s
2
i
2

term in Equation (15) is a half-variance correction that
is included to maintain the multiplicative mean modeling in
Equation (12). This correction ensures that E(cij)= Cij= TijAiFj

because if m~x N vlog ,( ), then E(x)= e0.5 v+μ.
Paper I adopts a Bayesian hierarchical modeling approach to

estimate the unknown quantities Bi, Gj, and si
2. This involves

setting independent Gaussian prior distributions for the Bi, with
prior mean =b alogi i and prior variance t i

2, setting indepen-
dent flat priors for the Gi, and setting independent conjugate
priors for the si

2. Paper I goes on to show how a Hamiltonian
Monte Carlo algorithm can be used to obtain a sample from the
joint posterior distribution of all unknown quantities in
Model (15) and cross-checks this computation with a blocked
Gibbs sampler. The resulting Monte Carlo sample can be
transformed back to the effective areas and source fluxes on
their original scale to obtain their posterior distributions,
estimates, and error bars.
A Bayesian perspective allows us to combine multiple

sources of information—in this case the information from the
calibration data, yij, and from the prior estimates of the effective
areas, ai. By replacing the estimated effective areas with prior
distributions that reflect their uncertainty, we are able to update
the estimated effective areas and their error bars in light of the
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calibration data. This approach provides improved estimates
(e.g., in terms of mean squared error) of the effective areas and
the fluxes simultaneously. As a result, we obtain estimates of
the sources’ true fluxes that combine the instrument-specific
estimates in a statistically principled manner.

The updated estimates of the effective areas are weighted
averages of their priors and the best values based on the current
calibration data. In the context of Model (15), we work on the
log scale. The estimates of Bi and Gj are given by

= ¢ - + -

= ¢ -

B W y G W b

G y B

1 and

, 16

i i i i i i

j j j

( ¯ ¯ ) ( )

¯ ¯ ( )
·

·





where

s

s

s

s

s

s

s

s

¢ =
å ¢

å
¢ =

å ¢

å

=
å

å
=

å

å

=
-

=
-

=
-

=
-

=
-

=
-

=
-

=
-

y
y

y
y

G
G

B
B

, ,

, , 17

i
j
M

ij i

j
M

i
j

i
N

ij i

i
N

i

i
j
M

j i

j
M

i
j

i
N

i i

i
N

i

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

¯ ¯

¯ ¯ ( )

· ·



s¢ = +y y 0.5ij ij i
2, and the weights are given by =Wi

s t s+- - -M Mi i i
2 2 2( ). If the prior estimate of the effective

area of a particular instrument is very precise relative to its
calibration data, i.e., t s Mi i

2 2 , then Wi≈ 0, and the
updated estimate of that instrument’s effective area is
dominated by the prior estimate, resulting in »B bi i

 . In
contrast, if the calibration data are much more precise, then the
weights are near unity and the updated estimate of the effective
area is dominated by the calibration data, giving » ¢ -B y Gi i i¯ ¯

·
 .

The estimates Bi
 in Equation (16) are often called “shrinkage

estimates” due to their historical use for “shrinking” several
estimates together toward a common prior mean (Efron &
Morris 1972, 1973) when, for example, the bi are all the same.
Because the prior means, bi, are different for different
instruments, the Bi

 are simply a sensible combination of prior
knowledge captured by bi and data represented by ¢yī· , weighted
by their respective precisions, which are the reciprocals of their
variances (assuming the σi are known). This combination
allows our model to weigh the prior estimate of the effective
area for a given instrument against deviations between the
observed fluxes of the same sources from different instruments

and ultimately to obtain the joint estimates of the true fluxes
and effective areas that are most consistent with the calibration
data and the priors on the effective areas.
Paper I further describes how to handle the case where all

sources are not observed by all instruments and presents a
robust version of Model (15) that allows for outliers among the
measured fluxes (or source counts) by replacing the log normal
error model with a tlog error model.

2.3. Extensions of the Model

Paper I proposed modeling calibration data using Model (15)
and its extensions, derived computational methods for fitting
these models, and validated their statistical properties. How-
ever, application of Model (15) to real data requires relaxing
some of its basic assumptions. Here, we illustrate how this is
accomplished via two extensions to the method.

2.3.1. Heterogeneous Uncertainties in Effective Area Priors

IACHEC scientists recognize that the quality of ground-
based calibrations varies significantly from instrument to
instrument, resulting in perceived differences in the reliabilities
of the estimated effective areas. The formalism laid out in
Paper I allows for instrument-specific prior distributions for the
Bi, as explained in Section 2.2, given by Gaussian distributions
with instrument-specific variances t i

2. In the numerical
examples in Paper I, however, the t i

2 were set to τ2 for each
i, essentially assuming that all modeled calibrations are equally
uncertain in percentage terms. Here we allow for hetero-
geneous t i

2 values, as covered by the theory given in Paper I.
At IACHEC meetings in 2017, 2018, and 2019 (Madsen et al.
2019, 2020), we asked instrument calibration scientists to
specify values of τi for their instruments in each of a specific
set of bandpasses. These values are given in Tables 1 and 2;
instruments with significant effective area below 1 keV appear
in Table 1 and other instruments appear in Table 2.
Of course, in practice it is difficult even for experts to

quantify τi precisely. Thus, it is important that we examine the
sensitivity of our results to the specified values. Often,
however, there is a body of experience and expert knowledge
on the reliability of ground-based standards that allows rough
estimation of systematic errors.

Table 1
Effective Area Uncertainty Priors (τi)

a

Energy Bands (keV)

Instrument 0.15–0.33 0.33–0.54 0.54–0.8 0.8–1.2 1.2–1.8 1.8–2.2 2.2–3.5 3.5–5.5 5.5–10

Astrosat SXT L 15 15 10 10 10 10 10 10
Chandra ACIS 3 3 3 3 2.6 3.3 3.3 4.9 5
Chandra HETGS L L 10 5 4 4 4 5 7
Chandra LETGS 5 7 7 7 7 7 7 10 10
ROSAT PSPC 10 10 10 10 10 10 L L L
Suzaku XIS1 L 20 15 10 10 15 5 5 5
Suzaku XIS0,2,3 L L 15 10 10 15 5 5 5
Swift PC/WT L 15 10 7.5 7.5 10 5 5 5
XMM MOS1,2 20 10 6 6 6 6 6 6 10
XMM pn 2 2 2 2 2 2 2 2 3
XMM RGS L 8 5 5 5 L L L L

Note.
a The τi values are given as percentages. The ellipses indicate bandpasses where the instrument has an negligible effective area.
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2.3.2. Prior Correlations among Effective Areas

The second extension allows correlations between the
effective areas in different energy bands for each instrument.
In Paper I, we treated different energy bands as separate
(independent) instruments, while in reality their effective areas
can be strongly correlated. Continuing to work on the log
relative scale given in Equation (23), we denote the effective
areas as a function of the energy band = E E,1 2[ ] by

òx x=B A E dE, log ,
E

E

1

2( ) ( ) , where ξ parameterizes the
effective area and includes quantities such as the geometric
area, filter thicknesses, and chemical compositions that are
initially estimated during ground calibration. Uncertainties in
ξ are quantified via the prior distribution, p(ξ); examples
generated and used for ACIS analyses can be found in Drake
et al. (2006), Kashyap et al. (2008), Lee et al. (2011), and Xu
et al. (2014). We suppress the subscript i throughout this
section for notational simplicity because we are restricting
consideration to an arbitrary instrument.

Following the discussion in Section 2.2, we specify the prior
distribution on (the logarithm of) the effective areas of U
energy bands, xB ,u{ ( )} for u= 1,K,U, as a multivariate
Gaussian distribution with expected values, βu, and variances,
Λu, for each energy band u, and with correlations, ρuv, between
all pairs of distinct energy bands, u≠ v. Among the bu, Λu, and
ρuv, only the correlations, ρuv, (or, more precisely, the Monte
Carlo estimates of ρuv) are used in our data analyses. To
distinguish the Monte Carlo estimates of the prior means and
variances of the Bi obtained here from those we actually use,
we introduce new notation for these quantities that differ from
those used in Paper I and in Section 2.2. The current methods
for computing Λu are still somewhat experimental, so we rely
instead on the τi values from IACHEC scientists.

For a given instrument and energy band u, the expectation is

ò x x xb = B p d, . 18u u( ) ( ) ( )

In practice, calibration scientists set ai to be the prior estimate
of Ai (on the original scale) based on their best information and
experience. Transforming to a logarithmic scale, we might set
our prior estimate of Bi to alog i, which is the choice of prior
mean we suggest in Section 2.2. Equation (18) can be used in
the absence of such intuition or if we prefer to use a
parameterized model for B. (This is particularly relevant for
the correlations, since we have less intuition for them.) In this

case, a reasonable strategy is to proceed via Monte Carlo
integration of Equation (18). More precisely, we obtain a
calibration sample, = ¼B k K, 1, ,k

u{ ( ) }( ) , that quantifies
prior uncertainty in xB ,u( ), for example by obtaining a
sample of size K from p(ξ) and computing xB ,u

k( )( ) for each
sample, ξ(k), from p(ξ). The B k

u( )( ) is expressed as

ò A E dElog
E

E k

1

2⎡
⎣

⎤
⎦

( )( ) for each u (given all Monte Carlo samples

A( k)(E) for Î E u). The Monte Carlo version of Equation (18)
is then

åb =
=


K

B
1

. 19u
k

K
k

u
1

ˆ ( ) ( )( )

The prior variance of xB ,u( ) and its Monte Carlo estimate are

ò

å

x x xb

b

L = -

L =
-

-
=





B p d

K
B

, and

1

1
, 20

u u u

u
k

K
k

u u

2

1

2

[ ( ) ] ( )

ˆ [ ( ) ˆ ] ( )( )

respectively. Finally, the prior correlation between xB ,u( )
and xB ,v( ) is the covariance normalized by the respective
standard deviations,

ò x x x xr b b=
L L

- - B B p d
1

, ,

21

uv
u v

u u v v[ ( ) ][ ( ) ] ( )

( )

with Monte Carlo estimate,

år b b=
- L L

- -
=

 
K

B B
1

1
.

22

uv

u v k

K
k

u u
k

v v
1

ˆ
( ) ˆ ˆ

[ ( ) ˆ ][ ( ) ˆ ]

( )

( ) ( )

2.4. Practical Implementation

This section discusses practical implementation of our
methods, specifically in terms of normalization of observed
counts/fluxes and computation of correlation matrices.

2.4.1. Normalization in Practice

Because X-ray data analysis packages such as xspec return
the fij and their uncertainties, it is convenient to rewrite

Table 2
Effective Area Uncertainty Priors (τi)

a

Energy Bands (keV)

Instrument 2.2–3.5 3.5–5.5 5.5–10 15–25 25–50 50–100 100–300

Astrosat CZTI L L L 20 20 20 25
Astrosat LAXPC L 15 15 15 15 20 L
INTEGRAL IBIS L L L L 8 15 20
INTEGRAL SPI L L L 5 5 5
NuSTAR L 4 3 3 15 20 L
RXTE PCA 5 10 3 3 10 50 L
RXTE HEXTE L L L 5 5 5 L
Suzaku HXD L L L 20 20 20 20
Swift BAT L L L 15 4 4 12

Note.
a The τi values are given as percentages.
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Equation (15) in terms of
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where f̃ is a fiducial flux (usually the maximum of the fij) used to
normalize the data to the range [0, 1]. Model (24) is functionally
equivalent to Model (15). This definition of Gj

˜ , normalized by f̃ ,
which depends on data, is only introduced for computational
convenience and does not affect the model or its interpretation.
Technically, using a data-dependent “parameter,” hereGj

˜ , implies a
data-dependent prior distribution, which is generally not legitimate
from a Bayesian viewpoint. However, because using a flat prior on
Gj is the same as using a flat prior on = -G G flogj j

˜ ˜, there is no
actual effect in our implementation. Thus, Model (24) has the same
form as Model (15), so we can embed it into the Bayesian
hierarchical model described in Paper I to obtain the full posterior
distribution, estimates, and error bars for the Bi˜ and Gj

˜ . Paper I
suggests setting bi= 0 (because =B 0i˜ implies that Ai= ai).

2.4.2. Deriving Correlations in Practice

We proceed by computing numerous instances of instrument
effective areas that are varied in controlled ways dictated by
current knowledge of uncertainties in calibration. The basis of
the method is to generate a so-called calibration sample of areas
that represents the range of uncertainties of the effective area,
including all the correlations between different energies. The
approach to generating the calibration samples for the different
instruments we study here is common to all instruments, with
some additional complexity built into the Chandra samples. We
describe the method in brief below and refer the reader to
Drake et al. (2006) for a more complete description.

We devise a “perturbation function” that comprises piecewise
cubic segments that stretch between the natural absorption edges of
the different materials encountered along the optical path for a
given instrument. This function varies about unity by random
amounts but is constrained within fixed limits based on specified
calibration uncertainties by the cubic function whose parameters
are randomly drawn from a truncated Gaussian distribution. The
perturbation function is applied as a multiplicative factor to the
different subassembly component contributions to the effective
area, which are considered on a case-by-case basis. For instance, in
the case of Chandra/ACIS, six plausible mirror effective areas are
used, uncertainties in the optical blocking filter and contamination
and contamination transmittance are modeled by altering the
optical depth of each chemical component within their known
uncertainties and recomputing ensemble transmittance, and CCD
quantum efficiencies are computed for different realizations of
depletion depth and SiO2 layers. Details of this process are given in
Drake et al. (2006, see also J. J. Drake et al. 2021, in preparation).

Chandra/HETGS and Chandra/LETGS use a similar approach
with additional perturbation functions applied for the transmission
grating diffraction efficiencies. In the case of the other instruments
considered here, the perturbation function approach alone is used.

3. Observations and Data Processing

Three data sets are considered in Paper I and we add a fourth
in this paper. Here, we detail how the data sets are handled and
the required data processing.

3.1. Supernova Remnant 1E0102.2-7219

As in Paper I, the fluxes of the emission line complexes of O
and Ne in the X-ray spectra of SNR 1E0102.2−7219 are taken
from the detailed comparison of 13 instruments by Plucinsky
et al. (2017). Briefly, the spectra of each non-dispersive
instrument are fit with a model with five free parameters: an
overall normalization and four emission line fluxes of O VII, O
VIII, Ne IX, and Ne X. Because the emission lines of the same
element have similar energies, their effective areas are compar-
able and highly correlated, so we combined the O and Ne line
fluxes to create two fluxes for each instrument. In our statistical
analysis, these two fluxes are treated as “sources”: one for O and
another for Ne. The data are normalized to the O or Ne fluxes
obtained by the XMM-Newton pn instrument. By requiring that
each instrument analysis use the same model, except primarily
for the strengths of the emission lines, the q(E; θj) values do not
depend on the instrument, nor on the measured line fluxes.
Table 3 shows the τi values assigned to the effective areas

for each instrument considered. The values were taken from
Table 1 using the bandpass that covers the lines of interest:
0.54–0.80 keV for O and 0.8–1.2 keV for Ne. For the
correlation matrix, there is only one off-diagonal term, which
we set to 0.88 for ACIS instruments and 0.82 for XMM
instruments, as derived as in Section 2.3.2.

3.2. Sources from the 2XMM Catalog

We select a sample of X-ray sources from the Second
European Photon Imaging Camera (EPIC) Serendipitous Source
(2XMM) Catalog (Watson et al. 2009). EPIC consists of three
X-ray cameras with CCD sensors mounted on the ESA spacecraft
XMM-Newton (Jansen et al. 2001); the EPIC-pn (Strüder et al.
2001) and two EPIC-MOS (Turner et al. 2001) cameras observe
celestial sources quasi-simultaneously within their co-aligned
fields of view. For this analysis, v14.0 of the Science Analysis
System (SAS; Gabriel et al. 2004) is used, as well as the

Table 3
Heterogeneous τi Values for 1E0102 Analysisa

Instrument Oxygen Neon

XMM/RGS1 5 5
XMM/MOS1 6 6
XMM/MOS2 6 6
XMM/pn 2 2
ACIS-S3 3 3
ACIS-I3 3 3
ACIS/HETG 3 3
Suzaku/XIS0 15 10
Suzaku/XIS1 15 10
Suzaku/XIS2 15 10
Suzaku/XIS3 15 10
Swift/XRT-WT 10 7.5
Swift/XRT-PC 10 7.5

Note.
a Values for τi are in percentages for each combination of instrument and line
complex, using τi values taken from Table 1.
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calibration files as available in 2016. A description of the data
reduction and spectral extraction procedure appears in Read et al.
(2014). Soft, medium, and hard bands are defined to be the
0.5–1.5, 1.5–2.5, and 2.5–10 keV bands, respectively. Due to
variability,different observations of the same source are treated as
separate sources for a total of 41 observations of 35 distinct
sources. The normalizing (maximum) fluxes in the soft, medium,
and hard bands are 0.138, 0.000701, and 0.00223 photons cm−2

s−1, the brightest sources in their respective lists. The data are
provided in Table A1 in the Appendix. There are two primary
features of the analysis procedure that make the results suitable
for Concordance analysis: (1) the count spectra for the different
instruments (pn, MOS1, MOS2) are fit simultaneously to power
laws, so that the spectral slopes, θj= Γj (where Q = -Gn n EE j j

j[ ] )
do not depend on the instrument combination, and (2) the sources
are faint enough that pileup is not an issue.

Table 4 gives the τi values assigned to the effective areas for
the pn and MOS instruments and the three bandpasses. The
values are taken from Table 1 using the 0.54–0.8 and
0.8–1.2 keV τi values for the soft band, the 1.2–2.2 keV τi
value for the medium band, and an average of the 2.2–10 keV τi
values for the hard band. Table 5 gives the correlation matrix
values, ρmn, computed for the pn and MOS instruments and the
three bandpasses used in the 2XMM catalog while Table 6
provides these values for the bandpasses used in the so-called
“XMM-Newton Cross-Calibration” (XCAL) analysis. For sim-
plicity, we assume that the ρmn are the same for each instrument.

3.3. Active Galaxies from the XCAL Sample

Another set of EPIC spectra used to validate the model is the
XCAL sample.8 This is a sample of radio-loud active galactic
nuclei, primarily blazars, observed routinely by XMM-Newton
in the framework of its in-flight calibration program (Guainazzi
et al. 2015). As with the 2XMM sample described in
Section 3.2, the sources are variable. In this case, there are
more blazars and high signal observations, for a total of 108,
103, and 94 observations of 22 distinct sources in the soft,

medium, and hard bands that exceeded a flux limit criterion
without highly discrepant fluxes between the three instruments.
The normalizing (maximum) fluxes in the soft, medium, and
hard bands are set to 0.126, 0.0156, and 0.0154 photons cm−2

s−1, the brightest sources in their respective lists. Data are
provided in Table A1 in the Appendix. As with the 2XMM
sources, the pn, MOS1, and MOS2 data were fit simultaneously
to power-law spectra so that Γj is the same for each instrument.
However, compared to the 2XMM sources, the XCAL sources
are bright, often exceeding the count rate threshold beyond
which the fraction of events affected by pileup is no longer
negligible (Jethwa et al. 2015). Spatial regions on the detector
affected by pileup are removed by excising the core of the
telescope point-spread function (PSF) up to an observation-
dependent radius. This radius is determined on the basis of the
ratio between non X-ray diagonal and standard X-ray
“patterns” (measure of the event shape in the CCD) in EPIC-
MOS (Jethwa et al. 2015), and by visual inspection of the
pattern distribution curves in EPIC-pn using the SAS task
epatplot in EPIC-pn. This “PSF core excising method,”
while unavoidable to retain the highest possible fidelity of
event spectral calibration, may introduce excess variance in the
fij via systematic uncertainty in the energy-dependent correc-
tion for the fraction of events scattered into or out of the
annular spectral extraction region by the PSF (the so-called
“encircled energy correction” fraction). Values for τi and ρmn
are the same as for the2XMM sample.

3.4. Active Binary Capella

Capella (αAur AB; G1III+G8III; 13 pc) is a spectro-
scopic binary that is the brightest line-dominated source
accessible to non-solar X-ray missions. It is remarkably steady
for a coronal source, having never exhibited significant flaring.
While it does vary over timescales of months, it does not show
any evidence of flux variability over timescales of weeks or
less. Consequently, it has often been used as a calibration
target, in particular with Chandra. It has been observed several
times with different detector and grating combinations in close
proximity (see Table A2 in the Appendix). These observations
allow us to carry out an assessment of the internal cross-
calibration of the Chandra grating spectrometers.
We estimated the total fluxes in each of several strong lines:

the highly-ionized lines of Fe XVII (at 15 and 17 Å) whose
formation temperatures overlap the peak emission measures of
Capella, and the hydrogenic lines of Ne X (12.13 Å) and O VIII
(18.96 Å). For the purposes of this calculation, we treat each of
the four emission lines as different sources. We then form 21
epoch groups, comprised of observations that are within 0.1 yr
of each other,9 giving a total of 84 sources. Similarly, +1 and

Table 4
Heterogeneous τ Values for 2XMM and XCAL Analysesa

Instrument Soft Band Medium Band Hard Band

pn 2 2 2.3
MOS1 6 6 7.3
MOS2 6 6 7.3

Note.
a Values for τ are percentages for each combination of instrument and line
complex, using τ values from Table 1.

Table 5
Correlation Matrix for 2XMM Analyses

Band Soft Band Medium Band Hard Band

Soft band 1 0.61 0.13
Medium band 0.61 1 0.53
Hard band 0.13 0.53 1

Table 6
Correlation Matrix for XCAL Analyses

Band Soft Band Medium Band Hard Band

Soft band 1 0.63 0.20
Medium band 0.63 1 0.52
Hard band 0.20 0.52 1

8 Details of the XCAL processing are available in Section 4 of the XMM
calibration memo XMM-SOC-CAL-TN-0052. The memo is available at
https://xmmweb.esac.esa.int/docs/documents/CAL-TN-0052.ps.gz.

9 Aug/Sep99, Mar00, Feb01, Apr02, Oct02, Sep03, Sep04, Mar05, Oct05,
Apr06, Apr07, Apr08, Apr09, Nov09, Nov/Dec10, Dec11, Dec13, Dec14,
Jul16, Sep16, and Dec18; see Table A2.

7

The Astronomical Journal, 162:254 (16pp), 2021 December Marshall et al.

https://xmmweb.esac.esa.int/docs/documents/CAL-TN-0052.ps.gz


−1 grating orders are treated distinctly for each of four grating/
detector combinations, ACIS-S/HEG, ACIS-S/MEG, ACIS-
S/LEG, and HRC-S/LEG, for a total of eight instruments. The
fluxes were normalized to the maximum values for each
emission line: 28.02, 60.23, 49.66, and 23.33 × 10−13

erg s−1 cm−2 for O VIII, Fe XVII 17 Å, Fe XVII 15 Å, and
Ne X, respectively. We use CIAOv4.11 to extract the dispersed
spectra, and compute the effective areas using the contamina-
tion corrections as in CALDBv4.8.0.1.

The values of τi are taken from Table 7 and the correlation
matrices are given in Table 8 and 9.

4. Results

Here we present results from new measurements and
extensions to the results in Paper I. In each case, we generate
10,000 Monte Carlo replicates from the respective posterior
distributions as the basis for our statistical inferences.

4.1. 1E0102

These data provide a illustration of a case where there are
many instruments that obtain data on the same source, shown in
Figures 2 and 3. The effect of allowing heterogeneous τ values is
apparent in both cases. Generally, when the prior distribution on
an instrument’s effective area is more uncertain than average,
giving a relatively large value of τi, then the data for that
instrument are given less weight, so the posterior estimate of its
effective area is more likely to deviate from the prior estimate by
comparison to when all instruments have equally uncertain prior
estimates. In addition, the posterior range of the deviation is
more likely to be large when τi is larger. The Suzaku results for
the O lines all show this effect. When effective areas are
correlated between the O and Ne data sets, the ACIS-I3 point is
particularly affected due to the discrepant results obtained when
Ne and and O data are considered independently.

4.2. XMM Samples

Figures 4 and 5 show the results of the Concordance analysis
for the two XMM-Newton data. In this example, there are
many sources and few instruments, in contrast with the 1E0102
data set. The 2XMM results show a high degree of consistency

between the instruments, consistently favoring 3%–5%
increases to the effective areas of the MOS detectors across
all bands and a corresponding slight decrease to the pn effective
area. With the use of individualized τ values, the Concordance
analysis drives the pn effective areas toward the prior, as one
might expect due to the significantly smaller τ assigned to the
pn compared to the MOS detectors.
The XCAL sample shows similar trends to that of the

2XMM sample with with a more significant indication that the
MOS2 detector’s effective area should be increased 2%–3%
more than that of the MOS1 detector.

4.3. Capella Line Fluxes for Chandra Grating Spectrometers

Results from the Concordance analysis as applied to the
Capella data are shown in Figure 6. There are several features of
interest. First, the effective area corrections for the LETGS
(ALEG and HLEG) are generally negative while those of the
HETGS (HEG and MEG) are generally positive. These
corrections are consistent with preliminary results on indepen-
dent data where the instruments are cross-calibrated with
alternating observations of Mk 421. Second, the +1 and −1
orders generally agree well for all instruments and wavelengths.
Third, when the effective area correlations are included, the
posterior effective areas for the longer wavelengths (OVIII and
Fe XVII λ17) more strongly deviate from their priors.

4.4. Method Validation and Assessment

Paper I includes a series of numerical studies that explore the
statistical properties of our method. For example, Figure 2 of
Paper I illustrates that our posterior distributions of the effective
areas cover the true effective areas in a simulation study. Figure
7 of Paper I then goes on to contrast the estimated 95% intervals
for log-fluxes constructed using the standard instrument-specific
estimates with the combined estimate based on our posterior
distribution, illustrating how our Bayesian process achieves a
single consistent estimate for each flux but with smaller errors
than the standard estimates. Here we consider additional ways to
evaluate how robust our method’s results may be, supplementing
the simulations performed in Paper I.

4.4.1. Simulation Studies

The method developed and applied in Paper I produces
Bayesian posterior distributions for each estimated quantity.
The main quantities of interest here are the fractional
corrections to instrument effective areas, given by

-A alog logi i, and the fractional corrections to the estimated
fluxes of sources, given by -F flog logj ij.
We demonstrate how the Concordance method yields

accurate and reliable estimates of Ai and Fj with a simulation
study. The simulation involves 40 simulated sources observed
by each of five instruments. We set the prior means of the
effective areas of the instruments to differ from their actual

Table 7
Values of τi for Capella Analysesa

Line Ne X λ12 Fe XVII λ15 Fe XVII λ17 O VIII λ19

HEG 4 5 5 10
MEG 4 5 5 10
LEG/A 4 5 5 10
LEG/H 7 7 7 7

Note.
a Values for τ are in percentages.

Table 8
ACIS Correlation Matrix Used for Capella

Line Ne X λ12 Fe XVII λ15 Fe XVII λ17 O VIII λ19

Ne X λ12 1 0.96 0.92 0.89
Fe XVII λ15 0.96 1 0.99 0.97
Fe XVII λ17 0.92 0.99 1 0.99
O VIII λ19 0.89 0.97 0.99 1

Table 9
HRC Correlation Matrix Used for Capella

Line Ne X λ12 Fe XVII λ15 Fe XVII λ17 O VIII λ19

Ne X λ12 1 0.84 0.71 0.62
Fe XVII λ15 0.84 1 0.83 0.74
Fe XVII λ17 0.71 0.83 1 0.91
O VIII λ19 0.62 0.74 0.91 1
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effective areas by - = - -A alog log 0, 1, 1, 2, 2i i [ ], for
i= 1,...,5, respectively. For example, for instrument 4, the true
effective area is systematically higher than the prior mean by a
factor of e2, resulting in flux estimates that are systematically
too high compared to the true values. The τi values are all 1.0
in this simulation, indicating large uncertainties in prior
estimates of the effective areas, and the measurement
uncertainties (i.e., σij) are all set to 0.5 on the log scale,
similarly indicating large uncertainties, except for instrument 5,
for which σ= 0.1. This simulation setup is designed to test the
robustness of the Concordance method to data from an
instrument with high signal/noise but a systematically biased
effective area. We replicated this entire set up 200 times and

processed each replicate with our Concordance method. A
representative replicate is shown in Figure 7. The simulations
demonstrate that the Concordance method provides source flux
estimates that are substantially better than would be obtained
by simply using the prior means as estimates of the effective
areas. The replicate simulations indicate that the 95% equal-
tailed posterior intervals cover the true values of the effective
areas and source fluxes over 99% of the time. Thus, we not
only obtain better estimates of the source fluxes, but also
estimate the effective area corrections well. Note that the
instrument-specific flux estimates can deviate substantially
from the true values for any given source, so that when using a
set of such estimates, the weighted flux estimator would be

Figure 2. Results of the Concordance analysis for the data from SNR 1E0102 for the combination of fluxes of the lines of O VII and O VIII. The τ = 0.025 (in black)
and 0.05 (in yellow) results are the same as given in Paper I and are shown to elucidate the effects of including heterogeneous τ values (in blue) and adding effective
area correlations (in red). The error bars represent the 90% (5%–95%) confidence regions on the posterior estimate of Ai/ai, as defined in Section 2.2. When effective
areas are correlated between the O and Ne data sets, the ACIS-I3 point is particularly affected due to the discrepant results obtained when Ne and and O data are
considered independently.

Figure 3. Same as Figure 2 except for the combination of fluxes of the lines of Ne IX and Ne X (see the text). Unlike the case for the O lines, the posterior estimates of
the effective area tend to be more stable in this band and relatively independent of the uncertainties in the effective area priors.
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Figure 4. Concordance results for the 2XMM sample. Results are color-coded as in Figure 2. When the τ values are allowed to vary by instrument, the
“heterogeneous” case, the posterior for the pn centers on the prior, due to the smaller value of τ than used for the MOS detectors. At the same time, higher effective
areas for the MOS detectors are indicated across all bands.

Figure 5. Same as Figure 4 except for the XCAL sample. These results are generally consistent with those from the 2XMM sample but with a somewhat stronger
indication that the MOS2 effective area should be increased relative to MOS1.
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generally biased toward the instrument with the highest signal/
noise, regardless of the accuracy of the instrument’s effective
area. Note that the instrument-specific flux estimates can
deviate substantially from the true values for any given source,
so that when using a set of such estimates, the weighted
average ratio estimators for the flux (i.e., s så å- -fj ij j j j

2 2[ ]/ )
would be generally biased toward the instrument with the
highest signal/noise, regardless of the accuracy of the
instrument’s effective area.

With an additional pair of simulations, we also quantified the
improvement that can be obtained with the Concordance
method. In the first case, we simulated M= 3 instruments with
Ai/ai= [1, 1, 0.9] for i= [1, 2, 3], τi= 0.05, and N= 20
sources with true fluxes all equal to 1. There were 200
independent simulations and analyses for each setup. The
sources were assumed to have good signal/noise as might be

expected for calibration observations: σi= 0.03 (i.e., the cij
were drawn from a Poisson distribution with a mean of about
1100). The second case is the same as the first except there
is a higher statistical precision for observations with
instrument 3: σ3= 0.003. Source fluxes were estimated for
each simulation using the Concordance method and also using
the above-mentioned weighted average of ratio estimators:

s så å- -fj ij j j j
2 2( )/ . The 95% uncertainty bounds on the flux

estimates and the coverage fraction where the true flux is
included within the uncertainty bounds are shown in Table 10.
The Concordance estimator generated uncertainty intervals that
were accurate and covered the ground truth, in contrast to the
ratio estimator which, despite the widths of the confidence
intervals being nominally smaller, generated biased estimates
and confidence intervals that did not cover the true fluxes.
The situation was worse for the second case, where the

Figure 6. Concordance analysis using measurements of four emission lines using the the Chandra grating spectrometers. Emission lines used in the various panels are:
(a) Ne X, (b) Fe XVII λ15, (c) Fe XVII λ17, (d) O VIII. Color coding of results are as in Figure 2. Features to note are (1) that the effective area corrections for the
LETGS (ALEG and HLEG) are generally negative while those of the HETGS (HEG and MEG) are generally positive and (2) the +1 and −1 orders generally
agree well.
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Concordance intervals did not change appreciably, but the ratio
estimators were biased low by≈10%, reflecting the higher
statistical weight given to an instrument with a biased estimate
of its effective area. Indeed, in this latter case, there was only
one source (of 20) in only one simulation (of 200) where the
ratio estimator confidence interval included the true value. This
pair of simulation setups illustrates the robustness of the
Concordance method to erroneous effective area priors,
showing that it is appropriate to use in calibration work where
robustness and accuracy are highly valued.

4.4.2. Posterior Histograms

We have found that the posterior distributions of the effective
area corrections are typically well described by Gaussians, as
shown in Figure 8, parts (A)–(C). These three examples were
randomly chosen among the dozens of such histograms
generated in our analysis of the data from Sections 4.1–4.3.

Occasionally, however, there are histograms that are not
obviously Gaussian, so we also show three “bad” examples. In
one case, Figure 8, part (D), there is a distinct “notch” in a side
of the distribution and in two cases (Figure 8, parts (E) and (F)),
there is noticeable skew—tails to large fractional corrections.
These three cases were quite rare but give warning that there
may be inconsistencies in the underlying data. One known
source of error that is not accounted for in our analysis is in the
shape of the response function, Φk(E). For instruments like ACIS
and the EPIC detectors, the low-energy response is somewhat
uncertain and difficult to calibrate.

4.4.3. Sensitivity to Uncertainties in Priors

The specification of priors is typically under scrutiny for
Bayesian analysis in practice. Typically researchers conduct
sensitivity analysis to study the outcome sensitivity with respect
to small perturbations of the priors. In our setting, the sensitivity
of the results with respect to τ values is revealed by the
comparison between heterogeneous τ values versus the two
homogeneous τ value choices. However, for the correlation
matrix in the prior distribution, we adopted Monte Carlo
estimates, which is subject to random variations. Thus, we
undertook a simple example of the test of sensitivity in this
paper, but it is feasible for any user of the Concordance tools.
Namely, for the Capella data, instead of adopting the full
correlation matrix as given in Tables 8 and 9, we only keep the
correlations between the two Fe bands. Again, we can test out
different variations of the correlation matrix with the same
procedure and similar analysis. Thorough sensitivity analysis
requires extensive testing on a carefully designed set of
variations of the prior distributions. See Figure 9 for the results
of applying this variation to the Capella data. By comparing the
results of Figure 9 with the original, Figure 6, we can reveal the
sensitivity of the results as opposed to variations of correlations
between Fe bands and others, and the correlations of others (Ne
and O) within their own. We can see that in Figure 9, the O and

Figure 7. Posterior distributions of the logarithms of the effective area corrections (top row) and on the logarithms of the source fluxes (bottom row, for five sources)
for one of 200 replicate simulations, each involving five instruments and 40 sources. In the simulation, all sources have a true value of =Flog 1j but the prior means
of the instrument effective areas are off by factors of exp([0, 1, −1, 2, −2]) for i = 1,K,5. The top row shows that the Concordance method generates posterior
distributions of the effective area corrections that are well centered on the true values for each instrument (shown as vertical solid lines in various colors). The bottom
row shows that the posterior distributions of the source fluxes are well centered on the true values (vertical solid black lines), even while the instrument-specific
estimates based on the prior means of the effective areas (vertical dotted lines of colors corresponding to those of the instruments in the top row) can be individually
erroneous by large factors.

Table 10
Results from Two Concordance Simulations

Simulation Setupa Flux Estimation 95% Flux Rangeb r95
c

Method Flo Fhi

1 Concordance 0.903 1.033 0.964
1 Ratio estimator 0.927 0.994 0.372
2 Concordance 0.905 1.031 0.990
2 Ratio estimator 0.896 0.907 0.000

Notes.
a Setups 1 and 2 are the same except that instrument 3 (of 3) has 3% statistical
errors for setup 1 and 0.3% statistical errors for setup 2. The prior for the
effective area of instrument 3 is 10% higher than its true value in both setups.
See Section 4.4.1 for details.
b Average 95% confidence intervals for source flux estimates; the true fluxes
for all sources are set to 1.
c Fraction of flux estimates covering true fluxes at the 95% confidence level out
of 200 simulations of 20 sources each.
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Ne show nicely aligned results under correlated effective areas
versus uncorrelated effective areas. But this is not true for
Figure 6, where O and Ne are still correlated with each other and
with other bands, especially for HEG+. Furthermore, while the
adjustments for the two Fe channels are similar across the two
figures, the adjustments for Ne are very different. The resulting
adjustments of effective areas not only deviate more significantly
from zero but also have smaller error bars when correlations are
taken into account. This makes intuitive sense because the
benefit of accounting for correlations among effective areas is to
obtain sharper or more informative estimates.

5. Conclusion and Directions for Development

These data sets provided an excellent foundation for the
Concordance project, whose goal is to determine quantitative
and objective evidence for making effective area adjustments in
order to improve agreement between instrument measurements.
The process applied here is available for use in studies such as
we have undertaken. There are some avenues to explore for
expanding this particular implementation of the Concordance
analysis.

5.1. Correlations between Source Bandpass Fluxes

Several types of calibration sources have simple spectra,
which is why they are often used in cross-calibration. Examples
are isolated neutron stars with blackbody spectra, blazars with
power-law spectra, and SNRs and clusters of galaxies with
thermal spectra. To the extent that these spectra can be
characterized by only a few parameters, such as a power-law
slope, then the flux in one band is closely related to that in an
adjacent band. Furthermore, many types of source have
smoothly continuous spectra—their spectral fluxes are tightly
correlated on small scales. Modeling many bandpasses of a
blazar spectrum with a series of power laws with different slopes

would lead to unphysical discontinuities at bandpass boundaries.
Thus, it would be advantageous to take advantage of this
astrophysical knowledge and include spectral band correlations
due to spectral continuity and simplicity. The XMM-Newton–
Chandra blazar XCAL sample is an excellent data set to examine
next, involving three Chandra configurations and all four XMM-
Newton X-ray detectors and covering the energy range from 0.1
to 10 keV using simultaneous observations of active galaxies
obtained over 20 yr of operation. Preliminary results have been
reported at various IACHEC meetings.

5.2. Secular Variations of Instrument Responses

While many sources may well vary erratically, instrument
behavior can often be subject to gradual degradation. With
adequate modeling of many observations, one avenue to
explore is how to link instrument effective areas over time
within the Concordance framework.

5.3. Nonlocal Instrument Responses

There are definite difficulties that are encountered when the
detector energy response Φk(E) has a non-Gaussian component,
a broad asymmetry, or bimodality because systematic errors in
the response function can appear in an apparently unrelated
bandpass. Response function errors may be responsible for
some of the artifacts in our posterior histograms (see
Section 4.4.1). The response functions of solid state detectors
have escape peaks that can generate events at a significantly
different apparent energy than that of the incoming photon.
Modeling the effects of systematic errors in response functions
is possible in principle, especially with methods such as used to
determine the effective correlation function (see Section 2.3.2).
One approach for dealing with this issue would be to expand
the Concordance mathematical model to include a term to
account for variance of the Tij values.

Figure 8. Posterior histograms for the fractional variation of the effective area. The data sets are (A) 2XMM data, hard band, XMM/pn, correlated τ values; (B)
2XMM data, hard band, XMM/MOS2, heterogeneous τ values; (C) XCAL data, medium band, XMM/pn, correlated τ values; (D) XCAL data, soft band, XMM/
MOS1, τ = 0.05 for all instruments; (E) 1E0102 data, O lines, Chandra/ACIS-S3, τ = 0.025 for all instruments; (F) 1E0102 data, O lines, Swift XRT/PC, τ = 0.05
for all instruments. Histograms (A)–(C) are typical, chosen randomly from several dozen; the distributions are well approximated as Gaussians. Histograms (D)–(F)
are atypical, showing skew or other non-Gaussian shapes.
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(Gabriel et al. 2004), MCCal (Drake et al. 2006), PINTofALE
(Kashyap & Drake 2000).

Appendix

A.1. Measured Fluxes

In Table A1 we list all the fluxes used in the calculations
described above: for sources in the 2XMM catalog (see
Section 3.2) in the soft, medium, and hard bands; and for active
galaxies from the XCAL sample (Section 3.3) in the soft,
medium, and hard bands. The table is published in its entirety
in machine-readable format. The line fluxes measured during
the various Capella grating observations with Chandra
(Section 3.4) are provided in Table A2. Note that the data
used for the analysis of SNR 1E0102.2-7219 (Section 3.1) are
given in Chen et al. (2019).

Figure 9. Same as Figure 6 except that only the correlations between the two Fe bands are kept while others are set to zero, for both ACIS and HRC instruments.
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Table A1
Concordance Fluxes

Target Sample pn MOS1 MOS2

Sample Band Norm.a fij σij fij σij fij σij

1127−145 2XMM Soft 0.138 0.0075 0.0009 0.0074 0.0009 0.0077 0.0010
1E0919+515 2XMM Soft 0.138 0.0068 0.0013 0.0081 0.0015 0.0083 0.0015
4C06.41 2XMM Soft 0.138 0.0024 0.0001 0.0026 0.0001 0.0026 0.0001
APM 08279+5255 2XMM Soft 0.138 0.0035 0.0006 0.0035 0.0006 0.0036 0.0006
1127−145 2XMM Medium 0.000701 0.481 0.049 0.496 0.053 0.490 0.052
1E0919+515 2XMM Medium 0.000701 0.053 0.053 0.069 0.066 0.068 0.065
4C06.41 2XMM Medium 0.000701 0.131 0.015 0.142 0.017 0.143 0.018
APM 08279+5255 2XMM Medium 0.000701 0.085 0.041 0.088 0.042 0.082 0.040
1127−145 2XMM Hard 0.00223 0.173 0.007 0.186 0.008 0.179 0.008
1E0919+515 2XMM Hard 0.00223 0.011 0.003 0.012 0.003 0.011 0.002
4C06.41 2XMM Hard 0.00223 0.042 0.001 0.045 0.002 0.044 0.002
APM 08279+5255 2XMM Hard 0.00223 0.016 0.001 0.017 0.002 0.016 0.001
1ES0414+009 XCAL Soft 0.126 0.0992 0.0100 0.1058 0.0107 0.1092 0.0113
1ES1101-232 XCAL Soft 0.126 0.2124 0.0058 0.2249 0.0063 0.2245 0.0064
1ES1553+113 XCAL Soft 0.126 0.1097 0.0033 0.1053 0.0032 0.1059 0.0032
1H0414+009 XCAL Soft 0.126 0.0459 0.0019 0.0477 0.0020 0.0491 0.0021
1ES0414+009 XCAL Medium 0.0156 0.086 0.010 0.090 0.011 0.101 0.013
1ES1101-232 XCAL Medium 0.0156 0.315 0.024 0.334 0.027 0.349 0.028
1ES1553+113 XCAL Medium 0.0156 0.133 0.010 0.123 0.009 0.124 0.010
1H0414+009 XCAL Medium 0.0156 0.044 0.006 0.045 0.006 0.046 0.007
1ES1101-232 XCAL Hard 0.0154 0.1884 0.0062 0.1939 0.0070 0.2013 0.0077
1ES1553+113 XCAL Hard 0.0154 0.0657 0.0025 0.0630 0.0022 0.0635 0.0022
1H0414+009 XCAL Hard 0.0154 0.0152 0.0004 0.0159 0.0005 0.0155 0.0005
1H1219+301 XCAL Hard 0.0154 0.1409 0.0145 0.1499 0.0162 0.1586 0.0176

Note.
a Fluxes are normalized by this value in units of photons cm−2 s−1.

(This table is available in its entirety in machine-readable form.)
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Table A2
Capella Grating Observations with Chandra

Epoch ObsID Exposure Detector Grating
Line Fluxes (10−13 erg s−1 cm−2)

(ks) Arm Ne X λ12 Fe XVII λ15 Fe XVII λ17 O VIII λ19

1999 Aug 1099 14.57 ACIS-S HEG+1 21.1 ± 2.0 57.8 ± 4.7 ... ...
HEG-1 21.8 ± 1.7 63.3 ± 4.8 64.3 ± 6.4 ...
MEG+1 21.0 ± 1.0 47.5 ± 2.1 68.9 ± 3.3 29.3 ± 2.8
MEG-1 20.0 ± 1.0 48.7 ± 1.5 69.4 ± 2.1 34.4 ± 1.7

1999 Aug 1235 14.57 ACIS-S HEG+1 22.4 ± 2.1 59.1 ± 4.7 ... ...
HEG-1 20.5 ± 1.6 47.2 ± 4.2 66.3 ± 6.4 31.3 ± 14.4
MEG+1 20.5 ± 1.0 50.7 ± 2.2 68.0 ± 3.3 30.7 ± 2.9
MEG-1 20.6 ± 1.0 51.7 ± 1.6 69.9 ± 2.1 33.3 ± 1.7

1999 Aug 1100 14.57 ACIS-S HEG+1 23.8 ± 2.1 54.1 ± 4.5 ... ...
HEG-1 22.3 ± 1.7 64.4 ± 4.9 61.6 ± 6.2 46.0 ± 17.4
MEG+1 22.1 ± 1.1 52.7 ± 2.3 74.9 ± 3.4 35.1 ± 3.1
MEG-1 21.7 ± 1.0 49.5 ± 1.6 73.3 ± 2.2 32.7 ± 1.7

1999 Aug 1236 14.57 ACIS-S HEG+1 26.4 ± 2.3 57.1 ± 4.6 ... ...
HEG-1 21.4 ± 1.6 54.4 ± 4.5 63.9 ± 6.3 31.5 ± 14.1
MEG+1 20.6 ± 1.0 49.2 ± 2.2 69.3 ± 3.3 31.2 ± 2.9
MEG-1 21.8 ± 1.0 47.8 ± 1.5 71.9 ± 2.1 33.2 ± 1.7

1999 Aug 1101 14.57 ACIS-S HEG+1 26.1 ± 2.2 50.4 ± 4.3 ... ...
HEG-1 23.9 ± 1.7 54.8 ± 4.5 71.5 ± 6.7 22.4 ± 11.2
MEG+1 20.8 ± 1.0 48.0 ± 2.1 60.9 ± 3.1 26.5 ± 2.7
MEG-1 21.2 ± 1.0 48.9 ± 1.5 71.0 ± 2.1 35.2 ± 1.7

1999 Aug 1237 14.57 ACIS-S HEG+1 24.0 ± 2.2 57.2 ± 4.6 ... ...
HEG-1 22.5 ± 1.7 44.2 ± 4.0 76.0 ± 6.9 38.0 ± 14.4
MEG+1 21.3 ± 1.0 46.7 ± 2.1 69.4 ± 3.3 26.0 ± 2.6
MEG-1 21.9 ± 1.0 48.7 ± 1.5 70.6 ± 2.1 29.6 ± 1.6

1999 Sep 62435 32.38 HRC-S LEG+1 19.8 ± 0.8 45.0 ± 1.1 56.9 ± 1.3 26.1 ± 0.8
LEG-1 18.9 ± 0.8 46.1 ± 1.1 59.8 ± 1.3 25.4 ± 0.8

1999 Sep 1167 15.14 HRC-S LEG+1 19.7 ± 1.2 46.5 ± 1.7 58.4 ± 1.9 25.5 ± 1.2
LEG-1 16.5 ± 1.1 44.1 ± 1.6 56.2 ± 1.9 25.7 ± 1.2

1999 Sep 1244 12.12 HRC-S LEG+1 19.7 ± 1.4 42.9 ± 1.8 52.7 ± 2.1 23.9 ± 1.3
LEG-1 18.2 ± 1.3 49.7 ± 1.9 58.8 ± 2.1 27.4 ± 1.3

1999 Sep 62410 11.23 HRC-S LEG+1 22.5 ± 1.5 44.0 ± 1.9 51.1 ± 2.1 25.9 ± 1.4
LEG-1 19.5 ± 1.4 43.9 ± 1.9 58.9 ± 2.2 27.2 ± 1.4

1999 Sep 1246 14.60 HRC-S LEG+1 17.7 ± 1.2 45.7 ± 1.7 55.9 ± 1.9 26.7 ± 1.2
LEG-1 18.6 ± 1.2 45.3 ± 1.7 56.8 ± 1.9 25.3 ± 1.2

1999 Sep 62422 11.29 HRC-S LEG+1 19.6 ± 1.4 47.0 ± 2.0 55.8 ± 2.2 25.8 ± 1.4
LEG-1 18.2 ± 1.4 47.6 ± 1.9 65.2 ± 2.3 26.2 ± 1.4

1999 Sep 62423 14.56 HRC-S LEG+1 18.8 ± 1.2 46.1 ± 1.7 60.7 ± 2.0 26.0 ± 1.2
LEG-1 19.5 ± 1.2 47.2 ± 1.7 57.9 ± 1.9 25.6 ± 1.2

1999 Sep 1103 40.52 ACIS-S HEG+1 25.8 ± 1.4 60.4 ± 2.9 ... ...
HEG-1 26.9 ± 1.1 60.9 ± 2.8 81.6 ± 4.4 19.7 ± 8.4

(This table is available in its entirety in machine-readable form.)
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