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Abstract—Objective: To develop a multi-channel device event
segmentation and feature extraction algorithm that is robust
to changes in data distribution. Methods: We introduce an
adaptive transfer learning algorithm to classify and segment
events from non-stationary multi-channel temporal data. Using
a multivariate hidden Markov model (HMM) and Fisher’s linear
discriminant analysis (FLDA) the algorithm adaptively adjusts
to shifts in distribution over time. The proposed algorithm is
unsupervised and learns to label events without requiring a
priori information about true event states. The procedure is
illustrated on experimental data collected from a cohort in
a human viral challenge (HVC) study, where certain subjects
have disrupted wake and sleep patterns after exposure to an
H1N1 influenza pathogen. Results: Simulations establish that
the proposed adaptive algorithm significantly outperforms other
event classification methods. When applied to early time points
in the HVC data, the algorithm extracts sleep/wake features
that are predictive of both infection and infection onset time.
Conclusion: The proposed transfer learning event segmentation
method is robust to temporal shifts in data distribution and can
be used to produce highly discriminative event-labeled features
for health monitoring. Significance: Our integrated multisensor
signal processing and transfer learning method is applicable to
many ambulatory monitoring applications. 1

Index Terms—Covariate shift, domain adaptation, wearable
sensors, human viral challenge study, digital health, early detec-
tion of viral infection.

I. INTRODUCTION

MANY physiological time series involve dynamic tran-
sition among event states. For example, the transitions

in human circadian cycling alternate between sleep and wake
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states over a 24-hour period. The sleep state can itself be
a dynamic process, switching over different stages of rapid
eye movement (REM) and non-REM sleep states [9]. As
another example, the transitions in menstrual cycles go through
follicular and luteal phase [51], transitioning to an ovulation
state. With the emergence of cheap wearable multi-channel
physiological monitoring devices, there has been much interest
in automating the detection of physiological event states. The
potential impact of automated event detection is far reaching,
potentially improving a person’s health awareness and aiding
the management of disease.

A principal impediment to automating event detection for
wearable devices is the intrinsically high variability of the
measured physiological signals over time. An especially chal-
lenging situation is when the wearer of the device undergoes
a strong perturbation, such as exposure to a pathogen that
results in infection. Most event detection algorithms that are
trained over a healthy baseline time period will have difficulty
adapting when the device’s signals become strongly perturbed
away from baseline. Modern machine learning approaches to
training that incorporate transfer learning can mitigate these
difficulties. This paper introduces an adaptive transfer learning
method for automating event detection for wearable devices
and demonstrates its ability to adapt to strong perturbations
from a healthy baseline in the context of a human viral
challenge study.

Another challenge to automating event detection in time se-
ries data is the lack of available ground truth event labels. The
training of the automated algorithm must thus be unsupervised,
based only on the observable physiological signals measured
by the device. Effective unsupervised learning is only possible
when features extracted from these signals have statistical
distributions that strongly depend on the event states. Selection
of strong discriminating features is therefore a crucial step in
designing an unsupervised learning algorithm. The adaptive
transfer learning algorithm introduced here generates a set of
strongly discriminating event-labeled features that are based
on statistical summaries of the device signals at multiple time
scales.
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A state-of-the-art unsupervised algorithm for detecting un-
observed event state sequences from time series data is the
hidden Markov model (HMM) [60]. The HMM is a generative
model in which the hidden states are latent random variables
that condition the joint probability distribution of the data.
HMM methods have been widely applied to many health
applications [8], [36], [58], [53], [5]. However, the HMM is
not well adapted to data whose statistical distribution may
shift over time. When there are external factors that cause
perturbations to the distribution, the training data may be
mismatched to the post-training data and the HMM will fail to
perform as well as expected. In the machine learning literature
this phenomenon is known as data covariate shift [43]. Many
methods have been proposed to address the covariate shift
problem, principally for supervised learning [57], [35], [38],
[44], [21].

The adaptive unsupervised transfer learning method for
event state classification introduced in this paper is desig-
nated by the acronym HMM-FLDA. It involves learning a
multivariate HMM latent state prediction model that initializes
a sequential version of Fisher’s linear discriminant analysis
(FLDA) to adapt the initialized HMM to perturbed post-
baseline data. Our adaptive transfer learning method is intro-
duced as the key component of a complete data processing
pipeline that includes pre-processing for local feature extrac-
tion and abnormal signal detection, adaptive event classifica-
tion using HMM-FLDA, and post-processing for constructing
strong high dimensional event-labeled features for inferring
perturbation-dependent events, e.g., health outcome after ex-
posure to a viral pathogen.

We illustrate the proposed analysis pipeline for a human
viral challenge (HVC) experiment in which physiological
data from multiple subjects is collected over multiple days
from wearable wristband devices. On the second day of the
experiment the subjects were exposed to a H1N1 flu virus that
caused some to become infected, as clinically determined by
viral shedding which does not occur before the 4th day. For
each subject, the HMM-FLDA is trained on the first two days
and nights of wearable data to generate sleep/wake features.
Using these features we are able to predict if the subject will
get infected and the onset time, defined as the first day that
shedding is detected.

The remainder of this paper is organized as follows: we
introduce in detail the proposed transfer learning algorithm in
Section II. Section III presents a numerical simulation study
emulating the HVC experimental data, but with ground truth
event labels. Section IV applies the proposed analysis pipeline
to wearable data collected in the experimental HVC study. In
Section V we end the paper with discussion and conclusions.
Supporting information on the algorithm, the pipeline, and the
HVC data is presented in the supplementary Appendices.

II. ADAPTIVE UNSUPERVISED EVENT MONITORING

Figure 1a summarizes the proposed adaptive event labeling
procedure and Algorithm 1 provides pseudo-code for its prin-
cipal steps. Figure 1b shows the entire data processing and
analysis pipeline, from sensor data capture to event-labeled
feature extraction to predictive models using these features.

The pre-processed data comes in the form of a p × N
matrix X = [xt1 , . . . ,xtN ] where xt ∈ Rp is a p-dimensional
real valued feature vector, available at a set of time instants
{ti}Ni=1. We assume a statistical time series model for xt with
hidden states that determine the joint probability distribution
pX(x1, . . . ,xN ). Specifically, associated with each time sam-
ple xt is a latent (hidden) variable yt ∈ {0, 1, . . . ,K}, which
labels the event associated with xt. Later in the paper we will
specialize to the binary case where K = 2 and the events
correspond to a person’s sleep or wake state at a particular
time. We denote y = [yt1 , . . . , ytN ] the time sequence of
a subject’s hidden event states. In the time series setting, y
determines the conditional probability distribution pX|y and
the marginal probability distribution pX . We construct an
event classifier function based on an HMM with a parametric
(Gaussian) conditional distribution of xt given yt that may
gradually shift over time, e.g., due to a perturbation after
exposure to a pathogen. The parameters of the classifier
function are estimated from the data in a two phase process
involving: (1) an initial training phase where the HMM model
is fitted to a batch of (healthy) baseline data, followed by
(2) an adaptation phase where a naive Bayes Gaussian model
is adapted to future batches of possibly perturbed data using
Fisher Linear Discriminant Analysis (FLDA) in a sequential
transfer learning framework.

A. Baseline training: HMM initial segmentation

For N0 < N define the baseline (BL) segment of the
data X as the first N0 time samples XBL = [xt1 , . . . ,xtN0

]
and the post-baseline (PBL) segments of the data as the
remaining part XPBL = [xtN0+1

, . . . ,xtN ]. The BL segment
is used as a training set for learning the parameters of a
multivariate HMM [56]. The HMM is a Markov model:
modeling the observations as an N -length segment of a
Markov random process {(xt, yt)}∞t=−∞, where transitions
yt−1 → yt between event states have probabilities specified
by a K ×K state transition matrix A. The Markov property
implies that the joint distribution pX,y factorizes as: pX,y =

pxt1
,yt1

∏N0

i=2 pxti
,yti |xti−1

,yti−1
, implying an analogous fac-

torization of the marginal pX and the conditionals pX|y . In
the special case of a Gaussian HMM model each factor pxt|yt
is a multivariate Gaussian conditional distribution, denoted as

xt | (yt = k) ∼ N(µk,Σk), k = 1, . . . ,K, (1)

where µk is a p-dimensional mean parameter and Σk is a p×p
covariance matrix parameter that must be learned in addition
to the state transition matrix A.

There are several methods available for learning multivariate
HMM’s [22], [60] which could be adapted to our setting.
Most methods are iterative and many use a variant of the
expectation-maximization (EM) algorithm to find maximum
likelihood estimates of the unknown parameters. Important
practical considerations are whether the HMM algorithm pro-
vides a final estimate of labeling accuracy, important for self
diagnostics, if it converges sufficiently rapidly to a global
maximum, and if it has fast computation time per iteration,
which tends to increase as K and p increase. In some
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Fig. 1: (a) The proposed HMM-FLDA unsupervised transfer learning algorithm based on a multivariate hidden Markov model
(HMM) and Fisher’s linear discriminant analysis (FLDA) to segment event states; (b) The three stages of proposed data
processing pipeline, discussed in Section IV-A. The HMM-FLDA procedure depicted in (a) appears in the second stage of the
pipeline.

applications, it may be desirable to estimate the number of
event states K, for which automated model selection versions
of HMM are available. For a comprehensive review of HMM
implementations the reader can refer to [60, Ch. 8]. In our
pipeline we use a reasonably fast multivariate HMM algo-

rithm implemented by EM iterations that approximates the
maximum likelihood estimator of the HMM parameters. In
the Expectation (E) step, the marginal likelihood is computed
by a variant of the forward-backward algorithm [39], which
calculates the gradient of the log-likelihood (score) function
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Algorithm 1 HMM-FLDA gradual self-training event state classifier

1: Initialize with: {ŷt,xt}
tN0
t=1 . Use HMM to classify baseline data

2: while tN0
< t < tN do . Continue over all batches of samples

3: for l in 1 to L do . Iterate over candidate training sizes dl
4: procedure FISHER’S LDA(train = (t− dl, t], test = (t, t+ ∆t])
5: w = S−1

W (x̄1· − x̄0·) . Update FLDA weights on train data
6: zt = wTxt
7: ŷt(dl) = 1

{
(zt − z̄0·)

2/σ̂2
0 − (zt − z̄1·)

2/σ̂2
1 > log(γ σ̂2

1/σ̂
2
0)
}

. Classify test data with updated weights
8: SI(dl) = SI(train, test; dl) . Compute separability index (5)
9: d(1) = which.max(SI(dl)) . Select optimal training window length

10: ŷt = ŷt(d(1)) . Classified labels of current batch
11: t = t+ ∆t . Move on to the next batch

in a single pass.

B. Post-baseline adaptation: sequential transfer learning

If the feature distribution varies over time, the static
baseline-trained HMM will have difficulty classifying and
segmenting events in the post-baseline data XPBL. To address
this difficulty we introduce a transfer learning strategy that is
initialized with the HMM on the initial-training data and se-
quentially updates the event classifier over successive batches
of test data, continually adapting to changes in distribution.
In transfer learning the batches are called target domains
and the objective is to design a classifier that continually
adapts to them, a property called domain adaptation [33], [43].
To achieve this objective, we use an unsupervised gradual
self-training procedure. In supervised transfer learning, “self-
training" means that domain adaptation is done with an
unlabeled test set and “gradual" means that the adaptation is
done sequentially over time, updating over successive batch
pairs. As compared to direct self-training procedures, which
try to adapt to all test batches at once, gradual self-training
procedures are better suited to online applications and are
more robust to smoothly varying shifts in distribution. Recent
theory establishes that gradual procedures are provably better
when the class distributions on successive pairs of batches are
close in Wasserstein distance [37]. This closeness condition
is satisfied when the distributions are quasi-stationary, an
assumption common in time series analysis [1] and online
supervised learning [50].

Our unsupervised gradual self-training procedure consists of
three components: 1) an unsupervised version of Fisher’s LDA
that uses class labels predicted by the HMM to project the
dataXBL to a one dimensional space that maximally separates
these classes. 2) application of this projection to the next batch
of samples in XPBL followed by event classification using a
naive Bayes classifier; 3) using the class labels to update the
projection by reapplying Fisher’s LDA to the batch filtered by
a tapered sliding-window. This process is sequentially repeated
for each successive batch, resulting in a continuous adaptation
of the event classifier.

Fisher’s LDA is most commonly applied in the context of
supervised learning for dimension reduction and classification
[18], [20] when a labeled sample is available for training. Here
we adapt LDA to the unsupervised context of latent event

classification. After applying HMM to the baseline sample
xt1 , . . . ,xtN0

we obtain estimated class labels ŷt1 , . . . , ŷtN0
.

We then train Fisher’s LDA classifier on the putatively labeled
sample {(xt1 , ŷt1), . . . , (xtN0

, ŷtN0
)}. Fisher’s LDA uses di-

mensionality reduction to learn a classifier. By applying a
weight w ∈ Rp to xt FLDA generates a projection score
zt = wTxt. The weight vector is optimized so that these
scores attain the largest possible separation of the classes.
Fisher’s LDA accomplishes classification of a novel sample
xt′ by using the trained weights to compute the projected score
wTxt′ that is used in an optimal naive Bayes LDA classifier
to predict its unknown label yt′ .

Specifically, for the case of K = 2 classes yt ∈ {0, 1},
in the dimensionality reduction stage of FLDA the class
separability of the projection scores zt = wTxt is measured
by the following ratio of between-class variation and within-
class variation:

J(w) =
(z̄1· − z̄)2 + (z̄0· − z̄)2∑

t∈G1
(zt − z̄1·)2 +

∑
t∈G0

(zt − z̄0·)2
, (2)

where Gk = {t ≤ N0 : yt = k} denotes the data indices
of xt coming from event class k, z̄k· = |Gk|−1

∑
t∈Gk

zt for
k ∈ {0, 1} are the class-specific sample mean projected score
and z̄ is the overall sample mean projected score. The optimal
w that maximizes (2) is [20]

w = S−1
W (x̄1· − x̄0·), (3)

where x̄k· = |Gk|−1
∑
t∈Gk

xt is the class-specific sample
mean and SW =

∑
k=0,1

∑
t∈Gk

(xt− x̄k·)(xt− x̄k·)T is the
within-class scatter matrix of the xt’s.

Under the multivariate normal model (1) for xt, the zt’s
are conditionally independent Gaussian distributed random
variables with conditional mean µk and conditional variance
σ2
k given yt = k. Assuming independent conjugate priors

on µk and σ2
k, conditioned on the training data XBL, the

maximum a posteriori (MAP) estimator of the class label yt′
of a novel test sample xt′ based on its projected score zt′ is
given by the naive Bayesian classifier [20]:

yt′ = 1

{
(zt′ − z̄0·)

2

σ̂2
0

− (zt′ − z̄1·)
2

σ̂2
1

> log

(
γ
σ̂2

1

σ̂2
0

)}
, (4)

where 1(A) is the binary indicator function equaling 1 when
the logical preposition A is true. Here, as above, z̄k is the
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class-specific sample mean and σ̂2
k the within class sample

variance of {zt : t > N0} σ̂2
k = (|Gk| − 1)−1

∑
t∈Gk

(zt −
z̄k·)

2. The threshold parameter γ in (4) is the prior odds
ratio P (yt′ = 0)/(1 − P (yt′ = 0)) and can be adjusted to
account for class imbalance and to trade-off the two types of
classification errors. The naive Bayes classifier classifies the
label of the test sample based on its relative distance to each
of the class centroids z̄k weighted by the class dispersions σ̂2

k.
We next describe the proposed unsupervised transfer learn-

ing procedure using gradual self-training to sequentially up-
date the HMM-FLDA algorithm as, outlined in Algorithm 1
and depicted in Fig. 1a. The post-baseline data is successively
divided into disjoint test batches of length ∆t secs., called
the test window length, a tuning parameter whose selection
is application dependent. The current batch is used as a
test sample to update the self-trained HMM-FLDA classifier
determined from the previous batch. Let ttstn = ttstn−1 + ∆t
be the start time of the n-th test window and denote the
n-th test batch as Ttst = {xti}ti∈[ttstn ,ttstn +∆t). The update
proceeds as follows. For a specified size d, define the n-th
training set Ttrn = {xti}ti∈[ttstn −d,ttstn ). Note that the feature
instances in Ttrn have already been assigned class labels
{ŷti}ti∈[ttstn −d,ttstn ) in the previous update of HMM-FLDA.
Hence, the first step in updating the classifier is to compute
the updated FLDA weight vector w, as defined in (3), using
Ttrn and its previously assigned class labels. The second step
is to use this updated weight vector to assign predicted labels
{ŷti}ti∈[ttstn ,ttstn +∆t) to instances in Ttst.

The size d of Ttrn is adapted from batch to batch by
optimizing a separability index (SI) defined over Ttrn ∪ Ttst.
Among the many possible SI measures that could be used,
we adopt Thornton’s SI [52], a competitive measure for
assessing class separation originally introduced for supervised
classification problems [4], [10], [23]. Also called the geo-
metric separability index (GSI), Thornton’s measure has seen
wide application in health, robotics, geology and other fields
[42], [14], [49], [54], [47]. We use the following simple
unsupervised modification of the GSI [52], computed on the
merged training and test samples for the batch:

SI(d) =

∑
t∈Ttrn(d)∪Ttst{ŷt + ỹt + 1} MOD 2

|Ttrn(d)|+ |Ttst|
, (5)

where ỹt is the predicted class of the nearest neighbor of xt
in the set of merged training and test samples. As compared
to Thornton’s original SI, defined for supervised classification
problems where the true labels yt are known, the unsupervised
modification (5) uses the predicted labels ŷt in place of yt.
Here the nearest neighbors are determined by the “projection
distance” defined, for samples at time t and t′, as d(t, t′) =
|ŵT (xt−xt′)|. Rank ordering the SI indices SI(d(1)) > . . . >
SI(d(L)) yields d(1) as the optimal training window length for
the batch.

III. NUMERICAL SIMULATION STUDY

We performed a simulation of HMM-FLDA that emu-
lates the experimental study presented in Section IV, but
with ground truth event states. Two dimensional data xt =

[x
(2)
t , x

(2)
t ] is simulated from conditional distributions given

the latent event state yt, which randomly switches between
wake (yt = 0) and sleep (yt = 1) with a mean cadence of
approximately 24 hours. To emulate the perturbation effect of
viral infection, each of these conditional distributions are fixed
during the baseline training period but may undergo slowly
varying time shifts in the post-baseline period. Two different
post-baseline scenarios are simulated, called the stable case
(no shift) and the unstable case (slow shift).

For the stable case, we generate the sequence of states
as a realization of a Markov process with state transition
probabilities that are empirically matched to those extracted
from the HVC data described in the next section. We fix
the number of state transitions T and the initial state is set
to y0 = 0. The duration ∆τ1, i.e., the time to the first
transition, is drawn from TN(µ0, σ0), a truncated normal
(TN) distribution with location and scale parameters µ0 and
σ0. The duration ∆τ2 of the second event is independently
drawn from a TN distribution with mean µ1 = 24 − µ0

and variance σ2
1 = σ2

0 . This process is repeated until the T -
th transition variable ∆τT has been drawn. The discretized
transition times τm =

∑m
i=1 ∆τi, m = 1, . . . , T , specify the

state sequence {yt, t = 1, . . . , N}. A consecutively occurring
pair of (wake, sleep) periods is called a session. Over a
given session m, the data channels x

(i)
t , i = 1, 2, were

drawn independently from a truncated normal distribution
p(x

(1)
t |yt = k) of the form TN(u

(1)
k , σ

(1)
k ) and a log-normal

distribution p(x(2)
t |yt = k) of the form LN(u

(2)
k , σ

(2)
k ), whose

translation and scale parameters u and σ depend on the state
k = 0, 1. These two distributions emulate the median heart
rate feature and the accelerometer standard deviation feature
used in Section IV-B2 for the full time course HVC data.

For the unstable case, the parameters of the distributions
of yt and xt were changed from session to session to reflect
perturbations during the post-baseline period. Specifically, the
truncated normal parameters (µmk, σmk) of the event dura-
tions ∆τm were made to be session dependent by matching
these parameters to the empirical distributions of the HMM-
FLDA estimated duration for the m-th session, where the
empirical distribution was constructed over the sub-population
of symptomatic subjects in the HVC study. Furthermore,
we introduced a time-varying post-baseline conditional mean
u

(i)
mk = E[x

(i)
t |yt = k] of the i-th channel over the m-th

session for the k-th event state. In particular, the post-baseline
conditional mean was modeled as a quadratically varying
function of m: u(i)

mk = u
(i)
1k−b

(i)
k (m−mo)

2
/ (1−mo)

2
+b

(i)
k ,

for m = 1, . . .M, i = 1, 2, k ∈ {0, 1}. Here mo is the
index of the session where the mean u(i)

mk reaches a positive or
negative apex, and b(i)k = u

(i)
moj
−u(i)

1k is the difference between
the apex value u

(i)
mok

and the initial value u
(i)
mk. The pair

(mo, b
(i)
k ) controls how the mean values of (x

(1)
t , x

(2)
t ) change

over sessions. In the simulation, mo was randomly drawn
from {5, 6, 7} with equal probability, and we considered 2
sets of values for the b(i)k ’s. To achieve a close facsimile to
the experimental data analyzed in Section IV, we simulated
M = 11 sessions, and the time between samples was set to
δt = 1/6 hr, i.e., the 10 minute aggregated sample period used
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in that section. Furthermore, all of the translation and scale
parameters used in the simulation were matched to summary
statistics obtained from the HMM-FLDA analysis described in
Section IV-B2. Several realizations of the simulated data are
shown in Fig. 5 in the Appendix.

Table I compares the empirical performance (a total of
1000 independent trials on 100 different realizations of the
model) achieved by the proposed HMM-FLDA procedure
to other procedures (HMM and dHMM) for the stable and
unstable cases described above. Each of the stable and unstable
cases is characterized by the value of the four coefficients
(b

(1)
0 , b

(1)
1 , b

(2)
0 , b

(2)
1 ) that define the trend in the post-baseline

mean u
(i)
mk. For a stable subject there is no mean trend for

either event class and all of these coefficients are zero. Two
unstable cases are considered: a case called unstable++, where
the trends for both event classes are concave with a randomly
located peak, and a case called unstable+-, where for each
event class the trends go in opposite directions, i.e., one trend
is concave while the other is convex. The table shows the value
of 5 performance criteria (averaged over 1000 independent
trials) when the method is trained on a single realization of
the two signals and tested on an independent out-of-sample
realization drawn from the same distribution. The performance
criteria are:

• Accuracy: the number of samples with correctly classi-
fied event states divided by the total number of samples,

• F1: the harmonic mean of the precision and recall clas-
sification criteria,

• Cosine dis.: the cosine distance between the vector
of classified event states and the ground truth states,

• Onset diff. the absolute difference between esti-
mated onset time of a sleep session and the nearest onset
time of a true sleep period, averaged over sessions,

• Duration diff. the absolute difference between es-
timated duration of a sleep session and the duration of
a true sleep period that overlaps with the predicted one,
averaged over sessions. (If the predicted period doesn’t
overlap with any true period, the difference is taken as
the length of the predicted period)

Table I compares the mean performance of the proposed
method to a standard off-the-shelf two-state HMM state esti-
mator and a variant of HMM, called dHMM, that uses locally
estimated scatterplot smoothing (LOESS) [13] to detrend each
of the two data channels as a preprocessing step before training
the HMM. The HMM and LOESS were implemented with R
packages depmixS4 [56] and fANCOVA. The results shown
in Table I establish the benefit of our proposed HMM-FLDA
adaptive procedure. In terms of event classification perfor-
mance (Accuracy, F1, and Cosine distance), except for cosine
distance in the unstable++ case, where the performances are
statistically equivalent, the proposed method significantly out-
performs the competing HMM and dHMM procedures for both
unstable++ and unstable+- models (p-value �0.01 according
to one-sided paired t-test). It is also worth noting that, in the
unstable++ case, LOESS detrending of dHMM improves on
HMM across all criteria except for onset diff., which is the
r.m.s. estimation error for sleep onset time. The Supplementary

Appendix C provides additional details on this simulation.

IV. APPLICATION TO HVC EXPERIMENTAL DATA

We apply the proposed adaptive transfer learning method to
sleep/wake event classification for an experimental dataset un-
dergoing a perturbation after baseline. This dataset of wearable
data was collected as part of a human viral challenge (HVC)
study where data from a cohort of participants was collected
before and after exposure to a viral pathogen. More details
on the HVC study are provided in Appendix A. We will show
that the proposed FLDA-HMM algorithm, trained individually
on each participant without clinical outcome data, is capable
of segmenting sleep events and extracting features that can
be used to accurately predict clinical outcomes, specifically
whether a subject is infected or not, and the onset time of
infection.

Sleep has repeatedly been found to be associated with
immune, cardiovascular, and neuro-cognitive function [41],
[30], among other functions. Many studies have revealed that
changes in sleep pattern can be an important modulator of
human response to diseases. For example, in a human viral
challenge (HVC) study [16], researchers found that nasal
inoculation with rhinovirus type 23 significantly reduced total
sleep time among symptomatic individuals during the initial
active phase of the illness. In another study [15], shorter sleep
duration in the weeks preceding an exposure to a rhinovirus
was found associated with lower resistance to illness. Since
physiological signals such as instantaneous heart rate, physical
activity, and skin temperature differ substantially during wake
and sleep periods, automated sleep/wake labeling is possi-
ble. Therefore, the development of effective sleep monitoring
methods has been of increasing interest.

While polysomnography (PSG) is the gold standard for
sleep monitoring in sleep-related studies [32], [17], it is
often cumbersome outside of a lab setting as it uses elec-
troencephalogram (EEG), electrocardiogram (ECG), and elec-
tromyogram (EMG), and requires a registered technician to
perform sleep scoring [46]. Recently much effort has been
made to remedy the inconvenience of manual scoring and,
alternatively, to provide automated analysis of the PSG signals
[19], [40], [31]. Thus there has been growing interest in
low-cost alternatives to PSG using small package wearable
devices. Signals captured by wearable sensors have included
movement induced accelerometer signals, circulating blood
volume pulse (BVP), heart rate (HR), electrodermal activity
(EDA), temperature, respiration effort (RSP), ambient light
and sound. These devices can be wrist-worn, ankle-worn, arm-
worn, lapel-worn, chest-worn or embedded in mobile phones
[34],[48], [17]. The Empatica E4 device (Empatica Inc. USA),
used in the HVC study discussed below, captures 4 such
signals.

A. HVC data and processing pipeline

Data was collected from E4 wristband devices worn by 25
participants enrolled in a longitudinal human viral challenge
(HVC) study over the time period: 0 hours to 270 hours (11
days). The study participants were exposed to a pathogen (Inf
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TABLE I: Out of sample performance of the proposed adaptive transfer learning algorithm as compared with standard HMM
operating on the original data (HMM) and operating on LOESS detrended data (dHMM).

Setting Methods Accuracy F1 Cosine dis. Onset diff. Duration diff.

stable HMM 0.9981 0.9987 0.9968 0.0165 0.0307
dHMM 0.9981 0.9986 0.9967 0.0253 0.0373

Proposed 0.9980 0.9986 0.9964 0.0168 0.0313

unstable++ HMM 0.8959 0.9209 0.8559 1.6704 2.9169

dHMM 0.9127 0.9231 0.8957 2.4709 2.2653

Proposed 0.9356 0.9544 0.8904 1.0679 1.5756
unstable+- HMM 0.9369 0.9510 0.9187 0.2763 1.9750

dHMM 0.9271 0.9370 0.9114 1.0170 2.0131

Proposed 0.9758 0.9833 0.9564 0.3712 0.3817

TABLE II: Parameter settings for the HVC data processing pipeline

Symbol Value Description Loc. in pipeline

δt 10 minutes epoch length local feature extraction (pre-processing)
t1 Hour 0 starting time of BL segment Baseline HMM training
tN0

Hour 36 end time of BL segment Baseline HMM training
∆t 3 hours test window length Domain adaptive FLDA training
dl {12, 13, . . . , 59, 60} hours training window lengths Domain adaptive FLDA training
γ 1 prior odds ratio Domain adaptive FLDA training

H1N2) on the second day of the study at 36 hours (noon
on day 2). Over subsequent days some participants developed
symptomatic infection, confirmed by viral shedding from PCR
assay on nasal lavage once per day. Such tests are often used to
detect or confirm viral infection and to identify asymptomatic
spreaders [45], [29], [59], [24]. In the HVC study, shedding
in infected subjects was first detected either on day 4 at 81
hours, designating early onset shedders, or on day 5 at 106
hours, designating late onset shedders.

Four channels of physiological signals, including 3-axis
accelerometry (ACC sampled at 32 sa/sec), heart rate (HR at 1
sa/sec), skin temperature (TEMP at 4 sa/sec) and electrodermal
activity (EDA at 4 sa/sec), were measured by the E4 devices.
See Fig. 4a in Appendix B for representative signals from an
infected and a non-infected subject.

We implemented the three-stage data processing pipeline in
Fig. 1b for sleep segmentation and high dimensional feature
extraction from the HVC data. The first stage (top branch in
Fig. 1b) consists of a pre-processing module, performing data
conditioning, fine grain temporally-localized feature extraction
and abnormality filtering. The second stage (middle branch)
implements the HMM-FLDA module, performing adaptive
sleep segmentation on non-abnormal data. The third stage
(bottom branch) is a post-processing module, aggregating the
data into sleep and wake sessions and performing coarse grain
session-localized feature extraction.

Table II summarizes the parameter settings we used to

implement the pipeline for the HVC data. Figure 2 depicts
how the pipeline constructs sleep/wake sessions and session-
localized features from the fine grained features.

1) First stage: local features and abnormality filtering:
Like other wearable sensors, the Empatica E4 captures data at
high frequencies and, because of the fact that they are worn
by subjects in non-laboratory situations, the raw data collected
are often voluminous and noisy. To mitigate the impact of
occasional poor readings and reduce computational burden, the
pre-processing stage performs data conditioning, local feature
extraction and abnormality filtering. First the missingness of
a subject’s available data is evaluated, resulting in rejection of
any subject with more than 40% missing time points. For each
of the remaining subjects, their data is segmented into non-
overlapping time intervals, which we call epochs, of equal
length δt secs. The epoch length was set to δt = 10 mins
to achieve a tradeoff between oversmoothing the sleep/wake
transitions (excessive length) and noise sensitivity (insufficient
length). See Appendix D for additional discussion. Shorter
epoch lengths may be more appropriate for classifying other
types of event states, e.g., for capturing quality of sleep or
detecting transitions between different sleep stages. For each
of the 4 E4 signals, the module in Fig. 1b labeled "Local fea-
ture extraction" computes statistical features over each epoch
corresponding to the signal mean (MEAN), signal median
(MED) and signal standard deviation (SD). If a particular
epoch has fewer than 90% available samples, e.g., due to the
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TABLE III: Features (196 in total) extracted from sleep and wake sessions for each day from subjects in the HVC study.

Name Number Description

Duration 2 total sleep, night sleep
Onset/offset 2 night sleep only
HR summary 9×2 3 (mean, median, s.d.) × 3 (mean, median, sd within session) × 2 (sleep, wake)
HR linear coef. 6×2 3 (mean, median, sd) × 2 (coef.0, coef.1) × 2 (sleep, wake)
HR quadratic coef. 9×2 3 (mean, median, sd) × 3 (coef.0, coef.1, coef.2) × 2 (sleep, wake)
TEMP 24×2 same as HR
ACC 24×2 same as HR
EDA 24×2 same as HR

WAKE session SLEEP session

HR MED HR MED HR MED

HR MED.sd
(wake)

epoch epoch

HR MED HR MED

HR MED.sd
(sleep)

one day

Fig. 2: Labeling of events and event sessions from wearable
data, illustrated for one of the features (HR MED = heart rate
median) and one of the meta-features (HR MED.sd = standard
deviation of HR MED) for Empatica E4 device in the Human
Viral Challenge (HVC) study. In the first stage of the pipeline
in Fig. 1b, epochs of 10 min duration (δt in Table II) are
used as windows over which temporally localized statistical
features (mean, median, standard deviation) of the E4 device
signals are extracted. These features are used in the second
stage of the pipeline that extracts event labels, wake and sleep
in the case of the HVC, and organizes them into contiguous
labeled time segments, called sessions. In the third stage of
the pipeline event-labeled meta-features (HR MED.sd (wake)
and HR MED.sd (sleep)) are extracted as statistical summaries
over the wake and sleep sessions.

E4 not being worn, the epoch is discarded.
These local features are then processed by the "Abnormality

filtering" module to identify time points at which outliers
occur, labeled as non-normal data in Fig. 1b. Similarly to
methods used in network intrusion detection [6], the module
uses marginal k-means clustering and quantile filtering to label
time points as outliers (See Appendix D-A1). Subjects having
less than 60% normal data cannot be reliably segmented and
are omitted from subsequent analysis.

The last pre-processing step consists of selecting a subset of
the 12 local features to train the HMM-FLDA sleep segmen-
tation procedure. For this we select putative wake and sleep
time intervals in the early evening around 21:00 and in the
twilight hours around 4:00. These time periods were chosen
since it is expected that most people would be awake at 9pm
and sleeping at 4am. The sleep/wake discrimination capability
of each feature over these two intervals was measured by a

sleep/wake separability index (SWSI) computed over all non-
abnormal subjects and over all available days. The SWSI is
defined similar to the geometric separability index (5):

SWSI(k) =

∑
t∈Twake∪Tsleep{ŷt + ỹt(k) + 1} MOD 2

|Twake|+ |Tsleep|
, (6)

where k = 1, . . . , p indexes the features, Twake and Tsleep are
respectively the time intervals around 21:00 and 4:00 over all
available days of data, ŷt is the putative label assigned to the
k-th feature xt(k), defined as ŷt = 1 if t ∈ Tsleep and ŷt = 0
otherwise, and ỹt(k) is the label of the nearest neighbor of
xt(k) among {xτ (k) : τ ∈ Twake ∪ Tsleep}. The criterion for
including the k-th feature among those that are used to train
the HMM-FLDA is that SWSI(k) be greater than 0.7 for at
least 75% of the subjects.

2) Second stage: adaptive sleep detection: Adaptive sleep
segmentation was implemented using the HMM-FLDA pro-
cedure described in Section II. The initial training window
(baseline) for training the HMM-FLDA (Algorithm 1) was
defined as the period from 0 to 36 hours, the time of viral
inoculation. The test window length was chosen to be ∆t = 3
hours, which is based on our expectations about the time
scale of immune response induced changes in the E4 signal
distributions subsequent to pathogen exposure. The most rapid
time scales of immune response are on the order of a few
hours, e.g., inflammatory monocyte recruitment [27]. Such a
choice of ∆t will minimize the likelihood that the HMM-
FLDA algorithm loses track of covariate shifts from batch
to batch. The range of training window lengths d1, . . . , dL
used by the optimization loop in Algorithm 1 was restricted
to d1 = 12 to dL = 60 hours to guarantee a good balance of
wake and sleep samples over the window.

After the HMM-FLDA procedure labels the normal data,
an "Abnormality classifier" module identifies any abnormal
samples (identified in Stage 1) that is physiologically mean-
ingful and reinserts it into the data stream, labeling it with
the label of the sample immediately preceding it (See Fig. 12
in Appendix D-A2). Finally, a modified median filter with a
90-min smoothing window is applied to remove short bursty
sleep periods of less than 60 mins. Such short sleep periods
are likely to lack deep sleep stages 3 and 4, which typically
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start 30 mins. after sleep onset and can last 20 to 40 mins.
[9].

3) Third stage: session-level feature set: In the third stage
of the pipeline, the sleep/wake sessions produced by the
second stage are aligned to particular calendar days. A full
day session is composed of wake sessions and sleep sessions.
Any sleep session overlapping with a given day whose onset
occurs before 5am (5:00) is associated with the previous
day session. The binary sleep/wake label is then appended
to the local features generated in the the first stage of the
pipeline, doubling the total number of local features. Then a
set of session-level features are extracted by computing several
statistical summaries over daily wake and sleep sessions. This
results in 196 session-level features that include the mean,
median, and standard deviation (sd) of the event labeled local
features over a sleep or wake session. All features related
to standard deviation are log-transformed. The session-level
features also include the coefficients of linear and quadratic
fits to the time course of these features over a sleep or wake
session. In addition session timing features, such as, sleep
duration, sleep onset, and sleep offset are included in the
session-level feature set. See Table III.

B. Online sleep segmentation
We emulate an online implementation of the pipeline in Fig.

1b by reapplying it successively to all available data at the end
of each day. Daily updating of the segmentation corresponds
to the real-world scenario where data is uploaded from the
E4 device once per day, corresponding to the data acquisition
rate in the HVC study. Continuous (real-time) updating will
only become practical when devices have sufficient power for
continuous data transfer or onboard processing. Below we
illustrate the online implementation for a case of pre-infection
segmentation before shedding occurs, and a full time course
segmentation at the end of the study. For additional details see
Appendix E.

1) Illustration: pre-infection segmentation: Here only the
first 60 hours (up to day 3 at 12pm) of the data are available
to the pipeline. The first 60 hours include the inoculation time
(36 hours) and the first two nights of sleep. Note that no
infection (shedding) is detected before day 4 at 81 hours. The
preprocessing stage of the pipeline removed 5 subjects with
excessive missing or abnormal data: 2 of these subjects had
more than 40% of their time points missing and 3 subjects
had more than 40% abnormal time points. For the remaining
20 subjects local feature selection was accomplished by ap-
plying SWSI (6) to all 12 variables to contrast early evening
periods (19:00-22:00) to twilight periods (2:00-5:00). Only
three features were found to have SWSI above 0.7 for at least
75% of the subjects: the mean and median heart rate (HR
MEAN and HR MEDIAN) and the standard deviation of the
magnitude accelerometer (ACC SD). As the mean and median
heart rate are highly correlated and the SWSI of HR MEAN
has lower 25% quantile than does the HR MEDIAN, only the
HR MEDIAN and ACC SD were selected. Three hour long
sleep and wake periods were necessary in order to obtain a
sufficient number of representative time samples since only
two days and nights are available.

2) Illustration: full time course segmentation: The full time
course (0-270 hours) of a subject’s data was made available
to the pipeline. No subjects had more than 40% missing time
points over this period. Stage 1 abnormality filtering resulted in
elimination of 5 subjects as excessively abnormal, who were
removed. To compute SWSI for variable selection on each
of the remaining 20 subjects, we used shorter putative wake
periods (21:00-22:00) and sleep periods (4:00-5:00) since there
are many more available days and nights than in the 60 hour
pre-infection time period. Applying the same SWSI variable
selection criterion three features were selected to train the
HMM-FLDA: HR MED, HR SD, and ACC SD.

3) Clinical outcome prediction: We used the feature set
generated by the pre-infection segmentation to perform early
detection of infection. Two clinical outcomes were considered:
1) a binary infection state (whether or not the subject will
shed virus anytime after 60 hours) designating the subject
as infected or non-infected; and 2) the ternary infection state
corresponding to onset time of viral shedding. The three onset
times are defined as: early onset shedding (first detected by
PCR at 81 hours), late onset shedding (first detected by PCR
at 106 hours), and no onset shedding (subject never sheds
virus). Among the 20 subjects whose 0-60 hour data passed
the abnormality filtering test, 9 of them were infected and
11 were non-infected. Among those infected, 3 were early
shedders and 6 were late shedders.

Two predictor models were used for each of these out-
comes, which were trained only on the sleep/wake features
collected on inoculation day (wake/sleep sessions for day 2).
For prediction of whether a subject will shed or not we applied
logistic regression (LR) [20] and for prediction of onset time
we used continuation ratio (CR) regression [2], which can be
interpreted as a discrete version of the Cox regression model
[26].

For both the logistic and the continuation-ratio models the
classification capability of individual features is evaluated
by leave-one-out cross-validation. The top 4 discriminative
features are reported in Table IV, together with their corre-
sponding regression coefficients and a detection performance
criterion: the area under the ROC curve (AUC). AUC is a
measure of the accuracy of a binary classifier and a value
of AUC near 1 means very high accuracy. For CR regres-
sion, since there exist three classes, three different AUCs are
calculated using the “one-versus-the-rest” strategy [7]. The
CR performance is rank ordered in decreasing order of the
minimum of the AUC’s for Early, Late and No onset. See
Appendix E for boxplots of these top 4 features.

The top feature for both LR and CR models is a sleep
feature: the standard deviation of the median heart rate (HR
MED.sd (sleep)). Interestingly, most of the 4 top ranked
features come from sleep sessions, with the exception of
the linear coefficient to a linear fit to the time course of
the standard deviation of ACC, denoted ACC SD.linear.coef1
(wake). Features related to sleep heart rate variation (HR
MED.sd, HR MEAN.sd) and sleep duration (total duration,
offset, night duration) are most discriminative.

The results of running full timecourse sleep/wake segmen-
tation reveals striking temporal differences between shedders
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TABLE IV: Top 4 E4 wake/sleep features for predicting clinical outcome within 24 hours (later than day 3) of inoculation
day (day 2) based on device data collected over the range 0-60 hours (day 1 and 2).

logistic regression model continuation-ratio regression model

Feature Coef. AUC Feature Coef. AUC

Early Late No onset

HR MED.sd (sleep) -3.921 0.758 HR MED.sd (sleep) -5.073 0.882 0.718 0.864
ACC SD.linear.coef1 (wake) -14.468 0.737 HR MEAN.sd (sleep) -4.466 0.706 0.628 0.773
HR MED.quad.coef2 (sleep) 4.318 0.707 Total duration -0.599 0.676 0.551 0.750
Offset -1.452 0.697 Night duration -0.616 0.647 0.500 0.705

Fig. 3: Offset (wake-up time) and total sleep duration (night
and day sleeping) features extracted by the proposed HMM-
FLDA pipeline applied to the experimental human viral chal-
lenge study (HVC) when all time points (0-270 hours) are
available. Viral inoculation took place on day 2 and all infected
people (shedders) started shedding virus on day 4 or day 5.

and non-shedder features. Figure 3 indicates qualitatively
different total sleep duration and sleep offset behaviors in these
two groups over the full 11 day duration of the study. The non-
shedder group sleeps on the average 2.041 hours longer than
does the shedder group (p-value < 0.005 using two-sided t-
test) over this time period. This is consistent with studies of
the effects of sleep on the course of respiratory infection [16].
The mean sleep duration deficit among the shedders gradually
decreases over time, and the trend reverses after day 6. The
offset feature illustrates that non-shedders tend to wake-up
later than the shedders until day 9 of the study.

V. DISCUSSION AND CONCLUSIONS

We have developed an unsupervised adaptive algorithm for
classification of latent event states from multivariate physio-

logical data collected from a wearable device. The algorithm
adapts to perturbations of the initial training distributions using
a sequential transfer learning model to mitigate covariate shift.
The proposed algorithm operates without requiring a priori
information about true sleep/wake states and is capable of
automatically detecting anomalies and abnormal data records.
Numerical simulations established significant advantages of
our model relative to hidden Markov approaches to hidden
event classification.

The results presented in this paper are not without lim-
itations. The HVC experiment has the limitation of small
sample size and the classes are imbalanced. The negative
effect of class imbalance can be compensated, to an extent,
using methods such as the synthetic minority over-sampling
technique (SMOTE) [11]. While no substitute for increasing
actual sample size, we have demonstrated that SMOTE can
improve clinical outcome prediction accuracy as measured by
AUC (Table XI in Appendix E). Another limitation is that
the HVC experiment lacks ground truth information about the
true sleep/wake states of the subjects. The simulation study we
presented emulating a similar HVC experiment with ground
truth is an in-silico validation but a controlled experiment, e.g.,
performed in a sleep lab, would provide better confirmation. It
would also be worthwhile to test the algorithm in a larger scale
experiment that collects self-reported sleep diaries in addition
to clinical data.

There are also limitations of the proposed HMM-FLDA
adaptive event segmentation algorithm. First, the algorithm
may fail if there is an abrupt and excessively large shift in the
event class distributions from time to time. More generally,
loss of track due to abrupt changes is a limitation of the
gradual self-training approach [37],[12] commonly adopted
in transfer learning. In extreme cases this limitation may be
insurmountable as there are fundamental theoretical limits
that limit tracking ability of any adaptive algorithm [25]. If
the abrupt shift in distributions persists over time, a possible
remedy would be to episodically re-initialize the HMM-FLDA
algorithm during the adaptation phase. Secondly, the classifica-
tion accuracy of FLDA may be poor if the event classes are not
linearly separable. At the possible cost of reduced simplicity
of implementation, use of a non-linear classifier in place of
FLDA would overcome this limitation, e.g., using kernelized
FLDA or a Support Vector Machine (SVM) [20].
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We conclude by pointing out that the proposed framework
for adaptive multi-channel event segmentation and feature
extraction easily generalizes beyond the setting of the binary
sleep/wake segmentation illustrated in this paper. Monitoring
different stages of sleep or different wake activity types
would be a natural non-binary extension. With the continuing
advances in the capabilities of wearable devices for digital
health, many new applications will be enabled by continuous
multi-event tracking. These could include accurate behavioral
and health assessment tools that will advance personalized
health care.

The R code and HVC data used for this paper has been made
publicly available at GitLab (gitlab.eecs.umich.edu/yayazhai/
shezhai_bme2020).
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APPENDIX A
HUMAN VIRAL CHALLENGE (HVC) STUDY

A human viral challenge (HVC) study was conducted in 2018 as a collaborative effort between Duke University and University
College London under a grant from the Defense Advanced Research Projects Agency (DARPA) under the PROMETHEUS
program. Thirty nine healthy volunteers between the ages of 18 and 55 were enrolled as participants in the study, which took
place in the United Kingdom.

The HVC was divided into outpatient and confinement phases. During the confinement phase participants stayed overnight for
a period of 8-11 days in total from the morning before the day the viral challenge was administered to the end of confinement.
During the outpatient phase subjects were evaluated for health conditions by tests including ear, nose and throat (ENT),
respiratory and cardiac assessment. In addition to other data types not relevant to this paper, wearable device data (Empatica
E4) and clinical infection status data (viral shedding) were collected from the participants. All data was anonymized prior to
transfer to Duke and Michigan for the analysis described in this paper.
Participant exclusion criteria: Chronic respiratory disease (asthma, COPD, rhinitis, sinusitis) in adulthood. Inhaled bronchodila-
tor or steroid use within the last 12 months. Use of any medication or other product (prescription or over-the-counter) for
symptoms of rhinitis or nasal congestion within the last 3 months. Acute upper respiratory infection (URI or sinusitis) in
the past 6 weeks. Smoking in the past 6 months or >5 pack-year lifetime history. Subjects with allergic symptoms present
at baseline. Clinically relevant abnormality on chest X-ray. Any ECG abnormality. Those in close domestic contact (i.e.
sharing a household with, caring for, or daily face to face contact) with children under 3 years, the elderly (>65 years),
immunosuppressed persons, or those with chronic respiratory disease. Subjects with known or suspected immune deficiency.
Receipt of systemic glucocorticoids (in a dose ≥ 5 mg prednisone daily or equivalent) within one month, or any other
cytotoxic or immunosuppressive drug within 6 months prior to challenge. Known IgA deficiency, immotile cilia syndrome,
or KartagenerâĂŹs syndrome. History of frequent nose bleeds. Any significant medical condition or prescribed drug deemed
by the study doctor to make the participant unsuitable for the study. Pregnant or breastfeeding women. Positive urine drug
screen. Detectable baseline antibody titres against influenza challenge strains. History of hypersensitivity to eggs, egg proteins,
gentamicin, gelatin or arginine, or with life-threatening reactions to previous influenza vaccinations.

Confinement phase study: The eight days of the confinement phase consisted of a 36 hour healthy reference time period
(baseline), inoculation at 36 hours (exposure), and a post-baseline time period. The E4 data of the participants was collected
over the entire period and viral shedding was measured once per day in the morning. On the second day (day 2) at approximately
noon (36 hours from start of study) each participant was challenged by a GMP influenza A/California/04/2009-like (H1N1)
virus strain. The inoculation was administered by inserting intra-nasal drops on a single occasion with diluted inoculum with
an average dose of 106 TCID50 in 1mL PBS divided equally between the two nostrils. This resulted in an average attack rate
of 44%. Following inoculation, advice regarding hand hygiene was given and subjects were provided with alcohol hand gel
and face-masks if they moved between the inoculation room and the quarantine ward.
Viral shedding assay: Over the confinment phase of the study, viral shedding was measured once per day through a nasal
lavage. The collected fluid was aliquoted into sterile microfuge tubes and centrifuged for analysis of cells, and lavage fluid
was later analysed by singleplex PCR to quantify the degree of viral shedding of the inoculated strain. Multiplex PCR was
performed on the pre-inoculation lavage and post-inoculation lavage collected during the study to exclude the presence of other
respiratory viruses.
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Wearable device and protocol: Over the confinement phase of the study, subjects agreed to comply with the following wearable
device protocol: 1) they wear the Empatica E4 device properly, i.e., comfortably tight on the wrist of their dominant hand;
2) they take care to maintain the device and protect it from shocks, water immersion, and other damage; 3) they wear the
Empatica continuously without interruption except for periods that they were showering, recharging, or uploading data. The
E4 has several sensors that measure physiological parameters including blood volume pulse, skin conductance, temperature,
and movement. The E4 was recharged once per day during which time each participant’s data were uploaded to a cloud server
for processing using Empatica proprietary software.

The result of this processing was reported at sub-second temporal resolution as the following variables: heart rate (1sa/sec),
skin temperature (4sa/sec), electrodermal activity (4sa/sec), and 3 axis accelerometer (32sa/sec). These were mapped to a vector
of four variables at each time point: HR, TEMP, EDA and ACC, respectively, where ACC was computed as the Euclidean norm
(magnitude) of the 3 dimensional acceleration vector. Subjects were trained on best practices for wearing and maintaining the
E4 devices over the course of the confinement phase of the study.

Of the 39 participants enrolled in the HVC, only 25 had sufficient quality E4 data to be included in the analysis presented in
Section IV. A histogram of the demographic data of these 25 participants is shown in the figure below. The other participants
had wearable data that suffered from factors such as device failure, excessive missingness or data corruption, making their data
unusable for our analysis. Non-compliance with wearable device protocols, data upload errors, and device malfunction were
the cause of most of these problems.
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Demographics of 25 participants in HVC study.

APPENDIX B
HVC DATA

The raw time course E4 data of two representative subjects in the HVC study are shown in Fig. 4. Subject 1 (Fig. 4a)
did not become infected after inoculation on the second day of the study (day 2), i.e., this subject had no detectable level of
viral shedding at any time over the 8-11 days of the study, while Subject 2 (Fig. 4b) became infected. The four E4 signals
shown in the figure are heart rate (HR), accelerometer (ACC), temperature (TEMP), and electrodermal activity (EDA). The data
clearly shows diurnal differences in signal behavior, corresponding to the cycling of sleep and wake states of these subjects. A
quadratic trend in heart rate and temperature is clearly visible in Subject 2, the trend peaking at around 144 hours. Robustness
to this trend is desirable and motivated the proposed HMM-FLDA sequential adaptive sleep/wake segmentation algorithm.

APPENDIX C
SIMULATION STUDY

In this section we include additional figures supporting the simulation study reported in Table I and described in Section III
of the main text. We also report on in-sample performance comparisons between the proposed HMM-FLDA and the competing
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(a)

(b)

Fig. 4: Four channel device data (Empatica E4) from human viral challenge (HVC) study for two subjects (Subjects 1 and 2).
The four channels are: HR (red), ACC (green), TEMP (blue) and EDA (purple). Time 0hrs corresponds to 12am local time
on the first day (day 1) of the study. Viral inoculations were administered to all subjects on the morning of the second day
(day 2), i.e., between 32hrs and 36hrs. (a) data from a Subject 1 who had no detected shedding (Non-infected class); (b) data
from Subject 2 for whom shedding was detected (Infected class).

HMM and dHMM algorithms.
As mentioned in Sec. III these simulations were intended to emulate the experimental HVC data used in Sec IV. In Fig. 5

we show realizations of two simulated device channels, X1 and X2, emulating the HR MED and ACC SD features in the
HVC study, under the unstable++, and unstable+- models for mean trends occurring after 36 hours. See Figs. 4a and 4b for
comparison to real E4 data.

Table V provides a more comprehensive report of the results of our simulations of the proposed HMM-FLDA event
segmentation than does Table I in the main text. Three segmentation algorithms are compared: the proposed HMM-FLDA, the
HMM and a detrended HMM (dHMM) using LOESS pre-filter to detrend prior to applying HMM. The simulation parameters
for the random wake/sleep event transitions, event conditioned data distributions, and the covariate shift are the same as were
used for Table I.

The top part of the table shows in-sample performance and the bottom part shows out-of-sample performance showing both
mean and standard deviation (SD) of the performance measured over 100 simulation trials. Only the means of the OoS part
of this table were shown in Table I. The performance of the best performing method in terms of the MEAN performance is
bolded.

For the in-sample results (top part of table), event segmentation performance on the training set is shown. For the out-of-
sample results (bottom part of table), an hold-out dataset was created from an independent simulation using the same model
as the training set. The performance of each segmentation algorithm, trained only on the training set, was evaluated on the
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(a)

(b)

(c)

Fig. 5: Realizations of simulated signals for: (a) Unstable++ case for which the sleep and wake session both have concave
trends after 36 hours in channel X1; (b) Unstable+- case where the sleep and wake sessions have convex and concave trends,
respectively, in channel X1; (c) another realization of Unstable+- case with sleep and wake sessions whose trends hit their
apogee at a different time.

hold-out set. Note that the proposed HMM-FLDA would never be implemented in this way as such an implementation would
turn off the adaptation mechanism on future data. The bottom part (OoS) of Table V provides evidence for the accuracy and
robustness of the proposed approach.

The bolded entries in Table V denote the best mean performance per model (stable, unstable++, unstable+-) and performance
criterion (Accuracy, F1, Cosine dist, Onset diff, and Duration diff). The asterisk on an MEAN entry in the OoS part of Table
V indicates the best performing method for each of the five criteria where best was determined using a one-sided paired
t-test of significance applied to the set of 1000 simulations thresholded at a 0.01 level of significance. The OoS part of Table
V has an additional row, P-VALUE, that is the p-value of the one-sided paired t-test that the proposed HMM-FLDA has
better performance than both the HMM and dHMM. Only two P-VALUE entries are not significant, the case unstable++ for
cosine distance and the case unstable+- for onset diff. For the former case, dHMM is better than HMM but dHMM cannot
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be characterized as better than the proposed HMM-FLDA (0.01 level of significance). For the latter, HMM is better than the
proposed for onset diff estimation. Hence, except for the onset diff criterion in the unstable+- case, the proposed method is
equivalent or better than the other methods at a 0.01 level of significance.

TABLE V: Performance of the proposed adaptive transfer learning algorithm as compared with standard HMM operating on
the original data (HMM) and operating on LOESS detrended data (dHMM).

Setting Methods Accuracy F1 Cosine dis. Onset diff. Duration diff.

(0, 0, 0, 0) HMM MEAN 0.9982 0.9987 0.9968 0.0236 0.0427
stable SD 0.0012 0.0009 0.0021 0.0199 0.0287

dHMM MEAN 0.9981 0.9986 0.9966 0.0271 0.0450
SD 0.0012 0.0009 0.0022 0.0209 0.0288

Proposed MEAN 0.9981 0.9987 0.9967 0.0259 0.0420
SD 0.0012 0.0009 0.0021 0.0218 0.0278

(15, 10, 0.5, -0.5) HMM MEAN 0.8744 0.9052 0.8234 2.4786 3.6780
unstable++ SD 0.0642 0.0520 0.0754 1.5541 2.2121

dHMM MEAN 0.9558 0.9680 0.9306 0.9912 1.1574
SD 0.0502 0.0375 0.0713 1.6795 1.4117

Proposed MEAN 0.9487 0.9636 0.9146 0.9813 1.4605
SD 0.0498 0.0363 0.0781 0.9889 1.3812

(-15, 15, 0.5, -0.5) HMM MEAN 0.9371 0.9513 0.9185 0.4329 2.0992
unstable+- SD 0.0836 0.0660 0.1043 0.7836 2.7722

dHMM MEAN 0.9483 0.9615 0.9253 0.4909 1.4544
SD 0.0666 0.0505 0.0928 0.9295 1.8854

Proposed MEAN 0.9923 0.9946 0.9868 0.1631 0.1699
SD 0.0221 0.0157 0.0365 0.4648 0.4651

stable HMM (OoS) MEAN 0.9981 0.9987 0.9968 0.0165 0.0307
SD 0.0005 0.0004 0.0009 0.0051 0.0079

dHMM (OoS) MEAN 0.9981 0.9986 0.9967 0.0253 0.0373
SD 0.0015 0.0011 0.0027 0.0163 0.0211

Proposed (OoS) MEAN 0.9980 0.9986 0.9964 0.0168 0.0313
SD 0.0015 0.0011 0.0027 0.0163 0.0211
P-VALUE 1.0000 1.0000 1.0000 0.7850 0.8735

unstable++ HMM (OoS) MEAN 0.8959 0.9209 0.8559 1.6704 2.9169
SD 0.0679 0.0547 0.0792 1.0972 2.2120

dHMM (OoS) MEAN 0.9127 0.9231 0.8957* 2.4709 2.2653
SD 0.1284 0.1377 0.1089 2.6125 3.1967

Proposed (OoS) MEAN 0.9356* 0.9544* 0.8904* 1.0679* 1.5756*
SD 0.0353 0.0263 0.0533 0.7614 1.0664
P-VALUE 9.94E-07 1.07E-10 0.9521 4.04E-28 3.73E-08

unstable+- HMM (OoS) MEAN 0.9369 0.9510 0.9187 0.2763* 1.9750
SD 0.0810 0.0635 0.1019 0.4079 2.5778

dHMM (OoS) MEAN 0.9271 0.9370 0.9114 1.0170 2.0131
SD 0.1151 0.1298 0.1112 2.1413 3.2464

Proposed (OoS) MEAN 0.9758* 0.9833* 0.9564* 0.3712 0.3817*
SD 0.0326 0.0226 0.0591 0.6225 0.5472
P-VALUE 1.63E-31 9.69E-37 5.80E-16 0.9999 1.34E-61

In Fig. 6 is shown boxplots and density plots of the out-of-sample (OoS) simulation of all three scenarios, whose mean is
shown in Table I. These plots show the distribution of errors committed by the various methods compared in terms of event
labeling accuracy, onset estimation error, and duration estimation error when the trained methods are applied to independent
sample trajectories drawn from the same distribution. As compared to the others the proposed method has a distribution that
is more highly concentrated and has fewer outliers.
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(a)

(b)

Fig. 6: (a) Boxplots for label accuracy, onset estimation error, duration estimation error for simulations shown in Table I for
out-of-sample (OoS) simulation performance (excluding two outliers by dHMM method in the stable case). (b) corresponding
interpolated densities associated with (a) (for unstable+- case, the density plots are shown for a zoomed in region to better
compare density concentration).
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Table VI shows runtime comparisons. The proposed method runs slower than HMM and dHMM. However, 1 minute run
time of HMM-FLDA is still small as compared to the 8-11 days time period of HVC data. Furthermore, the method is not
optimized in terms of runtime and can likely be accelerated.

TABLE VI: Average run time (seconds) per replication of the proposed adaptive transfer learning algorithm as compared
with standard HMM operating on the original data (HMM) and operating on LOESS detrended data (dHMM) on a 2.3 GHz
Dual-Core Intel Core i5 processor with 16 GB RAM.

stable unstable++ unstable+-

HMM 0.4347 0.5612 0.4913
dHMM 0.7396 0.8351 0.8347

Proposed 53.5126 54.3654 55.2601

APPENDIX D
ANALYSIS PIPELINE IMPLEMENTATION FOR HVC STUDY

Here we provide additional details on our implementation of the pipeline of Fig. 1b, in the context of the Human Viral
Challenge Study Empatica E4 data. We illustrate the implementation for both the pre-infection time-line (0-60 hours) and the
full time-line (0-270 hours). First we describe the features used for abnormality detection.

Wearable devices are subject to outliers, anomalies and other abnormal sensor readings. Some types of outliers are
physiological and are important to include in the final event-segmented data stream. Other types of outliers are technical
and can be due to device malfunction or improper wearing of the device. These technical outliers must be removed early
in the analysis pipeline so as to not compromise downstream event detection and labeling performance. We use a two stage
procedure for isolating such anomalies in the pre-processing stage (Stage 1) of the pipeline in Fig. 1b and classifying them
as physiological vs technical outliers for possible re-insertion in the transfer learning stage (Stage 2). The first stage of the
procedure is called abnormality filtering and the second stage is called abnormality classification, which will be discussed
below. Both procedures apply standard outlier detection methods to a set of predefined features. However, since the purposes
of these procedures are different, the outlier detection thresholds are different.
Features for abnormality filtering (Stage 1) and classification (Stage 2): The best features to use for detection of abnormal
samples will be experiment dependent and device dependent. Here we explain how the abnormality filtering features were
selected for the HVC experiment where participants wore the Empatica E4 device, as discussed in Section IV. Based on
experiments on an Empatica E4 performed in our laboratory we determined that there are three principal causes for abnormal
measurements, each manifesting abnormality in different combinations of channels. See Fig. 7. For abnormality filtering and
classification physical intuition motivated us to select three temporally localized features, HR MED, TEMP MED and ACC
SD, as they are especially affected by the types of abnormalities described below.

• Device not worn (NW). Effect: Skin temperature sensor (TEMP) reads ambient temperature and activity sensor (ACC)
records little or no physical movement. Primary features affected: median of TEMP and standard deviation of ACC
magnitudes are abnormal.

• Device loss of contact (LOC). Effect: Intermittent skin contact causes spurious signal dropout. Primary features affected:
median of TEMP and HR and standard deviation of ACC magnitudes are abnormal.

• Subject engages in intense activity (Active). Effect: heart rate (HR) and activity sensor (ACC) readings increase significantly
over burst of physical activity. Features primarily affected: median of HR and standard deviation of ACC magnitudes are
abnormal.

In the HVC study we used HR MED and TEMP MED features for abnormality filtering while we used HR MED, TEMP
MED and ACC MED for abnormality classification. The combination of HR MED and ACC MED is especially important
for classifying abnormalities that are due to physiological causes,e.g., when a subject is engaged in intense exercise which is
legitimate wake session activity that should be reinserted in the final segmented data stream in Stage 2 of the pipeline.

Figure 8 illustrates three simulated cases with different levels of separability. Two variables (X1, X2) are generated from
BVN(µ1, µ2, 1, 1, 0). For samples in Class 0 (indicated by red dots), µ1 = µ2 = 0, while for samples in Class 1 (indicated by
green triangles), we considered three settings: (1) µ1 = µ2 = 0; (2) µ1 = µ2 = 1.5; (3) µ1 = µ2 = 3, corresponding to non-,
weakly and strongly separable scenarios. SI values based on both projection distance and Euclidean distance are reported for
each case. We observe that SI is indeed able to effectively characterize separability, and that the projection distance is preferred
since it gives value closer to 0.5 in the non-separable case and value closer to 1 in the strongly separable case.
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Time
Fig. 7: Experimental Empatica E4 data collected from one of the co-authors of this paper under three different conditions:
active, not worn and loss of contact. Shown are measured values of the variables used in our selected abnormality feature set:
HR median, TEMP median and ACC sd. Note the very different values of these three parameters between the active, not worn
and loss of contact classes.

(a) SI1 = 0.470, SI2 = 0.605 (b) SI1 = 0.750, SI2 = 0.785 (c) SI1 = 1.000, SI2 = 0.990

Fig. 8: Separability indices under three simulated scenarios: (a) non-separable, (b) weakly separable, (c) strongly separable,
where SI1 is based on projection distance and SI2 is based on Euclidean distance.

A. Online feature extraction pipeline: applied to 0-60 hours of data

Here we describe details of the proposed pipeline, illustrating with the pre-infection (0-60 hours) data. The result of applying
the pipeline to the full data (0-270 hours) is described afterward.

1) Stage 1: pre-processing: Pre-processing in stage 1 of the pipeline accomplishes three tasks: temporal windowing and
conditioning; local feature extraction, and abnormality filtering. Here we illustrate each of these tasks when the pipeline is
applied to the pre-infection data, i.e., only the first 60 hours (2 days and two nights) are available. Results of applying the
pipeline to the full data from 0 to 270 hours are presented for comparison in Section D-B.
Stage 1: temporal windowing and conditioning

The tuning parameters and their settings for Stage 1 of the pipeline are
• Temporal window (epoch) length: 10 mins
• Subject availability threshold: 60%
• Subject abnormality threshold: 40%
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The subject availability threshold of 60% is applied to filter out subjects that have E4 data missingness of greater than 40%.
Subject availability is quantified the proportion of time points not missing among the full set of sampling times (number of
seconds) over the 0-60 hour period. Subjects with less than 60% data availability are not further processed. Figure 9 shows
that 2 subjects in the HVC cohort (Subjects with identified 13 and 17) have insufficient data availability over this time period.

Fig. 9: Subject availability for the sleep/wake segmentation when the first 60 hours of data is available for subjects in the HVC
study. Two subjects (13 and 17) have excessive (> 40%) missingness. The observed proportion is defined as the ratio of the
number of time samples in the subject’s data record and the total number of sampling times that should be available over the
60 hour period.

Stage 1: abnormality filtering

Fig. 10: Abnormal proportion for the sleep/wake segmentation over 0-60 hours for subjects in the HVC study. Three subjects
have an excessive number of abnormal time samples (greater than 40%).

The abnormality filtering module operates as follows. After temporally localized summary statistic features are extracted
from the device for each subject, these features are tested for abnormality using a clustering-based anomaly detection procedure.
The procedure labels the abnormal samples as non-normal data and these are temporarily removed from the data stream.

The clustering-based anomaly detection procedure is as follows. Define the vector-valued local features for the i-th subject
at the t-th time instant X̃i,t = (X̃1i,t, . . . , X̃Mi,t), where here the feature dimension is M = 12. As explained above, only
two of these features was used for abnormality filtering: HR MED and TEMP MED. For each subject i, a combination of
k-means clustering and quantile thresholding is used to determined a normal region Ci in this two dimensional feature space.
Subject i’s feature instance at time t is declared non-normal if it is not in Ci. While we also investigated abnormality using



10

k-means clustering in the full 2 dimensional feature space of HR MED and TEMP MED (See Fig. 15b), the abnormality
filtering method we adopted in the pipeline of Fig. 1b performs k-means clustering separately on each each of the feature
dimensions.

For the HVC data, where the events of interest are sleep and wake, the k-means algorithm is set to extract 3 clusters
corresponding to sleep and wake (normal) and non-normal classes. Let {Sim1, Sim2, Sim3} be the resulting clusters with
centers (centroids) {µim1, µim2, µim3}. When the normal and non-normal cluster classes are well separated it is easy to
construct a normal region Ci, e.g., all points in the feature space having a majority of k-nearest neighbors in { ˜(X)i,t}t outside
of the non-normal cluster. More often, however, the separation between the normal and non-normal cless is not sufficient and a
different method is needed. We determine Ci as the set complement of the hyper-rectangle of minimal volume whose empirical
coverage probability is 95%. The rectangular edge lengths and position are thus determined by the marginal sample quantiles
along each feature dimension.

Specifically, we define a sequence of subject-dependent cutoff values {ci1, . . . , ciM} for abnormality. The rectangular normal
region is designated as the Cartesian product Snori = Snori1 × . . .× SnoriM , where

Snorim =

{
Sim1 ∪ Sim2 if |µim2 − µim1| < |µim3 − µim2|,
Sim1 o.w..

Cutoff values defining the normal set are defined as

cim =

{
Q0.025({X̃mi,t ∈ Snorim }) if µi,nor > µi,abn,

Q0.975({X̃mi,t ∈ Snorim }) o.w.,

where Qq(·) is the q−th quantile of the samples, and µi,nor, µi,abn are the centroids of the normal and non-normal set,
respectively. For the experimental HVC data we used the 95% outlier rule to define the lower and upper quantiles as 2.5%
and 97.5%, but less stringent threshold values may be adequate for other datasets.

For the subjects in HVC study with the first 60 hours of data available, Figure 10 shows a bar-plot of the resulting non-normal
data proportion for each subject. Three subjects (7, 15 and 21) had excessive abnormal data and were eliminated from further
processing.

Thus, when taken with subjects who had excessive missingness, a total of five subjects were excluded from further
analyses.Some of these subjects may come back into the analysis when a greater amount of data is available (see subsection
C for the case where 0-270 hours are available).
Feature selection for training adaptive segmentation algorithm: As explained in the main text, we extracted a subset of
the 12 local features using the sleep/wake separability index (SWSI) (6). The SWSI is computed over all subjects, to contrast
each feature over the putative sleep periods 2:00-5:00 and the wake periods 19:00-22:00 in the 0-60 hour time interval of the
pre-infection data window. Figure 11 shows the resulting SWSI for each of the 12 features, in descending order of median.
Applying the selection rule that a selected feature must be greater than 0.7 for at least 75% of the subjects, three features
are above threshold: HR MEAN, HR MED and HR SD and, as HR MEAN and HR MED are highly correlated, we chose
eliminated HR MEAN since it has a lower 75% quantile than does HR MED.

2) Stage 2: adaptive segmentation: The HMM-FLDA procedure is implemented for a given subject on all the time points
that pass through the abnormality filter. The details of the HMM-FLDA are given in Sec IV-A2.

Stage 2: Separability index

By definition (5), SI is the proportion of samples that share the same label with their nearest neighbors, and hence SI ∈ [0, 1].
Intuitively, when samples from two classes form two tight, well-separated clusters with little overlap, the nearest neighbor of
one sample from, say, Class 0, will most likely belong to Class 0 as well, which will result in a large SI value close to 1. In
contrast, when samples from two classes follow exactly the same distribution, i.e., completely non-separable, then the nearest
neighbor of one sample will have equal probability of being Class 0 or Class 1, and thus, the SI of these samples is close to
0.5. A large SI value implies strong separability of classes, and is usually an indication of reliable prediction. SI also depends
on the measure of distance used to determine the nearest neighbors. The projection distance captures the difference among
samples on the optimal direction w that is most relevant to distinguishing between the two classes, and thus is better than
Euclidean distance in regard to characterizing separability, as demonstrated by Figure 8.

Once the HMM-FLDA event classification procedure terminates the initial sleep/wake segmentation will have missing time
points that have been removed by the abnormality filter. Some of these abnormal time points, e.g., those due to rare physiological
events like an exercise session, are reinserted into the data stream. The method to do this is based on an abnormality classification
procedure discussed in the next subsection.

Stage 2: Abnormality classification and reinsertion

The purpose of the abnormality classification module is to identify, re-insert and assign an event label to physiologically
meaningful non-normal data, i.e., abnormalities that are not due to technical issues associated with device failure or improper
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Fig. 11: Box-plot of sleep/wake separability index (6) for pre-infection (0-60 hour) data, showing the spread of the 12 local
features extracted from wearable data in the first stage of the processing pipeline. Excluding HR MEAN, which is highly
correlated with HR MED and has a smaller 25% quantile, two local features (HR MED, ACC SD) are selected.

wearing of the device. Any such non-normal samples re-inserted into the data stream inherit the event class label of the session
into which the sample’s time stamp falls.

Using predefined features HR MED, TEMP MED, and ACC SD, abnormality classification was performed using a decision
tree using marginal quantile thresholding. For each non-normal sample, we applied a standard 1.5 interquartile range (IQR) test
[55], [28] to each feature independently. If a feature falls outside of this range it is declared an outlier and further classified.
The lower and upper endpoints of the 1.5 IQR interval are defined as:

LOWER = Q0.25 − 1.5 ∗ (Q0.75 −Q0.25),

UPPER = Q0.75 + 1.5 ∗ (Q0.75 −Q0.25). (7)

Here Q0.25 and Q0.75 are the 25% and 75% sample quantiles of the feature empirical distributions computed over the detected
sessions. All samples that were categorized as "Wake" or "Active" were incorporated back into the corresponding session.
Abnormal samples assigned to other categories were discarded. The decision tree for this procedure is shown in Figure 12.

Stage 2: Median filtering

After processing by HMM-FLDA and reinsertion of physiologically meaningful abnormalities, there commonly exists short
bursts of sleep sessions. We expect that some of these are actually sleep while others correspond to resting without sleep.
While such bursty behavior could possibly be directly incorporated into an HMM model, e.g., using a semi-Markov switching
process [3], we took a simpler approach that applies a modified median filter with 90 min smoothing window (median filter of
order 9) that has the effect of merging sleep sessions shorter than 60 mins into a wake session. We choose to eliminate such
short sessions in order to eliminate disambiguate resting and light naps from sleep sessions, defined as a session having deep
sleep stages, i.e., Stage 3 & 4 of non-rapid eye movement (NREM), usually starting 30 minutes after sleep onset and lasting
approximately 20 to 40 minutes in the first sleep cycle [9]. Hence, the 60-minute threshold is designed to eliminate putative
sleep sessions that had no deep sleep stages.

B. Offline feature extraction pipeline: applied to 0-270 hours of data

1) Stage 1: pre-processing: When evaluated over the time period 0-270 hours, no subjects had missingness greater than
40% and thus none were filtered out due to inadequate data availability. However, five subjects were found to have greater than
40% abnormal samples and were filtered out. Figure 13 shows the bar-plot of the abnormal proportions for all 25 subjects,
showing the 5 subjects exceeding the 40% threshold for inclusion.

To select features for the HMM-FLDA sleep/wake segmentation algorithm over the full time course of 0-270 hours, we
designated two one hour periods of the day, 3:00-4:00 and 21:00-22:00, respectively, as sleep and wake (resting). As contrasted
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Fig. 12: Decision tree for abnormality classification module for the HVC data. Non-normal samples (excluded observations)
identified by the abnormality filter in first stage of the pipeline of Fig. 1b are excluded from the training set used by the
second stage transfer learning algorithm. The abnormality classifier re-evaluates these samples for possible re-insertion and
labeling of physiologically meaningful abnormalities. The classifier classifies the samples into final categories of: device not
worn (NW), loss of contact (LOC), Wake, Active and Other. Samples that are classified as "Active" or "Wake" are re-inserted
into the corresponding session.

Fig. 13: The bar-plot of abnormal data proportions over all time points (0-270) in HVC study data. Bar-plot of availability
(analog to Fig. 9) is not shown since no subjects had more than 40% missing data over this 270 hour time period.

to the pre-infection segmentation in which we used 3 hour periods in the 60 hours (2 nights) of available data, here we could
take advantage of the higher specificity of one hour periods since 11 nights are available over the 270 hours. The sleep/wake
separability indices (SI), defined in (6), of each of the 12 temporally localized features were computed over all time points in
order to evaluate their discrimination power. Figure 14 shows box-plots of the SWSI values for the 12 local features.

Four local features had SWSI greater than 0.7 for over over 75% of the subjects: HR MEAN, HR MED, HR SD, ACC
SD. Since HR MEAN and HR MED are highly correlated, HR MEAN was excluded from the top 4 SI features as its 25%
quantile is lower than that of HR MED. The remaining features were then used as feature variables in the second stage of
the pipeline to identify sleep/wake sessions for each subject. Like in the 0-60 hour segmentation, we again note that the EDA
features have lower sleep/wake separability indices than the other E4 variables.
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