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Smooth Approximation of Lipschitz Maps and

Their Subgradients

ABBAS EDALAT, Imperial College London

We derive new representations for the generalised Jacobian of a locally Lipschitz map between finite dimen-

sional real Euclidean spaces as the lower limit (i.e., limit inferior) of the classical derivative of the map where it

exists. The new representations lead to significantly shorter proofs for the basic properties of the subgradient

and the generalised Jacobian including the chain rule. We establish that a sequence of locally Lipschitz maps

between finite dimensional Euclidean spaces converges to a given locally Lipschitz map in the L-topology—

that is, the weakest refinement of the sup norm topology on the space of locally Lipschitz maps that makes the

generalised Jacobian a continuous functional—if and only if the limit superior of the sequence of directional

derivatives of the maps in a given vector direction coincides with the generalised directional derivative of

the given map in that direction, with the convergence to the limit superior being uniform for all unit vectors.

We then prove our main result that the subspace of Lipschitz C∞ maps between finite dimensional Euclidean

spaces is dense in the space of Lipschitz maps equipped with the L-topology, and, for a given Lipschitz map,

we explicitly construct a sequence of Lipschitz C∞ maps converging to it in the L-topology, allowing global

smooth approximation of a Lipschitz map and its differential properties. As an application, we obtain a short

proof of the extension of Green’s theorem to interval-valued vector fields. For infinite dimensions, we show

that the subgradient of a Lipschitz map on a Banach space is upper continuous, and, for a given real-valued

Lipschitz map on a separable Banach space, we construct a sequence of Gateaux differentiable functions that

converges to the map in the sup norm topology such that the limit superior of the directional derivatives in

any direction coincides with the generalised directional derivative of the Lipschitz map in that direction.
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1 INTRODUCTION

Lipschitz maps between metric spaces (i.e., maps named after Rudolph Lipschitz that increase

distances by at most a given factor) provide a fundamental class of functions in pure and applied
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8:2 A. Edalat

mathematics as well as a variety of areas of computation including optimisation, control theory,

geometric modelling and machine learning.

In all these areas, we often need to deal with functions that are indeed locally Lipschitz but

not differentiable. Lipschitz maps naturally arise as any composition of functions consisting of

piecewise continuously differentiable functions, the absolute value function or the maximum or

minimum of a finite set of such functions [11]. In machine learning, the least absolute deviation

method or �1 loss gives a non-differentiable but Lipschitz map as an objective function. In deep

learning, currently the most widely used activation function in feed forward neural networks is

the Rectified Linear Unit (ReLU), which like the absolute value function fails to be differentiable

at 0 but is Lipschitz with Lipschitz constant 1 [39].

Lipschitz maps, closed under composition, contain the important class of piecewise polynomial

functions that are supported in basic mathematical software such as MatLab [14] and are widely

used in geometric modelling, approximation and interpolation [14]. They are uniformly continu-

ous and, in contrast to differentiable maps, are closed under the fundamental min, max operations

and absolute value on functions. Lipschitz maps with uniformly bounded Lipschitz constants are

also closed under convergence with respect to the sup norm topology. In addition, there is the dis-

tinguished property in the theory and applications of differential equations that a Lipschitz vector

field in Rn has a unique solution to the initial value problem [13].

On a more theoretical level, Lipschitz maps between finite dimensional Euclidean spaces are, by

Rademacher’s theorem, differentiable almost everywhere [12, p. 148]. By Kirszbraun’s theorem [32,

p. 202], a Lipschitz map from a subset of a finite dimensional Euclidean space to another such space

can be extended to the whole space with the same Lipschitz constant. Lipschitz maps are also at

the very foundation of non-linear functional analysis [9].

It is against this background that Frank Clarke introduced, for locally Lipschitz maps, the no-

tion of generalised directional derivative that he used to define the subgradient, as a set-valued

derivative with values that are non-empty, compact and convex sets; the subgradient extends a

similar concept for convex functions [11]. A closely related notion of generalised Jacobian was

introduced by him for vector Lipschitz maps. The emerging subject of set-valued analysis and

non-smooth optimisation has grown to impact many areas of computation in engineering and ap-

plied mathematics [3]. The subgradient, also called subdifferential, plays a key role in several areas

of mathematical computation which deal with Lipschitz maps including non-smooth dynamical

systems, differential inclusions, calculus of variations and optimal control [2, 4, 11].

A well-established method to tackle non-smooth optimisation problems is to find a suitable

smooth approximation to the minimisation problem and then use standard techniques such as the

gradient descent algorithm [45]. A major challenge in optimisation is therefore to find suitable

smooth approximations to non-smooth minimisation problems [5]. There is a large literature to

design smooth approximations to the problem when dealing with convex optimisation that use

the notion of convex conjugate of the underlying function [7].

In this article, adopting a new inter-disciplinary approach, several new representations for the

subgradient and the generalised Jacobian of locally Lipschitz maps are introduced which are the

basis of a framework for smooth approximation of Lipschitz maps and their differential properties.

From an optimisation point of view, we develop a smooth approximation method for problems that

are Lipschitz but may not be smooth or convex. We focus here on the foundational mathematical

results and leave the algorithmic consequences in various areas of optimisation to future work.

We first apply domain theory, a branch of order theory, to derive some new representations

and basic results about the subgradient and the generalised Jacobian of locally Lipschitz maps.

Domain theory was developed, on the one hand, by Dana Scott as a mathematical model of com-

putation for the denotational semantics of programming languages [42, 43], particularly functional
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programming languages, and, on the other hand, independently by several groups of mathemati-

cians, in various mathematical contexts, including Karl Hofmann, Jimmie Lawson, Mike Mislove,

Al Stralka, Klaus Keimel, Gerhard Gierz and Yuri Ershove (see [33]). It was later used to build new

computational models in several other areas including exact real number computation, computa-

tional geometry, measure and integration theory and solutions of ODEs [16–18, 23, 24, 28–30]. In

addition, employing domain-theoretic methods, the so-called L-derivative was introduced for real

and complex Lipschitz maps [22, 25], and it was subsequently shown that the L-derivative coin-

cides with the subgradient for real-valued functions on finite dimensional Euclidean spaces [19].

This latter result has later been extended by Hertling to real-valued Lipschitz maps on Banach

spaces [34].

Domains are partially ordered sets equipped with notions of completeness and approximation.

For example, the upper space of a finite dimensional Euclidean space, namely the collection of non-

empty compact subsets of the space partially ordered with reverse inclusion, is a domain, as is

its subcollection of convex subsets, the fundamental domain under consideration in the present

work. Domains are T0-topological spaces endowed with their Scott topology. This topology for

the upper space coincides with the upper topology, which is widely used in optimisation theory:

set-valued functions continuous with respect to this topology are called upper semicontinuous mul-

tifunctions [11, p. 29]. Elements of domain theory required in this article are outlined in Section 2.

Here, we employ the notion of the lower limit or limit inferior of a map from a dense subset of a

topological space without isolated points into a bounded complete domain. It is closely related to

the notion of lower envelope of such a map as introduced in the work of Gierz et al. [33, Exercise

II-3.19]) in connection to bounded complete domains as densely injective spaces [33, p. 182]). We

show in Section 3 that the subgradient and the generalised Jacobian of locally Lipschitz maps are

the lower limits, equivalently the lower envelopes, of the classical derivative of the map which

exists on a dense subset. This new representation leads to significantly shorter proofs for several

basic properties of the subgradient and the generalised Jacobian.

Our key results, however, use the L-topology on the space of locally Lipschitz maps which was

introduced in the work of Edalat [21] and is defined using the Scott topology on the space of Scott

(equivalently upper) continuous functions from a finite dimensional Euclidean space to the domain

of non-empty, convex and compact subsets of the space. In fact, this function space inherits the

partial order of the ambient domain, by pointwise ordering of functions, which makes the function

space itself into a bounded complete domain. Given that the subgradient of a locally Lipschitz map

belongs to this function space, the L-topology is defined as the weakest refinement of the sup norm

topology on the space of locally Lipschitz maps that makes the subgradient a continuous functional

into this function space equipped with its Scott topology. The L-topology admits a complete metric

and is weaker than the Lipschitz norm topology [21].

We derive simple necessary and sufficient conditions for a sequence of locally Lipschitz maps

between finite dimensional Euclidean spaces to converge in the L-topology to a given locally Lip-

schitz map: the limit superior of the directional derivatives of the maps in the sequence in a given

vector direction must coincide with the generalised directional derivative of the given map in that

direction, with the convergence to limit superior being uniform for all unit vectors. We will then

prove that in C∞ maps are dense in the space of Lipschitz maps between finite dimensional Eu-

clidean spaces with respect to the L-topology.

It is well known that convolution with a smooth function can make a given function smooth [10].

It is also well known that given a Lipschitz map f ∶ Rn → R, with Lipschitz constant c , one can

construct a sequence of C∞ functions with Lipschitz constant c such that the sequence converges

in the sup norm to f . In fact, by taking a sequence ofC∞ test functionsϕn ∶ Rn → Rwithϕn(x) = 0

for ∥x∥ > 1/n and ∫Rn ϕn(x)dx = 1 for all n ≥ 1, the sequence of convolutions fn = f ∗ ϕn with
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8:4 A. Edalat

fn(x) = ∫Rn f (y)ϕn(x − y)dy converges to f in the sup norm and each function fn is C∞ with

Lipschitz constant c [6, p. 1]. It is easy to see that this result also holds for Lipschitz maps of

type f ∶ Rn → Rm . In this article, we will extend these results and show that the limit superior

of the sequence of directional derivatives of the maps fn in a given vector direction v always

coincides with the generalised directional derivative of the Lipschitz map in that direction v , with

the convergence to the limit superior being uniform for all unit vectors. This will therefore give us

a notion of approximation of Lipschitz maps by a sequence of C1 maps which entails convergence

in the sup norm topology to the Lipschitz map and, in addition, preserves the differential properties

of the sequence in the limit. This result then can be viewed as the basis for a method for smooth

global approximation of a Lipschitz map. We will provide an elementary self-contained account of

these results for the reader.

To this end, given a Lipschitz map between finite dimensional Euclidean spaces, we take its con-

volution with a sequence of Gaussian probability distributions, as our test functions, and explicitly

construct a sequence of C∞ maps convergent to it in the L-topology, implying that the limit su-

perior of the directional derivatives of the functions in the sequence in a given vector direction

coincide with the generalised directional derivative of the Lipschitz map in that direction, with the

convergence to limit superior being uniform for all unit vectors. This result does not depend on

the particular choice of the sequence of Gaussian probability distributions we use as our test func-

tions. We first present the proof of the preceding property for scalar Lipschitz maps in Section 5,

which is elementary, and formulate the more sophisticated proof in the case of vector Lipschitz

maps in Section 7, which uses Imbert’s expression for the generalised Jacobian [36]. These approx-

imation properties of Lipschitz maps give credence to the claim that the subgradient of a Lipschitz

map and the generalised Jacobian of a Lipschitz vector map are the generalisations of the classical

derivative for the respective Lipschitz maps.

As an application of the preceding results, we present a short proof of the extension of Green’s

theorem to interval-valued vector fields in Section 6.

Last, in Section 8, we consider real-valued Lipschitz maps on Banach spaces, which include all Lp

function spaces (0 < p ≤ ∞) used widely in optimisation. The subgradient at a point of the Banach

space is now a non-empty, convex and compact set of the dual of the Banach space equipped with

its weak* topology. Using the equivalence of the L-derivative with the subgradient, we provide a

short proof that the subgradient of a Lipschitz map is upper continuous. Then, for a given Lipschitz

map on a separable Banach space, we use a non-degenerate Gaussian measure on the space to

construct a sequence of Gateaux differentiable maps that converges to the Lipschitz map in the

sup norm topology such that the limit superior of the sequence of directional derivatives of the

maps in a given direction coincides with the generalised directional derivative of the Lipschitz

map in that direction. We conclude the article in Section 9.

Since the L-topology is defined using the Scott topology of a function space, which is only T0

with no classical counterpart, we argue that the results in this article are based fundamentally on

an interdisciplinary approach bridging domain theory as developed in the Scott theory of compu-

tation on the one hand and non-smooth optimisation on the other. An attempt has been made to

use more elementary mathematical notions and results in the earlier sections related to real-valued

Lipschitz maps on finite dimensional Euclidean spaces and employ more advanced and recent re-

sults in analysis only in the later sections relating to vector Lipschitz maps and Lipschitz maps on

Banach spaces.

1.1 Notation and Terminology

We first recall that a map f ∶ X → Y of two metric spaces is Lipschitz if there exists c ≥ 0 such that

dY (f (x1), f (x2)) ≤ cdX (x1,x2) for all x1,x2 ∈ X ; the map f is locally Lipschitz if any point in X
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has an open neighbourhood in which f is Lipschitz. For any positive integer n, we equip Rn with

the Euclidean norm ∥v∥ =
√

∑n
i=1 ∣vi ∣2. The usual inner product of vectors x ,y ∈ Rn is denoted by

⟨x ,y⟩ ∶= ∑n
i=1 xiyi in the standard Cartesian coordinate system of Rn . If C ⊆ Rn is a non-empty

compact convex set and x ∈ Rn , we write ⟨C,x⟩ = ⟨x ,C⟩ ∶= {⟨y,x⟩ ∶ y ∈ C}, which is a compact

interval of R. For a vector v ∈ Rn and a linear map of type Rn → Rm , represented in the standard

coordinate system by the matrixA ∈ Rm×n , the value of the linear mapA atv is written as usual by

Av ∈ Rm with (Av)i = ∑n
j=1Ai jvj . The transpose of a matrix M ∈ Rm×n is denoted by MT , the unit

sphere centred at the origin in Rn by Sn−1 and the closed ball centred at x ∈ Rn and radius c > 0

by Bc(x). The closure, respectively, the interior, complement and boundary of a subset S ⊆ X of a

topological spaceX are denoted by S , respectively, S○, Sc and Sb . For two topological spacesX and

Y , the set of continuous functions from X to Y is denoted by (X → Y). When it is convenient and

there is no ambiguity, we identify x and {x} for x ∈ X . For a non-empty, compact convex setC ⊆ Rn ,

the ϵ-open neighbourhood ofC is denoted byCϵ ∶= {x ∈ Rn ∶ ∃y ∈ C . ∥x −y∥ < ϵ}, which is convex.

For subsetsA,B ⊆ Rn , the Minkowski sum and difference are defined byA±B = {a±b ∶ a ∈ A,b ∈ B}.

The collection of Borel subsets of a topological space (i.e., the smallest σ -algebra containing the

open sets of X ) is denoted by BX . Given a map f ∶ X → Y of spaces X and Y , we denote by f [A]
the image of a subset A ⊆ X under f . If f is continuous and μ is a Borel measure on X , then the

induced pushforward measure μf on Y is given by μf (B) = μ(f −1(B)) for B ∈ BY .

We equip the vector space Rm×n ofm ×n matrices over R with the Frobenius norm ∥A∥F given

by

∥A∥2
F = ∑

1≤i≤m

∑
1≤j≤n

∣Ai j ∣2

for A ∈ Rm×n . Note that the Frobenius norm, which for vectors coincides with the Euclidean norm,

is subordinate to the Euclidean norm of vectors (i.e., ∥Av∥ ≤ ∥A∥F ∥v∥). For convenience, we write

∥M∥F as simply ∥M∥. Recall also that for matrices of typeRm×n , the Frobenius norm, like any other

matrix norm, induces the Euclidean topology on Rmn , which in this article is taken as the topology

of linear maps of type Rn → Rm .

Let X and Y be normed vector spaces and L(X ,Y) the normed vector space of bounded linear

operators from X to Y with the operator norm. The one-sided directional derivative f ′(x ;v) of

f ∶U ⊆ X → Y at x ∈U in the direction v ∈ X is given by

f ′(x ;v) = lim
t→0+

f (x + tv) − f (x)
t

when the limit exists. The directional derivative d f (x ;v) of f ∶U ⊆ X → Y at x ∈U in the direction

v ∈ Rn is given by

d f (x ;v) = lim
t→0

f (x + tv) − f (x)
t

when the limit exists, in which case d f (x ;v) = f ′(x ;v). The Gateaux derivative of f at a point

x ∈ X , if it exists, is a bounded linear operator d f (x) ∶ X → Y such that for all v ∈ X we have

(d f (x))(v) = d f (x ;v) [9]. The Fréchet derivative [9, 48] of f at x ∈ U , if it exists, is a bounded

linear map L ∶ X → Y with

lim
∥h∥→0

∥f (x +h) − f (x) − L(h)∥
∥h∥ = 0.

If f is Fréchet differentiable, then it is Gateaux differentiable and the two linear maps coincide.

The convex hull of a subset A of a topological vector space is denoted by co{A}, or simply coA

if no ambiguity arises. We write the closure of co{A} by co{A} ∶= co{A}, which is called the closed

convex hall of A and is equal to the intersection of closed convex sets that contain A [35, p. 31].
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8:6 A. Edalat

Recall that the Hausdorff metric dH on the set of non-empty compact subsets of Rn is defined by

dH(C,D) = inf{r > 0 ∶ C ⊆ Dr and D ⊆ Cr}. The support function σC ∶ Rn → R of a non-empty

convex set C ⊆ Rn is defined by σC(x) = sup{⟨y,x⟩ ∶ y ∈ C}. We state some of its basic properties

here [41, 1.7.1 and 1.8.14]: The support function is convex, thus continuous, and, for non-empty

compact and convex sets C1 and C2, we have

∥σC1 − σC2∥∞ = dH(C1,C2), (1)

where ∥.∥∞ is the uniform norm on the sphere Sn−1; moreover, C1 ⊆ C2 iff σC1 ≤ σC2 —that is, any

non-empty convex compact set is completely determined by its support function.

2 DOMAIN THEORY

Domain theory was introduced by Dana Scott in computer science as a mathematical model of com-

putation in particular for developing denotational semantics for programming languages [42, 43].

The so-called algebraic domains were used to develop mathematical models of λ-calculus for the

denotational semantics of functional programming language [47]. It was later shown that non-

algebraic domains, the so-called continuous domains which will be employed in this work, can

model mathematical computation in a variety of areas, including exact real number computa-

tion [30], computational geometry [25, 26], measure and integration theory [16, 17, 20], differential

calculus [25], solution of ODEs [29] and hybrid systems [28].

We review the elements of domain theory we need in this article [1, 33]. A directed complete

partial order (dcpo) is a partial order (D,⊑) in which every directed subset has a supremum. The

partial order relation x ⊑ y is considered to imply that y has more information than x . A subset

O ⊆ D is an open subset of the Scott topology of D if O is an upper set (i.e., y ⊒ x ∈O ⇒ y ∈O) and

inaccessible by supremums of directed sets (i.e., ifA ⊆ D is directed then supA ∈O ⇒ ∃x ∈ A.x ∈O).

This topology is T0. A map f ∶ D → E of dcpo’s is Scott continuous iff it is monotone (i.e., x ⊑ y
implies f (x) ⊑ f (y)) and preserves supremums of directed sets (i.e, if A ⊆ D is directed then

f (supA) = sup f [A]).
For x ,y ∈ D, we have x way-below y, denoted x ≪ y, if for every directed subset A ⊆ D the

relation y ⊑ supA implies there exists a ∈ A with x ⊑ a. The way-below relation refines the partial

order (i.e., x ≪ y implies x ⊑ y). The idea is that when x ≪ y, x is a finitary approximation to

y in the sense that if the subset A represents a set of finitary information whose total aggregate

provides more information than y, then there is already a piece of information in A that exceeds

the information in x . We say B ⊆ D is a basis ofD if the set of elements in B way-below any element

y ∈ D is directed with supremum y—that is, By ∶= {x ∈ B ∶ x ≪ y} is directed with y = supBy .

A (countably based) domain is a dcpo with a (countable) basis. If D is a domain, then D itself is a

basis for D. Two given elements x ,y ∈ D of a domain have the following simple property widely

used in this work: if for all z ∈ D the relation z ≪ x implies z ⊑ y, then we have x ⊑ y (since

in fact x is the supremum of all such z). The way-below relation in a domain D has the so-called

interpolation property, very useful in practice: if x ≪ y, then there exists z ∈ B, where B ⊆ D is any

given basis, such that x ≪ z ≪ y. A domain is bounded complete if every bounded set of elements

has a least upper bound. Since the empty set is trivially bounded, a bounded complete domain has

a least element, denoted �. The Scott topology of a domain with basis B has basic open sets given

by ↑↑x ∶= {y ∈ D ∶ x ≪ y} for x ∈ B.

Some of the basic examples of countably based domains in mathematical analysis and compu-

tation are related to finite dimensional Euclidean spaces. The lattice ΩRn of open subsets of Rn ,

ordered by subset inclusion, is a bounded complete domain with a greatest and a least element (i.e.,

a continuous lattice) in whichO1 ≪O2 iffO1 is compact withO1 ⊆O2 (i.e., iff an ϵ-neighbourhood

of O1 is contained in O2). The interiors of rational polytopes provide a countable basis for ΩRn .
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The upper space UR
n of Rn , consisting of non-empty compact subsets of Rn ordered by reverse

inclusion and augmented with Rn as the least element, is a bounded complete countably based do-

main with C1 ≪ C2 iff (C1)○ ⊇ C2—that is, iff an ϵ-neighbourhood of C2 is contained in C1 [17]. A

countable basis is given by rational polytopes. The Scott topology on UR
n coincides with the upper

topology which has basic open subsets of the form {C ∈ UR
n ∶ C ⊆ O}, for any open set O ⊆ Rn .

The singleton map e ∶ Rn → UR
n with e(x) = {x} is an embedding of Rn onto the set of maxi-

mal elements of UR
n equipped with the Scott topology. For convenience, we identify x ∈ Rn with

{x} ∈ UR
n (i.e., we consider Rn ⊆ UR

n ). The upper space has several sub-domains relevant to our

work: (i) CRn consisting of the convex subsets in UR
n , which is the fundamental domain for the

results of this work; (ii) I[0, 1]n consisting of axes-aligned hyper-rectangles ∏n
i=1[a−i ,a+i ] ⊆ [0, 1]n

with a−i ≤ a+i for 1 ≤ i ≤ n, where a non-empty compact interval a ⊆ R is written as a = [a−,a+];
and (iii) IA, for an open set A ⊆ Rn , consisting of axes-aligned hyper-rectangles contained in A.

We will widely use the interpolation property of the way-below relation O1 ≪ O2 in the lattice

of open sets of Rn and that of the way-below relation C1 ≪ C2 in CRn in this work; the reader

unfamiliar with domain theory can simply regard the way-below relation on such pairs of subsets

as a shorthand notation for the preceding relation between open sets or between compact sets.

From basic domains, one can construct higher-order domains, including domains of functions.

In particular, if X is a topological space with a continuous lattice of open sets and (D,⊑D) is a

bounded complete domain with basis B ⊆ D, then the function space (X → D) consists of the

collection of Scott continuous functions f ∶ X → D partially ordered by pointwise ordering (i.e.,

f1 ⊑ f2 if ∀x ∈ X . f1(x) ⊑D f2(x)). Then (X → D) is itself a bounded complete domain with a basis

of step functions which we will now define [33, p. 200]. A single-step function bχO ∶ X → D is given

by b ∈ D and a basic open subset O ⊆ X with bχO(x) = b if x ∈ O and � otherwise. A step function

is the least upper bound of a finite bounded set of single-step functions. We note that a basis

of (X → D) can be obtained by taking single-step functions constructed from the basis elements

b ∈ B and basic open subsetsO ⊆ X . We have bχO ≪ f iffO ≪ f −1(↑↑b) [33, Proposition II-4.20(iv)],

which characterises the way-below relation in (X → D). The fundamental function space we will

deal with in this article consists of Scott continuous functions of type f ∶U ⊆ Rn → CRn , whereU
is an open subset.

Finally, consider a real Banach space X and recall that the dual X∗ of X is defined as the set

L(X ,R) of bounded real-valued linear functionals on X . The weak* topology on L(X ,R) is the

weakest topology on L(X ,R) that makes all functionals x̂ ∶ L(X ,R) → R, where x ∈ X with

x̂(f ) = f (x), continuous. This topology is Hausdorff and by Banach-Alaoglu’s theorem, the closed

ball X∗c ∶= Bc(0) of radius c centred at the origin is compact with respect to the weak* topology

for any c > 0. Let C(X∗c ) denote the set of non-empty weak* compact and convex subsets of X∗c ,

augmented withX∗, with partial ordering induced by reverse inclusion. Then, C(X∗c ) is a bounded

complete domain in which C1 ≪ C2 iff C○2 ⊆ C1, where the interior is with respect to the relative

weak* subspace topology on X∗c . Given x ,y ∈ X , the closed line segment between them is denoted

by s(x ,y) ∶= {λx + (1 − λ)y ∶ 0 ≤ λ ≤ 1}.

3 LOWER EXTENSION, LOWER ENVELOPE AND LOWER LIMIT OF DOMAIN MAPS

In any bounded complete dcpo D, in particular in any bounded complete domain, any non-empty

set A ⊆ D has an infimum given by inf A = sup{x ∶ ∀a ∈ A.x ⊑ a} as the latter set is directed. In

addition, in such a dcpo any net (x j)j∈J has a limit inferior or liminf defined by Gierz et al. [33, p.

133]:

lim inf
j

x j = sup
j

inf
i≥j

xi .
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This can be used to define the notion of the lower limit of a map as well as its lower envelope,

which is in fact the construction given in the work of Gierz et al. [33, Exercise II-3.19]. Recall that

an isolated point of a topological space is a point x for which {x} is open.

Definition 3.1. Let f ∶ X → Z where X is a dense subset of a topological space Y and Z is a

bounded complete domain. The lower envelope (cf. [33, Exercise II-3.19]) of f is given by the map

f ∗ ∶ Y → Z with

f ∗(y) = sup{inf f [O ∩X ] ∶ O open set with y ∈O}.
A continuous map д ∶ Y → Z is a lower extension of f if д ⊑ f on X . If Y has no isolated points,

then the lower limit of f is given by the map f † ∶= lim inf f ∶ Y → Z with

f †(y) = lim inf f (y) = sup{inf f [(O ∖ {y}) ∩X ] ∶ O open set with y ∈O}.

Note that the lower limit or lim inf and the lower envelope of a real-valued function on Euclidean

spaces are well-known constructions; see, for example, the work of Yeh [49, p. 144–145].

Proposition 3.2. Let f ∶ X → Z , where X is a dense subset of a topological space Y and Z is a

bounded complete domain:

(i) The map f ∗ is a lower extension of f with д ⊑ f ∗ for any lower extension д of f .

(ii) If f is continuous at x ∈ X , then f (x) = f ∗(x).

(iii) If Y has no isolated points, then f ∗ ⊑ f †. If Y is also T1, in particular Hausdorff, then f † is

continuous.

Proof. (i) From the definition, it follows directly that f ∗ ⊑ f . Lety0 ∈ Y andu ≪ f ∗(y0). By the

interpolation property, takev ∈ Z withu ≪ v ≪ f ∗(y0). Then, by the definition of f ∗, there exists

an open set O ⊆ Y with y0 ∈O such that v ⊑ inf f [O ∩X ]. Thus, for all y ∈O , we have u ≪ f ∗(y),

which shows that f ∗ is continuous. To show that д(y) ⊑ f ∗(y) for any y ∈ Y , let u ≪ д(y). Then

by the continuity of д at y, there exists an open set O ⊆ Y with y ∈ O such that u ⊑ inf д[O] and

thus u ⊑ f ∗(y).

(ii) Letu ≪ f (x). By continuity, there exists open setO ⊆ Y such thaty ∈O∩X impliesu ≪ f (y)
and thus u ⊑ inf f [O ∩X ] ⊑ f ∗(x). Since u ≪ f (x) is arbitrary, it follows that f (x) ⊑ f ∗(x) and

thus f (x) = f ∗(x) by (i).

(iii) The relation f ∗ ⊑ f † follows from the definitions since for any open set O with y ∈ O, we

have inf f [O ∩X ] ⊑ inf f [(O ∖{y})∩X ], where the latter infimum exists because, by assumption,

Y has no isolated points. Suppose Y is in addition T1. Let y0 ∈ Y and u ≪ v ≪ f †(y0). Then there

exists an open subset O0 ⊆ Y with y0 ∈ O0 such that v ⊑ inf f [(O0 ∖ {y0}) ∩ X ]. We claim that

y ∈ O0 implies u ≪ f †(y). Let y0 ≠ y ∈ O0. By the separation property, there exists an open set

O ⊆ Y with y ∈ O and y0 ∉ O . Therefore, O ∩ O0 ⊆ O0 and thus u ≪ inf f [(O0 ∖ {y}) ∩ X ] ⊑
inf f [(O ∩O0) ∖ {y}) ∩X ] ⊑ f †(y), which proves the continuity of f † at y0. �

The properties of the lower envelope then give us the following.

Corollary 3.3. Suppose Z and U are bounded complete domains with f ∶ X → Z where X is a

dense subset ofY andд ∶ V →U ,whereV is a dense subset ofZ with f [X ] ⊆ V . Thenд∗○ f ∗ ⊑ (д○ f )∗
in the partial ordering of the function space Y →U .

Proof. The map д∗ ○ f ∗ is continuous as it is the composition of two continuous functions.

Moreover, f ∗ ⊑ f and д∗ ⊑ д and thus д∗ ○ f ∗ ⊑ д ○ f . Hence, д∗ ○ f ∗ is a lower extension of д ○ f ,
and the result follows from Proposition 3.2(i). �

We can also deduce the following property of the lower limit and lower envelope.
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Proposition 3.4. Suppose X is a dense subset of Y and f ∶ X → Z a map where Z is a bounded

complete domain. IfU is a bounded complete domain and д ∶ Z →U is Scott continuous and preserves

non-empty infima, then (д ○ f )∗ = д ○ f ∗ and, if Y has no isolated points, (д ○ f )† = д ○ f †.

Proof. We give the proof for the lower envelope as the proof for the lower limit is similar. For

y ∈ Y and any open set O ⊆ Y with y ∈ O , we have inf д[f [O ∩ X ]] = д(inf f [O ∩ X ]) since д
preserves non-empty infima. Thus, by Scott continuity of д, we obtain

(д ○ f )∗(y) = sup
y∈O

inf д[f [O ∩X ]] = sup
y∈O

д(inf f [O ∩X ]) = д(sup
y∈O

inf f [O ∩X ]) = д ○ f ∗(y).

�

There are many examples of lower limits and lower envelopes of maps with sets of discon-

tinuities of various cardinality in analysis. We start with examples related to the domain of

non-empty compact intervals IR of R partially ordered with reverse inclusion. The first shows

that the lower envelope and the lower limit can be different, and that the lower limit need not be

a lower extension.

Example 3.5. Consider the step function S ∶ R → IR defined by S(x) = 0 if x < 0, S(x) = 1 if

x > 0 and S(0) = �. Then, S†(x) = S∗(x) for x ≠ 0 but S†(0) = [0, 1] ≠ � = S∗(0).

Example 3.6. Consider the periodic sawtooth wave S ∶ R → R ⊆ IR defined by S(x) = x − ⌊x⌋.
Clearly, S has a discontinuity at each n ∈ Z. We have S† ∶ R→ I[0, 1] is given by f †(x) = x − ⌊x⌋ if

x ∉ Z and S†(x) = [0, 1] for x ∈ Z. Moreover, S∗ = S†.

Example 3.7. Consider any function f ∶ [0, 1] → R that is bounded (i.e., from below and above).

Note that [0, 1] ⊆ I[0, 1] is dense with respect to the Scott topology: in fact, given x ∈ [0, 1], any

open interval (a,b) containing x generates the Scott (equivalently upper) open set {C ∈ I[0, 1] ∶ C ⊆
(a,b)} which contains {x}. It follows that f †, f ∗ ∶ I[0, 1] → IR. It is easily seen that f †([a,b]) =
f ∗([a,b]) = co{f (x) ∶ x ∈ [a,b]}—that is, the smallest compact interval that contains f (x) for all

x ∈ [a,b].
Example 3.8. More generally, consider any bounded function f ∶ [0, 1]n → Rm ⊆ CRm—that is,

there exists k ≥ 0 such that ∥f (x)∥ ≤ k for all x ∈ [0, 1]n . Since [0, 1]n is dense in I[0, 1]n , the lower

limit and lower envelope f †, f ∗ ∶ I[0, 1]n → CRm exist and f †(A) = f ∗(A) = co{f (x) ∶ x ∈ A}—

that is, the smallest convex and compact set containing f [A].
Example 3.9. We now give an example, presented in [25, Example 6.6], of a map f ∶ [−1, 1] →

[0, 1] ⊆ I[0, 1] whose set of discontinuities is uncountable with positive Lebesgue measure μ. Take

any positive real number a < 1. The construction in the work of Edalat and Lieutier [25] gives two

disjoint open subsets B,C ⊆ [−1, 1] with μ(B) = μ(C) = a and B = (Cc)○—that is, the interior of the

complementCc ofC . Define f ∶ [−1, 1] → I[0, 1] with f (x) = 0 if x ∈ B and f (x) = 1 if x ∈ C . Then

D ∶= [−1, 1] ∖ (B ∪C) is the set of discontinuities of f and has Lebesgue measure μ(D) = 2 − 2a.

The lower limit and the lower envelope f †, f ∗ ∶ [−1, 1] → I[0, 1] coincide and f †(x) = 0 if x ∈ B,

f †(x) = 1 if x ∈ C and f †(x) = [0, 1] if x ∈ D.

Furthermore, we note the following well-known fact.

Lemma 3.10 ([35, p. 32]). If A ⊆ Rn is a bounded set, then

⋂{C ∶ A ⊆C convex and compact} = co{A} = co{A}.
Thus, if A ⊆ Rn is a bounded set, then inf e[A] ∈ CRn , where e ∶ Rn → CRn is the embedding

e(x) = {x}, and it can be computed as inf e[A] = ⋂{C ∈ CRn ∶ A ⊆ C} = co{A} = co{A}. We will

also need the following result later on.
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8:10 A. Edalat

Proposition 3.11. SupposeX is a dense subset of a topological spaceY without any isolated points

and д ∶ X → Rm ⊂ CRm is continuous. Then, the lower limit and lower envelope of д coincide:

(д)† = (д)∗ as maps of type Y → CRm .

Proof. Given y ∈ O , for any open set O ⊆ Y , we note that whether or not y ∈ X we have

д[O ∩X ] = д[(O ∖ {y}) ∩X ] since д is continuous. Thus, we have

inf д[O ∩X ] = ⋂{C ∈ CRm ∶ д[O ∩X ] ⊆ C}
= co{д[O ∩X ]} Lemma 3.10

= co{д[(O ∖ {y}) ∩X ]}
= ⋂{C ∈ CRm ∶ д[(O ∖ {y}) ∩X ] ⊆C} Lemma 3.10

= inf д[(O ∖ {y}) ∩X ].

The result now follows from the definitions of the lower envelope and lower limit. �

Example 3.12. Let f ∶ (a,b) → R be a differentiable function. Then д = f ′ ∶ (a,b) → R is

continuous on a dense set but the set of discontinuities of f ′ can be dense, of positive Lebesgue

measure or of full Lebesgue measure [8, Chapter 1.3.2, Proposition, 1.10, p. 30]. We have (f ′)† =
(f ′)∗ ∶ (a,b) → IR by Proposition 3.11.

4 GENERALISED JACOBIAN AS LOWER LIMIT OF DERIVATIVES

The notions of lower limit and lower envelope can be applied to non-smooth analysis and optimi-

sation. We recall the notion of generalised Jacobians of real locally Lipschitz vector functions, as

introduced by Clarke and presented in that work [11, section 2.6]. First, note that by Rademacher’s

theorem [12, page 148], a locally Lipschitz map f ∶ U ⊆ Rn → Rm is differentiable almost every-

where with respect to the Lebesgue measure.

Let Ωf be the null set where the locally Lipschitz map f ∶U ⊆ Rn → Rm fails to be differentiable,

and let S ⊂ U be any null set with respect to the Lebesgue measure. The generalised Jacobian

∂S f ∶U → CRn for x ∈U is defined to be

∂S f (x) = co{ lim
j→∞

f ′(x j) ∶ x j → x , x j ∉ Ωf ∪ S} , (2)

where f ′(x) denotes the Fréchet derivative (Jacobian) of f at x ∈ U ∖ Ωf with respect to the

standard Cartesian coordinates. The right-hand side of the preceding formula is to be interpreted

as follows. There are many sequences (x j) on U ∖ (Ωf ∪ S) that converge to x such that f ′(x j)
also converges to a limit; the generalised Jacobian ∂S f (x) is the convex hull of all such limits. The

first property to note is that the resulting set in Equation (2) does not depend on S .

Theorem 4.1 ([46, Theorem 4]). The set ∂S f (x) is independent of the null set S .

We will thus write ∂ f (x) ∶= ∂S f (x) for any null set S . Let the vector space Rm×n of m × n
matrices over real numbers be equipped with the Frobenius norm.

Theorem 4.2 ([11, Proposition 2.6.2]). If f ∶ U ⊆ Rn → Rm is a locally Lipschitz map, then

∂ f (x) is a non-empty convex compact subset of Rm×n for each x ∈U , and the map ∂ f ∶U → CRm×n

is upper semi-continuous.

We have ∂ f (x) ⊆ ∂ f1(x) × ⋯ × ∂ fm(x), where the latter denotes the set of m × n matrices

whose jth row belong to ∂j f (x). For a locally Lipschitz f ∶ U ⊆ Rn → R (i.e., m = 1), the gen-

eralised Jacobian is called the subgradient ∂ f ∶ U ⊆ Rn → CRn which is equivalently defined by

the support function σ∂f (x) ∶ Rn → R of ∂ f (x) for x ∈ U (see Clarke [11, Proposition 2.1.2(b) and
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Theorem 2.5.1]):

σ∂f (x)(v) = sup{⟨y,v⟩ ∶ y ∈ ∂ f (x)} = f ○(x ;v) ∶= lim sup
y→x,t→0+

f (y + tv) − f (y)
t

. (3)

Here, f ○(x ;v) is called the generalised directional derivative of f at x in the direction of v ∈ Rn .

We will use each of the four equivalent terms in Equation (3) as convenient in this work.

4.1 Representation by Lower Limit

We will now show that for any locally Lipschitz map f ∶U ⊆ Rn → Rm , the generalised Jacobian ∂ f
is the lower limit, equivalently the lower envelope, of the derivative map f ′ ∶ U0 → Rm×n , where

U0 ⊆U is the dense subset where f is differentiable. This will provide a new representation for the

generalised Jacobian and for the subgradient when m = 1. Note that Rm×n can be considered as a

subset of the maximal elements of the bounded complete domain CRm×n—that is, the set of non-

empty compact and convex subsets of the space of m × n real matrices Rm×n ordered by reverse

subset inclusion and augmented with a bottom element that can be regarded as the whole space

R
m×n . Thus, we can consider f ′ as a map of typeU0 → CRm×n . We need the following theorem of

Carathéodory on convex hulls.

Theorem 4.3 ([15]). Any point of the convex hull of a subset S ⊆ Rp lies in the convex hull of at

most p + 1 points in S .

By allowing some points in Carathéodory’s theorem to be the same points if necessary, we can

assume that any point of the convex hull of a subset S ⊆ Rp lies in the convex hull of p + 1 points

in S .

We now have our main result in this section.

Theorem 4.4. For any locally Lipschitz map f ∶U ⊆ Rn → Rm , the generalised Jacobian coincides

with the lower envelope and the lower limit of the derivative map:

∂ f = (f ′)† = (f ′)∗.

Proof. Let x ∈ U . By Proposition 3.2(iii), we already know that (f ′)∗(x) ⊇ (f ′)†(x). We will

now show that ∂ f (x) ⊆ (f ′)†(x). By Theorem 4.1, we have ∂S f (x) = ∂ f (x) where S = {x}; hence,

it is sufficient to prove that ∂{x} f (x) ⊆ (f ′)†(x). Suppose we have a sequence xn ∈U0∖{x}, n ≥ 0,

with limn→∞ xn = x , such that y = limn→∞ f ′(xn) exists and thus y ∈ ∂{x} f (x). Let O ⊆ U be

an open set with x ∈ O on which f is Lipschitz. Then there exists N ≥ 0 such that n ≥ N implies

xn ∈O ∖{x}—that is, f ′(xn) ∈ f ′[(O ∖{x})∩U0] for all n ≥ N . If c ≥ 0 is a Lipschitz constant for f
in O, then ∥f ′(u)∥ ≤ c for any u ∈U0 ∩O and thus f ′[(O ∖ {x}) ∩U0] ⊆ Bc(0), where Bc(0) is the

compact unit ball of radius c around the origin in Rm×n . Hence, by the comment after Lemma 3.10,

inf f ′[(O∖{x})∩U0] ∈ CRm×n is the convex hull of the closure of f ′[(O∖{x})∩U0], which implies

y ∈ inf f ′[(O ∖ {x}) ∩U0]—that is, inf f ′[(O ∖ {x}) ∩U0] ⊑ y. Since this holds for any sufficiently

small open setO containing x , it follows that sup{inf f ′[(O∖{x})∩U0] ∶ x ∈O, O open} ⊑ y—that

is, y ∈ (f ′)†(x). But ∂{x} f (x) is the convex hull of points such as y and (f ′)†(x) is convex. Thus,

∂ f (x) = ∂{x} f (x) ⊆ (f ′)†(x) ⊆ (f ′)∗(x).

Next, we will show that (f ′)∗(x) ⊆ ∂ f (x). Suppose y ∈ (f ′)∗(x). For any integer k ≥ 0, let Ok

be the open ball of radius 1/2k centred at x . Since for k ≥ 0,y ∈ inf f ′[Ok ∩U0] = co{f ′[Ok ∩U0]}, it

follows from Carathéodory’s Theorem 4.3, applied to the point y of themn dimensional Euclidean

space Rm×n , that there exist mn + 1 points yik ∈ f ′[Ok ∩U0], for 1 ≤ i ≤ mn + 1, such that y ∈
co{yik ∶ 1 ≤ i ≤ mn + 1}. By the definition of the closure of a set, let xik ∈ Ok ∩U0 be such that

∥f ′(xik)−yik∥ < 1/2k for each k ≥ 0 and 1 ≤ i ≤mn+1. Since the subset inf f ′[Ok ∩U0] is compact
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8:12 A. Edalat

for each k ≥ 0, there is a subsequence yik�
such that the limits yi ∶= lim�→∞yik�

exist for all i
with 1 ≤ i ≤ mn + 1. By continuity, we have y ∈ co{yi ∶ 1 ≤ i ≤ mn + 1}. In fact, the polyhedron

P� ∶= co{yik�
∶ 1 ≤ i ≤mn + 1} converges to P ∶= co{yi ∶ 1 ≤ i ≤mn + 1} in the Hausdorff metric dH

on CRm×n which implies d(P ,y) = lim�→∞d(P�,y) = 0 since d(P�,y) = 0 for each � ≥ 0, where

d(A,y) is the minimum distance from the point y to a compact set A. By construction, we have

lim�→∞ xik�
= x and lim�→∞ f ′(xik�

) = yi . Thus, yi ∈ ∂ f (x) for 1 ≤ i ≤mn + 1, and by convexity,

y ∈ ∂ f (x). Hence, (f ′)∗(x) ⊆ ∂ f (x), which completes the proof. �

Since the lower limit or the limit inferior of a map is more widely used in analysis, we will

formulate our results in this article in terms of the lower limit.

The following simple property of continuous maps provides a useful tool in computation in

different contexts, in particular for the extension of continuous maps, including the elementary

functions of type Rn → R to intervals IR
n → IR which is at the basis of interval analysis [38].

Proposition 4.5. Let д ∶ Rn × Rk → Rm ⊆ CRm be a continuous function, where k is a non-

negative integer. Then д† = д∗ ∶ CRn × CRk → CRm and д†((C1,C2)) = co{д[C1 ×C2]} for compact

and convex subsets C1 ∈ CRn and C2 ∈ CRk .

Proof. By Proposition 3.11, д† = д∗. Their common value easily follows from the definition of

the lower envelope since a continuous map preserves compact subsets. �

If v ∈ Rn , then the map Lv ∶ Rm×n → Rm ⊆ CRm given by Lv(M) = Mv is linear and thus

preserves compact and convex sets. By Proposition 4.5, we have L∗v = L†
v ∶ CRm×n → CRm given

by L†
v(C) = {Mv ∶ M ∈ C}. We observe that L†

v is Lipschitz on the non-bottom elements of CRm×n

with respect to the Hausdorff metric: if C,D ∈ CRm×n and r > 0, then C ⊆ D + rBm×n
1 implies

Lv(C) = Cv ⊆ Dv + rBm×n
1 v = Lv(D) + rBm×n

1 v ⊆ Lv(D) + r∥v∥Bm
1 , since for M ∈ Bm×n

1 we have

∥Mv∥ ≤ ∥M∥F ∥v∥ as the Frobenius norm is subordinate to the Euclidean norm. From this relation

and its symmetric counterpart, it follows easily that L†
v , applied to non-empty compact and convex

subsets, has Lipschitz constant ∥v∥.

Corollary 4.6. If v ∈ Rn and f ∶ U ⊆ Rn → Rm is Lipschitz, then (Lv ○ f ′)† = L†
v ○ ∂ f (i.e.,

(Lv ○ f ′)†(x) = ⟨∂ f (x),v⟩) for all x ∈U .

Proof. Since L†
v ∶ CRm×n ∖ {�} → CRm is Lipschitz with respect to the Hausdorff metric, it is

Scott continuous. It is also easy to check, using Theorem 4.3 that for any non-empty family Mi ,

where i ∈ I , with Mi ∈ CRm×n we have co{⋃i∈I Miv} = (co{⋃i∈I Mi})(v). Therefore, L†
v preserves

non-empty infima and the result follows from Proposition 3.4 since we have Lv ○ f ′ = L†
v ○ f ′. �

4.2 Basic Properties of Generalised Jacobian

A number of properties of the generalised Jacobians proved in the work of Clarke [11] now simply

follow, in the light of its coincidence with the lower envelope given by Theorem 4.4, by the basic

properties of the lower envelope in Proposition 3.2.

Corollary 4.7. For any locally Lipschitz map f ∶U ⊆ Rn → Rm and x ∈U , we have

(i) The set ∂ f (x) is non-empty, convex and compact.

(ii) If f ′(x) exists, then f ′(x) ∈ ∂ f (x).

(iii) If f is continuously differentiable at x , then ∂ f (x) = f ′(x).

(iv) ∂ f ∶U → CRm×n is upper continuous.
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Remark 4.8. We cannot directly use the standard extension of continuous maps as in the work

of Gierz et al. [33, p. 181] to obtain Theorem 4.4. In fact, there are Lipschitz functions which are

not continuously differentiable at any point, so Corollary 4.7(iii) does not apply. For example, in

the work of Lebourg [37, Proposition 1.9], a Lipschitz map f ∶ [0, 1] → R has been constructed

with ∂ f (x) = [0, 1] for all x ∈ [0, 1]. It follows that f is not continuously differentiable at any point

x ∈ [0, 1] since at such a point we would have ∂ f (x) = f ′(x) ≠ [0, 1].

Next we show that the two chain rules for the generalised Jacobian derived in the work of

Clarke [11, Theorem 2.6.6 and its corollary] can be deduced with a much shorter proof. We note

that if B ∈ CRm×n and A ∈ CRk×m , then co{AB} ∶= co{PQ ∶ Q ∈ B,P ∈ A} ∈ CRk×n . In fact, it is easy

to check that AB ⊆ Rk×n is compact, but it is, in general, not convex. As a counter example, with

m = k = 2 and n = 1, let B = {λ(1, 0)T + (1 − λ)(0, 1)T ∶ 0 ≤ λ ≤ 1} and

A = {μ [1 0

0 1
] + (1 − μ) [0 −1

1 0
] ∶ 0 ≤ μ ≤ 1} .

Then, AB is not convex as (1, 0)T , (−1, 0)T ∈ AB but (0, 0)T ∉ AB. However, we have the following

proposition.

Proposition 4.9. If B ⊆ Rm×n and A ⊆ Rk×m , then

co{AB} = co{A co{B}} = co{co{A}B} = co{co{A}co{B}}.

Proof. Since the second and third sets in the preceding equalities are contained between the

first and the fourth, it is sufficient to show the equality of the latter two. Clearly, co{AB} ⊆
co{co{A}co{B}}. If P ∈ co{A} and Q ∈ co{B}, then by Carathéodory Theorem 4.3, there ex-

ists Pi ∈ A, λi ∈ [0, 1] for 1 ≤ i ≤ km + 1 with ∑km+1
i=1 λi = 1 and Q j ∈ B, μ j ∈ [0, 1] for

1 ≤ j ≤ mn + 1 with ∑mn+1
j=1 μ j = 1 such that P = ∑km+1

i=1 λiPi and Q = ∑mn+1
j=1 μ jQ j . It follows

that PQ = ∑km+1
i=1 ∑mn+1

j=1 λiμ jPiQi with ∑km+1
i=1 ∑mn+1

j=1 λiμ j = 1. Thus, PQ ∈ co{AB} and the result

follows. �

We now recall the mean value theorem for the generalised Jacobian.

Proposition 4.10 ([11, Proposition 2.6.5]). If f ∶ U ⊆ Rn → Rm is Lipschitz in U , then for

x ,y ∈U we have f (x) − f (y) ∈ co{∂ f [s(x ,y)]}(x −y).

Note that in the preceding proposition, we have ∂ f [s(x ,y)] ∶= ⋃{∂ f (z) ∶ z = λx + (1 − λ)y, 0 ≤
λ ≤ 1}, where s(x ,y) is the compact line segment between the points x ,y ∈ Rn . By Proposition 4.9,

we have (co{∂ f [s(x ,y)]})(x−y) = co{(∂ f [s(x ,y)])(x−y))}. We will actually give an alternative

proof of Proposition 4.10 later in Corollary 7.6.

Observe that the composition map J ∶ Rk×m × Rm×n → Rk×n ⊆ CRk×n with J((P ,Q)) = PQ is

continuous with respect to the Frobenius norm equivalently the Euclidean topology. By Proposi-

tion 4.5, J∗ = J† ∶ CRk×m × CRm×n → CRk×n with J†((A,B)) = co{AB}.

Theorem 4.11. (Cf. [11, Corollary p. 75]) Suppose f ∶ U ⊆ Rn → Rm is Lipschitz near x ∈ U and

д ∶ Rm → Rk is Lipschitz near f (x). Then for any v ∈ Rn , we have

∂(д ○ f )(x)v ⊆ co{∂д(f (x))∂ f (x)}v .

Proof. By Corollary 4.6, it follows that

(Lv ○ (д ○ f )′)†(x) = L†
v ○ ((д ○ f )′)†(x) = ∂(д ○ f )(x)v .
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However, the map x ↦ co{∂д(f (x))∂ f (x)}v = L†
v J

†((д†(f (x)), f †(x))) of type U → CRk , is

the composition of upper continuous or continuous functions and is thus upper continuous. Since

by Theorem 4.4 (Lv ○ (д ○ f )′)† = (Lv ○ (д ○ f )′)∗, the result will follow by Proposition 3.2(i) if

we show that the upper continuous map x ↦ co{∂д(f (x))∂ f (x)}v , of typeU → CRk , is indeed a

lower extension of the map x ↦ (д ○ f )′(x)v of the same type. Assume that the Fréchet derivative

(д○ f )′(x) ∈ Rkn exists for some x ∈U . (Note that the existence of (д○ f )′(x) does not imply the ex-

istence of f ′(x) orд′(f (x)).) We will show that ifR ∶= (д○f )′(x), thenRv ∈ co{∂д(f (x))∂ f (x)}v
which will complete the proof. Let ϵ > 0 be given. Put v = ∥v∥v̌ where v̌ is the unit vector in the

direction of v . By the definition of the Fréchet derivative, there exists δ0 > 0 such that ∥v∥ < δ0

implies

∥(д ○ f )(x +v) − (д ○ f )(x) − Rv∥
∥v∥ < ϵ/2. (4)

Let m1 = sup{∥P∥ ∶ P ∈ ∂д(f (x))} and m2 = sup{∥Q∥ ∶ Q ∈ ∂ f (x)} and put m = max{m1,m2}.

By the upper continuity of ∂д at f (x) and that of ∂ f at x as well as the continuity of f at x , there

exists δ1 > 0 such that ∥v∥ < δ1 implies

∂д(f (x +v)) ⊆ (∂д(f (x)))ϵ0 and ∂ f (x +v) ⊆ (∂ f (x))ϵ0 (5)

with ϵ0 = ϵ/(4m + 1), where Cϵ0 is, the ϵ0-open neighbourhood of C as defined in Section 1.1.

By Proposition 4.9 and Proposition 4.10, for ∥v∥ < δ1, we have

д(f (x +v)) −д(f (x)) ∈ co{∂д[f (x +v), f (x)](f (x +v) − f (x))}
⊆ co{∂д[f (x +v), f (x)]co{∂ f [x +v,x]}}v
= co{co{∂д[f (x +v), f (x)]}co{∂ f [x +v,x]}}v
⊆ co{(∂д(f (x)))ϵ0(∂ f (x))ϵ0}v .

Thus, for ∥v∥ < δ1, by Carathéodory Theorem 4.3, there exist Pi ∈ (∂д(f (x)))ϵ0 andQi ∈ (∂ f (x))ϵ0

together with P ′i ∈ ∂д(f (x)) and Q ′i ∈ ∂ f (x), for 1 ≤ i ≤ t ∶= kn + 1, and ci ≥ 0, with ∑t
i=1 ci = 1,

such that д(f (x +v))−д(f (x)) = ∑t
i=1 ciPiQi , ∥Pi −P ′i ∥ < ϵ0 and ∥Qi −Q ′i∥ < ϵ0. From Relation (4),

for ∥v∥ < δ0, we have ∥(∑t
i=1 ciPiQiv) −Rv∥ < ϵ∥v∥/2. Therefore, for ∥v∥ < min{δ0,δ1}, we obtain

∥((∑t
i=1 ciP

′
iQ
′
i) − R)v∥ = ∥(∑t

i=1 ci (P ′iQ ′i − P ′iQi + P ′iQi − PiQi + PiQi)v − Rv ∥
≤ ∑t

i=1 ci (∥P ′i ∥∥Q ′i −Qi∥ + ∥Pi − P ′i ∥∥Qi∥) + ∥∑t
i=1 ciPiQi − R∥∥v∥

≤ mϵ0∥v∥ +mϵ0∥v∥ + ϵ∥v∥/2 = (2mϵ∥v∥)/(4m + 1) + ϵ∥v∥/2 < ϵ∥v∥.

It follows that ∥∑t
i=1 ciP

′
iQ
′
iv̌ − Rv̌∥ < ϵ . Since ϵ > 0 is arbitrary and ∂д(f (x))∂ f (x)v̌ is compact,

we obtain Rv̌ ∈ ∂д(f (x))∂ f (x)v̌ ⊆ co{∂д(f (x))∂ f (x)}v̌ . The result follows. �

Corollary 4.12. (Cf. [11, 2.6.2]) For k = 1, we have

∂(д ○ f )(x) ⊆ co{∂д(f (x))∂ f (x)}.

Proof. When k = 1, the two sets ∂(д○ f )(x) and co{∂д(f (x))∂ f (x) are compact subsets ofRn .

The theorem now says that the support function of ∂(д○ f )(x) is less that of co{∂д(f (x))∂ f (x)},

from which the result follows by the comment after Equation (1). �

5 SMOOTH APPROXIMATION OF SUBGRADIENT

Let U ⊆ Rn be an open subset, and let Lip(U ) denote the set of Lipschitz maps f ∶ U ⊆ Rn → R,

and let Lip0(U ) denote the set of locally Lipschitz maps of type f ∶ U ⊆ Rn → R—that is, for each

x ∈ U , there exists an open set O ⊆ U such that x ∈ O andf is Lipschitz in O . For any function
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f ∶ U → R, let Df (x) ∶= f ′(x) be the derivative of f at x when it exists. In particular, we have a

map

D ∶ C1(U ) → C0(U ),
where C1(U ) is the set of continuously differentiable functionsU → R equipped with the C1 norm

topology, and C0(U ) is the space of continuous functions U → R equipped with the sup norm

topology.

Recall that the L-topology, the weakest refinement of the sup norm topology such that the sub-

gradient operator ∂ ∶ Lip0(U ) → CRn is continuous, is second countable and admits a complete

metric [21]. We will from now on consider Lip0(U ) equipped with its L-topology.

In this section, we characterise the L-topology in terms of sequences of locally Lipschitz maps

and we will show that C1(U ), the subset of continuously differentiable functions in Lip(U ), is

dense with respect to the L-topology. Note that if U is relatively compact (i.e., has a compact

closure), then any map in Lip(U ) extends by continuity to the closure ofU and in this case we can

use the closure U of U and our results will imply that C1(U ) ⊆ Lip(U ) is a dense subset.

We start by noting the following property.

Lemma 5.1. Suppose hk ∈ Lip0(U ), k ≥ 0, is a sequence such that hk → f in the sup norm topology

as k → ∞ where f ∈ Lip0(U ). Then, for all x ∈U and v ∈ Sn−1, we have

lim sup
y→x,k→∞

h○k(y;v) ≥ f ○(x ;v).

Proof. Let x ∈ U and v ∈ Rn , and let N > 0, ϵ > 0 and δ > 0 be given. By the definition of

f ○(x ;v) in Equation (3), there exist y and t with s(y,y + tv) ⊂U , ∣x −y∣ < δ and 0 < t < δ such that

(f (y + tv) − f (y))/t > f ○(x ;v) − ϵ . Since hk → f in the sup norm topology, there exists � > N
such that (h�(y + tv) −h�(y))/t > f ○(x ;v) − ϵ . By the compactness of s(y,y + tv), it follows that

there exists an open setU0 ⊆U with s(y,y + tv) ⊂U0 such that h� is Lipschitz inU0. By Lebourg’s

mean value theorem [11, 2.3.7] applied to h� in the open line segment (y,y + tv), there exists

z ∈ (y,y + tv) such that h�(y+tv) − h�(y) ∈ ⟨∂h�(z), tv⟩ (i.e., h○�(z;v)) > f ○(x ;v) − ϵ), and the

result follows. �

5.1 Characterisation of Convergence in L-Topology

Observe that since ∂ f = f ′ for f ∈ C1(U ), the restriction of the L-topology on C1(U ) is precisely

the C1 norm topology.

Proposition 5.2. The relative subspace L-topology induced on the subset C1(U ) ⊂ Lip0(U ) coin-

cides with the C1 norm topology.

We will now obtain one of our main results, which gives a characterisation of the L-topology by

classical notions in mathematical analysis. First, we need to fix our terminology. For a sequence

of functions дk ∶ V ⊆ Rn → R, with k ≥ 0, and a subset A ⊆ V , we say lim supk→∞дk(v) = д(v)
uniformly for v ∈ A if the sequence Gk(v) = supm≥k дm(v) converges (in fact decreases) to д(v) =
infk≥1Gk(v) as k → ∞ uniformly for v ∈ A.

Lemma 5.3. Suppose the sequence of maps hk ∈ Lip0(U ) converges to f ∈ Lip0(U ) in the sup norm

topology. Then, we have

lim sup
y→x,k→∞

h○k(y;v) = f ○(x ;v), (6)

for all x ∈ U and v ∈ Sn−1, with the convergence being uniform for v ∈ Sn−1, iff for all ϵ > 0, there

exists N ≥ 0 and δ > 0 such that h○k(y;v) < ϵ + f ○(x ;v) for ∥y − x∥ < δ , k ≥ N and all v ∈ Sn−1.
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Proof. By Lemma 5.1, lim supy→x,k→∞h○k(y;v) ≥ f ○(x ;v). Next, we note that the limsup

taken over two variables is converted in the usual way to limsup over a single variable. In fact,

lim supy→x,k→∞h○k(y;v) = infk≥1 Hk(x ,v) with Hk(x ,v) = supm≥k,y∈Ok
h○m(y;v), whereOk is the

open ball centred at x and of radius 2−k with x removed. The result now follows. �

Theorem 5.4. A sequence of maps hk ∈ Lip0(U ) converges to f ∈ Lip0(U ) in the L-topology, as

k → ∞, iff hk → f in the sup norm topology and for all x ∈U and v ∈ Rn we have

lim sup
y→x,k→∞

h○k(y;v) = f ○(x ;v), (7)

with the convergence being uniform for v ∈ Sn−1.

Proof. Suppose that the sequence hk ∈ Lip0(U ) converges to f ∈ Lip0(U ) in the L-topology.

Since the L-topology is a refinement of the C0 topology, hk → f in the sup norm topology. To

invoke Lemma 5.3 to deduce the uniform convergence to the limit superior, let x ∈ U and ϵ > 0.

Then, by upper continuity of ∂ f at x , there exists an open set O0 with x ∈ O0 such that ∂ f (y) ⊆
(∂ f (x))ϵ/2 for y ∈ O0. Let C ∈ CRn with (∂ f (x))ϵ/2 ⊆ C ⊆ (∂ f (x))ϵ and let δ > 0 be such that

open ball O of radius δ and centre x satisfies O ⊆ O0. Then, O ≪ O0 ⊆ (∂ f )−1(↑↑C) and thus

CχO ≪ ∂ f [33, Proposition II-4.20(iv)]. Since the sequence hk converges to f in the L-topology

and since ↑↑CχO is a Scott open neighbourhood of ∂ f , it follows that there exists N such that for

k ≥ N , we have CχO ≪ ∂hk , and hence ∂hk(y) ⊂ C○ for y ∈ O . It follows that for all k ≥ N , y ∈ O
and v ∈ Sn−1, h○k(y;v) < σC(v) < f ○(x ;v) + ϵ which yields the required uniform convergence by

Lemma 5.3.

Next, assume that f ∈ Lip0(U ) and that hk ∈ Lip0(U ), k ≥ 0, is a sequence with hk → f as

k → ∞ in the sup norm topology and for all x ∈ U , the convergence in (7) is uniform in v ∈ Sn−1.

Let CχO0 be a single-step function with CχO0 ≪ ∂ f in (U → CRn) and O0 ⊆ U compact. From

CχO0 ≪ ∂ f , we obtainO0 ≪ (∂ f )−1(↑↑C). By the interpolation property, there exists an open setO
withO0 ≪O ≪ (∂ f )−1(↑↑C), which implies that for all x ∈O0 we haveC ≪ ∂ f (x). Thus, for each

x ∈ O0, there exists ϵx > 0 and an open neighbourhood Ox ⊂ O of x such that (∂ f (x))ϵx ⊆ C○. In

addition, using the uniform convergence in (7), by Lemma 5.3, there exists, for each x ∈O0, an open

neighbourhood O ′x of x and Nx ≥ 0 such that h○k(y;v) < f ○(x ;v) + ϵx for all k ≥ Nx , v ∈ Sn−1 and

y ∈O ′x . Consider the open cover of the compact setO0 by open setsUx ∶=Ox ∩O ′x with x ∈O0. Let

Uxi for i = 1, . . . , � be a finite cover and put ϵ = min{ϵxi ∶ 1 ≤ i ≤ �} and N = max{Nxi ∶ 1 ≤ i ≤ �}.

Then for all k ≥ N , y ∈O0 andv ∈ Sn−1, we havey ∈Uxi =Oxi ∩O ′xi
for some i = 1, . . . , � and hence:

h○k(y;v) < f ○(xi ;v) + ϵxi < sup⟨C,v⟩. Therefore, ∂hk(y) ⊂ C○ for all y ∈ O0 and k ≥ N—that is,

O0 ⊂ ∂h−1
k (↑↑C), for all k ≥ N . Thus, O0 ≪ ∂h−1

k (↑↑C) (i.e., CχO0 ≪ ∂hk for all k ≥ N ), which proves

the convergence of the sequence hk to f in the L-topology. �

Corollary 5.5. A sequence of maps hk ∈ C1(U ), k ≥ 0, converges to a map f ∈ Lip0(U ) in the

L-topology iff for all x ∈U and v ∈ Rn we have

lim sup
y→x,k→∞

⟨h′k(y),v⟩ = f ○(x ;v), (8)

with the convergence being uniform for v ∈ Sn−1.

Recall that a Lipschitz map f ∶ U ⊆ Rn → R is regular at x ∈ U if the one-sided directional

derivative of f exists at x for all v ∈ Rn and f ′(x ;v) = f ○(x ;v). We say f is a regular map if it is

regular for all x ∈U [11, 2.3.4].

Journal of the ACM, Vol. 69, No. 1, Article 8. Publication date: December 2021.



Smooth Approximation of Lipschitz Maps and Their Subgradients 8:17

Corollary 5.6. A sequence of maps hk ∈ C1(U ), k ≥ 0, converges to a regular map f ∈ Lip0(U )
in the L-topology iff for all x ∈U and v ∈ Rn we have

lim sup
y→x,k→∞

⟨h′k(y),v⟩ = f ′(x ;v), (9)

with the convergence being uniform for v ∈ Sn−1.

If 1 ≤ m ≤ n, and x ∈ Rn , we define xIm = (x1, . . . ,xm) ∈ Rm and x Jm = (xm+1, . . . ,xn) ∈ Rn−m

when 1 ≤m < n. For a C1 mapд ∶U ⊆ Rn → R, we define
∂д

∂xIm
= ( ∂д

∂x1
, . . . ,

∂д

∂xm
). Thus, whenm = 1,

we have
∂д

∂xI1
= ∂д

∂x1
as usual and

∂д

∂xIn
= ( ∂д

∂x1
, . . . ,

∂д

∂xn
) = д′(x). Consider now a Lipschitz map

f ∶U ⊆ Rn → Rwith 1 ≤m < n. The partial subgradient of f with respect to the subspace Rm ⊆ Rn ,

denoted by ∂Im f (x), is defined by restricting the vector v in Equation (3) to (v, 0) ∈ Rm × Rn−m ;

see the work of Clarke [11, p. 48].

Corollary 5.7. A sequence hk ∈ C1(U ) converges to f ∈ Lip0(U ) in the L-topology, as k → ∞, iff

hk → f in the sup norm topology and for all x ∈U , 1 ≤m ≤ n and v ∈ Rm we have

lim sup
k→∞,yIm→xIm

⟨∂hk(y))
∂yIm

,v⟩ = σ∂Im f (x)(v) (10)

where the convergence is uniform for v ∈ Sm−1.

Let πIm ∶ Rn → Rm be the projection to Rm with πIm (x1, . . . ,xn) = (x1, . . . ,xm). Since for

v ∈ Rm ,

lim sup
k→∞,yIm→xIm

⟨∂hk(yIm ,x Jm )
∂yIm

,v⟩ ≤ lim sup
k→∞,yIn→xIn

⟨∂hk(yIn )
∂yIn

,v⟩ = lim sup
k→∞,y→x

⟨h′k(y),v⟩ ,

from Corollary 5.7, we obtain an alternative short proof of a corresponding result in Clarke [11,

Proposition 2.3.16].

Corollary 5.8. If f ∶U ⊆ Rm ×Rn → R is locally Lipschitz, then for all x ∈U :

∂Im f (x) ⊆ πIm [∂ f (x)] .
Recall that, given any metric space (X ,d), the collection Lip(X ,d) of bounded real-valued Lip-

schitz functions on X is equipped with its Lipschitz norm ∥ ⋅ ∥Lip defined as

∥f ∥Lip = ∥f ∥ + ∥f ∥d (11)

where ∥f ∥ = sup{∣f (x)∣ ∶ x ∈ X} is the sup norm and

∥f ∥d = sup{∣f (x) − f (y)∣/d(x ,y) ∶ x ,y ∈ X ,x ≠ y}.
If (X ,d) is complete, then so is the Lipschitz norm [44]. We now present a simple example of a

sequence of C1 functions that converges in the sup norm topology and in the L-topology, but not

in the Lipschitz norm, to a Lipschitz map.

Example 5.9. Consider the sequence of C1 and Lipschitz functions hk ∶ [−1, 1] → R, for k ≥ 1,

with

hk(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∣x ∣ if ∣x ∣ ≥ 1/k

kx 2

2
+ 1

2k
if ∣x ∣ < 1/k

and the Lipschitz map f ∶ [−1, 1] → R with f (x) = ∣x ∣. Clearly, limk→∞hk = f in the sup norm

topology. It is easily checked that

∥hk − f ∥d ≥ ∣(hk(1/k) − f (1/k)) − (hk(0) − f (0))
(1/k) ∣ = ∣(1/k − 1/k) − ((1/2k) − 0)

1/k ∣ = 1/2
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for all k ≥ 1 and thus hk does not tend to f as k → ∞ in the Lipschitz norm topology. However,

for x ,v ∈ R,

lim sup
y→x,k→∞

h′k(y)v = ∣v ∣ = lim sup
y→x,t→0+

f (y + tv) − f (y)
t

,

and, trivially, for the two unit vectors v = 1 and v = −1 the convergence is uniform. Hence, by

Theorem 5.5, hk → f in the L-topology. This therefore gives a simple application of our new

results in basic mathematical analysis.

5.2 Construction of C∞ Approximations to a Lipschitz Map

Let G ∶ Rn → R with

G(x) = 1

(2π)n/2
exp−(∥x∥2/2), (12)

where x = (x1, . . . ,xn), be the standard multivariate Gaussian (normal) probability density

distribution—that is, the product of n independent standard Gaussian distributions each along an

axis of Rn . For any positive integer k , let Gk ∶ Rn → R be given by Gk(x) = knG(kx). Then Gk

is the multivariate Gaussian probability density distribution with mean E(xi) = 0 and variance

E(x2
i ) = 1/k2 for i = 1, . . . ,n, and thus ∫Rn Gk(u)du = 1. Then Gk is a sequence of test functions.

For definiteness, we will use this particular sequence of test functions in deriving Theorem 5.10

presented in the following, but it is easy to see that this theorem follows for any sequence of test

functions. For a Lipschitz map f ∶ U ⊆ Rn → R, let hk = f ∗ Gk ∶ U → R be the convolution

hk(x) = ∫U f (y)Gk(x −y)dy for any positive integer k .

Theorem 5.10. For any map f ∶ U ⊆ Rn → R with Lipschitz constant c , the sequence hk = f ∗ Gk

is a sequence of C∞ functions with Lipschitz constant c such that limk→∞hk = f in the L-topology.

Proof. Since Gk is C∞, it follows from the derivative properties of convolutions [10, p. 119] that

all partial derivatives
∂hk

∂xi

= ∂(f ∗ Gk)
∂xi

= f ∗ ∂Gk

∂xi

for i = 1, . . . ,n exist as do all higher-order partial derivatives and therefore hk is C∞. Let u = y −x ,

for x ,y ∈U , so thaty = u+x . Thenu ∈U −U , where for subsetsX ,Y ⊆ Rn , recall that the Minkowski

sum and difference are defined by X ±Y = {x ±y ∶ x ∈ X ,y ∈ Y}. Thus, by the preceding change of

variable in the integral, we obtain

hk(x) = ∫
U−U

f (u + x)Gk(u)du . (13)

Then, we have

∣hk(x1)−hk(x2)∣ ≤ ∫
U−U

∣f (u +x1)− f (u +x2)∣Gk(y)du ≤ c∥x1 −x2∥∫
U−U

Gk(u)du ≤ c∥x1 −x2∥.

Therefore, hk has Lipschitz constant c , and we have

∣hk(x)− f (x)∣ ≤ ∫
U−U

∣f (u+x)− f (x)∣Gk(u)du ≤ c ∫
U−U

∥u∥Gk(u)du ≤ c

k ∫
Rn

∥u∥G(u)du, (14)

showing that limk→∞hk = f in the sup norm topology. By Theorem (5.5), it remains to show that

for v ∈ Rn : lim supy→x,k→∞⟨h′k(y),v⟩ = f ○(x ;v), where the convergence is uniform for v ∈ Sn−1.

To use Lemma 5.3 to deduce the uniform convergence, let x ∈ U , v ∈ Sn−1 and ϵ > 0. Since the

map v ↦ f ○(x ;v) = σ∂f (x)(v) is uniformly continuous on the compact set Sn−1, there exists

δ0 > 0 such that for ∥v −w∥ < δ0 with w ∈ Sn−1, we have ∣f ○(x ;v) − f ○(x ;w)∣ < ϵ/6. Furthermore,

since (x ,v) ↦ f ○(x ;v) is upper continuous [11, Proposition 2.1.1(b)], there exist δv ,αv > 0 such
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that for ∥y − x∥ < δv and 0 < t < αv , we have (f (y + tv) − f (y))/t < f ○(x ;v) + ϵ/6. Thus, for

∥v −w∥ < β ∶= min{ϵ/6c,δ0} with w ∈ Sn−1, ∥y − x∥ < δv and 0 < t < αv , we have

f (y + tw) − f (y)
t

= f (y + tw) − f (y + tv) + f (y + tv) − f (y)
t

< c∥v −w∥ + f (y + tv) − f (y)
t

< ϵ

6
+ f ○(x ;v) + ϵ

6
≤ ϵ

6
+ f ○(x ;w) + ϵ

6
+ ϵ

6
= f ○(x ;w) + ϵ/2. (15)

Let Or be the open ball of radius r > 0 centred at the origin, and let Nv ≥ 1 be such that for

k ≥ Nv ,

c ∫
(U−U )∖Oδv /2

Gk(u)du < ϵ

2
. (16)

For ∥y − x∥ < δv/2 and ∥u∥ < δv/2, we have ∥u + y − x∥ < ∥u∥ + ∥y − x∥ ≤ δv/2 + δv/2 = δv .

Thus, using Equation (13) to compute hk(y) and hk(y + tw), applying Inequality (15), in which

we replace y with y + u, and employing Inequality (16), we obtain for ∥y − x∥ < δv/2, 0 < t < αv ,

∥v −w∥ < β , w ∈ Sn−1, and k ≥ Nv :

hk(y + tw) −hk(y)
t

= ∫
U−U

( f (u +y + tw) − f (u +y)
t

)Gk(u)du

= ∫
(U−U )∩Oδv /2

( f (u +y + tw) − f (u +y)
t

)Gk(u)du

+∫
(U−U )∖Oδv /2

( f (u +y + tw) − f (u +y)
t

)Gk(u)du

≤ (f ○(x ;w) + ϵ/2)∫
(U−U )∩Oδv /2

Gk(u)du + ∫
(U−U )∖Oδv /2

∣ f (u +y + tw) − f (u +y)
t

∣ Gk(u)du

≤ f ○(x ;w) + ϵ

2
+ ϵ

2
= f ○(x ;w) + ϵ .

Hence, for k ≥ Nv , ∥y−x∥ < δv/2 and ∥v−w∥ < β withw ∈ Sn−1, we have ⟨h′k(y),w⟩ ≤ f ○(x ;w)+ϵ .

Now the open cover of the compact set Sn−1 with balls of centre v ∈ Sn−1 and radius β has a finite

subcover with, say, vi ∈ Sn−1 for i = 1, . . . , �. We now put δ = min{δvi ∶ i = 1, . . . , �} and also

N = max{Nvi ∶ i = 1, . . . , �}. Then, for k ≥ N we obtain ⟨h′k(y),w⟩ ≤ f ○(x ;w)+ϵ for all ∥y−x∥ < δ
and all w ∈ Sn−1, which completes the proof by Lemma 5.3. �

The following main result characterises the L-topology on Lipschitz maps in terms of the density

of the subspace of C1 and C∞ maps.

Corollary 5.11. The subspace C∞(U ) ∩ Lip(U ), and thus C1(U ) ∩ Lip(U ), is dense in Lip(U )
with respect to the L-topology.

Corollary 5.11 shows that the L-topology is the appropriate topology for Lipschitz maps when

approximating these maps by sequences of C1 functions.
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8:20 A. Edalat

5.3 Subgradient Operator as Lower Limit of Derivative Operator

Now we are able to prove our final result in this section. Note that the differential operator D ∶
C1(U ) ∩ Lip(U ) → C0(U ) with D(f ) = f ′ can be regarded as having type D ∶ C1(U ) ∩ Lip(U ) →
(U → CRn) since C0(U ) can be identified as a subset of the maximal elements of (U → CRn).

For convenience, let F ∶= C1(U ) in this section. As we have seen, F ∩ Lip(U ) is, by Corollary 5.11,

dense in Lip(U ), and moreover, since the restriction of the L-topology on F ∩ Lip(U ) is the C1

norm topology, D is continuous on F ∩ Lip(U ). In addition, Lip(U ) equipped with the L-topology

has clearly no isolated elements since for any f ∈ Lip(U ) we have f + r ∈ Lip(U ) for any r ∈ R.

Therefore, the lower limit D† ∶ Lip(U ) → (U → CRn) exists. Next note that the L-topology on

Lip(U ), being the meet of the sup norm topology and the Scott topology, is itself second countable.

Thus, in the definition of D†, we can use a countable set of open sets. We will now find a simple

expression for the support function of (D† f )(x) for x ∈U .

Lemma 5.12. Let f ∈ Lip(U ), v ∈ Rn and x ∈U . Then we have

sup⟨(D† f )(x),v⟩ = lim sup
д→f

д∈F∩Lip(U )

⟨д′(x),v⟩,

where д → f in the L-topology.

Proof. Let (Wk)k≥0 be a local basis of the L-topology for f . If Ak for k ≥ 0 is a shrinking

sequence of non-empty compact and convex sets, then by Equation (1), it is easy to see that the

support function satisfies the following equality:

σ⋂k≥0 Ak
= inf

k≥0
σAk
. (17)

We thus have the following derivation:

sup⟨(D† f )(x),v⟩ = sup⟨supk≥0 infд∈(Wk∖{f })∩F ⟨д′(x),v⟩ definition of D†

= sup⟨⋂k≥0 infд∈(Wk∖{f })∩F ⟨д′(x),v⟩ definition of sup in CRn

= infk≥0 supд∈(Wk∖{f })∩F ⟨д′(x),v⟩ using Equation (17)

= lim supд→f ⟨д′(x),v⟩ definition of limit superior.

�

Theorem 5.13. The lower limit and the lower envelope of the differential operator of the type D ∶
C1(U ) ∩ Lip(U ) → (U → CRn) coincide with the subgradient operator: D† = D∗ = ∂.

Proof. Let f ∈ Lip(U ) with Lipschitz constant c and x ∈ U . Take a shrinking sequence

Wk of open subsets W0 ⊇ W1 ⊇ W2 ⊇ ⋯ with f ∈ Wk for all k ≥ 0 that form a local basis

for the L-topology at f . Using the notation F ∶= C1(U ), if f ∉ F , then we immediately have

infд∈Wk∩F д
′ = infд∈(Wk∖{f })∩F д

′. Otherwise, if f ∈ F , then there is a sequence дn ∈ (Wk ∖{f })∩F
with limn→∞дn = f in the L-topology, equivalently the C1 norm topology, and again infд∈Wk∩F д

′ =
infд∈(Wk∖{f })∩F д

′. Hence, D† = D∗. We show that D†(f ) = ∂ f . Since D†(f )(x), ∂ f (x) ∈ CRn , it

is sufficient to show that they have the same support function—that is, for each v ∈ Rn ,

sup⟨D†(f )(x),v⟩ = sup⟨∂ f (x),v⟩. (18)

Let Ok ⊂ Rn for k ≥ 0 be the open ball of radius 2−k centred at x . Assume without loss of

generality thatW0 contains maps with Lipschitz constant bounded by c +1 inO0. We have D†(f ) ∶
U → CRn given by D†(f ) = supk≥0 infд∈(Wk∖{f })∩F д

′. Let hk ∈ Wk for k ≥ 0. Then hk → f
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Smooth Approximation of Lipschitz Maps and Their Subgradients 8:21

as k → ∞ in the L-topology. For д ∈ Wk ∩ F and y ∈ Ok , by Cauchy-Schwarz inequality, obtain

∣⟨д′(y) −д′(x),v⟩∣ ≤ (c + 1)2−k∥v∥, which gives us

−(c + 1)2−k∥v∥ < sup
д∈(Wk∖{f })∩F

y∈Ok∖{x}

⟨д′(y),v⟩ − sup
д∈(Wk∖{f })∩F

⟨д′(x),v⟩ < (c + 1)2−k∥v∥.

Taking the limit as k → ∞ of the two decreasing sequences of supremums, we obtain

inf
k≥0

sup
д∈(Wk∖{f })∩F

y∈Ok∖{x}

⟨д′(y),v⟩ = inf
k≥0

sup
д∈(Wk∖{f })∩F

⟨д′(x),v⟩. (19)

Then, we have

sup⟨∂ f (x),v⟩ = lim supk→∞,y→x ⟨h′k(y),v⟩ by Theorem 5.5

= infk≥0 supд∈(Wk∖{f })∩F

y∈Ok∖{x}

⟨д′(y),v⟩ since hk → f in L-topology

= infk≥0 supд∈(Wk∖{f })∩F ⟨д′(x),v⟩ by Equation (19)

= sup⟨D† f (x),v⟩ by Lemma 5.12.

�

If f ∶U ⊆ Rn → R is Lipschitz and 1 ≤m < n, then by using ∂
∂xIm

instead of D and ∂Im f instead

of ∂ f in Theorem 5.13, we obtain a similar result for the partial derivatives.

Corollary 5.14. We have: ( ∂
∂xIm

)† = ∂Im i.e.,( ∂
∂xIm

)†(f ) = ∂Im f .

6 EXTENSION OF FUNDAMENTAL THEOREM OF LINE INTEGRALS

We now use the results of Section 5 regarding the lower limit of the classical derivative operator

to deduce a simple proof of the interval version of Green’s theorem (i.e., the fundamental theorem

of line integrals), which was obtained using interval valued integration in the work of Edalat et

al. [27].

Let U ⊆ Rn be an open set and p ∶ [0, 1] → U a C1 path in U from a given point p(0) = a

to a point p(1) = b. If д ∶ U → R is a C1 map, then the path integral ∫
1

0 ⟨д′(p(t)),p′(t)⟩dt =
д(p(1)) −д(p(0)) = д(a) −д(b) is independent of the path p. In particular, if a = b, then the path

integral is always zero independent of the closed path p. We now define the operator

Dp ∶ C1(U ) ∩ Lip(U ) → ([0, 1] → IR)
by Dp(д) = λt . ⟨д′(p(t)),p′(t)⟩, where λt .h(t) stands for the function t ↦ h(t) for any function h.

Thus, Dp(д) gives the derivative of the composition д ○p with respect to t ∈ [0, 1]. Since C1(U ) ∩
Lip(U ) ⊆ Lip(U ) is dense with respect to the L-topology, we have its lower limit

D†
p ∶ Lip(U ) → ([0, 1] → IR), D†

p(f )(t) = λt . sup
k≥0

inf
д∈(Wk∖{f })∩C

⟨д′(p(t)),p′(t)⟩, (20)

whereWk is a shrinking sequence of open subsets fork ≥ 0 that form a local basis for the L-topology

at f . Recall that any Scott continuous function f ∶ [0, 1] → IR is of the form f = [f −, f +], where

f − and f + are respectively lower and upper continuous function with f (x) = [f −(x), f +(x)]. In

addition, if д = supi∈I ai χOi is a step function with I finite, then д ≪ f iff Oi ≪ f −1(↑↑ai) for each

i ∈ I [33, Proposition II-4-20].

Proposition 6.1.

(i) The function space ([0, 1] → R) is dense in [0, 1] → IR with respect to the Scott topology.
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(ii) The lower limit of the integral operator ∫ ∶ ([0, 1] → R) → Rwith type ∫
† ∶ ([0, 1] → IR) → IR

is given by

∫
†

(f ) = [∫ f −dμ,∫ f +dμ] ,

where f = [f −, f +] and μ is the Lebesgue measure on [0, 1].

Proof. (i) Let h = supi∈I ai χOi ∶ [0, 1] → IR, be a step function, where ai ∈ IR is compact, Oi

is an open interval, and I is a finite indexing set with ↑↑h ≠ ∅, which implies (h(x))○ ≠ ∅ for

all x ∈ [0, 1]. Since h is a basic Scott open set in [0, 1] → IR, all we need to do is to construct a

continuous function h0 ∶ [0, 1] → R with h ≪ h0. We have h = [h−,h+], where h− and h+ are,

respectively, lower and upper semicontinuous, piecewise constant maps with h−(x) < h+(x) as

real numbers if h(x) ≠ �, and otherwise h−(x) = −∞ and h+(x) = +∞ when h(x) = �. The

collection of open intervals Oi , for i ∈ I , induces a partition P ∶ 0 = q0 < q1 < . . . ,qt−1 < qt = 1

of [0, 1] into a finite number of (open, closed or half-open/half-closed) intervals on each of which

h− and h+ are constant. The Scott continuity of h at qi for 0 < i < t implies that h(x) ⊆ h(y) or

h(y) ⊆ h(x) for x ∈ (qi−1,qi) and y ∈ (qi ,qi+1). Let ui ,vi ∈ IR with vi ⊑ ui be the value of h(x)
in the interiors of the two intervals in P with common boundary qi . Then ui is compact while vi

is either compact or vi = R = �. Put ci = (u−i + u+i )/2 for 0 < i < t . If u0 = h(0) is compact, put

c0 = (u−0 + u+0 )/2; otherwise, let c0 = 0. Similarly, if ut = h(1) is compact, put ct = (u−t + u+t )/2;

otherwise, let ct = 0. Then, consider the piecewise linear map h0 ∶ [0, 1] → R with ho(qi) = ci ,

linear in each interval [qi ,qi+1] for 0 ≤ i ≤ t − 1. By construction, for each x ∈ [0, 1], we have

h(x) ≪ h0(x). In fact, for each i ∈ I , there exists an open setO ′i withOi ≪O ′i such that ai ≪ h0(x)
for x ∈O ′i . It follows that Oi ≪ h−1

0 (↑↑ai) for i ∈ I and hence h ≪ h0.

(ii) We first note that the integral ∫ ∶ ([0, 1] → R) → R is a continuous functional since if

f1, f2 ∈ ([0, 1] → R), then ∣ ∫
1

0 f1(x) − f2(x)dx ∣ ≤ ∫
1

0 ∣f1(x) − f2(x)∣dx ≤ ∥f1 − f2∥∞ where ∥ ⋅ ∥
is the sup norm on ([0, 1] → R). Thus, by the previous part and Proposition 3.11, we know that

∫
†

and ∫
∗

both exist and ∫
† = ∫

∗
. Consider any Scott continuous function f ∶ [0, 1] → IR. To

compute ∫
†
f , assume O ⊆ ([0, 1] → IR) is a Scott open set with f ∈ O . Let f = [f −, f +]. Since

f − and f + are respectively lower and upper semi-continuous functions, there exist an increas-

ing sequence of continuous functions f −i ∶ [0, 1] → R and a decreasing sequence of continuous

functions f +i ∶ [0, 1] → R, where i ≥ 0, such that supi≥0 f
−

i = f − and inf i≥0 f
+

i = f + [31, Section

1.7.15(c)]. Thus, the sequence fi = [f −i , f +i ], for i ≥ 0, is an increasing sequence of Scott continu-

ous functions with f = supi≥0 fi , and hence there exists i ≥ 0 such that fi ∈ O . Since this holds

for all open sets O containing f , it follows that [∫ f −dμ, ∫ f +dμ] ⊆ ∫
†
f . If (a,b) ⊂ R is any

open interval with [∫ f −dμ, ∫ f +dμ] ⊂ (a,b), then by the monotone convergence theorem ap-

plied to the sequences f −i and f +i , there exists i ≥ 0 such that [∫ f −i dμ, ∫ f +i dμ] ⊂ (a,b)—that is,

∫
†
f = [∫ f −dμ, ∫ f +dμ]. �

We now obtain a short proof for the interval version of Green’s theorem, a main result in the

work of Edalat et al. [27].

Theorem 6.2. The composition

(∫
[0,1]

)
†

○ (Dp)† ∶ Lip(U ) → IR

is given by

(∫
[0,1]

)
†

○ (Dp)†(f ) = [∫
1

0
⟨∂ f (p(t)),p′(t)⟩− dt ,∫

1

0
⟨∂ f (p(t)),p′(t)⟩+ dt] (21)
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and satisfies

f (p(1)) − f (p(0)) ∈ (∫
[0,1]

)
†

○ (Dp)†(f ). (22)

Proof. Take x = p(t) and v = p′(t) in Equation (18). Then from the proof of Theorem 5.13, the

expression for (Dp)† in Equation (20) gives us (Dp)†(f ) = λt . ⟨((∂ f )(p(t)),p′(t)⟩. Equation (21)

now follows from Proposition 6.1(ii). Next consider the operator

∫
[0,1]

○ Dp ∶ C1(U ) ∩ Lip(U ) → R,

with (∫[0,1] ○ Dp)(д) = ∫
1

0 д′(p(t))p′(t)dt = д(p(1)) −д(p(0)). Its lower limit has type

(∫
[0,1]

○ Dp)
†

∶ Lip(U ) → IR

and is continuous with respect to the L-topology by Proposition 3.2(iii) since C1(U ) ∩ Lip(U ) is

a Hausdorff space. Let hk ∈ C1(U ) ∩ Lip(U ), k ≥ 0, be any sequence with limk→∞hk = f in

the L-topology. Since (∫[0,1] ○Dp)† is continuous with respect to the L-topology and ∫[0,1] ○Dp is

continuous with respect to the relative subspace L-topology, we have

(∫
[0,1]

○Dp)
†

(f ) = lim
k→∞

(∫
[0,1]

○Dp)
†

(hk) = lim
k→∞

(∫
[0,1]

○Dp)(hk) = lim
k→∞

hk(p(1)) −hk(p(0))

= f (p(1)) − f (p(0)).
But the composition (∫[0,1])† ○ (Dp)† of Scott continuous functions is Scott continuous, and if д ∶
U ⊆ Rn → R is C1, then (∫[0,1])†○(Dp)†(д) = д(p(1))−д(p(0)) = (∫[0,1] ○ Dp)(д). Thus, (∫[0,1])†○
(Dp)† is a lower extension of ∫[0,1] ○Dp . Since Dp and ∫[0,1] are both continuous functionals, by

Proposition 3.11 we have (Dp)† = (Dp)∗ as well as (∫[0,1])† = (∫[0,1])∗. Thus, Relation (22) follows

from Proposition 3.2(i). �

Clearly, the composition in Equation (21) is in general interval valued rather than real valued. For

example, letn = 1,U = (−1, 2) andp(t) = t and consider the Lipschitz function f ∶ (−1, 2) → Rwith

∂ f (t) = [0, 1] for all t ∈ (−1, 2) as in the work of Edalat [19, Lemma 7.8]. Then, f (p(1))− f (p(0)) =
f (1)− f (0) but since p′(t) = 1 and ∂ f (t) = [0, 1] for all t ∈ [0, 1], we obtain (∫[0,1])† ○(Dp)†(f ) =
[0, 1]. We have thus constructed an example in which the lower limit of the composition of two

higher-order maps is not equal to the composition of the lower limits of the two maps.

7 SMOOTH APPROXIMATION OF GENERALISED JACOBIAN

In this section, we will extend the results of Sections 5 to vector Lipschitz maps. Let C1(U ,Rm)
denote, for an open set U ⊂ Rn , the set of continuously differentiable maps of type U ⊆ Rn → Rm ,

and let Lip(U ,Rm), respectively Lip0(U ,Rm), be the set of Lipschitz maps, respectively locally

Lipschitz maps, f ∶U ⊆ Rn → Rm . We will use the following closed expression for the generalised

Jacobian derived by Imbert [36], which can be viewed as a divergence theorem for Lipschitz vector

maps. LetMn,m ≅ Rm×n denote the collection ofm×n real matrices with the inner product ⟪A,B⟫ ∶=
Tr(ATB) = ∑n

j=1 ∑m
i=1Ai jBi j , which induces the Frobenius norm. For x ∈ Rn and ϵ > 0, consider

the hyper-cube Pϵ(x) of volume ϵn with sides emanating from x in the direction of the canonical

unit vectors ei with 1 ≤ i ≤ n—that is,

Pϵ(x) = {x + ϵ
n

∑
i=1

tiei ∶ 0 ≤ ti ≤ 1, 1 ≤ i ≤ n} .
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Let (Pϵ(x))b be the boundary1 of Pϵ(x) with n(y) the outer unit normal at y ∈ (Pϵ(x))b and s

the surface Lebesgue measure on (Pϵ(x))b . Consider f ∈ Lip0(U ,Rm). Then, the following two

results are obtained in the work of Imbert [36]. For n ≥ 2, the support function of ∂ f (x0) in the

direction M ∈ Mn,m is given by

sup⟪M, ∂ f (x0)⟫ = lim sup
x→x0,ϵ→0+

1

ϵn ∫
(Pϵ (x))b

⟨f (y),Mn(y)⟩ds. (23)

For n = 1, note that ⟪A,B⟫ = ⟨A,B⟩, for A,B ∈ Rm×1 and we have

sup⟪M, ∂ f (x0)⟫ = sup⟨M, ∂ f (x0)⟩ = д○(x0; 1), (24)

where д = ⟨M, f ⟩ ∶ R→ R [36].

Proposition 7.1. If a sequence of maps hk ∈ Lip0(U ,Rm), for k ≥ 0, converges uniformly to a

map f ∈ Lip0(U ,Rm), then lim supx→x0,k→∞
⟪M, ∂hk(x)⟫ ≥ sup⟪M, ∂ f (x0)⟫ for all x0 ∈ U and

M ∈ Mn,m .

Proof. Assume first that n ≥ 2, δ > 0, K > 0 and α > 0 are given. Then, by Equation (23), there

exist x ∈U , with ∥x − x0∥ < α/2, and ϵ > 0, with ϵ < α/2n, such that Pϵ(x) ⊆U and

sup⟪∂ f (x0),M⟫ − δ

2
< 1

ϵn ∫
(Pϵ (x))b

⟨f (y),Mn(y)⟩ds(y). (25)

Since hk → f uniformly as k → ∞, there exists k ≥ K such that

RRRRRRRRRRRRRRR

1

ϵn ∫
(Pϵ (x))b

⟨f (y),Mn(y)⟩ds(y) − 1

ϵn ∫
(Pϵ (x))b

⟨hk(y),Mn(y)⟩ds(y)
RRRRRRRRRRRRRRR
< δ/2. (26)

However, since hk ∶ U → Rm is differentiable almost everywhere by Rademacher’s theorem [12,

page 148], using Gauss-Green (divergence) theorem [40, Theorem 2.9], we obtain

1

ϵn ∫
(Pϵ (x))b

⟨hk(y),Mn(y)⟩ds(y) = 1

ϵn ∫
(Pϵ (x))b

⟨MThk(y),n(y)⟩ds(y) (27)

= 1

ϵn ∫
Pϵ (x)

∇ ⋅ (MThk(y))dμ(y) = 1

ϵn ∫
Pϵ (x)

⟪h′k(y),M⟫dμ(y),

where∇⋅д = ∑�
i=1

∂дi

∂xi
is the divergence of the vector fieldд ∶ R� → R� . Thus, by using Relations (25),

(26) and (27),

sup⟪∂ f (x0),M⟫ − δ < 1

ϵn ∫
Pϵ (x)

⟪h′k(y),M⟫dμ(y).

From the preceding inequality, it follows that sup⟪∂ f (x0),M⟫−δ < ⟪h′k(y0),M⟫ ≤ ⟪∂hk(y0),M⟫
for some y0 ∈ Pϵ(x) (in fact, for y0 in a subset of Pϵ(x) of positive Lebesgue measure). Then

∥y0 − x0∥ ≤ ∥y0 − x∥ + ∥x − x0∥ ≤ √
nϵ + α/2 < α . Since δ > 0, K > 0 and α > 0 are arbitrary, the

result follows for n ≥ 2.

For n = 1, let δ > 0, K > 0 and α > 0 be given. There exist, by Equation (24), t > 0 and x ∈U , with

t < α and ∣x − x0∣ < α , such that (x − t ,x + t) ⊆ U and sup⟨M, ∂ f (x)⟩ − δ/2 < (д(x + t) − д(x))/t ,

1We avoid the usual notation ∂A for the boundary of a set A as it can be confused here with the generalised Jacobian.
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where д = ⟨M, f ⟩. Put дk = ⟨M,hk ⟩. Since дk → д uniformly as k → ∞, there exists N ≥ K such

that for k ≥ N , we have

∣дk(x + t) −дk(x)
t

− д(x + t) −д(x)
t

∣ < δ/2.

Thus, for k ≥ N , we have

sup⟨M, ∂ f (x)⟩ − δ < (дk(x + t) −дk(x))/t .
By Lebourg’s mean value theorem, there exists y ∈ (x ,x + t) such that

sup⟨M, ∂ f (x)⟩ − δ < (дk(x + t) −дk(x))/t ≤ ∂дk(y).
Since δ > 0, K > 0 and α > 0 are arbitrary, the result follows. �

The L-topology for locally Lipschitz vector maps Lip0(U ,Rm) is defined similarly as for lo-

cally Lipschitz scalar maps in Section 5: it is the weakest refinement of the sup norm topology

on Lip0(U ,Rm) that makes the generalised Jacobian ∂ ∶ Lip0(U ,Rm) → CRm×n continuous with

respect to the Scott topology on CRm×n . The following theorem can now be deduced with a proof

similar to that of Theorem 5.4. Since the inner product ⟪A,B⟫, when n = 1, is reduced to ⟨A,B⟩, we

can state the result below uniformly for all n ≥ 1.

Theorem 7.2. A sequencehk ∈ Lip0(U ,Rm),k ≥ 0, converges to f ∈ Lip0(U ,Rm) in the L-topology

iff hk converges to f in the sup norm topology and for all x0 ∈U and M ∈ Mn,m , we have

lim sup
k→∞,x→x0

⟪∂hk(x),M⟫ = sup⟪∂ f (x0),M⟫

where the convergence is uniform for M ∈ Smn−1.

Corollary 7.3. A sequence hk ∈ C1(U ,Rm), k ≥ 0, converges to f ∈ Lip0(U ,Rm) in the L-

topology iff hk converges to f in the sup norm topology and for all x0 ∈U and M ∈ Mn,m , we have

lim sup
k→∞,x→x0

⟪h′k(x),M⟫ = sup⟪∂ f (x0),M⟫

where the convergence is uniform for M ∈ Smn−1.

To show that C1(U ,Rm) ∩ Lip(U ,Rm) is dense in Lip(U ,Rm), suppose f ∶ U ⊆ Rn → Rm with

components f = (fi)1≤i≤m is a Lipschitz map with Lipschitz constant c > 0 and μ is the standard

Gaussian probability measure on Rn . For each positive integer k , as in Theorem 5.10 of Section 5.2,

consider the convolutions hk ∶ Rn → Rm with components hk = (hki)1≤i≤m given by hki = fi ∗ Gk ,

where Gk(x) = knG(kx) and G is the standard Gaussian probability distribution of Equation (12).

Theorem 7.4. For each k ≥ 1, we have hk ∈ C∞(U ,Rm) and the sequence hk converges to f in the

L-topology.

Proof. Applying Theorem 5.10 to each component hki , for 1 ≤ i ≤m and k ≥ 1, it follows that

hk ∈ C∞(U ,Rm) with hk → f in the sup norm topology. It is now convenient to express hki , for

1 ≤ i ≤m, in terms of the probability measure μ as follows:

hki(x) = ∫
U−U

fi(x+y)Gk(y)dy = ∫
V−V

fi(x+k−1w)G(w)dw = ∫
V−V

fi(x+k−1w)dμ(w), (28)

with w = ky where V = kU = {ku ∶ u ∈ U }. In addition, we express Equation (28) in vector

notation—that is,

hk(x) = ∫
V−V

f (x + k−1w)dμ(w). (29)
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To show that the convergence as in Theorem 7.3 is uniform for M ∈ Smn−1, we first compute the

following triple limit superior. For n ≥ 2, using Formula (23) for the Jacobian h′k of hk , Fubini’s

theorem and the reverse Fatou’s lemma, we obtain

lim sup
k→∞
Q→M
x→x0

⟪h′k(x),Q⟫

= lim sup
k→∞
Q→M
x→x0

lim sup
ϵ→0
z→x

1

ϵn ∫
(Pϵ (z))b

⟨hk(u),Qn(u)⟩ds(u) by Equation (23)

= lim sup
k→∞
Q→M
x→x0

lim sup
ϵ→0
z→x

1

ϵn ∫
(Pϵ (z))b

∫
V−V

⟨f (u + k−1w),Qn(u)⟩dμ(w)ds(u) by Equation (29)

= lim sup
k→∞
Q→M
x→x0

lim sup
ϵ→0
z→x

1

ϵn ∫
V−V

∫
(Pϵ (z))b

⟨f (u + k−1w),Qn(u)⟩ds(u)dμ(w) by Fubini’s theorem

≤ lim sup
k→∞
Q→M
x→x0

∫
V−V

lim sup
ϵ→0
z→x

1

ϵn ∫
(Pϵ (z))b

⟨f (u + k−1w),Qn(u)⟩ds(u)dμ(w) by reverse Fatou’s lemma

≤ lim sup
k→∞
Q→M
x→x0

∫
V−V

sup⟪∂ f (x + k−1w),Q⟫dμ(w) by Equation (23).

We claim that the last term is bounded above by sup⟪∂ f (x0),M⟫. Let ϵ > 0 be given. Let r > 0 be

large enough so that ∫∥w∥≥r dμ < ϵ/2c(∥M∥+1)). Since ∂ f is upper semi-continuous at x0 and the

inner product is continuous, it follows that there exists δ > 0 with δ < 1 such that for ∥y − x0∥ < δ
and ∥Q − M∥ < δ with Q ∈ Sn−1, we have sup⟪∂ f (y),Q⟫ < sup⟪∂ f (x0),M⟫ + ϵ/2. Thus, for

∥x − x0∥ < δ/2, ∥w∥ < r and k > 2r/δ , we have ∥x + k−1w − x0∥ ≤ ∥x − x0∥ + k−1r < δ/2 + δ/2 = δ
which, denoting the open ball of radius r centred at the origin by Or , implies

∫
V−V

sup⟪∂ f (x + k−1w),Q⟫dμ(w)

= ∫
(V−V )∩Or

sup⟪∂ f (x + k−1w),Q⟫dμ(w) + ∫
(V−V )∖Or

sup⟪∂ f (x + k−1w),Q⟫dμ(w)

< sup⟪∂ f (x0),M⟫ + ϵ

2
+ c(∥M∥ + 1)ϵ

2c(∥M∥ + 1) = sup⟪∂ f (x0),M⟫ + ϵ .

Since ϵ > 0 is arbitrary, our claim follows. Thus,

lim sup
k→∞
Q→M
x→x0

⟪h′k(x),Q⟫ ≤ sup⟪∂ f (x0),M⟫. (30)

Now, to use Lemma 5.3 to complete the proof, let ϵ > 0 be given. Since ∂ f (x) ⊆ Rm×n is a

compact convex set, the support function σ∂f (x) ∶ M ↦ sup⟪∂ f (x),M⟫ ∶ Smn−1 → R is continuous

and hence uniformly continuous on Smn−1. Thus, there exists δ0 > 0 such that for ∥M1 −M2∥ < δ0

with M1,M2 ∈ Smn−1, we have ∣ sup⟪∂ f (x),M1⟫ − sup⟪∂ f (x),M2⟫∣ < ϵ/2. By Relation (30), there

exists δ1 > 0, αM > 0 and kM ≥ 0 such that for ∥Q −M∥ < δ1 with Q ∈ Smn−1, ∥x − x0∥ < αM and

k ≥ kM , we have ⟪h′k(x),Q⟫ < sup⟪∂ f (x0),M⟫ + ϵ/2. Hence, for ∥Q −M∥ < δM = min{δ0,δ1},

∥x − x0∥ < αM and k ≥ kM we have ⟪h′k(x),Q⟫ < sup⟪∂ f (x0),M⟫ + ϵ/2 < sup⟪∂ f (x0),Q⟫ + ϵ .

Consider the open cover of Smn−1 by balls of centre M and radius δM and take a finite cover given
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by Mi for i = 1, . . . .�, say. It follows that for ∥x −x0∥ < α = min{αMi ∶ 1 ≤ i ≤ �}, k ≥ max{kMi ∶ 1 ≤
i ≤ �} and all Q ∈ Smn−1, we have ⟪h′k(x),Q⟫ < sup⟪∂ f (x0),Q⟫ + ϵ and the proof is complete for

n ≥ 2.

For n = 1, with дQ = ⟨Q, f ⟩, we have

⟨Q,hk(x)⟩ = ∫
V−V

⟨Q, f (x + k−1y)⟩dμ(y) = ∫
V−V

дQ(x + k−1y)dμ(y),

where μ is now the one-dimensional standard Gaussian distribution. Put

p�(x) ∶= ⟨Q,hk(x + 1/�)⟩ − ⟨Q,hk(x + 1/�)⟩
1/�

for integers � ≥ 1. Since ∣дQ (x+k−1y+�−1)−дQ (x+k−1y)
�−1 ∣ ≤ c∥Q∥, we can apply the dominated conver-

gence theorem to obtain

⟨Q,h′k(x)⟩ = lim�→∞p�(x) = ∫V−V lim�→∞
дQ (x+k−1y+�−1)−дQ (x+k−1y)

�−1 dμ(y)
= ∫V−V д′Q(x + k−1y; 1)dμ(y),

for Q ∈ Sm−1. Now using reverse Fatou’s lemma, we deduce

lim sup k→∞
Q→M
x→x0

⟨Q,h′k(x)⟩ = lim sup k→∞
Q→M
x→x0

∫V−V д′Q(x + k−1y; 1)dμ(y)

≤ ∫V−V lim sup k→∞
Q→M
x→x0

д′Q(x + k−1y; 1)dμ(y) ≤ д○M(x0; 1),

where the latter inequality easily follows from the definition of д○M(x0; 1). The uniform conver-

gence for M ∈ Sm−1, in view of the compactness of Sm−1, now follows with a proof similar to the

case of n ≥ 2 presented after Equation (30). �

Theorem 7.4 has finally extended Theorem 5.10 to vector Lipschitz maps, and we conclude the

following.

Corollary 7.5. C1(U ,Rm) is dense in Lip(U ,Rm) with respect to the L-topology.

We can now also obtain a simple proof of the mean value theorem for vector Lipschitz functions.

Corollary 7.6. (cf. [11, 2.6.5]) Suppose f ∶ U ⊆ Rn → Rm is Lipschitz in an open set containing

the line segment s(x ,y) ⊆U . Then, f (x) − f (y) ∈ co{∂ f [s(x ,y)]}(x −y).

Proof. LetC ∈ CRm×n withC ≪ co{∂ f [s(x ,y)]}. Then, s(x ,y) ⊆ (∂ f )−1(↑↑C) where the latter

set is open. Take open set O ⊆ Rn , on which f is Lipschitz, with s(x ,y) ⊆ O ≪ (∂ f )−1(↑↑C). Then

CχO ≪ ∂ f by Gierz et al. [33, Proposition II-4-20]. Suppose hk ∶ O → Rm is a sequence of C1
n,m(U )

functions that converges to f in the L-topology. Thus, there exists N such that n ≥ N implies

CχO ≪ h′k and in particular h′k [s(x ,y)] ⊆ C . We now apply the classical mean value theorem to

obtain hk(x) − hk(y) ∈ (h′k [s(x ,y)])(x − y) ⊆ C(x − y). Since hk → f in the sup norm topology,

it follows that f (x) − f (y) ∈ C(x − y). As C ≪ co{∂ f [s(x ,y)]} is arbitrary, we conclude that

f (x) − f (y) ∈ co{∂ f [s(x ,y)]}(x −y). �

Finally, we have the counterpart of Theorem 5.13 for vector Lipschitz maps, which is proved in

a similar way. Let Dn,m ∶ C1(U ,Rm) ∩ Lip(U ,Rm) → (U → CRm×n) denote the vector differential

operator with Dn,m(f ) = f ′.

Theorem 7.7. The lower limit and the lower envelope of the differential operator Dn,m coincide

with the subgradient operator—that is, D†
n,m = D∗n,m = ∂ with D†

n,m(f ) = D∗n,m(f ) = ∂ f .
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8 SUBGRADIENT ON BANACH SPACES

In this section, we consider Lipschitz maps of type X → R, where X is a real Banach space with

∥x∥ as the norm of x ∈ X . IfC ⊆ X∗ is a non-empty weak* compact and convex set, then its support

function σC ∶ X → R is given by σC(v) = sup{Lv ∶ L ∈ C}.

Consider a Lipschitz map f ∶ X → R with Lipschitz constant c > 0 and the bounded complete

domain C(X∗c ) of non-empty weak* compact and convex subsets of X∗c as presented at the end

of Section 2. Since X∗c is a compact Hausdorff space with respect to the relative subspace weak*

topology on X∗c , the upper topology and the Scott topology coincide on it [17]. The subgradient

∂ f (x) ∈ C(X∗c ) of f at x ∈ X is a compact convex subset of X∗c which, as in the finite dimensional

case, can be defined by its support function [11, p. 28]:

σ∂f (x)(v) = lim sup
y→x,t→0+

f (y + tv) − f (y)
t

.

The subgradient coincides with the so-called L-derivative as introduced in the work of

Edalat [19] which we will now define. We start by observing that X∗c can be identified with the set

of maximal elements of the bounded complete domain C(X∗c ). Moreover, X∗c , identified as usual

with the subset of maximal elements of C(X∗c ), is dense in C(X∗c ). Hence, for x ∈ X , the linear map

x̂ ∶ X∗c → R, with x̂(L) = Lx has continuous extension x̂† ∶ C(X∗c ) → IR, with

x̂†(C) = {x̂(L) ∶ L ∈ C} = {Lx ∶ L ∈ C}.
Given an open set O ⊆ X and C ∈ C(X∗) a weak* compact convex set, the tie δ(O,C) is defined to

be the set of all Lipschitz maps f ∶ X → R such that f (x) − f (y) ∈ C(x −y) for all x ,y ∈O , where

C(x − y) ∶= (x̂ −y)†(C) = {L(x − y) ∶ L ∈ C}, which is a compact interval. It was shown in the

work of Edalat [19] that the map Lf ∶ X → C(X∗) given by

Lf (x) = ⋂{C ∶ f ∈ δ(O,C),x ∈O} (31)

is well defined and upper continuous with ∂ f (x) ⊆ Lf (x), and in addition if X is finite dimen-

sional, then ∂ f = Lf . Hertling [34] showed later that in fact ∂ f (x) = Lf (x) for any Banach space

X . This leads to a short proof of the upper continuity of the subgradient.

Proposition 8.1. For any Lipschitz map f ∶U ⊆ X → R on a Banach space X , the subgradient ∂ f
is upper continuous.

Proof. If c is a Lipschitz constant for f , then we have ∂ f ∶ U → C(X∗c ). We know that Lf ∶
X → C(X∗c ) is Scott continuous [19] and ∂ f = Lf [34]. But since C(X∗c ) is a compact Hausdorff

space, the Scott topology on C(X∗c ) coincides with the upper topology [17]. �

8.1 Approximation of Subgradient on Separable Banach Spaces

For an infinite dimensional Banach spaceX , the function space (X → C(X∗c )) is no longer a domain

and the Scott topology on it does not have a simple representation. However, if X is separable, we

show that there is a sequence of Gateaux differentiable functions converging to a given Lipschitz

map in the sup norm topology such that the limit superior of the sequence the Gateaux derivatives

of the functions in any given direction converges to the generalised directional derivative of the

Lipschitz map in that direction. We assume from now on that X is actually a separable Banach

space and f ∶U ⊆ X → R is Lipschitz with Lipschitz constant c > 0.

Recall that a Gaussian measure on the separable Banach space X is a probability Borel measure

μ on X such that for every L ∈ X∗ the induced measure μL on R given by L with μL(A) = μ{x ∶
Lx ∈ A}, for any Borel set A ⊆ R, has a Gaussian distribution on R; a non-degenerate Gaussian

measure on the separable Banach space X is one such that for every non-zero L ∈ X∗ the induced
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measure μL on R has a non-degenerate Gaussian distribution on R [9, 6.17]. We first describe how

such a Gaussian measure can be constructed on a Hilbert space (see [9]). Consider a separable real

Hilbert space H with inner product ⟨x ,y⟩ for x ,y ∈ H . Assume Q ∈ H∗ ≃ H is a trace class positive

operator—that is, there exists an orthonormal basis (en) of H with λn > 0 such that Q(en) = λnen

for n ∈ N, and tr(Q) = ∑∞n=0 λn < ∞. If m ∈ H is any given point, then the probability measure μ
with the characteristic function

∫
H
ei⟨x,y⟩dμ(y) = ei⟨x,m⟩−⟨Qx,x⟩/2 = ∏

n≥0

eiνn an−λna2
n/2, x ∈ H , (32)

where an = ⟨x ,en⟩ and νn = ⟨m,en⟩, is a Gaussian measure on H . Thus, the coordinates an , for

n ≥ 0, of x with respect to the basis {en} are independent Gaussian variables with mean νn and

variance λn .

We can now use the Gaussian measure μ constructed on H to obtain a Gaussian measure on

the separable Banach space X . We fix a sequence (xn) with a dense linear span in X such that

∑n≥0 ∥xn∥2 < ∞. Consider the linear map T ∶ H → X with T (en) = xn . It follows that the forward

measure μT on X induced by T is a non-degenerate Gaussian measure on X that is constructed

from a simple Gaussian measure on a Hilbert space.

The key property we need to invoke to obtain the result of this section is the following.

Theorem 8.2 ([9, 6.25 and 6.42]). If f ∶ X → R is a Lipschitz map on the separable Banach space

X , then the Gateaux derivative d f (x) exists everywhere on X except for x in a null set with respect

to any non-degenerate Gaussian measure on X .

We can now deal with the construction of a sequence of Gateaux differentiable functions con-

verging to a given Lipschitz map with similar limiting properties as in the finite dimensional case

in Theorem 5.5. We first observe that the proof of Lemma 5.1 extends to the case of a sequence

of Gateaux differentiable maps on a Banach space converging in the sup norm topology to a Lip-

schitz map. This is because the mean value theorem, invoked in that lemma, also holds for any

Gateuax differentiable map h ∶ X → R. In fact if x ,y ∈ X with x ≠ y, define д ∶ [0, 1] → R by

д(t) = h(x + t(y − x)). Then д is continuous in [0, 1] and differentiable in (0, 1), and hence there

exists t0 ∈ (0, 1) such that h(y) −h(x) = д(1) −д(0) = д′(t0) = dh(z)(y −x) with z = x + t0(y −x).

Thus, we have the following lemma.

Lemma 8.3. Suppose hk ∶ U ⊆ X → R is a sequence of Gateaux differentiable such that hk → f in

the sup norm topology as k → ∞ where f is a Lipschitz map. Then for all x ∈U and v ∈ Rn , we have

lim sup
y→x,k→∞

(dhk(y))(v) ≥ f ○(x ;v).

Let f ∶ X → R be a Lipschitz map with Lipschitz constant c > 0, where we have assumed

for convenience (and without loss of generality) that the domain of f is the whole space X . We

consider the construction in [9, 6.43] of a sequence of maps hn ∶ X → R given by

hn(x) = ∫ f (x + n−1y)dμ(y)

for n ≥ 1, where μ is any non-degenerate Gaussian measure on X .

Lemma 8.4 ([9, 6.43]). The maps hn are uniformly Lipschitz with Lipschitz constant c and are

Gateaux differentiable for n ≥ 1 with the sequence hn converging in the sup norm topology to f .

We can now obtain our final result.

Theorem 8.5. There is a sequence (hn)n≥1 of uniformly Lipschitz and Gateaux differentiable maps

converging in the sup norm topology to f such that we have for z,v ∈ X ,

lim sup
n→∞,x→z,u→v

(dhn(x))(u) = lim sup
n→∞,x→z

(dhn(x))(v) = f ○(z;v).
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Proof. Consider the sequence hn for n ≥ 1 in Lemma 8.4. By Theorem 8.2, the Gateaux deriv-

ative d f (x) exists everywhere on X except for x in a null set with respect to the non-degenerate

Gaussian measure μ on X . We can therefore obtain an integral expression with respect to μ for the

Gateaux derivative of hn as follows. We have

hn(x + tv) −hn(x)
t

= ∫
X

f (x +n−1y + tv) − f (x + n−1y)
t

dμ(y).

Since the integrand, in absolute value, on the RHS is bounded by c∥v∥, writing t = 1/� for integer

� ≥ 1, with t → 0 as � → ∞, the dominated convergence theorem (as in the proof of Theorem 7.4)

implies that f ′(x + n−1y;v) is integrable with respect to μ with

(dhn(x))(v) = ∫
X
f ′(x +n−1y;v)dμ(y).

By Lemma 8.3, we already have

lim sup
x→z,n→∞,u→v

(dhn(x))(u) ≥ lim sup
x→z,n→∞

(dhn(x))(v) ≥ f ○(z;v),

where the first inequality follows from the continuity of the bounded linear map dhn(x) ∶ X → R
for each x ∈ X and n ≥ 1.

Let ϵ > 0. Since the map (z,v) → f ○(z;v) is upper continuous in z and v [11, 2.1.1(b)], there

exists δ > 0 such that for ∥x − z∥ < δ and ∥u −v∥ < δ we have f ○(x ;u) < f ○(z;v) + ϵ/2. Hence, in

the above neighbourhoods of z and v , whenever f ′(x ;u) exists, we have f ′(x ;u) < f ○(z;v) +ϵ/2,

which implies that lim supx→z,u→v f ′(x ;u) ≤ f ○(z;v) + ϵ/2. However, we have ∣f ′(x +n−1y;u)∣ ≤
c∥u∥ ≤ c(∥v∥ +δ) for ∥u −v∥ < δ . Let R > 0 be such that ∫∥y∥≥R dμ(y) < ϵ/(2c(δ + ∥v∥)). Then, the

reverse Fatou’s lemma yields

lim sup
x→z

n→∞
u→v

(dhn(x))(u) = lim sup
x→z

n→∞
u→v

∫ f ′(x +n−1y;u)dμ(y) ≤ ∫ lim sup
x→z

n→∞
u→v

f ′(x + n−1y;u)dμ(y)

= ∫
∥y∥<R

lim sup
x→z

n→∞
u→v

f ′(x + n−1y;u)dμ(y) + ∫
∥y∥≥R

lim sup
x→z

n→∞
u→v

f ′(x + n−1y;u)dμ(y)

< f ○(z;v) + ϵ

2
+ ϵc(δ + ∥v∥)

2c(δ + ∥v∥) = f ○(z;v) + ϵ .

Therefore, since ϵ > 0 is arbitrary, we have

lim sup
x→z

n→∞
u→v

(dhn(x))(u) ≤ f ○(z;v),

and the result follows. �

Comparing Theorem 8.5 with Theorem 5.10, we see that our result for approximation of a Lips-

chitz map on a separable Banach space provides a sequence of Gateuax differentiable maps rather

than a sequence of C∞ maps as was the case in finite dimensions. In addition, in finite dimensions,

the convergence in Theorem 5.5 and thus in Theorem 5.10 is uniform on the unit sphere, a property

which is fundamentally based on compactness properties in finite dimensions.
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9 CONCLUDING REMARKS

We have obtained new representations for the subgradient of a real-valued locally Lipschitz map,

defined on a finite dimensional Euclidean space, and also for the generalised Jacobian of a locally

Lipschitz vector map between finite dimensional Euclidean spaces. These results lead us to simpler

proofs for some of the basic properties of these generalised derivatives. The L-topology on the

space of locally Lipschitz maps has been characterized in terms of convergent sequences in this

space. We have shown that the set of C1 maps is dense in the space of Lipschitz maps equipped

withe the L-topology and that convergence of a sequence of C1 maps to a Lipschitz map in the

L-topology is equivalent to the convergence of the sequence to the Lipschitz map in the sup norm

topology and the uniform convergence of the limit superior of the sequence of the derivatives

of the C1 maps in a given unit vector direction with the subgradient of the Lipschitz map in the

direction of that unit vector. Given a Lipschitz map between finite dimensional Euclidean spaces,

we have constructed a sequence of C∞ maps that converges to the Lipschitz map in the L-topology.

This result confirms that the L-topology is the appropriate topology on the space of Lipschitz maps

when approximating a Lipschitz map with C1 or C∞ maps. For a real-valued Lipschitz map on a

separable Banach space, we also explicitly derived a sequence of Gateaux differentiable Lipschitz

maps converging in the sup norm to the Lipschitz map such that the limit superior of the Gateaux

derivative of the maps in any direction coincides with the subgradient of the Lipschitz map in that

direction.

As for future work, the question arises if any of the new representations of the subgradient

of a Lipschitz map between finite dimensional Euclidean spaces can be extended to find a new

representation of the subgradient of a real-valued Lipschitz map on a separable Banach space.
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