
A generalisation of the maximum entropy principle for curved statistical manifolds

Pablo A. Morales1 and Fernando E. Rosas2, 3, 4
1Research Division, Araya Inc., Tokyo 107-6019, Japan∗

2Data Science Institute, Imperial College London, London SW7 2AZ, UK
3Centre for Psychedelic Research, Department of Brain Science,

Imperial College London, London SW7 2DD, UK
4Centre for Complexity Science, Imperial College London, London SW7 2AZ, UK

The maximum entropy principle (MEP) is one of the most prominent methods to investigate and
model complex systems. Despite its popularity, the standard form of the MEP can only generate
Boltzmann-Gibbs distributions, which are ill-suited for many scenarios of interest. As a principled
approach to extend the reach of the MEP, this paper revisits its foundations in information geometry
and shows how the geometry of curved statistical manifolds naturally leads to a generalisation of the
MEP based on the Rényi entropy. By establishing a bridge between non-Euclidean geometry and
the MEP, our proposal sets a solid foundation for the numerous applications of the Rényi entropy,
and enables a range of novel methods for complex systems analysis.

I. INTRODUCTION

The progressive unveiling of the intricate connections
that exists between information theory and statistical
mechanics has allowed fundamental advances on our un-
derstanding of complex systems [1]. One of the most
important methods resulting from those discoveries is
the maximum entropy principle (MEP), which unifies
multiple results and procedures under a single heuris-
tic that operationalises Occam’s razor [2, 3]. From a
pragmatic perspective, the MEP can be understood as
a modeling framework that is particularly well-suited for
building statistical descriptions of a broad class of sys-
tems in contexts of incomplete knowledge [4]. The high
versatility of the MEP has allowed it to find applica-
tions in a wide range scenarios, including the analysis of
DNA motifs of transcription factor binding sites [5], co-
variations in protein families and amino acid contact pre-
diction [6, 7], diversity of antibody repertoires in the im-
mune system [8, 9], coordinated firing patterns of neural
populations [10–13], collective behavior of bird flocks and
mice [14–16], the abundance and distribution of species
in ecological niches [17, 18], and patterns of behavior in
various complex human endeavours [19, 20].

The efficacy of the MEP rests on Shannon’s entropy,
which acts as as an estimate of “uncertainty” that guides
the modeling procedure. Colloquially, the MEP gener-
ates the statistical model that is less structured while be-
ing consistent with the available knowledge, building on
the available knowledge but nothing else. However, the
functional form of the Shannon entropy greatly restricts
the range outputs that the MEP can offer. In particu-
lar, standard applications of the MEP can only generate
Boltzmann-Gibbs distributions, which are unsuitable to
describe complex systems displaying long-range correla-
tions or other effects related to different types of statis-
tics [21–24]. This important limitation have triggered
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various efforts to generalise the MEP by means of lever-
aging generalisations of Shannon’s entropy, resulting in
a rich array of proposals (see e.g. [25–29]). However, we
argue that plugging a generalised entropy into the MEP
framework inevitably leads to an adhoc procedure whose
value is fundamentally hindered by the heuristic nature
of the MEP itself.

An alternative approach to extend the MEP is to con-
sider it not as a stand-alone principle, but as a conse-
quence of deeper mathematical laws. One route to do
this — that we follow in this paper — is to regard the
MEP as a direct consequence of the geometry of statisti-
cal manifolds [30, Sec.III-D]. In effect, by leveraging the
structure of dual orthogonal projections allowed by the
flat geometry associated with the Kullback–Leibler diver-
gence [31, 32], the seminal work of Amari established how
the standard MEP naturally emerges when considering
hierarchical “foliations” of the manifold. This perspective
not only sets the MEP on a firm mathematical bases, but
further endows it with sophisticated tools from informa-
tion geometry — which can be used e.g. to disentangle
the relevance of interactions of different orders within the
system [33–35].

In this paper we show how the geometry of curved
statistical manifolds naturally leads to an extension of
the MEP based on the Rényi entropy. In contrast to flat
cases, the geometrical structure of curved statistical man-
ifolds disrupts the standard construction of orthogonal
projections based on Legendre-dual coordinates, making
the analysis of foliations highly non-trivial. Nonethe-
less, by leveraging the rich literature on curved statis-
tical manifolds [32, 36–40], the framework put forward in
this paper reveals how the geometry established by the
Rényi divergence is suitable for establishing hierarchical
foliations that, in turn, lead to a generalisation of the
MEP.

The results presented in this paper serve to emphasise
the special place that the Rényi entropy has among other
generalised entropies — at least from the perspective of
the MEP. Furthermore, it provides a solid mathematical
foundation for the plethora of existent applications based
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on the Rényi entropy (see e.g. Refs. [41–44]). Further-
more, the novel connection established between informa-
tion geometry and this generalised MEP opens the door
for fertile explorations combining non-Euclidean geome-
try methods and statistical analyses, which may lead to
new insights and techniques to further deepen our under-
standing of complex systems.

The rest of this article is structured as follows. First,
Section II provides a brief introduction to information
geometry, emphasising concepts that are key to our pro-
posal. Then, Section III develops the analysis of folia-
tions in curved statistical manifolds, and Section IV es-
tablishes its relationship with a maximum Rényi entropy
principle. Finally, Section V discusses the implications
of our findings and summarises our main conclusions.

II. PRELIMINARIES

A. The Dual Structure of Statistical Manifolds

Our exposition is focused on statistical manifolds M ,
whose elements are probability distributions pξ(x) with
x ∈ χ and ξ ∈ Rd. The geometry of such statistical man-
ifolds is determined by two structures: a metric tensor gp,
and a torsion-free affine connection pair (∇,∇∗) that are
dual with respect to gp. Intuitively, gp defines norms and
angles between tangent vectors and, in turn, establishes
curve length and the shortest curves. On the other hand,
the affine connection establishes contravariant derivatives
of vector fields establishing the notion of parallel trans-
portation between neighbouring tangent spaces, which
defines what is a straight curve.

Traditional Riemannian geometry is build on the as-
sumption that the shortest and the straightest curves co-
incide, which led to the study of metric-compatible (Levi-
Civita) connections — pivotal to the development of the
theory of general relativity. However, modern approaches
motivated in information geometry [45] and gravitational
theories [46, 47] consider more general cases, where the
metric and connections are independent from one an-
other. In such geometries, the parallel transport oper-
ator Π : TpM → TqM and its dual Π∗ [48] (induced
by ∇ and ∇∗, respectively) might differ. The departure
of ∇ and ∇∗ from self-duality can be shown to be pro-
portional to Chentsov’s tensor, which allows for a single
degree of freedom traditionally denoted by α ∈ R [45].
Put simply, α captures the degree of asymmetry between
short and straight curves, with α = 0 corresponding to
metric-compatible connections where ∇ = ∇∗.

An important property of the geometry of a statisti-
cal manifold (M , g,∇,∇∗) is its curvature, which can
be of two types: the (Riemann-Christoffel) metric cur-
vature, or the curvature associated to the connection.
Both quantities capture the distortion induced by paral-
lel transport over closed curves — the former with respect
to the Levi-Civita connection, and the latter with respect
to ∇ and ∇∗. In the sequel we use the term “curvature”

to refer exclusively to the latter type.

B. Establishing geometric structures via
divergences

A convenient way to establish a geometry on a sta-
tistical manifold is via divergence maps [49]. Diver-
gences are smooth, distance-like mappings for the form
D : M × M → R, which satisfy D(p||q) ≥ 0 and
vanish only when p = q [50]. We use the shorthand
notation D[ξ; ξ′] := D(pξ||qξ′) when expressing D un-
der a parametrisation of M in terms of coordinates
ξ = (ξ1, . . . , ξn) [30]; divergences in this form are often
called “contrast functions” (see Ref. [51, Sec. 11]).

Let us see how one can naturally build a metric from a
contrast function [49, Sec. 4]. A metric g(ξ) can be built
from the second-order expansion of the divergence D as

gij(ξ) =
〈
∂ξi , ∂ξj

〉
= −∂ξi,ξ′jD[ξ; ξ′]

∣∣
ξ=ξ′

, (1)

which is positive-definite due to the non-negativity of D.
This construction leads to the Fisher’s metric, which is
the unique metric that emerges from a broad class of
divergences [49, Th. 5], with this being this closely related
Chentsov’s theorem [52–55]. Analogously, connections
(or equivalently Christoffel symbols) emerge at the third
order expansion of the divergence as follows:

Γijk(ξ) =
〈
∇∂ξi∂ξj , ∂ξk

〉
= − ∂i,j∂k′D[ξ; ξ′]|ξ=ξ′ , (2a)

Γ∗ijk(ξ) =
〈
∇∗∂ξi∂ξj , ∂ξk

〉
= − ∂k∂i′,j′D[ξ; ξ′]|ξ=ξ′ , (2b)

where the shorthand notation ∂ξi = ∂i and ∂ξ′i = ∂i′ has
been adopted for brevity. In summary, Fisher’s metric is
insensible the choice of divergence but the resulting con-
nections are, and therefore the effects of a particular D
manifest only at third-order. Interestingly, this construc-
tion relating the metric and connections with the second
and third derivatives of a scalar potential bears a striking
resemblance to Kähler structures on complex manifolds,
which can be built through further constraints and are
applicable to a range of inference problems [56, 57].

The approach of building geometries based on diver-
gences does not lack generality, as it has been shown
that any geometry can be expressed by an appropriate
divergence [58, 59]. Of the various types of divergences
explored in the literature (c.f. [60] and references within),
two classes are particularly important: f -divergences of
the form

Df [ξ; ξ′] =

∫
χ

pξ(x)f

(
pξ(x)

qξ′(x)

)
dµ(x) (3)

for f(x) convex with f(1) = 0, and Bregman divergences
of the form

Dφ[ξ; ξ′] = (ξ − ξ′) ·Dφ(ξ′)−
(
φ(ξ)− φ(ξ′)

)
(4)

= ξ · η′ − φ(ξ)− ψ(η′) (5)
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for φ(ξ) a concave function [61], with Dφ =
(∂φ/∂ξ1, . . . , ∂φ/∂ξd) denoting the gradient of φ, ψ(η) =
minξ

(
η · ξ − φ(ξ)

)
is the Fenchel–Legendre concave con-

jugate of φ, and η the dual coordinates of ξ such that

ξ = Dψ(η) and η = Dφ(ξ) . (6)

Each of these types of divergences have important
properties from an information geometry perspective:
f -divergences are monotonic with respect to coarse-
grainings of the domain of events χ, while Bregman di-
vergences enable dual structures that set the basis for
orthogonal projections [62].

As mentioned above, the deviation of a given con-
nection ∇ from its corresponding metric-compatible (i.e.
Levi-Civita) counterpart can be measured by αT , where
T corresponds to the invariant Amari-Chensov ten-
sor [63, 64] and α ∈ R is a free parameter. The invariance
of T implies that the value of α entirely determines the
connection, and the corresponding geometry can be ob-
tained from a divergence of the form

Dα(p||q) =
4

1− α2

∫
χ

{
1− p

1−α
2 q

1+α
2

}
dµ(x) , (7)

which is known as α-divergence. As important partic-
ular cases, if α = 0 then Dα becomes the square of
Hellinger’s distance, and if α = 1 then it gives the well-
known Kullback-Leibler

DKL(p||q) =

∫
χ

p(x) log

(
p(x)

q(x)

)
dµ(x) . (8)

It is worth noting that geometrical structures are in-
variant under certain types of transformations. For ex-
ample, consider a divergence D̃ given by D̃[ξ; ξ′] :=
F (D[ξ; ξ′]), with F a monotone and differentiable func-
tion satisfying F (0) = 0 [65]. Then, it can be shown
using Eqs. (1) and (2) that the metric and connections
induced by D and D̃ are related as follows:

g̃ = F ′(0) g, Γ̃ = F ′(0) Γ, Γ̃∗ = F ′(0) Γ∗ . (9)

Therefore, D̃ gives rise to exactly the same geometrical
structure when F ′(0) = 1, and a scaled version other-
wise. More general transformations between divergences
and their corresponding geometries are discussed in Sec-
tion IID.

C. A Pythagorean relationship in curved spaces
via the Rényi divergence

The connection induced by the KL divergence and its
natural coordinates is flat (i.e. Γijk(ξ) = Γ∗ijk(ξ) = 0).
However, this does not hold for α-divergences when α 6=
1, which retain the same Fisher’s metric but induce a
connection with constant sectional curvature ω = (1 −
α2)/4 over the whole manifold [39, Theorem 7]. This

results into a spherical (Sn) geometry for α ∈ (0, 1), or
an hyperbolic (Hn) geometry for α /∈ (0, 1).

A non-zero curvature affects the relationship between
geodesics [66]: if the “α-geodesic” joining p and q is or-
thogonal (with respect to the Fisher metric) to the one
joining q and from r, then

Dα(p||r) =Dα(p||q) +Dα(q||r)

− 1− α2

4
Dα(p||q)Dα(q||r) , (10)

resulting in a deviation from the standard “Pythagorean
relationship” that is observed for the case of α = 1 [31].
However, one can rewrite Eq. (10) as

1− ωDα(p||r) =
(
1− ωDα(p||q)

)(
1− ωDα(q||r)

)
, (11)

which describes the relationship between angles on the
sphere or hyperbolic space — depending on the sign of
ω [31]. Interestingly, Eq. (11) suggests that a divergence
of the form

Dγ(p||q) :=
1

γ
log
(
1 + γ(1 + γ)Dα(p||q)

)
(12)

=
1

γ
log

∫
χ

p(x)γ+1q(x)−γdµ(x) (13)

with α = −1 − 2γ would recover the “Pythagorean re-
lationship.” In fact, Dγ can be recognised as the well-
known Rényi divergence of order γ − 1 [39, 45], noting
that we follow Ref. [67] in adopting a shifted indexing.

The Rényi divergence is an f -divergence with f(x) =
xγ but it is not a Bregman divergence; however, one can
re-cast it as a “Bregman-like” divergence [39]. To see
this, let’s consider p̃ξ ∈M to be a deformed exponential
family distribution of the form (see Appendix A)

p̃ξ(x) =
(
1 + γξ · h(x)

)− 1
γ e−ϕγ(ξ) , (14)

where h(x) ∈ Rd is a vector of sufficient statistics of x
and ϕγ is a normalising potential given by

ϕγ(ξ) := − log

∫
χ

(1 + γξ · h(x))−
1
γ dµ(x) . (15)

Note that Eq. (14) gives a standard exponential fam-
ily distribution when γ → 0. By defining Dγ [ξ; ξ′] :=
Dγ(p̃ξ||p̃ξ′) to be the corresponding contrast function of
the Rényi divergence, then one can show that [39, Th.13]

Dγ [ξ; ξ′] =
1

γ
log(1 + γξ · η′)− ϕγ(ξ)− ψγ(η′) , (16)

which resembles Eq. (5) but with the factor ξ ·η replaced
by a logarithm. Above,

ψγ(η) := min
ξ

{
log(1 + γξ · η)− ϕγ(ξ)

}
(17)

is a generalisation of the Fenchel–Legendre transform of
ϕγ , which has conjugate coordinates established by

η =
1

1 + γξ ·Dϕγ(ξ)
Dϕγ(ξ) , (18a)
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FIG. 1. An schematic diagram depicting the three classes
of geometrical structures that arise from their α-value. The
curved (i.e. α 6= ±1) geometries are characterized by the
α- and Rényi’s divergence, both of which are conformally-
projectively related to the KL divergence — which in turn
generates a flat geometry.

ξ =
1

1 + γξ ·Dψγ(η)
Dψγ(η) , (18b)

with Dϕ denoting the Euclidean gradient of ϕ. Finally,
it is worth noting that

Dϕγ(ξ) = Eξ
{

h(X)

1 + γξ · h(X)

}
=: Eξ{Zξ(h)} , (19)

where X is a random variable that follows the distri-
bution pξ(x), h(X) denotes the sufficient statistics of X,
and Zξ(h) is defined implicitly as the quantity within the
curly brackets. Hence these generalised Fenchel-Legendre
dual coordinates can be alternatively expressed as

η =
1

1 + γξ · Eξ{Zξ(h)}
Eξ{Zξ(h)} . (20)

For the case of γ = 0, Eq. (20) reduces to the well-known
relationship given by η = Eξ{h(X)}, (see Appendix B
for further comments).

D. Conformal-projective classes

Conformal transformations are operations over geo-
metric structures that are angle-preserving, amounting
to (pseudo) rotations and dilation of the points in the
manifold. Technically, a conformal transformation on M
is defined as an invertible map ω : M → M such that
the induced metric by the pull-back map ω∗ : Tω(p)M →
TpM is related to the original metric up to a scaling
factor λ(p) : M → R such that

gp(ω∗(X), ω∗(Y )) = λ(ω(p))gω(p)(X,Y ) (21)

for all X,Y ∈ Tω(p)M . Correspondingly, two metrics g
and g̃ are said to be conformally equivalent if they can
be linked via a conformal factor λ as in Eq. (21).

Due to their non-Riemannian geometry, geomet-
ric transformations on statistical manifolds that are

“structure-preserving” are not fully specified by their ef-
fect on the metric, but also need to characterise its effect
on the connections — which may diverge from metric-
dependence via Chentsov’s tensor. This characterisation
can be done by relaying on the notion of projectively
equivalence: two connections ∇ and ∇̃ are said to be pro-
jectively equivalent if there exists a 1-form ν = ai(ξ)dξi
that satisfies

Γkij(ξ) = Γ̃kij(ξ) + ai(ξ)δ
k
j + aj(ξ)δ

k
i , (22)

with δji the Kronecker delta [68].
A convenient way to put these notions together and

build conformal-projective transformations is by consid-
ering transformations over divergences. Two divergences
D and D̃ are said to belong to the same conformal-
projective class if two conditions are met: (i) their in-
duced metrics are conformally equivalent, and (ii) their
induced connections are projectively equivalent. It can
be shown that two divergences belong to the same
conformally-projective class if and only if they satisfy

D̃[ξ; ξ′] = λ(ξ)D[ξ; ξ′] , (23)

with λ being the conformal-projective factor [69].
Let us now study the relationship between the geome-

tries induced by Dγ , Dα, and DKL. By considering the
inverse of Eq. (12), one finds that the function

F (x) =
eγx − 1

(1 + γ)γ
, (24)

establishes the diffeomorphism F (Dγ [ξ; ξ′]) = Dα[ξ; ξ′],
which reveals that the Rényi divergence and α-
divergences generate exactly the same geometry (as de-
scribed by Eqs. (9)). Building on this fact, and leverag-
ing the Legendre-like form of the Rényi entropy shown
in Eq. (16), a direct calculation shows that the action of
F on Dγ can be expressed as a Bregman divergence Dφ
scaled by a conformal-projective factor [70, Th. 1]:

F (Dγ [ξ; ξ′]) = κ(ξ)Dφ[ξ; ξ′] . (25)

Above, φ is a scalar potential given by φ(ξ) = eγϕ0(ξ) with
ϕ0(ξ) as given in Eq. (15), and the conformal-projective
factor κ has the form

κ(ξ) = − 1

γφ(ξ)
. (26)

Moreover, please note that Dφ describes a dually-flat ge-
ometry, belonging to the same equivalent class as the KL
divergence. Thus, these results together establishes that
Rényi’s Dγ , Dα, and DKL belong to the same conformal-
projective equivalence class.

To conclude, let us present a derivation of the func-
tional form of κ(ξ) used in Eq. (25) following Ref. [70].
The metric induced by Dγ [ξ; ξ′] is given by

g̃ij(ξ) := − ∂i,j′Dγ [ξ; ξ′]|ξ=ξ′ = κ(ξ)∂ijφ(ξ) , (27)



5

and hence g̃ij(ξ) = κ(ξ)gij(ξ). Furthermore, its induced
connection and metric curvature can be found to be

Γ̃ k
ij (ξ) =

∂iκ(ξ)

κ(ξ)
δkj +

∂jκ(ξ)

κ(ξ)
δki , (28a)

R̃ l
ijk (ξ) = κ(ξ)

(
∂jk

1

κ(ξ)
δli − ∂ik

1

κ(ξ)
δlj

)
. (28b)

Hence, by introducing the 1-form ν = d log κ(ξ), one can
identify the affine connection induced by Γ̃ k

ij (ξ) as be-
ing projectively flat. This 1-form — or equivalently, the
conformal factor κ(ξ) — can be derived from the Rie-
mann curvature tensor, which for spaces of constant sec-
tional curvature takes the form R l

ijk = K(gjkδ
l
i− gikδlj),

with K ∈ R corresponding to its scalar curvature. As
mentioned in Section IIC, the geometry induced by the
α-divergence has curvature ω = (1 − α2)/4 throughout
the whole manifold, and hence its Riemann tensor can
be rewritten as

R l
ijk =

1 + α

2
(g̃jkδ

l
i − g̃ikδlj) , (29)

where a factor 1−α
2 = γ + 1 from ω has been absorbed

by the metric [71]. Moreover, using the fact that the
Riemann tensor is left unchanged by the conformal-
projective transformation (i.e. R̃ l

ijk = R l
ijk ), and recog-

nising that K = −γ, one can use Eqs. (27), (28b) and
(29) to show that

1

κ(ξ)
= −γφ(ξ) +

∑
i

aiξ
i + b , (30)

for some ai, b ∈ R. Finally, as the linear terms can be
absorbed in the definition of φ, Eq. (30) leads to the
expression for κ(ξ) as shown above.

III. ORTHOGONAL FOLIATIONS IN CURVED
STATISTICAL MANIFOLDS

This section presents the study of orthogonal foliations
in curved statistical manifolds. For simplicity of the ex-
position, the rest of the paper focuses on multivariate
distributions of n binary random variables — i.e. dis-
tributions of the form p(x) where x = (x1, . . . , xn) with
xi ∈ {0, 1}, and hence χ = {0, 1}n.

A. Orthogonal foliations on flat-projective spaces

Let us consider a parametrisation ν of the manifold
M . Then, for a given pν ∈M we define

M̃k{pν} := {qν′ ∈M |ν′i = νi ∀i = 1, . . . , k} , (31)

which establishes a nested structure on the manifold of
the form

{p} = M̃n{p} ⊂ M̃n−1{p} ⊂ · · · ⊂ M̃0{p} = M . (32)

The parametrisation pν also induces a natural basis for
the cotangent space at each p ∈M , which we denote by
∂νi ∈ T ∗pM . To study the geometry of this basis, let’s
consider the functional form of Dγ induced by ν, which
is given by Dγ [ν; ν′] := Dγ(pν ||pν′). Then, the inner
product between the basis elements ∂νi can be calculated
as

〈∂νi , ∂ν′j 〉 = −∂νi,ν′jDγ [ν; ν′]
∣∣
ν′=ν

= g̃ij(ν) . (33)

The properties of Dγ guarantees that g̃ij(ν) is positive-
definite, and hence it has a well-defined inverse for each
ν which we denote by rij(ν) :=

(
g−1(ν)

)ij . By denoting
as θ the primal coordinates with respect to r, one can
then define

Ẽk := {pθ ∈M |θj = θuj , ∀j > k}, (34)

where θu denote the θ-coordinates of the uniform distri-
bution u. It is direct to verify that

{u} = Ẽ0 ⊂ Ẽ1 ⊂ · · · ⊂ Ẽn = M . (35)

Interestingly, Ẽk grows with k while M̃k shrinks such
that for each k their combined dimensions sum up to n
— being enough to account for the dimensionality of M .
Furthermore, due to the fact that these complementary
dimensions are orthogonal, this implies that their inter-
section cannot be empty.

We summarise these ideas in the following definition.

Definition 1. For a given parametrisation ν of M for
which Ẽk exists, then the orthogonal foliation of M as-
sociated to pν is the collection of sets

{
M̃k{pν}, Ẽk

}
.

Please note that the bases of TpM and T ∗pM deter-
mined by the generalised Fenchel-Legendre dual coordi-
nates established by Eqs. (18a) and (18b) are not or-
thogonal under the inner product related to the scalar
potential ϕ and its conjugate if γ > 0, as discussed in
Appendix C. Therefore, the standard relationship be-
tween geometric duality and Fenchel-Legendre duality
that holds for γ = 0 is broken in curved statistical mani-
folds. Nonetheless, projective-flatness allows for the met-
ric induced by Dγ to be expressible in coordinates where
the bases are manifestly orthogonal up to a conformal-
projective factor, so that 〈∂ξi , ∂ηj 〉 = κ(θ)δji with κ(θ)
as defined in Eq. (26). Then, θ and its Fenchel-Legendre
conjugate established by Eq. (6) define a set of conformal-
projective coordinates.

Crucially, orthogonal foliations satisfy a Pythagorean
property, as shown by the following lemma.

Lemma 1. Given an orthogonal foliation {M̃k{p}, Ẽk},
if p ∈ M̃k{p}, r ∈ Ẽk, and q ∈ M̃k{p} ∩ Ẽk then

Dγ(r||p) = Dγ(q||p) + Dγ(r||q) . (36)

Proof. See Appendix C.
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It is important to note that while building orthogo-
nal coordinates is a relatively simple construction, these
don’t necessarily generally guarantee a Pythagorean re-
lationship. As a matter of fact, although the equiv-
alence between Rényi’s and α-divergences ensures that
both divergences induce the same geometry, only Rényi’s
exhibits a correspondence between orthogonality on the
metric and a Pythagorean relationship on the divergence
(see Section IIC). To illustrate these ideas, let us con-
sider a particular construction where we take M̃k as the
set of probabilities distributions with fixed expectation
values, denoted by η, and come up with its orthogonal
complement. From φ as the potential encoding these
change of coordinates, we define its conjugate potential
ψ̄ = minξ(ξ · η − φ(ξ)). In this way, the primal coordi-
nates ξ̄ orthogonal to η follow from D(ξ · η − φ(ξ)), that
is,

ξ̄i = Eξ{hi(x)} − 1

γκ(ξ)
(D log κ(ξ))i , (37)

where the first term in the right hand side follows from
ηi = Eξ{hi(x)}. The primal coordinates ξ̄i, allows to
construct an orthogonal complement to M̃k, and from
(A1) one finds that

Ēk(ck+) = {pξ̄(x) ∈M | ξ̄k+ = ck+}. (38)

B. Higher-order hierarchical decomposition

Using a orthogonal foliation, we now introduce the no-
tion of hierarchical decomposition on curved statistical
manifolds.

Definition 2. The k-th order γ-projection of p ∈ M
under the orthogonal foliation {M̃k{p}, Ẽk} is

p̃(k) := arg min
q∈Ẽk

Dγ(p ; q) = arg min
q∈Ẽk

Dα(p ; q) . (39)

Above, the minimum under Dγ and Dα is the same, as
both divergences are related by a monotonous function as
shows by Eq. (12). An useful property of the orthogonal
foliation is that it enables a useful characterisation of p̃(k)

for k > 0, as shown in the next Lemma.

Lemma 2. The k-th order γ-projection of p ∈M satis-
fies {p̃(k)} = Ẽk ∩ M̃k{p}.

Proof. Consider q ∈ Ẽk ∩ M̃k{p}. It is direct to verify
that p, q ∈ M̃k{p} and q, p̃(k) ∈ Ẽk. Then, Lemma 1
implies that

Dγ(p||p̃(k)) = Dγ(p||q) + Dγ(q||p̃(k)) ≥ Dγ(p||q) . (40)

Additionally, Eq. (39) and the fact that q ∈ Ẽk imply
that Dγ(p||q) ≥ Dγ(p||p̃(k)), which together with Eq. (40)
show that Dγ(p||p̃(k)) = Dγ(p||q). This, combined again
with Eq. (40), implies in turn that Dγ(q||p̃(k)) = 0, which
can only be satisfied if q = p̃(k).

FIG. 2. (left) Orthogonal foliation of manifold M . (right)
Projections onto E1 leaf (associated with α = 1) and its de-
formation Ẽ1 related to α 6= ±1.

Following Ref. [30], let us consider the mixed coordi-
nates νk = (ηk− ; ξk+). Then, due to the duality of η and
ξ, one can verify that p̃(k) satisfy the mixed coordinates
ν̃k = (ηk− ; 0), where ηk− are the constraints of order up
to k of p. Interestingly, note that u = Ẽ0(0) is equal to
the uniform distribution u for all p ∈M and all γ.

With these definitions at hand, we can prove the fol-
lowing result.

Theorem 1. For a given p ∈ M , the collection of the
γ-projections p̃(n−1), . . . , u satisfy

Dγ(p||u) =

n∑
k=1

Dγ(p̃(k)||p̃(k−1)) . (41)

Proof. Let’s start noting that both p̃(n−1) and u belong
to Ẽn−1, while both p and p̃(n−1) belong to M̃n−1 due
to Lemma 2. Therefore, Lemma 1 implies that

Dγ(p||u) = Dγ(p||p̃(n−1)) + Dγ(p̃(n−1)||u) . (42)

The rest of the proof can be done following a similar
rationale recursively on Dγ(p̃(n−1)||u).

To better understand the deformation of the layers in-
duced by γ, it is beneficial to consider the mean-field
theory approach presented in Ref. [72]. Let’s consider a
classic Ising model for which two layers suffice to describe
the system, and focus in its projection to E1. In [72] the
m and e projections denote the solution and naive ap-
proximations, respectively, which are both orthogonal.
Moreover, the α-projection draws the trajectory of solu-
tions in between. In the current picture, however, the
submanifolds are deformed in such a way that the α-
projection becomes orthogonal with α = ±1, which are
left as fixed points (see Figure 2).
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IV. GENERALISING THE MAXIMUM
ENTROPY PRINCIPLE

A. Rényi’s entropy and related quantities

Consider a manifold of distributions whose support al-
lows a flat distribution. Then, the α-negentropy of p is
defined as

Nγ(p) := Λ−Hγ(p) , (43)

with Hγ = Λ being the Rényi entropy of the uniform
distributions, which corresponds to log |χ| for finite χ or
log n in the continuum, and

Hγ(p) =
−1

γ
log

∫
χ

p(x; ξ)γ+1dµ(x) (44)

being the well-known Rényi entropy. This definition re-
covers the standard Shannon entropy and negentropy in
the case γ = 0 [73].

Another quantity of interest is the γ-Total Correlation,
defined as

TCγ(Xn) =

n∑
i=0

Hγ(Xi)−Hγ(Xn), (45)

where Xn := (X1, . . . , Xn) is a random vector that dis-
tributes according to pξ(X = x) with x = (x1, . . . , xn).
This is a generalisation of the well-known Total Cor-
relation for Shannon’s entropy (also known as Multi-
information [74]), which is a generalisation of Shan-
non’s mutual information for the case of 3 or more vari-
ables [75]. In particular, if n = 2 then the total correla-
tion gives a Rényi’s mutual information.

B. A hierarchical decomposition of Rényi’s entropy

With a hierarchical decomposition p, p(n−1), . . . , u at
hand, we are now poised to address the problem of en-
tropy decomposition based on the relevance of each order.

Lemma 3. Consider a the γ-projections of p ∈M under
an orthogonal foliation {M̃k{p}, Ẽk} such that Ẽ0 = {u}
with u the uniform distribution. Then, the following
holds for l < k:

Dγ(p̃(k)||p̃(l)) = Hγ(p̃(l))−Hγ(p̃(k)) . (46)

Proof. A direct application of Eq.(41) shows that

Dγ(p̃(k)||u) = Dγ(p̃(k)||p̃(l)) + Dγ(p̃(l)||u) . (47)

Then, the desired result follows from re-ordering the
terms and using the fact that Dγ(q||u) = Λ −Hγ(q) for
any q ∈M .

Corollary 1. For any multivariate distribution p then

Nγ(p) = Dγ(p||u) , (48)

TCγ(Xn) = Dγ

(
p
∣∣∣∣∣∣ n∏
k=1

pXk

)
. (49)

Using this lemma, we can put forward our main result.

Theorem 2. Consider p ∈M and an orthogonal folia-
tion {M̃k{p}, Ẽk} such that Ẽ0 = {u}. Then,

p̃(k) = arg max
q∈M̃k{p}

Hγ(q) . (50)

Additionally, the Rényi negentropy can be decomposed as

Nγ(p) =

N∑
k=1

∆(k)Hγ(p) , (51)

with ∆(k)Hγ(p) := Hγ

(
p̃(k−1)

)
−Hγ

(
p̃(k)

)
> 0 quantify-

ing the relevance of the k-th order constraints.

Proof. Because p̃(k) ∈ M̃k (see Lemma 2), then thanks
to Lemma 1 any r ∈ M̃k satisfies

Dγ(r||u) = Dγ(r||p̃(k)) + Dγ(p̃(k)||u) . (52)

Therefore, Dγ(r||u) ≥ Dγ(p̃(k)||u) for all r ∈ M̃k, and
hence it follows that

p̃(k) = arg min
q∈M̃k

Dγ(q||u) = arg max
q∈M̃k

Hγ(q) . (53)

Above, the first equality is due to the fact that p̃(k) ∈ M̃k,
and the second equality uses the fact that Dγ(q||u) =
Λ−Hγ

(
q
)
.

To prove Eq. (51), one can use Corollary 1 and Theo-
rem 1 to show that

Nγ(p) = Dγ(p||u) =

N∑
k=1

Dγ(p̃(k)||p̃(k−1)) . (54)

The desired result is then a consequence of Lemma 3.

Above, ∆(k)Hγ(p) accounts for the relevance of the k-
th order interactions. In particular, the first order term
accounts for all the non-interactive part:

∆(1)Hγ(p) =

N∑
j=1

Nγ(Xj) =

N∑
j=1

(
log n−Hγ

(
Xj

))
(55)

with Nγ(Xj) being the marginal negentropy of Xj . The
remaining terms can be seen to be equal to

N∑
k=2

∆(k)Hγ(p) = TCγ(p) (56)

showing that the TCγ captures all the correlated part of
the Rényi negentropy, following the relationship observed
in Shannon’s case for γ = 0 (as discussed in Ref.[75]).
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C. Maximum Rényi entropy distributions over
constraints on average observables

Let us now consider a collection of observables h over
a system of n binary variables defined as

hi,k(x) =

k∏
j=1

xIki (j) , (57)

with hi,k being the i-th observable of k-th order, with
Iki (j) being an appropriate assignment of indices. Then,
one can define the following coordinates:

νi,k := E{hi,k(x)} . (58)

For example, νi,1 are of the form E{xi} and νj,2 of the
form E{xrxs}. Importantly, given that x1, . . . , xn are bi-
nary variable then one can check that, once νi,l for all
i and l ≤ k are fixed, this in turn determines all the k-
th order marginals [76]. Crucially, this implies that the
parameters ν as a whole determine a unique distribution
pν(x), and hence ν is a valid parametrisation of the cor-
responding statistical manifold [14, 35].

Let us now consider the family of sets M̃k, as defined
in Eq.(31) associated to this parametrisation. According
to the previous discussion, M̃k{p} is the set of all dis-
tributions for x that are compatible with the k-th order
marginals. For determining the form of the correspond-
ing k-th order γ-projection, we use the following lemma.

Lemma 4. The solution of the optimisation problem

arg max
q∈M

Hγ(q) s.t. νi,l = Eq{hi,l(x)} (59)

for all i and l ≤ k gives a projection of the form

p̃
(k)
θ (x) = e−zγ(θ)

(
1 + γθ · h(x)

)1/γ
, (60)

with θi,l = 0 for all l > k, and a normalisation factor
given by zγ(θ) = 1

γ log
∑
x

(
1 + γθ · h(x)

)1/γ .
Proof. Using Theorem 2, it is clear that p̃(k)

θ can be found
by solving the extreme values of a Lagrangean of the form

L(q, θ0, {θj}) =Hγ(q) + θ0

(∑
i

qi − 1
)

+
∑
j

θj

(∑
k

qkFj(xk)− νj
)
, (61)

where q is a discrete distribution and θj are Lagrange
multipliers. The desired result follows from imposing
∂L/∂qi = 0 and ∂L/∂θj = 0.

Efficient numerical methods to estimate distributions
of the form specified by Eq. (60) will be developed in a
separate publication.

V. CONCLUSION

This paper shows how the non-Euclidean geometry of
curved statistical manifolds naturally leads to a MEP
that uses the Rényi entropy, generalising the traditional
MEP framework based on Shannon’s — which take place
on flat manifolds. This generalisation of the MEP has
three important consequences:

• It highlights special geometrical properties of the
Rényi entropy, which make it stand apart from
other generalised entropies.

• It provides a solid mathematical foundation for the
numerous applications of the Rényi entropy and di-
vergence.

• It enables a range of novel methods of analysis for
the statistics of complex systems.

Rényi’s entropy and divergence represent one of many
routes by which the classic information-theoretic defini-
tions can be extended. One fundamental feature of the
Rényi divergence — that this work thoroughly exploits —
is the correspondence that it establishes between orthog-
onality with respect to Fisher’s metric and a Pythagorean
relationship in the divergence (which does not hold in the
geometry induced by e.g. the α-divergence). This corre-
spondence is the key property that allows us to build hi-
erarchical foliations, despite the fact that in curved man-
ifolds the link between geometric and Fenchel-Legendre
duality is generally broken. It is relevant to highlight
that the correspondence between orthogonality and the
Pythagorean relationship is not guaranteed by other di-
vergences such as the α-divergence, which makes en-
tropies such as Tsallis’ [77] not well suited to extend the
MEP — at least from an information geometry perspec-
tive [78]. Considering that extensions of the Renyi en-
tropy exist (e.g. Ref. [79]), an interesting open question
is to determine the range of divergences that satisfy these
properties.

These findings are in agreement with recent research
that is revealing special features of the Rényi entropy
and divergence in the context of statistical inference and
learning. In particular, Refs. [80, 81] show that the Rényi
divergence can provide bounds to the generalisation error
of supervised learning algorithms. Also, Ref. [82] shows
that the Rényi entropy belongs to a class of functionals
that are particularly well-suited for inference and estima-
tion. Put together, these findings suggest that the Rényi
entropy and divergence might be capable of playing an
important role in the development of future data analysis
and artificial intelligence frameworks.

This work opens the door to novel data-analyses ap-
proaches to study high-order interactions. While com-
monly neglected, high-order statistics have recently been
proven to be instrumental in a wide range of phenom-
ena at the heart of complex systems, including the self-
organising capabilities of cellular automata [83], gene-to-
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gene information flow [84], neural information process-
ing [85], high-order brain functions [86, 87], and emer-
gent phenomena [88, 89]. However, exhaustive modeling
of high-order effects requires an exponential number of
parameters; for that reason, practical investigations need
to rely on heuristic modeling methods (see e.g. [90, 91]).
In contrast, our framework allow us to do projections
while optimising the manifold’s curvature in order to best
match empirical statistics. Importantly, k-th order pro-
jections on curved spaces lead to distributions that cap-
ture statistical phenomena of order higher than k without
increasing the dimensionality of the parametric family.
The development of this line of research is part of our
future work.

Another set of promising applications is found in con-
densed matter systems, where the Rényi entropy is often
introduced as a measure of the degree of quantum entan-
glement. In particular, the Rényi entropy results from
an heuristic generalisation of the Von Neumann entropy,
which has important benefits in being (i) more suitable to
numerical simulations [92] and (ii) being easier to mea-
sure by experiments [93]. In particular, the Rényi en-
tropy has been shown to be sensible to features of quan-
tum systems such as central charge [94], and knowledge of
it at all orders encodes the whole entanglement spectrum
of a quantum state [95]. Moreover, in strongly coupled
systems, Rényi entropies have been essential for estab-
lishing a connection between quantum entanglement and
gravity [96, 97]. More recently, the Rényi mutual infor-
mation has been taking a central role in the identifica-
tion of phase transitions [43, 44, 98]. The mathematical
framework established in this work serves as a solid ba-
sis for these investigations, and further allows the explo-
ration of novel application of information geometry tools
in these scenarios.

It is our hope that this contribution may serve to widen
the range of applicability of the MEP, while fostering the-
oretical and practical investigations related to the prop-
erties of curved statistical manifolds.
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Appendix A: Deformed exponential family
distributions

For completeness, this appendix presents a derivation
of the functional form of p̃ξ as presented by Eq. (14)
that follows Ref. [39, Sec. 4.1]. For this, let us consider
an “exponentially-flat” manifold [99], i.e. a manifold M
with a parametrisation ξ such that all p ∈ M can be

expressed as

pξ(x) = e−ξ·h(x)+φ(ξ), (A1)

where h(x) is a vector of sufficient statistics of x, and
−φ(ξ) is the cumulant generating function. Note that
this “natural parametrisation” of M allows to express the
corresponding contrast function of the KL, DKL[ξ; ξ′] :=
DKL(pξ||pξ′), as a Bregman divergence:

DKL[ξ; ξ′] = (ξ − ξ′)η − φ(ξ) + φ(ξ′) . (A2)

To find a “deformed” exponential distribution p̃ ∈M ,
one needs to find the natural parametrisation of M that
allows to express the Rényi entropy as a Bregman-like
divergence. For this purpose, one can rewrite Eq. (A1)
in its self-dual form to find

log pξ(x) = −DKL[ξ : ξ′]− ψ
(
h(x)

)
, (A3)

with ψ the conjugate of φ, and h(x) plays the role of
the dual variable η′. Then, one can re-write Eq. (A3)
replacing DKL with Dγ , and use Eq. (16) to obtain

log p̃ξ(x) = −Dγ [ξ : ξ′]− ψγ(h(x)) (A4)

= − 1

γ
log
(
1 + γξ · h(x)

)
+ ϕγ(ξ) , (A5)

which leads to

p̃ξ(x) =
(
1 + γξ · h(x)

)− 1
γ e−ϕγ(ξ) (A6)

with a normalising potential given by Eq. (15). Impor-
tantly, one can show that [39, Th.13]

Dγ(p̃ξ||p̃ξ′) = Dγ [ξ; ξ′] , (A7)

which confirms that the parametrisation of M deter-
mined by Eq. (14) is the natural (in the Bregman-like
sense) parametrisation of the deformed geometry induced
by Dγ .

Appendix B: Analysis of deformed expectation
values

The deformed expectation values given by Eq. (20) are
non-trivial to interpret, and their explicit dependence on
ξ makes numerical simulation challenging. However, ex-
ploring some ranges of values of γ can help us to flesh
out an interpretation for η.

To this end, let us start by considering the Taylor series
expansion of the Zξ field given by

Zξ(h) = h(X)

∞∑
n=0

(−1)n(γξ · h(X))n . (B1)

Small values of γ ensure convergence of the series. Now,
one may write its expectation value as

Eξ{Ziξ(h)} ' Eξ{hi} − γξjEξ{hihj}
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+ γ2ξjξkEξ{hihjhk} , (B2)

where we have retained up to second order corrections.
Similarly for η, one can find that

ηi ' Eξ{hi} − ξj(Eξ{hihj}+ Eξ{hj}Eξ{hi})γ
+ ξjξk(Eξ{hihjhk}+ Eξ{hjhk}Eξ{hi}

+ Eξ{hj}Eξ{hkhi}
+ Eξ{hj}Eξ{hk}Eξ{hi})γ2 . (B3)

This implies that these Bregman-like dual coordinate
generally deviates from the one obtained for γ = 0
through higher orders moments, which becomes more
prominent as one increases the order of its γ-expansion.

Appendix C: Pythagorean relation

This appendix provides a proof for Lemma 1, which
follows results presented in Ref. [39].

Proof. Let’s consider a primal geodesic connecting p and
q with coordinates ξ and a dual geodesic connecting r and
q with coordinates η. The geodesics are then proportional
to ξir − ξiq and ηp,j − ηq,j respectively. Then, let’s define

A =
∑
i

(ξir − ξiq)∂ξi , (C1)

B =
∑
j

(ηp,j − ηq,j)∂ηj , (C2)

and take a look of their inner product

〈A,B〉 =
〈∑

i

(ξir − ξiq)∂ξi ,
∑
j

(ηjq − ηjr)∂ηj
〉

(C3)

=
∑
i,j

(ξir − ξiq)(ηp,j − ηq,j)〈∂ξi , ∂ηj 〉 . (C4)

In other words, we rely on the evaluation of (C4), which
requires that the inner product of the primal and dual
bases induced by the divergence (13), vanish. That is,

〈∂ξi , ∂ηj 〉 =
〈
∂ξi ,

∑
m

∂ηjξ
m∂ξm

〉
(C5)

=
∑
m

∂ηjξ
m〈∂ξi , ∂ξm〉 , (C6)

whose intern product can be directly obtained from the
divergence as

g̃im(ξ) = −∂i∂m′Dγ [ξ, ξ′]|ξ′=ξ (C7)

=

{
−∂ξ′mη′i
Π(ξ, η′)

+
∑
l

γ η′iξ
l

Π(ξ, η′)2
∂ξ′mη

′
l

}∣∣∣∣∣
ξ′=ξ

, (C8)

where we use the shorthand notation Π(ξ, η′) := (1 +γξ ·
η′). Replacing this expression into (C6) yields

〈∂ξi , ∂ηj 〉 =
−1

Π(ξ, η)
δji +

α

Π(ξ, η)2
ηiξ

j . (C9)

Using this in Eq. (C4), and adopting Πq := Π(ξq, ηq) for
brevity, one finds that

〈A,B〉 =
∑
i,j

(ξir − ξiq)(ηp,j − ηq,j)
(
−1

Πq
δji −

α

Π2
q

ηq,iξ
j
q

)
.

(C10)
Evaluating the sum, one finds that this expression is pro-
portional to

Πq(ξr− ξq) · (ηp−ηq) +αξq · (ηp−ηq)ηq · (ξr− ξq) (C11)

Finally, the Pythagorean relationship in Eq. (36) holds

⇐⇒ (1 + γξq · ηp)(1 + γξr · ηq) =

(1 + γξr · ηp)(1 + γξq · ηq) (C12)
⇐⇒ (ξr − ξq) · (ηp − ηq) =

γ(ξq · ηp)(ξr · ηq)− γ(ξr · ηp)(ξq · ηq) (C13)

as it can be seen directly from its logarithmic depen-
dence and the Fenchel-Lengendre relation for the scalar
potentials on point q. Since the primal geodesic and its
dual are orthogonal at q, this (C11) must vanish resulting
in (C13), hence the Pythagorean relation holds.
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