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Abstract. The introduction of the generative adversarial imitation learn-
ing (GAIL) algorithm has spurred the development of scalable imitation
learning approaches using deep neural networks. The GAIL objective
can be thought of as 1) matching the expert policy’s state distribution;
2) penalising the learned policy’s state distribution; and 3) maximising
entropy. While theoretically motivated, in practice GAIL can be difficult
to apply, not least due to the instabilities of adversarial training. In this
paper, we take a pragmatic look at GAIL and related imitation learning
algorithms. We implement and automatically tune a range of algorithms
in a unified experimental setup, presenting a fair evaluation between the
competing methods. From our results, our primary recommendation is
to consider non-adversarial methods. Furthermore, we discuss the com-
mon components of imitation learning objectives, and present promising
avenues for future research.

Keywords: imitation learning · inverse reinforcement learning.

1 Introduction

In the field of robotics, learning from demonstration [2] is widely used to con-
struct control policies. In the field of machine learning, this is commonly known
as imitation learning (IL) [21]. Given expert3 trajectories, one can formulate
rich supervisory signals, which may even be preferred over the trial-and-error
approach of reinforcement learning (RL).

In the same way that deep learning (DL) has enabled scaling RL to high-
dimensional state and action spaces, it has also lead to a host of new IL methods.
In robotics, this may simply be using DL with behavioural cloning (BC) [35], one
of the simplest IL methods, to train a vision-and-proprioception-guided policy
[47]. As another example, one may use DL to recover an expert’s cost function,
and then use optimal control on this estimate [10]. These works rely on rela-
tively simple IL algorithms and robotics domain knowledge; in contrast, more
“sophisticated” approaches have been developed on simulated environments. We
posit that properly benchmarking such algorithms will represent a step forwards
towards being able to use them in more realistic domains.

3 Although IL can include suboptimal and/or partially observed data, in this paper
we focus on the most basic/common setting.
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A seminal work is generative adversarial imitation learning (GAIL) [20],
which builds upon the real vs. fake discrimination task for generative models
introduced by Goodfellow et al. [15]. Considering the training process, GAIL
involves training a policy to 1) match the expert’s state-action distribution; 2)
avoid state-actions from previous iterations of the learned policy; and 3) max-
imise entropy. These principles underlie most IL algorithms, which then differ in
how these are achieved.

However, while many DL-based IL algorithms have been introduced in re-
cent years, it is not common knowledge which might be the best fit for a given
problem. Results in deep RL have been brought into question [19], and it is often
the case that implementation details matter more than the algorithmic contribu-
tions of novel algorithms [1]. It is now the time for this to be investigated in the
context of IL. Recent, complementary work has investigated the use of proxies
for the real reward function in tuning IL algorithms [22], as well as a large-scale
investigation of hyperparameters for adversarial IL algorithms [33].

In this work, similarly to Orsini et al. [33], we investigate a range of adversar-
ial IL methods [20,12,26,14] on standard simulated robot environments [5]. How-
ever, while they focus on adversarial learning, we also examine other DL-based
methods [25,45,4], unifying them from the perspective of the three previously-
mentioned IL objectives (Subsection 2.7). Comparing the algorithms using a
unified codebase and an equal hyperparameter optimisation budget (Section 3),
we find that 1) BC remains competitive in low-dimensional state spaces; 2) gen-
erative moment matching imitation learning (GMMIL) [25] performs the best
out of all newer methods tested; and 3) all other algorithms perform similarly
when averaged over all tested environments. Given these results, we advocate
trialling non-adversarial IL methods, and present time and memory complexity
tradeoffs (Appendix A.3) for further consideration. Our code is made available4

to facilitate further research.

2 Background

2.1 Imitation Learning

The goal of IL is to train a parameterised policy, π̂(a|s; θ), mapping states s to
a distribution over actions a, to mimic an expert policy π∗(a|s), given either
the expert policy itself, or more commonly, a fixed dataset ξ∗ = {τ1, . . . , τN},
of trajectories τ = {s0, a0, s1, a1, . . . sT , aT } generated by the expert, where N
denotes the number of expert trajectories provided.

A common assumption within IL is that both the expert and our agent in-
habit a Markov decision process (MDP), defined by the tuple (S,A, T ,R, p0, γ):
S and A are the state and action spaces, T : S ×A → S is the state transition
dynamics, R : S ×A → R is the reward function, p0(s) is the initial state distri-
bution, and γ ∈ [0, 1] is the discount factor (used to weight immediate vs. future
rewards). The expert policy is optimal in the sense that π∗ = argmaxπ∈Π Eτ∼π[R0],

4 https://github.com/Kaixhin/imitation-learning.

https://github.com/Kaixhin/imitation-learning
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where the return at timestep t, Rt, is the discounted sum of rewards following a
policy from state st until the end of the episode at timestep T :Rt =

∑T−t
k=0 γ

krt+k+1.
While in RL [43] the goal is to interact with the environment in order to find
π∗, in IL we do not have access to R, and must instead find π∗ assuming that
we have access to optimal trajectories. All following methods, unless specified
otherwise, can be implemented using neural networks, providing flexible function
approximation that can scale to large state and/or action spaces.

2.2 Reduction to Supervised Learning

The simplest method, BC [35], reduces IL to a supervised learning problem.
Using a∗ to denote the expert’s actions, BC can be formulated as minimising
the 1-step deviation from the expert trajectories:

argmin
θ

Es,a∗∼ξ∗ [L(a∗, π̂(a|s; θ))], (1)

where L can be, as in maximum likelihood estimation, the negative log likelihood.
BC is very simple, and benefits from a fixed objective over a stationary data

distribution. However, as π̂ is only trained on s ∼ ξ∗, it can fail catastrophically
when it diverges from the states covered by π∗.

2.3 Inverse Reinforcement Learning

Inverse reinforcement learning (IRL) overcomes this by using RL to train π̂ to
mimic π∗. The procedure consists of iterating between the following two steps:

1. Construct a reward function R̂(s, a;φ) using ξ∗, and optionally τ ∼ π̂
2. Train π̂ using RL

RL is more complicated than the typical supervised learning setting. In par-
ticular, as the policy evolves, the data distribution changes. In the case of IRL,
R̂ changing over time can introduce further non-stationarity.

The basic objective of IRL can be stated as:

argmax
θ

Eτ∼π̂(s,a;θ)[R̂0] such that π∗ = argmax
π∈Π

Eτ∼π[R̂0], (2)

where R̂ is the return with respect to the learned reward function R̂. However,
this is underspecified [32]; e.g., any policy is trivially optimal for R̂ = 0. IRL
algorithms therefore incorporate one or several of the following three properties.

Firstly, one can match the state-action distribution under π∗, known as the

expert’s occupancy measure ρπ∗ = Eτ∼π∗
[∑T

t=0 γ
t
1s,a

]
[44,20], or, alternatively,

feature expectations [32]. This is achieved using the learned reward function,
and is hence dependent on the expressivity of R̂. In particular, the constant
function is underspecified and allows an infinite set of solutions. Secondly, one
can “penalise” following trajectories taken by (previous iterations of) ρπ̂ [32].
This allows R̂ to focus on relevant parts of the state-action space, but implicitly
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assumes that current/past versions of π̂ are suboptimal. Thirdly, one can use the
maximum entropy principle [23] to find a unique best solution out of the set of
solutions that match the expert’s occupancy measure/feature expectations [48].
Using the Lagrangian multiplier λ, and denoting H as the entropy, this results
in the following modified RL objective: argmaxθ Eτ∼π(s,a;θ)[R0] + λH[π(s, a; θ)].
Entropy regularisation is a classic technique in RL [46].

2.4 Adversarial Imitation Learning

The theory behind GAIL [20] is that of maximum entropy occupancy measure
matching. In generative adversarial network training [15], the “generator” is
trained to output samples that fool the “discriminator” D : S × A → (0, 1),
whilst the discriminator is trained to discriminate between samples from the
generator and the data distribution. This is a minimax game, in which the equi-
librium solution corresponds to minimising the Jensen-Shannon divergence be-
tween the generated and real distributions. In GAIL, π̂ plays the role of the
generator, and the discriminator is trained on state-action pairs from π̂ and
π∗: minG maxD Es,a∼π∗ [log(D(s, a))] + Es,a∼π̂[log(1−D(s, a))]. Under this for-
mulation, higher values indicate how “expert” D believes its input to be.

There are several options for constructing R̂ from D. Prominent examples
include those introduced in GAIL, adversarial inverse reinforcement learning
(AIRL) [12] (corresponding to the reverse Kullback-Leibler (KL) divergence
DKL(ρπ̂‖ρπ∗)), and forward KL AIRL (FAIRL) [14] (Table 1). As discussed
by Kostrikov et al. [26] and empirically investigated by Jena et al. [24], there
is a potential reward bias in these functions. They note that positive R̂, i.e.,
− log(1 − D(s, a)), biases agents towards survival, whereas negative R̂, i.e.,
log(D(s, a)) biases agents towards early termination. This bias means that even
constant reward functions can outperform either of these depending on the type
of the environment. In line with both their theoretical and empirical findings,
we hence use log(D(s, a)) − log(1 − D(s, a)) for our implementations of GAIL
and AIRL, while keeping FAIRL’s original R̂. We recommend the original works
for discussions on the properties of various reward functions [26,24,14].

Table 1: Adversarial imitation reward functions [14].

R̂ Positive (bounded) Negative (bounded)

GAIL logD(s, a) 7(-) 3(7)
AIRL h(s, a) = log(D(s, a))− log(1−D(s, a)) 3(7) 3(7)

FAIRL −h(s, a) · eh(s,a) 3(3) 3(7)

While GAIL implicitly returns a reward function, if trained to optimality then
D will return 0.5 for state-action pairs from both π̂ and π∗. Finn et al. [9] propose

changing the form of the D to exp(f(τ))
exp(f(τ))+π̂(τ) , allowing the optimal reward func-

tion to be recovered as f(+const). AIRL makes a practical algorithm from this by
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changing D to operate over state-action pairs, as in GAIL, and also further dis-
entangling the recovered reward function f as the sum of a reward approximator
g(s, a) and a reward shaping [31] term h(s): f(s, a, s′) = g(s, a) + γh(s′)− h(s),
where s′ is the successor state. We use this form of D and the original AIRL
reward function in our implementations.

2.5 Distance-based Imitation Learning

One of the disadvantages of adversarial training is the requirement for the dis-
criminator, which is also undergoing training as part of the minimax game,
to provide a useful training signal to the generator. One solution is to re-
place the discriminator with a nonparametric model [28,7]. Specifically, distribu-
tion matching can be achieved by minimising the maximum mean discrepancy
(MMD) [16] defined over a reproducing kernel Hilbert space (RKHS). Given
distributions, P and Q, and a mapping ψ : X → H from features X ∈ X to an
RKHSH, the MMD is the distance between the mean embeddings of the features:
MMD(P,Q) = ‖Ex∼P [ψ(x)]− Ey∼Q[ψ(y)]‖H. Using a kernel function5 k, one
can calculate MMD2(P,Q) = Ex,x′∼P k(x, x′) + Ey,y′∼Qk(y, y′)− 2Ex∼P,y∼Qk(x, y).

GMMIL [25] extends this principle to the IL setting. Dropping terms that
are constant with respect to π̂, GMMIL has the reward function:

R̂ =
1

M

M∑
i=1

k((s, a), (s∗i , a
∗
i ))−

1

N

N∑
j=1

k((s, a), (sj , aj)), (3)

where M and N are the number of state-action pairs from π∗ and π̂, respectively.
Two disadvantages of GMMIL are that 1) the “discriminator” cannot learn

relevant features, and 2) it has O(MN) complexity. Random expert distillation
(RED) [45] solves these issues by building upon random network distillation
(RND) [6]. In RND, a predictor network fφ : S ×A → RK is trained to minimise
the mean squared error (MSE) against a fixed, randomly initialised network
fφ̄ : S ×A → RK . Empirically, the MSE indicates how out-of-distribution new
data is. RED utilises a Gaussian function over the MSE, resulting in

R̂ = exp(−σ‖fφ(s, a)− fφ̄(s, a)‖22), (4)

where σ is a bandwidth hyperparameter (Appendix A.1).

2.6 Uncertainty-based Imitation Learning

Similarly to RED, disagreement-regularised IL (DRIL) [4] constructs a reward
function based on the disagreement between models trained on the expert data.
However, unlike the other methods which operate over the joint distribution of
state-action pairs, DRIL builds simply upon BC, operating over p(a|s). DRIL
first trains an ensemble of E different policies using the BC objective (Eqn. 1)

5 Kernels are similarity functions. A discussion is given in Appendix A.1.



6 Kai Arulkumaran and Dan Ogawa Lillrank

on the expert data, and then uses a function of the (negative of the) variance
between the policies to estimate a reward for the agent:

R̂ = −Cclip
U (s, a) =

{
+1 if Varπ∈ΠE

[π(a|s)] ≤ q
−1 otherwise,

(5)

where the q is a top quantile of the uncertainty cost computed over the expert
dataset. Deep ensembles are known to produce reasonable uncertainty estimates
(i.e., variance in outputs) on out-of-distribution data [27]. In our implementa-
tion6, we approximate the ensemble using sampling with dropout [42], as this
was shown to perform comparatively to using independent models [4].

2.7 Comparison

Tab. 2 gives an overview of some important properties of IL algorithms. We
believe this framework helps frame promising avenues for future research in IL
algorithms. For example, could RED be improved by updating R̂, in the same
way as adversarial IL algorithms? Conversely, would restricting the updates of R̂
improve adversarial IL algorithms? In this paper, we test one hypothesis, which
is the importance of “penalising” ρπ̂. Concretely, the second term of GMMIL’s
reward function (Eqn. 3) penalises self-similarity in ρπ̂. In our experiments (Sec-
tion 3), we see that whether this term is helpful or not is environment-dependent;
this suggests that automatically tuning coefficients of the two terms in GMMIL’s
reward function could result in an improved IL algorithm.

Table 2: Properties of IL algorithms. We do not include entropy maximisation,
as this is essentially a property of the RL algorithm used. ∗ These algorithms
operate over p(a|s), rather than p(s, a). † While GMMIL “penalises” ρπ̂, we
experiment with making this term optional.

Match ρπ∗ Penalise ρπ̂ Fixed R̂
BC 3∗ 7 -
GAIL/AIRL/FAIRL 3 3 7

GMMIL 3 3† 3

RED 3 7 3

DRIL 3∗ 7 3

6 The original DRIL implementation interleaves IRL with BC training; however, we
only use the reward function for a clear comparison against other algorithms.
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3 Experiments

3.1 Setup

We base our experiments on the PyBullet version7 of the datasets for deep data-
driven RL (D4RL) [11]. Although this benchmark was developed for offline RL,
it can be used for IL by ignoring rewards. The benchmark contains data for
4 standard simulated robotics environments: Ant, HalfCheetah, Hopper, and
Walker2D. We use the highest performance data8, subsampled9 by 20 [20].

A common choice of on-policy RL algorithm to use within these methods
[20,12,25,45] is trust region policy optimisation [39]; we opt instead to use prox-
imal policy optimisation (PPO) [40], which also approximately enforces a trust
region on policy updates, but is simpler and achieves comparable results. Theo-
retically, one can use more sample-efficient off-policy RL algorithms with impor-
tance sampling (IS), although empirically this still works well without IS [26];
we leave investigating this for future work. Kostrikov et al. [26] also introduce
two further ways to improve the performance of deep IL algorithms. Firstly, they
add a terminal state indicator to allow learning non-zero rewards for absorbing
states; empirically they found that this is important for sparse reward/goal-
based tasks like target reaching, so we leave this addition out given our set
of environments. Secondly, they add a gradient penalty on the discriminator
[17] to prevent overfitting. In our experiments we use the R1 gradient penalty,
which is motivated by improving the convergence of adversarial training [30]:
R1(φ) = Eξ∗ [‖∇D(s, a;φ)‖22]. A way to alleviate data shift in online learning is
to use experience replay [29], so we add this as an option when relevant.10

We re-iterate that a primary aim of our work is to compare the approximate
reward functions of the different proposed algorithms, under a unified exper-
imental setup, given an equal11 hyperparameter tuning budget. In summary,
important changes against the original algorithms are: 1) we use the AIRL re-
ward function with GAIL; 2) we use the R1 gradient penalty with all adversarial
methods; 3) we add an option to disable the self-similarity term in GMMIL;
and 4) we do not interleave BC training with DRIL. Hyperparameters and their
optimisation are detailed in Tab. A1; optimised hyperparameters are shown in
Fig. A1.

7 https://github.com/takuseno/d4rl-pybullet is based on the free and open-
source PyBullet physics simulator. The dataset and any results are not directly
comparable to the MuJoCo version.

8 In D4RL-PyBullet these are the “medium” datasets, collected by a soft-actor critic
agent [18] during training, consisting of 106 transitions.

9 Kostrikov et al. [26] note that BC is competitive with GAIL when provided large
datasets. Subsampling limits dataset size, but we agree with Hussenot et al. [22] that
there is little justification from a practical perspective.

10 In our implementation, D is trained on the entire replay’s worth of data, hence the
number of training updates is proportional to the size of the replay.

11 In terms of function evaluations, not time.

https://github.com/takuseno/d4rl-pybullet
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3.2 Results

Fig. 1 and Tab. 3 shows the performance of the different algorithms, evaluated
(but not trained) against the ground truth reward function. In terms of per-
formance, GMMIL performs best overall, although BC is competitive on the
lower-dimensional environments. The relative ranking of the rest of the algo-
rithms changes over the different environments, and it is unclear that any are
particularly better than the others.

Fig. 1: PyBullet evaluation results. Mean ± standard error, over 5 random seeds.
Each evaluation consists of 50 episodes with a deterministic policy.

Table 3: PyBullet final evaluation results. Mean ± standard deviation, over 5
random seeds. Evaluation consists of 50 episodes with a deterministic policy.

Ant HalfCheetah Hopper Walker2D

PPO 936.01± 551.29 1299.46± 300.27 1114.07± 331.77 535.84± 246.42

Dataset 570.80± 104.82 787.35± 104.31 1078.36± 325.52 1106.68± 417.79

BC 629.17± 19.13 509.31± 185.67 1005.64± 12.18 220.00± 23.69
GAIL 420.82± 182.67 −863.37± 638.37 12.99± 1.30 280.53± 211.39
AIRL 270.02± 59.43 24.08± 511.16 444.78± 204.99 322.07± 210.98
FAIRL 498.85± 95.15 −1411.01± 150.52 497.46± 322.36 519.13± 99.80
GMMIL 591.37± 79.67 225.82± 545.62 1192.84± 68.12 645.05± 66.60
RED 402.95± 163.81 −1373.72± 89.30 641.32± 158.37 548.43± 124.35
DRIL 413.50± 109.34 −1416.37± 48.11 761.93± 96.10 590.94± 87.64

However, GMMIL has the worst time (Tab. A2) and memory complexity
(Tab. A3); in particular, with commonly used settings GMMIL uses over 10GB of
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RAM, an order of magnitude more than all other methods. Apart from GMMIL,
non-adversarial algorithms have the best time complexity.

With reference to our hypothesis in Subsection 2.7, GMMIL’s self-similarity
term was disabled in half of the environments at the end of hyperparameter
optimisation. This means that this term may be beneficial, detrimental, or have
little effect depending on the environment. Whether the term is removed or not
is not correlated with the optimal entropy regularisation cost, so it is not the
case that the latter needs to compensate for the loss of the self-similiarity term.

We note that PPO’s performance was significantly lower than the dataset’s,
and many IL algorithms reached this performance. This underscores the need
for using strong RL algorithms within IRL.

4 Discussion

In this paper, we took a pragmatic look at deep IL methods, finding common
principles between them (Subsection 2.7), and performing as fair a comparison
as we could, using the algorithms as described in the original works. In our
experimental setup, we found that the only algorithm that consistently worked
well was GMMIL, and it was unclear if any of the others would be a reasonable
second choice. On the other hand, GMMIL may require a relatively large amount
of memory, making it unfavourable depending on hardware availability. Given
the performance and complexity of adversarial IL algorithms, it is therefore
worth considering alternatives first.

As highlighted by the results on Walker2D, using more performant RL algo-
rithms is an important avenue for future work. Another valuable direction is to
investigate the importance of the source of the dataset. The contemporaneous
work of Orsini et al. [33] discusses how human expert data can largely differ from
“artificial” expert data, to the extent that the form of the optimum learned re-
ward function should be changed. As they focus on adversarial methods, it would
be instructive to see how the other methods we examined would perform on such
data. Our code, developed for benchmarking, should facilitate such research.
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A Appendix

A.1 Kernels

Kernel functions k : X × X → R are commonly used in nonparametric models,
where the output of the model is a function of the similarity between query
points and (most commonly) a subset of the training set. Kernels can also be
used represent probability distributions as an element of RKHS [41], enabling
the comparison and manipulation of probability distributions. Some advantages
of this approach to modelling distributions include not having to make paramet-
ric assumptions or perform intermediate density estimation. For characteristic
kernels [13], where the mean embedding is injective, MMD(P,Q) = 0 if and only
if P and Q are the same distribution.

The original implementation of GMMIL uses the Gaussian kernel, which is
one of the most widely-used characteristic kernels. Following prior work on gen-
erative moment matching [28], GMMIL uses two kernels. The kernel bandwidth
parameters, σ1 and σ2, are set using the median heuristic [38,37]. σ1 is set as
“the median of the pairwise squared-`2 distances among the data points from the
expert policy and the initial policy“, and σ2 is set as the median of the pairwise
distances between the expert data points [25].

For RED, Wang et al. [45] “choose σ such that r(s, a) from expert demon-
strations are mostly close to 1.” However it is unclear how to achieve this for a
given dataset, as analytically the only choice is always σ = 0, in which case the
reward is a constant 1 for all state-action pairs. Therefore, for our experiments
we opted instead to use the median heuristic, calculated over the expert dataset.
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A.2 Hyperparameters

Table A1: Hyperparameters for PyBullet, with PPO hyperparameters based pri-
marily on prior works [1,8,36]. Brackets indicate hyperparameter search space,
which we optimise over using Bayesian optimisation [3]; each algorithm is given a
hyperparameter budget of 20 evaluations, with the average cumulative return of
the last 5 evaluations used as the optimisation objective. ∗ is specific to BC, RED
and DRIL. + is specific to GAIL, AIRL, FAIRL, RED and DRIL. † is specific to
GAIL, AIRL and FAIRL. All experiments are run using a single (non-batched)
environment instance.

Hyperparameter Value

Environment steps 2× 106

Dataset subsampling 20

Num. hidden layers 2
Hidden layer size 256
Nonlinearity Tanh
Weight initialisation Orthogonal
Policy final layer weight scale 0.01
Policy distribution Gaussian
Policy standard deviation State-independent
Policy standard deviation initialisation e−2

Discount γ 0.99
GAE trace decay λ 0.9
GAE normalisation Yes

Agent learning rate [3× 10−5, 3× 10−4]
Rollout buffer length = Minibatch size [1024, 2048, 4096]
Max gradient `2-norm 0.5

PPO clip ratio ε 0.25
PPO iterations [5, 10, 20]
Value loss coefficient c1 0.5
Entropy loss coefficient c2 [0, 10−3, 10−2]

Imitation pretraining epochs∗ [5, 15, 25]
Imitation learning rate+ [3× 10−5, 3× 10−4]

Adversarial training epochs† [5, 15, 25]

Imitation replay size† [1, 3, 5]

R1 gradient penalty† [0.1, 0.5, 1]
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Fig. A1: Best hyperparameters for each algorithm, across every environment.
“Imitation epochs” denotes pretraining for BC, RED and DRIL, and training
for GAIL, AIRL and FAIRL. Although some algorithm hyperparameters are
the same across all environments, in general there does not appear to be any
noticeable trends.

A.3 Time/Memory Complexity

Table A2: Time taken (s) for pretraining and training each algorithm on the
Hopper environment for 106 steps; mean ± standard deviation, over 5 runs. Stan-
dardised hyperparameters for all algorithms, based on common values selected
during hyperparameter optimisation, include: rollout buffer length of 2048; PPO
iterations of 10; imitation pretraining epochs of 25; adversarial training epochs
of 5; imitation replay size of 3. All experiments were run on an Ubuntu 18.04
machine with an Intel i7-9700K CPU @ 3.60GHz and 64 GB RAM @ 2666 MHz,
using PyTorch 1.7.1 [34].

Pretraining Training

BC 18± 1 -
GAIL - 2, 653± 9
AIRL - 2, 819± 16
FAIRL - 2, 618± 6
GMMIL - 3, 524± 8
RED 21± 2 2, 021± 5
DRIL 30± 2 1, 982± 5
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Table A3: Max memory taken (MB) for training each algorithm on the Hopper
environment; mean ± standard deviation, over 5 runs. Standardised hyperpa-
rameters for all algorithms include: rollout buffer length of 2048; imitation replay
size of 3. All experiments were run on an Ubuntu 18.04 machine using PyTorch
1.7.1 [34].

Training

BC 435± 2
GAIL 569± 33
AIRL 623± 12
FAIRL 580± 14
GMMIL 14, 539± 10
RED 1041± 16
DRIL 604± 3
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