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Abstract: Most Human–Computer Interfaces are built on the paradigm of manipulating abstract
representations. This can be limiting when computers are used in artistic performance or as mediators
of social connection, where we rely on qualities of embodied thinking: intuition, context, resonance,
ambiguity and fluidity. We explore an alternative approach to designing interaction that we call
the emergent interface: interaction leveraging unsupervised machine learning to replace designed
abstractions with contextually derived emergent representations. The approach offers opportunities
to create interfaces bespoke to a single individual, to continually evolve and adapt the interface
in line with that individual’s needs and affordances, and to bridge more deeply with the complex
and imprecise interaction that defines much of our non-digital communication. We explore this
approach through artistic research rooted in music, dance and AI with the partially emergent system
Sonified Body. The system maps the moving body into sound using an emergent representation of
the body derived from a corpus of improvised movement from the first author. We explore this
system in a residency with three dancers. We reflect on the broader implications and challenges of
this alternative way of thinking about interaction, and how far it may help users avoid being limited
by the assumptions of a system’s designer.

Keywords: Human–Computer Interaction (HCI); Artificial Intelligence (AI); unsupervised machine
learning; emergent representation; non-representational interaction; dance; music; creative coding;
New Interfaces for Musical Expression (NIME)

1. Introduction

Building an interactive interface involves creating digital representations of the actions
of a human, and defining the influence these have over the effects of the system. These
representations are typically in the form of designed abstractions: bundles of qualities
chosen by the system’s designer. These choices are inevitably infused with assumptions
made by the designer about who will use the system and how, which in turn can limit
the person who eventually interacts with it. This paper outlines artistic research into an
alternative approach which leverages unsupervised machine learning to replace throughout
the interaction loop designed abstract representations with contextually derived emergent
representations. This approach allows us to create expressive gestural interactions without
explicitly declaring input or output. This may help free the user from the ontological
assumptions of the system designer, although, as we explore, it may introduce other biases.

Gillies [1] uses the term movement interaction as any technique for Human–Computer
Interaction (HCI) that uses the body in a different and fuller way than a mainstream
interface. Movement interaction has the potential to leverage our existing embodied skills,
such as sensorimotor skills and environmental awareness. This is in contrast to graphical
user interfaces (GUI), which leverage our skill at manipulating visual representations.
Designing for embodied interaction is challenging, because the embodied knowledge it
relies upon is implicit. We may know a gesture through doing and experiencing but this
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knowledge is non-representational [2]. Designers cannot represent what they cannot access
consciously so end up falling back on adapting graphical metaphors, such as buttons in
3D space, or falling back on easily calculated features of movement such as the position
and velocity of a body part. This leads to gestural interaction where a symbolic gesture is
arbitrarily mapped to a symbolic action [1]. It does not gain from the detailed awareness
of our sensorimotor skills, but it loses the feedback and ease of discovery that a graphical
interface brings [3].

While here we consider movement interaction in a creative context, our approach may
hold value in types of interaction beyond movement interaction that leverages complex
multidimensional input signals, such as Brain–Computer Interfaces [4].

1.1. The Duality of Embodied and Formalist Cognition

The thesis of embodiment posits that many features of cognition are deeply depen-
dent upon characteristics of the physical body [5]. Traditional, non-embodied models
of cognition assume mental representations to be symbolic, quasi-linguistic abstractions.
Wilson and Foglia [5] write, ‘on the traditional view, not only are the internal represen-
tations employed in language, concept formation, and memory essentially distinct from
those processed by the sensorimotor system, but their meaning is divorced from bodily
experience.’ In contrast, the embodied perspective sees cognition as relying on qualities of
representations more directly connected to perception and action [5]. Embodied knowl-
edge is then defined as knowledge in which the body knows how to act, such as riding
a bicycle, but which we may not be able to articulate [6]. The term embodied is often used
more broadly to describe any knowledge that is grounded in and emerges from everyday
experience, which may go beyond the physical body to include social interaction [7]. It
rests on a phenomenological approach that Dourish describes as preontological:

Perception begins with what is experienced, rather than beginning with what is expected;
the model is to ‘see and understand’ rather than ‘understand and see’ [7] (p. 98).

Storkerson describes ‘naturalistic cognition’ as an umbrella term to include embodied,
unconscious, implicit, experiential and non-conscious thinking. In contrast, formalist
cognition is rule-based, and deals with abstract entities, where abstract does not necessarily
mean ‘divorced from reality’, but considered independently from its context [8].

While useful, the term ‘naturalistic’ may be conflated with the philosophical position
of naturalism. Following Dourish, I will adopt the term embodied cognition in its broader
sense to also encompass the unconscious, implicit, experiential and non-conscious.

In the context of HCI, Dourish describes embodied interaction as ‘the creation, manip-
ulation, and sharing of meaning through engaged interaction with artefacts’ [7] (p. 125).
For Dourish, meaning emerges through communities of practice and their shared histories,
identity and practical activities, but an interactive system embeds the ontological assump-
tions of its designer, i.e., what is captured, how it is individuated and what qualities of it are
relevant. By assuming these assumptions to be shared between designer and user, systems
become ‘brittle’ to being adapted and appropriated to new practices [7]. According to
Dourish, and others such as Rajko [9], embodied interaction is more a stance on interaction
design rather than a form of it. It emphasises that meaning arises through action, and
actions are situated in communities of practice.

Embodied thinking is critical to perception. However, while formalist thinking relies
upon embodied in order to ‘ground’ its abstract symbols to reality, we should avoid
underestimating the role of embodied thinking in human thought as merely a support
mechanism to abstract reasoning [10]. For example, Stanovich and West’s dual process
theory [11] models cognition through the interplay of two systems. System 1 is heuristic:
fast, opaque and involuntary, while system 2 is slow, deliberative, reflective and more
commonly associated with the subjective experience of agency. This framing underlies
theories such as ‘mindless computing’ where an individual’s behaviour is shaped by digital
interaction in ways they are not conscious of [12]. The term aptly describes the endless
scroll through social media feeds where our behaviour seems to be operating beyond
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our volition. However, few would describe the heightened state of focused, embodied
consciousness of a dancer or athlete in line with the mindlessness of being hypnotised by
scrollbait. There is presence, awareness, intelligence, focus and a sense of agency without
the need for formalism or deliberation.

Both formalist and embodied cognition are fundamental to human cognition, but the
former has tended to dominate within HCI. This perhaps reflects the layers of abstraction
and formalism that underlie the development of software. For our discussion here, the
key distinction of this duality is between abstract and situated mental representations
which are native to formalist and embodied modes of thinking respectively. My use
of the term abstract follows that of Storkerson [8] and McGilchrist [10] to emphasise a
representation that may be reasoned about independently of its context. I use situated to
describe knowledge whose meaning is unavoidably entangled with a context, which could
include perceptual or sensorimotor capabilities. (Gillies and Kleinsmith [2] use the term
‘non-representational’ to describe knowledge that cannot be expressed symbolically, but I
avoid this term as I feel it relies on a specific interpretation of ‘representation’ which would
be confusing in the later discussion on emergent representations.)

1.2. The Challenge of Resituating Abstract Representations

A situated label becomes an abstraction when it is detached from the context it
emerged from and is instead treated as a symbol that can be dropped into a new context.
This enables rule-based reasoning and computation. However, when the abstraction is
imposed back onto the world, we risk what Hayles describes as the ‘Platonic backhand’:
deviations from the abstraction are regarded as noise or distortion masking this idealised
form rather than as the ground truth the abstraction approximates [13]. For example, Rajko
offers a critique from an embodied stance of Google Glass, a pair of internet-connected
‘smart’ glasses with a mounted camera. She quotes one of its designers reasoning that a
camera on a pair of glasses was no different than the many security cameras surrounding
us [9]. This reasoning considers the camera in the abstract. The camera becomes any
camera, rather than the camera that I, of all people, have chosen to attach to my face to
record specifically you while we hang out.

Friction between formalist and embodied thinking can become particularly apparent
when we introduce computers into embodied activities. Much of my own artistic practice
has involved collaborating as a coder with dancers in the studio. For the dancer, an idea
may be immediately materialised into movement. Indeed, in many cases choreographic
material is not so much invented as it is encountered through exploratory improvisation.
This is often captured in the term instant composition, of which dancer Neuhaus writes:

The performer’s body and mind need to be specifically tuned for perception, imagination,
intuition, inhibition and action. At the same time one must be able to constantly read
and respond to one’s body, the other dancers and the composition itself, including all its
different layers. These seemingly elusive qualities are actually skills that can be learned
through specific training and practice. [14]

Her description reminds us that embodied thinking can be fully immersive and require
the complete focus of the mind, much like Csikszentmihalyi’s concept of ‘flow’ [15].

In a dance/tech collaboration, this process can be frustrated by the slow pace of the
coder, who must imagine, plan and execute, doing their best to work in short iterations.
Of course, while slower to create, once it is written code becomes endlessly reusable (bar-
ring technical failure). However, this fixed nature means that any abstract representations
of movement that have been conceived in the coding process, such as gestures and trig-
ger zones, are now fixed constraints to work with. Yet, movement of the body remains
ephemeral and in flux. For the dancer to ‘fix’ the material they encounter, should they so
wish, additional work and skill is required. Even when working with non-tactile sensors
such as cameras, coded abstractions can constrain the body’s physical movement.

For example, suppose we encounter a moment where one dancer reaches a hand out
towards a person across the room. We want to return to this so we give it a name, ‘the reach’.
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Our understanding of what we mean by ‘the reach’ is situated: the representation it triggers
is embedded in the situation we all experienced when that material was encountered. In
this way, the name is a label to an implicit representation we share that has emerged from
the activity. If a new person joins the performance, we cannot expect them to understand
what we mean by ‘the reach’. To share this, we would need to recreate the situation for
them. What the label represents has emerged from a shared context. Gillies describes this
as an emergent representation [1].

Now, suppose we want to represent this moment digitally, say to trigger a sound.
The coder might abstract ‘the reach’ into ‘a hand pointing within θ◦ of direction v’. If that
is too general, then we might try a more complex abstraction, such as ‘a hand pointing
within θ◦ of the line connecting its body to any other body’. The representation of the
situation that we receive from the sensor defines which abstractions are simple and which
are complex to implement, what we might call its inductive bias (a term borrowed from
Machine Learning). To say it is ‘divorced from reality’ would be to suggest it was ever
married to it, which it was not. Any relationship between the digital abstraction and the
situated thing it represents needs to be invented from scratch. Therefore, it does not easily
factor into the actions of a performer responding instantaneously to their perception of
the situation. Working with this fixed digital abstraction becomes a skill that needs to be
practised and internalised to factor into embodied thinking.

Rajko calls for HCI designers to practise embodiment first-hand ‘way of being’ to
increase their contextual sensitivity and ability to process complex dynamics intuitively [9].
However, this is not enough. The friction I describe above is not because the coder is insen-
sitive to the context, but because code is explicit while what we intend to capture is implicit.
A simple abstraction in code can become a complex constraint for the situated human due
to its inflexibility. However, a few simple words describing a situated movement can be
intractably complex to define explicitly in code.

1.3. Emergent Representations

Emergence, in the context of interactive art, is defined by Seevinck as ‘occurring when
a new form or concept appears that was not directly implied by the context from which
it arose’ [16] (p. 1). To design for emergence is to design for openness and ambiguity,
to create opportunity for forms to emerge that go beyond the designer’s vision. This
emphasis on allowing what emerges to go beyond the designer’s model is similar to
Dourish’s preontological model: understanding follows perception, rather than perception
following understanding.

Gillies articulates the challenge presented by the traditional approach to programming
interaction design through symbols and libraries of abstractions. Those designing for
embodied cognition need a first person perspective, to be doing and moving. However,
what they design does not easily translate to the symbolic realm of code [1].

He, and others [17,18], propose Interactive Machine Learning (IML) as a solution.
IML allows a creator to iteratively build up a set of examples of a gesture to train a
model to identify it, testing as they go to gain feedback. Tools such as Wekinator [19] and
MIMIC [18] have been created to support this process. The iterative process allows allows
a shared representation of the gesture to emerge between creator and system, without
the need for it to be made explicit. In this way, IML helps us escape the inductive bias
of the sensor’s representation. We can define a vocabulary of input gestures by doing
rather than explaining mathematically. This saves our creator from attempting to find an
explicit representation of the gesture they understand implicitly. However, the output
from a supervised model remains an abstract representation: either a symbolic event from
recognising a specific gesture or else a predefined parameter. Instead of mapping symbolic
gestures to symbolic actions, we are mapping emergent gestures to symbolic actions or
parameters. While we no longer need to be explicit about why this is gesture X and that is
gesture Y, we are still left with a discrete vocabulary of symbolic actions we can perform:
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X and Y. IML helps us to bind our emergent gesture to an abstract representation in the
system, but it does not let us eliminate that representation.

For example, Google Maps on the iPhone lets you indicate an error in the map by
shaking your phone. One might argue that this is embodied design as there is a link
between the frustration of finding an error and the mildly violent act of shaking the phone.
However, the effect of the action is to open a prompt for feedback, a discrete event. How
you feel or think when you shake the phone does not factor into the effect, so the action
itself becomes an abstraction, a ‘shake’. We still act through the symbolic realm. Little
value is added from our embodied intellectual capabilities.

This example highlights the difficulty in introducing embodied interaction into a
traditional interactional activity. A file is a file, and it would not be useful for it to change
based on the expression on my face or the room I am currently sat in. An operating
system of abstractions demands abstract thinking which relies on precision and consistency.
Traditional interfaces have evolved to suit these needs well. The prevalence of abstractions
named after files, folders, desktops and menus belie the bureaucratic roots of everyday
operating systems and the formalist thinking it is designed for.

Now, consider a Digital Musical Instrument where we are processing a high-dimensional
input into a high dimensional output. This presents the mapping problem, familiar to re-
searchers in the field of New Instruments for Musical Expression: how do we define a function
that translates human action into the many possible parameters governing a synthesiser
in a way that best supports someone making music. A common approach outlined by
Hunt et al. [20] is to transform both gesture and synthesiser parameters into abstract pa-
rameters that we can make sense of, such as ‘energy’ and ‘wobble’ for gestural parameters
and ‘brightness’ and ‘pitch’ for synthesis parameters. We are then in a position to decide
rationally how these two sets of parameters ought to be related. This creates the three
layered mapping model shown in Figure 1.

Figure 1. Hunt et al.’s three-layer mapping model [20]. Raw sensor parameters are mapped to
‘meaningful’ gestural parameters, which are mapped to ‘abstract’ synthesis parameters, which are
mapped to raw synthesis parameters.

The intermediate state is defined by explicit abstractions much like the GUI of an
operating system. However, unlike an operating system, Hunt et al. found musicians prefer
more complex mappings:
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So, why should a complex and cross-coupled interface completely outperform a more
standard sliders-only one? Most users of the multiparametric interface describe a moment
when they ‘stopped thinking’ about the interface and began to ‘just play’ with it—almost
as if their body was doing it for them, and their conscious mind was somehow ‘not in
control’ [20].

The musician’s description aptly matches our description of embodied thinking.
A preference for complexity was notably not replicated by Brown et al. [21]. In inter-

views with musicians integrating the MiMu Glove controller into their stage performances,
they found a preference for consistency and simplicity. As observed above, what is simple
from an engineering perspective can be the opposite of what is simple from an embodied
perspective, which may go some way to explain this difference. Perhaps there was enough
going on in the full context of their stage performance that there is less risk of losing their
flow by overthinking things. There is also the issue of how the meaning of the interaction
comes be shared between musician and spectator [22] as, presumably, Hunt et al.’s mu-
sicians were playing in a lab context where a shared understanding of the interactional
mechanics had been established.

However, the findings nonetheless suggest that even an opportunity to adopt a
formalist approach to interaction is enough to undermine one’s capacity to act through an
embodied approach. To me, this sounds similar to the difficulty we might find it to walk
naturally once our attention has been drawn to our style of walking.

1.4. Interaction without Abstraction

To summarise, the abstract representations that characterise most interactive systems
may inhibit a person’s capability to interact through an embodied way of being. We may
accommodate this by internalising the representations but we are still constrained by
decisions made by the designer who is unlikely to be a part of the context of interaction.
Even when the system designer is fully situated in that context, the explicit nature of coding
makes it impossible to build systems with the same fluidity and sensitivity that embodied
action is capable of.

Is it possible to create meaningful interaction between human and computer without
designing abstract representations? In the next section, I propose that unsupervised
machine learning offers the opportunity to build the entire system of interaction through
emergent representations. To do so, we need to think of the system as an embodied agent
in its own right rather than as an agent of an embodied human. We adopt Dourish’s
preontological position to consider how the system can root its understanding in what it
can perceive rather than basing its perception in what it is primed to understand.

2. Materials and Methods
2.1. Machine Learning and Emergent Processes

To consider how to build an interactive system that avoids abstract representations, we
can consider how the distinction between formalist versus embodied thinking is somewhat
analogous to that between traditional programming and machine learning.

Traditional programming involves abstracting behaviour into procedures, classes,
databases and protocols. We look for generalisations that allow us to ‘factorise’ code into
reusable components, broadening the range of contexts in which our code might be used.
This is necessary to leverage the power of computation because the process of writing code
is so much slower than the process of executing it.

However, machine learning (ML) offers an alternative paradigm to defining computa-
tion. An ML model defines a broad space of possible functions, and we train it by searching
within that space for a function that best fits a dataset of example input/output pairs. It
is often applied to supervised tasks, such as classifying whether or not a photo contains
a dog. In such a task, we are training a model to map from the image of a dog situated
in the context of a photo to the abstract symbol ‘is a dog’. This symbolic representation
might then support a rule-based process such as presenting only photos containing dogs,
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in much the same way our formalist capacity to reason with abstractions depends on our
embodied capacity to identify those abstractions in the world. The features the model
identifies to decide if the photo contains a dog emerge from the dataset and are bespoke
to the classification problem at hand. We can reason about how it does this through the
structural abstractions of neural networks like modules, layers, weights and activation
functions, but how these combine to see a dog remains entangled in the full context of the
photos in which they appear. Classifiers help us ground abstract symbols in reality. The
input is a vague situation and the output is a specific abstraction.

To invert the abstracting process of the classifier would be to define a generative
process that takes an abstract symbol such as ‘dog’ and generates an image of a dog.
Inceptionism (also known as DeepDream) is such a model, where an image classifier is used
to ‘hallucinate’ the objects the objects it has been trained to recognise.

However, unsupervised generative models, such as a Variational Autoencoder (VAE) [23]
or a Generative Adversarial Network (GAN) [24], process data without any symbolic
labels. These models are trained to find a latent representation, a compressed but smooth
representation of samples in a dataset from which they can generate new samples that
subjectively appear to belong to that dataset. The space of possible latent representations is
called the latent space. Currently, GANs are associated among other things with generating
photorealistic faces of non-existent people. Sometimes, the model finds a representation
that successfully disentangles qualities corresponding to familiar abstractions, such as
whether a face is smiling. On discovering such a component, we might label it accordingly,
just like we labelled a certain movement of the body ‘the reach’ in the dance studio. We
have labelled an emergent quality that remains situated within its context in the latent
representation. However, if we now classify or generate images based solely on this quality,
then the quality is detached from its context (the other components), and it becomes an
abstraction. Emergent qualities may afford abstraction but within the latent representation
they remain entangled in a manner reminiscent of the situated nature of embodied thinking.

If traditional programming is analogous to formalist thinking and a classifier analo-
gous to our embodied capacity for symbol grounding, then we might consider the genera-
tive model to be analogous to embodied thinking, where input influences output without
intermediate steps where it is represented through predetermined abstraction. I describe
this as an emergent process.

This distinction between emergent and abstract representations defines four types of
computational process.

• Formal process: abstract→ abstract. Traditional programming paradigms. Represen-
tations are designed.

• Abstractive process: emergent→ abstract. Supervised machine learning (e.g., classifi-
cation and regression)

• Reifying process: abstract→ emergent. Parameterised generative machine learning
(e.g., DeepDream)

• Emergent process: emergent→ emergent. Unsupervised generative machine learning
(VAE and GAN), machine translation (seq2seq [25])

Note that this categorisation is concerned solely with how the representations used
within a computational process are derived. A formal process may produce outputs in
which we perceive emergence, such as Reynolds’s simulation of flocking ‘boids’ [26] or
Seevinck’s interactive fractal drawing artwork [27]. In such a case, emergence describes
a quality perceived by a human observer. In our case, emergence describes a quality
perceived by a computational process.

The key distinction of the emergent process is that input is mapped to output without
being constrained by the parameters of an abstract representation preconceived by the
system designer. This is somewhat paradoxical as digital data is itself an abstraction of the
state of the hardware that is storing it. However, our definition here is concerned with the
relationship between input and output rather than the underlying medium upon which
they are defined. For example, the pixels of a digital photo are an abstract representation
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of light falling on a camera lens. However, within the domain of processes that map
collections of photos to new collections of photos, the GAN satisfies the definition of an
emergent process because it does not introduce any predetermined abstract representations
in how it transforms input to output.

2.2. Emergent Interaction

With interaction, instead of simply considering the influence of input on output,
we consider the cyclic flow of influence back and forth between human and computer,
which may include multiple computational processes. If input is transformed to output
purely through emergent processes that avoid a reduction to abstract representation, then
we define that as an emergent interface. When the human is likewise responding to the
output through an embodied mode of thinking, then we can consider the whole activity as
emergent interaction. Emergent interaction is perhaps a theoretical ideal that cannot be fully
attained in a real world system. For example, any sensor is a kind of abstracting process
that removes context by design. However, it is an ideal that we can move towards, and it
provides a criterion against which we can consider interaction.

An emergent process may be encapsulated within a system where it is controlled by
abstract parameters through an interface. For example, even though the GAN itself is an
emergent process, our opportunity to interact with it is often reduced to a single trigger
that generates an image from a random point in the latent space of a pretrained model.
In such a case, the influence from human to GAN does not fit our criteria of an emergent
process, so we do not have an emergent interface.

Likewise, supervised machine learning offers a way to define gestural features as
emergent qualities of situated gesture. However, this transforms these qualities into
abstract parameters and symbols to form its output. We can train a gesture classifier to
detect a clap which then triggers output from a new point in a GAN’s latent space, but
while both input and output are transformed through emergent processes, there remains
the discrete trigger as a bottleneck of abstraction in the middle.

To truly leverage our embodied capabilities, such as our sensorimotor skills, we need
the nuance and complexity of our input to be reflected in the system’s output. However, the
extent to which they can be is limited by the extent to which they can be captured within
each intermediary representation. If a single intermediary representation is a designed
abstractions then the overall interaction is limited to that abstraction’s expressive potential,
what we might call the abstraction bottleneck.

A suitable candidate for embodied emergent interaction are emergent processes
trained on human action that might then be used as input to an interaction. Unsupervised
generative models are often trained on aggregated datasets of incidental media such as
text, photos, paintings and recorded music, but there are a number of examples involving
embodied action such as dance. Crnkovic-Friis and Crnkovic-Friis recorded motion capture
of a dancer to trained an recurrent neural network to generate novel dance sequences [28].
Likewise, Pettee et al.’s Mirror Exercise uses a VAE to generate dance sequences, which
are then rendered alongside the input sequence creating a fully rendered duet [29]. Mc-
Donald worked with Rhizomatiks Research and ELEVENPLAY to create the network
‘dance2dance’ to generate sequences recorded by a single dancer based on the ‘seq2seq’
architecture of text translation [25]. These were rendered alongside the dancer in a live
performance to create a duet [30]. Here, the influences the model which then influences the
dancer, but the cycle does not yet continue into full interaction.

Studio Wayne McGregor collaborated with Google to create Living Archive trained
on the choreographer’s own archive [31]. Google’s online version allows someone to
dance to their webcam to search the archive for similar movement. However, in a dance
performance output from the project, McGregor talks of a ‘live dialogue’ where the system
generates dance in response to the dancers, who are themselves responding to the system.
Such a work may fit our definition of emergent interaction. A more detailed analysis would
be of interest but is beyond our scope here.
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2.3. Artistic Explorations

I argued in Section 1.3 that the embodied interaction of an emergent interface is un-
likely to realise its value when performing the role of a conventional interface. That is more
likely to happen in new forms of digital interaction that it makes possible. Accordingly, the
exploratory work that follows is rooted less in comparative analysis with existing interfaces
and more in artistic practice. As well as building an interactive system, we are searching
for activities where that system might be uniquely valuable. More specifically, we seek to
demonstrate the existence of a context and a person such that our system delivers a result
unobtainable through other approaches.

The explorations that follow are an artistic collaboration between both authors. Be-
yond ourselves, the key stakeholders were Creative Scotland, a public funding body with a
mission to support audience-facing artwork, and Present Futures, an arts festival where
we publicly shared our work. Beyond our commitment to the Present Futures sharing, we
were free to be guided by our sense of artistic value.

With an aim to maximise the unique capabilities of an emergent interface, we set out
to build a system matching the following criteria:

• Gestural. Gesture and vocalisation are both forms of embodied communication
familiar to humans. Non-tactile gesture is particularly well suited to multidimensional,
ambiguous expression. We work with full body movement.

• Emergent. We want to avoid designing what a gesture is as far as possible, and allow
this to emerge from how the body already moves.

• Open ended. We want to remain open to what emerges rather than trying to make it
fit within a existing creative vision.

• Bespoke. The entire dataset is recorded of a single individual, moving creatively to
expose the full range of their comfortable gestural vocabulary.

• Small data. To train our model on a single individual’s movement, it needs to be
simple enough to be trainable with a dataset small enough to be generated by a
single individual. Smaller datasets and simpler models also let us train locally on our
own hardware, highlighting the opportunity this approach brings for personal data
sovereignty [32].

• Adaptable. The data used to train the model are from the same distribution as the
data that might be collected when using the model. There is no extra labelling process.
This opens the possibility for an interface capable of slowly adapting to the evolving
affordances of the person who uses it, a point which we return to below.

2.4. An Emergent Mapping Module: The Latent Mapping

The Variational Autoencoder (VAE) can be seen as a pair of neural networks—an
encoder and a decoder—that are trained together to define its latent representation in the
form of a fixed number of Gaussian distributions. The encoder and decoder smoothly map
samples to and from this representation respectively. Typically, the latent representation is
of lower dimensionality than the input, so the VAE defines a type of lossy compression.

In a recent paper [33], we argue that the encoder of a VAE makes an effective module
of a multi-layered mapping within a musical interface, allowing a creator to quickly
generate complex and expressive mappings. We described this technique as a latent
mapping (Figure 2), arguing that it brings qualities beneficial to musical expressivity:

Consistency. Similar inputs give similar outputs.

Diversity. Dissimilar inputs give dissimilar outputs.

Range. The entire output range can be reached by plausible inputs.
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Approximate 
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Samplingencoder decoder

Latent 
variable

75 values

Sensor input

Latent mapping

75 values 16 
distributions 
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16 
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Figure 2. Overview of a Variational Autoencoder (VAE) with a box showing the subsection re-
appropriated as the latent mapping.

Our explorations below demonstrate the feasibility of a single individual recording
enough data to train it. In such a case, the mapping will be bespoke. The VAE is trained to
define a latent representation that best captures what qualities makes one gesture distinctive
in the context of that individual’s gestural vocabulary.

One cannot predict the latent mapping that will emerge from training a VAE. In fact,
training tends to be stochastic, and so retraining tends to lead to a completely different
mapping. This makes it appropriate for an open-ended creative process, where we explore
possibilities without a specific vision of what we seek, much like the process of choreo-
graphic devising we described above, where material is encountered rather than invented.

However, loss of control over the detail of the mapping does not necessarily imply loss
of authorship, because the mapping emerges directly from the corpus of recorded gestures
used to train the VAE. A bespoke VAE emerges from a person’s gestural individuality.

In our own explorations, I recorded 16 h of free improvised movement. This would be
a big task for one person if we then needed to segment and label the data for a classifier,
or if I was performing specific movements for a preselected label, as in an IML process.
However, as we simply need to record gesture representative of my movement vocabulary,
I collected the data through a 30 min daily improvisation practice, which is a natural and
pleasant addition to my mornings.

The movement was recorded in a skeletal representation as captured by a Kinect v2 sen-
sor, which represents the body as 25 joints in 3 dimensions, giving frames of 75 components,
at 30 Hz. We explored around 12 VAE models, varying the model structure, the dimen-
sionality of the latent space and the loss function. Using an Nvidia GTX 1070, training
typically approached conversion after around 20 min. The VAE’s loss function captures
both the model’s ability to accurately reconstruct the skeleton from its latent representation,
and regularisation parameters that ensure that the encoder and decoder define smooth
functions between the skeletal and latent representations of the body.

We evaluated models by both the technical metrics of the loss function and through
practical exploration of how the model feels when hooked up to a synthesiser, the setup of
which we explain in more detail below.

We ended up with two VAEs, both trained with an individual frame as input to define
a latent mapping from these 75 dimensions into 16 gaussians.

2.5. Sonified Body: Transforming Dance into Sound

For our first artistic exploration with this interface, entitled Sonified Body, we mapped
the output of the latent mapping (Figure 3) to a range of software synthesisers in Ableton
Live by sending Open Sound Control [34] messages to Max for Live patches that controlled
the parameters exposed by the synthesiser interfaces (Figure 4). As our focus here was more
on uncovering the expressive capabilities of movement were translated, rather than sonic
aesthetic, we created this intermediate mapping arbitrarily. By this, I mean we mapped
parameters quickly without thinking except to mitigate situations where a single parameter,
such as an amplitude control, would effectively negate the effect of all other parameters by
silencing the synthesiser.
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Figure 3. User interface of custom software implementing the latent mapping. The left image shows
the RGB camera feed. The right image shows the tracked skeleton in orange, and the skeleton as
reconstructed by the VAE decoder in red. The central matrix visualises the current latent mapping
(16 values).

Normalization, 
Onset 

detection

16 values

16 triggers

Synthesizer 
user 

interface

Secondary 
mapping layer
(one-to-one, 

manual)

16 values (μ)

encoder

Latent 
variable

Sensor input

Latent mapping

75 values

Figure 4. Data flow schematic of the Sonified Body system.

We introduced a number of postprocessing transformations to assist in this process.
As there is no innate meaning to the ordering of the latent components, we applied a
transformation of Principle Component Analysis (PCA) to the output of the latent mapping.
This effectively reorders the components based on their variance, which helped inform our
intuition in defining the intermediate mapping.

The components of the latent mapping are unbounded, whereas the inputs to Ableton
Live’s software synthesisers are all uniformly bounded. If the range of the latent component
is much larger than the input domain of the parameter, then the entire sonic variance may
be trapped within a small subset of the total range of possible inputs, so we applied
a normalising transformation. However, if we completely match the ranges through a
min-max normalisation, then more subtle gestures will have less effect. We tried three
approaches, each giving a different character to the interface: unnormalised, min-max and
scaling to fit ±2 standard deviations.

Finally, the latent mapping implementation outputs continuous data, which maps
neatly to drone-like synthesisers with continuous input parameters. However, discrete
events such as the start and end of notes are excluded by this. To introduce more percussive
events, we introduced a simple onset detection module based loosely on Dahl that detects
crossovers between two different low-pass filters [35]. We mapped the onset of each
component to trigger a different pitched MIDI ‘note on’ message, which activated different
drums in a drum kit instrument. This provided a rudimentary mapping from sudden
shifts in velocity of the moving body to note on events, while keeping the representation of
velocity within the learnt parameter space of the latent mapping.

Overall, our system still broadly follows Hunt et al.’s three layer mapping model from
Figure 1:

• Layer 1, controller to meaningful, is now performed by the latent mapping combined
with the postprocessing transformations.
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• Layer 2, meaningful to abstract is our arbitrary attachment to the synthesiser interface
parameters.

• Layer 3, abstract to synthesis is defined internally by the software synthesiser.

As we feed the latent mapping into the designed abstract parameters of the synthesiser,
Sonified Body is not a fully emergent interface by our definition above. However, the latent
mapping has replaced the preconceived abstractions of ‘meaningful’ parameters with a set
of emergent qualities. This allows us to avoid imposing these abstractions onto the body.
Instead of thinking of individual limbs modulating cartesian coordinates, our representa-
tion of the body is defined by how my body moves. For example, in one of our mappings,
the first parameter seems to capture the quality of opening the arms wide versus hugging
them against the body. Other parameters are less easily described: one captures movement
across the space along the x-axis of the camera, but it is entangled with a lowering of the
hips towards the floor. This may sound complicated but this is not an interface you learn
about through explanation. It reveals itself through embodied exploration.

3. Results
Explorations with Dancers

To explore the system’s artistic potential, we ran a five day residency working individ-
ually with three dancers—Adilso, Divine and Catriona—from a range of improvisatory
movement backgrounds (Figure 5). Adilso worked with us before we introduced the onset
detection module (due to restrictions imposed by the covid pandemic, there was a two
month interruption between Adilso and the other two dancers). We prepared around six
software synthesisers and corresponding mappings prior to the residency, and devised a
setup letting us quickly swap both model and synthesiser.

Figure 5. Cont.
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Figure 5. Dancers Divine Tasinda, Adilso Machado and Catriona Robertson improvising with the
Sonified Body system during the exploratory residency.

Once in the studio with each dancer, we gave a brief overview of the tracking capa-
bilities of the Kinect but primarily allowed the dancers to discover the system through
exploration. The public outputs we shared from the residency were three recordings of
improvisations by the dancers, which you can see at https://timmb.com/sonified-body,
(accessed on 13 September 2021).

4. Discussion

Following a methodology rooted in artistic practice, we guided ourselves with the
above criteria while allowing artistic need and intuition to take over as necessary. As we
did so, we kept a tally of any contradictions that seemed to be emerging, as these can reveal
nuances to the principles we set out to explore.

The most obvious contradiction is that for all the non-abstract purity of the latent
mapping, we introduce a near-random mapping into the carefully designed abstractions of
the synthesiser controls. In part, we explain this as being the simplest way to get a feel for
the latent mapping. Emergent synthesis will come in the next stage of the project. However,
the arbitrariness of this process revealed a desire to minimise introducing our own designs
into this process. Where decisions needed to be made, we worked quickly and intuitively
to help us avoid thinking through the abstractions of the synthesiser interface. Our efforts
to prize emergent qualities made us particularly sensitive to where we were fitting the
system around our own assumptions, such as when tuning the filters of the onset detector.

4.1. Generalisability of the Bespoke Interface

The second contradiction is that our latent mapping was trained exclusively on record-
ings of myself (not a professional dancer), yet we invited professional dancers to explore it
as an expressive tool. One of the motivating ideas running through this research is how
technology is embedded with the assumptions of its designers. The bespoke emergent
interface, created and trained by me, is both a solution to this, if I use it, and an extreme
example of this, if others use it. Accordingly, we entered the residency aiming to investigate
how generalisable this interface was. If the model is biased towards my vocabulary of
movement, would there be a ‘funnelling’ effect where the dancers ended up needing to
move like me in order to use the system? As it turned out, I believe any such effect was
outshone by the funnelling effect of the Kinect’s skeleton tracking. With one dancer, for
example, we observed a shift from subtle movements of the torso or face towards more
obvious and extended limb movements. In spite of this, in our discussions with dancers,
each made a point of describing the sense of freedom they felt using the system, particularly
in contrast to dancing to recorded music. From our observations, each dancer retained

https://timmb.com/sonified-body
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their own movement identity while seeking out expressive possibilities within the sensing
capabilities of the Kinect.

4.2. Generalised Sensing, Bespoke Interpretation

The Kinect skeleton is our next contradiction. Its representation of the body as 25 joints
in cartesian coordinates is, of course, a designed abstraction. Our observation of a dancer
emphasising extended limb movement suggests their gesture being constrained by an
internalisation of this abstraction.

We might see the whole flow from body to sound as follows:
Body (raw)→ Kinect (abstract)→ latent representation (emergent)→ synthesiser parameters

(abstract)→ sound (raw).
Evidently, we are far from a fully emergent interface; yet, the latent mapping does

help us ‘escape’ the representation of the Kinect skeleton by representing the body within
a space of plausible poses rather than the full cartesian representation in which any joint
could be anywhere. However, information lost through that abstraction cannot be regained.

It is tempting to consider the solution of abandoning the skeletal representation and
instead working with a more raw representation such as a 3D point cloud. However,
this would require a significantly more complex VAE model, which would require more
training data, likely more than one individual could provide.

Our ability to create a bespoke mapping trained on one individual’s data depends
on the generalising capacity of the Kinect, which is likely trained on data recorded from
many individuals. However, a possible resolution to this contradiction is to distinguish
between sensing and interpreting gesture. Sensing determines what our model can see.
Interpretation determines how meaning is derived from that. Dividing between sensing
and interpreting lets us delegate sensing to a joint enterprise, which will then need to
address issues of dataset bias and generalisability. The emergent interface explored here
would then serve to make such a general representation applicable to the needs of the
individual. If we consider by way of analogy the perception of language, then we might
consider the priming of human ears towards hearing speech as sensing but the phonemes
of a particular language as interpretation. Sensing can be evaluated objectively over a
population of people. Interpretation remains subjective to the individual. Therefore, we
want sensing to be generalisable and interpretation to be bespoke.

4.3. Generative Processes in the Studio

Generative algorithms are often used to create open-ended artworks. However, ran-
domness can play a role in many creative processes, even those seeking a fixed outcome.
The latent mapping fits well with an open-ended creative process where we respond to
the affordances and constraints that we encounter in the interface. This has value for
collaborations between creative technology and performative practices like dance because
it allows the technologist to respond at the same pace of instant composition that often
characterises the creative process of performers (see Section 1.3).

4.4. Emergent Representations Are Complex and Imprecise

Embodied modes of thinking excel at concurrency, context-sensitivity and the com-
plexity of dynamic systems with many interacting elements. They lack explainability
and precision, opening the door to ambiguity. Ambiguity can be valuable. A smile can
change the meaning of many events in many different ways. It lets us communicate a
thousand possibilities without committing to any. Its meaning is situated within its context,
which everyone will always experience differently anyway; yet, the action of smiling is far
from imprecise. A smile requires the coordination of many muscles, each of which could
transform its overall effect. The imprecision lies in how its meaning might generalise from
one context to another. The more that meaning remains situated in context, the less precise
we can be about it in the abstract.
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Consider an interface such as a theremin or Kinect that allows non-tactile gestural
control without the person touching the interface. While both of great interest to the
experimental music community, they have struggled to get past the gimmick phase. The
Kinect has been a great success as a tool for makers and artists but is widely considered
a failure as a gaming controller and has been discontinued in this role. The theremin is
notoriously difficult to play because it requires the hand to be positioned exactly in space
relative to something it cannot touch; yet, in human-to-human interaction, non-tactile
gesture is widespread, from hand-waving to conducting an orchestra. One potential reason
for this is that untethered gesture is inherently imprecise. Instead of indicating specifics,
such gestures are complex (typically non-linear and multidimensional), ambiguous and
reliant on contextual clues. However, rather than limiting expression, this ambiguity is
fundamental to many forms of human expression and thought. As McGilchrist points out,
jokes stop being funny once explained. Poems do not become more meaningful by being
made more precise [10]. Perhaps untethered gestural interfaces are simply inappropriate
as inputs to a system of abstractions. All the effort of playing the theremin is to control but
two parameters: pitch and amplitude.

Emergent interfaces trade precision for complexity. When deployed to control precise
abstractions, they will likely be less useful than simple and precise interfaces because the
loss of precise control is not compensated for by complexity. The activities that will benefit
from this change are those that thrive on complexity and ambiguity of control, such as acts
of real-time artistic creation [36] or social connection.

4.5. Beyond Design

The loss of designed abstraction means the loss of our capacity to explicitly design
interaction. However, as with the trade-off between precision and complexity, whether
or not this is a disadvantage depends on our paradigm of interaction. If we consider the
analogy of an interface as a language, then we can observe that some forms of language are
designed explicitly on top of abstractions, such as mathematical notation, semaphores and
programming languages. Others are emergent, such as natural language, body language
and (stretching the analogy) musical melody. Formalist systems such as grammar and
music theory are inferred from observations of language and music in the wild, whereas
abstract languages are defined in terms them. This comparison is not exact. For example,
English can be used both poetically and with extreme formalism (sometimes described
as ‘legalese’), and there are cases where previously observed patterns of syntax become
rules, such as the standardisation of English spelling in the 18th century. Nonetheless, the
analogy illustrates that a lack of explicit design does not hinder our capacity to express
ourselves, particularly in activities more dependent upon embodied thinking such poetry,
dance and music. In fact, the hand of a designer in the tools we use to express ourselves
can be problematic. Those creating music with software synthesisers are familiar with the
trap of presets, which offer a quick path to creating music but can reduce the creator’s
sense of authorship over their creation. An interface funnels us towards that which is easy
to do, what Rokeby describes as its ‘operational clichés’ [37].

A designed interface is built for a non-specific user, i.e., an abstraction of the person
who will eventually interact with it. However benevolent the intentions of the designer,
their abstractions will be infused with their assumptions, beliefs and values. The capabil-
ities of such a system is ultimately limited by their imagination and competence. These
limits may in turn have a homogenising effect on the user. If individuals cannot perform
as the user conceived of by the designer then they are excluded from the opportunities
such a system affords. The impact of this has been observed in terms of demographic: the
designers of many of our everyday digital systems are not representative of the populations
that use them in terms of race or gender, and there are currently movements to increase
demographic diversity in the tech industry. While addressing technological design that
exacerbates social inequalities may be most urgent, each person thinks and sees the world
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differently. The more we rely on designed interfaces to do so, the more our lives are
mediated through abstractions based on the assumptions of their designers.

Emergent models do not escape these issues as they can replicate and reinforce
prejudicial biases in the data they are trained on. For example, Zou et al. give an example
where an automatic translation system needs to choose a gender for a pronoun and resorts
to gender stereotypes [38]. However, emergent interfaces also suggest the possibility for
a fundamentally different answer to this problem because it becomes possible to tailor
the interface to the unique needs and expressive capabilities of an individual. This may
be more valuable in tasks where individuality is a priority. Again, this suggests human–
human connection and artistic creation are more natural domains for such an interface
than activities rooted in formalist thinking such as software development or bureaucracy.

To illustrate this, one dancer from the Sonified Body residency told us they found
expressive possibilities within the system open up through an exploration of vulnerability.
This makes sense as a concept to introduce in a performative act such as dancing or singing.
It makes less sense when organising files, drafting contracts, coding algorithms or landing
a space rocket. However, it makes crucial sense in a social contexts where we want to build
empathy and intimacy.

5. Conclusions

We’re in the process of likening ourselves to the machines with which we need to interact.
—McGilchrist [39]

The technological feat of computers is made possible through the stack of many layers
of designed abstraction, from modulating electrical voltages up to the components of a
user interface. Accordingly, the dominant paradigm in HCI is of manipulating abstrac-
tions which ultimately are designed to represent contextually situated entities. Emergent
interaction offers an alternative approach where unsupervised machine learning allows
representations to emerge directly from the situation in which interaction happens.

Exploring this concept through methodology of artistic practice, we have created a
system transforming movement into sound that incorporates an emergent representation
of the body’s pose. We explored this in a residency with three dancers.

Our next step is to extend this system to utilise emergent representations in the output
to create a fully emergent process from pose to audio. We plan to combine the latent
mapping with an unsupervised generative model as output. This would let us directly
connect the two latent spaces, although exactly how we connect them remains an open
question. Such a system would be a candidate for a fully emergent system to interpret
sensed gesture.

We are also interested in introducing online adaptation to the emergent mapping.
Right now our system has adapted to the gestural affordances of the individual at training
time. As one might expect, at performance time we observed the individual adapting
to the affordances of the system’s interpretation. If the system were to respond in turn
by updating its model based on what it observes in the individual, then a process of
multi-agential conversation emerges.

As we are likely to remain reliant on designed hardware for a while, a fully emergent
system is perhaps a theoretical ideal we can move towards rather than implement outright.
However, where a computer interprets human action is where computation meets the
contextually situated world of human meaning and intention. Here, emergent interaction
may help us reduce how far those using computer systems are bound to the assumptions of
those who design them and allow us more bespoke interaction with computers. It is likely
to hold most value when applied to activities reliant on non-formalist modes of cognition
such as physical performance and social connection. To me, a defining quality of such
activities is highlighted by McGilchrist: to merge and seek out resonance rather than to
abstract and manipulate. In cases where computers are mediators of social interaction then
interfaces constructed around resonance, sensing and belonging may open more humane
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opportunities for social connection than interfaces designed around the manipulation of
digital objects.
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