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Analyzing Real Options and Flexibility in Engineering Systems Design 
using Decision Rules and Deep Reinforcement Learning 

 

Cesare Caputo and Michel-Alexandre Cardin 

Dyson School of Design Engineering, Imperial College London 

 

Abstract. Engineering systems provide essential services to society e.g., power generation, 
transportation. Their performance, however, is directly affected by their ability to cope with 
uncertainty, especially given the realities of climate change and pandemics. Standard design 
methods often fail to recognize uncertainty in early conceptual activities, leading to rigid 
systems that are vulnerable to change. Real Options and Flexibility in Design are important 
paradigms to improve a system’s ability to adapt and respond to unforeseen conditions. 
Existing approaches to analyze flexibility, however, do not leverage sufficiently recent 
developments in machine learning enabling deeper exploration of the computational design 
space. There is untapped potential for new solutions that are not readily accessible using 
existing methods. Here, a novel approach to analyze flexibility is proposed based on Deep 
Reinforcement Learning (DRL). It explores available datasets systematically and considers a 
wider range of adaptability strategies. The methodology is evaluated on an example waste-to-
energy system. Low and high flexibility DRL models are compared against stochastically 
optimal inflexible and flexible solutions using decision rules. The results show highly dynamic 
solutions, with action space parametrized via artificial neural network. They show improved 
expected economic value up to 69% compared to previous solutions. Combining information 
from action space probability distributions along expert insights and risk tolerance helps make 
better decisions in real-world design and system operations. Out of sample testing shows that 
the policies are generalizable, but subject to tradeoffs between flexibility and inherent 
limitations of the learning process.  

1 Introduction 
Engineering systems fulfill highly important functions for society. They provide critical 
services to support human activity through power generation, transportation, supply chains for 
food production and delivery, water management, defense, healthcare, and 
telecommunications. Such systems operate for a long time, typically decades if not longer, and 
are exposed to important uncertainty and fluctuating conditions in their operational 
environment, but also in terms of markets, regulations, and technology. This uncertainty creates 
important risk and threats that may be amplified by high-level disruptions from ongoing climate 
change, pandemics, as well as cyber and physical terrorism. The 2021 blackouts in Texas, 
COVID crisis, and recurring attacks on oil and gas facilities (e.g., Pakistan, Yemen, Colombia, 
Iraq and Philippines recorded 989 attacks between 2010-2014) [1] show just how vulnerable 
these systems may be. Uncertainty also creates upside opportunities, for instance through the 
development of new markets, which open new economic prospects for the world. The 
development of GPS, smart phones, and CAFE emissions standards, to name a few, have 
pushed for cleaner and more sustainable mobility solutions and innovations over the last 
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decade. These in turn have contributed to the development of the new sharing economy [2], 
and created a whole new set of economic opportunities. 

An important issue motivating this study is that current approaches to systems design and 
engineering may not lead to systems that are readily flexible and adaptable in the face of 
uncertainty – which is becoming an increasingly important consideration given current global 
conditions. For instance, the popular V-model in systems engineering [3] assumes that 
customer and requirements are known at the beginning of a project, and cascading design 
activities focus on enabling this particular view of the future. System designs are often 
optimized using deterministic assumptions for market, environmental conditions, regulations, 
and technologies, making them rapidly sub-optimal if operational conditions change. Industry 
often invests vast efforts to take advantage of economies of scale, thereby committing large 
resources upfront to reduce average production costs, while such resources may or may not be 
fully utilized in the future depending on market realizations. Such strategies lead to engineering 
systems that may be overly rigid, do not make best use of limited resources, and may be unable 
to quickly adapt and reconfigure following important disruptions. Such issues have given rise 
to a number of underperforming engineering systems – even important failures – in the face of 
uncertainty, despite well-functioning technologies e.g., Iridium satellite cell phone system [4], 
IUT Global waste-to-energy system in Singapore [5], Ghost Cities [6] in China, etc. 

There is an exciting opportunity to take system design and engineering activities to the next 
level and contribute more systematically towards the development of more sustainable and 
resilient engineering systems in the future. In recent years, the field of Flexibility in Design has 
emerged as a concrete and systematic approach to enable better adaptability, reconfigurability, 
and evolvability in engineering systems [7]. Flexibility helps systems adapt and change in a 
cost-effective manner, considering arising uncertainty and risks. The field has evolved from 
Real Options Analysis, which quantifies the value of flexibility in irreversible investment 
projects [8]. Flexibility in Design helps developing and evaluating new computational tools to 
support early design activities, such as uncertainty modeling and quantification, creative 
system concept generation, design space exploration and optimization, and holistic process 
management [9]. The goal is to produce designs that reduce exposure to downside risks, while 
capitalizing on upside opportunities – essentially improving the tails of the performance 
distribution – thus resulting in higher expected performance and value overall. The design tools 
and processes help quantify expected performance to identify system configurations that 
provide better economic performance, sustainability, and resilience, in view of an uncertain 
future. Historical examples of flexible systems abound, such as the 25 the Abril bridge in 
Portugal, designed in the 1960s to accommodate additional transportation capacity through 
additional car lanes and railways, or the HCSC tower in Chicago, designed in the 1990s to 
accommodate vertical floor expansion in the future [10]. In both cases, flexibility was 
productively exercised to expand capacity when needed, such as when Portugal joined the 
European Union in the 1980s and saw booming economic activities requiring more 
transportation capacity. Flexibility was also beneficial when HCSC required more office space 
for its growing insurance activities and was able to nearly double the number of floors. What 
these two cases had in common is that flexibility had been carefully engineered in the design, 
and significantly reduced the costs of adaptation several years later. 

A promising approach to analyze engineering systems for flexibility is to exploit a decision 
rule formulation. Decision rules are akin to if-then-else statements e.g., if demand exceeds a 
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certain threshold, then expand capacity, else do nothing. An important benefit from this 
formulation is that it combines both physical and managerial aspects into an elegant and 
succinct formulation, making it rather intuitive to use by system operators and decision-makers. 
It can be used with advanced techniques like stochastic programming or robust optimization to 
identify the best system design configurations. Decision rules act like signposts, or triggering 
mechanisms, that help operators identify the conditions when it is best to exercise flexibility in 
operations. It is important, however, to carefully enable the flexibility to be used in operations 
via decision rules in early design activities, from an engineering standpoint. Several studies 
have shown the benefits of such approach to flexibility analysis, as compared to standard real 
option methods based purely on dynamic programming [11-13]. One issue with the approach, 
however, is that decision rules are often generated by system designers based on a limited set 
of standard real option strategies e.g., expand or reduce capacity, stage capacity deployment, 
abandon a project doomed to fail, defer investment until favorable market conditions. They are 
elicited through designers’ expertise with a system, using for instance creativity techniques like 
brainstorming or prompting [14], and may not completely explore the available design space. 
Thus, they may also leave potential value enhancements on the table.   

While flexibility in engineering systems design leads demonstrably to highly valuable and 
performing flexible systems as compared to standard designs, there is still significantly 
untapped potential from exploiting recently developed techniques in machine learning and data 
science. For systems and mega-projects requiring large investments i.e., >$100 millions, the 
typical 10-30% improvement potential routinely seen in flexibility studies – often more – is 
non-negligible. Recent developments in data-driven fields can clearly help uncover new 
optimal flexible system design configurations, combinations of decision rules, and timings, that 
may complement strategies developed through human-led design activities and experience. 

Deep Reinforcement Learning (DRL) presents several methodological similarities to 
prevailing state of the art methods in designing for flexibility. It is being increasingly 
investigated for potential applications in the field of engineering [15]. DRL involves 
formulating a sequential decision-making problem, with the objective of maximizing some 
reward, although with fewer limiting assumptions than with standard methods based purely on 
dynamic programming and Bellman’s reward maximization equations [16]. A DRL 
formulation to flexibility analysis enables an agent (i.e., the system operator) to analyze 
different strategies through a heuristic trial-and-error learning process and learn the best 
actions at different points in time, based on statistical training on a range of potential scenarios. 

Consequently, the proposed approach may help identify new dynamic adaptation strategies 
from the data, as opposed to relying solely on those elicited from standard real options and 
flexibility in design methods. It enables uncovering different combinations, timings, and 
resulting flexible designs that may not be considered explicitly by system designers, thereby 
expanding the design space exploration process.   

Motivated by the above, this paper proposes a novel approach to analyze flexibility in system 
designs based on DRL. The approach is evaluated through a case study in sustainable waste-
to-energy (WTE) system design. The study shows that a DRL approach helps generating new 
system configurations, combinations of decision rules and timings that may not be considered 
through current flexibility analysis tools. The approach produces highly dynamic solutions 
through learning valuable adaptation strategies from the data, while still exploiting the intuitive 
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nature of a decision rule formulation. The approach generates distributions of adaptation 
strategies that can in turn inform designers, decision-makers and operators on most widely used 
strategies, with the goal of designing systems that are more sustainable and resilient in the long 
term in the face of uncertainty.  

2 Background and Related Work 
2.1 From Real Options to Flexibility in Design 

The development of Real Options – defined as the “right, but not the obligation, to change a 
system in the face of uncertainty” [8] – created the need to for new design methods and 
procedures to enable flexibility in engineering systems design. Flexibility in Design emerged 
in recent years as a field from such a need. Flexibility as a design concept, however, is not new, 
and has been studied extensively, for instance in manufacturing and product development [17, 
18]. It has not been studied for as long in complex engineered systems. An important distinction 
between Real Options and Flexibility in Design is that the former focuses on quantifying the 
value of flexibility – effectively aiming to price real options – while the latter focuses on 
developing methods and procedures to embed flexibility in engineering systems design, as a 
value-enhancing mechanism. Both fields go hand in hand, since one enables quantification of 
the value of flexibility that is designed early on in each system. Flexibility in Design relies on 
value quantification in a similar fashion as in real options theory, but more as a mechanism to 
rank order possible design alternatives to support the decision-making process, and less to find 
the right “price” for the real options. It adapts the theory of real options to accommodate the 
needs of industry practice.  

Over time several frameworks have been proposed to support the design process [19, 20], and 
reviews to organize the field of Flexibility in Design [21, 22]. More recently, Cardin [23] 
proposed a holistic five-phase framework to support such activities, also encompassing a 
number of tools and procedures to support design activities in each phase. The phases involve: 
starting from 1) an initial design establishing baseline performance, then 2) recognizing and 
modelling uncertainty affecting the system performance as to stimulate creativity, moving on 
to 3) generating performance-enhancing system design concepts leveraging flexibility, 
followed by 4) design space exploration and optimization. The framework is embedded within 
a holistic phase 5) to enable seamlessly the design process among relevant stakeholders. The 
proposed approach contributes mostly to phase 4 by providing a new approach to explore the 
design space. 

2.2 Decision Rule Formulation 

Standard approaches to quantify the value of flexibility rely on decision analysis and binomial 
lattice analysis, and simulations [24]. The expected value of flexibility is quantified as the 
difference between the expected payoffs from baseline and flexible designs. Decision analysis 
relies on decision trees and a backward induction process from dynamic programming [16]. 
The decisions available at each stage represent how the system can adapt. Binomial lattice 
analysis is similar to decision analysis, with the exception that in each stage the uncertainty can 
either go up or down relative to the previous state [25]. To reduce the number of possible 
outcomes, path independence is assumed, and lattice nodes can recombine. 

One issue with the above approaches is that the decision to exercise flexibility is difficult to 
use in real-world operations. Among others, the folding back process in dynamic programming 
(i.e. starting from the end and folding back to initial time) is often criticized as not intuitive and 
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difficult to implement in practice [11]. The decision rule is essentially based on Bellman’s 
expected reward maximization, and therefore does not provide much flexibility in terms of 
implementing other decision rules. It may also prove challenging in operations to identify the 
corresponding system state in a decision tree or lattice and determine the next best decision.  

To address these issues, a decision rules approach to flexibility analysis was proposed recently, 
and slowly taking precedence in the field [11, 26]. Flexibility Decision Rules (FDR) are 
typically employed in stochastic programming and robust optimization to alleviate 
intractability in the computational problems created. They include condition-go (akin to the if-
then-else formulation), zero order, linear, and safety-first rules [27]. In the context of flexibility 
analysis, decision rules are not just mathematical tricks, they take on a full managerial meaning, 
giving intuitive policies as to when flexibility should be exercised, and how. An example FDR 
formulation may be that “if demand reaches threshold α, then expand capacity by β, else do 
nothing”. Given that the decision may be evaluated a regular time intervals, the problem can 
be modeled as a multi-stage stochastic programming or robust optimization problem, to 
identify the best values for decision rule variable α and design variable β over the problem time 
horizon [26]. This formulation leads to intuitive policies readily applicable in operations and 
connects tightly what is done to the physical design to enable the flexibility early on to how it 
is managed in operations. The approach has been shown previously to quantify the value of 
flexibility in a similar manner as standard real option methods [11].  

A decision rule formulation is embedded within the definition of a flexible system design 

concept, which comprises both a strategy and an enabler [23]. During early conceptual design 
activities, designers can choose a strategy to deal flexibly with certain uncertainty sources (e.g., 
price, demand) by considering standard real options (e.g., abandonment, expansion, etc.). They 
must also identify how to enable the flexibility in the early design phases, which includes 
considering both physical design aspects and a policy to determine when it is best to exercise 
the flexibility during operations (i.e., the decision rule). For example, engineers of the Lisbon 
bridge provided for additional strength to support a possible railway and car lane expansion, 
and the decision rule to expand (even though not documented) was certainly connected to new 
capacity needs emerging from increasing economic activities. The HCSC building was 
designed in the 1990s with stronger foundations, additional elevator shafts and a stronger 
structure overall to support additional floors, which was needed when expansion was 
implemented. These examples show that there is no “cookie-cutter” solution to design flexible 
systems. Different systems face different uncertainty sources and require different design 
configurations. Hence, a combination of creativity, guidance, and expertise is needed to 
identify the best strategies and enablers to embed valuable flexibility in a particular system. 

2.3 Deep Reinforcement Learning  

A decision-rule formulation is closely related to Markov-Decision Processes (MDP), which in 
turn is closely related to the mathematics of DRL. In a MDP formulation, an agent operates in 
a space characterized by current and future states, and actions connecting the different states. 
This formulation is very similar to a decision rule approach in flexibility analysis, since the if-
then-else formulation needs first to determine the current state (i.e., observation of uncertain 
variable like demand or price) and take on certain actions (e.g., expand capacity, shut down 
operations) that will lead to a future state, with the goal of maximizing a certain discounted 
reward (e.g., cumulative profits) over time. MDPs can develop non-stationary, long term 
policies to operate in a complex environment, providing strong global convergence guarantees. 
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In their conventional form, however, they are only well suited for low dimensionality action 
and state spaces, as Markovian transition matrices can scale exponentially, with significant 
degradations in computational feasibility of policy evaluation at each decision step [28, 29].  

DRL is a Markov-type machine learning approach with potential to alleviate some of these 
dimensionality limitations. It involves an agent interacting with an environment over time as 
part of a sequential decision-making problem, with the objective of maximizing a reward 
signal. Generally, at each time step (t), the agent (A) finds itself at state (st), and selects an 
action (at ) following a reward maximization policy π(at | st) – see Figure 1. As a result of taking 
the action, the agent transitions to a successive state (st+1), receiving a corresponding scalar 
reward (rt), which are governed by the environment’s dynamics or reward function, R(s, a), 
and state transition probability, P(st+1|st,at), respectively [28]. This repeated interaction is 
captured graphically in Figure 1, including an illustration of the role of neural networks within 
the process. The neural network approximates the reward value function learned during 
training, and may consist of several layers – hence the name “deep” [30]. In episodic 
environments, this continues until the agent reaches a user defined terminal state, at which 
point it restarts, although continuous environments are also present in several applications (i.e., 
operating a building demand response system). In training, the agent is fed a wide range of 
scenarios where they apply policy π through a heuristic trial-and-error mechanism. Through 
several interactions with the environment, the agent seeks to develop an optimal policy π* to 
map and rank state-action pairs based on expected value, as captured in Eq. (1), where the 
objective is the maximization of discounted accumulated rewards per episode ∑ γ!	&"" : 

'∗ = arg,-.$	 /&~$(&)	 01 &(3"	, 	-"	)
"

6 	= 	 arg,-.$	 /&~$(&)	1 γ!	&"
"

 (1) 

The two primary approaches used to optimize Eq. (1) in DRL are value-based and policy 
gradient methods, originating from value and policy iteration in dynamic programming. In 
value-based methods, such as Q-learning, the objective is to improve iteratively the value 
estimate of each state action pair until it converges. The RL agent then follows the trajectory 
of highest Q values to formulate the optimal policy, although it is not explicitly optimized. This 
is usually performed off-policy, such that each update can use data collected throughout 
training, even if collected using an old policy. In policy gradient methods, rather than updating 
the value function, the policy is parametrized directly. This involves on-policy updates and the 
use of a value function approximator to guide the policy update direction, typically done at the 
end of each episode [28]. In modern DRL, the distinction is not always clear as state of the art 
algorithms try to combine both approaches to yield performance improvements. Methods such 
as DQN, however, are closer to value-based approaches, A2C and TRPO to policy-gradient 
ones and others such as SAC, DDPG and TD3 combining some aspects of both [31]. Depending 
on the problem, the choice of algorithm can vary significantly.  
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Figure 1: Graphical Overview of DRL 

The majority of DRL modeling in engineering has thus far centered on more classical control 
problems which fit within a MDP, and stimulate agent learning [32]. A general framework for 
design optimization using DRL was proposed in [33] and was applied to the air foil angle of 
attack for a hypothetical stator with varying rotor designs. The work in [34] also shows the 
strong performance of DRL in the design task of fatigue resistant solutions for ship design 
compared to evolutionary methods. Both implementations, however, maintain limited scope 
within the overall problem, with overly simplistic reward functions or action spaces. There are 
several studies focusing on new algorithms or techniques to allow combination with more 
complex problems, but they tend to focus mostly on the mathematical or algorithmic side [28, 
35-37]. More promising is the optimization performed in [38], where off the shelf DRL 
algorithms are implemented to design a microfluidic device for flow sculpting. Using a Double 
Q-Network architecture combined with Hindsight Experience Replay, the agent produces 
designs that perform consistently in the 99th percentile of the entire design space, compared to 
those obtained via much more computationally expensive approaches.  

The potential for DRL to the objectives of this paper was perhaps most thoroughly investigated 
in [39], where it was first implemented to simultaneously solve the competing energy systems 
basic design and dispatch strategy. The authors, however, did not consider any decision-making 
flexibility through the project duration to adjust capacities over time based on realized 
uncertainties. In fact, to these authors’ knowledge, there has been no previous study exploiting 
the potential of DRL in the context of enabling flexibility in engineering systems design.  

3 Methodology 
3.1 Generic Capacity Planning Model  

This section introduces the generic capacity stochastic planning model used for the system case 
study in Section 4. Consider a planning horizon of 7 time periods, and let 8	denote the installed 
capacity, 9 the discount rate and :" the demand in period ;. Let < = (<*, <+	, … , <") be a scenario 
of uncertainty, where	<"	is a vector capturing the uncertainty observed in period t, thus able to 
account for multiple uncertainty sources. For example, <"	may be used to model stochastic 
demand (:") realizations in period ;, as done later in the analysis. > defines the set of all 
possible uncertainty scenarios 3, assumed to be finite for simplicity, with corresponding 
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probabilities for each scenario ?, > 0	, ∑ ?, = 1-
,.* . The stochastic capacity planning model 

with no flexibility – referred as benchmark design – is formulated as in Cardin and Hu [40]: 

 
C-. 	DEFG =1?,

-

,.*

(−I/(8) +1(
1

1 + K
)"[ℛ,

"(8, <,
") − I,

"(8, <,
")])	

0

".*

 

 
(2) 

 

 s.t.  0 ≤ 8 ≤ 8123 (3) 

 I/(8)=P(8)4 (4) 

 <,
" ≥ 0, ∀	3, ; (5) 

Variable 8123 captures the upper bound of 8, ℛ"(8, <") is the revenue function for period t, 
I"(8, <") is the cost function for period t, and l is the discount rate. Eq. (2) determines optimal 
rigid capacity under uncertainty by maximizing expected net present value (ENPV), 
considering initial capital costs (CAPEX) and annual net cash flows produced by the system. 
This metric is chosen because it captures both costs and benefits under the same performance 
attribute i.e., financial value. The constraints on maximum attainable capacity (8123) are given 
by Eq. (3). Initial investment is estimated from Eq. (4), which is a power cost function 
accounting for economies of scale (EoS), with P a constant coefficient parameter, and S the 
EoS factor. The magnitude of the EoS effect (as measured through P and S) can be estimated 
through statistical analysis of historical data on systems costs at different capacity levels (see 
Table A1 for assumptions). Alternatively, domain expertise combined with trends and cost data 
for similar engineering systems can be used.  

3.2 Capacity Expansion Model with Decision Rules 

Decision rules are embedded in the system model to act as triggering signals for exercising a 
particular flexibility in operations. Based on the information revealed in each time step, 
decision rules enable decision-makers to sequentially decide when to proceed with capacity 
expansion, the main flexibility strategy considered in this paper. The decision-maker must 
decide on capacity deployment (xt) as part of a set of feasible decisions Xt for period t ≥ 0, 
including a zero-stage decision on initial capacity, before any uncertainty is revealed.  

Let T ⊆ 	T* ×···×	T"	denote the set of all feasible capacity decision sequences x, where . =
	(8/	, 8*, . . , 8"), and let <["] represent the full history of the uncertain variable up to time ;. A 
decision rule, also known as an implementable policy, ℱ, is a function that maps each scenario 
of uncertainty ξ into a sequence of decisions x in X (i.e., ℱ:	> → \. ℱ,

" ]<,
["]
, 8,

"7*^	as shown in 
Eq. (8). The capacity decision made in each period ; for scenario 3 (i.e., 8",) can be found 
from ℱ," ]<,

["]
, 8,

"7*^. The form of ℱ varies for different problems, and a vector of parameters 
∅ is used to characterize it, with the decision rule represented here as ℱ∅. Accounting for non-
anticipativity constraints, the objective is to formulate a feasible decision rule to maximize total 
expected reward, based on a series of reward functions  ( "̀ℱ∅<

["]	, <")	with capacity decisions 
(.") and uncertainty revealed (<["] ) as inputs. The generic stochastic model with decision rules 
used to analyze flexibility in design is formulated as: 
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-

,.*
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1

1 + K
b

"0

".*

[ℛ,
" ]ℱ,

" ]<,
["]
, 8,

"7*	^ , <,
"^ 

−I,
" ]ℱ,

" ]<,
["]
, 8,

"7*^ , <,
"^ −ℋ,

"(ℱ,
" ]<,

["]
, 8,

"7*^ , 8,
"7*)])		 

 

 

(6) 

 
 

 s.t. Eq. (3) – Eq. (5) and  

 8,
" ∈ 	Θ"     ∀;, 3 

                                                            
(7) 

 ℱ,
" ]<,

["]
, 8,

"7*^ = 8,
"     ∀3, ; =1, 2, ⋯7 

  

(8) 

Here function ℋ,
"(ℱ,

" ]<,
["]
, 8,

"7*^ , 8,
"7*) determines the costs associated with each capacity 

expansion decision and can vary depending on the problem. The general formulation is given 
by Eq. (9): 

 ℋ,
"(ℱ,

" ]<,
["]
, 8,

"7*^ , 8,
"7*) = g

P(8,
" − 8,

"7*)4 						9h			8,
" > 8,

"7*	

0																i;ℎk`l93k
,	∀3, ; = 1,…7	    (9) 

The value of flexibility (VoF) is estimated as the difference in expected value between a 
flexible model and an inflexible benchmark, as captured in Eq. (10). It represents the maximum 
that a decision-maker should be willing to pay to embed flexibility in the system design. 

VoF = DEFG9:;3<=:; − DEFG>;?@A12BC (10) 

In Section 4, two flexible systems are considered: one using a decision rule formulation, the 
other using a deep reinforcement learning formulation. Both flexible models are developed 
based on generic assumptions captured in the capacity expansion model with decision rules 
described above. 

4 Application Study 
This section presents an example application of the proposed methodology to the analysis of a 
WTE system design in Singapore. The study analyzes tensions between two common 
approaches to systems design under uncertainty: 1) a centralized approach leveraging 
economies of scale, which is economically sound when EoS are strong under a set of 
predetermined scenarios, but requires significant capacity deployment early on, and; 2) a 
decentralized modular approach, which does not benefit as much from EoS, but helps managing 
uncertainty by deploying resources flexibly when needed, thereby extracting value from 
flexibility. The problem formulation is generic and applicable across a range of similar, 
distributed engineering systems, such as mini-grids, or other renewable energy systems. The 
study objectives are to show that the proposed approach to flexibility analysis based DRL may: 

(a) Assist in the design of real-world engineering systems under uncertainty 

(b) Improve expected value of projects compared to an inflexible baseline 

(c) Enhance the value of flexibility as compared to alternative flexible solutions 

(d) Yield dynamic and adaptive decision rules as compared to other flexible solutions, and 
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(e) Provide access to more flexible design solutions and decision rules as compared to 
existing approaches.  

The benchmark system is a centralized large capacity WTE design located in the western area 
of Singapore and processing food waste produced by the city-state. Food waste must be 
transported to the centralized location from each of six sectors comprised under the Public 
Waste Collection (PWC) scheme. The flexible systems are decentralized WTE designs that 
build a small-scale plant in each of the waste collection sectors. They differ in how the capacity 
is deployed over time and space, governed by either Flexible Decision Rules (FDR), or DRL 
dynamics. PWC workers can choose to transport the collected waste to a sector’s Anaerobic 
Digestion (AD) plant rather than the main centralized one. Both types of systems receive 
revenues from the production of electricity and refuse collection, while the primary costs are 
associated with capacity expansion, waste transport, disposal, maintenance, and land rent. The 
decentralized designs allow a significant reduction in transportation and collection costs but 
see increased average cost per unit processed due to limited EoS and modularity. The 
modularity, however, contributes to reducing exposure to downside conditions (e.g., lower 
amount of waste produced than expected in any given sector).  

4.1 Model Development 

The annual revenues associated with AD energy system operations are calculated as: 

 m&" = &D
" + &E

"  (11) 
 

                        &D
" = :"F"F 

 
(12) 

 
 &E

"= min (:" , 8)DGF; (13) 
 

:" =1:<
"

H

<.*

 
 

(14) 
 

where :<" is the recycled sector 9 food waste at year ; and :" the total recycled food waste in 
the city. The central site capacity is given by 8. The food waste collection income is determined 
from tipping fee F"F and additional revenues are found from the electricity generation rate DG 
and the unit selling price of electricity F;. The annual system cost at year ; (mn") is instead 
determined from summation of the transportation cost n0B2?" , disposal cost for waste 
residue	nD" , the land cost nI", and operational and maintenance (O&M) cost	nJK" 	as shown in 
Eq. (15). Eqs. (16) – (21) break down how each of these components is calculated.  

 mn" = n0B2?
" + nD

" + nI
"+nJK

"  (15) 
 

 
n0B2?
"

@;?"B2:<,;L = nMN;:1
:<
"

n-?O

H

<.*

(o@F< + o0B<) 
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 nD
" = (,9p(:" , 8) (1 − q + r) + ,-.	(:" − 8, 0))nL<, 

 
(18) 

 nI
" = s8 (19) 

 
 nJK	

" =	'I/(8) = '[P(8)4] (20) 
 

                   8< = 8/6      	9=1, 2,⋯, 6 
 

(21) 

For the centralized design, total transportation cost is computed from the sum of waste 
collection cost within each site, as well as transporting waste from each site to the central plant 
according to Eq. (16). o@F< is intra sector	9 collection distance, and o0B< is the distance for 
collection from sector	9 to the main site. nMN;: is the unit cost for fuel consumption. In the 
decentralized system, transportation costs are found by first estimating excess untreated waste 
in each sector 9 as (:<" − 8<"), and resulting number of trips required to transport the waste 

volume (L!
"7Q!

")
R2S#

 to yield total collection truck travel distance as shown by Eq. (17). The cost of 

disposal nD"  is determined as a function of the purity rate q, residue rate r and the unprocessed 
waste due to system wide capacity shortages for year ; from Eq. (18). All waste that must be 
disposed of is assumed to be incinerated at unit cost nL<,. Land rental cost nI" is calculated 
based on installed capacity levels 8 at year ;, and the unit land rental fee s. The full list of 
assumptions and parameters can be found in Appendix.   

Recycled food waste (FW) – also referred as the demand for food waste processing ( :")−	is 
simulated using standard Geometric Brownian Motion (GBM), representing the overall 
increasing trend in food waste production, while accounting for random shocks and volatility: 

 :<<
" = v<<

":; + w<<
":x"      ; = 1,2,⋯7, 9 = 1,2,⋯6 (22) 

 
               											<" = ∑ <<

"H
<.*              ; = 1,2,⋯7, 9 = 1,2,⋯6 (23) 

In Eqs. (22)-(23), variable <<" captures the realized stochastic recycled food waste in sector 9 
(Si) at year ; and <"	is the total recycled food waste at year ;. The mean growth rate v and 
volatility w are estimated from historical food waste generation patterns in Singapore (v = 
12.3%, w = 16.3%) using standard statistical regression. Historical data is used for building the 
stochastic model, and enable direct comparison with results in Cardin and Hu [40]. The random 
variable :x" captures the Wiener process, modeling the stochastic error at time	;, sampled 
from a standard normal distribution. </ (Or :/)	is the total recycled food waste as of 2013 in 
Singapore (</ = :/ = 274 tonnes per day, or tpd), which is also the assumed starting point for 
the study. Using these assumptions, 2000 i.i.d scenarios are generated over the 15-year time 
horizon of the project, showing evolution of recycled food waste in each sector.  

4.2 Flexible Decision Rule (FDR) Model 

The capacity planning model for the flexible decentralized design under uncertainty can be 
formulated as in Eq. (24): 

               !"# $%&' = ∑ *$(%&&&
$'( − ∑ -&(.)$& )(1 + 2*)+

)'( +∑ ∑ ,-!"# ./!"# ,1!"# 23,4!"# ./!"# ,1!"# 234$%&#
!"

((67)#
+
)'(

9
:'(  

 

(24) 



ASME ©; CC-BY distribution license 12 

where <," is the total recycled food waste in scenario 3 at year ;, <<,"  is the recycled waste in 
sector	9 in scenario 3 at year ; , n;3S"  is the capacity expansion cost in year t and		?, is the 
probability of scenario 3. The ENPV is maximized with respect to the initial capacity (8,/), the 
capacity expansion threshold (z), the decentralized threshold ({), and the number of expanded 
modular designs (|). Capacity expansion decisions are guided by a set of if-then-else 
statement, with decision-making logic summarized in Figure 2. Procedure 1 determines first 
whether there is a need to expand capacity at a system level based on overall demand and 
installed capacity. Procedure 2 determines whether the expansion should proceed in a 
decentralized manner, or at the main site only (i.e., sector 1). If a decentralized expansion is 
chosen, Procedure 3 determines in which sector to add capacity, up to the maximum capacity 
8123. 

 

Figure 2: Decision tree for FDR approach on Decentralized Flexible WTE design 

4.3 Deep Reinforcement Learning (DRL) Models 

4.3.1 Creating the representative environment 
The Open AI gym format environment [31] is used to analyze two versions of the flexible WTE 
system using DRL. An initial model referred as DRL-LF (i.e., low flexibility) is developed to 
ensure performance is benchmarked against standard methods appropriately, where capacity 
expansion decisions are restricted to the same magnitude as for the FDR model (i.e., 200 tpd 
per expansion). The reasoning is to evaluate how dynamic the agent’s decision-making process 
is when limited to the same actions as for the FDR model, to see what insights may be gained 
on optimal exercise time. The discrete action set for the DRL-LF agent then becomes:  

• if action is = 0 →	do not expand 
• if action is = a →	expand capacity by 200 tpd in sector 9 

The states are defined through a box observation set as: 

[8*"	, 	<*
"
	, 8+

"	, 	<+
"
, 8T

"	, 	<T
"
, 8U

"	, 	<U
"
, 8V

"	, 	<V
"
, 8H

"	, 	<H
"
] 

where 8<"	and 	<<
" represent the installed capacity and realized stochastic demand in sector 9 

for year ;, respectively, as in the above sections. . The capacities within the observation are 
normalized by the minimum (0) and maximum (600 tpd) values for each site, while the upper 
bound on demand for all sectors is found from simulating 10,000 scenarios (independent of the 
environment) and finding the highest demand value in each sector to normalize those state 
variables. The starting capacity decision is left up to the agent in this initial implementation, 
although the magnitude is kept equal to that found with the FDR model, with the decision based 
on which sector to construct at t = 0. Time awareness for the agent is implemented to help 
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address convergence stability and to produce better value approximations for near terminal 
states [41]. This approach does not violate non-anticipativity as project expected duration 
should be part of the description of the environment, and MDP dynamics. The reward function 
for each time step from Eq. 1 (&") is defined as the En}" to reflect decision makers preferences 
more closely, also yielding a discounted reward policy of maximizing ENPV, according to Eq. 
(25):  

 
&" =	En}" 	= 	1

m&<,
" (8<,

" , <<,
" ) − mn<,

" (8<,
" , <<,

" ) − n;3S
"

<,

(1 + K)"

H

<.*

 
 
(25) 

Building upon this initial implementation, a more complex DRL model is introduced allowing 
for greater flexibility (i.e., DRL-HF for high flexibility). The added complexity stems from the 
fact that the magnitude of capacity expansion decisions is not preset at 200 tpd. Rather, the 
agent can explore several different expansion levels. This adds much more dynamic decision 
making, subsequent systems design implications and can present a more holistic and complete 
overview of the potential added value for this methodology. In this environment, the 
observation space is kept the same, but the action space is changed to multi-discrete decisions 
such that: 

• if action is = 0 →	do not expand 
• if action is = -W 	→	expand capacity by -W 	in sector 9 

where ~ = [50, 100, 200] respectively for each sector and only one action allowed to be 
selected in each time step. The capacity increments are in discrete values of 50 tpd based on 
the AD technology considered (see Appendix). It should be noted that for DRL-HF, the original 
constraint where max capacity had to be limited to that of the benchmark design was relaxed 
to evaluate more decision-making possibilities. A constraint on max sector capacity of 600 tpd 
per sector is implemented to ensure benchmarking with a comparable system. This means, 
however, that the results should be taken more as a measure of a relative untapped potential for 
flexibility in the system given the original constraints were significantly relaxed.  

4.3.2 Algorithmic Approach 
A policy gradient (PG) method is used based on the high dimensionality in action (7 and 19 
possible actions for DRL-LF and DRL-HF models, respectively) and observation spaces (12 
state variables). Value based methods typically struggle in this setting as the number of 
potential state-action pairs grows exponentially with action and observation space size, creating 
very large computational and memory requirements. While policy gradient methods may be 
less sample efficient, thus normally requiring more simulated episodes to learn a usable policy, 
this is not an issue here since design simulations are relatively inexpensive. In a highly 
stochastic environment such as here, PG methods can be advantageous as they output 
probability distributions over different actions to represent uncertain agent dynamics via a 
stochastic policy. Initially, this stochastic policy presents a high degree of randomness to allow 
agent exploration of different potential states and build a more complete representation of the 
environment dynamics. Over the course of training, this distribution converges to a 
deterministic policy and suggested action for each state, as the agent exploits rewards it has 
already experienced based on the policy update rules defined. This results in better convergence 
stability as well as a more generalizable policy than obtained via value methods.  This class of 
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DRL methods also helps addressing perceptual aliasing, whereby it can better differentiate 
between very similar states to yield the optimal action probability distribution [32].  

PG methods, however, do present a few technical issues. Excessive policy changes can hinder 
training, as it may be difficult to map changes between policy and parameter spaces directly. 
Even very small differences in parameters can cause significant variations in performance, and 
a single overly large “incorrect step” for the policy update can thus lead to great errors in 
approximated action values. Improper learning rate may anneal or overinflate the gradient, 
which may lead to policies being stuck in local optima. Trust Region Policy Optimization 
(TRPO) is an iterative method developed to address some of these limitations [42]. It uses a 
combination of the Minorize-Maximization (MM) algorithm and a “trust region” for policy 
updates. The MM algorithm approximates a lower bound for the received reward to guarantee 
monotonic improvements in policy, such that with each iteration it either improves or stays the 
same, theoretically converging to the optimal policy. This lower bound, also known as 
surrogate advantage, is calculated using Eq. (26): 
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Here 'Y denotes the updated policy and 'YC the old policy used to estimate improvements. 
Generalized Advantage Estimation (GAE) is an improvement on these estimators that uses an 
exponentially weighted average of the k-step estimators [43]: 
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The trust region adjusts the step size for policy updates based on the objective function 
curvature and differences with the approximated one. This ensures the magnitude of policy 
updates is proportional to the confidence level within the trusted region. Anything outside this 
trusted region, where the approximation error is deemed too large, fails the improvement 
guarantee, and thus is not considered. To quantify the difference among the old and new 
policies for states already visited, restricting the size of the update step based on the trust region, 
the Kullback–Leibler (KL) divergence is calculated according to Eq. (28):  

 
oaI(Å||ÅC) = 	D,~$;<

[oaI('Y(∙ |3)| à'YC
(∙ |3)b] (28) 

Combining these equations yields the theoretical TRPO update according to Eq. (29): 

 ÅC^* = -`â,-.Y	ℒ		(ÅC , Å
	)  

(29) 
 s.t. oaI(Å||ÅC) ≤ Ü  

where δ represents the KL-divergence limit. TRPO introduces a backtracking line search to the 
update rule, which addresses approximation errors introduced via Taylor series expansion 
required from Lagrangian duality theory [42]. The full pseudocode for the TRPO 
implementation is shown in Algorithm 1 below.  
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Algorithm 1:  Trust Region Policy Optimization (TRPO) with generalized advantage estimation 
(GAE) applied to WTE case study 
1: 
 

2: 
3: 
4: 
 

5: 
6: 

 
7: 
8: 
9: 

10: 
11: 
12: 

Initialize: Starting policy parameters Å/, value function parameters ∅/ , KL divergence limit Ü 
, backtracking coefficient 	α , maximum number backtracking steps 	P 
for k = 0, 1, 2, … do 

       Generate stochastic demand scenarios <C
<
	according to Eqs. (22)-(23) 

       Collect set of trajectories oC by running policy 'C 	(ÅC) on the environment including  
               decision  for starting capacities in each sector at ; = 0   
       Estimate advantage m"	$< 		 using Eq. (27) based on current value function G∅C  
       Formulate estimates for policy gradient âCã   average KL-divergence Hessian-vector åCÖ  
               product function based on current sample 
       Use conjugate gradient algorithm to compute divergence gradient and trust region 
       Compute proposed policy change step ∆C 
       Update the policy by backtracking line search as ÅC^* =	ÅC 		+ 	∆C 
       Refit value function based on observed trajectories and policy 
end for 

    

 
Figure 3: DRL decision process for both the low flex (DRL-LF) and high flex (DRL-HF) 
implementations. Magnitude of expansion limited to 200tpd in blue boxes for low flex 
implementation, no other expansion levels examined. 

Figure 3 gives an overview of the logical progression of the proposed approach following 
Algorithm 1, for both the DRL-LF and DRL-HF models. It compares and contrasts with the 
logic depicted for the FDR model in Figure 2. The state observation in any given year becomes 
an input into the feedforward Artificial Neural Network (ANN) parametrized policy, where an 
action is sampled from the underling probability distribution. One additional hidden layer is 
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implemented in DRL-HF compared to DRL-LF to account for added action-state complexity, 
with output layers matching action space size. 

4.3.3 DRL Agent Training and Testing 
Given the objective to yield a generalizable policy for agent-environment interactions, i.i.d. 
stochastic scenarios for FW processing demand are generated, as seen in line 3 of Algorithm 
1. This leads to an infinite number of potential state action pairs, further justifying the use of a 
PG approach. DRL agent training is executed for 1.5 Million timesteps, equivalent to 100,000 
simulated 15-year episodes for the agent, using é	= 0.01, è = 0.8 and maximum number of 
backtracking steps ê = 10. Training process is fully non-anticipative, in that there is no look 
ahead bias for the agent, and operational decisions are purely based on state observations at the 
that time step. The policy built inside the ANN, therefore, while learning from past mistakes 
and interactions, is not based on any information on future states, as the i.i.d. scenario 
generation method ensures no trajectory inside the environment is the same.  Furthermore, 
given the observation in the first few training episodes that the agent would try to build past 
the maximum capacity to capitalize on potential rewards, an imaginary reward penalty of –S$1 
is given in time steps where the capacity is at 8123 ,	and the selected action is not equal to 0. 
This is a common approach to deal with constraints in DRL, while balancing agent exploration 
tradeoffs, as further discussed in Section 6.  

 
Figure 4: Training reward evolution for two different initializations of TRPO. Line smoothing 
factor of 0.8 applied to increase visual clarity. 

The penalty is removed during the testing phase once the DRL agent has learned the form of 
the constraints implicitly through training. All benchmarking with results in Cardin and Hu 
[40] is conducted using the same sampling functions generating 2000 i.i.d. scenarios. To do 
this, the agent-environment interaction framework is slightly modified as successive state 
observations are explicitly defined for the 	<<

" parameters in the observation array defined in 
Section 4.3.1 , while the 8<" parameters are determined based on agent actions and expansion 
decisions. Testing is conducted with several subsets of 2000 scenarios to ensure consistency of 
results, and to assess the generalizability of the policy. The episode reward evolution of the 
first one third (500,000-time steps) of the training process for two different initializations of 
TRPO DRL-LF agent can be seen in Figure 4, showing the typical training reward evolution 
using this algorithmic approach. The different time-resolutions introduced in this section and 
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implemented for the remainder of this manuscript, as well as how they relate to each other, are 
summarized in Figure 5.  

 

Figure 5: Summary of time resolutions used across training and testing process 

5 Results and Discussion 
5.1 Summary 

Optimization results published in Cardin and Hu [40] provide readily usable guidelines to 
decision makers in terms of initial design, and triggering signals to exercise flexibility during 
operations. The results are used to compare with the results obtained in this study using DRL. 
For the Centralized Inflexible system used as benchmark, the authors showed via stochastic 
optimization that the system should deploy 600 tpd capacity at t = 0 in the Western area of 
Singapore and keep this capacity throughout the project lifetime. Considering a discrete 
modular capacity of 50 tpd for the flexible decentralized design (the Decentralized FDR model 
considered here), the authors showed that the optimal decision rule parameters are z∗ = 1, 
{∗ = 0.5, and |∗ = 4. In plain words, the optimal decision rule is that if capacity mismatch at 

the system level in the year just ended is greater than 1×50 tpd = 50 tpd, and if capacity 

mismatch in sector i is greater than 0.5×50 tpd = 25 tpd, then expand capacity by 4×50 tpd 

= 200 tpd in that sector. Note that the above rule contains a nested if statement, so that if there 

is a capacity mismatch at the system level, but no sector satisfies the required capacity 

mismatch, then capacity is deployed at the main site (sector 1), else no additional capacity is 

added to the system. The logic of the FDR model is depicted in Figure 2. The DRL system 
solutions are more complex, so they are discussed further below. 

The combined performance for the best Centralized Inflexible design, best performing 
Decentralized FDR design, as well DRL-LF and DRL-HF models proposed in this study are 
summarized in Figure 6. The simulation outputs show that embedding capacity expansion 
flexibility improves system performance significantly under uncertainty, with all flexible 
designs improving ENPV compared to the benchmark system. Implementing the DRL based 
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flexibility design process yields even greater performance improvements and extracts further 
value from flexibility than obtained with the FDR model. 

  

Figure 6: Cumulative distribution functions showing lifetime performance of different design 
alternatives. Vertical lines with corresponding markers represent ENPV of each model over 
2000 simulated scenarios. 

Table 1 provides further details on the stochastic performance results along different risk utility 
metrics. This is important to account for the possibility that decision-makers may show 
different risk preferences. For risk-neutral decision-makers, the analysis shows that both DRL 
models provide improved ENPV and extract additional VoF from uncertainty as compared to 
previous solutions. All flexible models improve exposure to downside risks (Value at Risk - 
VaR, 5%) as compared to the centralized system, which is important for risk-averse decision-
makers. They also help risk-seeking system operators capture better upside potential (Value at 
Gain - VaG, 95%). Unsurprisingly, the DRL-HF model is able to extract the most value from 
uncertainty, along each metric. The results are discussed further below. 

Table 1 : Design decision making table for WTE system (all values in Million S$) 

Metric (1) 
Centralized 
Inflexible 

(2) 
Decentralized      

FDR 

(3) DRL-
LF 

(4) DRL-
HF 

Best 
Solution? 

ENPV 22.19 28.73 32.55 37.45 DRL-HF 

VoF 0 6.54 10.36 15.26 DRL-HF 

VaR, 5% 13.27 23.18 19.33 26.59 DRL-HF 

VaG, 95% 30.41 34.25 40.06 47.11 DRL-HF 

 

5.2 Relative Performance Analysis 

The numerical results for the two DRL systems suggest that the DRL methodology has the 
potential to complement and improve existing approaches to design engineering systems for 
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flexibility. Looking back at the first objective from Section 4, the analysis shows that the 
proposed approach does help support design of real-world systems operating under uncertainty. 
The ENPV compared to the Centralized Inflexible benchmark is improved by 47% and 69% 
for the DRL-LF and DRL-HF implementations, respectively, and by 13% and 30% respectively 
as compared to the Decentralized FDR system. As an aside, no implementation relying only 
on dynamic programming is presented here, given the significant dimensionality of the problem 
– which is also an important limitation of such method. Also, it was shown previously that a 
decision rule approach can estimate to a very similar degree the value of flexibility obtained 
using dynamic programming [11], thus removing justifications for such comparisons.  

The NPV improvement in any given scenario occurs because of better transportation cost 
management as compared to a Centralized Inflexible design. It is also due to exercising the 
expansion options at a more optimal time compared to a Decentralized FDR design. NPV 
instances greater than S$39 Million for the DRL-LF design were removed during ENPV 
calculations in Table 1 since they violated maximum installed capacity of 600 tpd, due to the 
stochastic nature of the policy. As this would allow them to capture more upside potential 
compared to alternative solutions, the choice of removing them was made to allow for more 
appropriate benchmarking against other methods. Nonetheless, this represents only the very 
tail end of the distribution (less than 1% of simulated scenarios), and thus Figure 6 is still 
representative of their relative performance.  

It is observed that the DRL-LF design yields worse downside performance and overall 
variability per episode (equivalent to one 15-year simulation) compared to the FDR model. 
These indicators create valid concerns and suggest further fine tuning of the solutions may be 
needed to increase acceptability in a real-world setting, where VaR is an important metric for 
decision-making. The larger capacity expansion flexibility allowed by the DRL 
implementation may favor looking for upsides at the cost of neglecting downsides, although 
ultimately the effect of increased upside potential remains dominant. Including flexibility 
strategies more focused on addressing downside risks, such as abandonment or temporary 
shutdowns, could potentially aid in mitigating these effects, and yield a narrower CDF profile. 
This kind of trade-off is something that could be determined based on individual decision 
makers preference during design space exploration activities.  

Nonetheless, there are certainly scenarios where the flexible solution is not guaranteed to be 
stochastically dominant relative to the non-flexible solution, given the associated costs of 
flexibility, and form of the design problem itself, highlighted by the long downside tail for 
DRL-LF in Figure 6. Visual inspection of DRL-LF/DRL-HF policy and scenarios suggests that 
this may be due to simulations with relatively higher initial demand and relatively much lower 
growth rates over time in specific sectors. This can lead the DRL-LF agent to overbuild in 
certain sectors in early years at a significantly higher cost than for the inflexible design, 
possibly based on overestimations of future demand evolution within the neural network 
policy, while also incurring higher transportation costs. Interestingly, the more modular 
capacity expansion allowed in DRL-HF is much less sensitive to these cases, as smaller 
capacities are normally deployed in early years in these scenarios. This helps to spread out the 
investment risk over time, and allows the episode policy to be progressively updated according 
to the uncertainty realized, limiting the instances of uncorrectable overbuilding in certain 
sectors and associated downside tail magnitude compared to DRL-LF.  
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5.3 Capacity Evolution and Action Probability Scenario Example 

Figure 7 compares capacity evolution for an example distributed demand scenario for the 
optimal Decentralized FDR, DRL-LF and DRL-HF designs. The scenario is characterized by 
unusually high waste amount in sector 3 (S3), and in sector 4 (S4). The FDR model yields 
expansions in sectors S6 in year 2 and in S1 in year 6. The DRL-LF design instead can 
recognize the excess demand in S3 and expands there in year 3, while expanding in S6 later in 
year 7. This is a better expansion strategy than for the FDR model, as the difference between 
sectors S3 and S6 demand outweighs the extra transportation cost in early years. The DRL-HF 
model matches demand and capacity even more closely, with incremental expansion decisions 
in sectors S1, S3, S4 and S6 at various stages of the project when the action is estimated to 
return the highest expected value. Given more dynamic policies and this specific food waste 
scenario across S1-S6, the project NPV increases from S$31.5 Million for the Decentralized 
FDR design to S$32.6 Million and S$34.8 Million for the DRL-LF/HF designs, respectively.  

 
Figure 7: Example distributed food waste scenario leading to demand scenarios in sectors S1-
S6 (top), corresponding design capacity expansion for FDR (bottom left), DRL-LF (bottom 
center) and DRL-HF designs (bottom right). Legend in top plot applies to all items. 

Figure 8 gives a visual representation of the decision-making process for the DRL-LF agent 
over time, as a function of sampling probability for different actions, using the same distributed 
demand scenario in Figure 7. Following Algorithm 1, the sampling probabilities for a specific 
action reduces significantly once that action has been selected, or if another capacity expansion 
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decision is executed, as it is unlikely that two expansion decisions in consecutive time periods 
are made. Gradual changes are normally attributed to additional uncertainty realizations made 
in each year as the project is underway. Using year 2 observation as input, the FDR model 
follows the top nodes from Figure 2 as Procedure 1 and 2 are true, leading to an expansion 
decision in sector S6 (see Figure 7). When the same state observation is given as an input to 
the DRL agent, following the logical progression from Figure 3, the most likely action returned 
is no expansion with a 65% probability. Instead, the expansion probability rises significantly 
for sector S3 (41%) in year 3 based on observed increasing demand, leading to that action being 
selected. This suggests that the agent can consider the problem more holistically, as while the 
per sector transport costs are highest for sector S6 that year, it may estimate that total costs in 
the long run will be lower if expanding in sector S3, while continuing transportation from S6. 
In most years, transport costs averaged 3-5% of total system cost, thus basing the expansion 
decision solely on that may also miss out on some potential value adding flexibilities.  

 

Figure 8: Action sampling probabilities for the example distributed demand scenario in Figure 
7, for DRL LF system. Actions maintaining a probability of being selected below 5 % through 
the project duration are not included. 

In real-world system operations, a decision maker would be able to refer to the optimal policy 
and access the associated action space probabilistic distribution based on state observations 
(see Figure 8). Looking at year 7, about halfway through the project, can better highlight how 
this distribution of actions could be used to fit the risk criteria of individual engineering design 
projects and influence the choice to deviate, or continue with the deterministic policy. For the 
FDR model, the system is not able to consider expansion, as the max installed capacity of 600 
tpd has already been met. The DRL-LF system also suggests no expansion (i.e., action A0) as 
most likely (51%), however also presents expansion in sector 6 as feasible (39% probability) – 
and it ultimately chooses it for this episode due to the stochastic sampling of the policy. Risk-
tolerance information, however, could help guide this sampling process (or deviation from 
deterministic policy) in a more systematic and value enhancing manner, as long as the 
difference in probability between two or more actions is relatively small. In this case, a more 
risk averse decision maker may decide to follow the deterministic policy (i.e., action A0), 
minimizing investment risk while also integrating one additional year of uncertainty realization 
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before possibly making an expansion decision. A more risk prone decision maker, however, 
may recognize that proceeding with sector 6 expansion in year 7 could allow an additional 
year/capacity for increasing waste processing revenues compared to the deterministic policy, 
which does carry significant investment risk in case demand does not materialize. In this 
particular demand scenario, the deviation from the deterministic policy to proceed with early 
sector 6 expansion would lead to an increase in NPV for the project, although waiting an 
additional year is likely to provide better protection against possible downsides, hence the risk 
tolerance tradeoffs. On the other hand, in year 3, it may be more likely for a risk-averse decision 
maker to choose to diverge from the deterministic policy (A3) and select no expansion (A0) in 
light of their very similar sampling probability (note that this was not the case in this episode), 
for the same reasons discussed above. Nonetheless, there is one obvious DRL action 
recommendation for the majority of system operation, thus if some risk tolerance information 
is available for decision making, possible deviation from the deterministic policy should only 
be considered for years 3 or 7 in this case, as shown in Figure 8.  

5.4 Incorporating the Computational Insights in Decision-Making 

In the DRL-LF implementation, the primary insight is the optimal triggering signal to exercise 
the flexibility, as capacity expansion decisions are limited to the level obtained from the FDR 
approach. In terms of starting capacity, the same conclusion is reached as in the FDR model, 
to install the initial capacity of 200 tpd in Sector 1 (main site). This is a result of this decision 
being the most likely to lead to the lowest transportation cost over system lifetime based on the 
assumptions presented in Appendix. In terms of optimal capacity expansion strategy, similar 
conclusions are also reached. The FDR approach yields expansion in sectors S1 and S6 for 
most simulated scenarios, resulting from those sites presenting the highest collection distance 
and thus transportation cost for undersized capacity. Exceptionally high demand scenarios in 
sectors S4 and S5 do occasionally lead to expansions within their area, but this is often 
constrained by the form and resulting timing of the decision rules. The DRL-LF approach 
presents a broader distribution of possible actions. Other than no expansion (A0), the highest 
probability is found for expansion in sector S1, followed by sectors S6, S5, S4, S3 and S2 in 
that order, which seems nearly optimal given the assumptions presented in Appendix.  

Evaluating the DRL-HF design yields further insights and an increased value of flexibility 
compared to the DRL-LF implementation. In terms of starting capacity, the optimal suggested 
rule is between 100-200 tpd of initial capacity installed at the main site. The findings on 
expansion magnitude primarily confirm the results from the decision rule approach as the 
highest probabilities are generally found for 200 tpd action for each sector, to take best 
advantage of economies of scale. The magnitude of the EoS factor is an important determinant, 
and it is expected that for reduced EoS the probability of selecting smaller, more modular 
expansions would increase. In terms of expansion decision distribution, a visual inspection of 
past actions distribution shows that unlike in the DRL-LF implementation, the solution can 
likely be further optimized. The primary indicator is a relatively high probability of selecting 
action A5 (expand by 100 tpd in Sector S2) compared to the DRL-LF implementation. Aside 
from cases of extremely high demand in S2, this is unlikely to be the optimal decision as more 
significant reductions in transportation costs can be achieved by expanding in other sectors. 
This suggests that the DRL-HF agent is somewhat stuck in a local optimum, although more 
training and different initialization conditions offer potential solutions to this issue.  
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In a practical setting, in any given year, the system state (capacity and demand in each sector) 
would become an input to the optimal policy, which would return an action probability 
distribution as introduced in Figure 3 and presented in Section 5.3. This distribution can be 
used as a proxy for evaluating the estimated expected value of different actions. Having access 
to this kind of distribution rather than a single recommended action obtained via FDRs, could 
allow decision makers to integrate their own expertise and insights into policy outputs for 
choosing system operation strategy, increasing the applicability to real world situations. The 
maximum relative difference in probability of selecting different actions to justify a potential 
deviation from the deterministic policy is something that will vary among engineering systems, 
based on associated uncertainty and action space size, with potential adjustments through 
decision makers risk profile and project specific insights. Future work could focus on 
determining the appropriate thresholds to warrant considering deviation from the deterministic 
policy, and the resulting implications for system operation. In most decision time-steps, 
however, it is still expected that the deterministic policy would be followed, with decision 
makers progressively updating system state description year to year and implementing the 
resulting recommended action. 

Furthermore, say an important but possibly uncertain parameter like fuel cost changes 
significantly by year 2, the DRL agent can observe the change, and dynamically adjust the 
policy to match the new environment based on a few computationally inexpensive interactions. 
This is often not the case in standard methods to analyze flexibility, where initial assumptions 
are usually maintained throughout implementation to compute stochastically optimal decision 
rules – although approaches such as post-optimality sensitivity analysis can help determine the 
thresholds for which these solutions break down. These examples and the scenario presented 
in Section 5.3 give some intuition on how the action distribution changes based on underlying 
state observations, and thus how the current state of the system could be used as an input into 
the DRL policy at various stages, helping to determine preferred operation strategy.  

5.5 Reproducibility and Other Limitations 

Comparing the original results in the study by Cardin and Hu [40] to the DRL solutions, the 
performance improvements are visually striking, but their interpretation should be conducted 
carefully. Among others, the stochastic nature of the TRPO policy means that there are cases 
where the DRL agent violates the constraints imposed on maximum capacity. This is a result 
of the distribution for action selection, where the probability of “illegal” actions shrinks very 
significantly throughout the training process, but never reaches zero. While an attempt was 
made to manually remove these instances during the testing process, it is possible there may 
have been an inflation of upside performance. More advanced approaches such as chance 
constrained DRL offers potential solution for safety critical engineering systems design [44]. 
There may be logistical constraints which make implementation of DRL solutions in real life 
more complex or more costly than it appears. Furthermore, the dynamic and adaptable nature 
of DRL decision making is not as readily understood in terms of an actual project’s 
implementation. The policies produced may not be fully generalizable, and the question of how 
best to incorporate computational insights into the design process and system operations 
remains an open question for future research.  

To evaluate results limitation, an important issue is whether the DRL agent overfits the 
environment’s characterization. If this occurs, it may exhibit a significant drop in performance 
as soon as stochastic parameters (e.g., volatility σ, drift µ)	are changed, as has been recorded 
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in other studies [45]. Out of sample testing is done to assess the potential magnitude of this 
effect, where the agent trained on the parameters and assumptions presented thus far is tested 
using scenarios sampled from different distributions i.e., using	w:Fb = 8% and 	wA<GA = 25% in 
Eqs. (22)-(23). 

Table 2 captures the percentage deviation from the results obtained using 	w@;?"B2: = 16.7%, 
shown in Table 1. For the case with	w:Fb = 8%, ENPV is improved for all designs, and the 
greatest increments come from the DRL models. VoF worsens for the FDR design – a typical 
observation when a flexible system faces less volatility, since there is less uncertainty to deal 
with – but it improves for both DRL models. This observation is striking, but also seems 
counter to the literature on real options analysis. The case with	wA<GA = 25% suggests there is 
an interesting interaction between the ability to adapt dynamically, and reinforcement training. 
VoF improves for the FDR model due to increased volatility – the expected flip side of the 
observation above – but it worsens for both DRL models. This may be because with higher 
volatility, the scenarios are too different from those encountered during training, and the 
optimal adaptation strategy is less efficient.  

The significant improvements in VoF for both DRL models in the low volatility case, however, 
suggest that the policy learned during training can generalize well for some level of unseen 
conditions (i.e., lower volatility scenarios), and that the agent is able to extract additional VoF 
from such conditions. The results suggest, however, that the generalizability of the policy could 
be related to the degree of uncertainty experienced in the testing conditions, compared to that 
found during training. Nevertheless, this result is interesting as it illustrates the tradeoff 
between potential value gained from having the ability to adapt, and the limitations of training 
based on a particular set of scenarios. Further studies may help understand when a particular 
model no longer generalizes well to unseen conditions or level of uncertainty.  

Table 2: Out of sample testing of performance of design alternatives considered in this study 

Case Metric (1) Centralized 
Inflexible 

(2) Decentralized 

FDR 
(3) DRL-LF (4) DRL-HF 

	ìcde = 
8% 

ENPV +5.6% +3.8% +8.6% +6.4% 

VoF 0% -2.3% +15.0% +7.6% 

VaR +37.9% +41.4% +54.6% +14.3% 
 

VaG -11.8% -5.2% -3.1% -5.9% 
 

	ìfghf	= 

25% 

ENPV -11.6% -6.3% -11.4% -8.8% 
 

VoF 0% +11.7% -10.97% -4.73% 

VaR -107.5% - 26.6% -59.6% -34.6% 
 

VaG +8.5% +4.1% +2.3% +3.4 % 
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It should also be noted that the limitations and sensitivity of results discussed in the above 
section are, to a certain degree, inherent to the fact that historical data was used to build the 
stochastic model in order to allow benchmarking with previous results. Future work should 
explore the performance of this approach when completely unforeseen events and disruptions 
are considered, for instance using jump diffusion models, or disruptions that are manually 
generated. While recent studies suggest that flexibility may play an important role in dealing 
with unforeseen events [26, 46, 47], more research is needed to evaluate how the proposed 
approach fares under such conditions.      

6 Conclusions 
This study proposes a novel methodology based on deep reinforcement learning (DRL) to 
complement existing approaches to analyze flexibility – also referred as real options – in 
engineering systems design. The proposed approach helps explore alternative solutions or 
configurations through thorough analysis of the data more systematically and uncovers 
solutions that may not be considered using standard design methods. Building upon an 
approach based on decision rules and existing design frameworks, an example implementation 
is shown on the design and analysis of a waste-to-energy (WTE) system in Singapore, with 
capacity expansion flexibility across spatial and temporal dimensions. The results confirm that 
embedding flexibility in engineering systems under uncertainty improves expected 
performance significantly as compared to stochastically optimal, but inflexible designs. 
Furthermore, they show that the DRL approach produces highly adaptable and dynamic design 
and decision rules to navigate an uncertain environments, thereby further improving the 
solutions identified in a previous study [40]. Integrating the approach as part of the framework 
developed in [9] also shows potential for supporting the phases focusing on concept generation, 
as well as design space exploration.  

There are several limitations that can be addressed through future research. Future efforts could 
investigate integrating additional flexibility (i.e., all generic real options) and uncertainty 
sources (i.e., fuel costs, waste purity rate, etc.) into the analysis, to help determine the problem 
dimensionality for which this approach is no longer suitable. Increased integration of year 0 
design decisions, accounting for technical enablers, could help uncover further value for the 
proposed approach. Multi-objective reward functions, looking at sustainability of the whole 
project through ESG metrics, for example, could also be implemented with some very 
important operational insights. The introduction of random “shocks” or perturbations to 
environment dynamics could help investigate the potential for DRL to design more resilient 
engineering systems. More advanced statistical analysis of agent actions under different 
conditions could also help to clarify operational insights and reformulation of the modeling 
outputs as usable guidelines. Finally, it would be interesting to understand what kind of 
environments and design problems are better suited for a stochastic rather than deterministic 
sampling policy on action space (i.e., select the highest probability), and the resulting 
implications on system performance. 
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9 Appendix 
Table A1: Parameters and assumptions for the waste-to-energy system design problem. All 
values and assumptions are the same as in the study by Cardin and Hu [40]. 

Parameters Definition Assumptions Comments and Source 

!!"# unit cost for disposing 
residues S$77 /ton 

This is the dispose cost which should be 
paid by AD plants to dispose of residues 
in incineration plants [48]. 

!"#$ vehicle capacity for 
collecting wastes per trip 25 tonnes  

!%&'( unit cost for fuel 
consumption S$0.4/km 

The price of diesel fuel is S$ 1.625 in 
Singapore [49]. It is assumed one liter of 
diesel fuel can last for 4km of travel 
distance. 

$)*" 
distance for collecting 
wastes within sector	& 54km 

It is assumed that the distances for 
collecting waste within the 6 sectors are 
the same. This distance is assumed based 
on Google map 

$+," 
distance for transporting 
wastes from sector	& to 
the main sector 

0km, 20km, 
25km, 29km, 
36km, 40km 

0 km represents the transporting distance 
of the main site. It is assumed that no 
additional effort is required to 
transporting the wastes to the main site if 
the wastes are collected within the main 
site. The rest numbers are represented as 
the distances from other sectors to the 
main site and are assumed based on 
Google map.  

'-('"-) 
amount of recycled food 
wastes at year * (in 
sector &) 

274 tpd 

(ton per day) 

The total recycled food wastes in 
Singapore in 2013 is 100,000 tonnes 
[50].  

+. electricity generation rate 230 kwh/ton 

It is assumed that the biogas generation 
rate is 150 m3/t [51]. The electricity 
conversion rate is 35% and only 80% of 
the generated electricity can be sold to 
power grid [52].  

,-* unit tipping fee for food 
wastes S$65 /ton 

It is assumed to be slightly lower than 
!!"# to encourage organic waste 
separation 

,' unit selling price for 
electricity S$0.27/kwh It is estimated based on the Singapore 

electricity tariff in 2013 [53]. 

K Coefficient parameter for 
cost function 305,288 It is estimated based on the real data 

from [52]. Detailed analysis can be 
found in [54]. A reasonable range of 
economies of scale factor is 0.6 to 1.0. - economies of scale factor 0.8 

. unit land rental fee for 
the installed capacity S$816/tpd It is generated based on [11]. 
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σ residues rate for food 
wastes 5% 

The residues rate for incineration 
technology is 10% in Singapore [55]. 
The resides rate for AD is assumed to be 
less than 10% since it has high efficiency 
[56]. 

ω purity rate for food 
wastes 70% 

In Singapore, the food wastes from 
industrial and commercial areas have 
about 30%-40% impurities [5] 

T lifecycle period 15 Long-term lifecycle period 

1 discount rate 8% A general discounted rate 

 

 

 

 

 

 


