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The generation of a viscous-inviscid instability through scattering of an acoustic wave
by localised and distributed roughness on the upper surface of a NACA 0012 aerofoil
is studied with a time-harmonic compressible adjoint linearised Navier-Stokes approach.
This extends previous work by the authors dedicated to flat plate geometries. The key
advancement lies in the modelling of the inviscid acoustic field external to the aerofoil
boundary layer, requiring a numerical solution of the convected Helmholtz equation in a
non-uniform inviscid field to determine the unsteady pressure field on the curved aerofoil
surface. This externally imposed acoustic pressure field subsequently drives the acoustic
boundary layer which fundamentally determines the amplitudes of acoustic-roughness
receptivity. A study of receptivity in the presence of Gaussian-shaped roughness and
sinusoidal distributed roughness at Mach number M∞ = 0.4 and Strouhal numbers
S ≈ {46, 69, 115} shows the effects of various parameters, most notably angle of attack,
angle of incidence of the externally imposed plane acoustic wave and geometry of surface
roughness; the latter is varied from viewpoint of its placement on the aerofoil surface
and its wavelength. The parametric study suggests that non-parallel effects are quite
substantial and that considerable differences arise when using parallel flow theory to
estimate the optimal width of Gaussian-shaped roughness elements to provoke the
greatest response. Furthermore, receptivity amplitudes for distributed roughness are
observed to be generally higher for lower angles of attack, i.e. for less adverse pressure
gradients. It is also shown that the boundary layer is more receptive to upstream-
travelling acoustic waves.

Key words:

1. Introduction

Aircraft manufacturers continually seek fuel-burn reduction technologies that allow
aircraft to become more efficient. Aerodynamic surfaces with extended laminar flow have
been estimated to potentially provide as much as a 5% decrease in fuel consumption.
This technology is the focus of continued research and development, having yet failed to
deliver on its biggest promises. Boeing have had early success with its natural laminar
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flow 737 MAX AT Winglet, whereas Airbus have recently conducted in-flight experiments
with a modified A340 to probe the feasibility of building and operating natural laminar
flow wings through the Clean Sky BLADE project.

Accurate modelling of laminar-turbulent flow transition and understanding the phys-
ical mechanisms driving this process are key to enabling this technology. Receptivity,
the “birth” process of boundary layer disturbances, is the first stage of transition
and is comparatively less well understood than primary instability growth, the next
stage of transition in a low-amplitude disturbance environment. However, it is not
only the amplitude of the external forcing that affects the route to transition; the
type of freestream disturbance or wall forcing, in addition to its spectrum, also play
an important role. Ultimately, it is receptivity that determines how successful any
disturbance environment is in exciting boundary layer instabilities. Therefore, receptivity
largely governs the path to breakdown into turbulence, both qualitatively, by promoting
different growth mechanisms, and quantitatively, by setting the initial amplitudes of
boundary layer disturbances.

The diversity of combinations between free-stream and wall disturbances, types of
boundary layer instabilities, and flow regimes have made receptivity theory very fertile
ground for research. The fundamental mechanism of receptivity, however, remains un-
changed in most of these cases. The unstable modes of the boundary layer spectrum are
excited when resonance occurs between the spatial and temporal scales of the forcing field
and those of a particular eigenmode described by linear stability theory; mathematically,
it can be seen as an energy transfer between the particular forced solution to the governing
equations and the eigenmode of the corresponding homogeneous problem. In general, the
main goal of receptivity studies is to quantify the so-called receptivity coefficient which
is often defined as the ratio between the amplitude of the generated modal instability
and the amplitude of the free-stream disturbance.

Throughout the 70’s, receptivity theory and experiments were hindered by the lack of
a proper understanding of how a free-stream disturbance is converted into a boundary
layer eigenmode such as a Tollmien-Schlichting (T-S) wave. In the context of acoustic
receptivity there was no known mechanism by which the acoustic boundary layer signa-
ture, i.e. the Stokes layer, could trigger the development of boundary layer instabilities
since, in itself, this forced disturbance is not unstable. The key breakthrough came
from a series of papers by Goldstein (1983, 1985); Goldstein et al. (1987) and Ruban
(1985). They reasoned that the generation of instabilities in a laminar boundary layer
arises as a consequence of a double-resonance mechanism involving conversion of long
wavelength free-stream acoustic disturbances into T-S waves. The length-scale reduction
mechanism occurs in non-parallel flow regions possessing variations over length-scales of
the order of the naturally occurring eigenmode wavelengths. This includes the leading
edge where the boundary layer is extremely thin and rapidly growing. The second class
of nonparallel flow regions is much broader. It includes any region with a feature causing
a flow perturbation on a short scale of the order of the instability wavelength. Roughness
elements, surface discontinuities, surface waviness, separation bubbles and suction strips
constitute examples. It was thus shown that T-S waves emanate from the scattering
of the Stokes layer in the localised region where the flow is strongly non-parallel. The
basic ideas of Ruban and Goldstein’s theory are also applicable to vortical free-stream
disturbances (Kerschen 1991; Duck et al. 1996) and to the generation of other types of
boundary layer instabilities such as cross-flow waves (Crouch 1993; Choudhari 1994b). In
general, vortical waves have been found to be more efficient exciters of travelling cross-
flow instabilities, while acoustic waves are the principal instigators of two-dimensional
instabilities such as T-S waves. Our focus here will be on the generation of T-S waves by
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sound in the presence of surface roughness. For other aspects, the reader is referred to
several reviews of receptivity theory published over the years, including Reshotko (1976),
Goldstein & Hultgren (1989), Saric et al. (2002) and Reed & Saric (2015).

The triple-deck theory of Ruban and Goldstein set the guiding principles for acoustic-
roughness receptivity modelling. Crouch (1992a,b) and Choudhari & Streett (1992) used
the fundamental ideas from asymptotic theory to develop a quasi-parallel flow, finite-
Reynolds number theory (FRNT) which was cross-validated with experiments (Wiegel
& Wlezien 1993; Saric 1994). Crouch & Spalart (1995) performed direct numerical
simulations (DNS) whereas Streett (1998) proposed the use of the time-harmonic linear
Navier-Stokes equations. Zhigulev & Fedorov (1987) and Nayfeh & Ashour (1994) were
among the first to propose the use of adjoint equations to determine the amplitude of
boundary layer instabilities. Hill (1995) later provided a complete description of the
properties of linear adjoint systems to the study of acoustic receptivity.

The vast majority of these contributions studied incompressible flow conditions. In
subsonic compressible flow conditions the fundamental mechanism for acoustic receptivity
remains unchanged. Until approximately a Mach number, M∞ = 0.8, the dominant
instability is a viscous two-dimensional wave termed the viscous first-mode. However, at
higher Mach numbers the most unstable wave becomes three-dimensional. Furthermore,
in subsonic flow conditions the finite wavelength of the acoustic waves introduces new
physical phenomena. The interaction between the far-field incident acoustic waves and
the aerofoil becomes relevant. In addition, approaches to calculate the acoustic field
based on viscous-inviscid decoupling are invalid for upstream-inclined waves which have
wavelengths comparable with the boundary layer thickness. This is particularly important
at high Mach numbers and high frequencies. Detailed discussions can be found in
Choudhari (1994a), Raposo et al. (2020) and Raposo (2020).

The triple-deck based asymptotic theory of Ruban (1985) is valid in subsonic flow
conditions for downstream-propagating acoustic waves. Recently, this framework was
extended to transonic flows by Ruban et al. (2016) and the study of upstream-propagating
acoustic waves was carried out by Bernots (2014). Choudhari (1994a) extended FRNT
to compressible flow and studied the effect of Mach number and acoustic wave angle of
incidence over the receptivity coefficient. The author modelled the acoustic field with
the linear stability equations, based on the earlier works of Gaponov (1977) and Mack
(1984). Another important contribution to the analysis of the acoustic field over a flat
plate was made by Duck (1990). He derived high Strouhal number asymptotic solutions
of the linearised unsteady compressible boundary layer equations (LUBLE). These were
later re-derived, corrected and generalised for waves incident at an angle by Raposo
et al. (2019). Moreover, Duck studied acoustic wave reflection and its boundary layer
signature via the inviscid linear stability equations although the results did not agree
quantitatively with those of Mack (1984). More recently, Raposo et al. (2020) carried
out a similar analysis, having introduced an inner Stokes layer to satisfy the no-slip
boundary conditions. The composite acoustic boundary layer profiles were compared
with solutions to the full linear stability equations. In addition to asymptotic solutions,
Raposo et al. (2019) used numerical solutions of the LUBLE to model the acoustic
boundary layer with incident waves impinging at an angle. These solutions were used
to predict acoustic receptivity for the test case suggested by Choudhari (1994a) and
generally good agreement was obtained, except where the acoustic wave is highly oblique
and travels upstream.

The extension of these methodologies to geometries of practical interest such as
aerofoils presents additional problems which have not been considered in the literature.
In fact, the problem of roughness-induced acoustic receptivity over aerofoils has received
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little attention thus far. Kanner & Schetz (1999), Herr et al. (2002) and Würz et al.
(2003) all did experimental studies in incompressible flow conditions. The latter two
also performed DNS based on the local boundary layer edge conditions at the position
of the roughness element, but relied on experimental measurements of such conditions.
Moreover, none of the above publications considered the effect of the acoustic wave angle
of incidence. To the best of our knowledge there are no complete numerical investigations
of the acoustic-roughness receptivity problem in the literature, even though there is
a substantial amount of experimental and numerical work on leading-edge receptivity
(see, for example, Jiang et al. (1999); Fuciarelli et al. (2000); Shahriari et al. (2016)). A
number of publications have also focused on the acoustic-feedback loop involving self-
noise generation at the trailing edge and leading edge acoustic receptivity. In Jones et al.
(2010), for example, DNS is used to investigate leading edge acoustic receptivity on a
NACA 0012 aerofoil at low Reynolds number. For the purposes of this study, we assume
that leading edge acoustic receptivity can be neglected. However, it is noted that, in
the future, this competing receptivity mechanism should be studied alongside acoustic-
roughness receptivity in order to ascertain their dominance or obtain their combined
effect. The outcome is expected to be dependent on the aerofoil geometry, flow conditions
and surface roughness field.

This paper is concerned with presenting a high-fidelity, efficient and numerically robust
compressible acoustic receptivity model applicable to aerofoil geometries. The essentials
of the receptivity modelling we undertake are based on the double-parameter expansion
of Ruban (1985) and Goldstein (1985) of the exact unsteady Navier-Stokes equations
into a number of subproblems which can be solved sequentially. The acoustic receptivity
framework considered herein extends the earlier works of Raposo et al. (2018) and
Raposo et al. (2019), hereafter R18 and R19 respectively, who studied acoustic-roughness
receptivity in a zero-pressure-gradient semi-infinite flat plate problem for incompressible
and subsonic compressible flow. The essential new feature investigated in this paper is
that the inviscid acoustic field is subjected to a mean non-uniform velocity and pressure
field due to the curved aerofoil surface and its finite chord. Thus the treatment of the
acoustic field impacting on the developing boundary layer requires a more sophisticated
approach compared to its semi-infinite flat plate counterpart. Otherwise the overall
approach is similar to that outlined in R18 and R19.

The leading order basic flow and the boundary layer acoustic signature are modelled
with the unsteady compressible boundary layer equations. This is based on the assump-
tion of high Reynolds number flow and negligible wall-normal pressure variations in the
boundary layer viscous region. Transverse pressure variations become significant when
the streamwise wavelength of the acoustic wave is comparable to the boundary layer
thickness, i.e. for high Mach numbers, high frequencies and for near upstream-travelling
waves. The interested reader is directed to Raposo (2020) for a detailed discussion on the
limits of validity. The viscous-inviscid decoupling introduced by boundary layer theory
enables significantly faster computations when compared to the use of the full Navier-
Stokes equations.

The LUBLE-based approach was described by R19 for a flat plate geometry. In
particular, the use of numerical solutions of the LUBLE to model the acoustic boundary
layer ensures finite Strouhal number effects are taken into account. The unsteady motion
modelled by the LUBLE is driven by an unsteady streamwise pressure field at the wall
surface determined, to first order, by solving the inviscid acoustic propagation problem.
The solution is known analytically in uniform flows, e.g. in a zero pressure gradient flat
plate. In complex geometries such as aerofoils, however, the far-field plane acoustic wave
is modified by the varying properties of the basic flow as it approaches the body. In
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addition, a number of phenomena occur in the vicinity of the leading and trailing edges,
including reflection, refraction and diffraction of the sound wave. The precise nature and
importance of each of these mechanisms is dependent on the frequency and orientation
of the incoming acoustic wave, not to mention the geometry of the aerofoil and far-field
flow conditions. Extending the use of the LUBLE to flows over an aerofoil thus requires
solving an additional problem to determine the unsteady pressure distribution at the edge
of the boundary layer. The acoustic wave-aerofoil interaction problem has been studied
theoretically by means of asymptotic expansions by Ayton (2014), and in the context of
leading-edge incompressible acoustic receptivity by Hammerton & Kerschen (1996). The
approach taken by us in this paper is to solve the convected Helmholtz scalar equation
which is a simplification of the linearised Euler equations based on the assumptions
that the flow is irrotational and homentropic. The full acoustic field is thus comprised
of three layers: (i) the far-field plane wave acoustic solution; (ii) the inviscid distortion
of the acoustic wave by means of wave-aerofoil interaction; and (iii) the acoustically-
driven boundary layer Stokes flow. The present paper, to the best of our knowledge, is
the first numerical study of roughness-induced acoustic receptivity in aerofoils using this
methodology.

The roughness-induced steady mean-flow distortion and the generation and growth of
the primary linear instability are modelled with the body-fitted time-harmonic linearised
Navier-Stokes (HLNS) equations (Dobrinsky 2003; Carpenter et al. 2010). In addition,
a fully compressible adjoint methodology is formulated based on the same governing
equations. This work is a direct extension of Raposo et al. (2019) to a body-fitted coor-
dinate system. These models provide a direct and an adjoint method to predict acoustic-
roughness receptivity. They account for non-parallelism and any inherent ellipticity of
the flow physics. The discretised governing equations ultimately require the solution of a
large system of linear equations. The approach taken here is based on an efficient lower-
upper decomposition and subsequent forward-backward substitution. We note that the
high Reynolds number assumption embedded in boundary layer theory used to model the
basic flow and the boundary layer acoustic signature is in formal contradiction with the
use of the HLNS. However, this common approach in receptivity theory has been shown
to yield accurate results (Choudhari & Streett 1992; Dobrinsky 2003; Raposo et al. 2018).

The remainder of this paper is structured as follows. In §2 the various sub-problems
that comprise the acoustic receptivity model are discussed. The governing equations are
presented and the numerical methods implemented to obtain solutions are succinctly
described. Particular attention is paid to the modelling of the three-layered acoustic
field. In §3, the NACA 0012 aerofoil geometry is studied as a test case to demonstrate
the feasibility of the proposed approach. It is shown how the large number of sub-problems
described above can be integrated to form a prediction of acoustic receptivity. Parametric
studies are carried out on the effects of angle of attack, angle of incidence of the acoustic
wave, and location and shape of surface roughness.

2. Acoustic receptivity model

Consider an infinite unswept wing and the Cartesian coordinate system (x∗, y∗, z∗)
centred at a leading edge point, defined as the furthermost upstream point along the
zero-lift axis. The aerofoil is immersed in a subsonic flow at an angle of attack α with
respect to the zero-lift axis. The far-field flow direction defines the x∗−axis. The z∗−axis
is aligned with the leading edge in the homogeneous direction. The y∗−axis is such
that the coordinate system is orthogonal and right-handed, and is oriented towards
the upper surface of the wing. This is the so-called normal-to-leading-edge coordinate
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n

z s

Figure 1: Body-fitted curvilinear orthogonal coordinate system.

system. Furthermore, consider the body-fitted curvilinear orthogonal coordinate system
(s∗, n∗, z∗), shown in figure 1, where s∗ is measured from the flow attachment point
along the upper surface of the aerofoil and n∗ is in the corresponding outward normal
direction. The far-field flow velocity vector is (Ū∞, 0, 0) in the normal-to-leading-edge
Cartesian frame of reference. The velocity components in the body-fitted coordinate
system are denoted (u∗, v∗, w∗). Density, dynamic viscosity, temperature and pressure are
represented by ρ∗, µ∗, T ∗ and p∗ respectively. Time is denoted t∗. The star superscript
indicates dimensional quantities.

Let us introduce the non-dimensional quantities

x =
x∗

cn
, y =

y∗

cn
, z =

z∗

cn
, s =

s∗

cn
, n =

n∗

cn
, t =

t∗Ū∞
cn

, u =
u∗

Ū∞
,

v =
v∗

Ū∞
, w =

w∗

Ū∞
, ρ =

ρ∗

ρ̄∞
, p =

p∗

ρ̄∞Ū2
∞
, T =

T ∗

T̄∞
, µ =

µ∗

µ̄∞
,

(2.1)

where reference length scale, cn, is the aerofoil profile chord and the subscript∞ indicates
far-field quantities.

This paper focuses on linear boundary layer receptivity in subsonic flow conditions
resulting from the interaction of a surface-roughness-induced flow perturbation with
a two-dimensional oblique acoustic wave emanating from the free stream; it neglects
the contributions of leading-edge receptivity to the total flow instability considered in
Hammerton & Kerschen (1996). The scattering of the acoustic wave by the wall-induced
mean-flow distortion generates instabilities of viscous nature (known as first-mode or
T-S waves) in zero or favourable pressure gradient boundary layers, and of viscous-
inviscid nature in adverse pressure gradient boundary layers. In the latter case, the
base flow profile has an inflection point and therefore it supports Rayleigh-type unstable
modes as well as T-S waves. This work is concerned with the quantification of the
initial amplitude of the dominant instability (hereinafter referred to as T-S wave). A
simplified diagram illustrating the acoustic-roughness receptivity problem is in figure 2.
The problem formulation considers the general case of an infinite unswept wing, where
streamwise instabilities tend to be the dominant transition mechanism.

2.1. Flow expansion

The total flow is modelled by the full compressible Navier-Stokes equations. Herein
we assume the fluid to obey the ideal gas law and to be a calorically perfect gas. The
small amplitude of the disturbances to the boundary layer allows for a double parameter
expansion of the flow field to be introduced (Ruban 1985)

q(s, n, z, t) = q̄(s, n) + εwqw(s, n)eiβz + εaqa(s, n)e−iωt + εwεaqb(s, n)ei(−ωt+βz) + ... ,
(2.2)
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Surface roughness

Incident plane acoustic wave

Boundary layer edge

T-S wave

Figure 2: Simplified diagram of the aerofoil acoustic-roughness receptivity problem.

where q = [u, v, w, p, ρ, T ]T is the flow vector. The basic flow q̄ is independent of the
spanwise coordinate because we idealise the wing as being infinite in the z-direction. The
roughness-induced steady mean-flow distortion denoted by the subscript w is considered
to be spanwise periodic with wavenumber β and to grow linearly with εw � 1, where
εw = h∗/cn and h∗ is the maximum height or depth of the roughness element with respect
to the baseline geometry. In turn, the acoustic perturbation denoted by the subscript a is
considered to be time harmonic with angular frequency ω. The disturbance grows linearly
with εa = u∗a,∞(Θi + α = 0)/Ū∞ � 1. The two-dimensional free stream acoustic wave is
incident at an angle Θi ∈ [0, 2π[, where Θi = 0 corresponds to a downstream travelling
wave (aligned with the zero-lift axis) and Θi = π/2 corresponds to a wave impinging on
the upper surface of the aerofoil. The bi-linear flow component denoted by the subscript
b represents the unsteady perturbation correction caused by the nonlinear interaction
between the flow components of order O(εw) and O(εa). In others words, this term
represents the boundary layer disturbance emerging from the receptivity process. The
flow expansion in (2.2) captures the different components of the total flow field to first
order. We neglect higher order correction terms. The remainder of this section describes
and analyses the governing equations of each of the flow components, ultimately leading
to the determination of the instability wave amplitude.

2.2. Base flow

The steady basic flow problem (q̄(s, n) in (2.2)) is tackled with boundary layer theory.
The pressure distribution over the body surface is obtained through an inviscid flow
computation, which is then used to determine the boundary layer solution respecting the
no-slip wall condition. These two steps are described next.

2.2.1. Steady leading-order pressure distribution

There are a number of different approaches ranging in complexity and accuracy to
determine the pressure field at the aerofoil surface. We solve the Euler equations directly
with the open-source high-order spectral/hp element solver Nektar++ (Cantwell et al.
2015). This is necessary since, in addition to extracting the pressure distribution, we
require the steady inviscid solution in the entire domain as a basic flow for a linearised
computation in §2.3.2; the linear unsteady inviscid solution models the acoustic scattering
field due to the incoming acoustic wave interacting with the aerofoil.

For the steady Euler solution, high-order structured meshes are generated with Gmsh
(Geuzaine & Remacle 2009). Nektar++ is parametrised to use a fourth-order discon-
tinuous Galerkin method for the spatial discretisation. The Riemann problem at the
interfaces between elements is solved with an “exact” iterative method. A classical fourth-
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order Runge-Kutta scheme is employed for the temporal discretisation. Computations
typically extend up to three convection periods of the far-field flow across the domain,
guaranteeing convergence up to the desired precision.

Once a steady converged solution is attained, the pressure coefficient on the aerofoil
surface,

cp(s) =
p̄∗e − p̄∞
1
2 ρ̄∞Ū

2
∞
, (2.3)

is the only quantity needed to subsequently perform a steady boundary layer computation
to provide the q̄(s, n) state in (2.2), where p̄∗e is the static pressure at the edge of the
boundary layer to the first order of approximation. The remaining flow quantities are
recovered through isentropic flow relations.

A criticism of our approach could be that the viscous-inviscid coupling is only consid-
ered up to first order, as the effects of the boundary layer on the pressure distribution are
not accounted for. Higher order boundary layer theory could be implemented for more
accurate solutions (Van Dyke 1969). However, we only consider high Reynolds number
applications, for which high-order corrections of order O(R−1/2) can be neglected.

2.2.2. Steady boundary layer field - q̄

Let us denote q̄ = [Ū , V̄ , W̄ , P̄ , ρ̄, T̄ ]T the steady base flow quantities. We restrict
our attention to two-dimensional flows, i.e. W̄ = 0. It is convenient to introduce the
generalised Howarth-Dorodnitsyn transformation (Moore 1951; Stewartson 1951) in order
to eliminate the continuity equation from the system of equations. We define the change
of variable

η =

(
Ū∗e

µ̄∗e ρ̄
∗
es
∗

)1/2 ∫ n∗

0

ρ̄∗ds , (2.4)

and the stream function

ψ =
(
ρ̄∗eµ̄
∗
eŪ
∗
e s
∗)1/2 F (η, s∗) , (2.5)

with

Fη =
Ū∗

Ū∗e
, S =

T̄ ∗

T̄ ∗e
, (2.6a-b)

where the subscript “e” denotes boundary layer edge quantities. For the purposes of this
subsection we consider that all flow and material quantities are made non-dimensional
using local boundary layer edge quantities instead of the far-field quantities used in (2.1).

The steady boundary layer equations (see, for example, Schlichting & Gersten (1960))
are then simplified using (2.4)-(2.6a-b), yielding

∂ (m0Fηη)

∂η
+m3FηηF +m1

(
S − F 2

η

)
= s (FηFηs − FηηFs) , (2.7a)

1

σ

∂ (m0Sη)

∂η
+m3FSη +m0 (γ − 1)M2

eF
2
ηη = s (FηSs − SηFs) , (2.7b)

where,

m0 = µ̄ρ̄, m1 =
s

Ū∗e

dŪ∗e
ds

, m2 =
s

µ̄∗e ρ̄
∗
e

d (µ̄∗e ρ̄
∗
e)

ds
,

m3 =
1

2
(1 +m1 +m2) , M2

e =
Ū∗

2

e

γRT̄ ∗e
.

(2.8)

The subscripts η and s indicate partial derivatives with respect to these variables. The
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Figure 3: Schematic of the acoustic field decomposition.

Prandtl number, the specific heat ratio and the ideal gas constant are denoted σ, γ
and R respectively. Note that the curvature of the body has no explicit influence on
the boundary layer to leading order. Curvature-related corrections appear in high-order
boundary layer theory only (Schlichting & Gersten 1960).

The usual no-slip and isothermal or adiabatic boundary conditions are used. Equation
(2.7) is solved to second-order accuracy, using upwind finite differences in the streamwise
direction and the fully implicit Keller-box method in the wall-normal direction. Newton
iterations are used to arrive at a converged solution of the non-linear governing equations
(see more detail in section 2.5 of Raposo (2020)). The marching procedure is stopped
when the solver fails to converge due to the Goldstein singularity (Goldstein 1948).

2.3. Acoustic perturbation

In this section we study the small unsteady perturbation created by a two-dimensional
acoustic wave impinging on an aerofoil. We follow a technique akin to the one used for
the study of the basic flow as per the illustration in figure 3. Firstly, we calculate the
free-stream acoustic wave solution analytically. We proceed to determine the inviscid
acoustic flow solution in the aerofoil vicinity, which accounts for the reflection of sound
off the aerofoil surface but violates the no-slip boundary condition; in this region, the
steady basic flow is still inviscid but is now modified by the presence of the aerofoil. The
unsteady inviscid pressure field at the aerofoil surface then drives the unsteady motion
in a thin acoustic boundary layer where wall-normal pressure variations are neglected on
the basis that the acoustic wavelength is large compared to the boundary layer thickness
(Ruban 1985; Goldstein 1985). The next subsections are concerned with each of these
subproblems.

2.3.1. Free-stream acoustic wave solution

Our analysis of the acoustic field starts in the far field region, where the uniform basic
flow is unaffected by the presence of the aerofoil. Let us consider a small amplitude
acoustic wave travelling in the free stream with the unperturbed uniform steady flow,

q∞(x, y, t) = q̄∞ + εaqa,∞Υ , (2.9)

where Υ = exp{iαa (−cat+ x+ λ1y)} and q̄∞ =
[
1, 0, 0, p̄∞/ρ̄∞Ū

2
∞, 1, 1

]
. This implies

ω = αaca, where ω, αa and ca denote the angular frequency, streamwise wavenumber
and phase speed of the wave solution. The direction of propagation of the acoustic wave
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is determined by parameter λ1. Its relationship with the more physical angle of incidence
Θi (see definition in §2.1) for subsonic flows is

λ1 = tan (π −Θi − α) . (2.10)

The acoustic-wave dispersion relation is known to be

ca = 1±
√

1 + λ2
1

M∞
, (2.11)

whereas the acoustic-wave amplitude is

ua,∞ =
pa,∞
ca − 1

, va,∞ = λ1ua,∞ , θa,∞ = (γ − 1)M2
∞pa,∞ , ρa,∞ = M2

∞pa,∞ .

(2.12)

The far-field Mach number M∞ = Ū∞/
√
γRT̄∞ was introduced, as well as θa and

ρa, the temperature and density perturbations. The acoustic pressure perturbation
pa,∞ = 1/M∞ is constant with respect to the angle of incidence and corresponds to
the downstream travelling wave solution ua,∞(Θi = −α) = 1 (see Raposo et al. (2019)
for more details).

2.3.2. Inviscid region

As the plane acoustic wave arriving from the far field approaches the aerofoil, the non-
uniform steady basic flow modifies the acoustic wave solution. With the exception of the
viscous wall layer, this flow is inviscid to leading order of approximation and is therefore
adequately modelled by the linearised Euler equations for small amplitudes. Similar to
the procedure adopted for the basic flow, the goal is to determine the unsteady pressure
perturbation over the aerofoil surface which drives the unsteady acoustic boundary layer.

The present work uses a numerical tool developed by Bensalah (2018) to model acoustic
wave propagation in inviscid flows. Herein we will only describe the most salient points
of this approach. The total flow is considered inviscid, irrotational and homentropic. Let
us further consider a small amplitude acoustic wave travelling with the potential steady
basic flow,

q(x, y, t) = qi(x, y) + εaqh(x, y)exp{−iωt} . (2.13)

The subscript i denotes the known inviscid basic flow resulting from the computation
described in §2.2.1 and the subscript h denotes the unknown acoustic wave quantities,
strictly a function of the coordinates (x, y). Under these conditions the perturbation flow
can be described by a potential function ϕ according to

vh = ∇ϕ , (2.14)

where vh = [uh , vh , wh]
T

. These hypothesis, alongside a perfect gas law, allow for
a simplification of the linearised Euler equations into a single scalar partial differential
equation

Dt

(
c−2
i Dtϕ

)
− ρ−1

i ∇ · (ρi∇ϕ) = 0 , (2.15)

where ci =
√
γRTi is the local speed of sound and Dt = −iω + ui∂/∂x + vi∂/∂y. A

detailed derivation of this equation can be found in Howe (1998). On solution of (2.15),
we can recover the remaining physical flow variables with the scalar equations

ph = −ρiDtϕ , (2.16a)

θh = − (γ − 1)M2
∞Dtϕ , (2.16b)

ρh = −ρic−2
i Dtϕ . (2.16c)
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Acoustic receptivity on aerofoils 11

The flow respects the impermeability boundary condition at the surface of the aerofoil

∇ϕ · n = 0 , (2.17)

where n is the unit normal vector to the surface. The far-field boundary condition is not
straightforward because while we know the form and amplitude of the incident acoustic
wave, the reflected outgoing waves must be determined as part of the solution. The
classical approach of scattering theory is to decompose the total flow as

ϕ = ϕr + ϕa , (2.18)

where ϕr is the unknown reflected and scattered acoustic field, and ϕa is the known
far-field acoustic wave solution determined in §2.3.1

ϕa = − ipa,∞
ω − αa

exp{i (αax+ kay)} , (2.19)

where ka = λ1αa. Substituting (2.18) into (2.15) yields

Dt

(
c−2
i Dtϕr

)
− ρ−1

i ∇ · (ρi∇ϕr) = −Dt

(
c−2
i Dtϕa

)
+ ρ−1

i ∇ · (ρi∇ϕa) , (2.20)

whereas the boundary condition (2.17) becomes

∇ϕr · n = −∇ϕa · n at the rigid surface . (2.21)

In flow regions where the basic flow is uniform, the decomposition (2.18) corresponds
exactly to the incident and reflected waves. In such cases, the incident acoustic wave ϕa
satisfies the convected Helmholtz equation and therefore (2.20) is reduced to

Dt

(
c−2
i Dtϕr

)
− ρ−1

i ∇ · (ρi∇ϕr) = 0 . (2.22)

However, as we approach the aerofoil, the term ϕr models not only the reflected and
scattered wave solution but also the distortion of the incident acoustic wave caused by the
change in the basic flow. In this case, the known right-hand side of (2.20) is non-zero and
forces the appearance of an acoustic perturbation. The key advantage of introducing this
decomposition is that it transforms the incident inhomogeneous boundary conditions into
a forcing term of the governing equation and an inhomogeneous rigid surface boundary
condition. Consequently, it becomes easier to impose boundary conditions in the far field,
where a perfectly matched layer (PML) technique (Bécache et al. 2004) is implemented to
completely dampen the outgoing acoustic wave and avoid spurious reflections inside the
computational domain. In this case, we can approximate the far-field boundary condition
after the PML by

ϕr = 0 . (2.23)

Equation (2.20) together with boundary conditions (2.21) and (2.23) are solved with
a classic first-order finite-element code in triangular unstructured meshes generated by
Gmsh (Geuzaine & Remacle 2009). The reader is directed to Bensalah (2018) for details
of the implementation. A diagram of the computational domain and a representation of
the perfectly matched layers are shown in figure 4. The subscripts indicate the direction
of propagation along which the sponge layer acts to dampen the solution.

2.3.3. Linearised unsteady boundary layer equations - qa

Viscous effects have thus far been neglected both in the basic flow and in the acoustic
field. To correct for this, and to respect the no-slip boundary condition, we use the
unsteady boundary layer equations to model the acoustic boundary layer. Consider a
perturbation superimposed on the steady boundary layer base flow quantities,

q(s, n, t) = q̄(s, n) + εaqa(s, n)exp{−iωt} . (2.24)
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Figure 4: Inviscid acoustic propagation problem - schematic diagram of the computational
domain.

The acoustic perturbations qa are functions of (s, n), apart from the pressure perturba-
tion considered not to vary in the wall-normal direction. Further consider the unsteady
compressible boundary layer equations

ρt + (ρu)s + (ρv)n = 0 , (2.25a)

ρ (ut + uus + vun) = −ps +
1

R
(µun)n , (2.25b)

pn = 0 , (2.25c)

σρ (Tt + uTs + vTn) =
1

R
(µTn)n + Γ (pt + ups) +

Γµ

R
u2
n , (2.25d)

which are made non-dimensional according to (2.1), where R = Ū∞cn/ν̄∞ is the global
Reynolds number and Γ = (γ − 1)M2

∞σ. We next substitute the flow-field expansions
(2.24) in the above equations, linearise around the mean flow, and make a change of
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variable according to (2.4), yielding

ηnρ̄
∂va
∂η

+ (ηsρ̄η + ρ̄s)ua + c3
(
2c0c5 + Ū(2c6 − c4)− c1 − Ūs − ic2

)
θa + ηsρ̄

∂ua
∂η

+ ρ̄
∂ua
∂s

− c0c3
∂θa
∂η

+ ηnρ̄ηva − c3Ū
∂θa
∂s

= −c7Ū
∂pa
∂s
− c7

(
c1 + Ūs + ic2 − c0c5 − c6Ū

)
pa ,

(2.26a)[
R−1µ̄T̄ Ūηηη

2
n +R−1

(
µ̄T̄ ηnn + µ̄T̄ T̄ T̄ηη

2
n

)
Ūη + c3c8

]
θa +

µ̄η2
n

R

∂2ua
∂η2

+R−1µ̄T̄ η
2
nŪη

∂θa
∂η

+
(
R−1µ̄ηnn +R−1µ̄T̄ T̄ηη

2
n − ρ̄c0

) ∂ua
∂η
−
[
ρ̄
(
ηsŪη + Ūs

)
+ ic2ρ̄

]
ua − ηnρ̄Ūηva − ρ̄Ū

∂ua
∂s

=
∂pa
∂s

+ c7c8pa ,

(2.26b)

2η2
nR
−1µ̄Γ Ūη

∂ua
∂η
−
[
σρ̄
(
ηsT̄η + T̄s

)
− ΓP̄s

]
ua − ηnσρ̄T̄ηva +

µ̄η2
n

R

∂2θa
∂η2

− σρ̄Ū ∂θa
∂s

+
(
2η2
nR
−1µ̄T̄ T̄η + ηnnR

−1µ̄− σc0ρ̄
) ∂θa
∂η

+
[
η2
nR
−1µ̄T̄ T̄ηη + ηnnR

−1µ̄T̄ T̄η + η2
nR
−1µ̄T̄ T̄ T̄

2
η

+σc3
(
c0T̄η + Ū T̄s

)
+ η2

nR
−1Γ µ̄T̄ Ū

2
η − ic2σρ̄

]
θa =

[
σc7

(
c0T̄η + Ū T̄s

)
− ic2Γ

]
pa − ΓŪ

∂pa
∂s

,

(2.26c)

where

c0 = ηsŪ + ηnV̄ , c1 = ηsŪη + ηnV̄η , c2 = −ω , c3 =
ρ̄

T̄
, c4 =

P̄s
P̄

, c5 =
T̄η
T̄
, c6 =

T̄s
T̄
,

c7 =
ρ̄

P̄
, c8 = c0Ūη + Ū Ūs .

(2.27)

The linearised ideal gas law closes the system of equations

γM2
∞pa = ρ̄θa + T̄ ρa . (2.28)

The pressure perturbation pa(s) driving the unsteady motion within the boundary
layer (right-hand side of (2.26a)-(2.26c)) is prescribed by the outer unsteady inviscid
flow examined in §2.3.2 - ph(x, y) evaluated at the aerofoil surface from (2.16). The
corresponding flow velocity and temperature determine the boundary conditions at the
edge of the boundary layer

ua(η →∞) =
√
u2
h + v2

h , θa(η →∞) = θh , (2.29a-c)

where the outer layer quantities denoted by the subscript h are evaluated at the aerofoil
surface (matching condition). At the wall we impose non-slip boundary conditions

ua(s, η = 0) = 0 , va(s, η = 0) = 0 , θa(s, η = 0) = 0 . (2.30a-d)

The thermal fluctuation θa is also assumed to have zero fluctuation at the surface. This
is based on the assumption that the perturbations oscillate at high temporal frequencies.
These oscillations are too fast for the thermal dynamics to react and the wall temperature
to adjust (Mack 1984).

The numerical methods to obtain a solution are very similar to those used in §2.2.2
for the steady boundary layer field. In this case the equations are linear and therefore
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14 H. Raposo, S. Mughal, A. Bensalah and R. Ashworth

Newton iterations are not required. A solution can be obtained directly once the steady
boundary layer field solution converges at each streamwise location during the parabolic
numerical marching procedure (see more detail in section 2.5 of Raposo (2020)).

2.4. Direct and adjoint linearised Navier-Stokes equations

In previous sections we have addressed the modelling of terms of O (1) and O (εa)
respectively. We next discuss the treatment of the remaining terms of the double-
parameter expansion (2.2).

The surface roughness causes a localised or distributed mean-flow distortion which
scatters the Stokes shear wave and produces an instability wave. These two flow com-
ponents are represented in (2.2) by terms of order O(εw) and O(εwεa). Substitution of
the flow expansion (2.2) in the full Navier-Stokes equations (A 1a)-(A 1e) and collection
of terms of order O(εwεa) yields the general form of the HLNS equations, presented
symbolically as

L(ω, β, q̄)qs,b = F(q̄, qw, qa) , (2.31)

where qs,b = [pb, ub, vb, wb, θb]
T. The linearised continuity, momentum and energy equa-

tions are denoted L. The bilinear forcing term F represents the interaction between
the wall-induced mean-flow distortion and the Stokes layer. The explicit form of these
operators for a compressible three-dimensional perturbation travelling with a three-
dimensional spanwise-invariant base flow is presented in appendix B of Raposo (2020).
The governing equations of the mean-flow distortion are obtained by collecting terms of
order O(εw)

L(ω = 0, β, q̄)qs,w = 0 . (2.32)

This is of near-identical form to the more general unsteady form given by (2.31), and
can be derived by simply setting the frequency parameter ω = 0 and also setting the
right-hand-side forcing vector F = 0.

Solving the systems of equations (2.32) and (2.31) sequentially with appropriate bound-
ary conditions provides a direct means of quantifying the amplitude of the dominant
instability wave for a prescribed surface roughness field, either localised or distributed. A
schematic of the computational domain is shown in figure 5. An alternative to the direct
approach, representing a more computationally efficient means to model the receptivity,
is via the adjoint approach as described in Raposo et al. (2019). The adjoint treatment
is optimally suited to study a large number of surface roughness variations. In this paper
the same framework is utilised, but to account for the curved geometry of aerofoils, the
HLNS and adjoint HLNS (AHLNS) are derived based on the body-fitted compressible
Navier-Stokes equations. These equations are quite lengthy and not given in this paper;
the interested reader is referred to appendix B of Raposo (2020).

The four variants of the HLNS and AHLNS equations required to study receptivity
((2.31), (2.32) and their adjoint counterparts) all share a common numerical solver.
The discretisation is based on fourth-order-accurate finite differences in the streamwise
direction and Chebyshev polynomials in the wall-normal direction. At the inflow, a sponge
layer is used to damp upstream-travelling waves thus avoiding spurious reflections. At the
outflow, radiation boundary conditions are implemented based on wavenumber estimates
provided by a solution of the parabolised stability equations. The resulting large linear
system of equations is solved with an efficient LU decomposition method. Further details
are found in Raposo et al. (2019) and Raposo (2020).
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Acoustic receptivity on aerofoils 15

Figure 5: HLNS computational domain.

3. Numerical results

The acoustic receptivity model described in §2 is applied to a NACA 0012 atM∞ = 0.4.
A detailed account of the stability and receptivity properties of this aerofoil is provided.
This includes parametric studies on the influence of the surface roughness position and
geometry, and of the acoustic wave angle of incidence. The effects of surface curvature
and of the angle of attack are also examined.

3.1. Problem definition

We consider a two-dimensional plane acoustic wave impinging on a NACA 0012 aerofoil
at an angle Θi ∈ [0, 2π[ rad. The NACA 0012 aerofoil used is based on a modified
definition to give a zero-thickness trailing edge, namely

y = ±0.594689181(0.298222773
√
x− 0.127125232x− 0.357907906x2 + 0.291984971x3

− 0.105174606x4) ,

(3.1)

where x ∈ [0, 1]. The maximum thickness is now approximately 11.894% of the chord.
We adopt a unitary chord cn = 1m. The aerofoil sits at an angle of attack α with respect
to the incoming M∞ = 0.4 far-field uniform flow. We choose the far-field temperature
T̄∞ = 288.2K. Two different Reynolds numbers are considered throughout this section,
R = {1, 2} × 106, but our main focus is on the first value.

Two different types of surface roughness are investigated: (i) localised Gaussian-shaped
roughness positioned at xb (or equivalently, in the body-fitted coordinate system, sb)
defined by

Ĥ(s) = exp

[
− (s− sb)2

2∆2

]
, (3.2)

where ∆ is the non-dimensional Gaussian shape width; (ii) sinusoidal distributed rough-
ness of wavelength λw defined by

Ĥ(s) = exp (i2πs/λw) . (3.3)

3.2. Basic flow

The inviscid steady Euler flow around the NACA 0012 in the absence of roughness is
determined with the compressible flow solver of Nektar++ (see §2.2.1 for details). The
results were verified to converge with the domain size, mesh refinement and simulation
duration. The computation takes approximately 20h in 48 Intel(R) Xeon(R) CPU E5-
2620 0 @ 2.00GHz. A colour plot of the Mach number in the vicinity of the aerofoil is
presented in figure 6(a) for α = 0◦. In figure 6(b) we compare the pressure coefficient
obtained with Nektar++ and XFOIL (Drela 1989). Naturally, there are very small
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(a) Local Mach number (α = 0◦)
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α
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(b) Comparison of the pressure coefficient
distribution at the upper surface of the aerofoil
for α = {−2, 0, 2}◦

Figure 6: Inviscid steady flow field computed with the compressible Euler flow solver of
Nektar++ at M∞ = 0.4.

differences owing to the approximations made by XFOIL, namely the compressible flow
corrections and the thin aerofoil assumption. Overall, there is very good agreement
between the two approaches.

The pressure distribution is used to compute the steady boundary layer profiles with
an adiabatic boundary condition - see figure 7. CoBL is the name of the compress-
ible boundary layer equation solver used for the computation. Comparison with DNS
(Chauvat & Hanifi 2019) shows very good agreement and thus validates the basic flow,
which comprises a cornerstone in subsequent computations undertaken with the HLNS
and AHLNS equations. Nonetheless, we observe a mild deterioration of the boundary
layer approximation when approaching the leading edge. This is expected since the
boundary layer assumptions lose their validity at very low local Reynolds numbers.
CoBL estimates laminar flow separation at x∗/cn = 0.53. In the NACA reports of
Von Doenhoff (1938) and Becker (1940) approximate methods estimate flow separation to
occur at x∗/cn = 0.56, x∗/cn = 0.536 and x∗/cn = 0.55. Acoustic-roughness receptivity
is expected to occur upstream of this predicted flow separation point.

3.3. Stability Analysis

Prior to undertaking receptivity analysis, appropriate parameters to illicit a strong
receptivity response need to be identified. Selecting acoustic forcing frequencies and
surface roughness descriptions not attuned to the natural eigenmodes of the developing
boundary layer would give rise to weak responses in the receptivity calculations. We use
a standard compressible Orr-Sommerfeld solver to calculate and track the most unstable
two-dimensional instabilities for a range of frequencies. This code has been used and
validated extensively - the reader is referred to Mughal (2006), Thomas et al. (2016),
Thomas et al. (2018) and Raposo (2020). The resulting neutral stability curves for α = 0◦

and two different Reynolds numbers are presented in figure 8. The edge Reynolds number
Re and non-dimensional edge frequency ωe are defined as

Re =
Ū∗e ρ̄

∗
eδ
∗
d

µ̄∗e
, (3.4)

and

ωe =
ω∗δ∗d
Ū∗e

, (3.5)
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Figure 7: Boundary layer profiles at α = 0◦, R = 1 × 106. CoBL - pressure coefficient
distribution obtained with Nektar++ and fed into compressible steady boundary layer
solver; DNS - Chauvat & Hanifi (2019).

where the subscript e denotes boundary layer edge quantities and δ∗d is the local dis-
placement thickness. The neutral stability curves in figure 8(b) indicate that the most
unstable eigenmode is of viscous nature close to the leading edge (x∗ < 0.3m). Further
downstream, however, an inviscid instability mechanism plays a prominent role. This
conclusion is drawn from the behaviour of the upper branch of neutral stability which
seems to be slowly varying further downstream, indicating that the instability is weakly
dependent on the local Reynolds number. Moreover, the upper branch of neutral stability
does not tend towards zero as expected for a viscous instability and therefore is indicative
of the presence of an inviscid mechanism. The pressure distribution in figure 6(b) shows
that in this region there is an adverse pressure gradient; therefore the base flow has an
inflection point and supports an instability of inviscid type. This is shown in figure 9
via the second derivative of the streamwise velocity profiles of the boundary layer. For
locations ahead of the suction peak, the second derivative has no zero crossings and
therefore there is no inflection point. Conversely, for locations after the suction peak, i.e.
when the pressure gradient is adverse, an inflection point appears.

The neutral curves allow us to select a number of frequencies of interest for which we
track the growth of the corresponding disturbance as it convects through the boundary
layer. In figure 10 we plot the N-factors, a measure of the relative growth of the
disturbance amplitude as the Cartesian streamwise coordinate increases. The range of
frequencies were chosen to contain the “most dangerous” frequency, i.e. the one that
reaches N = 9 at the earliest streamwise position or the one with the maximum N-
factor at the end of the domain. This analysis not only yields the frequencies that we
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(a) Non-dimensional neutral stability curve.
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(b) Dimensional neutral stability curve for a
unitary chord aerofoil with T̄ ∗∞ = 288.2K and
an adiabatic wall condition.

Figure 8: Neutral stability curves for R = 1× 106 (black dashed curves) and R = 2× 106

(red solid curves) at α = 0◦.

should study from the viewpoint of receptivity, but also provides an indication of the
location and size of the roughness elements most effective in generating instabilities.
These can be inferred from the location of the lower branch of neutral stability and from
the corresponding wavelength of the disturbance.

For the remainder of this paper we focus on the conditions R = 1 × 106 and f∗ =
{1000, 1500, 2500}Hz (Strouhal number S = 2πf∗cn/Ū

∗
∞ = {46.16, 69.24, 115.4}). These

frequencies correspond to amplification ratios of N = {2.8, 4.5, 6.7} at the outflow of the
domain x∗/cn = 0.45 for this particular angle of attack. The latter corresponds to the
highest N-factor in this configuration and therefore is assumed particularly relevant for
transition.

3.4. Acoustic field

The approach used to model the acoustic field is described in §2.3. Having obtained
the basic Euler flow around the NACA 0012, we proceed to compute the inviscid acoustic
wave propagation. We choose the angle of incidence Θi = 45◦ and frequency f∗ = 1000Hz
(S = 46.16). This choice of frequency takes into consideration that the lower the ratio
between the acoustic wavelength and the aerofoil chord, the higher the number of degrees
of freedom necessary to resolve the inviscid wave-aerofoil interaction will be. In other
words, higher frequencies require more computational time and memory due to having
to resolve finer spatial scales in the discretisation process. All other aspects of the problem
being the same, it was decided that a lower frequency would be beneficial for parametric
investigations and grid convergence studies. The computational domain is defined by
[xmin, xmax] = [−10.0, 10.0] and [ymin, ymax] = [−5.0, 5.0]. The useful part of the domain
where the solution is considered valid is within x ∈ [−9.5, 9.0] and y ∈ [−4.25, 4.25].
Absorbing boundary conditions based on the perfectly matched layers formulation act
to damp the solution in the remaining portion of the computational domain. The
computational times are frequency-dependent because higher frequencies require finer
meshes. The longest computation took approximately 3h on a single Intel(R) Core(TM)
i7-9750H CPU @ 2.60GHz.

In figure 11(a) and 11(b) we plot the total potential function ϕ and the “reflected”
potential function ϕr, respectively. Recall from §2.3.2 that the total flow is decomposed
as

ϕ = ϕr + ϕa , (3.6)
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Figure 9: Second wall-normal derivative of the boundary layer profiles at α = 0◦,
R = 1 × 106. Subscript indicates partial derivative with respect to nd = n∗/δ∗d. CoBL
- pressure coefficient distribution obtained with Nektar++ and fed into compressible
steady boundary layer solver.
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Figure 10: N-factor curves for α = 0◦.

where ϕr is the unknown “reflected” acoustic field and ϕa is the known far-field acoustic
wave solution given by (2.19). The total potential function shows different wave-aerofoil
interaction phenomena: (i) the acoustic wave is reflected at the upper surface of the
aerofoil; (ii) on the underside of the aerofoil there is a shadow zone due to shielding by
the aerofoil; (iii) the so-called shadow zone is narrowed by diffraction of the sound wave
around the aerofoil. In addition to these phenomena, the “reflected” potential function
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(a) Total potential function ϕ (b) “Reflected” potential function ϕr

Figure 11: Real part of the complex potential functions for Strouhal number S = 46.16
and angle of incidence Θi = 45◦ at angle of attack α = 0◦.
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Figure 12: Inviscid acoustic wave solution at the upper surface of the aerofoil. Solid and
dashed lines correspond to a “coarse” and a “refined” mesh.

shows that an upstream propagating wave appears as a result of reflection in the leading
edge region.

We extract the inviscid acoustic wave solution on the upper surface of the aerofoil where
we aim to set up and study the acoustic-roughness receptivity problem. The potential
function and the streamwise velocity (in a body-fitted coordinate system) are plotted
in figure 12. The remaining flow quantities are calculated with (2.14) and (2.16). Two
sets of results based on a “coarse” and “refined” grid are presented, although they are
indistinguishable. The “refined” mesh has twice as many elements throughout the domain
as the “coarse” mesh which has 4486984 triangular elements. This indicates that the
solution is mesh independent. Further grid refinement studies were conducted but are
not shown here. A similar exercise was carried out with the perfectly matched layer’s
coefficients which require manual tuning. We verified that the solution is independent of
the value of these coefficients provided that they are large enough to adequately dampen
the acoustic wave but not so large that absorption occurs too rapidly in a spatial sense.

With the inviscid acoustic problem resolved via solution of the convected Helmholtz
equations (2.20), the unsteady boundary layer acoustic signature follows immediately
on solving (2.26) - see figure 13. The grid has 400 uniformly distributed points in the
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Figure 13: Acoustic boundary layer streamwise velocity profiles at x∗/cn =
{0.10, 0.15, 0.20}, respectively in solid, dashed and dashdotted lines.

wall-normal direction (η ∈ [0.0, 16.0]) and 2001 points in the streamwise direction (x ∈
[0.0, 0.45]) clustered near the leading edge according to

xn = 0.45
( n

2000

)1.1

n = 0, 2, ...2000 , (3.7)

for angle of attack α = 0◦. Further grid refinements showed the LUBLE solution to be
grid independent. These studies informed the choice of exponent in (3.7).

3.5. Receptivity Analysis

In this section we carry out receptivity analysis and parametric studies in the presence
of localised and distributed surface roughness. The roughness geometries used in the
analysis are given in (3.2) and (3.3). The reference length and velocity scales are the
displacement thickness and the boundary layer edge velocity at the first branch of neutral
stability xI , respectively. From (2.2) it is apparent that the results are independent of the
roughness height. However, note that they do depend on the choice of reference length
and velocity scales. We define the receptivity amplitude

Au(x) = max
y

( |u∗b |
Ū∗e

)
, (3.8)

and the equivalent receptivity amplitude at the first-branch of neutral stability xI

A0 = Au(xI) , (3.9)

measured through a boundary layer stability prediction having the same amplitude in
the vicinity of the second branch of neutral stability as the instability generated by
surface roughness - see figure 14(a) for an example. The equivalent receptivity amplitude
A0 is extracted from the solid black curve which has been matched with the direct
simulation of receptivity given by the red dashed curve at x = 0.4. The solid black curve
is obtained by feeding an approximate eigenfunction of the boundary layer disturbance
to our HLNS solver at the inflow of the computational domain. The reason to choose
this particular method to predict the boundary layer instability growth rate is apparent
in figure 14(b). Substantial non-parallel flow effects rule out use of the linear stability
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(black solid line).

0.25 0.30 0.35 0.40
x∗/cn

100

101

A
u

HLNS - curved

HLNS - flat

PSE

LSE

(b) Comparison of boundary layer instability
growth predictions by different methods. All
curves are indistinguishable except for LSE.

Figure 14: Boundary layer instability generation and growth by a localised Gaussian-
shaped roughness element for Strouhal number S = 46.16.

equations (LSE) as a suitable model. The parabolised stability equations (PSE) would
be a fitting alternative since its prediction of the instability amplitude evolution overlaps
remarkably well with that of the HLNS result. However, the latter may prove more
accurate in other conditions, for example when studying oblique waves. Moreover, using
it does not come at any additional cost since this computation is needed to compute
the efficiency function through the adjoint approach. The effects of surface curvature on
instability growth are seen in figure 14(b) from the curves ”HLNS - curved” and ”HLNS
- flat”, which refer to computations including and excluding the curvature terms in the
HLNS equations, respectively. These effects are practically non-existent; this is expected
since T-S wave development occurs in the mid-chord region, where the radius of curvature
of the aerofoil is much larger than the boundary layer thickness.

Alternatively, A0 can be calculated using the adjoint approach

A0 = |A2|
(
Ĥ(s)

)
Au (xI) , (3.10)

where |A2|(Ĥ(s)) is the adjoint sensitivity function (Raposo 2020) and Au now refers
to the amplitude of a boundary layer disturbance used to construct the bi-orthogonality
relationship; it does not concern the amplitude of the boundary layer instability generated
by the localised roughness element, which we seek to determine. Furthermore, we consider
the efficiency function

|Λu|(sb) =

√
2π|A2|

(
Ĥ(s) = δ(s− sb)

)
Au (sb)

|ua| (sb, n→∞)
, (3.11)

which is calculated for each position sb using the local boundary layer edge velocity and
displacement thickness as the reference velocity and length scales, respectively.

The HLNS and AHLNS computations were verified to converge with the domain
size and mesh size (number of Chebyshev polynomials and number of grid points in
the streamwise direction). No less than 200 points per T-S wavelength are used in the
streamwise direction. In the wall-normal direction we use 62 Chebyshev polynomials. The
reader is referred to Raposo et al. (2018, 2019); Raposo (2020) for convergence studies and
extensive validation of the solver against analytical, experimental and numerical works.
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Figure 15: Receptivity amplitude variation with the position of the localised Gaussian-
shaped roughness element for S = 46.16, ∆∗/cn = 7.53 × 10−3, Θi = 45◦ and α = 0◦.
First branch of neutral stability (B-I) marked by a red cross.

While the precise duration is case dependent, a typical direct computation of receptivity
requires a total time of order 20 min using 20 Intel(R) Xeon(R) CPU E5-2680 0 @
2.70GHz. Another 20 min are required if the adjoint formulation is activated.

3.5.1. Effects of localised roughness position

In figure 15(a) we present the variation of the equivalent receptivity amplitude with
the position of a Gaussian-shaped roughness element sb for a fixed width ∆∗/cn =
7.53 × 10−3. Two sets of results were obtained with the adjoint approach, one for each
of the meshes used in the inviscid acoustic propagation calculations shown in figure 12.
Acoustic receptivity is known to be very sensitive to the acoustic wave boundary layer
signature, which in turn depends on the boundary layer edge conditions obtained from
these computations. Performing this comparison thus confirms that the inviscid acoustic
propagation results are grid-independent. A third set of results obtained with the direct
HLNS approach is superimposed in figure 15(a). The excellent agreement with the adjoint
approach supports the correctness of the implementation of both methods. In figure 15(b)
we present the corresponding efficiency function using two different grids for the AHLNS
computations to verify grid-independence.

We note from figure 15(a) that, unlike with zero-pressure-gradient boundary layers
developing over a flat plate, receptivity is not maximal in the vicinity of the first branch
of neutral stability; nor does it decay monotonically when the roughness element is located
upstream or downstream of this point. Instead, non-trivial variations appear which we
mostly attribute to equally non-trivial behaviour in the acoustic wave boundary layer
signature (see figure 12(b)).

In figure 16 we show how the results presented in figure 15(a) change when varying the
acoustic wave angle of incidence as well as the angle of attack at a constant frequency.
Firstly, note how the boundary layer is significantly more receptive to upstream-travelling
waves than to downstream-travelling waves at all angles of attack. This trend is similar
to what has been observed for flat plate geometries using a similar modelling approach,
although in the present case the maximum does not occur for Θi = 180◦ (see Raposo
et al. (2019)). This is largely due to the inner layer of the acoustic boundary layer, also
known as the Stokes layer, having larger streamwise velocity oscillations when excited
by upstream-travelling waves. The physical mechanism is most easily understood when
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Figure 16: Equivalent receptivity amplitude variation with the position of the Gaussian-
shaped roughness element. Comparison for different acoustic wave angles of incidence at
three angles of attack (S = 46.16, ∆∗/cn = 7.53× 10−3).

considering the asymptotic layers of the acoustic field. Similarly to a steady boundary
layer, the acoustic boundary layer is driven by an externally imposed pressure gradient.
From (2.26b), it can be seen that the forcing of the streamwise momentum equation is
given by

∂pa
∂s

+ c7c8pa .

If we neglect the plane acoustic wave distortion by the non-uniform mean flow, it can be
concluded that the streamwise pressure gradient ∂pa/∂s is larger for upstream-travelling
waves - this is readily seen from the far-field acoustic wave solution presented in §2.3.1.
Since acoustic receptivity is linear with respect to the acoustic field, we can thus expect
upstream-travelling acoustic waves to generate T-S waves with larger initial amplitudes.

However, it was found in flat plate studies in Raposo (2020) that viscosity plays
a significant role in the acoustic reflection and hence in receptivity to highly-oblique
upstream travelling waves – not accounted for in this paper, since we address the
purely inviscid scattering problem presently. The LUBLE become invalid when transverse
pressure variations become significant. Scale analysis of the convective terms of the x-
momentum equation indicates that this occurs when the streamwise wavelength of the
acoustic wave is comparable to the boundary layer thickness, i.e. δ∗ = O(1/α∗a). This
condition is verified for high frequencies and Mach numbers, and for highly-oblique
upstream travelling waves. The exact behaviour in these conditions remains an open
question even in a flat plate since Raposo (2020) showed that alternative theories based
on the linear stability equations fail in such conditions too.
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Figure 17: Inviscid acoustic wave streamwise velocity at the upper surface of the aerofoil.
Comparison for different angles of attack at two angles of incidence of the acoustic wave
(S = 46.16).

From 16 we note how the location of the first branch of neutral stability, sb =
{0.363, 0.285, 0.196} for α = {−2, 0, 2}◦ respectively, continues to be a reliable indi-
cator of where receptivity is maximal for some angles of incidence, but not for others.
Receptivity is typically maximal just ahead of the first branch of neutral stability because
this is the location where the resonance conditions with external forcing are optimally
met. This means that as the angle of attack increases, the most receptive region of the
boundary layer moves upstream towards the leading edge.

Higher angles of attack are associated with stronger adverse pressure gradients in the
region where the boundary layer is most receptive. For reference, the suction peak in the
upper surface of the aerofoil occurs at x∗/cn = {0.23, 0.12, 0.036} for α = {−2, 0, 2}◦,
respectively. Therefore, it can be seen from figure 16 that the boundary layer is most
receptive in regions of adverse pressure gradient for the particular frequency considered.
Nonetheless, there is no clear trend correlating the angle of attack and the receptivity
amplitudes. Relative differences can, however, be explained qualitatively by examining
the inviscid acoustic wave’s slip velocity on the aerofoil upper surface shown in figure 17
for two angles of incidence of the acoustic wave. Larger amplitudes of the Stokes layer
correlate with higher levels of receptivity, thus explaining the results in figure 16.

Thus far we have presented and discussed results for a single frequency. In figure 18 we
extend the study to higher frequencies which also correspond to higher N-factors. The
associated boundary layer instabilities are thus likely to play a more prominent role in
transition in this configuration. Crucially, we observe that the most receptive locations
move upstream with an increase in frequency, similarly to the first-branch of neutral
stability. This is accompanied by an apparent decrease in receptivity amplitudes. In the
next section we will see that this can be attributed to the constant width of the roughness
element which does not resonate optimally for all frequencies.

3.5.2. Effects of localised roughness width

In figure 19 we show the variation of the T-S wave amplitude when changing the
width of the Gaussian bump for several fixed locations sb. Parallel flow theory predicts
that receptivity amplitudes vary in proportion to the Fourier transform of the surface
roughness geometry, in this case

A0 ∼ ∆exp
(
−2π2k2∆2

)
, (3.12)
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Figure 18: Equivalent receptivity amplitude variation with the position of the Gaussian-
shaped roughness element. Comparison for different acoustic wave angles of incidence at
three frequencies (α = 0◦, ∆∗/cn = 7.53× 10−3).

where k is the wavenumber. According to parallel flow theory (Choudhari 1994a), the
resonant wavenumber of the roughness field is given by k = 1/λTS − 1/λac, where λTS

is the T-S wavelength and λac is the acoustic wave streamwise wavelength. The optimal
width is thus

∆∗/cn =
λ∗TS

2πcn

1

1− λ∗TS

λ∗ac

, (3.13)

where λ∗ac can be estimated as

λ∗ac =
2π|u∗a|
∂|u∗a|
∂s∗

∣∣∣∣∣
(sb,n→∞)

. (3.14)

This result is a necessary resonant condition for receptivity stemming from (2.31) under
a parallel flow assumption. For example, for α = 0◦ and sb = {0.15, 0.25}, parallel flow
theory predicts receptivity maxima at ∆∗/cn = {8.23, 8.64}× 10−3, while our numerical
approach predicts ∆∗/cn = {7.59, 10.2} × 10−3. Non-parallel flow effects are thus quite
substantial and should not be neglected. We note, however, that receptivity amplitudes
follow similar qualitative trends to those observed in the analysis of flat plate boundary
layers undertaken by Choudhari & Streett (1992). Therefore we can instead choose k
such that the maximum of (3.12) occurs for the same value of ∆ as observed in the
numerical results. The blue dash-dotted curve in figure 19(a) superimposed on the results
for sb = 0.30 shows how this model fits the numerical results. Agreement is exceptional
for small roughness widths, gradually deteriorating for longer roughness elements. This
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Figure 19: Equivalent receptivity amplitude variation with the width of the Gaussian-
shaped roughness element. Comparison for different positions of the roughness at three
angles of attack (Θi = 45◦, S = 46.16).

is to be expected since the longer the streamwise extent of the roughness due to which
receptivity arises, the more likely it is that the parallel flow assumption is invalid.

In figure 20 we show the equivalent results for three different frequencies at a fixed
angle of attack α = 0◦. Receptivity amplitudes peak at smaller widths of the roughness
element for increasing frequencies - this confirms the prediction of parallel flow theory
in (3.13). This also explains the apparent decrease in receptivity amplitudes for a fixed-
width roughness element shown in figure 18.

3.5.3. Effects of sinusoidal distributed roughness wavelength

Acoustic receptivity in the presence of distributed roughness is a more interesting
problem from a practical viewpoint because wing surface inhomogeneities can be charac-
terised as a non-stationary random process, possessing irregularities over a wide range of
wavelengths (Sayles & Thomas 1978; Mughal & Ashworth 2013). The study of acoustic
receptivity in the presence of localised roughness elements provides insight into the
physical mechanisms of receptivity as well as a simpler mathematical problem. It can
therefore be regarded as a cornerstone to understand the physics and study of the more
general problem of continuous and discrete spectrum surface features. In fact, Choudhari
& Streett (1992) proposed that receptivity to distributed roughness can be calculated as
the sum of contributions from localised short scale wall inhomogeneities. Alternatively,
the study of surface features with a continuous spectrum can be decomposed into the
study of sinusoidal distributed roughness via a Fourier series. This aspect motivates the
results presented in this section.

The surface roughness geometry studied in this section is described in (3.3). Receptivity
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Figure 20: Equivalent receptivity amplitude variation with the width of the Gaussian-
shaped roughness element. Comparison for different positions of the roughness at three
frequencies (α = 0◦, Θi = 45◦).

amplitudes as a function of the roughness wavelength are presented in figure 21 for various
combinations of angle of attack and angle of incidence of the acoustic wave. The results
are converged with respect to the length of the distributed roughness. This means that
the roughness patch encompasses the whole region where the boundary layer is receptive
and that the presence of roughness beyond this region would not alter the results.

Receptivity amplitudes are an order of magnitude larger for distributed roughness
than for localised roughness, similarly to what has been found for flat plate geometries
(Choudhari & Streett 1992; Raposo et al. 2018). One striking difference, however, is
that for certain angles of incidence of the acoustic wave there is a very large band of
wavelengths for which the boundary layer is receptive. One such example is for α = 2◦

and Θ = 45◦, as opposed to the narrower bands observed for Θ = 180◦ for example.
Another difference is that maximal receptivity does not occur for wavelengths matching
the boundary layer instability wavelength. This is likely due to strong non-parallel flow
effects.

Similar to the results in the previous sections, there continues to be no definitive trend
when comparing receptivity at different angles of attack. Nonetheless, for most angles
of incidence of the acoustic wave, amplitudes are higher at lower angles of attack. This
indicates that boundary layers developing under more adverse pressure gradients are
less receptive to T-S waves. This is in agreement with the findings of Crouch (1994)
and Raposo (2020) for Falkner-Skan boundary layers. However, note that instabilities
developing in adverse pressure gradients are known to be more amplified and therefore
they might still be the leading cause of flow breakdown into turbulence, even though from
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Figure 21: Equivalent receptivity amplitude variation with the wavelength of sinusoidal
distributed roughness. Comparison for different acoustic wave angles of incidence at three
angles of attack (S = 46.16). Boundary layer instability wavelength at the first-branch
of neutral stability is marked with a vertical line.

a receptivity perspective favourable pressure gradients give rise to the largest boundary
layer disturbances.

Lastly, in figure 22 we consider the effects of varying frequency on receptivity ampli-
tudes. It is shown that the boundary layer is undoubtedly more receptive to upstream-
travelling acoustic waves than it is to its downstream-travelling counterparts. This
observation is valid for all angles of attack and frequencies considered. Furthermore,
an increase in frequency leads to higher receptivity amplitudes but also to markedly
narrower bands of wavelengths to which the boundary layer is responsive. The fact
that the boundary layer is both more receptive and more unstable for the frequency
S = 115.4 is important from a transition prediction and control perspective. It supports
the assumption that this frequency plays a key role in transition in this configuration but
it also suggests that implementing control strategies to minimise receptivity or reduce
instability growth may be effective in delaying the onset of turbulence.

4. Conclusions

The acoustic receptivity model of Raposo et al. (2019) based on the HLNS equations
was extended to curved aerofoil geometries. This paper constitutes the first numerical
study of acoustic-roughness receptivity in subsonic boundary-layer flows over aerofoils.
This configuration is of much greater interest to industrial applications than flat plate
geometries often considered in the literature. The distinguishing feature of this receptivity
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Figure 22: Equivalent receptivity amplitude variation with the wavelength of sinusoidal
distributed roughness. Comparison for different acoustic wave angles of incidence at three
frequencies (α = 0◦). Boundary layer instability wavelength at the first-branch of neutral
stability is marked with a vertical line.

model compared to previous flat plate studies is the modelling of the acoustic field.
The interaction between an incident plane acoustic wave and the aerofoil is studied
by considering three distinct regions: (i) the far-field where the steady flow is uniform
and a solution can be obtained analytically, (ii) the region near the aerofoil where the
inviscid steady flow is distorted by the presence of the aerofoil and the acoustic wave is
distorted accordingly, and (iii) a near-wall layer where the effects of viscosity are non-
negligible both on the steady and unsteady flows. The modelling of region (ii) is made
via a numerical solution of the convected Helmholtz equation. This general approach is
valid for both low and high frequencies where the wavelength of the acoustic wave may be
comparable to the chord of the aerofoil or many times smaller, respectively. Thus it allows
for the study of receptivity of both low Mach number and near-sonic flow conditions. One
limitation of this approach is that it does not account for the effects of rotational mean
flow over wave-aerofoil interaction. For example the viscous boundary layer is known to
have a sizeable effect on acoustic reflection for shallow angles of incidence of upstream-
travelling waves (Raposo 2020; Raposo et al. 2020).

In this paper, we studied a NACA 0012 aerofoil at R = 1 × 106, M∞ = 0.4 and
S ≈ {46, 69, 115}. Receptivity to viscous-inviscid instabilities on the upper-surface of the
aerofoil was quantified for three-angles of attack in the presence of both Gaussian-shaped
localised roughness and sinusoidal distributed roughness. A parametric study on the
influence of the acoustic wave angle of incidence and of surface roughness geometry was
conducted. It was found that receptivity amplitudes are highest for upstream-travelling
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waves irrespective of the type of surface roughness, of the angle of attack or the frequency.
For localised roughness, there was no clear correlation between receptivity amplitudes
and the angle of attack, all other things being equal. However, the relative differences in
receptivity levels appear to be qualitatively explained by the magnitude and behaviour of
the inviscid acoustic wave streamwise velocity at different angles of attack. Furthermore,
it was shown that while parallel flow theory does not predict the optimal width of a
Gaussian-shaped roughness element, it remains an accurate model of how receptivity
amplitudes vary with the width of the roughness element. Lastly, the study of sinusoidal
distributed roughness revealed a tendency for receptivity amplitudes to be higher for
frequencies with higher N-factors and for lower angles of attack. In the latter case this is
particularly true for upstream-travelling acoustic waves.
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Appendix A. Body-fitted compressible Navier-Stokes equations

The non-dimensional form of the body-fitted governing equations is (Anderson et al.
2016)

ρt + χ (ρu)s + (ρv)n + (ρw)z + κχρv = 0 , (A 1a)

ρ (ut + χuus + vun + wuz + κχuv) = −χps +
χ

R

[
∂τxx
∂s

+
∂τxy
∂n

+
∂τxz
∂z

]
+
κχ2τxy
R

,

(A 1b)

ρ
(
vt + χuvs + vvn + wvz − κχu2

)
= −pn +

χ

R

[
∂ (χτxy)

∂s
+
∂τyy
∂n

+
∂τyz
∂z

]
− κχτxx

R
,

(A 1c)

ρ (wt + χuws + vwn + wwz) = −pz +
χ

R

[
∂ (χτxz)

∂s
+
∂τyz
∂n

+
∂τzz
∂z

]
, (A 1d)

ρσ (Tt + χuTs + vTn + wTz) = Γ (pt + χups + vpn + wpz)

+
χ

R
[(χµTs)s + (H1µTn)n + (H1µTz)z] +

ΓΦ

R
, (A 1e)
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where

τxx = µ

[
4

3
χ (us + κv)− 2

3
(vn + wz)

]
, (A 2a)

τyy = µ

[
4

3
H1vn −

2

3
(us + κv +H1wz)

]
, (A 2b)

τzz = µ

[
4

3
H1wz −

2

3
(us + κv +H1vn)

]
, (A 2c)

τxz = µH1 (uz + χws) , (A 2d)

τxy = µ
[
vs +H2

1 (χu)n
]
, (A 2e)

τyz = µH1 (wn + vz) , (A 2f )

and

Φ

µ
= 2 (χus + κχv)

2
+ 2v2

n + 2w2
z + (wn + vz)

2
+ (uz + χws)

2
+ (χvs +H1 (χu)n)

2

−2

3
(χus + κχv + vn + wz)

2
.

(A 3)

The subscripts t, s, n, z represent partial derivatives with respect to time and the curvi-
linear spatial coordinates. We defined the global Reynolds number

R =
Ū∞cn
ν̄∞

, (A 4)

with kinematic viscosity ν̄∞ = µ̄∞/ρ̄∞. We also defined Γ = (γ − 1)M2
∞σ. The specific

heat ratio is denoted γ = 1.4, whereas σ = 0.72 is the Prandtl number. The Mach number
M∞ = Ū∞/a∞, with a∞ =

√
γRT̄∞, is based on far-field quantities, where a∞ is the

freestream speed of sound and R = 287.0 m2s−2K−1 is the ideal gas constant for air.
We have also introduced the following quantities to characterise the body curvature

κ =
1

rc(s)
, H1 = 1 + κn , (A 5a-b)

where rc(s) is the known local radius of curvature. However, a more prominent quantity
in the equations of motion is

χ =
1

H1
. (A 6)

The system of equations is closed with the ideal gas law

γM2
∞p = ρT , (A 7)

and with a viscosity model. Sutherland’s law is widely accepted to be the most accurate
over a wide range of flow conditions

µ = T
3
2

1 + Tc

T̄∞

T + Tc

T̄∞

, (A 8)

where Tc is a constant value for each fluid (110.4K for air).
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