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Abstract—Ultrasonic neuromodulation is a rapidly growing field, in which low-intensity ultrasound (US) is deliv-
ered to nervous system tissue, resulting in transient modulation of neural activity. This review summarizes the
findings in the central and peripheral nervous systems from mechanistic studies in cell culture to cognitive behav-
ioral studies in humans. The mechanisms by which US mechanically interacts with neurons and could affect fir-
ing are presented. An in-depth safety assessment of current studies shows that parameters for the human studies
fall within the safety envelope for US imaging. Challenges associated with accurately targeting US and monitor-
ing the response are described. In conclusion, the literature supports the use of US as a safe, non-invasive brain
stimulation modality with improved spatial localization and depth targeting compared with alternative methods.
US neurostimulation has the potential to be used both as a scientific instrument to investigate brain function and
as a therapeutic modality to modulate brain activity. (E-mail: robin.cleveland@eng.ox.ac.uk) © 2019 The
Author(s). Published by Elsevier Inc. on behalf of World Federation for Ultrasound in Medicine & Biology. This
is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/).
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INTRODUCTION

Brain stimulation techniques are vital tools to probe

neurologic processes from a cellular scale all the way

up to a systems level. Approaches such as the local

injection of pharmacologic agents, like muscimol

(Amiez et al. 2006), micro-stimulation (Histed et al.

2009) and optogenetics (Boyden 2011) allow for pre-

cise neural manipulation of individual cells or brain

areas with high spatial precision in animal models.

However, in humans, optogenetics-based methods are

not viable because they require genetic manipulation,

injections are inherently invasive and, whilst deep brain

stimulation (Perlmutter and Mink 2006) has been effec-

tive in a clinical setting for the treatment of diseases

such as Parkinson’s disease, it is not viable for probing

neural function in healthy volunteers.
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The development of non-invasive brain stimulation

(NIBS) methods (Polan�ıa et al. 2018) has provided neu-

roscientists with a tool for modulating neural activity in

healthy humans in order to further investigate brain

function. The two main established modalities are trans-

cranial electric stimulation (tES) (Nitsche et al. 2008)

and transcranial magnetic stimulation (TMS) (Walsh

and Cowey 2000). tES consists of placing electrodes on

the scalp to deliver weak currents through the brain

between the two electrodes. Several variations of this

method exist using either direct currents (Nitsche et al.

2008), alternating currents (Herrmann et al. 2013) or ran-

dom noise (Terney et al. 2008) as the stimulatory input.

However, all these approaches result in a highly diffuse

electric field that cannot be localized to a specific brain

target; reducing the size of one of the electrodes can

increase the focality but still results in about 10 cm2 of

the brain surface area within 50% of the maximum

power (Faria et al. 2012). The alternative method, TMS,

uses an extracorporeal magnetic coil to produce electric

currents inside the brain via electromagnetic induction.

Again, traditional ring and figure-8 coil designs suffer
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from diffuse fields (volumes on the order of many cm3)

that decay exponentially in amplitude from the brain sur-

face with depth, limiting their scope to the cortical sur-

face. At a depth of 1.5 cm, the lateral spread of the

magnetic field is over 10 cm2 (Deng et al. 2013). Despite

these spatial limitations, the functional resolution of

TMS is thought to be somewhat higher, as demonstrated

by specific motor movements following stimulation of

different parts of the motor cortex. More recent coil con-

figurations, for example the H-coil (Zangen et al. 2005),

also provide potential for stimulating deeper brain tar-

gets. Finally, whilst TMS is a safe method, some TMS

stimulation protocols have been associated with discom-

fort in patients (Rossi et al. 2009).

The most promising electrical modality for stimu-

lating neurons at depth without activating tissue at the

brain surface is temporal interference, which uses multi-

ple high-frequency electric fields that do not cause neu-

ral activation except where they overlap, the subsequent

interference thereby delivering a lower frequency stimu-

lus in the required firing rate range to stimulate neurons

(Grossman et al. 2017). To date, this technique has only

been demonstrated in mice but should be scalable for

use in humans.

The methods described thus far have focused on

inducing neural activity through the use of applied elec-

tric fields in keeping with the Hogkin-Huxley model of

action potential (AP) triggering through electrochemical

coupling (Hodgkin and Huxley 1952). However,

mechanical forces within the body, and specifically the

brain, also play a major role in cell functions, including

proliferation, signaling and differentiation (Mueller and

Tyler 2014; Tyler 2012; Wang and Thampatty 2006).

Focused ultrasound (FUS) is a way of non-inva-

sively delivering mechanical forces to cells deep within

the body in the form of an acoustic pressure wave, which

can result in numerous bioeffects, both thermal and

mechanical, depending on the specific pulsing regime

(ter Haar 2010). The acoustic waves can be focused to a

particular location with a spatial resolution on the order

of the wavelength of the driving frequency (approxi-

mately 3 mm at 0.5 MHz). As the focusing is achieved

through constructive interference of the incident waves,

a focal spot can be formed at depth within the tissue

without affecting cells along the propagation path closer

to the transducer.

Therapeutic delivery of ultrasound (US) to the brain

was first conducted in the 1950s in order to thermally

ablate a distinct volume of tissue resulting in the forma-

tion of a lesion (Fry et al. 1955). This therapy, known as

high-intensity focused ultrasound or HIFU, permanently

destroys a region of tissue and has applications for treat-

ing brain cancers (Martin et al. 2014) and other neuro-

logic disorders, such as tremors, whereby ablation of a
specific brain area can lead to significant symptom

improvements (Lipsman et al. 2014; Wang et al. 2015).

Additionally, shorter FUS pulses in combination with

intravenously injected US contrast agents (UCAs) can

be used to open the blood�brain barrier (BBB) via

mechanical mechanisms (Hynynen et al. 2005; McDan-

nold et al. 2012; Sheikov et al. 2008) and locally deliver

therapeutic agents ranging from small molecule drugs

(Treat et al. 2007) to viral vectors (Alonso et al. 2013).

HIFU could therefore be utilized for delivering drugs in

order to achieve pharmacologic neuromodulation of spe-

cific brain targets (Airan et al. 2017).

However, US alone at lower intensities can result in

direct neuromodulation of neurons (Khraiche et al.

2008; Tufail et al. 2010; Tyler et al. 2008) without the

addition of any other therapeutic agents. Consequently,

FUS has a huge potential to become a NIBS method,

providing increased spatial selectivity over existing elec-

trically based NIBS protocols coupled with the ability to

target areas of the brain at any depth.

The purpose of this review is to summarize work

over the past several decades demonstrating the effects

of US on neural tissue in both the central and peripheral

nervous systems. Most studies cited here were published

in journals that currently require authors to have had

clinical and/or animal trials approved by the appropriate

institutional review board; for those that were not pub-

lished in mainstream journals, the references were

checked to ensure there was a statement to that effect. In

addition, we discuss what we believe are the main bar-

riers at present to the uptake of FUS as a viable neuro-

modulatory tool, namely: an understanding of the

mechanistic underpinning of the transduction of the

acoustic wave into neural activity modulation; the safety

of the technique from both a thermal and mechanical

viewpoint; the delivery of US focused to a given brain or

nerve target; and treatment monitoring to ensure suc-

cessful targeting, as well as to record the induced neuro-

logic effects.
ULTRASOUND EXPOSURE

Parameters

Careful description of the US parameters is key to

defining the sequences utilized for inducing ultrasonic

neuromodulation. Typically, the sequences are defined

over multiple time scales with up to three layers, as shown

in Figure 1. At the shortest time scales, or inner layer, are

the individual pulses of US. The pulses have an associated

pulse repetition frequency (PRF) and are repeated at this

frequency for a length of time defined by the burst dura-

tion (BD), comprising the middle layer. The burst duty

cycle (BDC), or duty cycle over a BD, is therefore the

pulse length (PL) multiplied by the PRF. Each burst



Fig. 1. Schematic of ultrasound sequences and associated
parameters typically utilized for ultrasonic neuromodulation.

Table 1. Definitions of ultrasound parameters

Parameter Abbreviation Unit

Frequency f MHz
Pressure (peak instantaneous) p MPa
Intensity: spatial-peak, pulse-averaged ISPPA W/cm2

Intensity: spatial-peak, burst-averaged ISPBA W/cm2

Intensity: spatial-peak, temporal-averaged ISPTA mW/cm2

Pulse length PL ms
Pulse repetition frequency PRF Hz
Burst duration BD ms
Burst repetition frequency BRF Hz
Burst duty cycle BDC %
Burst interval BI s
Inter-stimulus interval ISI s
Total duty cycle TDC %
Number of pulses/bursts/trials N �
Total time TT s
Mechanical index MI �
Thermal index TI �

Review of US neuromodulation � J. BLACKMORE et al. 1511
comprises one distinct trial, and these are delivered at a

burst repetition frequency (BRF). The time between each

burst is defined as the inter-stimulus interval (ISI). The

BRF is thus the inverse of the sum of the BD and ISI. The

final, outer layer refers to the total time (TT) of the experi-

ment and has an associated total duty cycle (TDC) that

refers to the duty cycle over the whole experiment,

accounting for the ISI between bursts.

The variety of time scales present in the problem

means that intensity values can also be reported over mul-

tiple time scales. Here, the spatial-peak, pulse-averaged

intensity (ISPPA) will be defined as the average intensity

of an individual pulse. The spatial-peak, burst-

averaged intensity (ISPBA) refers to the intensity averaged

over one BD, and the spatial-peak, temporal-averaged

intensity (ISPTA) is the intensity averaged over the total

experimental time, including the ISI. For sequences that

do not employ bursts of short US pulses, but rather use

longer, continuous wave US pulses, the burst parameters

(BD and burst interval [BI]) are not relevant to defining

the pulsing sequence and the PL, ISI and TT are sufficient

to characterize the sequences. All of the parameters with

associated abbreviations and units are shown in Table 1.
Induced effects

US can result in the deposition of both mechanical

and thermal energy in the medium that it passes through.

Of particular importance to neuromodulation applica-

tions are the mechanical effects of acoustic radiation

force (ARF) and cavitation. These are both well studied

topics (Dalecki 2004). Here, we give a brief synopsis

and highlight the key parameters. The ARF occurs

because of attenuation in the tissue removing momentum

from the wave, which results in a net force on the tissue
(Palmeri and Nightingale 2011). For a time-harmonic,

progressive, plane wave, the force per unit volume of tis-

sue is given by (Nyborg 1965):

FARF ¼2aI
c0

’ a0

r0c20
fp2 ð1Þ

where a is the attenuation, I is the local intensity of the

acoustic field, c0 is the speed of sound and r0 is the den-
sity. Attenuation in biological tissues follows a power

law dependence of the form a = a�fn, where the exponent
n varies between 1 and 1.5. Here, we have assumed a lin-

ear relation (n = 1) in order to estimate the ARF, and

hence, in the second form of eqn (1), the ARF can be

seen to vary linearly with frequency and with the square

of the pressure amplitude, p.

Acoustic cavitation is the generation of voids or

bubbles within the tissue due to the tensile phase of the

acoustic wave exceeding a threshold (Plesset and Pros-

peretti 1977). Once formed, the cavity oscillates in

response to the acoustic wave, which can result in acous-

tic emissions, jetting and streaming, which can induce

bioeffects (Coussios and Roy 2008). The threshold for

acoustic cavitation depends on the peak negative pres-

sure, frequency and duration of the US and is also sensi-

tive to the tissue properties. It will be described more in

the safety section.
CENTRAL NERVOUS SYSTEM

US is capable of eliciting both excitatory and sup-

pressive effects on central nervous system (CNS) tissue,

depending on the nature of the pulsing regime incident on

the tissue. US-induced suppression of neural activity was

first observed in the 1950s (Fry et al. 1958), where evoked

potentials were first reversibly, and then permanently,

suppressed as the intensity was increased when sonicating
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for over 20 s. Shorter pulses have also demonstrated sup-

pressive effects, including the temporary dilation of the

cat’s pupils (Ballantine et al. 1960) and spreading depo-

larization waves in rats (Koroleva et al. 1986).

Electrophysiologic tools in combination with hip-

pocampal slices provided the first evidence that US

could directly stimulate neurons over a range of tempo-

ral scales. Local field potential (LFP) recordings mea-

sured both enhancement and suppression of electrically

evoked field potentials following exposure times of

2�15 min (Bachtold et al. 1998; Rinaldi et al. 1991);

microelectrode array recordings revealed increased fir-

ing rates of primary hippocampal neurons following

1 ms (Khraiche et al. 2008) and repeated 2�20 ms (Choi

et al. 2013; Kim et al. 2017) US pulses; and whole-cell

patch clamp recordings of individual Cornu Ammonis 1

(CA1) pyramidal neurons confirmed AP firing in

response to five short US pulses of a length of 22.7 ms

(Tyler et al. 2008). Comparison of LFPs between US

and optogenetic stimulation showed strong similarities

for pyramidal neuron stimulation, although the ampli-

tude of the US-induced response was 10�20-fold lower

(Moore et al. 2015).

Subcellular responses to US have also been

reported: sodium and calcium transients were generated

following US stimulation, which were subsequently

abolished following application of pharmacologic agents

indicating US-triggering of voltage-gated ion channels.

These transients were also evident in glial cells produc-

ing a larger mean fluorescence change of 1.4 compared

with 1.14 for the pyramidal neurons, suggesting glia

may have an increased sensitivity to US stimulation.

Moreover, US induced vesicle exocytosis and synaptic

transmission, which further contributed to network activ-

ity (Tyler et al. 2008).

Additionally, these excitatory responses have been

reported in vivo: US targeted to the motor cortex and

hippocampus in anaesthetized mice resulted in increased

cortical spiking on LFP recordings, as well as a period of

after-discharge activity lasting for up to 3 s and containing

gamma (40�100 Hz) and sharp-wave ripple (160�200

Hz) band components (Tufail et al. 2010). The application

of tetrodotoxin, a voltage-gated sodium channel blocker,

strongly attenuated US-evoked activity, consistent with the

results from hippocampal slice experiments (Tyler et al.

2008). The activity was accompanied by tail twitches and

electromyography (EMG) spikes with lower temporal-

averaged intensities (range: 20.6�162.7 mW/cm2) and

lower frequencies (range: 0.25�0.5 MHz), resulting in

more robust EMG responses but without affecting latency

times. Finally, the levels of a number of neurotrophic fac-

tors in the hippocampus were also significantly enhanced

following pulsed US exposure (Lin et al. 2015; Tufail et al.

2010; Yang et al. 2015). Two of these factors, brain-
derived neurotrophic factor (BDNF) and glial cell-line-

�derived neurotrophic factor, raise intriguing questions of

whether US can be used to stimulate hippocampal plastic-

ity with implications for probing learning and memory, as

well as offering neuroprotective effects for neurodegenera-

tive conditions, such as Alzheimer’s and Parkinson’s dis-

ease (Liu et al. 2017; Zhao et al. 2017).

As well as modulating the expression of BDNF, the

level of extracellular neurotransmitters has been shown

to be US-dependent with increased serotonin, dopamine

and g-aminobutyric acid (GABA) levels with respect to

controls in anaesthetized rats for up to 2 h following a

20 min US exposure at 175 mW/cm2 ISPTA (Min et al.

2011b; Yang et al. 2012). It should be noted that the

sampling site for the neurotransmitter levels (frontal

lobe) was located away from the sonication site (thala-

mus). Therefore, these findings highlight the ability to

use US not only to transiently alter neuronal activity

through increased spiking as has previously been shown

(Tufail et al. 2010; Tyler et al. 2008) but also to produce

longer lasting effects that affect the global connectivity

of the brain, possibly through modulation of the inhibi-

tory GABAergic pathway (Min et al. 2011b).

Numerous studies have focused on stimulating the

motor cortex in rodents (Gulick et al. 2017; Han et al. 2018;

Kamimura et al. 2016; Kim et al. 2014a; King et al. 2013,

2014; Li et al. 2016; Mehi�c et al. 2014; Ye et al. 2015; Yoo
et al. 2011b; Younan et al. 2013) with EMG recordings and

motor movements, primarily paw and whisker motion, pro-

viding quantification of the robustness of a response. This

has enabled parametrization studies to be carried out to

determine more effective stimulus parameters. One key find-

ing is that the threshold intensity required to produce an

EMG spike increases with the carrier frequency of the US at

frequencies in the low-megahertz range, as demonstrated by

a reduced EMG amplitude as frequency was raised from

0.25 to 0.5 MHz (Tufail et al. 2010); increased success rates

(the ratio of contractions to the total number of sonication

trials) at lower frequencies for a fixed intensity between 0.25

and 0.6 MHz (King et al. 2013); reduced threshold intensi-

ties at 0.35 MHz compared to 0.65 MHz (Kim et al. 2014a);

and increasing intensities to provide a given success rate

over a much wider frequency band of 0.3 to 2.9 MHz, albeit

with a flatter profile in the sub-megahertz range (Ye et al.

2015). This frequency dependence can be accounted for by

two different explanations: a cavitation-based mechanism as

the cavitation threshold increases with frequency (Church

et al. 2015) or as the result of reduced focal spot sizes with

increased frequency. Therefore, if the response is non-linear

such that the local activity reaches a maximum, the volume

of activated tissue may drive the overall motor outcome.

A model incorporating these two factors showed good

agreement with in vivo mouse data consistent with an ARF

mechanism, whereby higher frequencies are actually more
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effective at inducing a local response but activate smaller

volumes of tissue, thus requiring higher intensities to modu-

late behavior (Menz et al. 2017). However, this theory was

unsupported by results comparing planar and focused trans-

ducers at low frequencies, 0.3�0.6 MHz (Ye et al. 2015).

Other US parameters have also been studied.

Increasing the PRF in the range of 100�3000 Hz

resulted in greater responses (King et al. 2013) and a

BDC of 50%, and BD of 300 ms over a range of PLs,

1�5 ms, yielded the lowest intensity threshold for elicit-

ing a motor response (Kim et al. 2014a).

Moreover, the studies do provide conflicting evi-

dence over a number of points; for example, one group

claims pulsed US (Kim et al. 2014a) is the most effective

at producing motor responses, whereas another suggests

continuous wave US is better (King et al. 2013). The

relationship between temporal-averaged US intensity

and response amplitude or success rate also varies with

the correlation found to be negative (Tufail 2010), flat

with all-or-nothing responses (King et al. 2013), or posi-

tive (Kamimura et al. 2015; Mehic et al. 2014).

The precise targeting of specific parts of the motor

cortex has led to differing muscular outputs. The average

latency times significantly reduced for both neck and

tail EMGs when moving the US focus from rostral to caudal

brain locations, whilst the amplitudes of the EMG signal

decreased for the neck but increased for the tail (King

et al. 2014), pointing to more complex interactions between

the acoustic field and induced brain network activity. Higher

frequencies may be beneficial in this regard, as they can pin-

point smaller brain targets offering increased anatomic speci-

ficity; 5 MHz US was shown to be effective at inducing

EMG responses, despite the observed trend that higher fre-

quencies require higher intensities to induce activity, and

resulted in much shorter latency times versus 1 MHz (45 ms

and 208 ms, respectively) (Li et al. 2016).

Additionally, much higher frequency US (43 MHz)

has been demonstrated to mediate modulatory effects. In

isolated salamander retinas, US evoked strong responses

in ganglion cells that were independent of the PL and

PRF above 15 Hz (Menz et al. 2013). Activity was only

correlated with temporal-averaged intensity and satu-

rated above 10�30 W/cm2. Following the blockade of

synaptic transmission, the induced effects were no lon-

ger evident, indicating that US did not directly activate

ganglion cells and thus requires synaptic transmission.

At 43 MHz, cavitation activity is unlikely and an ARF-

based mechanism provides a better description of the

data, particularly as on and off responses were recorded

from US pulses. Conversely, at 0.2 MHz, motor move-

ments due to US exposure were associated with a 3 s

refractory period, providing evidence that a recovery

time of an US-specific mechanism was required, consis-

tent with a cavitation mechanism (Gulick et al. 2017).
Consequently, it might be that at different frequencies,

different mechanisms exist for coupling acoustic energy

into neural activity.

Similarly to TMS, the functional specificity of

FUS-induced neuromodulation may be somewhat

smaller than the intensity or pressure full-width half-

maximum focal volumes. Glucose uptake, as measured

by positron emission tomography imaging, was used to

assess induced responses, and the activated region was

reported to correspond to the full-width 90%-maximum

of the intensity field (Kim et al. 2014b).

In general, whilst these studies have uncovered cer-

tain trends, the results are highly variable. The explana-

tion is likely to be multi-faceted with differences in

experimental setup, anatomic variations and complex

interactions between either the stimulation, or inhibition,

of competing inhibitory and stimulatory networks, all

contributing to the high variance in outcomes. Another

crucial parameter that has been shown to significantly

alter experimental outcomes is the depth of anesthesia

the animals are under during the stimulation. In particu-

lar, many US-induced responses are only evident under

a light state of anesthesia (King et al. 2013; Younan et

al. 2013). A more in-depth study looking at ketamine

revealed that US-induced motor responses were abol-

ished for more than 20 min following its injection. This

was attributed to ketamine blocking US-triggered cal-

cium transients, as shown by fluorescence imaging of

cortical cell cultures (Han et al. 2018). It has also been

reported that US reduced anesthesia times following

administration of a single anesthetic dose by 20 min, as

measured by pinch response and voluntary movement

(Yoo et al. 2011b) and even, remarkably, could awaken

an individual from a coma (Monti et al. 2016).

Although the motor cortex has been the subject of the

majority of studies in small animal models, the visual sys-

tem has been studied in small animals as well as in larger

animals and humans, allowing electrophysiologic measure-

ments (electroencephalography [EEG]) and imaging tech-

niques (functional magnetic resonance imaging [fMRI]) to

be combined with behavioral and cognitive assessments.

Visual-evoked potentials (VEPs) were suppressed in a rab-

bit model following pulsed sonication at 0.69 MHz. The

effect lasted for 10 min, and the suppressive outcome was

confirmed by blood oxygenation level�dependent

(BOLD) fMRI (Yoo et al. 2011a). Similar responses were

revealed in rats along with VEP enhancement through

adjustment of the TDC or intensity of the US sequence

(Kim et al. 2015). Below 1% TDC, the VEP was not mod-

ulated, indicating a threshold for observing a response,

which is consistent with findings from the motor cortex

(King et al. 2013). At 5%, the magnitude of the P1 compo-

nent minus the N1 component was reduced by approxi-

mately 13%, whereas increasing the duty cycle to 8.3% or
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the ISPPA from 1 to 5 W/cm2 led to an increase of P1-N1

close to 10%.

Comparable electrophysiologic measurements were

recorded in both pigs and sheep. In sheep, repeated stim-

ulation of both primary visual and sensorimotor areas

was explored, leading to EMG and EEG responses,

respectively, (Lee et al. 2016c), and in pigs, thalamic tar-

geting also led to reversible suppression of somatosen-

sory-evoked potentials (SEPs) (Dallapiazza et al. 2018).

In awake monkeys, US was targeted to the frontal eye

field (FEF) during an antisaccade task (Deffieux et al.

2013). Ipsilateral mean latencies were significantly slowed

following FUS exposure, although the same results were

not observed in prosaccade tasks. These results demon-

strated for the first time the ability to use FUS as a neurosti-

mulation tool to modulate high-level cognitive behavior

(Deffieux et al. 2013). A second paper by the same group

measured multiple single neuron recordings in a connected

brain region, paving the way for future studies investigating

network connectivity changes (Wattiez et al. 2017). They

recorded significant modulation of approximately 40% of

neurons in this connected region, closely matching the

reported value in hippocampal slices that 30% of neurons

were stimulated, albeit in this instance, the stimulation and

recording sites were coincident (Tyler et al. 2008). Behav-

ioral modulation following right-side FEF sonication dur-

ing a visual task was also observed shifting animals’

choices to the leftward target and vice versa, left-side FEF

stimulation shifted choices to the rightward target (Kuba-

nek et al. 2017).

Based on the evidence from animal models (Tyler

et al. 2008; Yoo et al. 2011a), it has been suggested that

FUS would be a safe method to be used in humans. The

first US stimulation study for neuromodulation of the

human brain was conducted with a diagnostic imaging

probe operating at 8 MHz placed over the posterior fron-

tal cortex for 15 s (Hameroff et al. 2013) and conse-

quently led to significant improvements in mood, but not

pain, scores in chronic pain volunteers. At this fre-

quency, very little of incident acoustic energy is likely to

penetrate the skull, and so subsequent studies have all

focused on sub-megahertz frequencies utilizing US

sequences very similar to those found to be the most

effective in small animal parametrization studies.

Following successful median nerve stimulation via

US, which activated somatosensory pathways within the

brain (Legon et al. 2012) (see Peripheral Nervous Sys-

tem section), the next step was to try and modulate the

induced SEPs with US targeted to the primary somato-

sensory cortex (S1) in healthy volunteers (Legon et al.

2014). Attenuation of the SEP was reported along with

specific modulation of alpha (7�12 Hz), beta (13�20

Hz) and gamma (30�55 Hz) frequency bands at an US

frequency of 0.5 MHz, 500 ms BD at a 36% BDC and an
ISPPA of 5.9 W/cm2. Moreover, improvements in two-

point touch and frequency discrimination tasks followed

FUS sonication. Further analysis of the EEG data

revealed modulation of both intrinsic and evoked EEG

dynamics (Mueller et al. 2014). Overall, these findings

demonstrated the use of FUS to non-invasively modulate

cortical processes in humans.

Specifically targeting the hand S1, secondary

somatosensory cortex, or both areas simultaneously with

FUS was able to induce peripheral sensations in volun-

teers (Lee et al. 2015, 2016a). The reported perceptions

varied from tingling and numbness to itching and cool-

ness, as well as ranging in their location from fingertips

all the way up to the axilla. The distribution in location

of the induced peripheral sensations points to the mis-

alignment of the US focus and the target location and

highlights a key problem in scaling up from smaller ani-

mals to humans. This difficulty in ensuring correct tar-

geting is further discussed in the Delivery section. A

similar issue was also seen in a study delivering US to

the primary visual cortex, where retrospective simula-

tions revealed misalignment problems in some partici-

pants. However, in the volunteers where the US was

correctly focused, 300 ms US bursts at a 50% BDC, driv-

ing frequency of 270 kHz and ISPPA ranging between

1.2�6.6 W/cm2, induced phosphene perception, which

was associated with EEG modulation (Lee et al. 2016b).

Concurrent fMRI maps confirmed activation of the tar-

get site as well as showing activity in connected visual

and higher order cognitive pathways. A similar pattern

of activation has been observed following phosphene

induction via TMS (Lee et al. 2016b).

Combined magnetic and US stimulation has been

used to examine US modulatory effects in the human

motor cortex (M1) (Legon et al. 2018b). US was paired

with a number of established TMS protocols, and a burst

of 500 ms at 500 kHz was delivered 100 ms before the

TMS pulse, which attenuated single-pulse motor evoked

potentials (MEPs). In paired pulse protocols, two TMS

pulses are delivered at a specified time interval, which

determines if the MEP is inhibited or promoted. For

short intervals, the MEP is inhibited (short interval intra-

cortical inhibition [SICI]), whereas for longer intervals,

it is facilitated (intra-cortical facilitation [ICF]) (Zie-

mann et al. 1996). US attenuated ICF but had no effect

on SICI. The cortical silent period, an interruption of

voluntary muscle contraction following M1 stimulation

(Wilson et al. 1993), was not affected by US stimulation,

but US did reduce reaction times in a stimulus response

task (Legon et al. 2018b).

The simultaneous acquisition of fMRI data from

both 3 T and 7 T MRI scanners in conjunction with FUS

stimulation to cortical and sub-cortical regions has been

explored (Ai et al. 2016). Whilst image artifacts from
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the FUS source cannot be completely eliminated, they

can be reduced to an acceptable level in order to detect

cortical activity close to the transducer. Moreover, tar-

geting of deeper, thalamic regions also suppressed SEP

components along with time-locked gamma band

(approxiately 80 Hz) inhibition and a reduction in per-

formance for a two-point discrimination task (Legon

et al. 2018a).

Neuromodulatory effects have also been observed

following the intravenous injection of UCAs and US

sonication for BBB opening (Chu et al. 2015; Downs

et al. 2015). In rats, 400 kHz US at a mechanical index

(MI) of 0.55 (0.35 MPa) with injected microbubbles pro-

duced transient SEP amplitude modulation (less than

1 h) without affecting latency times or inducing damage.

However, increasing the MI to 0.8 (0.51 MPa) resulted

in red blood cell extravasation and was associated with

prolonged SEP amplitude and latency suppression. How-

ever, without microbubble injection, 0.8-MI US did not

induce BBB opening. (Chu et al. 2015). Furthermore, in

monkeys, BBB opening was associated with a significant

error reduction during a visuomotor task (Downs et al.

2015). Although this protocol, where agents are injected,

is not viable for healthy volunteers, these results suggest

a possible combined beneficial effect of BBB opening

not only to deliver a pharmacologic agent but also to

produce a direct behavioral change.

Alternative exogenous agents have also been devel-

oped to sensitize neurons to the applied US field: piezo-

electric nanoparticles couple acoustic energy into an

electric field, generating calcium transients (Marino

et al. 2015) and network activity (Rojas et al. 2018) at

pressures as low as 1�2 kPa.

Finally, analogous to optogenetics (Fenno et al.

2011), the term sonogenetics has been coined and inves-

tigated through genetic manipulation of Caenorhabditis

elegans with (Ibsen et al. 2015) and without microbub-

bles (Kubanek et al. 2018). Expression or mis-expression

of specific ion channel subunits found in touch-sensitive

neurons led to US-induced behavior and therefore offer

the potential to selectively and non-invasively stimulate

only genetically altered neurons without requiring surgi-

cal intervention to deliver light as in optogenetic

approaches.
PERIPHERAL NERVOUS SYSTEM

Ultrasonic neuromodulation applied to the periph-

eral nervous system (PNS) has been conducted in paral-

lel to the work in the CNS. At a similar time to the first

studies noticing reversible effects in the brain, it was dis-

covered that US sonication of the peripheral nerves

could first increase spiking activity and then depress

spontaneous activity in an initially reversible, and then
permanent, manner (Fry et al. 1950; Lele 1963; Young

and Henneman 1961). At the same time, conduction

velocities increased with the applied ultrasonic dose.

Both of these results were replicated by heat application

(Lele 1963), indicating a thermal mechanism. Differen-

tial blocking of mammalian nerves has also been

observed with the smallest, C fibers, being the most

responsive and the largest, A-a, being the least sensitive

(Legon et al. 2012; Lele 1963; Young and Henneman

1961). As the C fibers carry pain signals from receptors,

this opens the obvious question as to whether US can be

used to suppress pain.

A number of more recent studies confirmed these

findings, showing that evoked potential amplitudes could

be initially increased by up to 9% before decreasing at

higher intensities (Colucci et al. 2009; Foley et al. 2008;

Tsui et al. 2005). As previously, these long pulse (5 s to

5 min) sonications are primarily attributed to thermal

effects. Short pulses (0.5 ms) of US have also been

shown to modulate electrically induced compound

action potentials (CAPs) with either early enhancement

or suppression, depending on the latency time between

the applied US pulse and electrically induced CAP (Mih-

ran et al. 1990). These pulses have an estimated tempera-

ture rise of 0.025˚C, and so a thermal mechanism is

unlikely to be driving the observed responses, suggesting

mechanical effects may be involved. Reductions in con-

duction velocities (Juan et al. 2014; Wahab et al. 2012;)

also point to a non-thermal mechanism, as the conduc-

tion velocity is expected to increase with temperature

(Lele 1963).

Both ARF and cavitational-based mechanisms have

been proposed to account for US-mediated PNS modula-

tion: the cumulative radiation force was shown to nega-

tively correlate with reductions in both conduction

velocities and AP amplitudes following electrical stimu-

lation via an electrode (Wahab et al. 2012), whereas in

ex vivo crab axons, de novo APs could only be excited

when cavitation signatures were simultaneously

acquired on passive cavitation detectors (Wright et al.

2015, 2017). It should be noted that the minimum pres-

sure required to induce direct AP generation was 1.8

MPa at 0.67 MHz, on the order of a magnitude higher

than the lowest pressures required to modulate electri-

cally induced APs (0.1 MPa) (Wahab et al. 2012).

An in vivo study in mice also required higher pres-

sures (a minimum of 3.2 MPa) to induce EMG activity

and visible muscle responses following sonication of the

sciatic nerve at 3.57 MHz. A break period of 20�30 s

improved the success rate of subsequent stimulation to

92% (Downs et al. 2018). This regeneration phase is

similar to that reported in the CNS targeting US to motor

cortex where a 3 s refractory period was described

(Gulick et al. 2017). Moreover, shock waves of 50 MPa
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in amplitude are capable of directly generating CAPs

with a similar shape to electrically induced CAPs, but

lower amplitudes (Schelling et al. 1994). Movement of

the shock wave focus away from the nerve abolished

CAP generation until air bubbles were injected. Overall,

these results lend support to a cavitational-based mecha-

nism for generating de novo APs in peripheral nerves.

However, at 350 kHz, pressures of only 0.53 MPa

induced eyeball movements in rats following sonication

of the abducens nerve (Kim et al. 2012). The extent of

the movement grew after each 200 ms burst for 10

repeated bursts at a BI of 1 s. Although at a higher fre-

quency of 650 kHz, movements could not be induced.

In injured animals models, neuropathic tissue has

been shown to be more sensitive to US than healthy tissue

(Tych et al. 2013), as well as to improve regeneration and

recovery following crush injury linked with increased

BDNF levels (Ni et al. 2016). US has also shown benefits

in the treatment of other diseases. For example, in bladder

dysfunction, US inhibited rhythmic bladder contractions

with longer latencies and refractory periods compared

with electrical stimulation (Casella et al. 2017).

Gavrilov et al. made a series of pioneering contribu-

tions to the field. Initial experiments in the Pacinian cor-

puscle, a mammalian mechanoreceptor, showed the

induction of APs following US exposure at 0.48 MHz

between 0.4 and 2.5 W/cm2, with increasing potential

amplitudes as the intensity was increased (Gavrilov et al.

1977b). Translating these results into humans, a range of

tactile sensations were elicited following short US pulses

(1�100 ms) targeted to the hand or forearm (Gavrilov

et al. 1977a). As the PL was further increased, sensations

were present at the start and end of the waveform as well

as estimated displacements matching mechanical dis-

placements required to stimulate receptors, indicating

the ARF might be the mechanistic driving force behind

the sensations (Gavrilov 1984). With increasing inten-

sity, the sensations also changed in nature from tactile to

temperature and finally to pain perception. Before US

intensities reached the level to cause the onset of pain,

cavitation signals were also detected. In auditory nerves,

it was shown that sonication led to evoked potentials in

the brain at intensities as low as 0.01 W/cm2 and with a

similar form to those induced by sound stimuli (Gavrilov

et al. 1977b). Consequently, it was postulated that US

may have applications to both diagnosing neurologic

diseases based on US tactile sensation response as well

as the encoding of auditory information for the deaf.

A hypothesis that variability in the intensity required

to elicit tactile sensations in different tissues and individuals

was related to the density of mechanoreceptors, made ini-

tially by Gavrilov et al. (1984), was supported by a subse-

quent study in humans (Dickey et al. 2012). The sensitivity

of individuals showed a sigmoidal relationship with respect
to intensity, with an average intensity of 106.4 W/cm2 to

reach a 90% threshold response rate at 1.1 MHz.

Modifying the sequence parameters could also

change the induced sensations (Lee et al. 2014; Legon

et al. 2012) and their associated brain activity as quanti-

fied by EEG and BOLD fMRI maps showing activation

of different cortical and sub-cortical regions, depending

on the pulse incident on the fingertip (Legon et al. 2012).

Although thermal sensations were maximal over a band

of intensities (ISPTA = 10�30 W/cm2), vibrotactile and

nociception responses continued to increase for the range

of intensities tested, up to 100 W/cm2 (Lee et al. 2014).
MECHANISMS

Although historically nerve impulses have often

been considered as electrical signals, where depolariza-

tion of the membrane beyond a threshold potential leads

to excitation, it is now recognized that nerve impulses

involve a combination of electrical, mechanical, chemical

and conformational changes in the excited cells (Abbott

and Howarth 1973; Bose 1902; Bulychev et al. 2004;

Cohen and Salzberg 1978; Luzzati et al. 1999; Tasaki

1995, 1982; Terakawa 1985). Excitation and inhibition of

nerve impulses has been reported in response to electrical

(Hodgkin and Huxley 1952), chemical (Fillafer and

Schneider 2016; Newman and Zahs 1998; Tasaki et al.

1962), mechanical (Bose 1902; Guharay and Sachs 1984;

Julian and Goldman 1962; Newman and Zahs 1998; Spyr-

opoulos 1957) and thermal (Chapman 1967; Franz and

Iggo 1968; Guttman 1966; Inoue et al. 1973; Shapiro et

al. 2012) stimuli. The presence of a mechanical pathway

provides a physical basis for ultrasonic neuromodulation,

and here we will review four potential mechanisms by

which US could result in subsequent triggering of APs: (i)

the generation of capacitive currents due to membrane

displacements, (ii) the activation of mechanosensitive

channels, (iii) the opening of pores in the lipid bilayer, so-

called sonoporation and (iv) coupling into membrane

waves along the axon. There is overlap in the physical

basis by which these mechanisms occur, and so it may be

that it is a combination of these mechanisms, and poten-

tially others, that provides a means for US to effect neuro-

stimulation.

US waves carry energy and can do work on and

exchange heat with the medium they propagate through.

The principal interface by which US affects neurons

(and indeed cells in general) is through interaction with

cell membranes, the biophysics of which is a rich and

mature field (Lipowsky 1995; Sackmann 1995). From a

physical chemistry perspective, there is comprehensive

literature on the excitability of a nerve that describes the

phenomenon as a phase transition associated with a

change in the conformational state of the plasma
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membrane (Abbott and Howarth 1973; Inoue et al. 1973;

Kobatake et al. 1971; Luzzati et al. 1999; Margineanu

and Schoffeniels 1977; Tasaki 1959; Ueda et al. 1974).

The phase transitions that can occur in biological mem-

branes are very diverse (Georgescauld et al. 1979; Hazel

et al. 1998; Koynova and Caffrey 1998) and have time-

scales from ns to ms (Holzwarth 1989). Within that

range of time scales, US has been shown to effect

changes in the conformational state of single and multi-

ple component lipid vesicles and proteins (Halstenberg

et al. 1998; Holzwarth 1989; Kessler and Dunn 1969;

O’Brien Jr and Dunn 1972; Tatat and Dunn 1992). The

mechanisms described here are related to processes by

which US produces conformational changes, which will

then result in nerve excitation.

Membrane capacitance: flexoelectricity and

conformational changes

The original Hodgkin and Huxley model (1952) of

the propagation of nerve impulses in a neuron modelled

the membrane as a fixed capacitance. Subsequent studies

have shown that changes in the membrane properties,

such as thickness (Heimburg 2012), curvature (Petrov

2002) and the conformational state of the lipids in the

membrane (Antonov et al. 1985; Taylor et al. 2017),

result in changes in capacitance, which can result in

excitation of nerve impulses (Heimburg 2012; Luan et

al. 2014; Plaksin et al. 2014, 2017; Shapiro et al. 2012;

Zecchi et al. 2017). US has been previously shown to

induce capacitive currents in pure lipid membranes

(Prieto et al. 2013), which can be explained on the basis

of flexoelectric effects or conformational changes. If the

perturbations are sufficiently compressive, then the

resulting currents would be excitatory, and if dilational,

the currents would be inhibitory. An alternative hypothe-

sis is that nucleation and expansion of cavities within, or

near, a lipid bilayer could result in capacitive currents

(Plaksin et al. 2014), although the exact role of cavita-

tion in ultrasonic nervous stimulation is yet to be fully

elucidated.

Mechanosensitive channels

The activity of ion channels can also be modulated

by changes in the conformation state of channel proteins,

as well as that of surrounding lipids and other macromo-

lecules (Perozo et al. 2002; Seeger et al. 2010; Soto-

mayor et al. 2000). Numerous different ion channels are

mechanosensitive (Morris 2012) and have been shown

to exhibit sensitivity to US of varying degrees (Brohawn

2015; Morris 2011; Mueller and Tyler 2014). Specific

channels that appear to respond to US stimulation

include: two pore domain K+ channels (Kubanek et al.

2016), Nav1.5 channels (Kubanek et al. 2016), voltage-

gated Na+ and Ca2+ channels (Tyler et al. 2008),
transient receptor potential channels (Ibsen et al. 2015;

Li et al. 2018) and Piezo1 channels (Pan et al. 2018;

Prieto et al. 2018). In the case of Ca2+, it is a critical

messenger molecule, which is also involved in neuronal

function through synaptic activity modulation and

through extensive signaling pathways (Brini et al. 2014).

Ca2+ flows have also been shown to couple to the confor-

mational state of the membrane, where changing either

component invariably affects the other (Tasaki 1982). In

addition to ion channels, synaptic activity (Borrelli et al.

1981; Tufail et al. 2010; Tyler et al. 2008; Vladimirova

et al. 1994) is known to be sensitive to mechanical cues

(Siechen et al. 2009; Tasaki 1995), and glial cells have

been shown to respond to US modulation (Kovacs et al.

2017; Newman and Zahs 1998; Tyler et al. 2008).

Sonoporation

We define sonoporation as the opening of pores or

other transport processes via acoustic stimulation that

are separate from the ion channels normally employed

by the cell membrane. Sonoporation can occur through

the creation of physical pores in the bilayer, which

would provide a new channel for ion transport, driven

by the gradients across the cell membrane. The proba-

bility of forming a pore in the membrane has been

shown to be directly related to the compressibility and

specific heat of the membrane (Antonov et al. 1985;

Blicher et al. 2009; Kaufmann et al. 1989; Wunderlich

et al. 2009). The specific heat has a local peak at phase

transition, and therefore if the US perturbation can

nudge the membrane through a transition, then the

rate of pore formation will increase (Tatat and Dunn

1992).

Even without the creation of physical pores, the

permeability of the membrane can change with its con-

formation state (Nagle and Scott 1978; Walter and Gut-

knecht 1986; Yang and Kindt 2015), which affects the

solvent environment in the hydrophobic core (Koynova

and Caffrey 1998). Therefore, if US alters the conforma-

tional state of the membrane, the permeability will

adjust, resulting in changes to the gradient-driven ion

currents (Tatat and Dunn 1992).

We note that in the presence of a microbubble, neu-

rostimulation by US seems to be enhanced, potentially

by pore formation. For example, intracellular Ca2+

waves have been observed following microbubble col-

lapse (Li et al. 2018), with a fast wave occurring when

pores in the membrane were created by the microbubble

collapse but a slower wave when it was not. The Piezo1

Ca2+ channel has also been observed to be activated by

2 MHz US, but only in the presence of microbubbles

(Pan et al. 2018). However, the focus of most neurosti-

mulation studies has been to avoid the use of microbub-

bles as they increase the risk for injury.
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Membrane waves

Recent experimental and theoretical research has

established that nerve impulses are associated with elastic

interface waves that propagate along the wall of the axon

or the plasma membrane (El Hady and Machta 2015;

Kim et al. 2007); the propagation of the mechanical dis-

turbance is coupled to ionic currents and chemical poten-

tials (Fichtl et al. 2016). Experiments in lipid membranes

have shown that when the membrane is close to a phase

transition, the interface waves behave in a manner that is

strikingly similar to nerve impulses, including a threshold

for excitation (Shrivastava et al. 2015; Shrivastava and

Schneider 2014), velocities similar to nerve conduction in

unmyelinated neurons (Kappler et al. 2017) and annihila-

tion upon collision (Shrivastava et al. 2018). Interface

waves can be stimulated mechanically and result in cou-

pled electrical potentials in neurons (El Hady and Machta

2015), which has led to the suggestion of interface waves

as the physical basis for nerve impulses and biological

signaling (Andersen et al. 2009; Fichtl et al. 2016; Gries-

bauer et al. 2012; Heimburg and Jackson 2005; Shrivas-

tava and Schneider 2014), although these ideas are not yet

mainstream. Therefore, if an US wave couples into an

interface wave in the axon, that can lead to the corre-

sponding chemical (Fichtl et al. 2016) and electrical pro-

cesses that result in a nerve impulse (Andersen et al.

2009; Wunderlich et al. 2009). Alternatively, the acoustic

perturbation could move the interface far enough away

from transition to suppress a nerve impulse.

Thermal effects

Alongside the mechanically induced effects, absorp-

tion of the US wave leads to temperature rises, which may

also result in thermal neuromodulation dependent on the

incident waveform. A similar thermal absorption mecha-

nism is used to achieve infrared neural stimulation (Cher-

nov and Roe 2014). Temperature changes on the order of a

few degrees can affect neural activity, altering the ampli-

tude and duration of APs, excitation thresholds, spiking

rates and afterhyperpolarization kinetics, (Chapman 1967;

Guttman 1966; Lee et al. 2005; Thompson et al. 1985).

Certain ion channels are also known to exhibit thermosen-

sitivity (Cesare et al. 1999).

Concluding remarks

Although nerve impulses are often thought of as

electrical signals, in reality they involve mechanical,

thermal, chemical and conformational changes in the

plasma membrane as well. Here, we have described how

acoustic perturbations have the potential to couple to

these various aspects of cellular excitability and alter the

conformational or thermodynamic state of the plasma

membranes of cells, which could result in sufficient

depolarization to trigger a nerve impulse or to suppress
depolarization and inhibit nerve firing. The excitatory or

inhibitory actions can be through changes in membrane

capacitance, changes to ion channels, the opening of

pores and coupling to interfacial elastic waves. In addi-

tion to conformational changes in the cell membrane,

flexoelectricity and state change due to cavitation also

have the potential to contribute to neurostimulation.

A key aspect to the conformational changes is that

the cell membrane is sitting close to a thermodynamic

phase transition, which means even small perturbations

can cause significant structural changes that lead to nerve

firing (Tasaki 1982). In the context of human CNS modu-

lation, given the typical parameters employed, the most

likely mechanism by which modulation occurs is by ARF

(Menz et al. 2017; Mihran et al. 1990; Prieto et al. 2018)

as it is sufficient to deform tissue and has time scales bet-

ter matched to the underlying conformational changes

(Holzwarth 1989; Tatat and Dunn 1992). On the other

hand, PNS stimulation associated with higher intensities

may require other bioeffects to induce a response, such as

cavitation. For sufficient radiation force, the conforma-

tional change will directly polarize the membrane via

flexoelectric (Petrov 2002) or mechanocapacitive (Zecchi

et al. 2017) coupling, resulting in immediate excitation

without delay. At lower amplitudes, the radiation force

will depolarize the membrane by slowly depleting the ion

gradients (rheobasic current), and the duration will need

to be sufficiently long for polarization to cross the thresh-

old required to produce a nerve impulse.

We have focused on the four mechanisms we con-

sider the strongest candidates to affect neurostimulation,

although other hypotheses exist, such as the Orchestrated

Objective Reduction theory (Hameroff and Penrose

2014), whereby US interacts with microtubular oscilla-

tions. Given the complexity of biological systems, it is

highly likely that multiple mechanisms play a role in

transducing acoustic perturbations into nerve impulses

and that the relative contributions may change depend-

ing on acoustic parameters (amplitude and time scales)

and cell types. The role of cell types, in particular glial

cells, demands attention, given significant differences

observed in US parameters that result in excitation in

CNS versus PNS stimulation. Glial cells fill the space

between neuronal elements in the brain and, tradition-

ally, are believed to provide a soft connective tissue that

provides structural support (Pogoda and Janmey 2018).

However, recent research suggests a more critical role of

these cells in the brain for neuronal function (Fields

2015; Min and Nevian 2012) as well as functioning as a

source and mediator for calcium waves (Chesler 2003;

Newman and Zahs 1998). Mechanical stimulus is known

to be efficient at exciting calcium waves in glial cells,

making them a potential target for US stimulation of the

brain (Newman and Zahs 1998).



Fig. 2. Parameter analysis of central nervous system studies:
instantaneous peak pressure (p) against driving frequency (f).
The studies are split into human, large animal, small animal
and in vitro work. Any studies that conduct histologic analysis
and report no damage are filled in blue, and those that report
damage are filled in red. Lines of constant mechanical index
(MI) and fp2, a measure of acoustic radiation force (ARF), are
also displayed. (a) Full parameter space (log scale). (b) Subset
of parameters applicable to transcranial human delivery (linear
scale, p < 1.2 MPa, f < 1.2 MHz). ARF = acoustic radiation
force; f = driving frequency; fp2 = measure of acoustic radiation
forces; MI = constant mechanical index; p = instantaneous peak
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SAFETY

Establishing the safety of US in the brain is para-

mount to enabling FUS as a viable NIBS method. Many

of the studies on ultrasonic neuromodulation have also

published safety data relating to any damage, or the

absence of damage, that occurred during the stimulation.

The published data related to such safety concerns will

be reviewed in this section, and existing published

guidelines on the safety of US pulses will be examined.

Figures 2�5 display the US parameter spaces utilized to

date for neuromodulation in the CNS and PNS indicating

where any histologic assessments have been conducted

and if any damage was observed. These are discussed in

more detail in the Review of Acoustic Parameters sub-

section.

Central nervous system

The early work in hippocampal slices and mice

conducted a series of assays to assess safety. In slices,

repeated stimulation every 8 min for 36�48 h did not

alter the structure of cell membranes (Tyler et al. 2008).

There was no sign of BBB damage or changes in synap-

tic morphology, density or cortical neuropil structure (up

to ISPTA = 142.20 mW/cm2), no neurologic abnormalities

during rotorod or wire-hanging tasks and no increase in

the density of apoptotic neurons or glial cells (up to 300

mW/cm2) (Tufail et al. 2010).

Further histologic assessments, including hematoxylin

and eosin staining and DNA fragmentation (TUNEL)

assays, have been conducted following stimulation in a

number of animal studies and revealed no damage as

shown in Figures 2 and 3 (Dallapiazza et al. 2018; Mehi�c
et al. 2014; Min et al. 2011a; Li et al. 2016; Lee et al.

2017; Yang et al. 2012; Yoo et al. 2011a). Work in disease

models for neurodegenerative diseases has also not shown

any damage due to low-intensity US in control groups as

well as offered a neuroprotective benefit following toxin

exposure, reducing oxidative stress (Zhao et al. 2017),

myelin loss and apoptosis (Yang et al. 2015), resulting in

increased cell viability.

Out of the 54 CNS studies reviewed, only two

reported damage associated with US stimulation. In rats,

one animal exhibited several areas containing hemosid-

erin, indicating the potential of local bleeding (Kim

et al. 2014a). The parameters used were an US frequency

of 0.35 MHz at an ISPPA = 22.4 W/cm2, MI = 1.38 and

BI = 2 s. The second study, in sheep, showed that

repeated stimulations (more than 500 trials) delivered at

short BIs of 1 s resulted in small micro-hemorrhages

(Lee et al. 2016c). However, at 5 s BIs, no damage was

observed. These studies highlight the need to design US

sequences that are away from any possible damaging

pressure.



Fig. 3. Parameter analysis of central nervous system studies.
For burst wave: burst-averaged intensity (ISPBA) versus burst
duration (BD). For continuous wave: pulse-averaged intensity
(ISPPA) against pulse length (PL). The studies are split into
human, small animal and in vitro work. Any studies that con-
duct histologic analysis and report no damage are filled in blue,
and those that report damage are filled in red. Lines of constant
energy density (ISPBA£BD or ISPPA£ PL) are also displayed.
(a) Full parameter space (log scale). (b) Subset of parameters
(linear scale, ISPBA / ISPPA < 30 W/cm2, BD / PL < 500 ms).
BD = burst duration; E = energy density; ISPBA = spatial-peak
burst-averaged intensity; ISPPA = spatial-peak pulse-averaged

intensity; PL = pulse length.

Fig. 4. Parameter analysis of peripheral nervous system studies. (a)
Instantaneous peak pressure (p) against driving frequency (f) with
lines of constant mechanical index (MI) and fp2, a measure of
acoustic radiation force (ARF) (log scale). (b) For burst wave:
burst-averaged intensity (ISPBA) versus burst duration (BD). For
continuous wave: pulse-averaged intensity (ISPPA) against pulse
length (PL). Lines of constant energy density (ISPBA£BD or
ISPPA£ PL) are also displayed (log scale). The studies are split into
human, small animal and ex vivo work. Any studies that conduct
histologic analysis and report no damage are filled in blue, and
those that report damage are filled in red. ARF= acoustic radiation
force; BD= burst duration; E = energy density; f= driving fre-
quency; fp2 =measure of acoustic radiation forces; ISPBA = spatial-
peak burst-averaged intensity; ISPPA = spatial-peak pulse-averaged
intensity; MI =mechanical index; p = instantaneous peak pressure;

PL = pulse length.
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Fig. 5. Comparison of parameters employed in the central
nervous system (CNS, cross) and the peripheral nervous
system (PNS, star). (a) Instantaneous peak pressure (p)
against driving frequency (f), with lines of constant
mechanical index (MI) and fp2, a measure of acoustic radia-
tion force (ARF) (log scale). (b) For continuous wave:
pulse-averaged intensity (ISPPA) against pulse length (PL).
Lines of constant energy density (ISPBA £BD or
ISPPA £ PL) are also displayed (log scale). ARF = acoustic
radiation force; BD = burst duration; CNS = central nervous
system; E = energy density; f = driving frequency;
fp2 = measure of acoustic radiation forces; ISPBA = spatial-
peak burst-averaged intensity; ISPPA = spatial-peak pulse-
averaged intensity; MI = constant mechanical index;
p = instantaneous peak pressure; PL = pulse length;
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levels by limiting the maximum intensities used and

ensuring sufficient rest periods between pulses.

In terms of mechanical safety concerns, to our

knowledge, no CNS neuromodulation study has detected

direct evidence of cavitation during US stimulation. At

the pressures utilized in humans (<600 kPa), it is

unlikely to lead to large blood vessel rupture in the

absence of UCAs. Although limited data have been pub-

lished on the cavitation thresholds in brain tissue, a study

in sheep at 0.66 MHz with short, two-cycle pulses

required peak negative pressures of 12.7 MPa to induce

bubble nucleation (Gateau et al. 2011). Using 20 s dura-

tion pulses at 220 kHz, cavitation was detected for

source powers of 300 W and above (Xu et al. 2015),

which resulted in a detectable lesion. These waveforms

also led to significant temperature rises (>10˚C) and

consequently are far removed from the parameters uti-

lized in ultrasonic neuromodulation.

Whilst histology in humans has clearly not been

viable, neurologic examinations and MRI follow ups

have not reported any adverse findings in any of the

human studies, up to an ISPPA of 11.6 W/cm2 (Lee et al.

2015, 2016b; Legon et al. 2014). The most severe com-

plication was a headache experienced by one patient,

which quickly resolved (Hameroff et al. 2013).

Peripheral nervous system

Typically, US intensities for PNS stimulation have

been higher than those required for neuromodulation in

the CNS. Reversible CAP effects have not been associ-

ated with any damage in animals or humans. However,

following prolonged US exposure, nerve damage has

been detected and is linked with irreversible activity sup-

pression (Colucci et al. 2009; Foley et al. 2008; Lele

1963). In ex vivo crab nerve preparations, afterdischarge

was observed at high intensities, 230 W/cm2 at

0.67 MHz that resulted in reduced CAPs (Wright et al.

2017). This was associated with significant cavitational

activity and therefore probably arose as a result of mem-

brane rupture.

In mice, damage was only observed in a positive

control group using very high pressures of 5.4 MPa at a

90% BDC, 0.5 s PL (Downs et al. 2018) at 3.57 MHz.

For lower pressures (0.53 MPa) at 350 kHz, no tissue

damage or BBB disruption was detected (Kim et al.

2012). No damage was detected in human fingertip

vibrotactile experiments (Dickey et al. 2012; Lee et al.

2014). Again, any damage parameters are highlighted in

Figure 4.

Safety metrics

The safety of US pulses for diagnostic imaging has

been extensively studied (Duck 2008). Three metrics are

typically quoted to ensure the safety of the incident US

PNS = peripheral nervous system.



1522 Ultrasound in Medicine & Biology Volume 45, Number 7, 2019
pulse: intensity, thermal index (TI) and MI. The TI is a

measure of heating within the tissue. It is defined as the

ratio of the acoustic power (Wp) to the power required to

raise the tissue by 1˚C (Wdeg). Related to this, the esti-

mated temperature rises can be calculated from eqn (3),

which is an approximation to the Pennes bioheat transfer

equation (Pennes 1948).

TI ¼ Wp

W deg

ð2Þ

dT
dt

¼ 2aI
r0cp

’ a0

r20c0cp
fp2 ð3Þ

The MI is a measure of cavitation related to the

degree of induced bubble activity and hence to the prob-

ability of mechanical damage occurring within the tissue

(Apfel and Holland 1991). The MI is defined as the ratio

of peak negative pressure in MPa to the square root of

the frequency in MHz.

MI ¼ PNP
ffiffiffi
f

p ð4Þ

It should be noted that the MI was originally

developed for short imaging pulses in water and blood

to assess the likelihood of cavitation, and so its applica-

bility to longer pulses utilized for ultrasonic neuromo-

dulation is unclear. Subsequent studies have examined

the use of MI for longer US pulses utilized in ARF

imaging, which suggest that a modification of the fre-

quency exponent from 0.5 to 0.75 shows a better fit

with theoretical data (Church et al. 2015). However,

experimentally obtained cavitation thresholds in tissue

are much higher than the theoretical predictions, which

suggests that the assumption of optimally sized cavita-

tion nuclei existing in tissue is incorrect (Church et al.

2015). For injected gas-encapsulated UCAs, an alterna-

tive measure, the cavitation index, has also been devel-

oped to predict cavitation activity and modifies the

frequency exponent in the MI to one. The associated

thresholds for UCA rupture and subharmonic cavitation

emissions are consequently much lower (Bader and

Holland 2013). Therefore, whilst the exact form of the

index to predict cavitation in tissue for long US pulses

is under debate, we will use the MI as a reference for

discussing the mechanical safety of neuromodulation

US sequences given that this is the parameter quoted in

most of the US safety guidelines. It may be that keeping

pressure amplitudes below the MI limit is unnecessarily

restrictive for neuromodulation; however, until vali-

dated safety studies have been carried out, particularly

in brain tissue, it seems unwise to exceed the diagnostic

MI limit at present.
Safety guidelines

The Food and Drug Administration (FDA) guide-

lines for diagnostic US imaging devices complying with

the output display standard, are as follows: the ISPTA
must not exceed 720 mW/cm2, the ISPPA must not exceed

190 W/cm2, the TI must not exceed 6 and the MI must

not exceed 1.9 (Duck 2007). The British Medical Ultra-

sound Society also has a set of guidelines for diagnostic

imaging: the TI must be less than or equal to 0.7 for

unlimited time or less than 3 if the duration is less than

1 min. The MI should also be less than 0.7 if UCAs are

used, as there is a risk of cavitation above this threshold

(Apfel and Holland 1991; Safety Group of the British

Medical Ultrasound Society 2010).

Review of acoustic parameters

Tables 2 and 3 list the studies in the literature

where US was used for neuromodulation in the CNS

and PNS, respectively, without any additional exoge-

nous agents, highlighting the key findings along with

any reported safety information. The literature search

was carried out using the keywords “ultrasound” and

“neuromodulation” or “brain stimulation” or “LIFU”

on the PubMed, ScienceDirect and Google Scholar

databases. Any studies that used additional agents (for

example: UCAs or nano-particles) or caused thermal

ablation were neglected. In total, 77 studies were iden-

tified that used US to modulate the nervous system. For

each study, the acoustic parameters were extracted or,

if not given, calculated from the quoted parameters

where possible. The full US parameter sets can be

found in the Supplementary Information.

Figure 2 displays the peak instantaneous pressure

against driving frequency for all of the CNS studies.

Here, only the maximum pressure used in each experi-

ment or study has been extracted. For studies that indi-

cate damage, the minimum pressure at which damage

was reported are plotted in order to focus on safety. Suc-

cessful stimulation may therefore have occurred at lower

thresholds. The data have been split into four categories:

human, large animal, small animal and in vitro work.

Where histologic analysis has been conducted, the

markers are filled with blue, indicating no damage, or

red to indicate damage. Contours lines of MI = 1.0 and

MI = 1.9 are plotted in order to place data relative to the

safety metrics. Also shown are lines of constant fp2,

which correspond to a constant ARF, as shown in eqn

(1). It is noted that this expression takes a similar form

to the heating rate dT
dt

� �
, as shown in eqn (3), where cp is

the specific heat capacity of the tissue. For fp2 = 1, this

results in a heating rate of approximately 1˚C per second.

Figure 2a shows the data on a logarithmic frequency

scale spanning almost three orders of magnitude. The



Table 2. Ultrasonic neuromodulation central nervous system (CNS) studies

Study Organism & target Key findings Safety

Legon et al. (2018b) Human (M1) Combined US and magnetic stimulation. US
inhibits amplitude of single-pulse TMS-
induced MEPs and reduces reaction times dur-
ing stimulus response task.

�

Legon et al. (2018a) Human (Thalamus) Modulation of sub-cortical nuclei. Attenuation
of P14 SEP amplitude. Reduction in perfor-
mance of discrimination task.

�

Lee et al. (2016b) Human (V1) Phosphene perception. fMRI: activation of V1,
visual pathways & cognitive processes. Modu-
lation of VEPs.

Neurologic examination, MRI follow
up (0, 2, 4 wk) and follow-up inter-
views (2 mo): no abnormal findings
across all participants.

Lee et al. (2016a) Human (S1, S2) Elicitation of tactile sensations on hand and arm.
Simultaneous S1/S2 stimulation.

No adverse changes or discomfort in
mental/physical status across all
individuals.

Ai et al. (2016) Human (M1,
S1, caudate)

fMRI responses in sensorimotor & caudate
regions.

�

Lee et al. (2015) Human (S1) Elicitation of peripheral sensations on hand and
arm. Modulation of SEPs.

Neurologic and neuroradiologic
assessment did not show any safety
concerns.

Mueller et al. (2014) Human (S1) Modulation of EEG dynamics, including phase
and phase rate in beta and gamma bands.

�

Legon et al. (2014) Human (S1) Modulation of SEPs and alpha, beta and gamma
frequency bands. Improvement in discrimina-
tion tasks.

�

Hameroff et al. (2013) * Human (Posterior
frontal cortex)

Improvement in mood scores. Small pain reduc-
tion but not significant.

One subject experienced a headache,
which quickly resolved. No other
side effects up to 4 mo after the
study.

Kubanek et al. (2017) Monkey (FEF) US stimulation to left (right) FEF shifted ani-
mals’ choices to rightward (leftward) target.

No long term bias in animals choices
after 8 d of stimulation of each
region.

Wattiez et al. (2017) Monkey (FEF) Single neuron recordings in SEF: activity
changes following US stimulation of FEF.
»40% of neurons modulated.

�

Deffieux et al. (2013) Monkey (FEF) Increased latencies in antisaccade task. Stimulation effect was transient (no
significant effects observed on the
following control trials).

Dallapiazza et al. (2018) Pig (Thalamus) Reversible suppression of SEPs. Selective acti-
vation of sub-nuclei within somatosensory
thalamus.

Histology: no gross or microscopic
tissue damage.

Daniels et al. (2018) Pig (AC) AEP suppression. �
Rat (Inferior
colliculus region)

AEP suppression. Histology (H&E): no damage. No
sign of inflammatory response or
structural changes. AEP amplitude
recovery 1 h to 1 mo.

Lee et al. (2016c) Sheep (SM1, V1) SM1: EMG response of contralateral hind leg.
V1: VEPs.

Histology: small microhemorrhage
for repetitive stimulation (� 500
stimulations delivered at 1 s inter-
vals). Damage not seen at longer
ISIs. Post-sonication behavior
normal.

Fisher and
Gumenchuk (2018)

Mouse (Cortex) Reduction in latency and increased Ca2+
response following electrical stimulation with
US pre-treatment.

Histology: no changes in distribution
of glial fibrillary acidic protein or
evans blue � no neural injury or
BBB opening.

Han et al. (2018) Rat (Motor cortex) &
Cell cultures

Response robustness increased with intensity
and linked with shorter latencies. Ketamine
reduced Ca2+ transients in dose-dependent
manner by up to 82%.

Histology (H&E): no obvious dam-
age, morphologic changes, tissue
bleeding, or cytoplasmic swelling.

Guo et al. (2018) Guinea Pig (Various
including A1, S1)

US response due to indirect cochlear fluid path-
way rather than direct activation. Similar
activity in A1, SC1 recorded irrespective of
target location. US-evoked activity eliminated
by removal of cochlear fluid.

�

(continued)
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Table 2. (Continued)

Study Organism & target Key findings Safety

Sato et al. (2018) Mouse (Visual cortex) Widespread neural activation through indirect
auditory mechanism. Contralateral visual cor-
tex had similar response kinetics to targeted
side, but auditory cortex showed contralateral
bias. Chemical deafening greatly reduced
motor outputs.

�

Gulick et al. (2017) Rat (Motor cortex) Long-term modulation of electrical stimulation:
reduced hind limb responses. Direct motor
response had 3 s refractory period.

No behavioral changes observed fol-
lowing stimulation.

Lee et al. (2017) Rat � Histology (H&E, TUNEL assay): no
cell necrosis.

Li et al. (2016) Mouse (Motor cortex) Increased specificity and decreased latencies at
5 MHz compared with 1 MHz.

Histology (H&E): no evidence of tis-
sue bleeding or cell necrosis.

Kamimura et al.
(2016, 2015)

Mouse (Motor & cog-
nitive areas)

Limb movement and eyeball dilation. Histology (H&E): no damage.

Darvas et al. (2016) Rat EEG signal at the frequency of the US PRF was
induced along with demodulated activity in
gamma & beta bands: potential use of US to
tag deep regions for EEG-based mapping.

�

Yu et al. (2016) Rat Localization of induced brain activity using
electrophysiologic source imaging.

�

Moore et al. (2015) Mouse (Somatosen-
sory cortex)

US and optogenetic responses have similar form
for pyramidal neurons, but not interneurons,
but amplitudes 10- to 20-fold lower for US.

�

Ye et al. (2015) Mouse (Motor cortex) Success rate decreases with frequency for given
intensity. Focal spot size did not have consis-
tent effect on success rates; most of the vari-
ance can be explained by frequency. Success
strongly correlated with cavitation index and
particle displacement but not ARF.

�

Kim et al. (2015) Rat (Visual cortex) VEP magnitude suppression/enhancement
dependent on intensity and BD. Threshold
intensity to elicit response.

�

King et al. (2014) Mouse (Motor cortex) Differences in EMG response (magnitude and
latency) following rostral or caudal
stimulation.

�

Mehi�c et al. (2014) Rat (Motor cortex) Comparison of planar, focused and modulated-
focused source using 1.75 and 2.25 MHz to
generate a 0.5 MHz difference frequency.
Large variance in responses. Robustness of
motor movement scaled with ISPTA.

All histology samples showed no
damage to brain tissue.

Younan et al. (2013) Rat Motor responses: tail, fore and hind limbs, eye,
single whisker. Pressure threshold for response
dependent on anesthesia levels. Rat skull dis-
tributes field across whole brain and introdu-
ces pressure hot spots due to reverberations.

No change in behavior or weight was
observed.

King et al. (2013) Mouse (Motor cortex) EMG motor responses. Anesthesia levels impor-
tant. CW as effective as pulsed US. All or
nothing responses. Responses occur due to
stimulus onset (within 30�100 ms). Required
intensity increases with frequency. Success
rate increases with PRF from 100�3000 Hz.
Key variable appears to be integral of ampli-
tude over a time interval of 50 to 150 ms.

�

Yang et al. (2012) Rat (Thalamus) Reduction in extracellular GABA for at least 2 h
following sonication. No change in glutamate
levels.

Histology showed no abnormal find-
ings at either the focus or along the
beam path.

Yoo et al. (2011a) Rabbit (Somatomotor
& visual areas)

Bimodal modulation: excitation of motor
response and suppression of p30 VEP compo-
nent. EEG signals confirmed by BOLD fMRI.

Histology did not reveal any tissue
damage. No TUNEL positive apo-
ptotic cells or VAF positive ische-
mic cells were found. No increase
in gadolinium signal, suggesting no
BBB disruption.

Yoo et al. (2011b) Rat (Thalamus) Reduction in anesthesia times following FUS
(up to 20 min).

�

(continued)
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Table 2. (Continued)

Study Organism & target Key findings Safety

Min et al. (2011a) Rat (Thalamus) Reduction in EEG theta bursts after epileptic
seizure induction.

Histology: no tissue damage (H&E)
or DNA fragmentation (TUNEL).

Min et al. (2011b) Rat (Thalamus) Increase in extracellular dopamine and serotonin
levels for at least 2 h post-sonication.

�

Tufail et al. (2010) Mouse (Motor cortex
& hippocampus)

Increased cortical spiking. TTX blocked US-
evoked activity. Mean failure rate increased
from 0.25�5 MHz. Lower frequencies & ISPPAs
give more robust EMG responses. Evoked
potentials in hippocampus followed by 3 s
afterdischarge containing gamma, sharp wave
ripple oscillations and increase in spike fre-
quency. Increase in BDNF.

No evidence of BBB opening. No
change in density of apoptotic glial
cells or neurons. No differences in
synapse density or cortical neuropil
ultra-structure. No neurologic
abnormalities during rotorod and
wire-hanging tasks.

Koroleva et al. (1986) Rat (Cerebral cortex
& hippocampus)

Direct current potential changes and spreading
depression waves.

�

Ballantine et al. (1960) Cat (Edinger-West-
phal nucleus)

Temporary dilation of eye. No lesions observed.

Fry et al. (1958) Cat (LGN) Reversible suppression of VEPs. No histologically detectable lesions.
Prieto et al. (2018) Cell cultures Patch clamp recordings: activation of Piezol but

not NaV1.2 through membrane stress as a
result of acoustic streaming.

�

Kubanek et al. (2018) Caenorhabditis
Elegans

MEC-4, a pore-forming subunit expressed in
touch receptor neurons required for US-
evoked behaviors. TRP-4 response due to
background genetic mutation. 50% BDC and
300�1000 Hz PRF produce optimal response
rates.

�

Menz et al. (2017) in vitro: Isolated sala-
mander retina

US stimulation results in micron-scale displace-
ments. Efficacy increased with frequency,
consistent with an ARF-mediated mechanism.

�

Kim et al. (2017) in vitro: Hippocampal
slice

MEA: region and threshold-specific increased
spike activity during and after US stimulation.

�

Menz et al. (2013) in vitro: Isolated sala-
mander retina

US evoked strong response similar to visual
response but with shorter latencies. US acti-
vated other cells beyond photoreceptors. PRF
15 Hz to 1 MHz had no effect on responses;
only temporal-averaged power important.

�

Choi et al. (2013) in vitro: Rat hippo-
campal neurons

MEA: increased spiking and bursting. Effect
observed post exposure. Largest firing rate at
0.8 MPa, decreased at higher pressures.

�

Tyler et al. (2008) in vitro: Hippocampal
slices and isolated
mouse brain

US-induced APs during whole-cell current
clamp recordings in CA1 pyramidal neurons.
Triggering of voltage-gated Na+ and Ca2+

channels, vesicle exocytosis and synaptic
transmission. Addition of TTX and Cd2+

blocked Na+ and Ca2+ transients, respectively.

Repeated stimulation (36�48 h) did
not alter fine membrane structure.

Khraiche et al. (2008) in vitro: Hippocampal
slices

MEA: US can excite neurons and increase firing
rates.

�

Bachtold et al. (1998) in vitro: Hippocampal
slices

Enhancement and depression of electrically
evoked potentials.

�

Rinaldi et al. (1991) in vitro: Hippocampal
slices

Depression of electrically evoked potentials. �

* GE LOGIQe US scanner (GE Medical Systems, China) with 12 L-RS imaging probe.A1 = primary auditory cortex; AC = auditory cortex;
AEP = auditory evoked potential; AP = action potential; ARF = acoustic radiation force; BBB = blood�brain barrier; BD = Burst duration;
BDC = Burst duty cycle; BOLD = blood oxygen level dependent; CA1 = Cornu Ammonis 1 (hippocampal subregion); CW = continuous wave;
EEG = electroencephalography; EMG= electromyography; FEF = frontal eye field; fMRI = functional magnetic resonance imaging; GABA = g-ami-
nobutyric acid; H&E = hematoxylin and eosin (staining); ISPPA = spatial-peak, pulse-averaged intensity; ISPTA = spatial-peak, temporal-averaged inten-
sity; LGN = lateral geniculate nucleus; Ml = primary motor cortex; MEA =multi electrode array; MEC-4 =Mechanosensory protein 4 (ion channel
subunit); MEP =motor evoked potential; MRI =magnetic resonance imaging; PRF = pulse repetition frequency; S1 = primary somatosensory cortex;
S2 = secondary somatosensory cortex; SEF = supplementary eye field; SEP = somatosensory evoked potential; SM1 = primary sensorimotor area;
TMS = transcranial magnetic simulation; TRP-4 = Transient receptor potential 4 (ion channel); TTX = tetrodotoxin; TUNEL = Terminal deoxynucleo-
tidyl transferase dUTP nick end (DNA fragmentation assay); US = ultrasound; V1 = primary visual cortex; VAF =Vanadium acid fuchsin (staining);
VEP = visual evoked potential.
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Table 3. Ultrasonic neuromodulation peripheral nervous system (PNS) studies

Study Organism & target Key findings Safety

Lee et al. (2014) Human (Fingertip) Induction of different peripheral sensations
(thermal, vibrotactile and nociception)
depending on US parameters. CW did not
induce sensations. Thermal responses maxi-
mum over a band of intensities (ISPPA = 10�30
Wcm¡2), whereas for vibrotactile and noci-
ception, response rate increased with intensity.
Greater response rate at 350 kHz than
650 kHz.

No short-term or long-term tissue damage to
insonified finger.

Legon et al. (2012) Human (Fingertip) US induced evoked potentials similar to other
stimulus modalities. The waveform can be
adjusted to preferentially stimulate different
fibers (Ab, Ad and C) and the subsequent
somatosensory neural circuits as confirmed by
fMRI.

�

Dickey et al. (2012) Human (Fingertip) Sigmoidal response rate with increasing inten-
sity. High specificity (participants ability to
determine when US applied) indicates unique
tactile sensations induced by US. Response
correlates with density of mechanoreceptors.

No psychological or physiologic changes
(assessed by questionnaire).

Gavrilov et al. (1977a) Human (Hand,
forearm)

Increasing intensity: Tactile, temperature and,
finally, pain sensations. At deeper targets, only
pain elicited. Longer stimuli (>100 ms), sen-
sations present at start and end of waveform.
Temperature sensations dependent on temper-
ature of water bath that hand is immersed in.
Cavitation detected before onset of pain
sensations.

�

Downs et al. (2018) Mouse (Sciatic nerve) EMG activity and visible muscle activation for p
> 3.2 MPa and BDC > 35%. A break period
of 20�30 s improved the next stimulation suc-
cess rate to 92%. Latencies similar to electrical
stimulation.

Histology: no damage detected for success-
ful US stimulation parameters or negative
control groups. Damage observed for posi-
tive control (5.4 MPa, 90% BDC, 1 kHz
PRF, 0.5 s BD) and for PL > 30 ms at 5.7
MPa.

Casella et al. (2017) Rat (Posterior tibial
nerve)

Inhibition of rhythmic bladder contractions.
Longer latency and refractory periods com-
pared with electrical stimulation.

�

Ni et al. (2016) Rat (Sciatic nerve) Improved regeneration and functional recovery
following crush injury. BDNF levels increased
for first 2 wk following treatment.

�

Juan et al. (2014) Rat (Vagus nerve) Decrease in electrically evoked CAPs; effect
increased in magnitude with ISPTA. Decrease in
conduction velocities.

�

Tych et al. (2013) Rat (Sciatic nerve) US threshold for paw withdrawal reduced for
neuropathic tissue compared with sham sur-
gery tissue.

�

Kim et al. (2012) Rat (Abducens nerve) Eyeball movement. Histology (H&E, trypan blue): no damage or
BBB disruption.

Foley et al. (2008) Rat (Sciatic nerve) Increased reduction in CMAPs with intensity.
CMAP amplitude recovered by 28 d in all but
highest intensity, which showed no recovery.

Histology: increased levels of damage as
intensity increased up to complete axonal
degeneration and necrosis.

Ellisman et al. (1987) Rat (Dorsal nerve
roots)

Electron microscope: morphologic changes in
rats at myelination development stage (3�5 d
old)—enlargement of periaxonal space, abnor-
mal morphology of nodes of Ranvier and
demyelination.

See results.

Gavrilov (1984) Various Human: skin receptors, threshold value depen-
dent on density of receptors distributed on skin
surface. Perception of 400 ms pulse the same
as two spaced 10 ms pulses. Use of US for
diagnosis of neurologic diseases based on tac-
tile sensation response. Skate fish: stimulation
of electroreceptors only achieved with pulsed
US and not CW.

�

�
(continued)
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Table 3. (Continued)

Study Organism & target Key findings Safety

Gavrilov et al.
(1977b)

Cat (Pacinian corpus-
cle), Frog (Ear
labyrinth)

APs induced in Pacinian corpuscle for intensities
in range 0.1�4.2 Wcm¡2. Amplitude of recep-
tor potentials increased with intensity. Evoked
potentials in frog auditory brain at intensities
as low as 0.01 W cm¡2 similar in shape to
sonic stimuli.

Lele (1963) Cat, Monkey, Human,
Earthworm.

Progressive US dose leads to initial AP ampli-
tude enhancement, then reversible and finally
irreversible depression. Conduction velocities
increase with dose. Physiologic effects repro-
duced by heat application.

Enhancement/reversible depression: undis-
tinguishable from unirradiated nerves.
Irreversible depression: nodularity, frag-
mentation of axis cylinders restricted to
irradiated section of nerve (indistinguish-
able from heat damage). Prolonged,
intense US irradiation without rise in nerve
surface temperature without apparent
physiologic and anatomic effects.

Young and Henneman
(1961)

Cat (Saphenous
nerve)

Differential blocking of mammalian nerves.
C-fibers most responsive. A-a least sensitive.
Reversible and then permanent block with
increasing US dose.

�

Wahab et al. (2012) Earthworm (Giant
Axon)

Cumulative ARF negatively correlated to reduc-
tion in conduction velocity and AP amplitude.
At low impulses, enhancement in amplitude
before dropping at longer exposure times.
Final changes semi-permanent: no recovery
within 15 min.

Semi-permanent effects in reduction of AP
amplitudes following repeated single pulse
sonications 100 times a second for over
200 s.

Wright et al. (2017, 2015) ex vivo: Crab (Leg
nerve axon)

Unpredictable responses with slight preference
for first stimulus. Lowest intensity for success-
ful stimulation was 100 Wcm¡2 (1.8 MPa) at
0.67 MHz. No responses at 1.1 or 2 MHz.
Cavitation signals detected for all successful
stimuli; afterdischarge at 230 Wcm¡2 result-
ing in reduced CAPs � probably due to cavita-
tion-induced membrane rupture.

Colucci et al. (2009) ex vivo: Bullfrog (Sci-
atic nerve)

1.986 MHz: reduction in CAP amplitude, ther-
mal effect matched by experiments varying
water bath temperature. 0.661 MHz: discrep-
ancy with thermal effects. Pulsed US: initial
small increase in CAP then reduction.

Histology (H&E): 1.986 MHz, little or no
damage consistent with thermal effects.
0.661 MHz, varying levels of damage
depending on intensity. At higher intensi-
ties evidence of cavitation.

Tsui et al. (2005) ex vivo: Bullfrog (Sci-
atic nerve)

Increased conduction velocity with power.
Amplitude increased by 9% at 1 W but then
decreased at higher powers.

�

Schelling et al. (1994) * ex vivo: Frog (Sciatic
nerve)

CAPs generated similar in shape but lower in
amplitude than electrically induced CAPs.
Movement away from the focus prevented
CAP generation until air bubbles where added.

�

Mihran et al. (1990) ex vivo: Frog (Sciatic
nerve)

Latency of applied US results in different
responses: enhancement or suppression of
electrically induced CAP. Required BD to
induce response reduced as intensity increases.

�

Fry et al. (1950) ex vivo: Crayfish
(Ventral nerve)

Increased spiking and then reversible depression
of spontaneous activity.

�

* Shock wave source.AP = action potential; ARF = acoustic radiation force; BBB= blood�brain barrier; BD = burst duration; BDC = burst duty
cycle; BDNF = brain-derived neurotrophic factor; CAP = compound action potential; CMAP = compound muscle action potential; CW = continuous
wave; EMG = electromyography; fMRI = functional magnetic resonance imaging; ISPTA = spatial-peak, temporal-averaged intensity; H&E = hematoxy-
lin and eosin (staining); p = pressure (peak instantaneous); PL = pulse length; PRF = pulse repetition frequency.
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majority of the studies have been conducted in the sub-

megahertz region, typically at pressures below 1 MPa.

This subset of the full parameter space also corresponds

to the likely range of viable parameters for transcranial

human applicability from both a delivery and ultimately

a safety perspective. It can be seen that the human stud-

ies fall within the FDA US imaging guidelines, with an
MI of below 1.9 and an ISPPA below 190 W/cm2 (the

exact values can be found in the Supplementary Infor-

mation). This region is zoomed in on in Figure 2b. It is

noticeable that the two reports of damage occur in the

top left quadrant of the plot with pressures over 0.65

MPa at the lower end of the frequency spectrum

(250�350 kHz) and is thus correlated with higher MI
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values. Although it is also noted that there have been

studies both in a large animals and small animals that

report no damage at similar frequencies but at higher

pressures, up to 1.2 MPa.

The same data but plotted as the ISPBA versus BD

(burst wave) or ISPPA versus PL (continuous wave) are

shown in Figure 3. Contours of constant energy per unit

area are also displayed, that is, either ISPBA£BD or

ISPPA£ PL. The wide span of different parameters is

again evident in Figure 3a with PLs ranging from hun-

dreds of nanoseconds to the order of seconds. The major-

ity of the data are clumped in one region between 20 and

550 ms and at intensities less than 30 W/cm2, which is

shown in more detail in Figure 3b. On this axis, the dam-

age parameters are slightly separated from those that

reported no damage and are correlated with higher

energy density levels. Unfortunately, in general, insuffi-

cient data were available to calculate the total cumula-

tive energy (energy delivered in one burst [pulse]

multiplied by the total number of bursts [pulses]) for

each study to calculate a total energy dose. This may

have further separated the data given that in the sheep

study only repeated application of more than 500 trials

resulted in microhemorrhage (Lee et al. 2016c). That

said, the other report of damage only applied three

repeated trials but with a higher energy density per burst

(Kim et al. 2014b).

For the PNS, the data do not exhibit clusters as for

the CNS literature. For both plots, pressure versus fre-

quency (Fig. 4a) and intensity versus PL (Fig. 4b), large

variations in the acoustic parameters between different

studies are observed. There are also more reports of

damage following the trend described in the Peripheral

Nervous System section, where initially reversible

effects without damage are observed, followed by irre-

versible changes linked with nerve damage as more

energy was deposited. However, again, insufficient data

were available in order to plot the data against a total

cumulative energy measure. Some of the irreversible

effects are likely due to thermal damage as a conse-

quence of the higher intensities and longer exposures

used in PNS stimulation, but for shorter pulses, cavita-

tion has also been linked to damage through nerve rup-

ture (Wright et al. 2017).

Comparing the CNS and PNS parameters, it can be

seen that the pressures and intensities used for PNS mod-

ulation tend to be higher than for the CNS, as shown in

Figure 5. Whilst these plots only depict the maximum

parameters, a similar trend is also observed for success

thresholds, indicating more energy is required to elicit

responses in peripheral nerves. This may be attributed to

numerous factors, including differences in cell morphol-

ogy, axonal bundle sizes and nerve myelination, and
therefore potentially requiring different mechanisms to

stimulate them.
Thermal effects

Thermal effects are clearly involved in some of the

peripheral nervous studies with effects replicated in tem-

perature-controlled water baths (Lele 1963), and temper-

ature changes can affect neural function as described in

the Thermal Effects Mechanism section. However, for

most of the recent brain studies, expected temperature

rises are typically less than a 10th of a degree (Lee et al.

2016b, 2016c; Khraiche et al. 2008; Tufail et al. 2010),

which should be negligible. Consequently thermal

effects are not considered to contribute to neurostimula-

tion responses.

Retrospective temperature simulations in several

rodent setups (Constans et al. 2018) revealed that in gen-

eral, temperature effects could be neglected, but in one

study (Kamimura et al. 2016), a temperature rise of 7˚C

was reported as a result of thermal diffusion from the

skull bone into the brain. Therefore, care must be taken to

ensure off-target temperature rises do not occur through

skull-induced heating, potentially resulting in thermal

modulation.
DELIVERY

A further challenge to implementing US as a neu-

romodulatory tool in the CNS is the delivery of US

through the cranium. Skull bone is a highly heteroge-

neous structure that has both a higher density and sound

speed, resulting in a large impedance mismatch with

respect to the soft tissue that surrounds it. Moreover, it

is a multi-layered structure with a hard cortical shell

and a blood- and fat-filled, inner cancellous bone layer.

The trabecular structure of this internal layer results in

strong scattering of the acoustic wave at frequencies

above 1 MHz (Pinton et al. 2010), effectively making

the skull a low pass frequency filter, thereby limiting

the viable frequency range for transcranial US propaga-

tion. The presence of hair may also increase losses; a

study in an ex vivo cadaver model reported a tempera-

ture elevation drop of 17% at 710 kHz but negligible

losses at 220 kHz due the addition of human hair

(Eames et al. 2014).

In rodents, thin skull bone allows US to easily pene-

trate into the brain, but standing waves can be formed

from reflections off the opposite side of the skull, leading

to complex fields and pressure hotspots away from the

target location (Constans et al. 2017; Younan et al.

2013). In scaling up from small animals to large animals

and humans, the thicker skull presents different chal-

lenges: primarily increased attenuation and aberration of
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the acoustic wave (Fry and Barger 1978; White et al.

1978), shifting the focus inside the brain.

The development of multi-element arrays featuring

hundreds to thousands of individual transducers (Hynynen

et al. 2004, 2006) has enabled correction of the US wave

to compensate for the aberrations and effectively focus

within the brain to deep targets. These arrays have been

primarily implemented for thermal ablation applications,

allowing for treatment of brain tumors (McDannold et al.

2010; Ram et al. 2006), neuropathic pain (Jeanmonod

et al. 2012), obsessive-compulsive disorder (Jung et al.

2015), essential tremor (Chang et al. 2014; Elias et al.

2013) and Parkinson’s disease (Magara et al. 2014).

However, transducer arrays are highly complex as

well as expensive thus making them prohibitory to the

majority of research groups in the early stages of

research into US-mediated neuromodulation. Moreover,

with many of the initial brain targets for probing the

effects of US-induced brain stimulation situated close to

the cortical surface (Lee et al. 2016b; Legon et al. 2014),

arrays may not be required to treat these areas, especially

given the fact that stimulation has been shown to be

more robust at lower frequencies (King et al. 2013;

Tufail et al. 2010; Ye et al. 2015), which are less subject

to distortion during transcranial propagation. Conse-

quently, more simplistic transducer configurations can

be utilized to focus to peripheral brain targets at a much

reduced cost. Computational approaches can be effective

here in order to determine the efficacy of targeting the

brain with these simpler source conditions, such as

single-element transducers, specifically for neuromodu-

lation (Constans et al. 2017; Mueller et al. 2017; Robert-

son et al. 2017).

However, some targets are likely to remain difficult to

access via single-element transducers owing to the heteroge-

neous skull structure overlying their location. For these loca-

tions, the development of an acoustic lens could correct for

the induced aberrations and reform the acoustic focus over

the intended target (Maimbourg et al. 2018). The lens has a

variable thickness to adjust the phase of the incident wave

based on the sound speed of the material. Consequently, a

single-element transducer can be turned into an effective

array, enabling the treatment of previously intractable sites.

Although the lens is therefore individual and target specific,

it can be constructed at a fraction of the cost of an array, and

for repeated treatments, as may be the case for clinical appli-

cations, it should not need further adjustment once it has

been created.

In summary, whilst arrays are likely to be required

to pinpoint specific deep-seated CNS brain targets, sin-

gle-element transducers may be viable for targeting the

cortical surface with lenses, providing a solution for

intermediate locations. In the PNS, the complications

associated with the skull are avoided, but the depth of
the target nerve and the presence of bone and air in the

acoustic path could also require a complex US source.
MONITORING

Whilst numerical modelling is an invaluable tool in

determining the required source conditions for transcranial

targeting, the ability to monitor where the US is being deliv-

ered would enable confirmation that the intended brain target

is being stimulated. For thermal ablation applications, low-

powered sonications raising the tissue by a few degrees can

be utilized in combination with magnetic resonance (MR)

thermometry (Rieke and Pauly 2008) to determine the US

focus. However, for neuromodulation applications where

thermal rises are estimated to be negligible in the majority

of cases, this technique is unviable for monitoring purposes.

Indeed, MR thermometry did not detect any temperature

changes for frequencies between 220 kHz and 1.145 MHz

up to pressures of 1 MPa (Dallapiazza et al. 2018).

MR ARF imaging offers an alternative form of

monitoring with tissue displacements encoded as phase

shifts (Kaye and Pauly 2014). However, this technique is

still under development and typically requires higher

pressures than those needed to induce neuromodulation,

albeit at shorter PLs, in order to image the subsequent

tissue displacements (Hersh et al. 2018; Liu et al. 2015).

Therefore, the safety of this approach for brain applica-

tions must also be established. Consequently, there is

still a need to develop monitoring techniques for non-

thermal US pulse sequences.

In terms of monitoring brain activity, EEG and fMRI

are the cornerstones of non-invasive techniques. EEG

uses multiple electrodes placed on the scalp to measure

evoked potentials but is relatively superficial, making it

difficult to monitor the activity of deep-seated targets.

One group have explored tagging deep brain volumes

using a unique, high-frequency electrical signal generated

by US above the normal frequency range for neural firing

rates, thus extending the use of EEG to deeper brain tar-

gets (Darvas et al. 2016). fMRI approaches are more

applicable to measuring brain activity at deep targets with

3-D spatial mapping as well as for investigating connec-

tivity between different brain areas. This makes for a

powerful tool for monitoring real-time US-induced brain

activity as well as longer term connectivity effects, but

there are also concerns that acoustic pressure-mediated

mechano-vascular coupling may also give rise to BOLD

signals (Lee et al. 2016b) and therefore needs further

investigation.

As an alternative to fMRI, functional US imaging

(Mac�e et al. 2011) may prove to be a useful modality for

imaging microvascular dynamics in the brains of small

animals at a superior temporal resolution, but for now
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the technique is not scalable to large animals and

humans because of the increased skull thicknesses.
DISCUSSION

In this review, we have summarized the work of the

past several decades, demonstrating the ability of US to

modulate neural activity in both the central and peripheral

nervous systems. US has been shown to evoke a response

in a wide range of neuronal targets including cell cultures,

hippocampal slices, small animals, large animals and now

nine reports in humans. These data provide a wealth of

information as to how neural systems can be stimulated

by US over a range of length scales with a multitude of

methodologies and techniques employed.

At the cell level, fluorescence imaging and patch

clamp recordings showed transient Na+ and Ca2+ ion

currents in response to US. These ionic currents likely

result from the incident US energy interacting with cell

membranes; potentially through conformational changes

in the lipids in the membrane or by mechanosensitive

ion channels. The US stimulation has been shown to

result in both excitatory and inhibitory responses in hip-

pocampal slices. Two mechanisms, ARF and cavitation,

are plausible at a biophysical level to produce neurosti-

mulation and perhaps both can play a role, depending on

the acoustic parameters and cell types. However, at the

pressures employed in the reviewed human trials (<650

kPa), the likelihood of cavitation is very low.

In rodents, US has been shown to affect both the

motor cortex and the visual system. In the latter case,

VEPs could be suppressed or enhanced, consistent with

what was observed at a cell level. For large animals,

evoked potentials have been reported in the motor and

visual pathways, and in non-human primates, modulation

of latencies in the visual system confirmed the ability to

modulate high-level cognitive behavior. In humans, stim-

ulation of the visual system has resulted in phosphenes,

the somatosensory system in sensations felt in the hands

and the motor cortex in the suppression of MEPs.

There is now a body of evidence, which runs the

gamut from isolated cells to cognitive responses in

humans, that US does result in neurostimulation. The data

show that US has the potential to enhance or suppress

nerve firing depending on the US parameters, although at

the network level, whether a stimulation results in excit-

atory or inhibitory behavioral outcomes will also depend

on the connectivity of the neurons. The ability to use low

intensity focused US for non-invasive, anatomically pre-

cise neuromodulation in humans has thus generated much

excitement because of its potential both for understanding

normal brain function and for diagnostic and therapeutic

applications in disease. Proposed areas of clinical utility

include treatment of neuropsychiatric disease (Tsai 2015),
suppression of epileptic activity (Min et al. 2011a), tem-

porary blockade of peripheral nerves involved in pain sig-

naling (Downs et al. 2018) and pre-surgical verification of

CNS targets for ablation. However, many mechanistic

questions remain to be answered.

An area of caution is the potential to directly acti-

vate the auditory cortex and higher order processes via

US (Guo et al. 2018; Sato et al. 2018). These studies

motivate careful attention to sham and control groups

when designing trials to ensure that electrophysiologic

and behavioral outcomes are not confounded by addi-

tional auditory activation and are a result of stimulation

of the intended target. However, one should also note

that auditory-mediated effects are very unlikely to

explain modulation of saccadic behavior changes in neu-

ronal activity recorded in the medial frontal cortex fol-

lowing US over the FEF (Deffieux et al. 2013; Wattiez

et al. 2017). Related to this is the ability to focus to the

desired target region. Historically, the skull has been

considered an impossible barrier for US; however, at

sub-megahertz frequencies, it is possible to focus US

into the brain. For many peripheral brain targets, rela-

tively inexpensive and simple single-element trans-

ducers can be employed, but for deeper targets or those

underlying strongly heterogeneous skull bone, more

sophisticated strategies will be required, for example, a

custom lens or an US array.

Another consideration that is often overlooked in

mechanistic studies using in vitro setups is that the local

environment may be very different from that experi-

enced by neurons in vivo; both biologically, in that cells

are in artificial environments, but also because of acous-

tically reflective surfaces (e.g., coverslips, patch pipettes

and air interfaces), the acoustic field and hence stimulus,

will be affected. Accordingly, understanding the limita-

tions of such artifacts associated with the in vitro system

is something that should be appreciated when interpret-

ing the data.

The US parameters that the community seems to

be settling on for CNS stimulation are a frequency

of approximately 200�500 kHz delivered as a

300�500 ms burst of about 0.5 ms pulses at a PRF of

about 1 kHz, with pressure amplitudes on the order of

0.1�0.6 MPa in the brain. We carried out an analysis

of the safety metrics developed for diagnostic US

imaging for the US parameters used in the brain and

found that the US parameters employed in the human

trials would be considered safe from an imaging regu-

latory view. However, we note that the pulsing para-

digm used in US stimulation studies involves longer

pulses than used in US imaging and this may have an

impact on cavitation thresholds, which should be con-

sidered further. We anticipate that further work in the

safety area could allow a larger range of acoustic
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parameters to be employed than has been used to date.

We have identified the key US parameters that would

be helpful for researchers to report so that relevant

mechanistic or safety metrics can be calculated.

In conclusion, US is emerging as an exciting NIBS

method that has been demonstrated to safely and revers-

ibly modulate the CNS. In the PNS, the intensities used

are generally higher, and this may explain why more

damage has been reported. More work is needed to fully

explore the US parameter space from both a safety and a

mechanistic perspective and to develop methods in

which US can be robustly targeted to different regions

within the brain. One goal for the community would be

to develop appropriate guidelines for the use of ultra-

sonic neuromodulation in both research and clinical set-

tings, as has been done for TMS (Rossi et al. 2009) and

tCDS (Nitsche et al. 2008). However, even with the cur-

rent understanding, US neuromodulation is a potent tool

for basic neuroscientific research as well as a promising

clinical utility.
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APPENDIX A. ULTRASOUND PARAMETER

NOMENCLATURE

In our experience of writing this review and collat-

ing the US parameters from the diverse literature set, we

found some ambiguities and differences in the naming

protocols for the US sequences. We have therefore

attempted to introduce a consistent naming convention

as defined in the Ultrasound Exposure section. The con-

fusion surrounding the parameter definitions may stem

from fundamental differences in conventions from scien-

tists with either an US or brain stimulation (TMS) back-

ground. For example, in the US community, a short,

continuous wave pulse is often referred to as a tone

burst, whereas in the TMS literature, a burst would refer

to multiple discrete pulses. We have therefore chosen to

refer to a short, continuous wave US waveform as a

pulse. A burst is then made up of multiple repeated

pulses at a specified PRF. The intensities are then

defined with respect to the averaging over one pulse,

burst, or the total experimental time.
A similar confusion is also observed for the ISI.

Again, the TMS convention defines the ISI as the time

between the end of one burst and start of the next. That

is, the cooling period between bursts rather than the

inverse of the BRF. Here, we have defined the BI as the

inverse of the BRF.

We also recommend that future neuromodulation

studies should quote sufficient parameters in order to

fully define the US sequences and intensities. At a mini-

mum, f, pmax, ISPPA, PL, PRF, BD and ISI should be

quoted, along with the relevant timescales over which

the intensities are averaged.
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