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Abstract

The performance of electrochemical energy storage (EES) and energy conversion

(EC) technologies is closely related to their electrode microstrcuture. Thus, this

work focuses on the development of two novel computational models for the char-

acterisation and optimisation of electrodes for three devices: Redox Flow batteries

(RFBs), Solid Oxide Fuel Cells (SOFCs), and Lithium-ion batteries (LIBs).

The first method introduces a Pore Network Model (PNM) for simulating the

coupled charge and mass transport processes within electrodes. This approach is

implemented for a vanadium RFB using different commercially available carbon-

based electrodes. The results from the PNM show non-uniformity in the concen-

tration and current density distributions within the electrode, which leads to a

fast discharge due to regions where mass-transport limitations are predominant.

The second approach is based on the stochastic reconstruction of synthetic elec-

trode microstructures. For this purpose, a deep convolutional generative adversar-

ial network (DC-GAN) is implemented for generating three-dimensional n-phase

microstructures of a LIB cathode and a SOFC anode. The results show that the

generated data is able to represent the morphological properties and two-point

correlation function of the real dataset. As a subsequent process, a generation-

optimisation closed-loop algorithm is developed using Gaussian Process Regres-

sion and Bayesian optimisation for the design of microstructures with customised

properties. The results show the ability to perform simultaneous maximisation of

correlated properties (specific surface area and relative diffusivity), as well as an



optimisation of these properties constrained by constant values of volume fraction.

Overall, this work presents a comprehensive analysis of the effect of the elec-

trode microstructure in the performance of different energy storage devices. The

introduction of a PNM bridges the gap between volume-averaged continuum mod-

els and detailed the pore-scale models. The main advantage of this model is the

ability to visually show the concentration and current distributions inside the elec-

trode within a reasonably low computational time. Based on this, this work rep-

resents the first visual showcase of how regions limited by low convective flow

affect the rate of discharge in an electrode, which is essential for the design of

optimum electrode microstructures. The implementation of DC-GANs allows for

the first time the fast generation of arbitrarily large synthetic microstructural vol-

umes of n-phases with realistic properties and with periodic boundaries. The fact

that the generator constitutes a virtual representation of the real microstructure

allows the inclusion of the generator as a function of the input latent space in a

closed-loop optimisation process. For the first time, a set of visually realistic mi-

crostructures of a LIB cathode with user-specified morphological properties were

designed based on the optimisation of the generator’s latent space. The introduc-

tion of a closed-loop generation-optimisation approach represents a breakthrough

in the design of optimised electrodes since it constitutes a first approach for eval-

uating the microstructure-performance correlation in a continuous forward and

backward process.
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Chapter 1

Introduction

1.1 Motivation

The global increase in the energy demand in recent years, along with a pressing

need to reduce greenhouse gas emissions has led to the large-scale installation of

renewable energy sources, mainly wind and solar.1 Due to the intermittency and

unreliability that these sources present, energy storage technologies are consid-

ered essential as back-up capacity to stabilise the grid. Although pumped hydro

currently handles the vast majority of the required capacity2, electrochemical en-

ergy storage (EES) and energy conversion (EC) technologies offer a potential al-

ternative given by their rapid response and distributed deployability. Additionally,

the road-maps for decarbonising transport systems propose the partial or total

electrification of vehicles by 2050.3 This is therefore expected to boost the pro-

duction of electric vehicles in the coming years, which will require a mass pro-

duction of batteries. Over the past 10 years significant research has been focused

on technological improvements of EES, which has resulted in a significant drop

in the cell and pack prices for LIBs: from 668$/kWh in 2013 to 137$/kWh in

2020.4 Nevertheless, the high production costs of EES and EC technologies must

be further decreased in order to meet the aggressive cost targets required for their

widespread commercialisation.1 One proposed pathway for increasing the returns

over the production costs involves developing higher capacity EES systems. This

would require an improvement in the cell architecture, as well as the design and

optimisation of electrode microstructures.5 Understanding the effect of electrode

microstructures in order to improve the performance of EES systems is the primary

1



1.1. Motivation 2

motivation of this work.

Electrodes constitute one of the main components of EES and EC technolo-

gies since they represent the sites where the major transport processes and re-

active mechanisms occur.6 Thus, any limitation at the electrode level represents

an impact in the battery performance. Research around electrode materials with

slow degradation, low cost and high energy density is important for the improve-

ment of these technologies.7,8 Nevertheless, a significant correlation exists be-

tween the battery performance and the electrode morphology at the micro and

nano scales.7,9,10 Therefore the quantification of electrode microstructure is cru-

cial for understanding the structure-performance relationship and therefore es-

sential for the design of optimal electrodes which will improve the battery perfor-

mance.9,11

Recent advances in micro and nano imaging techniques (i.e. X-ray computed

tomography (X-CT), Focused Ion Beam coupled with Scanning Electron Micro-

scope (FIBSEM)) have enabled the characterisation of electrodes in terms of their

microstructural parameters.12 These techniques have allowed the acquisition of

detailed and high-resolution three-dimensional images of electrode materials.13

Microstructural and transport properties can be estimated over these 3D tomo-

graphic images by solving the flow and transport equations directly at the pore-

scale.9,12 These direct numerical simulations (DNS) provide insights of the ef-

fect into the porous structure in the various transport processes (i.e. diffusion,

convection and migration) and electrochemical reaction predominant within the

electrode.8 This is key for understanding the correlation between the porous mi-

crostructure and the battery performance.14,15 However, despite the advantages

of DNS, they can be computationally expensive, unrepresentative and difficult

to validate. As an inexpensive alternative for simulating the transport processes

within the whole electrode, continuum-scale, multi-physics models have been pre-

sented in the literature.5 A set of microstructural properties such as specific surface

area, volume fractions, tortuosity and permeability can be determined from tomo-

graphic images. These properties are homogenised throughout the extent of the

whole electrode and used as parameters of design for the continuum models. Al-

though these models can be validated based on experimental data of the whole
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cell, they sometimes risk over-simplifying the complex electrode morphology.16–18

To date, most research has primarily focused on analysing the microstructure

- performance relationship from a forward perspective.11 In this process, an ex-

perimentally generated electrode is characterised in terms of its microstructural

properties, and a model is further implemented to quantify its expected overall

performance (pore-scale or continuum model). Although this forward step is in-

sightful, the reversibility of the microstructure-performance process is required

to enable the implementation of an optimisation algorithm to aid the design of

improved electrodes. In this context, finding the probability distribution func-

tion (pdf) that fully defines the microstructural space is crucial for the design and

optimisation process.19 For this purpose, the stochastic reconstruction of porous

media has been implemented in order to manipulate the geometric representation

of the microstructure so as to achieve different properties. This stochastic mod-

elling of porous media allows the generation of synthetic realisations based on the

statistical properties of the porous microstructure. Stochastic models have been

implemented to generate an arrangement of particles or pores based on idealised

geometric shapes such as spheres.20–25 These models adjust a pdf to the experi-

mental particle or pore size distribution and spread a set of spheres in a confined

space according to this function. Other authors have implemented simulated an-

nealing techniques to reconstruct three-dimensional microstructures based on a

two-point correlation function23,26–32. Alternative algorithms implement sphere

packing and growth methods as well as particle-based simulations to mimic the

fabrication process of electrodes and relate them to their respective microstruc-

ture.33–36 These models however, have proved to be computationally expensive

and specific for a particular type of electrode materials.

Based on this, understanding the correlation between the complex micro-scale

spatial arrangement of electrodes and the resulting transport and reactive pro-

cesses within them is critical for the design of improved electrodes for high ca-

pacity EES systems. The present work will focus on developing a series of models

that can bridge the gap between the microstrcucture-performance relation as a

closed-loop optimisation process.
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1.2 Overview of EES and EC technologies

This section presents a brief overview of the main EES and EC technologies stud-

ied in this work: Solid Oxide Fuel Cells, Lithium-ion batteries and Redox Flow

Batteries. For the purpose of this work, these systems will be analysed in terms

of their electrode configuration, their microstructural properties and the transport

processes that occur within the electrode during operation.

1.2.1 Solid Oxide Fuel Cells

Solid Oxide Fuel Cells (SOFCs) are a type energy conversion technology classi-

fied as a high-temperature electrolyser-fuel-cell.9 They are composed of a dense

solid oxide material used as electrolyte which is sandwiched between two porous

electrodes: the anode and the cathode. In SOFCs, the solid electrolyte is used

to conduct negative oxygen ions from the cathode to the anode. These systems

operate in a range between 600− 1000 ◦C to allow internal reforming of hydrocar-

bon fuels (e.g. methane, propane, butane), and have a total electrical efficiency

between 45− 60%.37 The overall reaction is defined as:

CH4(g) + 2O2(g) ⇋ CO2(g) + 2H2O(g) (1.1)

The most commonly used materials as SOFC components are Yttria Stabilized

Zirconia (YSZ) for the electrolyte and Ni-YSZ cermet for the H2 electrode (i.e. an-

ode).9 The O2 electrode (i.e. cathode) is currently made of Mixed Ionic Electronic

Conductors (MIECs) such as Lanthanum Strontium Cobalt (LSC) or Lanthanum

Strontium Cobalt Ferrite (LSCF). A schematic diagram of a solid oxide fuel cell

(SOFC) with its components is shown in figure 1.1.

Although fuel cells have increased in popularity in the past years, there are still

certain hurdles that need to be overcome before their mass adoption. Research has

mainly focused on the development of low-temperature SOFCs to reduce costs re-

lated to operation and degradation.37 Additionally, despite the stable operation

achieved with various fuels, the need for a fuel pre-processing step increases the

operational costs and reduces the efficiency. Thus, the development of SOFCs in

which the fuel can be directly fed into the anode chamber have become a prior-
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Figure 1.1: Schematic diagram of a solid oxide fuel cell (SOFC) showing the

electrolyte, the H2 electrode (i.e. anode), the O2 electrode (i.e. cathode) with

their respective reactions, and the arrows representing the direction of electron

and ion flow.38

ity, in order to allow a maximum transfer of chemical energy to electrical energy.37

The electrode microstructure is known to play a major role in the global cell

performances by controlling the rates of the electrochemical reactions.9,39 Given

the large variety of electrode manufacturing processes, a wide range of electrodes

can be produced and adapted to each application (i.e. fuel cell, steam electrolysis,

reversible system).9 Therefore, improvements in the electrode microstructure are

expected to lead to more efficient SOFCs for each particular application. This work

implements a stochastic reconstruction technique to generate synthetic SOFC elec-

trodes as means to further optimise the microstructure for different applications.

1.2.2 Lithium-ion batteries

Lithium-ion batteries (LIBs) constitute the leading energy storage technology for

portable applications and electric vehicles. Additionally, these technologies have

been recently implemented as back-up capacity for balancing the grid.40 Similar

to other EES systems, LIBs are constituted by four main components: an anode,
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a separator, a liquid electrolyte and a cathode. The functioning principle of LIBs

is based on the reversible reaction that allows the movement of lithium ions from

the anode, through a liquid electrolyte and into the cathode during discharge, and

the opposite process charging.

In terms of LIBs components, these systems use an intercalated lithium

compound as the cathode material and typically graphite at the negative

electrode. An intercalation cathode is a solid network which can store

and release guest ions reversibly. In a Li-ion battery, Li+ is the guest

ion and the host network compounds are metal chalcogenides, transi-

tion metal oxides, and polyanion compounds. These intercalation com-

pounds can be classified according to their crystal structure as: layered (e.g.

LiTiS2, LiCoO2, LiNi0.33Mn0.33Co0.33O2,LiNi0.8Co0.15Al0.05O2), spinel (LiMn2O4),

olivine (LiFePO4). Typically, intercalation cathodes have a specific capacity

ranging between 100 − 200mAh/g and average voltage of 3 − 5V vs. Li/Li+.41

Figure 1.2 shows a schematic diagram of a LIB composed of a LiCo02 cathode and

graphite anode.

The most commonly used anode materials consist of graphite due to its low

cost, abundant availability, high Li diffusivity, high electrical conductivity, and

low volume changes during lithiation/delithiation. Other anode materials can be

implemented such as LTO, Si, Ge and Sn; however, the last three almost double

their size during cycling, which leads to a fast degradation. In this context it is

important to mention that anode materials are implemented instead of Li metal to

avoid the formation of dendrites which can cause short circuiting and a thermal

run-away reaction on the cathode.41

Despite the significant advances in LIBs, a series of hurdles still remain re-

garding safety, energy and power density, durability and safety.40. One of the

main challenges involves elucidating the optimum electrode design for specific

operating conditions. A comprehensive understanding of the physical and electro-

chemical processes at the micro-scale has been proposed by Lu et al. as a way to

rationalise the microstructural design (e.g. porosity, thickness and mass loading)
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Figure 1.2: Schematic diagram of a Lithium-ion cell composed of a LiCoO2 cath-

ode and a graphite anode. The green arrows represent the transport of electrons

during charge, as well as the Li+ ions traveling from the cathode through the elec-

trolyte (composed fo LiPF6 solvent) and inserted into the anode. The opposite

process occurs during discharge and is shown with the black arrows.42

for different applications.40 In this context, the present work seeks to address this

question of determining the optimum electrode design for different applications

through the implementation of various computational techniques.

1.2.3 Redox Flow Batteries

Redox flow batteries (RFBs) have been proposed for large-scale stationary energy

storage applications. In these systems, the energy is stored as, and released,

by changing the oxidation states of ionic species dissolved in electrolyte solu-

tions.43. The electrolytes are stored in external containers and pumped through

electrochemical cells, or electrochemical reactors, which convert chemical energy

directly to electricity on demand. The power density is determined by the size and

design of the electrochemical cell whereas the energy density or output depends

on the size of tanks.37

To date, various redox couples have been investigated in RFBs, such as Fe-Ti,

a Fe-Cr, and a polyS-Br; however the vanadium redox flow battery (VRFB) has

been developed the furthest. The VRFB uses a V2+/V3+ redox couple as the

negative pair and a V5+/V4+ redox couple as the positive pair.37,44 Figrue 1.3
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presents a schematic diagram of a VRFB during charge and discharge.45 The

main advantage of this battery is the use of ions of the same metal on both

sides, which reduces the species crossover. In other type of RFBs, the crossover

causes irreversible degradation of the electrolytes and consequently a capacity

loss. Future RFBs are expected to use engineered molecules or complexes, since

this approach enables one to shift the standard reduction potential to a more

desirable potential.1 Additionally, the implementation of non-aqueous electrolytes

has been pursued since they enable a broader window of electrochemical stability.

However, non-aqueous electrolytes also present significant disadvantages, such as

higher solvent costs, higher viscosities, and lower ionic conductivities.1

Figure 1.3: Schematic diagram of a Vanadium Redox Flow battery (RFB) showing

the flow of electrodes and electrolyte during charge (solid arrow) and discharge

(dashed arrow). The VRFB uses a V2+/V3+ redox couple as the negative pair and

a V5+/V4+ redox couple as the positive pair.45

In terms of the cell configuration, the reactor costs constitute the main frac-

tion of the total capital cost of the system. Thus, maximising the power density

at reasonable energy efficiencies has been proposed as a pathway for reducing

costs.43 Since the electrolyte is pumped into the system during cycling, high cur-

rent and power densities can be achieved due to the convective flow of electrolyte

through the porous electrode. Nonetheless, the pumping power required to flow

the electrolyte into the system is a parasitic loss that must be accounted for.43 In
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this context, an improvement of the cell architecture, flow channel configuration

and electrode microstructure are factors that can lead to a higher power system.

Therefore, a deep understanding of the transport processes within the cell is essen-

tial for their improved design. In this work, a particular focus is given to analysing

the coupled flow, mass and charge transport processes within the electrodes as

means to understanding the effect of the microstructure in the cell performance.

1.3 Objectives

The central objective of this work is the characterisation and optimisation of

electrode microstructures for energy storage devices. A series of computational

methods are developed in order to shed light on our current understanding of

the effect of the electrode microstructure on the battery performance. Due to

the nature of the different electrodes used for the three systems analysed in

this work (i.e. SOFCs, RFBs, Li-ion batteries), in terms of their microstructure

and properties, different computational methods were required. These methods

involve the development of a pore network model, the implementation of deep

generative algorithms and the use of Bayesian optimisation to enable the design

of improved electrodes.

As previously stated, the design of optimised electrodes involves a two-way re-

versible process that can correlate microstructure with performance. As it stands,

both processes present limitations: the forward step is limited by computational

expense while the backward step is constrained by the non-existence of a probabil-

ity distribution function that fully defines the microstructural geometric space. As

a way of overcoming these limitations, this project aims to target them as separate

processes which can then be combined into an optimisation problem. This work

was therefore structured into three stages, each of which has been assigned with

particular objectives:

1. Objective 1: The development of a computationally inexpensive model that

can efficiently correlate the electrode morphology with the overall system

performance. To achieve this, a Pore Network Model (PNM) is presented.46,47

This model aims to achieve the full integration of the predominant transport

processes that pre-determine the cell performance, (i.e. velocity, mass and
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charge transport), along with the electrochemical reaction occurring at the

electrode, within one computational model.6

2. Objective 2: The generation of a model that can learn the probability dis-

tribution function (pdf) that defines an electrode microstructure.19 This in-

volves the stochastic reconstruction of the real microstructure through the

implementation of Generative Adversarial Networks (GANs).48–50 With this

approach, a differentiable function, namely the Generator, represented by a

fully convolutional neural network is able to implicitly capture the pdf that

characterises the electrode. This algorithm is implemented for the fast gen-

eration of synthetic three-dimensional three-phase microstructures.

3. Objective 3: Perform an optimisation of the electrode microstructure based

on a structure-property evaluation. In this step, a transport simulation is

implemented over the generated microstructures to evaluate the microstruc-

tural and transport properties of the electrodes. A Gaussian Process Regres-

sion is then used as a surrogate function to map the latent space of the

generator with the calculated properties.51–53 Finally a Bayesian Optimisa-

tion approach based on sequential adaptive sampling is proposed in order to

optimise the latent space to achieve microstructures with optimised proper-

ties.54,55

1.4 Thesis structure

This dissertation is structured in such a way that each chapter is self-contained

and can be considered as a separate entity, but the context of the document

allows each chapter to build from the previous one. Each chapter contains an

introduction section with the necessary literature review to present the motivation

behind the work contained in that chapter. Subsequently, the results, discussion

and conclusions of each chapter are included, addressing the main findings and

contributions.

In order to provide a structure to the computational approaches presented in

this work, this thesis is organised into the following chapters:
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Chapter 2 contains the theoretical background behind the motivation of this

work, and to the research questions that this project seeks to answer.

Chapter 3 outlines the theory behind the development of a pore network

model (PNM) as a computationally efficient algorithm to simulate the transport

processes and electrochemical reaction within electrodes.

Chapter 4 presents a case study that consists on the implementation of the

PNM for a set of carbon-based electrodes in a redox flow battery.

Chapter 5 introduces a computational method based on Generative Adversar-

ial Networks for the stochastic reconstruction of electrode microstructures.

Chapter 6 presents a closed-loop generation-optimisation approach for the

design of electrode microstructures with optimum user-specified properties.

Finally, Chapter 7 outlines the main conclusions and contributions of this

work and presents the key points that set the basis for future projects.
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Chapter 2

Background

2.1 Modelling porous materials

Modelling flow and transport phenomena in porous media is a widely researched

topic and of high interest in a variety of fields.1–3 The irregular surfaces of porous

materials, the possible evolution of the microstructure during operation, and the

multi-scale correlation between transport and microstructural properties make

these materials very complex to be mathematically described.4 In electrochemical

systems, whether considering batteries or fuel cells, the electrodes consist of

porous materials in order to achieve a high active surface area, but also need to

contain percolating paths to enable a fast ionic and electronic transport, as well as

maintaining sufficient mechanical integrity5–7 Due to the importance of electrodes

in energy storage systems (EES), understanding the transport processes that occur

within them as well as the effect of their microstructural properties in the battery

performance is crucial to improve their durability and aid the design of more

optimum systems.8–10

Previous experimental work has shown that improvements in the electrode

structure at a pore-scale level can lead to an improved power density.11–14

However, in terms of optimisation, experimental trial and error is expensive, time

consuming and physically laborious.15 Therefore, it has become of high interest

to implement mathematical modelling and simulation techniques to optimise and

investigate electrode microstructure.

18
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To date, no consistent approach has been defined for modelling flow and

transport phenomena through porous media, making it a very disputed area

among researchers, particularly in terms of correlating model accuracy with

simplicity and computational expense. Several mathematical techniques have

been proposed for this purpose, the most common ones being: continuum mod-

els, pore-scale direct numerical simulations (DNSs), and pore network models

(PNMs).16

2.1.1 Continuum models

A wide amount of research has focused on developing macro-homogeneous

models to simulate transport processes within electrodes.17–34 These continuum

models are formulated based on the assumption of a representative elementary

volume (REV) over which microstructural properties such as surface area,

permeability and tortuosity are volume-averaged. In these models, properties

are calculated as effective transport properties and therefore are not based on

the real electrode morphology.32 This over-simplification of the microstructure is

related to the mathematical complexity and high computational power required

for modelling flow and transport processes through porous materials. From the

estimated effective properties, the velocity and pressure profiles can be estimated

with phenomenological relationships, and finally the mass transport equations

can be solved through numerical discretisation methods15,16,35.

Flow equations

The flow and velocity profiles of a continuum system are defined by the continuity

equation (2.1) and the Navier-Stokes (N-S) equation (2.2):

∇ · u = 0 (2.1)

∂u

∂t
+ (u · ∇)u = −

1

ρ
∇P + ν∇2u (2.2)
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where u represents the velocity, ρ is the density, p is the pressure ν is the

kinematic viscosity of the fluid, and t is time.

Modeling the velocity and pressure profiles through porous media requires

a rearrangement and simplification of the N-S equation. For this purpose, three

main modifications have been proposed: the modified N-S equation36,37, the

Brinkmann equation17–21,38, and Darcy’s law22–28,39. Each of them is derived

from the general form of the Navier-Stokes equation (2.2) based on a set of

assumptions and boundary conditions applied in selected cases.

Howes and Whitaker37 developed a volume averaging technique called the

modified N-S equation to overcome issues associated with the boundary condi-

tions of the general N-S equation implemented in porous media. This equation is

defined as

ρ (〈u〉 · ∇) 〈u〉 = −∇〈P 〉+ µ∇2〈u〉 −
µε

K
〈u〉 (2.3)

where µ is the dynamic viscosity of the liquid, K is the permeability tensor of

the porous media and ε is the porosity36,37. The quantities in angle brackets are

the volume averaged properties defined as:

〈Ψφ〉 =
1

V

∫

Vφ

ΨφdV (2.4)

where Vφ is the volume of the φ−phase contained within the averaging volume

V, and Ψφ is a continuously differentiable function associated with the φ−phase.37

If the inertial term in equation (2.3) is ignored, i.e. ρ (〈u〉 · ∇) 〈u〉, or has

little effect, the modified N-S equations reduces to the Brinkmann equation17–21,38,

defined as:

0 = −∇〈p〉+ µ∇2〈u〉 −
µε

K
〈u〉 (2.5)

Furthermore, if the viscous term in equation 2.5 is ignored, i.e. µ∇2〈u〉, the
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macroscopic velocity of the electrolyte through the porous electrode expressed by

Darcy’s law22–28,39 is obtained:

µε

K
〈u〉 = −∇〈p〉 (2.6)

The permeability of the porous electrode is calculated by the Kozeny-Carman

equation27

K =
df

2

16 kCK

ε2

(1− ε2)
(2.7)

where df is the fibre diameter, ε is the porosity of the electrode, and kCK is

the Kozeny-Carman constant for a fibrous media. The kCK constant is a fitting

parameter that depends on the shape of the material that is not accounted for in

the porosity or diameter24.

Despite the fact that Darcy’s law has been widely used to describe the flow

through porous media due to its simplicity, it has been proved to present some

limitations36,40 In terms of the interaction between the wall and flow regime,

Darcy’s law is only consistent with perfect slip at solid boundaries40, and thus

the no-slip boundary condition is non existent for Darcy’s law. Furthermore,

based on the definition of Darcy’s number (Da) by Parvazinia et al.40 as the

ratio of the permeability to the equivalent diffusion length square, Darcy’s law

is only applicable for a value of the Darcy number Da < 10−6, characteristic

of flow through a porous media with very low permeability. If the value of Da

is 1 > Da > 10−6, the inertial term in equation 2.5 cannot be overlooked and

therefore Brinkmann equation must be implemented36.

Transport equations

The continuum mass transport of species in a system involving the effects of con-

vection, diffusion, dispersion, and reaction was first defined by Lichtner as:41

∂

∂t
(φπi

ci) +∇ · Ni =
M
∑

r=1

ν ′
ir

∂Ξr

∂t
(2.8)
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where φπ represents the volume fraction occupied by phase π; ci is the con-

centration of the ith species of phase πi; Ξr is the reaction progress density; the

time derivative ∂Ξr

∂t
represents the rate of the rth reaction at time t; ν ′

ir represents

the effective stoichiometric matrix for irreversible reactions; i has the values from

1 to n, where n is the total number of species in the bulk.41 The total flux of the

mass transport Ni is expressed as

Ni = ND
i + Nv

i (2.9)

where ND
i , and Nv

i represent the resulting flux from diffusive and convective

transport respectively, defined by

ND
i = −Di∇cj (2.10)

Nv
i = uci (2.11)

where Di corresponds to the diffusion coefficient of the bulk. For modelling

transport through porous media, Di is replaced with the effective diffusivity Deff
i

as a function of the tortuosity and the porosity of the media (ε). The effective

diffusivity is commonly related to the bulk diffusion coefficient by the Bruggeman

relation42, defined as

Deff
i = ε3/2Di (2.12)

Additionally, the ratio between the convection and diffusion in porous media

can be estimated by the Peclet number, defined as Pe = vdp/D
eff
i where dp

corresponds to the mean pore diameter.15,43.

In electrochemical systems, the total flux of ionic species through a porous

media is given by the Nernst-Planck equation, which accounts for the transport of

ionic species due to convection and diffusion as equation 2.9 but adds an addi-

tional term to account for the electrophoretic transport:
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Ni = −Deff
i ∇ci −

ziciD
eff
i F

RT
∇φe + uci (2.13)

where φe corresponds to the electric potential in the electrolyte, F is the Fara-

day constant, and zi is the charge number of species i. The right hand side of

equation (2.8) corresponding to the source term due to the reaction is renamed

as R(ci) and will be determined by the electrochemical reaction. For simplicity,

in most electrochemical systems R(ci) is defined by the Butler-Volmer equation to

determine the current density as

Jct = j0

[

exp

(

αazFη

RT

)

− exp

(

−αczFη

RT

)]

(2.14)

where j0 is the exchange current density, αa and αc are the anodic and cathodic

transfer coefficients respectively, z is the number of electrons transferred in the

reaction, R is the universal gas constant, T is the absolute temperature of the

system, F is the Faraday constant, η is the overpotential, defined as:

η = φs − φe − E0 (2.15)

where E0 is the equilibrium potential, φe is the electric potential in the

electrolyte, and φs is the electric potential in the solid electrode.

Continuum models based on parametric relationships could lead to an accept-

able prediction of the flow and transport profiles, particularly considering the low

processing time they require.36 Nevertheless, these macro-homogeneous models

fail to offer an understanding of the pore-scale dependence of the microstructure

with continuum transport parameters. Moreover, given that the properties of the

porous medium are defined as effective properties based on average values of a

control volume, they do not account for the exact microstructure.4 Given the case

in which the microstructure is homogenisable and the control volume is a Rep-

resentative Elementary Volume (REV), it could be argued the model accounts for

the exact microstructure. However, if the microstructure is not homogenisable,

there could be some local interactions that are not captured by the chosen metrics

and thus the microstructure is not fully accounted for with the averaged values.
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In electrochemistry, if a more detailed model is required to understand the effect

of the electrode microstructure in the battery performance, other more computa-

tionally expensive techniques are needed. These models will be briefly described

in the next section.

2.1.2 Direct Numerical Simulations as pore-scale models

The increasing availability of high computing power, coupled with improvements

in micro-scale characterisation techniques (i.e. X-ray Computed Tomography

(X-CT)) has led to the implementation of complex computational models for

studying flow and transport processes in porous media.35 These models allow

improved assessments of macroscopic transport properties by varying the pore

space structure parameters.4 One proposed pathway for implemented a pore-scale

modelling approach is by simulating directly over the pore geometry obtained

from X-CT images.35 This pathway is referred to as direct numerical simulation

(DNS) as it performs simulations directly over the complex pore geometry

obtained from X-CT images.

The porous microstructure is represented as a numerical mesh, or as a Carte-

sian grid, depending on the type of DNS applied.35 These can be classified as a)

grid-based simulations and b) particle-based methods. Grid-based methods em-

ploy the Finite Volume method (FVM), the Finite Difference method (FDM) or

the Finite Element method (FEM) to solve the governing partial differential equa-

tions22,44, while particle-based methods define the movement of particles through

a porous space, such as the Lattice–Boltzmann method (LBM)45 and smoothed

particle hydrodynamics46 The advantage of these models is that they can distin-

guish between the phases (i.e. solid active material and porous matrix), allowing

the estimation of the effect of the porous morphology on the transport processes

within the system.32,33 Nevertheless, these models are computationally expensive

and therefore often restricted to a non-representative sub-volume of the entire

electrode.15
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Application of DNS to electrochemical systems

The implementation of DNS to model electrodes in electrochemical energy

storage systems depends on the type of system to be modelled. In the case Li-ion

batteries, the cathode is composed of three domains: the active material (in most

cases composed of NMC (LiNi1/3Mn1/3Co1/3O2)), a carbon binder domain (CBD)

and a porous matrix. Each domain is governed by different transport processes

which allow the implementation of a modification of the transport equation 2.8.

The movement of electrolyte in the porous phase is governed by diffusion and

migration, as given by the following expression:47

For Li+ the balance equation is given by:

F
∂cLi+

∂t
+∇ · Np = 0 (2.16)

where Np is the flux of Li ions given by:

Np = −tpσLi+∇µp (2.17)

For the negatively charged species (X−), the balance equation is given by:

− F
∂c

∂t
+∇ · Nn = 0 (2.18)

where Nn is the flux of negative ions given by:

Nn =
1

tp
FD̃∇c− (1− tp)σi∇µp (2.19)

In equations 2.17 to 2.19, c is the concentration of electrolyte salt, F is the

Faraday constant, D̃ refers to the the ambipolar diffusion coefficient of the binary

electrolyte, µp corresponds to the reduced electrochemical potential of positive

ions in the electrolyte, σLi+ is the ionic conductivity of species in the electrolyte,

and tp represents the transference number of the positive ion (Li+).47

The transport processes inside the active material are defined by the solid-
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state diffusion, corresponding to the movement of Lithium as described in

equations 2.20 and 2.21, and the conduction of electrodes defined by equation

2.22 and 2.23.

The balance equation for transport of Li is defined as:

F
∂cs

∂t
+∇ · Ns = 0 (2.20)

where Ns refers to the flux of lithium due to solid state diffusion, given by

Nn = −FDs∇cs (2.21)

The balance equation for transport of electrons is defined as:

∇ · Ne = 0 (2.22)

where Ne is the flux of electrons due to conduction, given by

Ne = −σe∇µe (2.23)

In equations 2.20 to 2.23, cs refers to the concentration of lithium in the

solid phase, Ds is the solid state diffusion coefficient in the active material, µe

corresponds to the reduced electrochemical potential of electrons and σe refers to

the electronic conductivity in the solid material in the conducting phase. Given

that the CBD works as an electron conductor only, the transport equations due to

conduction are the same as equations 2.22 and 2.23.

Based on the general mass balance equation given by eq. 2.8, the source term

in the right hand side of the equation corresponds to the electrochemical reaction.

This equation holds true for continuum models where the reaction is assumed to

occur throughout the whole continuum space. In the case of DNS, since the model

takes into account the different phases, the term for the electrochemical reaction

is not considerd as a source term, but rather as a boundary condition of charge

transfer at the interface between the electrolyte in the porous matrix and the solid
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active material. This expression for charge transfer is based on the Butler-Volmer

equation, and is defined as

Jct = j0

{

exp

(

αF

RT
(µp − µe + Eeq)

)

− exp

(

−(1− α)F

RT
(µp − µe + Eeq)

)}

(2.24)

where j0 is the exchange current density given by

j0 = krc
αcαs (c

max
s − cs)

(1−α) (2.25)

where kr is the reaction rate constant, α is the transfer coefficient for

intercalation half-reaction, Eeq refers to the equilibrium potential at the active

material/electrolyte interface, and cmax
s is the maximum lithium concentration in

the active material.47

Lu et al.47 perform an analysis of the interplay between battery microstructure

and performance by estimating the state of lithiation within the cathode at dif-

ferent C-rates using a reconstructed cathode microstructure and an ideal metallic

lithium ion. From this analysis, it is concluded that the heterogeneity of the parti-

cle size distribution leads to an inhomogeneous lithiation throughout the cathode,

particularly as the rate of discharge increases. This inhomogeneous lithiation is

mainly a result of the variation in lithium ion diffusion paths associated with the

broad distribution of particle sizes. This uneven utilisation of NMC particles due to

variation in local consumption of lithium ions at a microscale, leads to an uneven

utilisation of the NMC particles, which overall results in a lower energy density

and eventually a faster degradation.47 Based on this analysis, it is suggested that

a graded particle size distribution could potentially lead to a more even utilisa-

tion of the NMC particles and therefore an improved battery performance. This

work by Lu et al.47 proves the advantages of implementing a pore-scale model

for simulating the coupled mass and charge transport processes in a lithium-ion

cathode.

In the case of Redox Flow Batteries (RFBs), the electrode is constituted by an

intertwined fibrous carbon material (in most cases carbon paper, carbon felt or
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carbon cloth) where the reaction takes place at the surface of the fibre. These

carbon materials are also used as gas diffusion layer (GDL) in Polymer Electrolyte

Membrane (PEM) fuel cells (as shown in figure 2.148) and therefore in terms of

non-reactive transport, modelling both systems is similar.49–52

Figure 2.1: Schematic diagram of a PEM fuel cell showing the electrolyte, the H2

anode, the O2 cathode, the catalyst layers, the GDL and the PEM membrane, and

the arrows representing the direction of electron and ion flow.48

In both fuel cells and RFBs, the electrolyte or active species are pumped into

the system, generating a pressure gradient, which leads to the existence of a

velocity profile. This adds another level of complexity to the system since the

velocity profile needs to be solved at a pore scale and coupled with the transport

equations in order to account for the convective transport. To obtain the velocity

profile, most cases implement particle based method such as LBM and SPH to

solve the Navier-Stokes equation through porous media. Park et al.53 proposed

the first pore-scale model based on the LBM to analyse the flow distribution in the

gas diffusion layer (GDL) of a PEM fuel cell. The Lattice Boltzmann (LB) method

is applied in three dimensions to simulate the flow through the void space and

investigate the effect of the tow orientation in the effective permeability of the

GDL53. These results encouraged other researchers32,33 to adopt the LBM to solve

the equations of flow through porous media.
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In their work, Qiu et al. present an analysis of the effect of the electrode

morphology and electrolyte flow conditions on the cell performance of a Vanadium

RFB (VRFB)32,33. The LB method is employed over a reconstructed X-CT image

to solve the flow field of the electrolyte inside the porous electrode. Since the

velocity and pressure profiles are obtained in lattice units, the authors propose a

data treatment to transform them into physical units. This method is based on

matching the Reynolds (Re) (equation (2.26)) and the Eurler (2.27) numbers in

both lattice and physical units:

(

Uavg Lavg

ν

)

LBM units

=

(

Uavg Lavg

ν

)

Phys units

(2.26)

(

∆P

ρU2
avg

)

LBM units

=

(

∆P

ρU2
avg

)

Phys units

(2.27)

where Lavg is the characteristic length scale defined as the average pore

size based on the XCT data, and Uavg is the characteristic velocity defined as

the average velocity at the cell inlet32,33. The flow field through the porous

electrodes is solved by imposing boundary conditions at the physical scale. An

initial velocity is specified at the cell inlet and is taken as the characteristic

velocity (Uavg) to transform the LB units into physical units. Similarly, a prescribed

pressure difference between the inlet and outlet of the flow cell is specified such

that the desired flow rate is obtained. This pressure difference is then applied

in the transformation of LB units into physical units, as given by equation 2.27.32,33

Some authors have also shown the implementation of the LBM coupled with

a finite-volume method (FVM) to solve the transport equations. Hu et al.54 and

Patil55 apply a finite-volume method coupled with the LBM for solving the Darcy-

Brinkman and Navier-Stokes equations.54,55 Qiu et al., after obtaining the flow

field in a porous electrode of a half-cell VRFB, implement a fully implicit 3D FVM

to solve the charge and species transport equations in the domain. The transport

of vanadium species in the positive reaction (VIV/VV) in the electrolyte is given by

a convective, diffusive and electrophoretic term, defined as:
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∂ci
∂t

+ u · ∇ci = Di∇
2ci +∇ ·

[

ziciDi

RT
∇φe

]

(2.28)

where ci is the concentration of vanadium species i (i.e. VIV/VV), Di is the

diffusivity of species i in the electrolyte, φe the electric potential in the electrolyte,

zi is the charge number of species i, and u is the velocity of the electrolyte. The

balance equation for charge transport in the electrolyte is defined as:

∇ ·

[(

F 2

RT

∑

z2iDici

)

∇φe + F
∑

ziDi∇ci

]

= 0 (2.29)

The balance equation for conservation of charge at the solid electrode consti-

tuted of carbon fibres is defined as:

∇ · (κs∇φs) = 0 (2.30)

where κs is the conductivity of the solid phase and φs is the electric potential

in the solid phase.

Since this model is a pore-scale model, the electrochemical reaction is not

accounted for in the balance equation given by eq. 2.28. The electrochemical

reaction occurs at the interface between the electrolyte and the carbon fibres, and

therefore is considered as a flux boundary condition at this interface. The reaction

is described by Butler-Volmer equation applied to the VIV/VV system as:

NIV · n̂ = −NV · n̂ = k(csIV)
αc(csV )

αa

[

exp

(

αaFη

RT

)

− exp

(

−αcFη

RT

)]

(2.31)

where NIV and NV are the flux of VIV and VV respectively, cs is the concentration

of species at the surface, αa and αc are the anodic and cathodic transfer coefficients

respectively, k is the standard reaction rate constant, and η is the overpotential,

defined as:

η = φs − φe −

[

E0 +
RT

F
ln

(

cV

cIV

)]

(2.32)
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where E0 is the equilibrium potential.32,33 By solving the coupled charge and

species transport equation in the domain, it is possible to obtain the cell voltage,

current density and overpotential fields at a pore-scale.32,33

An uneven distribution of species is seen, where a steep concentration

gradient is predominant close to the current collector. This higher rate of

electrochemical reaction is explained by an increased in overpotentials at the

sufeace of the carbon fibres near the current collectors. Although this gradient

is also seen in continuum models,22,34 a more detailed analysis of the species

transport is seen at the pore scale results. The local effects of the carbon fibres

is seen in the overpotential distribution along the electrode: the overpotential

is higher on the fibres closer to the current collectors, and tends to decrease

along the length of the fibres. A local distribution of overpotential also shows

that at the regions where the highest concentration gradients are observed, the

overpotentials are smaller. This indicates that higher overpotentials are obtained

at the regions where reactants are available immediately near the surface of

the electrode fibres.32 Additionally, the pore-scale simulation shows an uneven

concentration of species within the electrodes, which leads to regions of higher

consumption of species and therefore higher current density than others. This

is a result of the random distribution of the carbon fibres, which results in an

uneven utilisation of the electrode.32 The variation in local distribution of species

concentration and overpotentials lead to a lower capacity than the theoretical

estimation. Additionally, this leads to a faster capacity fade during discharge due

to the fast consumption of species in some regions which are not replenished at

the same rate.15 This analysis provides a detailed understanding of the effect

of the microstructure in the transport processes within the electrode of a VRFB

and proves the usefulness of implementing a pore-scale model for establishing a

microstructure-performance correlation.32,33

From the analysis presented in the previous sections, it is shown that both

continuum and pore-scale models are insightful and have thus far contributed

to understanding the effect of porous electrodes properties in the performance

of electrochemical systems. Continuum models allow the simulation of the

integrated system where the interplay between the anode, cathode and the



2.1. Modelling porous materials 32

membrane can be simulated. Moreover, the effect of additional parameters such

as flow channel configuration, pumping power, and species crossover at the

membrane among others can be considered.22,34 In these models, the electrode is

considered a continuum where the microstructural properties are homogenised

and therefore simulating the coupled charge and transport equations is compu-

tationally inexpensive. Contrarily, pore-scale models present a detailed analysis

of the effect of the microstructure in various transport processes within the elec-

trode. The simulation of local concentration, current density and overpotential

distributions allows the estimation of an uneven utilisation of the electrode due

to the configuration of the electrode morphology (i.e. particle size distribution

or fibre alignment). This unevenness in distributions can be allegedly one of the

causes for overall degradation or capacity fade, which proves the advantage of

implementing a pore-scale simulation over the microstructure. Nonetheless, these

models are limited to a non-representative sub-volume of the whole electrode, and

are computationally expensive (require the use of supercomputers for speeding

up convergence).32,33

Based on this comparison, it is clear that a trade-off between accuracy and

computational expense must be considered when selecting the type of model to

describe a particular system. Based on this assertion, it has become of interest

to present a model with the ability to bridge the gap between a continuum scale

description of electrodes and the detailed, but computationally restricted view of-

fered by most pore-scale models.15 In this respect, Pore Network Models have been

presented as a potential alternative that can capture the electrode morphology and

solve the flow and transport equations in a computationally inexpensive way.

2.1.3 Pore Network Models

Pore Network Models (PNMs) are defined as an assembly of nodes (pores) con-

nected by bonds (throats), represented by simple geometries, i.e. usually pores are

spherical and throats are cylindrical. This geometric approximation of the porous

structure greatly reduces the computational complexity of the flow and transport

equations. The general algorithm for solving the flow and transport in a network

is defined by various authors4,56–58 and comprises the following steps: a) estab-
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lishing pressure boundary conditions at the network to solve the flow equation for

obtaining the pressure and velocity fields at the throats and pores, b) applying the

computed velocity field obtained into solving the transport equations to obtain the

concentration field within the pore space.

Flow equations for PNM

In a PNM, the flow through each throat connecting two pores is analogous to the

analytical solution of the steady-state N-S equation (2.2) for the flow through a

cylindrical pipe. The formulation of the flow equation follows the assumption of a

single-phase, Newtonian, incompressible fluid in the bulk, with creeping flow (Re

≪ 1). The pressure and velocity fields are obtained by assuming a single pressure

value per node, and enforcing the momentum balance over each pore56,59, as given

by equation (2.33)

Nth
∑

j=1

qij =

Nth
∑

j=1

gh,ij (Pi − Pj) = 0 (2.33)

where Pi is the pressure at pore i, qij is the flow between pores i and j, gh,ij

is the hydraulic conductivity of the throat connecting pore i to j, and Nth is the

number of throats connected to pore i.15

The hydraulic conductivity (gh,ij) is defined as a factor that represents the

resistance in the flow of electrolyte between neighbouring pores imposed by the

connecting throat. It is dependent on the size and length of the throat and varies

depending on the shape of the throat’s cross-sectional area.49,60,61 To explain with

further detail the meaning of gh,ij, the momentum balance between two pores is

illustrated as analogous to the analytical solution of the steady state Navier-Stokes

equation for the flow in a pipe with circular cross-section60. The total flow through

the cylinder is computed by integrating the velocity field and the cross-sectional

area over the cylinder radius. This leads to the Hagen-Poiseuille equation (2.34):

Q =

∫ R

0

2πrv(r)dr =
πR4

8µ
∇P (2.34)

Based on the solution to equation (2.34), the hydraulic conductivity (gh) be-
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tween pores i and j in a cylindrical throat is defined as:

gh,ij =
πR4

8µ
·
1

L
(2.35)

According to Gostick et al.49, the total hydraulic conductivity between two

adjacent pores, i and j, connected by a throat, is expressed as the conductivity of

half of pore i and j, and the conductivity of the throat. Thus, the net conductivity

between i and j, gh,ij is expressed based on the resistor theory as

1

gh,ij
=

1

gp,i
+

1

gh,t
+

1

gp,j
(2.36)

This same approach proposed by Gostick et al.49 has been used by other

authors to compute the PNM of the gas diffusion layer in a PEM fuel cell50,61

The resulting system of linear equations obtained with expression (2.33) is

solved to obtain the pressure field. Given the prescribed boundary pressures on

each side of the network (i.e. Pin and Pout) the pressure in each pore is calculated.

At a continuum scale, the macroscopic flow rate QT can be obtained by summing

the flux over the boundary pores of the network along the main flow direction.

QT follows Darcy’s law, thus the permeability can be determined through back-

calculation with equation (2.37), where K is the bulk permeability; A is the cross-

sectional area of the network in the direction orthogonal to the main flow; L is the

length of the network in the main direction of the flow; and Pin and Pout represent

the inlet and outlet pressures at the boundaries respectively.4,49,56–59,62

QT = −
KA (Pin − Pout)

µL
(2.37)

Based on this equation, it is clear that the value of the permeability in the

network will be dependent on the geometry of the pores and throats given by the

hydraulic conductivity, the cross-sectional area and length of the network at a

macroscopic level. Thus, and iterative approach is necessary where these geomet-

ric parameters are obtained initially from statistical distribution of experimental

data, and are fitted so that the calculated flow field presents a permeability similar

to the one obtained experimentally.49,62
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Mixed Cell Method for transport in PNM

Analogous to the expression obtained in section 2.1.3 for the momentum bal-

ance over each pore (equation 2.33), the transport equation is derived from the

convection-diffusion-reaction (CDR) equation by imposing the species mass bal-

ance per node (Mehmani2014). The CDR transport equation defined in eq. (2.8)

is applied in the form of volumetric integral to solve the mass balance at each

pore:

∫ ∫ ∫

∂Ci

∂t
dV = −

∫ ∫

Civ · ndS +

∫ ∫

Dm∇Ci · dS +

∫ ∫ ∫

RidV (2.38)

Based on equation (2.38), the Mixed Cell Method (MCM) proposed by various

authors56,59,62–64 is obtained. The MCM assumes a single concentration in each

pore, which implies a perfect mixing of species within each node. Thus, the bal-

ance of species at node i is given by

Vpi

dci
dt

=

Nth,q<0
∑

j=1

ciqij +

Nth,q>0
∑

j=1

cjqij +

Nth
∑

j=1

Dmaij
∆cij
lij

+R(ci) (2.39)

where Vp is the pore volume, ci the pore concentration, Dm the molecular dif-

fusivity, R(ci) the reaction term, qij, lij and aij correspond to the flow rate, length

and cross-sectional area of the throat connecting pores i and j respectively.56

The throat flow rates are obtained by solving the momentum balance equa-

tion (2.33). For the calculation of the throat cross-sectional areas in the diffusive

term of equation (2.39) some authors assume cylindrical, equilateral triangle or

square tubes with equivalent throat conductivities4,56 . Gostick et al.49 introduce a

new methodology analogous to the hydraulic conductivity from equation (2.33),

refered to as diffusive conductivity which is defined for a given conduit as

gd =
ciDAB(2b)

2

L
(2.40)
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where DAB is the diffusion coefficient of species A in static media B, 2b and

L are the width and the length of the conduit respectively. The net diffusive

conductivity gd is obtained through the application of the resistor theory for

diffusion through each half pore and throat, similar to equation (2.36).49 In

order to verify the chosen network geometry applied in the calculation of the

diffusive conductivity gd (equation (2.40)), the effective diffusivity of the network

is calculated and compared with experimental data of effective diffusivity for

various fibrous materials.49

Despite the fact that the MCM formulation from equation (2.39) for the so-

lution of the mass transport in each pore assumes perfect mixing, it has been

proved by Acharya et al.63 that this assumption is reliable for flow at low Peclet

numbers, which is the case of the systems studied in this work. Other methodolo-

gies for PNM of solute transport have been proposed by Mehmani et al.56 called

streamline-splitting method (SSM) and superposing transport method (STM), nev-

ertheless in this work only the MCM method will be analysed.56

Reactive transport in PNM

The solution of the MCM equation (2.39) which also accounts for the reactive

transport has been analysed by various authors, who propose different method-

ologies for estimating the concentration change due to the reaction.

Li et al.62 present a PNM to simulate the reaction of kanolite and anorthite

during carbon sequestration. The MCM equation is solved to represent the pro-

cesses of diffusion, convection and aqueous reaction at each individual pore. The

change of concentration due to reaction, represented as the last term of equation

(2.39), takes a different form for each component based on the stoichiometry of

the reaction. For instance, the source term R(ci) for Ca2+ is given by

R(Ca2+) = rC,A · AA,T (2.41)

where rC,A corresponds to the reaction rate of anorthite, and AA,T refers to the

total surface area of anorthite.62 This same model of representing the reactive
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term in the MCM equation was applied by Kim et al.64 to simulate the reaction of

kanolite and anorthite in a PNM during carbon sequestration. The results from

these works show that large anorthite reaction rates arising from highly acidic

boundary fluid leads to higher order of magnitude spatial variations in concentra-

tions and reaction rates, which are poorly represented by averaged concentrations

that ignore pore-scale heterogeneities. Additionally, under these conditions,

the equilibrium relationships obtained at a pore-scale are unable to hold at the

continuum scale, therefore an estimation of these values with a continuum model

would introduce large errors and scaling effects are significant.62

Following the same method, Raoof et al.65,66 present a simulation of a Biogeo-

chemical Reaction represented by a PNM. A sequential approach is applied for the

concentrations distribution in each pore, in which first the convection-diffusion

transport is solved for each time step, and then the reactive step is integrated

in the MCM equation at each time step. The reactive term which represents the

sum of all the reactions affecting concentration of a given species involved in the

process is given by

Rl =
Nre
∑

m=1

al,m · rl (2.42)

where Nre is the number of reactions, rl represents the rate of reactions

obtained with reaction rate laws, and al,m represents the stoichiometric coefficient

of species l in reaction m.65

Acharya et al.57 present a time-stepping methodology for the solution of the

MCM equation, accounting only for the convective and reactive terms. The con-

centration at each pore in the PNM is solved explicitly through the discretised form

of equation (2.39) (without the diffusive term) as

c(i, t+∆t)− c(i, t)+k[c(i, t+∆t)]P −k[c(i, t)]P =
∆t

Vpi





Nth,q<0
∑

j=1

c(i, t)qij +

Nth,q>0
∑

j=1

c(j, t)qij





(2.43)



2.1. Modelling porous materials 38

In this equation, the last two terms of the left hand side correspond to the

effect of concentration change due to the reaction, while the right hand side of

the equation represents the term due of convective mass transport.

The reactive term can be solved by directly including the reactions in the

equation, such as the methodology followed by Li et al.62, Kim et al.64 and Raoof

et al. .65 Mehmani et al.58 follow the time-step methodology of equation 2.43, for

a PNM model applied in carbon sequestration. Nevertheless, Mehmani et al.58

apply an operator-splitting approach which decouples the convective and reactive

part of the transport equations. In the operator-splitting approach, the convective

term is solved explicitly using finite differences, while the reactive term is solved

analytically.58

The operator-splitting method is also implemented by Tansey et al.59 for the

solution of convective, diffusive and reactive transport in a PNM applied for

estimating the heterogeneous reactive transport and matrix dissolution at a pore

scale for carbon sequestration. The authors perform a time-stepping algorithm

similar to the one presented by Mehmani et al.58 but also include the diffusive

term. The reactive term R(ci) is solved explicitly at each pore, in which an

intrapore concentration gradient is considered through the estimation of a mass

transfer coefficient. This operator-splitting method implies a numerical error,

which is not accounted for by the authors, nevertheless simplifies the procedure

of solving the MCM equation explicitly with the reactive term included in the

equation.58,59 The results from this work allow the estimation of the transient

dissolution regimes of matrix acidising, the effect of the flow rate on the mass

transfer, and the effect of the pore size in the rate at which acid can be delivered

to the reactive surface.59 Overall, these works implement PNMs to estimate the

coupled convective, diffusive and reactive transport at a pore-scale. It is shown

that although PNMs are simplifications of the actual microstructure, these models

are able to accurately predict reaction rates, an optimal Damköhler number (rate

of precipitation to rate of convection), and the existence of preferential flow

pathways through the porous matrix due to a higher permeability along these

paths, which cannot be predicted with continuum models.58,59,62
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In the present work, a PNM is developed to simulate the coupled mass and

charge transport in electrodes for EES systems. The operator-splitting approach is

implemented to decouple the convective and reactive parts of the transport equa-

tion, as will be further explained in chapter 3. Since the reactive term corresponds

to the electrochemical reaction, it is coupled with the charge transport equation.

Thus, it requires to be solved iteratively in order to calculate the concentration of

species at each pore for every time-step in the dynamic simulation.15

This section has reviewed the different approaches commonly implemented

in the literature to model transport process through porous media, namely con-

tinuum models, direct numerical simulations and pore network models. These

approaches analyse the microstructure-performance relationship from a forward

perspective and quantify the effect of the porous media in the overall system. Al-

though insightful, these models do not account for the reversible process that can

enable the optimisation of the microstructure. For this purpose, the stochastic

reconstruction of porous media has been suggested and implemnted by various

authors in order to estimate the pdf that defines the microstructure. These meth-

ods of stochastic reconstruction of porous media will be reviewed in the following

section.
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2.2 Stochastic reconstruction of porous materials

As stated in the previous section, advances in high-resolution X-ray computed

tomography (XCT) scanning techniques as well as an increase in computational

power have allowed researchers to develop complex multiphysics models that can

describe the transport processes in porous media. These numerical solutions of

flow and transport equations based on three-dimensional XCT images enable the

estimation of relevant microstructural properties such as permeability, diffusivity,

specific surface area and porosity.67–70. However, since variations in pore shape

and morphology are intrinsic features of the porous media, it is essential to

develop pore structure models that can predict these microstructural properties

based on geometric and topological descriptors of the complex microstructure.71

In this respect, a key challenge remains to find probabilistic representations of a

microstructural dataset which contain the geometric and topological “essence”

of the microstructure, such that synthetic volumes can be reconstructed with

equivalent properties and a physical resemblance to the real material.

For this purpose, the stochastic generation of porous media based on statistical

properties of porous microstructures or from XCT images has been proposed72–74.

A first approach for generating three-dimensional porous media was introduced

by Quiblier et al.75 based on the work of Joshi76 for the synthetic generation of

two-dimensional images. The stochastic model implements a technique based on

thresholding of random Gaussian fields: within a predefined volume, a binary

number (i.e. 0 or 1) is randomly generated to indicate whether the point belongs

to the solid matrix or to the void. The “disorder” of the random generation

is limited by the porosity and the two-point correlation function of the porous

media, defined as the the probability for a random point P +H to belong to phase

φi (i.e. solid matrix of pore phase) when point P belongs to phase φi.
75 Despite

the wide application of this method77,78, it is proved that for the generation

of grains or packed particles, this method fails to accurately reproduce certain

transport properties such as the Knudsen diffusivity. This indicates that, unlike the

case of reconstructing simple sandstones, matching the porosity and two-point

correlation function alone is not always adequate when attempting to accurately

represent the structure of some porous materials. In these cases, higher order
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statistical properties of the material, such as the chord length distribution of the

solid and pore phase must be also satisfied.79

Object-based models have been introduced to generate arrangements of gran-

ular materials using characteristic geometric shapes, such as spheres. In the clas-

sical Boolean model, the centers of the grains are distributed and grown in a

confined space through a random process that allows grains to overlap.80,81 More

complex Boolean models have been developed to define the interaction between

grains and extend their application to non-spherical particles82–84, such as the

one presented by Rikvold and Stell85, in which the level of penetration between

spheres is defined by a hardness parameter where a value of one means the spheres

are mutually impenetrable, and a value of zero reduces them to fully penetra-

ble. Additional methods based on simulated annealing have been implemented to

reconstruct two and three-dimensional heterogeneous materials from two-point

correlation functions (TPCF) or higher-order statistical information, as shown in

Figure 2.2 for the reconstruction of a Fontainebleau sandstone.83,86–89

Figure 2.2: Reconstruction of the Fontainebleau sandstone using the two-point

correlation function (S2) obtained from one slice. The system size is 128×128×128
pixels, and one pixel is equal to 7.5. The figure on the left shows the pore space

as white and opaque, and the grain phase as black and transparent. The figure on

the right shows a 3D perspective of the reconstruction.87

The simulated annealing algorithm implemented as a pixel-based model in-

volves the gradual transformation of a high-energy configuration of pore and void

pixels distributed in space into a state of minimum energy. This ”energy” is usu-

ally defined as the sum of the squared deviations between n-point correlation

functions of the real data and the calculated correlation function of the generated

porous media.71 Jiao et al.90,91 implemented simulated annealing by extending the
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work of Yeong et al.83,87 to present an isotropy-preserving algorithm to generate

realisations of materials from their two-point correlation functions (TPCF), as is

illustrated in Figure 2.4.

Figure 2.3: The figure on the left shows a reconstruction of a boron car-

bide/aluminum composite, where the black phase represents boron carbide with

φ1 = 0.647, and the white phase constitutes aluminum with φ2 = 0.353. The figure

on the right shows the TPCF plot of the aluminum phase.91

The aforementioned works show that the reconstruction of microstructure

relies on two-point or higher-order statistical information to obtain a prior

distribution that define the spatial properties of the porous media.2,92–97 Although

most of these methods were developed for two-phase media in geological systems,

their implementation has been extended to electrodes in electrochemical systems.

2.2.1 Stochastic reconstruction of electrodes for electrochemi-

cal systems

The optimisation of electrochemical energy storage technologies is required for

the development of improved electrodes. Thus, a recent interest has surged for

generating synthetic microstructure in order to aid the design of optimised elec-

trodes. Whether considering Solid Oxide Fuel Cells (SOFCs) or Lithium-ion bat-

teries, these materials are typically constituted by three phases, which increase

the level of complexity for their synthetic reconstruction compared to two-phased

materials, as previously described in section 2.2.
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Solid Oxide Fuel Cells electrodes

Based on the work of Yeong et al.83,87, Suzue et al.93 used the TPCF of a

two-dimensional phase image of a SOFC composite anode to reconstruct a

three-dimensional microstructure of this material, as shown in fiugre X. As an

extension of this work, Baniassadi et al.98 added a combined Monte Carlo sim-

ulation with a kinetic growth model to generate three-dimensional three-phase

synthetic realisation of a SOFC electrode. A common approach implemented

among authors for the generation of synthetic SOFC electrodes is the truncated

pluri-Gaussian simulation. Moussaoui et al.74 implement a combined model

based on sphere packing and truncated Gaussian random field. These models

use conditional simulations of Gaussian variables thresholded based on a truca-

tion rule that allows the spatial dependence of variables to be modelled.99,100

Additional authors have implemented pluri-Gaussian random fields to model

the three-phase microstructure of SOFC electrodes and establish correlations

between the microstructure and model parameters5,101,102. One advantage of

this method is the ability to correlate the pluri-Gaussian function with properties

such as phase volume fraction, directionality of the phases and for the generation

of graded microstructure.5 Alternative algorithms for reconstruction of porous

electrodes are based on their experimental fabrication techniques. Siddique et

al.103 developed a stochastic algorithm inspired on the process of nucleation and

grain growth for reconstructing a three-dimensional fuel cell catalyst layer. In a

similar way, a common approach for generating synthetic microstructure of SOFC

electrodes involves the random packing of initial spheres or “seeds”, followed by

the expansion of such spheres to simulate the sintering process.104–107

Lithium-ion battery electrodes

In the area of Li-ion batteries one of the main challenges consists on imaging the

three phases of the domain, since the carbon-binder domain (CBD) is hard to

identify using XCT techniques. For this reason, some authors have implemented

computational models to adhere a synthetic carbon-binder domain (CBD) into

XCT three-dimensional images of the NMC/pore phases.108,109 An analysis of

transport properties such as tortuosity and effective electrical conductivity
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Figure 2.4: Reconstructed anode microstructures sintered at (a) 1300 ◦C,

(b)1350 ◦C and (c) 1400 ◦C. Green: Ni, blue: YSZ, transparent gray: pore.93

prove the significant impact of different CBD configurations on the electrode

performance. Other authors have implemented physics-based simulations or

models based on the experimental synthesis techniques to predict the morphology

of three-phase electrodes. Siddique et al.110 extended their previous work on

stochastic generation of a fuel cell catalyst and implemented an algorithm of

nucleation and growth to reconstruct a three-dimensional three-phase LiFePO4

cathode. Additionally, Forouzan et al.111 developed a particle-based simulation

that involves the superposition of CBD particles, to correlate the fabrication pro-

cess of Li-ion electrodes with their respective microstructure. Srivastava et al.112

simulated the fabrication process Li-ion electrodes by controlling the adhesion

of active material and CBD phases. Their physics-based dynamic simulations are

able to predict with accuracy the effect of microstructure in transport properties.7

The techniques previously mentioned are important contributions to the

stochastic reconstruction of electrode microstructure. Nevertheless, some of them

have proved to be computationally expensive, and are restricted to a particular

type of material, therefore cannot be used as general methods for fast generation

of synthetic microstructure. Recent advances in deep learning techniques have

led to the development of deep generative models, which have been proposed

as efficient methods for the stochastic generation of three-dimensional two-phase

porous media. The advantage of these methods is their ability to provide fast sam-

pling of high-dimensional and intractable density functions without the need for

an a priori model of the probability distribution function to be specified7,113. These

methods will be introduced in the following section.
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2.2.2 Introduction to Machine Learning

Before introducing the concept of deep generative models, a brief overview of

machine learning and deep learning techniques will be presented in this section.

Machine Learning surged as research area out of the field of Artificial Intelligence

based on the ideal of creating intelligent machines that can mimic the human

brain. This, in conjunction with the unprecedented existence of big data, led to an

increasing need of algorithms capable of classifying data, understanding patterns,

making correlations and performing predictions. The most popular definition of

Machine Learning was proposed by Tom Mitchell114 as:

A computer program is said to learn from experience E with respect to some

task T and some performance measure P, if its performance on T, as measured by P,

improves with experience E.

The mathematical process of learning is based on a training set x, which

can be composed of data such as images (2D or 3D), defined by the probability

distribution function (pdf) pdata (i.e. x ∼ pdata(x)). The purpose of the learning

process is to create a parametric pdf pmodel,θ to approximate pdata by iteratively

adjusting its parameters θ. In most cases, this data is high-dimensional and

therefore pmodel,θ needs to be complex enough to represent the multi-modal

training set.115

Learning algorithms can be classified into two categories: supervised and

unsupervised learning. Supervised learning, also called predictive learning, per-

forms a mapping from inputs x to outputs y, given a labeled set of input-output

pairs D = {(xi, yi)}
N
i=1, where D is the training set and N is the number of training

samples. Each input xi is a D-dimensional vector, and the response variable yi

can be a categorical value from a finite set (yi ∈ {1, . . . , C}), or a scalar (yi ∈ N).

In this algorithm, the training data is labelled, so the task of the computer is to

predict the labels of new data. The most common types of supervised learning

are classification and regression. In unsupervised learning, also called descriptive

learning, the training data is unlabeled, so the training set only consists on a set

D = {xi}
N
i=0. In this case the algorithm learns based on measures of similarities
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among the data sets. The most commonly used types of unsupervised learning

are clustering and dimensionality reduction.115

Artificial Neural Networks for supervised learning

One of the most widely used methods for supervised learning problems are neu-

ral networks. These are developed based on the physiology of the brain, as a

series of interconnected neurons that are activated upon training. The simplest

neural network architecture consists of a single perceptron (or single neuron) in-

troduced by Rosenblatt116 as a threshold logic unit (TLU) to perform simple binary

classification operations. The TLU takes in a vector of inputs (x0, x1, x2), each asso-

ciated with a weight (w0, w1, w2), then computes the weighted sum of these inputs
(

z = w0x0 + w1x1 + w2x2 = wTx
)

, and applies the Heaviside step function to z in

order to output the result hw(x) = step (z) = step (wTx). If the result exceeds a

threshold, the step function outputs a positive class (i.e. hw(x) = 1), or else, it

outputs a negative class (i.e. hw(x) = 0). By replacing the Heavyside step function

with a sigmoid function, defined by equation 2.44, the problem becomes a binary

classification exactly like a logistic regression problem, where the weights wj are

defined as the fitting parameters θj of the network.

g(z) =
1

1 + e−z
(2.44)

This single neuron architecture shown in Figure 2.5 can represent simple

logical functions, such as AND, NOR, OR; however, to represent more complex

functions, additional neurons are required, as well as interconnectivity between

them.

Figure 2.5: Graphic representation of a logistic function as a neural network
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By definition, a neural network is composed of at least three layers: an input

layer, a hidden layer, and an output layer, as shown in Figure 2.6. According to the

Universal Approximation Theorem117, a neural network with at least one hidden

layer can approximate arbitrarily well any function from any finite dimensional

space to another given that the network has enough neurons. The number of

hidden layers can increase according to the complexity or depth of the problem,

which leads to the area of deep learning.

Figure 2.6: Three layer neural network

Deep learning methods have revolutionised the state-of-the-art machine lean-

ing methods by allowing computational models composed of multiple processing

layers to learn representations of data with many levels of abstraction.118 These

multiple layers are composed of simple modules that perform non-linear opera-

tions each and transform the representation at one level into a higher and more

abstract representation. This composition with enough non-linear transformations

allows very complex functions to be learned. Due to this multi-layer configuration,

deep learning is able to discover intricate structures in high-dimensional data

and thus its applications extend from image and speech recognition to object,

detection, drug discovery and genomics.118

One of the major breakthroughs in deep learning that has allowed the effi-

cient training of large datasets is the development of the backpropagation algo-
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rithm.118–121. Backpropagation allows to compute the gradients of a loss function

J(θ) with respect to the parameters of the multi-layer network based on the chain

rule. A stochastic gradient descent technique (SGD) is then implemented to op-

timise the parameters of the neural network.122 During each optimisation step t,

parameters θt+1 are updated by moving θt one step towards the direction of steep-

est descent, or optimal conditions (i.e. towards θ∗), where the direction is given

by the gradient of the loss function J(θ) with respect to θ, and the step size or

learning rate is given by α. The equation that defines the SGD process is given by

θt+1 = θt − α∇θJ(θ) (2.45)

In this stochastic process, a small set of examples, or so called batches, gives

a noisy estimate of the average gradient over all samples.122 This is an iterative

process until the loss function J(θ) is minimised.

A further development in deep learning that has been widely applied in the

computer vision community are convolutional neural networks. These have been

applied with great success to the detection, segmentation and object recognition

in images. Convolutional neural networks are structured in layers which are

organised in feature maps. Each layer is connected to local regions in the feature

maps of the previous layer through a moving kernel of parameters or filter.

Mathematically, this filtering operation by a feature map is a convolution, which

give these networks their name. The local weighted sum is then passed through

a non-linear function (i.e. sigmoid) and the result is passed to the next layer.

Convolutional neural networks are able to detect features such as edges and local

statistics of images or signals through the filtering process, with a small number of

parameters. This makes the learning process more efficient and allows processing

of 2D and 3D images. A stacking of various convolutional layers follows the

hierarchical nature of deep neural networks, and therefore higher-level features

in deeper layers are obtained by lower-level ones.118 This is important in image

recognition, since local combinations of edges form motifs, motifs form parts and

parts are assembled into objects.118

The non-linear transformation performed over the input data by fully con-
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nected layers convolutional operations is given by a set of linear operations

(weighted sum) combined with non-linear activation functions. The most

well-known type of activation function is the sigmoid function, defined by

equation 2.44, or sigmoid-type functions. Nonetheless, in some cases for very

deep neural networks, these functions encounter a vanishing gradient problem

in the backpropagation step during training. To avoid the vanishing gradient,

Rectified Linear Unit (ReLU) activation function can been implemented to allow

gradients of sufficient magnitude to be backpropagated. Regardless of the

significant improvement, in some cases when the input is negative even the ReLU

function presents vanishing gradients. For this reason Leaky ReLU function can be

implemented, where the value of the function for negative numbers has a slight

but positive slope, avoiding a zero-gradient value.123

These advances in deep learning algorithms have led to the development

of complex methods that can represent probability distribution functions of

high-dimensionality data called generative models. Despite their relatively recent

development, their application has extended in various areas, from computer

vision to time-series prediction. In this work a generative model is, for the first

time, implemented for the design of electrode microstructure for energy storage

technologies.

2.2.3 Generative Models

Generative models are implemented to learn and approximate high-dimensional

probability distribution functions based on a training set of data or images, from

which new realisations can be sampled. For simplicity, this work will address

only the type of generative models that work by the principle of maximum likeli-

hood.124,125 The purpose of maximum likelihood is to define a model, parametrised

by θ, that estimates a probability distribution function. Based on a training set x

that contains m training samples, the likelihood is defined as the probability that

the model assigns to the training data:
∏m

i=1 pmodel

(

x(i); θ
)

. The objective of max-

imum likelihood is to estimate the values of θ of the model that maximise the

likelihood of the training data. Thus, the maximum likelihood is defined as
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θ∗ = argmax
θ

m
∏

i=1

pmodel

(

x(i); θ
)

(2.46)

To simplify the derivatives of the likelihood with respect to the models, it is

better to work in the log space, so that the product operator is changed to a the

sum. Therefore, the function to be maximised is the log-likelihood, defined as

θ∗ = argmax
θ

m
∑

i=1

log pmodel

(

x(i); θ
)

(2.47)

Another way of estimating the distribution of the dataset pdata is by calculat-

ing the divergence between this pdf and the one of the model pmodel. A common

method which is equivalent to maximising the log-likelihood consists in minimis-

ing the Kullback-Leibler (KL) divergence between the data and the model:

θ∗ = argmin
θ

DKL (pdata(x)||pmodel (x; θ)) (2.48)

Given that pdata is unknown, the training set of m samples that come from

this pdf are used to define an empirical distribution p̂data to approximate pdata.

Therefore, minimising the DKL between p̂data and pmodel is the same as maximising

the log-likelihood of pmodel. DKL is used in some generative models, as explained

below.

Generative models that implement the maximum likelihood principle can be

categorised based on the way they approximate this likelihood.124,125 The two

main categories correspond to the models that define an explicit density function

pmodel (x; θ) - explicit models -, and models that do not explicitly represent a proba-

bility distribution over the data - implicit models -.

Explicit Models

In explicit models, the main challenge is to define a function that can capture the

complexity of the dataset, while still maintaining computational tractability. In this

respect, these models can be sub-classified as tractable and approximate. Among

the tractable methods, fully visible belief networks (FVBN) and non-linear inde-

pendent component analysis (ICA) are some of the most popular.126–128 In (FVBN),
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the joint probability distribution of an n-dimensional vector x is decomposed us-

ing the chain rule of probability into a product of one-dimensional conditional

probabilities as129

pmodel(x) =
n
∏

i=1

pmodel (xi|x1, . . . , xi−1) (2.49)

In this model, the distribution of each xi is computed using a neural network,

which makes the model very computationally expensive.129

Non-linear ICA perform continuous, non-linear transformations between two

different spaces: a latent space Z, and the data space X. It is based in the assump-

tion that a continuous, differentiable, invertible transformation g exists which,

when applied over a vector in the latent space Z, it can yield a sample from the

model in X space.125 This process is defined as

px(x) = pz
(

g−1(x)
)

∣

∣

∣

∣

det

(

∂g−1(x)

∂x

)∣

∣

∣

∣

(2.50)

One of the main drawbacks of ICA is the restrictions imposed in the choice

of function g which has to be tractable and invertible.124,125 Although defining

a tractable function is useful for optimisation purposes, the limitations of the

available functions impose restrictions to the models. For this reason, explicit

models that approximate the probability density function are used.

The most common approaches for explicit intractable models are variational

approximations. In these models, the learning algorithm maximises a lower bound

L to guarantee that the log-likelihood of the pmodel is at least as high as L:124

L(x; θ) ≤ log pmodel(x; θ) (2.51)

In this category, Kingma and Welling130 developed the Variational Autoencon-

ders (VAE), to perform inference for intractable deep latent variables. Based on a

training set of data or images x, an approximate inference network called encoder

is used to obtain the latent space z which follows a simple multi-Gaussian prior

distribution pθ(z). The encoder, defined as qφ(z|x), is represented by a neural net-
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work, parametrised parameters φ. A decoder is then used to represent the condi-

tional distribution of the data x given the latent variables z. The decoder, defined

as pθ(x|z), is also represented by a neural network and parameterised by θ. VAEs

are trained by maximizing the variational lower bound L(q) associated with data

point x

L(q) = Ez∼q(z|x) log pmodel(x|z)−DKL (q(z|x)||pmodel(z))

≤ log pmodel(x)
(2.52)

the first term on the right hand side corresponds to the reconstruction log-

likelihood. The second term tries to estimate the divergence between the approx-

imate posterior distribution q(z|x) and the model prior pmodel(z).
125,130

Implicit models - Generative Adversarial Networks

Implicit density methods are trained without needing to explicitly define a prob-

ability distribution function. Instead, the model is trained to implicitly learn the

distribution function based on a set of training samples.124 Within this category,

the most recent and most widely used method is called Generative Adversarial

Networks (GANs).

GANS are defined as deep latent variable models that learn to implicitly

represent the density function of a given training set (i.e. pdata).124 As is the case

for implicit models, since pdata is unknown, the result of the learning process is

an estimate of this function defined as pmodel from which a set of samples can be

generated. The idea of GANs originated from game theory, as a two-player game

between two parametric functions: the generator G(z) and the discriminator

D(x). The generator, G(z), takes as input a latent vector z and generates synthetic

samples (xG) that are intended to approximate the real data (xdata). The discrimi-

nator, D(x), tries to distinguish between the generated samples and the real ones.

This concept was introduced by Goodfellow et al.131 as a counterfeiter-detective

game, where the generator is a counterfeiter producing fake currency, while the

discriminator is a police detective who aims to distinguish the fake currency from

the real. During training, these two players continuously improve by pushing the

skills of the other.7,131
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The generator and the discriminator are differentiable functions with re-

spect to their inputs and parameters. The generator, defined as G(z) maps a d-

dimensional latent vector z ∼ pz(z) ∈ R
d to a point in the space of real data as

G(z; θ(G)), and uses θ(G) as parameters. The latent space z is defined by a prior dis-

tribution pz ∼ N (0, 1); z is a tensor of dimensionality d, composed of independent,

normally distributed, real variables:

z ∼ N (0, 1)d×1×1×1

Gθ(G) : z A R
3×64×64×64

The discriminator, D(x) represents the probability that x comes from pdata.
131

D(x), defined by θ(D) receives samples from the real data xdata and from the syn-

thetic data generated by the generator G(z):

x ∼ R
3×64×64×64

Dθ(D) : x A [0, 1]

The aim of the training is to make the implicit density learned by G(z) (i.e.

pmodel) to be close to the distribution of real data (i.e. pdata). Opposed to VAEs

that minimise the KL divergence between pmodel and pdata, GANs objective is to

minimse the Jensen Shanon divergence DJS (pmodel||pdata).
124 The training consists

of an adversarial game in which the two players are in constant competition: the

discriminator’s task is to label the real and fake data correctly (i.e. D(xdata) = 1

and D(G(z)) = 0), while the generator attempts to fool the discriminator into

misclassifying synthetic data as real (i.e. D(G(z)) = 1). This training process is

formally defined as a minimax game between the generator and discriminator by

the following objective function131:

min
G

(

max
D

(V (G,D))
)

= Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log (1−D(G(z)))] (2.53)

In order to solve equation 2.53, each of the two players, the generator Gθ(G)(z)
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and the discriminator Dθ(D)(x), has a cost function to be optimised through SGD in

a two-step process. First, the discriminator is trained to maximise its loss function

J (D):

J (D) = Ex∼pdata(x) [log (D(x))] + Ez∼pz(z) [log (1−D (G(z)))] (2.54)

This becomes a binary classification problem between the discriminator’s pre-

diction and the real label, and is trained as a standard binary cross-entropy loss

function. Subsequently, the generator is trained to minimise its loss function cor-

responding to minimising the log-probability of the discriminator being correct:

J (G) = Ez∼pz(z) [log (1−D (G(z)))] (2.55)

During the early steps of training, the discriminator tends to outperform the

generator since it successfully rejects the generated samples with high confidence,

leading to a vanishing gradient in the generator. To solve this problem, a heuristic

non-saturating game is introduced in the generator’s loss function. Instead of

minimising log (1−D (G(z))), it is convenient to maximise the log-probability of

the discriminator being mistaken, defined as log (D(G(z)))124. The solution to this

optimisation problem is a Nash equilibrium124 where each of the players achieves

a local minimum. At the Nash equilibrium, the generated synthetic samples of

x = G(z) ∼ pmodel(z) are indistinguishable from the real samples x ∼ pdata(x), thus

pmodel(z) = pdata(x) and D(x) = 1
2

for all x since the discriminator can no longer

distinguish between real and synthetic data.124

After the introduction of GANs, a large amount of literature has been

presented with improvements and new configurations of GANs. One of these

improved architectures and perhaps the most widely used was introduced by

Radford et al.132 called Deep Convolutional Neural Networks (DCGANs). The

network architecture is based on the all-convolutional net presented by Springen-

berg et al.133 with no pooling layers. It also implements a batch normalisation

in almost all layers, except the last layer of the generator and the first layer of

the discriminator. For the training process, an ADAM optimiser is used as an

alternative of the SGD method, which adds a momentum term.134



2.2. Stochastic reconstruction of porous materials 55

The GAN architecture implemented in this work is based on the DCGAN ar-

chitecture, so both the generator Gθ(G)(z) and the discriminator Dθ(D)(x) consist

of deep convolutional neural networks. The training data for generative models

can be of various types, however in this work the training set consists of three-

dimensional images of two types of electrode microstructures: a SOFC anode and

a Li-ion cathode.
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Chapter 3

A Pore Network Model for

electrochemical energy storage

devices

3.1 Abstract

A computationally efficient pore network model has been developed to incorpo-

rate the transport and electrochemical phenomena occurrring within porous elec-

trodes. The Mixed-Cell method commonly implemented in Pore Network Models

(PNMs) was extended to include a reactive and electrophoretic term at each pore.

A fully explicit Euler scheme was implemented in the time-dependent iterative al-

gorithm to estimate the concentration and potential profile within the electrode

at different times. This PNM is evaluated on a synthetic cubic structure developed

with the open-source software OpenPNM to represent a carbon paper commonly

used in electrochemical devices. The proposed model was implemented over the

hypothetical cubic structure to simulate the negative half-cell of a Vanadium Redox

Flow Battery (VRFB). The estimated electrode potential for the negative electrode

at 400A m−2 and average overpotentials at galvanostatic discharge at discharge

at 400A m−2 were compared with a 2D continuum model presented by You et al.1

previously validated with experimental data under the same conditions. This com-

parison showed that the present PNM model returns an absolute average error of

3% for the half-cell potentials and of 4% for the overpotentials, which proves the

validity of the model.
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3.2 Background

3.2.1 Transport modelling through porous media

The development of improved electrodes for electrochemical energy storage and

energy conversion technologies is essential for the design of next generation

battery technologies. Due to their importance in energy storage systems, un-

derstanding the multi-transport processes that occur within electrodes is crucial

in order to improve their durability and aid in the design of more optimum

systems.2–4 It has been experimentally proved that an improvement in the

electrode structures would lead to an increase in the cell performance. However,

experimentation can be time consuming, expensive, and hard to optimise. For

this reason, it has become of high interest to develop mathematical models that

can represent the multi-transport processes within electrodes.

Whether considering batteries or fuel cells, electrodes are constituted by

porous materials, therefore modeling the reactive and transport processes within

them is considered a non-trivial problem. Over the years, various mathematical

techniques have been proposed to simulate the flow and transport phenomena

through porous media. The three most commonly used approaches that have

been proposed are: continuum models, direct numerical simulations (DNSs), and

pore network models (PNMs).5 In continuum models, microstructural properties

are averaged over a sample volume assumed to be representative. Based on

this, velocity and pressure profiles are then defined by phenomenological rela-

tionships, and finally transport equations are solved with numerical discretisa-

tion methods.5,6 DNS approaches perform simulations over the complex pore ge-

ometry obtained directly from X-ray computed tomography (X-CT) images. The

porous microstructure is represented as a mesh over which discretisation meth-

ods (finite volumes or finite elements) or particle-based methods (SPH or LBM)

can be implemented to solve the governing equations.7,8 In the case of PNMs the

porous medium is represented as a simplified network of interconnected pores

and throats.9,10 In these models, the details of individual pores are ignored, but

the complete topology of the pore space is represented.6
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Comparison of the three computational methods for transport modeling

through porous media

Previous authors have performed comparisons between the three types of model-

ing techniques to simulate the same porous system. Rebai and Prat compared a

continuum model with a PNM to describe the two-phase flow in a gas diffusion

layer. They outlined the shortcomings associated with continuum models which

lead to a poor approximation of water distribution.5 These problems are due

to the lack of length scale separation and are rooted in the assumption of the

existence of a Representative Elementary Volume (REV) much smaller than

the porous domain. In this context, Garćıa-Salaberri et al. used the LBM to

compute the effective mass transport properties in different carbon fibre papers

(CFPs) and concluded that the macro-homogeneous models of CFPs can lead to

non-negligible errors in their predictions.11 One major conclusion of this work is

that a CFP medium is too heterogeneous to be treated as a continuum, mainly

attributed to their very small thickness. Additionally, they conclude that a REV

cannot be defined in CFPs due to the lack of a well-defined separation between

pore and volume-averaged scales. These conclusions are in agreement with the

findings of Rebai and Prat.5

To compare pore-scale models, Yang et al. used a ‘benchmark’ 3D problem

to perform comparative flow and solute transport simulations of four different

modelling approaches: FVM (grid-based), LBM, SPH (particle-based) and PNM.6

Quantitative comparisons between the models yielded similar pore-scale veloci-

ties and macroscopic properties (i.e. permeability, breakthrough curves, effective

dispersity). Among the conclusions reached in all the studies mentioned here, is

that PNM demonstrate a far superior computational efficiency relative to DNSs

due to their ability to simplify microstructure and electrode topography (in the

comparison made by Yang et al. the benchmark problem was solved in 61.07 h

using an LBM approach on two TESLA® K40c GPU supercomputers while solving

a PNM on a standard Intel® Core i7-4790 CPU only took 45 s).6,9 These methods

are implemented to solve the flow and transport processes through porous media.

However, they have recently been extended to analyse components of electro-

chemical systems, such as battery electrodes and gas diffusion layers in fuel cells.
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The following section shows an application of these methods in an electrochemical

context.

Examples of application of transport modelling to electrochemical systems

A first approach for analysing multiphase flow in electrochemical systems at a

pore-scale was presented by Park et al.12, who proposed a microscopic model

based on the LBM to analyse the two-phase flow distribution in the GDL of a

PEM fuel cell.12 The authors implemented a LBM to investigate the effect of the

tow orientation carbon fibres and the effective permeability in a carbon-based

GDL. Gostick et al. presented a less computationally expensive model consisting

of a PNM for analysing water formation in the GDL of a PEM fuel cell.13 The

authors outline a methodology for representing the microstructural properties of

SGL 10BA and Toray 090, commonly used as materials for SGL, through a cubic

PNM framework. This approach is able to represent the experimental data of

permeability and diffusivity with accuracy; nonetheless, it does not represent the

actual topology of the porous materials. The advantage of this method lies in

the ease with which it can be combined with a macroscopic model of a complete

fuel cell. As an extension of this work, Aghighi et al. implemented a microscopic

model coupled with a macroscopic one to model a complete PEM fuel cell.14 In

their work, the multiphase transport of species in the GDL is modeled as a PNM

and a continuous model is applied for representing the membrane and electrode

catalyst layer.

In recent years, interest has surged to investigate the transport processes in

carbon based electrodes for VRFBs at a pore-scale level. Banerjee et al. imple-

mented a PNM to model the multiphase flow of electrolyte in carbon fibre elec-

trodes. This work analyses the transient permeation of electrolyte in different

types of commercially available CFPs.15 Qiu et al. extended the applicability of

microscale models to analyse the effect of real microstructure in the mass and re-

active transport processes within porous electrodes.16,17 In their work, the LBM is

used to solve the flow equations and with the resulting flow, alongside the FVM,

the mass transport processes are simulated over a real X-CT image.
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3.3 Model development

The present work outlines, a novel method for implementing a PNM approach to

study the multiphysics involved in porous electrodes. In addition to accounting

for flow characteristics and reactive transport processes, this model examines

pore current and electrolyte concentration at different overpotentials.

The PNM approach introduced in this work comprises three main steps:

1. The pore network structure is generated as a cubic synthetic representation

provided by OpenPNM18 to obtain the pore-scale topology of the network.

2. The pressure and velocity profiles are calculated by solving the Stokes flow

equation in each pore

3. The velocity field is integrated with the mass and charge transport equations

to obtain the concentration and potential field across the network.

An iterative algorithm is proposed in order to simultaneously solve the

coupled potential and species concentration at each pore with the concentration

and potential being simultaneously updated until a convergence limit is achieved.

As these are dynamic simulations, this procedure is repeated at each time-step.

In the following sections, and indeed throughout the rest of the chapter, terms

contained within figure 3.1 will be referred to in the derivations and discussions.

Figure 3.1: Electrochemical and geometric properties of the pore network model.
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3.3.1 Fluid transport

In a PNM configuration, the flow field is solved by estimating the flow at each of

the throats in the network. As previously described19,20, the flow through each

throat is analogous to the analytical solution of the steady-state Navier–Stokes

equation for the flow through a pipe given that the flow is considered to be at low

Reynolds number (i.e. Re << 1). The pressure and velocity fields are obtained by

assuming a single pressure Pi at each pore i, and enforcing a volume balance over

each pore, as describe by equation 3.1

Nth
∑

j=1

qij =
Nth
∑

j=1

gh,ij (Pi − Pj) = 0 (3.1)

where qij is the flow between pores i and j, gh,ij is the hydraulic conductivity

of the throat connecting pores i and j, and Nth is the total number of throats

connected to pore i.

The hydraulic conductivity (gh,ij) represents the resistance towards the elec-

trolyte flowing from one pore to another imposed by the geometry of the throat.

It is dependent on the size and length of the throat and will vary depending on

the shape of the throat’s cross-sectional area. In this work, the throat geometry is

assumed to be cylindrical, and thus the hydraulic conductivity is defined as:

gh,ij =
φr4t
8µL

(3.2)

where rt corresponds to the cross-sectional radius, L is the length of the

throat, and µ the viscosity of the electrolyte. Equation 3.2 is true for a system in

which throats are cylindrical, however these parameters can be changed to have

throats of different shapes.

The development of the flow equations are based on the following assump-

tions:

• The electrolyte consists of a single-phase, Newtonian, incompressible fluid;

• The fluid in the bulk is under creeping flow conditions (i.e. Re << 1);
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• The electrolyte viscosity is constant throughout the electrode and indeed

throughout the dynamic simulation;

• The pores are considered to be spheres and the throats are cylindrical.

3.3.2 Mass transport

A mixed-cell-method has been previously introduced for solving the convective-

diffusive-reactive transport of species in a pore network model.19–24 This method

is based on the assumption that the concentration of species at the bulk of the pore

is the same throughout the extent of the pore. Based on the same principle that

derived the MCM for reactive transport, this work derives a method for obtaining

the transient distribution of species within the electrode. The transport of species

is determined by diffusion, convection and two additional terms are introduced:

one due to electrophoretic transport called migration, and a source term due to

electrochemical reaction. This model is based on the following assumptions:

• The dilute solution approximation is considered in the transport of species

through the porous phase. This assumption implies that the concentrations

of species are low enough that their fluxes do not have an impact on the flow

of the solvent;

• Given that this model is a pore-scale model, the concentration of species l at

the bulk of each pore (clb) is considered to be the same as the concentration

at the boundary of the active surface area (cls).

The second assumption can be changed through the implementation of a mass

transport coefficient that relates the bulk concentration with the concentration at

the surface.

The transport of species due to convection, diffusion, migration and electro-

chemical reaction at each pore is obtained by performing a volumetric integral of

the mass balance over each pore i. The resulting equation is a modification of the

MCM, defined as:
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Vpi

dcli
dt

=

Nth,q<0
∑

j=1

cliqij+

Nth,q>0
∑

j=1

cljqij+

Nth
∑

j=1

DeAij

clj − cli
Lij

+

Nth
∑

j=1

zlDeciAij
F

RT

φj − φi

Lij

+S(ci)

(3.3)

where Vpi is the volume of pore i; cli the concentration of species l in pore i; qij,

Lij and Aij the flow rate, length and cross-sectional area of the throats connecting

pores i and j, respectively, and De corresponds to the effective diffusivity of the

porous media. Given that the model is a pore-scale model, the tortuosity and

porosity are considered directly in the topology of the network. Therefore, De

reduces to the diffusion coefficient Dl for each component in the electrolyte.

The first two terms on the RHS of equation 3.3, represent the convective trans-

port into and out of each pore; the third term on the RHS shows the transport due

to diffusion, the fourth term represents the migration due to electrophoretic trans-

port of species; and S represents the source/sink term in concentration due to the

electrochemical reaction. For the reduced active species, the source term is defined

as iBV/F and for the oxidised active species the source term is defined as −iBV/F .

In both cases iBV/F is the transfer current obtained from the Butler–Volmer equa-

tion, as explained in the following subsection.

Electrochemical reaction

In equation 3.3, the last term of the RHS corresponds to the source/sink term,

which represents the flux of species l over the active surface area of the pore. The

formation/consumption of species at the active area (pore wall) is determined by

the current (iBV/F ) transferred at each pore, given by the Butler-Volmer equation:

For the anode:

iBV,a = i0,a

[

exp

(

(1− αa)zFη

RT

)

− exp

(

−αazFη

RT

)]

(3.4)

For the cathode:

iBV,c = i0,c

[

exp

(

(1− αc)zFη

RT

)

− exp

(

−αczFη

RT

)]

(3.5)
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where αa and αc are the anodic and cathodic charge transfer coefficients for

the electrochemical reaction taking place, z is the number of electrons involved in

the reaction, i0 is the exchange current at each pore in the anode, defined as:

For the anode:

i0,a = SAFka(cR)
(1−αa)(cOx)

αa (3.6)

For the cathode:

i0,c = SAFkc(cR)
(1−αc)(cOx)

αc (3.7)

where ka and kc are the reaction rate constants for the electrochemical het-

erogeneous reaction, cR and cOx are the concentration of species in their reduced

and oxidised form respectively, and SA is the active specific surface are of each

pore. It must be pointed out that, unless the system is a symmetric cell, species cR

and cOx are not the same in the anode and in the cathode, and they will depend

on the system. The activation overpotential due to the electrochemical reaction is

defined as:

η = φs − φe − E (3.8)

where φs − φe represents the potential different between the solid phase and

the electrolyte; E represents the equilibrium potentials calculated with the Nernst

equation:

E = E0 +
RT

F
ln

(

cOx

cR

)

(3.9)

where E0 denotes the standard equilibrium potential of the redox couple

involved in the reaction.

The concentration applied in the Butler-Volmer equation25 (equations 3.4 and

3.5) corresponds to the concentration of electrolyte at the active solid interface.

Since the surface concentration (cls) differs from the bulk concentration (clb),

a mathematical expression must exist which relates both values. Shah et al.25

introduce a modified Butler-Volmer equation that represents a linear dependence

for the bulk concentration on the surface concentrations.25 This concentration
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gradient between the surface and the bulk can also be accounted for by solving

the steady-state mass transport and stokes equation inside each pore. The finite

volume method is applied, imposing a boundary condition of concentration at the

walls, similar to the procedure defined by Tansey et al.20

As stated in the model assumptions, the distribution of species defined in this

model are based on the MCM since it is a pore-scale model, therefore the con-

centration of species at the bulk of each pore is considered to be the same as the

concentration at the boundary of the active surface area (clb = cls).

3.3.3 Charge transport

Analogous to the methodology followed to obtain the mass transport of species

at each pore, a model is proposed to obtain the transport of charge through the

network. In a two-phase porous electrode, such as carbon-based electrodes for

RFBs, the current is produced within the two phases, namely the electrolyte (ionic

current) occupying the porous phase and the solid matrix (electronic current).

The method presented in this work for obtaining the transport of charge across

the network is based on the following assumptions:

• The solution is electrically neutral;

• The dilute solution approximation is applicable for ionic species within the

porous media;26

• The solid matrix is highly conductive, compared to the electrolyte flowing

through the porous phase. The potential difference across the solid matrix is

therefore negligible (∇φs = 0).

According to Newman et al.27, in a diluted electrolytic solution, the current

produced due to the motion of charged particles is obtained by adding the mass

fluxes of each of the electroactive species, multiplied by the Faraday constant:

i = F

nc
∑

l

zlNl (3.10)

where i is the current density, zlF is the charge per mole, nc is the number of

electroactive species in solution, and Nl represents the flux of species l in and out
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of the system, determined by the Nernst-Plank equation (2.13).

In a similar way, the charge conservation equation is obtained by multiplying

Fzl to each term in the mass conservation equation, and adding the contributions

from each of the charged species in solution:

∂

∂t
F

nc
∑

l

zlcl = −∇ · F
nc
∑

l

zlNl + F

nc
∑

l

zlSl (3.11)

The solution is considered to be electrochemically neutral, (i.e.
∑

l zlNl = 0);

thus, the term on the L.H.S of equation (3.11) is null, and the convective flux in

the Nernst-Plank equation substituted in equations (3.10) and (3.11) is also null.

These simplifications lead to an expression of charge conservation in which no

accumulation term exists, i.e. , the sum of charge transported by migration due to

a potential difference into/out of one pore (corresponding to the first term on the

RHS of equation 3.11) must be equal to the charge transferred outside the pore

into the solid matrix due to the electrochemical reaction (corresponding to second

term on the RHS of equation 3.11).

∇ · F
nc
∑

l

zlNl = F

nc
∑

l

zlSl (3.12)

The L.H.S term corresponds to the current transfer per unit volume due to

the potential (migration) and concentration gradients (diffusion) between pores,

defined as:

it = −∇ ·

[

F 2∇φ

nc
∑

l

z2l
Dlcl
RT

+ F

nc
∑

l

Dl∇cl

]

(3.13)

The R.H.S. term in equation (3.12) accounts for the current transport due to

the faradaic transfer of charge from the electrolytic solution into the electrode

matrix. This source term is determined by the B-V equation, as defined in eq. 3.4

and 3.5, and thus is dependent on the overpotential at each pore.

To obtain an expression analogous to the MCM for the charge transport at

each pore, a volumetric integral of equation (3.13) is performed. The resulting

expression represents the charge transfer into/out of each pore due to a potential
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difference between pores:

it = −F

nc
∑

l

zl

[

zlDlc
l
i

F

RT

[

Nth
∑

j

Aij
φj − φi

Lij

]

+Dl

[

aij
clj − cli
Lij

]]

(3.14)

where cli is the concentration of species l in pore i, φi is the potential of the

electrolyte in pore i; Lij and Aij are the length and cross-sectional area of the

throats connecting pres i and j respectively.

3.4 Boundary conditions

This section presents the available boundary conditions that can be implemented

in the present model to solve the equations of flow, mass and current transport

defined in the previous section. The implementation of each boundary condition

is determined by the specifications of the system studied.

3.4.1 Boundary conditions for flow transport

The flow of electrolyte is driven by a pressure gradient across the electrolyte. To

determine the electrolyte flow profiles across the network, two possible boundary

conditions can be established:

• Case I: The flow of electrolyte is driven by a pressure gradient between the

inlet and outlet pressures. Thus, constant pressures are specified at the inlet

(Pin) and outlet (Pout) pores as Dirichlet boundary conditions.

• Case II: A fixed flux is established at the inlet or outlet, and a Dirichlet bound-

ary of pressure on the opposite side.

The first case is more convenient since the inlet and outlet pressures are usu-

ally known variables.

3.4.2 Boundary conditions for species transport

In all cases, an assumption of constant concentration at the inlet pores is estab-

lished. For the outlet pores, the following conditions can be implemented to obtain
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the concentration profiles across the network:

• Case I: The concentrations at the inlet and outlet pores boundaries are fixed

as Dirichlet boundaries and unchanged throughout the simulation. This as-

sumption is valid for the cases in which the conversion of species is known

and therefore the concentration of species at the inlet and outlet pores are

set constant.

• Case II: A Dirichlet boundary is established at the inlet pores and a Newman

boundary condition of zero diffusive flux out of the system is established

at the outlet throats. This condition must be implemented for the cases in

which there is no information available regarding the conversion of species.

3.4.3 Boundary conditions for charge transport

The cell can be considered to be operated at either potentiostatic or galvanostatic

conditions. For the case of a potentiostatic operation, electrolyte potentials are

fixed at the inlet and outlet pores as Dirichlet boundaries, and the electrolyte

potential in each pore across the network is recalculated at every time-step in the

transient concentration. For the case in which the cell is assumed to be operating

under galvanostatic conditions, the potentials at one of the walls are fixed as a

Dirichlet boundary and the potentials at the other wall are recalculated iteratively

to fit the external current density applied to the electrode (i.e. φs = 0). A constant

distribution of potential along the solid matrix is considered, since the fibre is

assumed to be significantly more conductive than the electrolyte. This assumption

is based on the experimental data presented by Gandomi et al. .26

3.5 Iterative algorithm

This section presents the main steps involved in the algorithm for implementing

the PNM framework proposed in this work to solve the coupled mass and charge

transport equations that occur at the pore phase within the electrode. This process

consists of three main steps:
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First step

The steady-state Stokes flow equation is implemented to obtain the pressure and

flow field across the network. For this, a successive over-relaxation (SOR) method

is used to solve the system of linear equations, given by equation 3.1. Since the

velocity field only depends on the geometrical topology of the microstructure,

a steady-state pressure drop is assumed throughout the transient concentration

simulation. The pressure difference between the inlet and outlet is specified such

that the Re << 1 and the resulting average velocity was comparable to the values

used in continuum models.

Second step

Once the flow field along all throats is estimated, and iterative algorithm is im-

plemented to compute the transient distribution of concentrations throughout the

network. This algorithm is iterative for calculating the potentials at each pore and

explicit for calculating the concentration at each time-step. For this, an explicit

Euler scheme was implemented for discretising equation 3.3 as follows:

cn+1
i,l = cni,l +

∆t

V





Nth,q<0
∑

j=1

cni,lqij +

Nth,q>0
∑

j=1

cnj,lqij



+
∆t

V

[

Nth
∑

j=1

DlAij

cnj,l − cni,l
Lij

]

+
∆t

V

[

Nth
∑

j=1

zlDlc
l
iAij

F

RT

φn
j − φn

i

Lij

]

+
∆t

V

[

inBV

F

]

(3.15)

From equation 3.15 it is seen that the transport of species between pores is

influenced by the migration and source terms, corresponding to the last two terms

on the RHS of the equation respectively. This implies that the movement of ac-

tive species is affected by the electrolyte potential at each pore (i.e. in the source

term), as well as the electrolyte potential of the neighbouring pores (i.e. in the mi-

gration term). In order to obtain the distribution of potentials and concentrations

across the network, the species and charge transport equations (i.e. equations 3.15

and 3.14 respectively) are solved simultaneously for every pore at each time-step.

Thus, each time-step will correspond to a specific concentration and potential dis-

tribution. For every time-step, the potential distribution is obtained iteratively
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with a SOR method, where the error function is defined as the absolute average

deviation (AAD) between it and iBV at each pore:

AAD =
1

np

np
∑

i=1

int,i − inBV (3.16)

Third step

With the electrolyte potential distribution at each pore, the migration and source

terms can be estimated. As a final step, the concentrations at each pore are

calculated, providing the concentrations at the next time-step (i.e. cn+1
i ). With the

new concentration profiles, the same iterative process of solving the potentials

and updating the concentrations is repeated for the next time-step, until a time

limit is achieved. A schematic of the solution algorithm introduced in this work is

shown in APPENDIX A.

The convergence criteria for calculating the pressure field is defined as the av-

erage residual of the sum of all flows, non-dimensionalised against the total sum

of the absolute flows in all throats. This convergence criteria for stopping the sim-

ulation is established when the average residual is less than or equal to 1× 10−12.

The convergence criteria for the potential fields is obtained with the AAD, where

the simulation converges when the AAD is less than or equal to 1 × 10−8 A. The

implementation of the numerical algorithm requires the following inputs: physical

parameters of the electrolyte (e.g. diffusivity, Table 3.1), initial SOC, inlet velocity,

outlet pressure, external current density or boundary potentials, input file of the

reconstructed pore network with data including pore volume/position and throats

radius/length and connecting pores indexes/identities. The program developed

in this work is written in C++ and implemented on an HP workstation with the

following specifications: Intel® Xeon® CPU E5-166-v3.
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3.6 Results and discussion

3.6.1 Verification of the Explicit Euler Scheme

The implementation of a fully explicit Euler scheme for the MCM equation for

convective, diffusive, reactive and electrophoretic transport is verified with its

corresponding analytical solution. Since the volumetric integral of the transport

equation solved at each pore to obtain the MCM equation is analogous to a sys-

tem of continuous stirred-tank reactors (CSTR), a hypothetical system of 8 pores

connected in series by 7 throats is implemented under the following assumptions:

• All pores have the same volume: V1 = V2 = V .

• All connecting throats have the same cross-section area (Aij = A) and length

(Lij = L), thus the volumetric flow rate between pores is the same for all

throats: i.e. Q12 = Q23 = Q.

• The potential gradient between pores is equal for all connections: ∆φ12 =

∆φ23 = ∆φ.

• The system is operating under limiting current conditions.

• No diffusive flux out of the pores is considered.

• Dirichlet boundary conditions are assumed at the inlet and outlet pores. The

concentration at the inlet pore is set to Cin = 10mol ·m−3, and the concen-

tration at the outlet pore is Cout = 0 mol ·m−3.

For simplicity, the concentrations cli will be written as ci. The MCM equation

(eq.3.3) for a hypothetical system of pores connected in series is written as:

Vi
dci
dt

= ci−1Qi,i−1 − ciQi,i+1 +DlA
(ci−1 − ci)

L
+ zlDlci

F

RT
A
2∆φ

L
+ S(ci) (3.17)

Based on the assumptions stated for this model, equation (3.17) can be rewrit-

ten in terms of the characteristic time τ = V/Q as:

dci
dt

=
1

τ
(ci−1 − ci) +DlA

(ci−1 − ci)

LV
+ zlDlci

F

RT
A
2∆φ

LV
+

S(ci)

V
(3.18)
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since the system is working under limiting current conditions, the source term

of equation (3.18) is defined as:

S(ci) =
−il · SA

F
(3.19)

where SA is the active surface area of each pore, F is the Faraday constant,

and ilim os the limiting current:

ilim = zlFkmci (3.20)

All constants in equations (3.19) and (3.20) are rearranged and renamed as

the following parameters:

α =
1

τ
+

DlA

LV
(3.21)

β =
2zlDlFA

RTLV
·∆φ (3.22)

γ =
zlkmSA

V
(3.23)

λ = β + α + γ (3.24)

Equation (3.18) is solved analytically as an infinite series, given the following

boundary conditions: at t ≥ 0, c0 = 10. The analytical solution for the concentra-

tion of species as a function of the time for the N th pore is:

cN
c0

=
αN

λN

(

1− e−λt

N
∑

n=1

λn−1tn−1

(n− 1)!

)

(3.25)

Comparison of the analytical solution with the explicit Euler scheme is graph-

ically represented on Figure 3.2



3.6. Results and discussion 88

Figure 3.2: Comparison of simulated explicit Euler scheme (dots) and analyti-

cal solution (solid line) for convective-diffusive-migration-reactive flow in MCM

transport for 8 pores connected in series.

3.6.2 Implementation of the proposed framework in a VRFB

Vanadium chemistries are the most widely studied RFB systems and also most

comemercially mature.28,29 Thus, significant progress in VRFBs cell power density

has been made over the last 30 years.30–32 In order to prove the PNM framework

developed in this work, the anode couple of a VRFB was used.

VRFB electrolyte chemistries utilise all four stable oxidation states available to

vanadium. They are V2+/V3+ at the negative electrode (anode) and VO2+/VO+
2

(V4+/V+5) at the positive electrode (cathode). Complicated kinetic and mechanis-

tic equations are omitted in the following simplified electrochemical couples.26

Anode:

V3+ + e− ⇋ V2+ E0 = −2.26V vs. RHE (3.26)

Cathode:

VO2+ +H2O ⇋ VO+
2 + 2H+ + e− E0 = 1.00V vs. RHE (3.27)
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Table 3.1: Physical parameters for the mass transport equation (eq. 3.3) from

literature

Parameter Symbol Value Units

Anodic transfer coefficient α− 0.5 -

Cathodic transfer coefficient α+ 0.5 -

Standard reaction rate constant: anode ka 1.7× 107 m · s−1

Equilibrium potential: anode E0,a −0.255 V
Temperature T 298 K

Diffusivity of V(II) DV(II) 2.4× 10−10 m2 · s−1

Diffusivity of V(III) DV(III) 2.4× 10−10 m2 · s−1

Table 3.1 presents the physical parameters corresponding to the electrochemi-

cal reaction undertaken by the redox couple V2+/V3+ at the anode. These param-

eters were implemented in the species transport equations defined previously.

To validate the implementation of a PNM approach, a hypothetical network

was built using the open-source software OpenPNM18 to represent the carbon

paper electrode, in particular Toray090. The module for building a Toray090

architecture from OpenPNM was previously verified in terms of permeability

and diffusivity elsewhere.13 The proposed framework was implemented over the

hypothetical network to simulate the negative half-cell of a VRFB. The results

were compared with the 2D continuum simulation by You et al.1 of the same

system under the same conditions. The hypothetical system consisted of 2336

pores and 4048 throats, with an architecture specially designed to preserve

the geometric parameters and specific surface area used by You et al.1,18. The

parameters that define the PNM are given in Table 3.2.

For the purpose of validating the model, a steady-state approach, analogous

to the simplified structure presented by Qiu et al.17 is implemented. This method-

ology is based on the charge conservation between the applied current density

(i.e. Jext) and the current balance in the network. For the model validation, the

following assumptions were made:

• The conductivity of the solid phase is significantly larger than the electrolyte

conductivity, and so the loss of current in the solid matrix is ignored (i.e.

∇φs = 0);

• The distribution of concentrations across the network is uniform and remains



3.6. Results and discussion 90

Table 3.2: Parameters of pore-network model for OpenPNM system

Description Symbol Value Units

Specific surface area Ae 16, 200 m−1

Half-cell width L 0.003 m

Flow velocity uav 0.00219 m · s−1

Average pore size - 3.90 x 10−15 m3

Number of pores Np 2336 -

Number of throats Nt 4048 -

Total vanadium concentration C0
tot 1500 m3 · s−1

External current density −Jext −400 A

Equilibrium potential E0 −0.255 V

constant at each SOC analysed;

• The VRFB is under steady-state conditions;

• The effect of side reactions are negligible;

• Only the half reaction of the negative electrode is considered.

Boundary conditions for flow transport

Dirichlet boundary conditions of pressure were implemented at the inlet and out-

let pores to obtain an average velocity of 0.00219m·s−1, equivalent to experimental

data and the continuum model presented by You et al.1. Both models are hypo-

thetical since the actual morphology is not accounted for, however the continuum

model consists of a 2D grid where microstructural parameters are homogenised

into effective properties. In the case of the hypothetical PNM, the dimensions of

the microstructure (i.e. pore and throat diameter) are modified to fit experimetnal

microstructural properties such as permeability and specific surface area.

Boundary conditions for species transport

The concentration of species within each pore was determined by the solution SOC

within the electrode, defined as:

SOC =
CII

C0−
(3.28)

where CII corresponds to the concentration of V(II), C0− is the total concen-

tration of vanadium species in the electrolyte. Since the system is considered to be
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operating under steady-state at each SOC analysed, Dirichlet boundary conditions

of concentration were implemented at the inlet and outlet pores.

Boundary conditions for current transport

Given the conditions of a perfect mix due to the mixed-cell method, the potentials

in the electrolyte (φe) represent the potential at the electrode-electrolyte inter-

face. Therefore, a distribution of potentials exists at each state of charge during

operation. In order to implement a simulation under galvanostatic conditions to

compare against the data gathered by You et al.1, the potential at one boundary

of the PNM was set constant, while the potential at the other boundary was calcu-

lated iteratively until the calculated external current density (Jext,calc) matched the

desired external current density (Jext). The calculated external current density is

derived from charge conservation in the network as:

Jext,calc =

∑Np
i=1 iBV,i

∑Np
i=1 SA,i

· AeL (3.29)

where SA,i is the surface area of pore i, jBV,i is the current at pore i, Ae is

the specific surface area of the PNM and L is the electrode thickness or half-cell

width. The current at each pore obtained by the Butler-Volmer equation (equation

3.4) i.e. iBV must be equal to the current obtained due to transport of charged

species (equation 3.14) i.e. it ; thus, the calculation of the external current density

represents a secondary iteration that encompasses the primary iterative algorithm.

The steady-state solution of the pressure and flow fields converged in 4 s, and

the coupled charge and species transport distributions converged after 14 min for

each time-step in the simulation, using a single core of a HP workstation: Intel®

Xeon ® CPU E5-166-v3. The potential difference between the solid phase and the

electrolyte (i.e. φs – φe) represents the potential drop across the electrode active

surface. These values are estimated from the numerical algorithm and averaged

for all pores to obtain the electrode potential. The overpotential at each pore

is calculated with equation 3.8 based on the output data of the potentials and

concentration distributions and the equilibrium potentials.
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Figure 3.3: Plots showing graphical validation of cell discharge at 400A ·m2 com-

pared with literature results [55].

The results of the simulated electrode potentials of the negative half-cell of

a VRFB as a function of the SOC for an applied current density of 400 lA · m2

are shown in Fig. 3.3(a). Fig. 3.3(b) shows the averaged overpotentials of the

negative electrode at galvanostatic charge at 400A·m2. The results of the electrode

potentials and overpotentials estimated with the PNM approach are compared

with the 2D continuum model presented by You et al.1. The results of the 2D

continuum model had been previously validated with experimental data with a

1% error, making it reliable for validation purposes. Compared to those results,

the present PNM model returns an absolute average error of 3% for the half-cell

potentials and of 4% for the overpotentials.

3.7 Conclusions

In this work, a framework based on a pore-network model is introduced to simu-

late the coupled flow, mass and charge transport that occur within electrodes in

electrochemical devices. This work represents a bridge between volume-averaged

models that simulate the transport processes in a continuum space, and pore-scale

models which perform direct numerical simulations over X-CT reconstructed

images.

The main advantage of this model is its ability to visually represent the

concentration and current distributions inside the electrode within a low compu-

tational time. Although the hypothetical network generated in OpenPNM does
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not represent the real topology of the electrode, the pore-size distribution and

throat sizes are fitted to the estimated permeability and diffusivity of the real

electrode13. Therefore this approximation involves more microstructural data

than a continuum model where the grid spaces have the same size.

The proposed PNM framework is derived from and MCM approach and uses

an explicit Euler scheme for obtaining the transient concentration distributions as

a function of convection, diffusion, migration and electrochemical reaction. The

methodology was validated with a cubic hypothetical PNM built with OpenPNM

representing an anode with a specific surface area of 16, 200m−1. A comparison

between the steady-state electrode potential and overpotentials as a function of

SOC estimated with the PNM algorithm, and the results presented by You et al.1

show that the values predicted with the present model are consistent with the

values reported in the literature for continuum models and experimental results.

This proves that the PNM method is a computationally inexpensive pore-scale

model that involves microstructural details and is able to reproduce the same

results as a continuum model. To the author’s knowledge, this work constituted

the first one to introduce a PNM to analyse the coupled mass and charge transport

equations for a VRFB system.

One drawback of the model is that the idealisation of the microstructure could

lead to an over or under estimation of the real surface area. This can be miti-

gated by fitting the size of the pores to a surface area estimated experimentally.

Additionally, in this study, the method has been proved accurate by implementing

a hypothetical large cube of pores and throats. However, important conclusions

regarding the flow, species and current distribution can be obtained by imple-

menting this method over a PNM extracted from a real microstructure. This will

be analysed in the following chapter.
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Chapter 4

PNM implementation for

carbon-based VRFB electrodes

4.1 Abstract

A PNM was implemented over networks extracted from X-ray computed tomogra-

phy (X-CT) images of four samples of commercial porous carbon electrodes com-

monly used in RFBs: Toray 090, SGL29AA, Freudenberg and ELAT-H. The carbon

electrodes’ physical characteristics (pore-size distribution, permeability, porosity

and electroactive surface area) are discussed. The concentration distribution of

active species is examined considering solely the transient convective and diffu-

sive transport processes initially, and subsequently is compared to the concentra-

tion of active species when migration and reactive transport factors are included.

The results show non-uniformity in the concentration and pressure distributions

in the electrode when considering the pure convective/diffusive transport pro-

cesses. The migration and reactive processes are subsequently considered and are

shown to be influenced by the rate in which the convective/diffusive flow perme-

ates the electrode. A uniform steady decline in volume-averaged state of charge is

shown, followed by a pore-scale non-uniform current density and state of charge

distribution upon discharge. These results were obtained on a standard single

core workstation highlighting the benefits of using a computationally inexpensive

model.

98
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4.2 Background

Redox Flow Batteries (RFBs) are considered one the most compelling technolo-

gies for grid-scale energy storage. The unprecedented large-scale installation of

intermittent renewable sources has led to a growing need for high-capacity energy

storage systems (ESSs) as balancing mechanisms to stabilise the grid. Compared

to their conventional battery counterparts, RFBs offer several advantages. One of

their most attractive features is their unique ability to decouple energy and power.

The electrolytes containing active redox couples are stored in external tanks and

pumped into the cell stack when power is needed through an energy-conversion

cell stack.1

The inherent capabilities of RFBs have been effectively demonstrated, and

over the past years significant research has been focused on technological

improvements of these systems. Nevertheless, the cost of development of RFBs

needs to be decreased in order the meet the aggressive cost targets required

for their widespread commercialisation.2,3 Two pathways have been proposed

for achieving the desired cost reduction. The most obvious one involves im-

plementing lower-cost materials as active redox couple in electrolytes. The

second route requires improving the performance at stack level to develop higher

power systems and reduce polarisation losses.1 These improvements in RFBs

technologies require the design of better architectures and the optimisation of

electrode materials.4,5 Given that both activation and concentration polarisations

occur within the electrode, the design and optimisation of new configurations is

imperative.4.

In this context, carbon-based electrodes represent an ideal material for RFBs

due to their wide operating potential, high stability and low cost. Notwithstanding

these properties, an enhancement in the electrode structure at a micro or nano

scale could lead to an increase in stack power density due to improvements in the

effective surface area4. Moreover, an alteration in the electrode properties (e.g.

permeability, pore size, and thickness), has a major influence in the overall power

density or efficiency of the RFB. To date, little work has focused on analysing

the effect of real electrode morphology in the electrochemical performance of
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the cell. Therefore, further research is necessary to understand the effects of

micro/nano structure on the RFB performance and degradation mechanisms, in

order to design more optimised structures.4

An optimisation of the current electrodes for RFBs systems can only be

achieved through a deep understanding of the underlying multi-physical pro-

cesses within the cell. Furthermore, optimisation of current technologies based on

experimental trial and error is expensive, time consuming and prone to external

errors. For this reason it has become of high interest to employ mathematical

modelling and simulation techniques for developing new optimised battery

systems.

Most of the numerical models of RFBs reported to date are macroscopic mod-

els, in which the porous electrode is treated as a continuum for modelling, and

electrode properties such as porosity and tortuosity are volume averaged. Plus,

the active surface area for electrochemical reactions is not based on measurements

of the actual electrode geometry6,7. As a consequence, most macroscopic models

cannot be used to examine the precise roles of the electrode microstructure on

the overall performance of RFBs. The main reason for “over-simplifying” the

electrode microstructure in current models is because electrodes are composed of

porous materials. Therefore, modelling flow and transport processes within these

systems is mathematically complex and computationally expensive.

The objective of this section is the implementation of a computationally inex-

pensive PNM over a set of real carbon electrodes to correlate the electrode mor-

phology with the performance VRFB. This model would be based on the physical

and functioning principles that theoretically determine the performance of batter-

ies. This work aims to provide an understanding of the transport processes that

limit the cell performance, especially mass transport and electrochemical reaction

that occur simultaneously at the electrode.
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4.3 Pore Network Model implementation for Toray

090 from XCT

A pore network model for electrochemical systems has been previously developed

and validated for a VRFB anode.8 This numerical algorithm is implemented over a

pore network extracted from a segmented X-CT image of Toray 090 carbon paper

sample, typically used as electrode in VRFBs. For this study, the carbon paper was

imaged using a laboratory X-ray computed tomography system (Nanotom 180 S,

GE Phoenix, USA). The technique applied for segmentation and reconstruction of

the image is explained elsewhere9, but in short, a 3D median smoothing filter was

applied to the reconstructed volume to reduce the image noise. Threshold-based

image segmentation of the volume was then performed to isolate the carbon fibres

from the pore/electrolyte phase, as shown in Figure 4.19. Characterisation of the

electrode in terms of physical size is shown in Table 4.1.

Figure 4.1: Segmented reconstructed image of Toray 090 from XCT data

The pore network of Toray 090 paper was extracted using Avizo software and

is based on the “Maximal Ball” algorithm.10 The pore network is comprised of

2928 pores and 8510 throats, with a pore size distribution shown in Figure 4.2.

The process of extracting the pore network from the XCT image is shown in Figure

4.3, where the segmented image is sectioned into porous regions, and from the

centre of such regions, the pores are grown.

To initialise the iterative pressure solver, each pore was set to Pi = 0. The

solution to the system of equations given by Eq. 3.1 provides the flow rate through
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Figure 4.2: Pore size distribution histogram representing the pore network ex-

tracted from an X-CT image of a Toray 090 sample with dimensions 441 × 215 ×
546µm.8

each throat. The sum of all input flows gives the total macroscopic flow rate of the

network (QT ). From Darcy’s law, the bulk permeability can be computed through

back-calculation with equation 4.1, in the largest and the smallest faces:

QT =
KA(Pin − Pout)

µL
(4.1)

where K corresponds to the permeability, A is the area normal to the flow

direction and L is the length parallel to the flow direction. A and L were

calculated from the XCT images.

Table 4.1: Toray 090 sample electrode dimensions.

Resolution
Voxels µm

0.65µm
x 678 441

y 330 215

z 840 546

In all the simulations performed in this work, the smallest and the largest faces

of the electrode were set as boundaries and the absolute permeabilities were calcu-

lated through both planes. The values of the calculated absolute permeabilities are
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Figure 4.3: Overview of pore network extraction and operation: (a) X-CT seg-

mented image, (b) pore fractions with inserted pore network, (c) standalone pore

network, (d–f) 3D example of simulation.8

Table 4.2: Permeability data (×1012m2) of a sample of Toray 090 calculated from

pore network model using different viscosities6,11, compared with literature12.

Plane Model

(µ = 4.928× 10−3 Pa s)11 (µ = 2.5× 10−3 Pa s)6

Smallest face 16.16 8.20

Largest face 11.44 5.80

Literature values based on Toray 09012

Experimental Model

Kx 15 14

Ky 9.0 9.5

reported in Table 4.2 with the two values of viscosity for the vanadium solution re-

ported on the literature.6,11 The estimated permeabilities using the pore-network

extracted from a XCT scan of Toray 090 were compared to the values reported by

Gostick et al.12, both experimental and modelled for a Toray 090 carbon paper. It

is shown that the values reported in the literature are similar and within the same

order of magnitude as the values calculated in this work. These results show that

the electrode topology determined by the pore-network extracted with Avizo rep-

resents the Toray 090 paper microstructure in terms of flow. The porosity, given

by Avizo was 68% and the specific surface area was calculated as 41062m−1.
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4.3.1 Boundary conditions

The transport of species defined in the previous section by equation 3.3 is

determined by the interplay between four main factors: convection, diffusion,

migration and electrochemical reaction. Each contribution is determined by

thermodynamic and kinetic properties of the electrolyte, as well as by geometric

parameters determined by the topology of the electrode. To understand the effect

of each contributing factor, they were analysed separately as follows: the effect

of the electrolyte permeation due to convection and diffusion were analysed first

as if the system was not electrochemically reactive. Following this, the additional

transient distribution of species due to migration and electrochemical reaction

were included.

An additional algorithm was developed to determine the boundary pores (i.e.

inlets and outlets) of the pore network extracted from the XCT image. The max-

imum length of XCT image in each dimension was calculated by measuring the

largest perpendicular distance between the two furthest-most pores (in each di-

mension). Using this, a virtual film spanning each face of the image, with a thick-

ness of 1% of the total thickness of the 3D image, was calculated as a threshold to

determine boundary pores from the other pores. If any given pore volume over-

lapped with this virtual film, it was taken to be a boundary inlet or outlet pore.

Boundary conditions for flow transport

Dirichlet boundary conditions of pressure were set at the inlet and outlet pores

to obtain the flow distribution through the throats in the network, as given by

equation 3.1. A total pressure drop of 10Pa was set across the network from the

inlet to the outlet pores.

Boundary conditions for mass transport

For the concentration distribution, Dirichlet boundary condition was established at

the inlet wall determined by the initial state of charge (SOC) of the inlet solution.

The SOC is defined as:



4.3. Pore Network Model implementation for Toray 090 from XCT 105

SOC =
CII

C0−
(4.2)

C in
II = C0− · SOC (4.3)

C in
III = C0− · (1− SOC) (4.4)

where CII corresponds to the concentration of V(II), C0− is the total concen-

tration of vanadium species in the electrolyte, C in
II and C in

III are the concentrations

of V(II) and V(III) respectively at the inlet boundary. A Newman condition of zero

diffusive flux was established ate the outlet wall. To implement an open boundary

to the system of irregularly distributed pores, the addition of a layer of dummy

pores was required. At the connection between the outlet pores and their respec-

tive dummy pores, the concentrations were set to be equal in order to achieve a

zero diffusive flux.

Boundary conditions for charge transport

Dirichlet boundaries of electrolyte potential at the inlet and outlet pores were im-

plemented. This is in order to set the boundary walls to be operating under poten-

tiostatic conditions. With the solution to the coupled mass and current equations,

the potential distribution at each pore were recalculated at every time-step in the

transient simulation.

4.3.2 Purely convective-diffusive transport

Figure 4.4 shows the steady-state pressure profile and flow distribution throughout

the network. The pressures at each pore from figure 4.4(a) are obtained by impos-

ing Dirichlet boundaries at the inlet and outlet pores, with a pressure difference

of 10Pa (i.e. Pin = 10Pa and Pout = 0Pa). Figure 4.4(b) shows the distribution of

flows through each of the throats. The solution of the pressure and flow profiles

is achieved in 6 s. By analysing the flow distribution though the throats, it can

be seen that the electrolyte flow is not uniformly distributed within the electrode,

leading to regions in which the flow rate is close to zero and regions where the

flow rate is maximum (i.e. 4.0× 10−13 m3s−1).

The irregularity in flow distribution across the electrode draws flow paths
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Figure 4.4: Decoupled steady-state (a) pressure, and; (b) flow distributions.8

through which the electrolyte will infiltrate the pores more rapidly. Such paths

of maximum flow rate (red throats) represent the regions where the convective

transport is dominant, rather than diffusion. On the other hand, the regions

where the convective flow is minimum (blue throats), the transport of species

would be dictated by the diffusive flux between pores. This is demonstrated by

the analysis of the permeation of electrolyte as a function of time, as shown in

Figure 4.5.

At time t = 0 (Fig. 4.5a), the concentration of vanadium species was close

to zero (i.e. CII(0) = 0.001molm−3) at every pore, except at the inlet pores,

where the concentration was set to C in
II (0) = 750molm−3 (corresponding to a

SOC of 50%). As the simulation proceeds, the electrolyte primarily permeates the

pores located along the path of maximum flow. Concentration changes due to

diffusive flow could only be noticed until the electrolyte had infiltrated the outlet

wall. The concentration in regions which until this point had not been permeated

with electrolyte, started to increase. The effect of an initially high convective

flow enhanced a subsequent diffusive flux, since a higher concentration gradient

between pores was imposed due to the convective flux. Despite the effect of both

convection and diffusion, some pores remained largely untouched throughout

the simulation. This nonuniform distribution of electrolyte has an impact on the

battery performance since it implies a non-uniform utilisation of the electrode.

These results are consistent with the work by Banerjee et al. which demonstrate

that the electrolyte permeates the electrode pores in a nonuniform way, drawing
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flow paths that are dependent on the pore’s connectivity and therefore the

electrode internal structure.13

Figure 4.5: Permeation of V(II) through a PNM representing a section of Toray

090. The 3D images proceed in 1 s steps starting from 0 s (a).8

4.3.3 Convection, diffusion, migration and electrochemical re-

action

This section implements the modified PNM equation to analyse the distribution

of concentration and current density due to four contributing factors, namely

convection, diffusion, migration and electrochemical reaction. The model is

implemented over the pore-network extracted from Toray 090 carbon paper

sample. The steady-state simulation of the pressure and flow distributions

converged after 9 s, while the coupled charge and species transport distributions

converged after 16min for each time-step in the simulation, using a single core of
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a HP workstation: Intel® Xeon® CPU E5-166-v3.

Figure 4.6: (a) Current density; and, (b) state of charge variation with time at

various electrode potential drops.8

Figure 4.6 shows the volume averaged values of current density in the anode

under potentiostatic discharge at different averaged electrode potentials. The av-

eraged electrode potentials are defined according to Qiu et al.7 as the potential

drop across the active surface area (φs–φe) at each pore in the simulation, as given

by the following equation:

∆φ =
1

np

np
∑

i

(φs − φe,i) (4.5)

The simulations were run at four different values of average electrode poten-

tial difference across the solid–electrolyte interface: −0.15V, −0.19V, −0.21V and

−0.24V. These values are independent of concentration and therefore equilibrium

potential, Ea.

By analysing figure 4.6 it is concluded that lower current densities were

obtained at more negative electrode potentials (e.g. −0.24V) - which implies

lower overpotentials - and higher current densities at more positive electrode

potentials (e.g. −0.15V) - i.e. higher overpotentials. At more positive electrode

potentials, a more significant drop in current density leads to a faster consumption

of species. This is graphically represented in figure 4.6(b) where the SOC is

plotted for different electrode potentials. For the most positive electrode potential
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(−0.15V) – highest overpotentials – the electrode is discharged from 50% to

25% in 2.5 s, while at the most negative electrode potential (−0.24V) - lowest

overpotentials - the electrode only discharges 2.5% (to 47.5%) in the same

amount of time. This volume-averaged analysis offers insight into the correlated

parameters that play a key role on the cell performance (i.e. current density, cell

potential and average SOC) at a macroscopic level. However, pore-scale results

offer much more detail about species and current transport in VRFBs compared to

volume-averaged methods.

Figure 4.7: Current distribution at various electrode potentials (a) −0.24V, (b)

−0.21V, (c) −0.19V and (d) −0.15V (at 50% state of charge).8

An analysis of the current distribution at a pore-scale is presented in figure

4.7. The electrode is at 50% SOC under potentiostatic discharge at different

electrode potentials (−0.15V, −0.19V, −0.21V and −0.24V). In the same way

as the volume-averaged results, higher currents are obtained at more positive

electrode potentials - higher overpotentials -; however, the pore-scale results

obtained with the PNM simulation show a non-uniform distribution of current

throughout the electrode, which agrees with the LBM models by Qiu et al.6. This
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leads to the existence of regions within the electrode that are more reactive than

others and contribute to electrode performance to a greater extent.

Figure 4.8 shows a comparison between electrolyte concentration (under a

purely convective-diffusive regime) and absolute current at each pore. By com-

paring the location of pores where the absolute current is higher (Fig. 4.8a) with

the concentration distribution in a purely convective-diffusive regime (Fig. 4.8b),

it is seen that the ‘path’ of large pores (i.e. higher absolute current) correlates with

the regions that are permeated by electrolyte at a higher rate. This analysis shows

the benefits of implementing a pore-scale model such as the PNM approach. A

PNM provides insight into the local correlation of transport parameters (i.e. pore

size, current and concentration distributions) at a pore-scale level, while volume

averaged models only consider changes in the current and concentration distribu-

tions along the length of the cell. The results presented in this work with a PNM

approach reinforce the findings of Qiu et al.6 which prove that the current density

is non-uniformly distributed along the three-dimensional space.

Figure 4.8: (a) Current distribution (at −0.21V electrode potential and state of

charge 50%), and; (b) concentration (purely convective-diffusive regime) distri-

bution after 4 s.8

A further analysis on the transient distribution of vanadium species is per-

formed in which the concentration is influenced by convective, diffusive, reactive

and migration transport conditions. The concentration transient concentration

distribution for a potentiostatic discharge with an electrode potential of −0.21V

and an initial SOC of 90% is shown in figure 4.9. This SOC corresponds

to an initial concentration of species in all pores of CII(0) = 1350molm−3.
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The inlet concentration is constant throughout the simulation with a value of

C in
II (0) = 1350molm−3 corresponding to 90% SOC. As expected, it is shown that

the concentration profile of V(II) is not uniform within the electrode which leads

to a non-uniform depletion of vanadium species across the electrode during dis-

charge. It is therefore evident that a volume averaged value of the electrode SOC

only poorly resembles the actual concentration distribution of species within the

cell. This can be graphically shown by comparing figure 4.6(b) (volume-averaged

results) with 4.9 (pore-scale results). At 4 s, the volume-averaged results give

a SOC of 67.52%, while the pore-scale 3D results show areas in which the SOC

significantly differs from this value.

Figure 4.9: Transient concentration distribution with electrochemical reaction at

an electrode potential of −0.21V for Toray 090. The 3D images proceed in 1 s

steps starting from 0 s (a) to 8 s (f).8

Figure 4.10 represents the transient current density distribution across the

electrode for a potentiostatic discharge with electrode potential of −0.21V and
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an initial SOC of 90%. By comparing figure 4.9(a) and figure 4.10(a), it is

clearly shown that when the concentration of species is constant in the electrode,

the gradient of the current density across the electrode is determined by the

potential difference in the electrolyte from the inlet to the outlet. This result

is in accordance with the MCM equation for transport of current (i.e. equation

3.14), since it implies that the second term on the RHS, corresponding to the

current transport due to a concentration gradient, is zero. As the concentration of

species changes with time due to convection, migration, reaction and diffusion,

the second term of equation 3.14 presents a significant influence on the current

density distribution. This shows the interplay between various factors occurring

at a pore-scale level which significantly influence the cell performance.

Figure 4.10: Transient current density distribution with electrochemical reaction

with electrode potential of −0.21V. The 3D images proceed in 1 s steps starting

from 0 s (a) to 8 s (f).8
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It is shown from figures 4.9 and 4.10 that the pore size distribution is directly

correlated to the starvation of electrolyte in certain pores, leading to a non-even

rate of discharge and current density distribution throughout the electrode.

This causes the existence of areas within the electrode which are more utilised

than others and therefore contribute to a higher extent to the fast discharge

of the battery. A more direct comparison can be made by analysing the results

of a transient concentration change when the system is under pure convective-

diffusive transport and when the system is influenced by electrophoretic and

reactive transport, as shown in figure 4.11. It is shown that the regions where

convective flow is dominant (i.e. rapidly permeated by electrolyte) result in a

lower rate of V(II) depletion than the regions where the electrolyte permeation

is slower. As previously analysed, these regions also correspond to the sites

with higher values of transfer current (figure 4.8). This can be rationalised

due to a faster and continuous replenishment of fresh electrolyte into the

pores with a higher convective flux. This fast replenishment of species allows

a constant consumption of new V(II), thus enhancing the electrochemical reaction.

In an analogous way, the pores that present a limited convective transport

(highlighted by the green rings in figure 4.11(a) are also the ones that present

a faster rate of depletion of vanadium species. This implies that the sites where

the flow is minimum are discharged at a higher rate than the sites with high con-

vective flow. The existence of these clusters of pores where limited convective

transport is dominant leads to a faster rate of discharge of the cell as a whole. As

the concentration of V(II) in these pores tends to zero, the effect of diffusion be-

comes dominant: the concentration gradient between two pores of very different

concentration increases and therefore becomes more significant than the convec-

tive or migration terms. This effect of the non-uniform distribution of species on

the depletion of vanadium species could be interpreted as one of the factors that

influence a fast discharge in RFB electrodes.
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Figure 4.11: Comparison of concentration distribution at 5 s in (a) a purely

convective-diffusive transport system and, (b) a convective-diffusive transport sys-

tem with electrochemical migration. Green rings highlight the regions where con-

vective flow is limited.8

4.3.4 Comparison of pore-scale models in terms of computa-

tional expense

The objective of this work was to introduce a pore-scale model that can provide in-

sights into the transport processes within the microsctructure while being compu-

tationally inexpensive. Thus, an interesting comparison can be drawn in terms of

computational expense between the model presented in this work and the model

introduced by Qiu et al.6,7. The first sample analysed by Qiu et al.6 is a geometric

subset from an original master X-CT structure. The subset occupies a volume of

dimensions 600 × 150 × 600µm3, and a specific surface area of 39, 700m−1. Qiu

et al.6 implement an LBM to solve the flow field within the electrolyte, and a

fully implicit 3D FVM to solve the coupled charge and species transport equations

in the pore-space domain. The authors implement the LBM and FVM methods in

FORTRAN 90 using the Message Passing Interface for parallel processing. The sim-

ulation for this subset of the XCT structure is reported to converge in 20 h using a

64-core computer running on the TeraGrid. The second work presented by Qiu et

al.7 analyses three different electrode structures reconstructed from X-CT images.

All structures occupy a volume of dimensions 900×135×450µm3, and specific sur-

face areas of 37, 500m−1, 47, 700m−1 and 69, 700m−1. Analogous to the first case6,

LBM and FVM were implemented to solve the flow field and coupled charge and

species transport within the electrolyte respectively. All simulations are reported

to converge within 20 h using a 112-core cluster running on the NSF XSEDE sys-

tem7. The PNM approach presented in this work analyses a network extracted
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from X-CT images with dimensions reported in Table 3 and specific surface area

of 41, 062m−1. The steady-state flow equations were solved with a successive over

relaxation method and the transient coupled charge and species transport were

solved with an explicit Euler scheme. The flow equations converged in 9 s and the

species transport in 16min for each time-step outputted from the simulation. The

system was solved using a single core of a HP workstation: Intel® Xeon® CPU

E5-166-v3.

4.4 Case studies: implementation of PNM for SGL

29AA, Freudenberg, ELAT-H

The analysis performed in section 4.3 proved the extension of the pore network

modelling framework introduced in chapter 3 for a real microstructure in which

the network is extracted from an XCT image. In order to analyse the effect of

the electrode microstructure in the electrolyte distribution, this method was im-

plemented in various carbon electrodes commonly used for RFBs. The imaging

was performed using an X-ray computed tomography system (Nanotom 180 S,

GE Phoenix, USA) with a resolution based on each system, and the segmentation

techniques are the same as described in section 4.39, and the pore networks were

extracted using the “Maximal Ball” algorithm.10

4.4.1 SGL29AA

The dimensions and image resolution of the electrode SGL29AA is shown in table

4.3, and a segmented image is shown in figure 4.12. The pore network was

extracted from the XCT image obtained using an X-ray computed tomography

system (Nanotom 180 S, GE Phoenix, USA) at a resolution of 1.20µm per voxel.

The pore network consists of 1577 pores and 4801 throats, and the process of

extracting the PNM is shown in figure 4.13.

An initial simulation is performed to obtain the flow distribution throughout

the network. A pressure drop of ∆P = 10Pa was established by imposing Dirichlet

boundaries at the inlet and outlet pores (i.e. Pin = 10 Pa and Pout = 0 Pa). The

pressure and flow profiles where solved in 5 s. To solve the mass transport
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Figure 4.12: Segmented reconstructed image of SGL29AA

Table 4.3: SGL29AA sample electrode dimensions.

Resolution
Voxels µm

1.20µm
x 776 931

y 162 194

z 616 739

balance, a Dirichlet boundary was established at the inlet pores determined by

the initial SOC of the inlet solution, as defined by equations 4.2, 4.3 and 4.4.

A Newman boundary condition of zero flux was established at the outlet wall,

where an additional layer of dummy pores were implemented to impose this

boundary. In order to obtain the distribution of charge and potentials throughout

the network, Dirichlet boundaries of electrolyte potential at the inlet and outlet

pores were implemented. This implies that the simulations were performed

under potentiostatic conditions, and the potential distribution at each pore is

recalculated at every time-step.

Based on the pressure and flow profiles, a purely diffusive-convective transient

simulation was performed to analyse the effect of the microstructure in these

transport processes. At time t = 0, the concentration of vanadium species was

close to zero (i.e. CII(0) = 0.001molm−3) in all pores expect at the inlet pores,

where the concentration was set to C in
II (0) = 750molm−3 corresponding to a SOC

of 50%. The inlet concentration is constant at every time-step to guarantee a con-

stant replenishment of active species (V(II)). Figure 4.14 shows the concentration

profiles from t = 0 s to t = 8 s. In a similar way as with Toray, it can be seen that

the permeation of electrolyte is non-uniform and so the concentration profiles
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Figure 4.13: Overview of pore network extraction of SGL29AA: (a) X-CT seg-

mented image of SGL, (b) pore fractions in segmented image obtained using

Avizo software, (c) standalone pore network extracted using the Maximal Ball

algorithm10.

at different time-steps are diverse. A flow path is drawn where the convective

flow is predominant and the permeation of electrolyte is more rapid, as can be

seen in figure 4.14 (e), where the lower part of the electrode is fully permeated

(red), while the upper part has a low concentration of active species (blue). By

analysing the upper left corner of the electrode it is seen that, despite being close

to the inlet, the area does not get permeated with electrolyte. This shows the

existence of dead zones where the electrode is non-utilised since the concentration

of active species in the pores remains unchanged throughout the simulation.

Based on this result, it can be concluded that the estimated total surface area

obtained experimentally or through imaging techniques does not correspond to

the actual surface area used during operation.

An additional analysis of the transient distribution of species considering

all four transport processes is performed: convection, diffusion, migration

and reaction. An initial concentration of species in all pores is established

as CII(0) = 1350mol m−3 corresponding to an initial SOC of 90%. The

inlet concentration is constant throughout the simulation, with a value of

C in
II (0) = 1350mol m−3, and the cell is operated under potentiostatic discharge

with and electrode potential of −0.21V. Figure 4.15 shows the discharge process

of the cell during 8 s of operation. As expected, the distribution of species is

non-uniform across the electrode. During the first seconds of the discharge

process (i.e. figure 4.15 (a)-(d)), the transient change of species appears to be

uniform, reaching a concentration of 1200mol m−3 in almost all pores. However,

as the simulation continues, certain zones, which coincide with the previously
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Figure 4.14: Permeation of V(II) through a PNM representing a section of

SGL29AA. The 3D images proceed in 1 s steps starting from 0 s (a).

called dead zones, appear to discharge at a much faster rate than the rest of the

pores. This indicates that the constant replenishment of species does not reach

these areas, leading to a fast consumption of V(II) without replacement. It is

clear that some areas initially discharge from 90% to 86% and stay constant

throughout the rest of the simulation. These areas also correspond to the pores

that conform the predominant path of species permeation. If this 86% stays

constant, it would be expected that the battery discharge would achieve a balance

between consumption/replenishment of species. Nonetheless, the existence of

regions that discharge down to 45% in 8 s due to starvation of electrolyte lead to

an overall discharge of the whole system. This analysis shows that major transport

limitations due to the non-uniform distribution of electrolyte significantly impacts

the performance of the overall cell performance. Based on this, it would be

reasonable to hypothesise that an improvement in the electrode design can

lead to improvements in the cell performance by reducing the mass transport

limitations that occur at a pore-scale level.
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Figure 4.15: Transient concentration distribution with electrochemical reaction

at an electrode potential of −0.21V for SGL29AA. The 3D images proceed in 1 s

steps starting from 0 s(a) to 8 s(f)

These results are similar to the ones obtained for Toray, where the presence of

non-utilised zones corresponded also to the areas where a fast discharge occurred,

leading to an overall reduction in performance. This can be rationalised as an

effect of the random distribution of the fibres along all directions. This random

distribution could lead to the existence of preferred flow paths where convective

transport is predominant, (mostly dominated by connection of large pores) or

the presence of pores with low connectivity. In this respect, other carbon-based

electrodes have been explored which contain a more uniform distribution of pores

sizes, or an alignment in the fibre distribution. Some of these widely used carbon-

based electrodes are Freudenberg and carbon cloths, which will be analaysed in

the next sub-sections.
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4.4.2 Freudenberg

The characterisation of the carbon-based electrode Freudenberg (FBH3) is shown

in table 4.4, and a segmented image is shown in figure 4.16.The XCT image

was obtained using an X-ray computed tomography system (Nanotom 180 S, GE

Phoenix, USA) at a resolution of 0.60µm per voxel. The process of extracting the

PNM is shown in figure 4.17, as long as the resulting pore network consisting of

2470 pores and 9890 throats.

Figure 4.16: Segmented reconstructed image of Freudenberg electrode

An analysis of the transport of species was performed first for a purely

convective-diffusive regime and then for an additional electrophoretic and reac-

tive transport. The boundary conditions for flow, mass and charge transport were

the same as those implemented for Toray and SGL. To calculate the pressure and

flow profiles, a pressure drop of ∆P = 10Pa was imposed across the electrode,

with Dirichlet boundaries of Pin = 10Pa and Pout = 0Pa.

Figure 4.17: Overview of pore network extraction of Freudenberg: (a) X-CT seg-

mented image, (b) pore fractions in segmented image, (c) standalone pore net-

work
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Table 4.4: Freudenberg sample electrode dimensions.

Resolution
Voxels µm

0.60µm
x 338 203

y 971 583

z 219 131

The results of a purely convective-diffusive transport are shown in figure 4.18.

An initial concentration of species of CII(0) = 0.001mol m−3 was imposed over all

pores except at the inlet, where the concentration was set to C in
II (0) = 750mol m−3,

corresponding to a SOC of 50%, and was kept constant throughout the transient

simulation. An analysis of the species transport shows that the electrode is

permeated with electrolyte in a uniform way. This result is contrary to the results

of the species distribution for Toray 090 and SGL29AA, where the existence of

preferred flow paths created areas where the electrode is not permeated. In the

case of Freudenberg, the purely convective and diffusive flows allow the full

permeation of all pores after 8 s of simulation. It can be rationalised that a more

uniform distribution is the result of a higher interconnectivity between pores and

a more uniform distribution of the pores sizes. The effect of directionality fibre

alignment is believed to also affect the uniformity of the electrolyte distribution;

however in the case of Freudenberg the fibres appear to be randomly distributed.

A comparison of the transport processes within the electrode between Toray,

SGL and Freudenberg prove the importance of the electrode microstructure in

the distribution of active species during operation, which can either lead to

a uniform distribution of species, or to the existence of starvation zones that

significantly reduce the performance. Furthermore, it is seen that in the case of

Freudenberg, the utilisation of the electrode is almost complete, which implies

that the estimated active surface area through imaging techniques corresponds to

the actual surface area used for the charge transfer reaction.

A further analysis is made to incorporate the additional electrophoretic

and reactive terms into the transient simulation. An initial concentration of

CII(0) = 1350mol m−3 is established in all pores, which corresponds to an

initial SOC of 90% before discharge. The cell is discharged under potentiostatic
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Figure 4.18: Permeation of V(II) through a PNM representing a section of

Freudenberg. The 3D images proceed in 1 s steps starting from 0 s (a).

conditions at −0.21V. The concentration of species at the inlet pores is constant

and is set to C in
II (0) = 1350mol m−3. Figure 4.19 shows the results of the transient

distribution of species considering all four transport processes. Analogous to the

case of the purely convective-diffusive transport, the consumption of species is

uniform throughout the simulation, which indicates that no dead zones exist where

the electrolyte depletion is caused by starvation. Nonetheless, it can be seen that

as time progresses, the right-most section of the electrode (i.e. furthest from the

inlet) starts to be depleted of electrolyte until 8 s when the SOC reaches 64%.

This indicates that the rate of consumption of species is slower than the rate of re-

plenishment of species. In other words, the decrease in the concentration of V(II)

is not caused by electrolyte starvation due to lack of pore-to-pore connectivity, but

instead is given due to a slow convective-diffusive-electrophoretic transport that

is not as fast as the rate of consumption of species at the active surface area. This

problem can be solved by increasing the inlet pressure (i.e. pumping power) in

order to guarantee that the regions far from the inlet are replenished with fresh

electrolyte faster or at an equilibrium with the consumption rate.

4.4.3 ELAT-H

In recent years, the use of carbon cloths in RFBs has become of interest to many

researchers. It has been shown experimentally that higher performances can be
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Figure 4.19: Transient concentration distribution with electrochemical reaction

at an electrode potential of −0.21V for Freudenberg. The 3D images proceed in

1 s steps starting from 0 s(a) to 8 s(f)

obtained using carbon cloths due to lower mass transport limitations.14 This has

been attributed to the woven patterns of cloths, which allows a more uniform

distribution of species throughout the electrode and thus higher utilisation. With

the purpose of analysing the effect of the microstructure in the distribution of

species, a PNM is implemented over the extracted pore network from an XCT

image of a carbon cloth ELAT-H.

The XCT image was obtained using an X-ray computed tomography system

(Nanotom 180 S, GE Phoenix, USA) at a resolution of 1.20µm per voxel. A seg-

mented view of the XCT image of ELAT-H is shown in figure 4.20, and the di-

mensions and image resolution of the electrode subsample are shown in table 4.5.

The pore network extracted from the XCT image consists of 1389 pores and 8382

throats, as can be seen in figure 4.21 that shows the process of extracting a PNM.

Table 4.5: ELAT-H sample electrode dimensions.

Resolution
Voxels µm

1.20µm
x 243 291

y 1391 1669

z 1256 1507
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Figure 4.20: Segmented reconstructed image of ELAT-H carbon cloth

Figure 4.21: Overview of pore network extraction of ELAT-H: (a) X-CT segmented

image, (b) pore fractions in segmented image, (c) standalone pore network

The flow and pressure profiles were estimated by imposing Dirichlet boundary

conditions of pressure at the inlet and outlet pores of the electrode: Pin = 10 Pa

and Pout = 0Pa. For the mass transport simulation, a Dirichlet boundary was

established at the inlet pores based on the initial SOC of the inlet solution, as

defined by equations 4.2, 4.3 and 4.4. For the outlet pores, a Newman boundary

condition of zero flux was established, where the implementation of dummy

pores was used to impose this boundary. The simulations were performed under

potentiostatic conditions with Dirichlet boundaries of electrolyte potential at the

inlet and outlet pores.

An initial purely diffusive-convective transient simulation was performed for

8 s, as shown in figure 4.22. At time t = 0 the concentration in all pores was set

close to zero (i.e. CII(0) = 0.001mol m−3) except at the inlet pores, where the

concentration corresponded to a 50% SOC, equivalent to C in
II (0) = 750mol m−3.

The concentration at the inlet pores was kept constant throughout the simulation

to ensure a constant replenishment of species. By analysing figure 4.22, it can

be seen that during the first steps of the simulation (b-c) a preferred flow path
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is evident, corresponding to a straight path that connects the largest pores.

However, as the simulation continues, the permeation of electrolyte becomes

consistent throughout the electrode, leading to a complete permeation after 8 s.

The presence of straight flow paths is a direct consequence of the alignment of

pores due to the directionality of the fibres, which is proper of carbon cloths as

opposed to other type of carbon based electrodes where the fibre alignment is

random (e.g. Toray and SGL).

Figure 4.22: Transient concentration distribution with electrochemical reaction

at an electrode potential of −0.21V for ELAT-H. The 3D images proceed in 1 s steps

starting from 0 s(a) to 8 s(f)

It has been demonstrated in previous works that the permeability of carbon

cloths compared to carbon papers is significantly higher14,15. This can be quali-

tatively proved by comparing the flow distribution of ELAT-H (figure 4.22) with

the flow distribution of SGL (figure 4.14) and Toray 4.5. In ELAT-H, the fast

permeation of all pores in the network due to an incoming convective flux implies

a high permeability in the microstructure, while in the case of Toray and SGL, the
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electrolyte permeates only the preferred flow paths due to a convective flux. The

rest of the pores are then slowly replenished through a diffusive flux given by a

concentration gradient between pores.

To further comprehend the effect of the microstructure in the transport pro-

cesses within the electrode, additional terms for migration and reaction were in-

volved in the transient simulation. An initial concentration of CII = 1350mol m−3

was established in all pores, corresponding to an initial SOC of 90%. For the inlet

pores, the concentration was set to C in
II = 1350mol m−3 and was kept constant for

every time-step in the simulation to ensure a continuous replenishment of species

to the pore network. Figure 4.23 shows the results of the transient potentiostatic

discharge at an electrode potential of −21V for 8 s. The results of the simulation

show a uniform discharge where most pores are between 85% and 90% SOC af-

ter 8 s. The uniformity of the electrolyte distribution in the whole electrode due

to a high permeability and a straight pore alignment avoids the existence of ag-

glomerates of pores where the transport limitations are predominant. This implies

that no regions are deprived of electrolyte replenishment due to lack of inter-

pore connectivity, and therefore the previously seen zones of fast discharge due

to electrolyte starvation do not exist in this type of electrode. Additionally it can

be seen that the whole active surface area of the electrode is uniformly utilised

due to the high permeability of carbon cloths. Based on these results, it is shown

that the microstructure of the cloth is beneficial for the cell performance since it

enhances a uniform distribution of electrolyte and therefore a constant replenish-

ment of species. A comparison between the carbon cloth and the carbon papers

(i.e. SGL and Toray) shows that the presence of starvation zones in the carbon

papers reduce the overall SOC of the electrodes, which is a main limitation in the

cell performance. These findings are relevant for the design of RFBs since it is

shown that the choice of electrode significantly impacts the battery performance

due to the transport processes that occur within the electrode microstructure.

4.5 Conclusions

This work extended the implementation of a previously introduced framework

based on a pore-network model to simulate the coupled flow, species and charge
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Figure 4.23: Transient concentration distribution with electrochemical reaction

at an electrode potential of −0.21V for ELAT-H. The 3D images proceed in 1 s steps

starting from 0 s(a) to 8 s(f)

transport that occur within electrodes in electrochemical devices. The algorithm

was implemented to simulate the transport processes in a VRFB anode, and

was used over pore-networks extracted from XCT data of three carbon-based

electrodes: Toray 090, SGL 29AA, Freudenberg and ELAT-H cloth. The results

show that the pore-size distribution representing the electrode void space is

directly related to the flow, concentration and current distribution within the

network. In cases where the diversity of pore sizes is wider, such as Toray

and SGL, it can be seen that the flow draws preferred paths that connect the

largest pores across the electrode length. As a counterpart of these paths where

convection is predominant, the flow profiles show the existence of routes within

the electrode through which the convective flow of electrolyte is minimum. These

areas are therefore mass transport limited as the movement of species is almost

purely diffusive. Since the pores on these routes are not constantly replenished

with fresh electrolyte, they will discharge at a faster rate than the pores on
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routes with high convective flow. Contrary to this scenario, Freudenberg and

ELAT-H present a uniform convective flow throughout the whole network, which

prevents the existence of mass-transport-limited agglomerates of pores. In the

case of Freudenberg, this uniformity in the electrolyte distribution is given by the

distribution of pores of similar sizes, while in the case of ELAT-H, this is a result of

the fibre alignment proper of carbon cloths.14,15

An analysis of the concentration distribution under convection, diffusion,

migration and reaction shows that, as expected, for SGL and Toray, the concen-

tration is not uniform throughout the network, leading to areas in which the SOC

is almost half of its initial state (i.e. 90%) In the case of ELAT-H, it is seen that

the electrode discharges at the same rate for all regions, while for Freudenberg,

the electrode discharge is affected by the rate of depletion being faster in areas

further from the inlet but not isolated due to limitations in inter-pore connectivity.

This analysis proves the advantage of using a pore-scale model over a continuous

volume-averaged one for representing more accurately the effects of transport

processes in electrode utilisation. This leads to two major conclusions: (a) the

SOC is not uniform across the electrode and dependent on the topology of the

pore distribution in the microstructure, and; (b) the effect of mass-transport

limited areas in the electrode leads to a faster discharge. Based on this, it is

reasonable to conclude that an analysis of the effect of electrode microstructure

in mass transport processes is crucial for the design of RFBs with improved

performance. These results represent the first visual showcase of how regions

limited by low convective flow affect the rate of discharge in an electrode.

In terms of computational expense, the results show that the framework

presented in this work based on a PNM approach is significantly less expensive

than the previous works presented by Qiu et al. which use a LBM coupled with

a FVM6,7. The PNM approach converges within 16 min on a standard single

core workstation, while the LBM-FVM simulations converge in 20 h running on a

cluster. This represents a significant advantage of the present model over existing

models since it has the ability to simulate the coupled flow, species and charge

transport distributions at a pore-scale within the electrode without requiring a

high processing power.
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It must be emphasised that the segmented images of Toray 090, SGL29AA,

Freudenberg and ELAT-H used in this work do not represent a REV of the whole

electrode. A REV analysis falls beyond the purpose of this work. The purpose

of using XCT images is to show the capabilities of the model when implemented

in a real system. Future work should analyse the effect of different flow rates

(i.e. pressure drops) in the electrode potential, current distribution and consump-

tion of species. Additionally, an interesting future step should seek to couple this

framework with a continuum model of different flow channel configurations and

eventually represent a micro/macro model of the full cell.
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Chapter 5

Generative Adversarial Networks for

the reconstruction of

three-dimensional multi-phase

electrode microstructure

5.1 Abstract

The generation of multiphase porous electrode microstructures is a critical step

in the optimisation of electrochemical energy storage devices. This work imple-

ments a deep convolutional generative adversarial network (DC-GAN) for gen-

erating realistic n-phase microstructural data. The same network architecture is

successfully applied to two very different three-phase microstructures: A lithium-

ion battery cathode and a solid oxide fuel cell anode. A comparison between the

real and synthetic data is performed in terms of the morphological properties (vol-

ume fraction, specific surface area, triple-phase boundary) and transport proper-

ties (relative diffusivity), as well as the two-point correlation function. The results

show excellent agreement between datasets and they are also visually indistin-

guishable. By modifying the input to the generator, we show that it is possible to

generate microstructure with periodic boundaries in all three directions. This has

the potential to significantly reduce the simulated volume required to be consid-

ered “representative” and therefore massively reduce the computational cost of the

132
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electrochemical simulations necessary to predict the performance of a particular

microstructure during optimisation.

5.2 Background

Porous multiphase materials are widely studied throughout a variety of engi-

neering disciplines, for instance, the distribution of precious metal catalysts on

porous supports; the structure of metallic phases and defects in high-performance

alloys; the arrangement of sand, organic matter, and water in soil science; and

the distribution of calcium, collagen and blood vessels in bone.1–3 Therefore

understanding their microstructural and geometrical properties is of great interest

to many researchers. In electrochemistry, electrodes constitute one of the most

important components since they are the sites where the main transport and reac-

tive processes occur. Whether considering batteries or fuel cells, these electrodes

are porous materials to allow a maximum surface area and contain percolating

paths to enhance the transport of both electrons and ions; however, their design

also requires a solid matrix strong enough to sustain the mechanical integrity of

the material.4,5 Due to the complexity of these electrodes, their microstructure

significantly impacts their performance and therefore their morphological optimi-

sation is vital for developing the next generation of energy storage technologies.6

Recent improvements in 3D imaging techniques such as X-ray computed

tomography (XCT) have allowed researchers to view the microstructure of

porous materials at sufficient resolution to extract relevant metrics7–10. However,

a variety of challenges remain, including how to extract the key metrics or

“essence” of an observed microstructural dataset such that synthetic volumes with

equivalent properties can be generated, and how to modify specific attributes of

this microstructural data without compromising its overall resemblance to the

real material. A wide variety of methods that consist of generating synthetic mi-

crostructure by numerical means have been developed to solve these challenges.6

Quiblier et al. introduced a statistical method based on simulation annealing

to reconstruct synthetic three-dimensional porous media based on a two-point

correlation function.11 This statistical method was established as basis for future

works: Torquato et al. implemented a stochastic approach based on the n-point



5.2. Background 134

correlation functions for generating reconstructions of heterogeneous materi-

als;12–16 Jiao et al.17,18 presented an isotropy-preserving algorithm to generate

realisations of materials from their two-point correlation functions (TPCF). Based

on these previous works, the most widely used approach for reconstruction of

microstructure implements simulated annealing methods through the calculation

of the TPCF.2,19–24.

In the area of energy materials, interest has recently surged for generating

synthetic microstructure in order to aid the design of optimised electrodes.

The three-phase nature of most electrochemical materials adds an extra level

of complexity to their generation compared to two-phase materials. A first

approach was introduced by Suzue et al.20, following the work of Quiblier et al.

, and implemented a TPCF from a two-dimensional phase map to reconstruct

a three-dimensional microstructure of a porous composite anode. Baniassadi

et al.25 extended this method by adding a combined Monte Carlo simulation

with a kinetic growth model to generate three-phase realisations of a SOFC

electrode. Parallel to these statistical methods, other authors have introduced

algorithms for the synthetic generation of porous electrodes based on mimicking

the experimental fabrication process. A stochastic algorithm based on the process

of nucleation and grain growth was developed by Siddique et al.26 for recon-

structing a three-dimensional fuel cell catalyst layer. Siddique et al. extended

their work and implemented it for the reconstruction of a three-dimensional

LiFePO4 cathode.27 A commonly used object-based model for representing the

microstructure of SOFC electrodes consist on random packing of initial “seeds”,

usually spheres, followed by their growth and expansion of to simulate the

sintering process.28–31 Moussaoui et al.6 implement a combined model based

on sphere packing and truncated Gaussian random field to generate synthetic

SOFC electrodes. Additional authors have implemented plurigaussian random

fields to model the three-phase microstructure of SOFC electrodes and establish

correlations between the microstructure and model parameters4,32,33.

In the area of Li-ion batteries, many authors have focused on developing mod-

els that can represent the carbon-binder domain (CBD) which is usually hard to

image with XCT techniques. Usseglio-Viretta et al. implemented a computational
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method to adhere a synthetic CBD over XCT three-dimensional images of the

NMC/pore phases34,35. Forouzan et al.36 introduced a particle-based simulation

coupled with a physics-based simulation that defines the fabrication process of

Li-ion electrodes, to superimpose CBD particles to the electrode microstructure.

Srivastava et al.37 also presented a physics-based dynamic model that simulated

the fabrication process of Li-ion electrodes. The growth of phases is determined

by controlling the adhesion of active material and CBD phases. The results of this

work proved to accurately predict the effect of the microstructure in transport

properties.

Recent work by Mosser et al.38,39 introduces a deep learning approach for

the stochastic generation of three-dimensional two-phase porous media. The

authors implement a Generative Adversarial Network (GANs)40 for the stochastic

reconstruction of three-dimensional microstructure of synthetic and natural

granular porous media. Li et al.41 extended this work and implemented GANs

for the generation of optimised sandstones. The advantage of GANs over other

common microstructure generation techniques is that GANs are able to provide

fast sampling of high-dimensional and intractable density functions without

the need for an a priori model of the probability distribution function to be

specified39. The present chapter presents an expansion of the research of Mosser

et al.38,39 to implement GANs for generating three-dimensional, three-phase

microstructure for two types of electrode commonly used in electrochemical

devices: a Li-ion battery cathode and an SOFC anode. A comparison between

the statistical, morphological and transport properties of the generated images

and the real tomographic data is performed. The two-point correlation function

is further calculated for each of the three phases in the training and generated

sets to investigate the long-range properties. Due to the fully convolutional

nature of the GANs used, it is possible to generate arbitrarily large volumes of

the electrodes based on the trained model. Lastly, by modifying the input of the

generator, structures with periodic boundaries were generated.

Performing multiphysics simulations on representative 3D volumes is neces-

sary for microstructural optimisation, but it is typically very computationally ex-

pensive. This is compounded by the fact that the regions near the boundaries
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can show unrealistic behaviour due to the arbitrary choice of boundary condi-

tion. However, synthetic periodic microstructures (with all the correct morpholog-

ical properties) enable the use of periodic boundary conditions in the simulation,

which will significantly reduce the simulated volume necessary to be considered

representative. This has the potential to greatly accelerate these simulations and

therefore the optimisation process as a whole.

5.3 Generative Adversarial Networks

Generative Adversarial Networks (GANs) were introduced by Goodfellow et al.

as a type of implicit generative model that learns to represent the probability

distribution function (pdf) of a given dataset (i.e. pdata).42 Since pdata is unknown,

the result of the learning process is an estimate of the pdf called pmodel from

which a set of samples can be generated. Although GANs by design do not admit

an explicit probability density, they learn a function that can sample from pmodel,

which reasonably approximate those from the real dataset (pdata).

The training process consists of a minimax game between two functions, the

generator G(z) and the discriminator D(x). G(z) maps an d-dimensional latent

vector z ∼ pz(z) ∈ R
d to a point in the space of real data as G(z; θ(G)), while D(x)

represents the probability that x comes from pdata.
40 The objective of the training

process is to implicitly learn the distribution of the real data (i.e. pdata through

a process of constant sampling, until the density function learned by G(z) (i.e.

pmodel) is as close as possible to the real distribution.

In this work, both the generator Gθ(G)(z) and the discriminator Dθ(D)(x) consist

of deep convolutional neural networks.43 Each of these has a cost function to be

optimised through stochastic gradient descent in a two-step training process. First,

the discriminator is trained to maximise its loss function J (D):

J (D) = Ex∼pdata(x) [log (D(x))] + Ez∼pz(z) [log (1−D (G(z)))] (5.1)

This is trained as a standard binary cross-entropy cost in a classifier be-

tween the discriminator’s prediction and the real label. Subsequently, the gen-
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erator is trained to minimise its loss function corresponding to minimising the

log-probability of the discriminator being correct:

J (G) = Ez∼pz(z) [log (1−D (G(z)))] (5.2)

These concepts are summarised in Figure 5.1.

Generator, G(z; θ(G))

z~𝒩(0,1)

Discriminator, D(x; θ(D))

Update θ(G) to 

minimise J(G)

G1 G2 G3 G4 G5

D1 D2 D3 D4 D5

D(x) = 1

D(G(z)) = 0

Training set, X, 

containing N 

instances of x:

N × c × 64 × 64

Label(x) = 1

Label(G(z)) = 0

Update θ(D) to 

maximise J(D)

Figure 5.1: GAN architecture: Schematic showing the architecture of the DC-

GAN for 2D microstructural data. Generalisation to 3D samples is conceptually

straightforward, but difficult to show as it requires the illustration of 4D tensors.

In each layer, the green sub-volume shows a convolutional kernel at an arbitrary

location in the volume and the blue sub-volume is the result of that convolution.

In each case, the kernel is the same depth as the one non-spatial dimension, c, but

must scan through the two spatial dimensions in order to build up the image in

the following layer.

The solution to this minimax game is a Nash equilibrium.42 where the samples

of x = G(z) ∼ pmodel(z) are indistinguishable from the real samples x ∼ pdata(x).
42

thus pmodel(z) = pdata(x) and D(x) = 1
2

for all x since the discriminator can no

longer distinguish between real and synthetic data.

5.4 Microstructural data

This work considers two electrode microstructures as training sets corresponding

to two different types of battery materials: a SOFC anode and a Li-ion cathode.
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The sample details are described bellow.

5.4.1 Sample details

Li-ion cathode

This material was generated at the Cell Analysis, Modelling and Prototyping

(CAMP) facility at the Argonne National Laboratory. The electrode is com-

posed of three phases: the active material corresponding to Li(Ni0.5Mn0.3Co0.2)O2

(NMC532, TODA America Inc.), the carbon/binder domain composed of C45 car-

bon (Timcal) and polyvinylidene fluoride (PVDF) (Solvay, Solef 5130), and the

porous phase. Since the carbon/binder domain is not visible directly at the XCT

images, the authors generated this phase over the three-dimensional geometry of

the scanned images.34

SOFC anode

This material consists of a commercial anode-supported button MSRI (Materials

and Systems Research, Inc.) cell composed of three phases: Yttria-stabilised zir-

conia (YSZ), nickel (Ni) and the porous phase.44 This voxelised image is cropped

into a total of 45,492 overlapping sub-volumes of 643 voxels each, at a spacing of

16 to be used as training database for reconstruction. This image size is sufficient

enough to represent the TPCF of the whole electrode sample.

5.4.2 Image data

The two electrode materials used in this work were obtained from open-source

nano-tomography data.34,44 The data available had already been segmented into

their respective three phases, as seen in Figure 5.2. The first dataset is from a

Li-ion battery cathode, comprising particles of a ceramic active material (nickel

manganese cobalt oxide – NMC 532), a conductive organic binder (polymer with

carbon black) and pores. The fabrication process of this material consists on

mixing the components in a solvent, thinly spreading this ink onto an aluminium

foil and then drying. The second dataset is from an SOFC anode, composed of

a porous nickel/yttria stabilised zirconia (Ni-YSZ) cermet. This material is also

made by mixing an ink, but this time it is deposited onto a ceramic substrate and
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then sintered at high temperature to bind the components together. Details of the

sample preparation, imaging, reconstruction and segmentation approaches used

can found in34 for the cathode and44 for the anode. The specifications of both

datasets in terms sizes and resolutions are shown in Table 5.1.

20 μm

Pore

NMC-532

Binder

5 μm

Pore

Nickel

YSZ

Figure 5.2: Original microstructures: 2D images of the 3D microstructures used

as training sets in this work (L) Li-ion cathode, where the black phase represents

pore, grey is NMC active material, and white is the organic binder; (R) SOFC

anode, where the black phase corresponds to the pore, grey is Nickel and white is

YSZ.

Table 5.1: Key details about the two open-source, segmented, nano-tomography

datasets

Name Li-ion cathode SOFC anode

Materials NMC-532/Binder/Pore YSZ/Ni/Pore

Total volume of data / µm−3 100.7× 100.3× 100.3 124× 110× 8
Number of voxels / voxels 253× 252× 252 1900× 1697× 124

Cubic voxel size / nm3 3983 653

Number of training sub-volumes 13,824 45,492

Reference 34 44

For the Li-ion cathode, approximately 14,000 sub-volumes were extracted

from the original image using a rolling function with a stride of 8 voxels. In

the case of the SOFC anode, the same process was implemented to extract ap-

proximately 45,000 overlapping samples, as shown in in table 5.1. The spatial

dimensions of the cropped volumes were selected based on the average size of the

largest structuring element. The sub-volume size was selected to guarantee that

at least two structuring elements (i.e. particular geometric shape that we attempt

to extract from the XCT image) could fit in one sub-volume45. In the case of the
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Li-ion cathode, this structuring element corresponds to the particle size. In the

case of the SOFC anode, “particle size” is not easy to define once the sample is sin-

tered, so the sub-volume was selected based on the stabilisation of the two-point

correlation function (TPCF).

5.5 Method

This section outlines the architecture of the two neural networks (i.e. the Gener-

ator and the Discriminator) that constitute the GAN, as well as the methodology

implemented for training. A set of microstructural properties are also defined,

which are later used to analyse the quality of the microstructural reconstruction

when compared to the real datasets.

5.5.1 Pre-treatment of the training set

The image data used in this study is initially stored as 8-bit greyscale elements,

where the value of each voxel (3D pixel) is used as a label to denote the material

it contains. For example, as in the case of the anode in this study, black (0), grey

(127), and white (255), encode pore, metal, and ceramic respectively.

In several previous studies where GANs were used to analyse materials, the

samples in question had only two phases and as such, the materials information

could be expressed by a single number representing the confidence it belongs to

one particular phase. In these cases, any value between 0 and 255 corresponds

to a level of uncertainty in the phase prediction, and is commonly shown at

the interface between the two phases. However, in cases where the material

contains three or more phases, the use of images stored grayscale images can be

problematic. The reason for this is that any voxel with a value close to grey (close

to 127) could have a double meaning: it could be interpreted as uncertainty in

the generator’s prediction between black and white, or it could be interpreted as

the grey phase of the material.

The solution to this is the implementation of a data pre-treatment of the

materials information referred to as “one-hot” encoding. This means that an
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additional dimension is added to the dataset (i.e. three spatial dimensions, plus

one materials dimension), so an initially 3D cubic volume of n×nn, is encoded to

a 4D c×n×n×n volume, where c is the number of material phases present. This

materials dimension contains a ‘1’ in the element corresponding to the particular

material at that location and a ‘0’ in all other elements (hence, “one-hot”). So,

what was previous black, white, and grey, would now be encoded as [1,0,0],

[0,1,0], and [0,0,1] respectively. This concept is illustrated in figure 5.3 for a

three-material sample. It is also easy to decode these 4D volumes back to 3D

greyscale, even when there is uncertainty in the labelling, as the maximum value

can simply be taken as the label.The advantage of using this technique is the

ability to extend the implementation of GANs for the generation of materials with

multiple phases. Thus the method introduced in this work is not only restricted

for three-phase data, but can be implemented to n-phase materials materials.

Figure 5.3: One-hot encoding: Schematic showing the implementation of a one-

hot encoding techniques for a simple sample of four voxels with three phases:

white, grey and black. The 2D image is divided into three channels (corresponding

to the three phases), each with two-dimensional matrices of zeros and ones that

indicate the phase each voxel corresponds to.
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5.5.2 GAN Architecture and Training

The GAN architecture implemented in this work is a volumetric version based

on the deep convolutional GAN (DC-GAN) model proposed by Radford et al.46.

Both generator and discriminator are represented by fully convolutional neural

networks. In particular, the convolutional nature of the generator allows it to be

scalable, thus it can generate instances from the pmodel larger than the instances in

the original training set, which is useful.

The discriminator is composed of five layers of convolutions, each followed

by a batch normalisation. In all cases, the convolutions cover the full length of

the materials dimension, c but the kernels within each layer are of smaller spatial

dimension than the respective inputs to these layers. The first four layers apply

a “leaky” rectified linear unit (leaky ReLU) activation function and the last layer

contains a sigmoid activation function that outputs a single scalar constrained

between 0 and 1, as it is a binary classifier. This value represents an estimated

probability of an input image to belong to the real dataset (output = 1) or to the

generated sample (output = 0).

The generator is an approximate mirror of the discriminator, also composed

of five layers, but this time transposed convolutions47 are used to expand the

spatial dimensions in each step. Once again, each layer is followed by a batch

normalization and all layers use ReLU as their activation function, except for the

last layer which uses a Softmax function, given by equation (5.3)

σ(x)i =
exi

∑K
j=1 e

xj

for i = 1, . . . , K and x = (x1, . . . , xK) ∈ R
K (5.3)

where xj represents the jth element of the one-hot encoded vector x at the

last convolutional layer.

It is well known that the hyperparmeters that define the architecture of the

neural networks have significant impact on the quality of the results and the

speed of training. In this work, although a formal hyperparameter optimisation
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was not performed due to computational expense, a total of 16 combinations

between four hyperparmeters was performed. A statistical analysis between the

real and generated microstructures was performed (as described in section 5.6),

and the optimum architecture was chosen based on these results.

The generator requires a latent vector z as its input in order to produce

variety in its outputs. In this study, the input latent vector z is of length 100.

Table 5.2 summarises all of the GAN’s layers configuration described above, as

well as the size, stride and number of kernels applied between each layer, and the

padding applied around the volume when calculating the convolutions. As will be

discussed later in this paper, although zeros were initially used for padding, the

study also explores the use of circular padding, which forces the microstructure

to become periodic.

Table 5.2: Dimensionality of each layer in the GAN architecture for each porous

material (layers, dimensions, optimiser, input image size, number of training sam-

ples) See Figure 5.1

Layer Function
Input

channels

Output

channels

Spatial

Kernel
Stride Padding

Batch

normalisation

Activation

function

Discriminator

D1 Conv3d 3 16 4× 4× 4 2 1 Yes LeakyReLU

D2 Conv3d 16 32 4× 4× 4 2 1 Yes LeakyReLU

D3 Conv3d 32 64 4× 4× 4 2 1 Yes LeakyReLU

D4 Conv3d 64 128 4× 4× 4 2 1 Yes LeakyReLU

D5 Conv3d 128 1 4× 4× 4 1 0 No Sigmoid

Generator

G1 ConvTransposed3d 100 512 4× 4× 4 1 0 Yes ReLU

G2 ConvTransposed3d 512 256 4× 4× 4 2 1 Yes ReLU

G3 ConvTransposed3d 256 128 4× 4× 4 2 1 Yes ReLU

G4 ConvTransposed3d 128 64 4× 4× 4 2 1 Yes ReLU

G5 ConvTransposed3d 64 3 4× 4× 4 2 1 No Softmax

In theory, a Nash equilibrium is achieved after sufficient training; however,

in practice this is not always the case. GANs have shown to present instability

during training that can lead to mode collapse42. Mescheder et al.48 present

an analysis of the stability of GAN training, concluding that instance noise and

zero-centred gradient penalties lead to local convergence. Another proposed

stabilisation mechanism, which was implemented effectively in this work, is called

one-sided label smoothing42. Through this measure, the label 1 corresponding to

real images is reduced by a constant ε, such that the new label has the value of

1–ε. For all cases in this work, ε has a value of 0.1.
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An additional source of instability during training is attributed to the fact that

the discriminator learns faster than the generator, particularly at the early stages

of training. To stabilise the alternating learning process, it is convenient to set

a ratio of network optimisation for the generator and discriminator to k : 1. In

other words, the generator is updated k times while the discriminator is updated

once. In this work k has a value of 2. In both cases (i.e. cathode and anode

data) stochastic gradient descent is implemented for learning using the ADAM

optimiser49. The momentum constants are β1 = 0.5, β2 = 0.999 and the

learning rate is 2 × 10−5. All simulations are performed on a GPU (Nvidia TITAN

Xp) and the training process is limited to 72 epochs (c. 48 h).

5.5.3 Microstructural characterisation parameters

As expressed in the introduction, GANs are implicit deep generative models and

therefore the learned pdf corresponding to pmodel is not explicitly provided after

training. In order to estimate the accuracy with which pmodel approximates the real

pdf pdata, other statistical methods are required as a measure of the error between

functions. In this work, the ability of the trained model to accurately capture the

pdf of the dataset is estimated by comparing a set of parameters calculated for

100 instances of GAN generated data and 100 randomly chosen real data. These

parameters consist on mictrostructural parameters commonly used to characterise

the electrode from 3D volumes, and include morphological properties, transport

properties, and statistical correlation functions.

Morphological properties

Three morphological properties are considered in this work, each computed using

the open-source software TauFactor50. These consist of the volume fractions and

specific surface areas, as well as the triple-phase boundary (TPB) densities.

The phase volume fraction φi is defined as:

φi =
Vi

V
(5.4)

where Vi refers to the volume of phase i, calculated as the percentage of voxels
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corresponding to this phase, and V to the total volume of the microstructure

domain.

The volume specific surface area SAi is defined as:

SAi =
Ai

V
=

1

V

∫

dAi (5.5)

where Ai refers to the total surface area of the interface between phase i and

the rest of the phases

The TPB density is defined as the length of the intersection among three phases

i, j, and k, normalised by the total volume of the microstructure domain. For a

cuboid lattice a TPB is defined as the length of the edges where three of the four

connecting voxels contain different phases.5

Tortuosity and relative diffusivity

The tortuosity factor τ is defined by Cooper et al.5 as the resistance offered by

the morphology of the porous medium towards diffusive transport. Other authors

define the tortuosity factor or geometric tortuosity (τ geo) as the ratio of the effec-

tive pathway length leff over the length of the sample l. In both definitions this

parameter measures the geometric deviation of the conductive phase from the

straight path. Two properties of the tortuosity factor are presented by Cooper et

al.5: firstly, when τ = 1, the flow must be direct, and secondly for all systems

τ ≥ 1. The tortuosity factor is estimated as the ratio between the steady-state dif-

fusive flow through a conductive phase, Fp, and a fully dense volume of the same

size, FCV as:

Fp = −ACVD
φi

τ

∆c

LCV

(5.6)

FCV = −ACVD
∆c

LCV

(5.7)

where D is the diffusivity of the conductive phase, c is the local concentration

of diffusing species, ACV is the cross-sectional area of teh control volume and LCV
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is the length of the control volume.5

The relative diffusivity, Drel, is a dimensionless measure of the ease with which

diffusive transport occurs through a system held between Dirichlet boundaries

applied to two parallel faces. The relative diffusivity is inversely correlated to the

tortuosity factor of phase i as can be seen from the following equation,

Drel
i =

Deff
i

D0
i

=
φi

τi
(5.8)

where φi is the volume fraction of phase i, D0
i is the intrinsic diffusivity of the

bulk material (arbitrarily set to unity), and Deff
i is the calculated effective diffusiv-

ity given the morphology of the system. In this study, it is calculated for each of

the three material phases separately, as well as in each of the three principal direc-

tions in a cubic volume. The tortuosity factors were obtained with the open-source

software TauFactor50, which models the steady-state diffusion problem using the

finite difference method and an iterative solver.

Two-point correlation function

Pixel-based reconstruction methods implement statistical correlations to fully

characterise a microstructure. According to Lu et al.12 the morphology of hetero-

geneous media can be fully characterised by specifying the n-point probability

function (Sn(x
n)). Sn(x

n) is defined as the probability of finding n points with

positions xn in the same phase12–14. Based on this, the so-called two-point

correlation function (TPCF), S2(r), allows the first and second-order moments

of a microstructure to be characterised14,39. This function has been widely

implemented for the stochastic reconstruction of porous media. In this work, this

function is used as a metric to compare the generated mictrosturctures and the

real ones. It is known that each microstructure has a unique TPCF determined

by its exponential decay and stabilisation value. Therefore if the generated

microstructures represent the same density function as the real data, it is logical

to assert that on average both microstructures will present the same TPCF.

Assuming stationarity (i.e. the mean and variance have stabilised), the TPCF is



5.6. Results 147

defined as the non-centred covariance, which is the probability P that two points

x1 = x and x2 = x+ r separated by a distance r belong to the same phase pi,

S2(r) = P (x ∈ pi, x+ r ∈ pi) for x, r ∈ R
d (5.9)

At the origin, S2(0) is equal to the phase volume fraction φi. The function

S2(r) stabilised at the value of φ2
i as the distance, r, tends to infinity.This function

is not only valuable for analysing the anisotropy of the microstructure, but also

to account for the representativeness in terms of volume fraction of sub-volumes

taken from the same microstructure sample. In this work, the TPCF of the three

phases is calculated along the three Cartesian axes.

5.6 Results

The two GANs implemented in this work, one for each microstructure, used the

same architecture defined by table 5.2 and were trained for a maximum of 72

epochs (i.e. 72 complete iterations of the training set). The stopping criteria was

established through the manual inspection of the microstructural and transport

properties every two epochs. Figures 5.4 and 5.5 show the visual reconstruction of

both microstructures, beginning with Gaussian noise at epoch 0, and ending with

a visually equivalent microstructure at epoch 50. It can be seen that the quality of

the generated images improves with an increasing number of iterations; however,

as pointed out by Mosser et al.38, this improvement cannot be observed directly

from the loss function of the generator. For this reason, a metric for comparing

the quality of the generated structures consisted on the morphological parameters

and the TPCF. The middle column of figures 5.4 and 5.5 represents a metric of

the uncertainty in the generator at each voxel. This uncertainty is estimated in

the 2D slices of the generated volumes as the max value in the phase dimension

(rather than the label), which indicates the confidence with which it was labelled.

A lower uncertainty in the label assigned is shown as a white pixel, while a higher

uncertainty is shown as a grey colour. It can be seen that at the beginning of

the simulation, the uncertainty was high everywhere, and as the training process

proceeds, the uncertainty reduces, mainly at the “bulk” of the phases. The highest

uncertainty as expected is presented at the interface, but its significantly reduce



5.6. Results 148

as the epochs increase (as can be seen by comparing epoch 10 with epoch 50).

Epoch 0

Epoch 2

Epoch 6

Epoch 10

Epoch 20

Epoch 50

Figure 5.4: Uncertainty maps along the training process for Li-ion cathode. The

first column indicates the number of epochs, the middle column shows the uncer-

tainty of the generator for assigning labels to the phases. The final column shows

a 2D slice of the generated microstructure as a function of the training epochs.

An initial qualitative comparison of the real and synthetic microstructures is

performed. A visual comparison that shows an excellent qualitative agreement

between the real and generated data can be seen in figure 5.6, which shows

six instances of both real and synthetic data from both the anode and cathode

samples. Each slice consists of 642 voxels and is obtained from a 643 generated
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Epoch 0

Epoch 2

Epoch 6

Epoch 10

Epoch 20

Epoch 50

Figure 5.5: Uncertainty maps along the training process for SOFC anode as a

function of the training epochs. The first column indicates the number of epochs,

the middle column shows the uncertainty of the generator for assigning labels to

the phases. The final column shows a 2D slice of the generated microstructure as

a function of the training epochs.

volumetric image. This qualitative analysis consisted of visually comparing

some key features of the data. In the case of the Li-ion cathode, the structuring

element in the microstructure (i.e. the NMC particles – grey phase) shows round

borders surrounded by a thin layer of binder (white phase), and the phases seem

distributed in the same proportion in the real and generated images. In the case

of the SOFC, no structuring element is clearly defined; however, the shapes of

the white and grey phases of the generated set show the typical shape of the real
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data which is particular for the sintering process in the experimental generation

of these materials44.

Lithium-ion cathode SOFC anode
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Figure 5.6: Generated vs real: Images from both the cathode and anode samples, illustrating

the excellent qualitative correspondence between the real and generated microstructures.

An additional quantitative comparison was performed between the training

set and the generated images. For this, 100 microstructures where generated, and

100 where randomly selected from the training set (64 × 64 × 64 voxels). The

comparison results are presented in the following sections.

5.6.1 Lithium-ion cathode results

The results of the calculation of the microstructural characterisation parameters

(i.e. phase volume fraction, specific surface area and TPB) for the three phases are

presented in Figure 5.7. For ease of comparison in a single figure, the results of the

specific surface area analysis are presented in terms of the percentage deviation

from the maximum mean area value among the three phases, ∆(SSA). In the

case of the cathode, the maximum mean area, Amax,mean, corresponds to the mean

area of the white phase (binder) of the training set (Amax,mean = 0.72 µm−1) and

all other areas, Ai, are normalised against this.
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∆(SSA) =
Ai − Amax,mean

Amax,mean

(5.10)

The phase volume fraction, specific surface area and relative diffusivity show

good agreement between the real and the synthetic data, particularly in the mean

values of both distributions. These mean values and standard deviations are

reported in Table 5.3. The distribution of relative diffusivity in the white phase is

very close to zero due to the low volume fraction and resulting low percolation

of this phase. For the TPB density, the mean of the generated set is nearly 10%

greater than that of the training data; however, nearly all of the values for the

synthetic data do still fall within the same range as the training set.

Table 5.3: Results of volume fractions, specific surface areas, triple-phase bound-

ary densities and relative diffusivities calculated from the real and generate

datasets. The black phase corresponds to the pores, white phase corresponds to

the binder and grey phase corresponds to the NMC-532.

Dataset Phase Volume fraction
Specific surface

area / µm−1

TPB

density / µm−2 Drel

Real

Black 0.50 ± 0.06 0.71 ± 0.06

0.43 ± 0.04

0.26 ± 0.07

Grey 0.39 ± 0.06 0.34 ± 0.03 0.08 ± 0.04

White 0.11 ± 0.01 0.72 ± 0.06 0.003 ± 0.001

Generated

Black 0.49 ± 0.01 0.72 ± 0.02

0.48 ± 0.02

0.26 ± 0.02

Grey 0.41 ± 0.01 0.36 ± 0.02 0.07 ± 0.02

White 0.102 ± 0.003 0.72 ± 0.02 0.003 ± 0.001

From Figure 5.7 it is clear that the synthetic realisations show a smaller

variance in all of the calculated microstructural properties compared to the real

datasets.

The averaged S2(r)/S2(0) along three directions is shown in Figure 5.8 for

each of the three phases present in a Li-ion cathode. Since S2(0) represents the

volume fraction φi of each phase, S2(r)/S2(0) is a normalisation of the TPCF

that ranges between 0 and 1. In this expression, S2(r)/S2(0) stabilised at the

value of φi. In all cases, the average values of S2(r)/S2(0) of the synthetic

realisations follow the same trend as the training data. The black phase shows

a near exponential decay, the grey phase presents a small hole effect and the

white phase shows an exponential decay. A hole effect is present in a two-point

correlation function when the decay is non-monotonic and presents peaks and
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Figure 5.7: Characterisation properties Li-ion: Microstructural characterisation

properties for 100 training samples (blue) and 100 generated realisations (red)

for the Li-ion cathode. In all cases, greater diversity is observed in the training set

than the generated samples. Boxes show 25th to 75th percentiles and the median.

Black crosses show outliers.

valleys. This property indicates a form of pseudo-periodicity and in most cases is

linked to anisotropy51,52. For the black and grey phases, the S2(r)/S2(0) values of

the generated images show a slight deviation from the training set, however this

value falls within the standard deviation of the real data.

Figure 5.8: TPCF Li-ion cathode Averaged TPCF for the three phases present

the Li-ion cathode. The averaged values are obtained from 100 training samples

and 100 synthetic realisations generated with the GAN model. The coloured band

represents the standard deviation of the metric from the real data at each value or

r.

Figure 5.9 shows the results of the normalised TPCF (i.e. S2(r)/S2(0)) of

the three phases (pores, NMC-532 and binder) along the three directions. For

all cases, the synthetic data follows the same trend as the real dataset, and is
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able to represent the anisotropy of some phases in the material. Table 5.4 shows

the results of a detailed description of the decay along the three axis and the

stabilisation of S2(r)/S2(0) for each phase.

Figure 5.9: S2(r)/S2(0) of the black phase corresponding to the pores (blue line),

grey phase corresponding to the NMC particles (green line) and white phase cor-

responding to the binder (red line) in a Li-ion cathode.

Table 5.4: Detailed description of the normalised TPCF for the Li-ion cathode

along the three directions for each of the three phases (pores, NMC and binder)

Phase x y z Stabilisation

Black (pores) near exponential decay near exponential decay near exponential decay 0.5

Grey (NMC) near exponential decay small hole effect near exponential decay 0.39

White (binder) exponential decay exponential decay exponential decay 0.11

5.6.2 SOFC anode results

Figure 5.10 presents the results of the SOFC anode microstructural characterisa-

tion parameters calculated for the training data and for the synthetic realisations

generated with the GAN model. The ∆(SSA) was calculated using the same

approach as described in the previous section, but in the case of the anode, the

maximum mean area was the mean area of the white phase (YSZ) of the training

set (Amax,mean = 3.98 µm−1)

The results in Figure 5.10 show a comparable mean and distributions for the

morphological properties calculated, as well as for the effective diffusivity of the

training images and the synthetic realisations. Once again, the synthetic images
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Figure 5.10: Characterisation properties SOFC: Microstructural characterisa-

tion properties for 100 training samples and 100 generated realisations for the

SOFC anode. Boxes show 25th to 75th percentiles and the median. Black crosses

show outliers.

show lower variance in the calculated properties than the training set. These

mean values and standard deviations are reported in Table 5.5.

Table 5.5: Results of volume fractions, specific surface areas, triple-phase bound-

ary densities and relative diffusivities calculated from the real and generate

datasets. The black phase corresponds to the pores, white phase corresponds to

the ceramic (i.e. YSZ) and grey phase corresponds to the metal (i.e. Ni).

Dataset Phase Volume fraction
Specific surface

area / µm−1

TPB

density / µm−2 Drel

Real

Black 0.21 ± 0.04 2.15 ± 0.17

8.10 ± 0.97

0.01 ± 0.03

Grey 0.34 ± 0.02 3.66 ± 0.21 0.10 ± 0.02

White 0.45 ± 0.03 3.93 ± 0.16 0.19 ± 0.03

Generated

Black 0.21 ± 0.01 2.24 ± 0.06

7.37 ± 0.32

0.01 ± 0.01

Grey 0.35 ± 0.01 3.71 ± 0.08 0.10 ± 0.01

White 0.45 ± 0.01 3.96 ± 0.06 0.20 ± 0.01

Once again, the difference in the diversity of synthetic images with respect

to the training set can be clearly seen in supplementary Figure S3 where the

effective diffusivity averaged over the three directions for each phase is plotted

against its respective volume fraction.

The TPCF was calculated for the three phases along the three Cartesian

directions. Figure 5.11 shows the value of S2(r)/S2(0) for the three phases present

in the SOFC anode. The averaged results show an exponential decay in the black

phase, a small hole effect52 in the grey phase and a pronounced hole effect in the

white phase.
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Figure 5.11: TPCF SOFC anode: Averaged TPCF for the three phases present the

SOFC anode. The averaged values are obtained from 100 training samples and

100 synthetic realisations generated with the GAN model

Figure 5.12 shows the results of the normalised TPCF (i.e. S2(r)/S2(0)) of the

three phases (pores, Ni and YSZ) along the three directions. For all cases, the

synthetic data follows the same trend as the real dataset, and is able to represent

the anisotropy of some phases in the material. Table 5.6 shows the results of

a detailed description of the decay along the three axis and the stabilisation of

S2(r)/S2(0) for each phase.

Figure 5.12: S2(r)/S2(0) of the black phase corresponding to the pores (blue line),

grey phase corresponding to the Nickel (green line) and white phase correspond-

ing to the YSZ (red line) in a LI-ion cathode.
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Table 5.6: Detailed description of the normalised TPCF for the SOFC anode along

the three directions for each of the three phases (pores, Ni and YSZ)

Phase x y z Stabilisation

Black (pores) near exponential decay near exponential decay near exponential decay 0.2

Grey (Ni) small hole effect small hole effect near exponential decay 0.35

White (YSZ) pronounced hole effect pronounced hole effect pronounced hole effect 0.45

5.6.3 Representativity

This method uses a set of sub-volumes obtained from X-ray tomographic images

for the Li-ion cathode and PFIB-SEM for the SOFC anode, as training sets for

the GANs. In this work, the methodology was applied for the reconstruction of

two different microstructures commonly used for energy storage technologies:

a Li-ion cathode and an SOFC anode. The size of the training images was

selected according to the size of the structuring element of the microstructure.

For the Li-ion cathode, there is a clear characteristic feature consisting on the

NMC particle size (i.e. grey phase). The average particle diameter is 35 voxels,

so a 643 voxels sub-volume can capture the volume of an entire particle and

most of the volume of neighbouring particles. In the case of the SOFC anode,

all three phases form continuous networks so no structuring element (such as

grain size)38 is observed. Therefore, a standard training size of 643 voxels46 was

implemented based on a level of representativity in the measured volume fraction.

The image training size is a topic of interest as it is closely related to the

representativeness of the training set. As previously shown, in the case of

structures with a characteristic feature such as grain size or particle size, it is

possible to use this as a criteria for selecting a training image size; however for

the cases where the structure is irregular (as is the case of the SOFC anode),

highly porous or a continuously fibrous media, choosing the ideal training size

becomes a challenging task.

It is well established among authors12–16 that a two-point statistics function

provides an accurate description of the long-range properties and therefore could

provide an insight into the size of a representative elementary volume (REV).

In some cases, the size of a representative volume can be estimated based on

the stabilisation value of the two-point statistic function S2(r)
39. This would
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require an evaluation of S2(r) along the three directions and in all phases present

in the microstructure. In the two materials analysed in this work, stabilisation

was achieved at an average of 40 voxels along the three directions in the three

phases. This shows that a selection of 643 sub-volume as training set provides a

fair representation of the microstrucutre, at least in terms of volume fraction.

Although the S2(r) provides essential information about the constitution and

long-range properties of microstructures, for more complex samples where the

S2(r) does not achieve stabilisation, a better understanding of the REV in terms

of the microstructural characterisation parameters is required39. As mentioned

by Mosser et al.38, an estimation of the REV of the specific surface area is more

representative of the morphology of a porous medium. In the case of three-phase

data, an analysis of a REV of the TPB could provide an even deeper insight of

the representativeness of the sub-volume since this particular parameter accounts

for the interaction of the three phases. To the authors’ knowledge no conclu-

sive research has been reported in the literature which provides a full analysis

on the representativeness of properties like specific surface area and TPB. An ini-

tial approximation would involve a statistical analysis of such properties obtained

experimentally from sub-volumes of tomographic data at different sections of a

larger volume. This approach however is exhaustive in terms of experimentation,

and unique for each microstructure, therefore it cannot be generalised for a wide

range of porous materials. Based on this, a thorough research on the implemen-

tation of long range functions, such as the two-point statistics function, that can

provide information on the REV of additional properties is recommended as future

work.

5.6.4 Generating larger volumes

The minimum generated samples are the same size as the training data sub-

volumes (i.e. 643 for both cases analysed in this work), but can be increased to

any arbitrarily large size by increasing the size of the input z.

In this work samples as large as 3203 voxels were generated. The generated

images are shown in figure 5.13
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643
3203

Cathode Anode

Figure 5.13: Large generated images of SOFC anode and Li-ion cathode based on previously

trained generator with training data of 643 voxels.

5.6.5 Computational expense

GANs present the capability of generating larger images with the same probability

distribution function of the real dataset by increasing the size of the z space and

using this larger latent space as input of the trained generator. The size of the

larger images is given by the following equation:

z ∼ N (0, 1)100×1∗α×1∗α×1∗α (5.11)

Gθ(z) → R
3×λ×λ×λ (5.12)

λ = 64 + (α− 1)× 16 (5.13)

where α corresponds to the incremental factor. Since the generation of larger

images does not require further training, the generation is comparatively faster

than the training process. The increase in computational time with respect to an

increase in the size of the generated images is linear, as shown in figure 5.14. This

linear trend is in agreement with the results presented by Mosser et al.38,39.
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Figure 5.14: Generation time of 3D microstructures of various sizes using one single trained

generator as a function of the number of voxels

5.6.6 Mode collapse

In the presence of mode collapse, the generator does not have an incentive to

move to a different area within the optimisation space since it has found a lo-

cal minimum. There are different levels of mode collapse, the perfect case being

when the generator memorises the training set, thus producing the same image

every time. A thorough characterisation of the microstructure according to their

morphological features can determine the accuracy of the generator in represent-

ing the real data; however, it does not account for the existence or level of mode

collapse. An approach suggested by Radford et al.46 is implemented in this work

to visually analyse the existence of memorisation of the dataset. This approach

consists on performing an interpolation between two points in the latent space z,

given by equations 5.14 and 5.15:

zstart, zend ∼ N (0, 1)100×1×1×1, β ∈ [0, 1] (5.14)

zint = β ∗ zstart + (1− β) ∗ zend (5.15)
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Where β is a set of integers between 0 and 1. The smooth transition in the

images generated between the two points G(zstart) and G(zend) indicates that

the generator has not memorised the training set but has accurately learned a

lower-dimensional representation of z.39 The interpolation between two points in

the z space is shown in figure 5.15.

Figure 5.15: Interpolation in the latent space z from zstart to zend. The smooth transition

between both points in both microstructures shows the inexistence of a total mode collapse.

5.6.7 Periodic boundaries

Once the generator parameters have been trained, the generator can be used

to create periodic microstructures of arbitrary size. This is simply achieved by

applying circular spatial padding to the first transposed convolutional layer of the

generator (although other approaches are possible). Figure 5.16 shows generated

periodic microstructures for both the cathode and anode, arranged in an array

to make their periodic nature easier to see. Additionally, local scalar flux maps

resulting from steady-state diffusion simulations in TauFactor50 are shown for

each microstructure. In both cases, the upper flux map shows the results of the

simulation with mirror (i.e. zero flux) boundaries on the vertical edges, and the

lower one shows the results of the simulation with periodic boundaries on the

vertical edges. Comparing the results from the two boundary conditions, it is

clear that using periodic boundaries opens up more paths that enable a larger flux

due to the continuity of transport at the edges. Furthermore, this means that the

flow effectively does not experience any edges in the horizontal direction, which

means that, unlike the mirror boundary case, there are no unrealistic regions of

the volume due to edge effects.
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Figure 5.16: Periodic boundaries: For both the Li-ion cathode (L) and the SOFC

anode (R), periodic microstructures were generated by slightly changing the input

to the generator. For each electrode, four instances are shown making the peri-

odicity easier to observe. Also shown are local scalar flux maps generated from

steady-state diffusion simulations in TauFactor with either mirror (top) or periodic

(bottom) boundary conditions implemented on the vertical edges.

5.7 Discussion

This work presents a technique for generating synthetic three-phase, three-

dimensional microstructure images through the use of deep convolutional

generative adversarial networks. The main contributions of this methodology are

mentioned as follows: The results from comparing the morphological metrics,

relative diffusivities and two-point correlation functions all show excellent agree-

ment between the real and generated microstructure. One of the properties that

is different from the averaged value in both cases is the TPB density. Nevertheless,

its value falls within the confidence interval of the real dataset. This comparison

demonstrates that the stochastic reconstruction developed in this work is as accu-

rate as the state-of-the-art reconstruction methods reported in the introduction of

this article, since the results of the TPCF and microstructural data fall in line with

the ones reported in the literature. One variation from previous methodologies is

that GANs do not require additional physical information from the microstructure

as input data. The methodology was developed to approximate the probability

distribution function of a real dataset, so it learns to approximate the voxel-wise

distribution of phases, instead of directly inputting physical parameters, which

is significant; although inputting physical parameters in additional may be
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beneficial53.

Despite the accurate results obtained in terms of microstructural properties,

a number of questions still need to be addressed. One of which involves the

diversity in terms of properties of the generated data. Particularly in the case of

the Li-ion cathode microstructure, the generated samples present less variation

than the training set. This issue was already encountered by Mosser et al.39 and

low variation in the generated samples is a much discussed issue in the GAN

literature. The typical explanation for this is based on the original formulation

of the GAN objective function, which is set to represent unimodal distributions,

even when the training set is multimodal39,40,42. This behaviour is known as

“mode collapse” and is observed as a low variability in the generated images. A

visual inspection of the generated images as well as the accuracy in the calculated

microstructural properties do not provide a sufficient metric to guarantee the

inexistence of mode collapse or memorisation of the training set.

Figures 5.7 and 5.10 show some degree of mode collapse given by the small

variance in the calculated properties of the generated data. Nevertheless, further

analysis of the diversity of the generated samples is required to evaluate the

existence of mode collapse based on the number of unique samples that can be

generated54,55. Following the work of Radford et al.46, an interpolation between

two points in the latent space is performed to test the absence of memorisation in

the generator. The results shown in Figure S8 present a smooth transformation of

the generated data as the latent vectors is progressed along a straight path . This

indicates that the generator is not memorising the training data but has learned

the meaningful features of the microstructure.

The presence of mode collapse and vanishing gradient remain the two main

issues with the implementation of GANs. As pointed out by56, these problems

are not necessarily related to the architecture of GANs, but potentially to the

original configuration of the loss function. This work implements a DC-GAN

architecture with the standard loss function; however, recent improvements of

GANs have focused on reconfiguring the loss function to enable a more stable
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training and more variability in the output. Some of these include WGAN (and

WGAN-GP) based on the Wasserstein or Earthmover distance57,58, LSGAN which

uses least squares and the Pearson divergence59, SN-GAN that implement a

spectral normalisation60, among others56. Therefore, an improvement of the GAN

loss function is suggested as future work in order to solve the problems related to

low variability (i.e. slight mode collapse) and training stability.

The applicability of GANs can be extended to transfer the learned weights

of the generator (i.e. Gθ(z)) into a) generating larger samples of the same

microstructure, b) generating microstructure with periodic boundaries, c) per-

forming an optimisation of the microstructure according to a certain macroscopic

property based on the latent space z . As such, Gθ can be thought of as a powerful

“virtual representation” of the real microstructure and it interested to note that

the total size of the trained parameters, θ(G) is just 55 MB.

The minimum generated samples are the same size as the training data

sub-volumes (i.e. 643 for both cases analysed in this work), but can be increased

to any arbitrarily large size by increasing the size of the input z. Although the

training process of the DC-GAN is computationally expensive, once a trained

generator is obtained, it can produce image data inexpensively. The relation

between computation time and generated image size is shown in Figure S7.

The ability of the DC-GAN to generate periodic structures has potentially

profound consequences for the simulation of electrochemical processes at the

microstructural scale. Highly coupled, multiphysics simulations are inherently

computational expensive61,62, which is exacerbated by the need to perform them

on volumes large enough to be considered representative. To make matters

worse, the inherent non-periodic nature of real tomographic data, combined

with the typical use of “mirror” boundary conditions means that regions near

the edges of the simulated control volume will behave differently from those in

the bulk. This leads to a further increase in the size of the simulated volume

required, as the impact of the “near edge” regions need to be eclipsed by the

bulk response. Already common practice in the study of turbulent flow63,64, the
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use of periodic boundaries enables much smaller volumes to be used, which can

radically accelerate simulations. The flux maps shown in Figure 5.16 highlight

the potential impact even for a simple diffusion simulation and the calculated

transport parameters of these small volumes are much closer to the bulk response

when periodic boundaries are implemented.

Examples of generated periodic (and similar non-periodic) volumes for both

the Li-ion cathode and SOFC anode can be found in the supplementary materials

accompanying this paper and the authors encourage the community to investigate

their utility. A detailed exploration of the various methods for reconfiguring

the generator’s architecture for the generation of periodic boundaries, as well

as an analysis of the morphological and transport properties of the generated

microstructures compared to the real ones are ongoing and will be presented in

future work.

An additional benefit of the use of GANs in microstructural generation lies

in the ability to interpolate in the continuous latent space to generate more

samples of the same microstructure. The differentiable nature of GANs enables

the latent space that parametrises the generator to be optimised. Li et al.41

have implemented a Gaussian process to optimise the latent space in order to

generate an optimum 2D two-phase microstructure. Other authors65 have used

an in-painting technique to imprint over the three-dimensional image some

microstructural details that are only available in two-dimensional conditioning

data. This process is performed by optimising the latent vector with respect to

the mismatch between the observed data and the output of the generator39,65.

A potential implementation of the in-painting technique could involve adding

information from electron backscatter diffraction (EBSD), such as crystallographic

structure and orientation, into the already generated 3D structures, which would

be of great interest to the electrochemical modelling community.

Future work will aim to extend the study by Li et al.41 to perform an op-

timisation of the 3D three-phase microstructure based on desired morphological

properties by optimising the latent space. One proposed pathway to improve these
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optimisation process would involve providing physical parameters to the GAN ar-

chitecture. This could be achieved by adding a physics-specific loss component to

penalise any deviation from a desired physical property53. It could also involve

giving a physical meaning to the z space through the implementation of a Con-

ditional GAN algorithm66. With this, apart from the latent vector, the Generator

has a second input y related to a physical property. Thus, the Generator becomes

G(z, y) and produces a realistic image with its corresponding physical property

5.8 Conclusions

This work presents a method for generating synthetic three-dimensional mi-

crostructures composed of any number of distinct material phases, through the

implementation of DC-GANs. This method allows the model to represent the

statistical and morphological properties of the real microstructure, which are

captured in the weights of the trained discriminator and generator networks.

A pair of open-source, tomographically derived, three-phase microstructural

datasets were investigated: a lithium-ion battery cathode and a solid oxide fuel

cell anode. Various microstructural properties were calculated for 100 sub-

volumes of the real data and these were compared to 100 instances of volumes

created by the trained generator. The results showed excellent agreement across

all metrics, although the synthetic structures showed a smaller variance compared

to the training data, which is a commonly reported problem for DC-GANs and

mitigation strategy will be reported in future work.

Two issues encountered when training the DC-GANs in this study were

instability (likely due to a vanishing gradient) and moderate mode collapse.

Both issues can be attributed to the GANs loss function and solutions have been

suggested in the literature, the implementation of which will be explored in future

work.

Two particular highlights of this work include the ability to generate arbi-

trarily large synthetic microstructural volumes and the generation of periodic
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boundaries, both of which are of high interest to the electrochemical modelling

community. A detailed study of the impact of periodic boundaries on the reduction

of simulation times is already underway.

Future work will take advantage of the continuity of the latent space, as well

as the differentiable nature of GANs, to perform optimisation of certain morpho-

logical and electrochemical properties in order to discover improved electrode

microstructures for batteries and fuel cells.
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Chapter 6

Gaussian Processes and Bayesian

optimisation for the design of

microstructures with optimum

properties

6.1 Abstract

The generation of multiphase porous electrode microstructures with optimum

morphological and transport properties is essential in the design of improved elec-

trochemical energy storage devices. This work presents a generation-optimisation

closed-loop algorithm for the design of microstructures with optimum or cus-

tomised properties. A deep convolutional Generative Adversarial Network (DC-

GAN)1,2 is implemented to generate synthetic three-phase three-dimensional im-

ages of a porous lithium ion battery cathode material. A Gaussian Process Re-

gression is used as a surrogate model to correlate the latent space of the trained

generator with the microstructural properties of the synthetic microstructures. A

Bayesian optimisation is further implemented to optimise a set of properties as a

function of the latent space of the generator. As a way of proving the generation-

optimisation method, a set of functions were defined to performed an uncon-

strained maximisation of morphological properties (volume fraction, specific sur-

face area) and transport properties (relative diffusivity). The results show the

175
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ability to perform simultaneous maximisation of correlated properties (Specific

surface area and relative diffusivity), as well as an optimisation of these prop-

erties constrained by constant values of volume fraction. A visualtisation of the

optimised latent space proves a correlation between this and the morphological

properties, which leads to the fast generation of visually realistic microstructures

with customised properties.

6.2 Introduction

Lithium-ion batteries (LIBs) constitute one of the leading technologies for elec-

trochemical energy storage. Their large-scale implementation, particularly for

electric vehicles, is expected to grow rapidly over the next decade to enable the

electrification of transport systems. However, a series of technological challenges

that lie within the electrodes at a micro-scale level still need to be addressed

in order to guarantee LIBs with high energy and power densities, long cycling

life, and good reliability. While adopting new chemistries for active materials

is one approach to improving performance, this study will instead focus on the

optimisation of the microstructure of the porous electrode.

Electrodes constitute the main sites where the electrochemical reactions

coupled with transport processes occur within LIBs. They are composed of porous

materials to maximise the active surface area but need to contain percolating

paths to enable the ionic and electronic transport while maintaining sufficient

mechanical integrity.3,4 Thus, the electrode microstructure significantly impacts

the battery performance and the design of an optimum morphology is considered

essential for the development of the next generation battery technologies.5 Some

important steps for improving the battery performance involve enhancing the

electronic and ionic transport within electrodes through conducting pathways,

and achieving a high utilisation of the active material.6 Therefore, an understand-

ing of these transport processes and microstructural properties in correlation to

the complex micro-scale spatial arrangement is critical for the design of improved

electrodes.

Previous works have performed comprehensive analyses of the physical and
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electrochemical processes at the micro-scale level in order to rationalise the

effect of the electrode morphology and microstructural properties in the battery

performance.7 The electrode porosity, tortuosity and thickness have been con-

sidered as the main microstructural properties to analyse and optimise through

computational modelling. High porosity and low tortuosity electrodes have been

evidenced to impact the ionic conductivity by enabling a transport of lithium ions

through the liquid electrolyte. Nonetheless, an increasing porosity would lead

to a reduced volume fraction of the active material and thus a reduced energy

density. Additionally, recent analyses of the tortuosity and effective electrical

conductivity in Li-ion cathodes have proved the important role of the synthetic

carbon-binder domain (CBD) in the electrochemical performance.8,9 Based on

this, a set of mathematical correlations that can account for the interplay between

microstructural properties must be considered in order to optimise the electrode

morphology. Apart from micro-scale models, continuum modeling has been

implemented to elucidate the optimum porosity, the effect of graded porosity, and

the optimum effective diffusivity; however, these values are theoretical and result

in models where the microstructure obtained is idealised.10

Although these works are insightful, a previous step that involves the

quantification of the electrode spatial arrangement or geometry in correlation

to its estimated microstructural properties (i.e. porosity, specific surface area,

tortuosity) is critical in order to understand the microstructure-performance

relationship as a closed-loop process.11 The electrode morphology is determined

by the synthesis techniques and therefore a set of parameters that define its

spatial arrangement such as the interpenetrating percolating networks of the

different phases would be directly correlated to its microstructural properties.

Based on this, the ability to control the electrode morphology is crucial in order

to perform an optimisation of the electrode microstructure. The key question lies

in the existence of a mathematical function that can define the electrode spatial

arrangement which can be manipulated based on a set of parameters in order

to obtain ideal or user-specified properties that can maximise the performance.

One pathway for analysing the microstructure-performance relation consists of

the generation of synthetic electrodes by means of statistical and computational

modelling. The generation of synthetic multiphase electrode microstructures
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could provide an insight of the optimum morphology required for design high-

performance LIBs electrodes.

A large body of work has been presented in the generation of synthetic

microstructure for energy materials. Some authors have implemented statistical

methods using a two-point correlation function to reconstruct three-dimensional

microstructures of composite Solid Oxide Fuel Cell (SOFC) anodes.12,13 Alterna-

tive algorithms implement a sphere packing and growth technique to simulate

the process of sintering used in the production of SOFC electrodes.14–17 In

the area of Li-ion batteries, previous authors have performed particle-based

simulations to correlate the fabrication process of electrodes to their respective

microstructure.18,19 These physics-based models are able to predict the effect

of the microstructure in transport properties; however, they have proved to be

computationally expensive and specific to a particular type of electrode material.

Recent advances in deep learning have led to the implementation of

generative models for the stochastic generation of porous media. Mosser et

al. implemented a Generative Adversarial Network (GAN) to reconstruct the

three-dimensional microstructure of two-phase synthetic and granular mate-

rials. Gayon-Lombardo et al.20 extended this method for the generation of

three-dimensional, three-phase electrodes: a Solid-Oxide Fuel Cell anode and a

Li-ion cathode. These reconstructions proved to possess the same microstructural

properties and two-point correlation function as the original tomographic data.

In comparing the most common microstructure generation techniques, GANs

are able to perform fast sampling of high-dimensional and intractable density

functions without the need for an a priori model of the probability distribution

function to be specified21. Thus, GANs proved to be an efficient method for

generating realistic microstructures, where the trained generator constitutes a

virtual representation of the real microstructure.

The objective of this work is to introduce a closed-loop generation-

optimisation framework that can link the generation of synthetic microstructures

with optimum user-specified properties. This work expands on the research of
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Gayon-Lombardo et al.20 and implements a GAN as a basis for the generation of

optimised microstructure Li-ion cathode.

6.2.1 Generative Adversarial Networks

The concept of GANs was previously introduced in chapter 5.1,2 In this chapter the

same concept was implemented, where both the generator Gθ(G)(z) and the dis-

criminator Dθ(D)(x) are deep convolutional neural networks. A few modifications

where implemented in the architecture and in the discriminator’s loss function

J (D), defined as:

J (D) = J
(D)
BCE + J

(D)
MSE (6.1)

In this work J (D) is composed of two terms, one that corresponds to the binary

cross-entropy loss in a classifier between the discriminator’s prediction and the

real label, given by equation 6.2; and one additional term corresponding to the

reconstruction loss between the real data x and the generated data G(z) in order

to increase the resolution of the synthetic realisations, given by equation 6.3.

J
(D)
BCE = Ex∼pdata(x) [log (D(x))] + Ez∼pz(z) [log (1−D (G(z)))] (6.2)

J
(D)
MSE =

1

N

N
∑

i=1

(x−G(z))2 (6.3)

Subsequently, the generator is trained to minimise its loss function correspond-

ing to minimising the log-probability of the discriminator being correct:

J (G) = Ez∼pz(z) [log (1−D (G(z)))] (6.4)

The solution to this optimisation problem is a Nash equilibrium2 where each

player achieves a local minimum, and the discriminator can no longer distinguish

between real and synthetic data.
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Recent works have explored the capabilities of the latent space z of GANs

and its correlation with the output image G(z).22,23 By interpolating between

pairs of z vectors, the generator is able to produce semantically meaningful

images and a smooth transitoin between each other.22 Moreover, linear arith-

metic operations can be performed in the latent space of GANs which lead to

meaningful transformations of images with visually different properties.22 It is

therefore clear that the output image from the trained generator will be directly

correlated to the input vector in the latent space. In terms of microstructural

generation, any new microstructure obtained from a trained generator based on

an input z from the latent space distribution (i.e. z ∼ N (0, 1)) would be visually

different but will possess the same distribution of statistical and microstructural

properties as the training set.20,21,24 The reason for it lies in the fact that the latent

space used as input during training consists of a random normal distribution

and therefore any generated microstructure would be obtained from that same

distribution. In the case where the input latent vector of a trained generator is

not a sample from a normal distribution, the generated microstructure would

possess different microstructural properties (i.e. volume fractions, relative

diffusivities, etc) from the training set, but the microstructure would remain

visually realistic (i.e. visually indistinguishable from the real data in the training

set). Based on this, an optimisation of the latent space can be performed in

order to obtain a microstructure with a set of desired properties.23 The process

of correlating the latent vector with the microstructural properties consists of

a two-way forward process: first the generation of the microstructure using a

trained generator, and second the calculation of microstrcutural and transport

properties using a physics-based model. Given that some of the physics-based

simulations used to calculate the transport properties are expensive and cannot

be backpropagated to the latent variables in a gradient-based optimisation, a

surrogate model must be defined which correlates the input latent vector (z) with

the microstructural and transport properties of the generated microstructure f(z).

Using a similar approach to Li et al.23, this work implements a Gaussian Process

regression method as the surrogate model that maps the inputs z and outputs f(z).
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6.2.2 Introduction to Gaussian Process regression

This section gives an introduction to Gaussian Process (GP) regression. GP re-

gression was first proposed by O’Hagan and Kingman25 and then popularized by

Neal26 and Ramussen and Williams27. GPs are a generalisation of a multivari-

ate Gaussian distribution to infinite dimensions. Formally, GP regression aims to

model an unknown latent function f(x) using noisy observations y of f(x) defined

as28,29:

y = f(x) + ǫ, ǫ ∼ N
(

0, σ2
ǫ

)

(6.5)

where x ∈ R
n denote an arbitrary input vector and ǫ ∈ R is Gaussian dis-

tributed measurement noise with zero mean and variance σ2
ǫ .27,30 A GP is able to

perform a mapping from inputs x to outputs y ∈ R by defining f̂(x)GP as a surro-

gate distribution over functions to represent f(x). The GP is fully specified by a

mean function m(x) and a covariance function k(x, x′):

f̂(x)GP ∼ GP (m(x), k(x, x′)) (6.6)

where:

m(x) = E [f(x)] (6.7)

k(x, x′) = E
[

(f(x −m(x))f(x′ −m(x′))T
]

(6.8)

Through the implementation of a GP, a regression based on a non-parametric

model is performed. Instead of defining a parametric function f(x, θ), and esti-

mating the parameters θ ∈ Rnθ , it is assumed that the function f(x) is a sample

from a Gaussian Process as defined by equations 6.7 and 6.8.31,32 Based on the

additive property of Gaussian distributions, the noisy observations y also follow a

GP with the same mean but with a different covariance function to account for the

measurement of noise:

y ∼ GP
(

m(x), k(x, x′) + σ2
ǫ δ(x, x

′)
)

(6.9)

where δ is known as the Kroneker-delta, where δ(x, x′) = 1 if x = x′, and else
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δ(x, x′) = 0 Equations 6.6 and 6.9 define the prior of the function which would

be updated based on input-output data observations. A zero-mean m(x) is com-

monly used in Machine Learning33–35 and therefore implemented in this work. A

squared-exponential (SE) covariance function is implemented in this work, which

is a frequently applied stationary covariance25,27 defined by

kSE(xi, xj) = σ2
f exp

(

−
1

2λ2
d

(xi − xj)
2

)

(6.10)

where σ2
f and λ2

d correspond to the covariance function hyperparameters that

control the y-scaling and x-scaling respectively. Equation 6.10 can be rewritten for

multiple dimensions as

kSE(xi, xj) = σ2
f exp

(

−
1

2
(xi − xj)

TW (xi − xj)

)

(6.11)

where W = diag[w1, . . . , wD], where wd = 1/λ2
d

Assuming that N observations y = [y1, . . . , yN ]
T

are available at N different

inputs X = [x1, . . . , xN ] (where each of the elements in y are scalars and y corre-

sponds to all N samples concatenated), the uncertainty of estimating N function

values can be represented based on the prior from the mean and the covariance

function of the vector F = [f(x1), . . . , f(xN)]
T
. This vector has a mean vector

defined as 0 and a N ×N covariance matrix defined as

Σ = [k(xi, xj)]N×N (6.12)

From equation 6.12, the uncertainty of the observation matrix y can be ex-

pressed in the same way as F with a mean function of 0 and a covariance matrix

defined as

K =
[

k(xi, xj) + σ2
ǫ δ(xi, xj)

]

N×N
(6.13)

which can be reduced to:

K = Σ+ σ2
ǫ I (6.14)

where σ2
ǫ constitutes the variance of Gaussian distributed perturbation noise
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as given by equation 6.5.

Given a set of training data X and y. a GP is fully defined by the hyperparame-

ters of the covariance function and the random noise of y in equation 6.14. Since

these values are commonly unknown a priori, an important step in the Gaussian

Process regression is the estimation of such hyperparameters. These hyperpa-

rameters are jointly denoted by the vector Θ = [w1, . . . , wD, σ
2
f , σ

2
ǫ ], and can be

estimated by maximising the log-likelihood of the conditional probability density

function (PDF) p (y|X,Θ). It is known that y|X,Θ ∼ N (0,K), therefore the PDF is

defined as

p(y|X,Θ) =
1

(2π)n/2(det[K])1/2
exp

[

−
1

2
YTK−1y

]

(6.15)

To estimate the log-likelihood, the log function is implemented in equation

6.15 as

log[p(y|X,Θ)] = −
n

2
log(2π)−

1

2
log(det|K|)−

1

2
yTK−1y (6.16)

although hypermarameters Θ are not explicitly shown in equation 6.16, they

are contained in K (according to equation 6.14). A convenient way of maximising

the log-likelihood is to minimise the negative log-likelihood (NLL)27,36 of equation

6.15, thus, the function to be minimised is the negative of equation 6.16, defined

as

L(Θ) = −log[p(y|X,Θ)] (6.17)

A non-linear optimisation algorithm can be implemented to obtain the opti-

mum hyperparameters Θ that define the Gaussian Process:

Θ∗ ∈ argmin
Θ
L(Θ) (6.18)

Once the hyperparameters of the Gaussian Process have been determined

based on the training data, predictions can be inferred at unknown input data

xnew by computing the conditional probability distribution of a Gaussian process
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on data X,y,xnew. It is previously established that the covariance of observations

y are given by equation 6.14 and a mean function of m(x) = 0 can be chosen.

Hence, when a new observation xnew occurs, the prediction ynew is conditioned to

the observed training data as





y

ynew



 ∼ N









0

0



 ,





K Σ(X,xnew)

Σ(xnew,X) Σ(xnew,xnew)







 (6.19)

where

Σ(X,xnew) = [k(x1,xnew), ..., k(xn,xnew)]
T (6.20)

The conditional probability of the prediction for the new observation

p(ynew|X,y,xnew) can therefore be obtained analytically by the conditional rules

of Gaussian distributions as

ynew|X,y,xnew ∼ N (µynew , σ
2
ynew

) (6.21)

where

µynew =E[ynew|X,y,xnew]

= Σ(xnew,X)[Σ(X,X) + σ2
ǫ I]

−1y
(6.22)

σynew =Σ(xnew,xnew)

−Σ(xnew,X)[Σ(X,X) + σ2
ǫ I]

−1Σ(X,xnew)
(6.23)

This section has shown the implementation of GPs to map the correlation be-

tween a training set of inputs-outputs, in order to obtain predictions at arbitrary

inputs. The procedure involves three steps:

• Select a mean and covariance function based on the prior knowledge of

the function to model. In some cases, an explicit mean function is imple-

mented in order to express the prior information of the expected form of the

model.28,31,32 In this work, a zero mean is implemented.

• Perform a hyperparameter optimisation by minimising the negative log-

likelihood using the training set.36
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• Make predictions of arbitrary inputs with equations 6.22 and 6.23, where

µynew represents the prediction and σynew represents the variance the corre-

sponding uncertainty.33

6.2.3 Bayesian Optimisation with Gaussian Processes

Gaussian Processes can be used as effective methods to model an objective func-

tion while taking uncertainty explicitly into account. This makes them ideal

methods to be used in expensive black-box optimisation.29 The GP regression

framework not only provides an accurate prediction of unknown outputs, but

also presents a measure for predicting uncertainty. This poses a significant ad-

vantage compared to commonly used black-box optimisation methods and makes

the GP regression a powerful tool for derivative-free optimisation, both for single-

objective optimisation29,37 and multi-objective optimisation33–35. The optimisation

problem to find the values of x that minimise the function f(x) is defined as

min
x∈X

f(x)

s.t. xlb
i ≤ xi ≤ xub

i

(6.24)

where x ∈ R
nx → R, and xlb

i and xub
i are the upper and lower bounds of

x. As stated above, the GP serves as a surrogate function defined as f̂(x)GP to

represent the objective function f(x); thus, the new function to be optimised is

f̂(x)GP . An initial GP is built with the training data of inputs x and outputs y. A

non-linear optimisation approach is implemented to minimise f̂(x)GP and obtain

and estimation of the next point xnew. The real function f(x) is evaluated at xnew

and a new GP is built using the initial training set with updated values of xnew

and f(xnew).
38,39 This process is done until a convergence criterion is achieved.

The Bayesian optimisation with GP algorithm is detailed below (Algorithm 1).

One of the main advantages of implementing this type of black-box optimisa-

tion method is that GPs do not need a full understanding of the complex mecha-

nisms that take place within the electrode microstructure. Moreover, in comparing

GPs with other proposed surrogate models such as artificial neural networks, GPs

do not require large amounts of training data and therefore they are ideal for
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Algorithm 1: Bayesian optimisation with Gaussian Processes

Initialisation: Obtain ns initial observations X and their evaluations at

objective function f(x). Build a GP with training set {X,Y} to produce

f̂(x)GP . Set number of iterations N , set n := 0.

while i ≤ termination criteria: do

1. Solve non-linear optimisation problem x∗
i := argmin

x∈X f̂(x)GP
2. Evaluate the objective function f at point x∗

i to calculate yi := f(x∗
i ) + ǫ

3. Add the new values x∗
i and yi to the training data of the GP

4. Update the GP with the new available data to model the surrogate function

f̂(x)GP
5. i := i+ 1

end

computationally expensive black-box optimisation since they only need few eval-

uations.30,33 The complete process of coupling a GP as a surrogate model of the

trained generator with a Bayesian optimisation approach for the generation of

optimum electrodes is defined in section 6.3.
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6.3 Method

6.3.1 Microstructural image data and pre-processing

The Li-ion battery cathode images were obtained from open-source nano-

tomography data which had already been segmented into their respective phases:

particles of a ceramic active material (nickel manganese cobalt oxide – NMC

532), a conductive organic binder (polymer with carbon black) and pores. Details

of the sample preparation, imaging, reconstruction, and segmentation approach

used can found in8, and the specifications are shown in20.

Approximately 13,000 overlapping sub-volumes were extracted from the orig-

inal dataset using a sampling function with a stride of 8 voxels. The spatial di-

mensions of the cropped volumes were selected based on the average size of the

largest structuring element. The sub-volume size was selected to guarantee that

at least two structuring elements (i.e. particle size) could fit in one sub-volume40.

Once the sub-volumes were extracted from the large dataset in order to obtain the

training set for the GAN, a one-hot encoding technique was implemented to the

8-bit greyscale images, as defined elsewhere20

6.3.2 Closed-loop Generation-optimisation process

This section outlines the closed-loop algorithm for generating microstrcutures with

optimum user-specified properties. This process consists of three integrated steps:

1. Train a GAN to obtain the generator as a virtual representation of the mi-

crostructure parametrised by θ and z.20

2. Create a training set T = {Z,Y} consisting of a latent space (Z) and its

corresponding calculated microstructural and transport properties (Y) and

build a Gaussian Process based on this training set. To train the GPs, the

inputs were scaled to lie between [0, 1]. The input scaling was chosen as

a popular feature scaling procedure that have been shown to improve the

prediction quality.41

3. Perform an iterative Bayesian optimisation process according to Algorithm 1

to obtain z∗i := argmin
z∈Z f̂(Z)GP
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GAN training: The architecture of the GAN used for training is defined in 6.1,

where both the discriminator and the generator are fully convolutional neural

networks, as defined by Radford et al.42 The latent space of the Generator is given

by a random normal distribution z ∼ N (0, 1), where z ∈ R
nz×l×l×l and l = 4,

therefore the total size of the input vector z is 64. The discriminator is composed

of five convolutional layers, each followed by a batch normalisation. The first four

layers use a leaky rectified linear unit (LeakyReLU) activation function and the last

layer implements a sigmoid activation function. The generator is composed of five

transposed convolutional layers43 which expand the spatial dimensions in each

step. Each layer is followed by a batch normalisation and all layers implement a

ReLU activation function, except for the last layer which uses a Softmax function.

The hyperparameters that define the GAN architecture were chosen as detailed

in20.

Table 6.1: Dimensionality of each layer in the GAN architecture for each porous

material (layers, dimensions, optimiser, input image size, number of training sam-

ples)

Layer Function
Input

channels

Output

channels

Spatial

Kernel
Stride Padding

Batch

normalisation

Activation

function

Discriminator

D1 Conv3d 3 16 4× 4× 4 2 3 Yes LeakyReLU

D2 Conv3d 16 32 4× 4× 4 2 2 Yes LeakyReLU

D3 Conv3d 32 64 4× 4× 4 2 2 Yes LeakyReLU

D4 Conv3d 64 128 4× 4× 4 2 2 Yes LeakyReLU

D5 Conv3d 128 1 6× 6× 6 1 0 No Sigmoid

Generator

G1 ConvTransposed3d 1 512 4× 4× 4 2 2 Yes ReLU

G2 ConvTransposed3d 512 256 4× 4× 4 2 2 Yes ReLU

G3 ConvTransposed3d 256 128 4× 4× 4 2 2 Yes ReLU

G4 ConvTransposed3d 128 64 4× 4× 4 2 2 Yes ReLU

G5 ConvTransposed3d 64 3 4× 4× 4 2 3 No Softmax

In order to overcome the instabilities commonly encountered during the

GANs training, a one-sided label smoothing stabilisation was implemented2.

This method consists on reducing the label 1 corresponding to real images by

a constant ε, such that the new label has the value of 1–ε. For all cases in this

work, ε has a value of 0.1. Additionally, a ratio of network optimisation for the

generator and discriminator was set to 2 : 1, which means that the generator

is updated twice while the discriminator is updated once at teach optimisation

step. A stochastic gradient descent is implemented for learning using the ADAM

optimiser44. The momentum constants are β1 = 0.5, β2 = 0.999 and the

learning rate is 2 × 10−5. All simulations are performed on a GPU (Nvidia TITAN



6.3. Method 189

Xp) and the training process is limited to 72 epochs (c. 48 h).

GP training: As previously stated, the purpose of the Gaussian Process is to

create a surrogate model f̂(z)GP that can perform a mapping from the latent

variables z as parameters of design, and the generated microstructure G(z) into

the microstructural and transport properties y = f(G(z)), as shown in Figure 6.1.

To create a surrogate model, a design of experiment based on a Latin Hypercube

Sampling was performed. A total of 50 64-dimensional vectors (i.e. 1× 4× 4× 4)

were sampled in the z space. With each of these vectors, a microstructure

was generated using the previously trained generator, and subsequently its

microstructural and transport properties were calculated using the open-source

Matlab software TauFactor.45 The training set for the GP was obtained from the

50 z vectors and their respective microstructural properties y as T = {Z,Y}.

Figure 6.1: Gaussian Process as surrogate model f̂(x)GP to map the correlation

between the latent space z and the estimated properties y

The GP is fully defined by its hyperparameters Θ = [w1, . . . , wD, σ
2
f , σ

2
ǫ ]. Since

the hyperparameters are unknown a priori, they are estimated by calculating the

NLL of the joint pdf, as detailed in equation 6.17. In order to avoid reaching

a local minima, a multi-start search is performed by sampling five initial points

determined by a Latin Hyper-cube Sampling (LHS). A gradient-based optimisation

is performed for each of these points using the bounded (Sequential Least Squares

Programming) SLSQP algorithm46 and the values with the minimum NLL are

chosen as the fitted hyperparameters Θ∗.
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Bayesian optimisation: The optimisation problem is defined by the objective

function f(z) which represents the microstructural or transport property to be

maximised as a function of the latent vector z. It is common practice to represent

a maximisation problem as the minimisation of the negative objective function,

defined as

z∗ = argmin
z∈Z − f(z)

s.t.[−5, 5]
(6.25)

where z is bounded between [−5, 5]. The value of f(z) is estimated by inserting

z into the trained generator, and calculating the microstructural or transport prop-

erties with a physics-based simulation. Since the microstructure-property prob-

lem is computationally expensive, an iterative sequential sampling is performed

in which at each iteration a Gaussian Process is built to map f(G(z)). A gradient-

based optimisation with the SLSQP algorithm is performed over the GP inference

equation (6.22) in order to obtain the new value of z∗ (equation 6.25).23,31,33,46

The surrogate objective function can be defined by the mean value of the GP pre-

diction (i.e. f̂GP := µGP), or an exploratory term that includes the variance can

be added in order to avoid reaching local minimum (e.g. f̂GP := µGP − ασGP).

In this work the latter is implemented, where the term α is a variable between 0

and 1.96, as defined by equation 6.26, to guarantee that the calculated values are

within a confidence interval of 95%.33

α = 1.96 ·

(

1.0−
i

imax

)

(6.26)

where i is the iteration number, and imax corresponds to the total number of

iterations, in this case 500. Once z∗ was found at each iteration, y∗ is calculated

with a physics-based model, and the new values of {z,y} are added to the

training set T = {Z,Y}. The GP is then updated with the new values of Z and

Y and the new hyperparameters are calculated. For each property optimised,

the maximum number of iterations were set to 500 as a stopping criteria. The

integrated generation-optimisation loop is shown in figure 6.2.
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Figure 6.2: Closed-loop generation-optimisation process: implementation of a

Bayesian optimisation algorithm to optimise the morphological and transport

properties y of the generated microstructure as a function of the latent space z

of the Generator.

6.3.3 Case study: Optimisation of a 3D Li-ion cathode

The objective of this work is the design of a Li-ion cathode with optimum

user-specified microstructural and transport properties based on an open-source

tomographic data of a Li-ion cathode synthesised using state-of-the-art methods8.

The Li-ion cathode is composed of three phases: particles of a ceramic active

material (nickel manganese cobalt oxide – NMC 532), a conductive organic binder

(polymer with carbon black) and pores. Ideally, a Li-ion cathode would have a

maximum relative diffusivity in the pore phase (Drel,pore) with percolating paths

that would enhance the liquid-state diffusion of Lithium ions. In this respect,

the maximisation of the relative diffusivity in the pore phase along one of the

three directions is of particular interest, since the transport of species is usually

predominant along one direction (from the current collector to the separator).

Additionally, a maximum specific surface area of the NMC phase (SSANMC) is

desired to enhance the electrochemical reaction at the active sites and allow a

sufficient utilisation of the NMC.

These properties, however, are correlated and therefore an optimisation

of the microstructure is non-trivial and would require an interplay between

these properties to be considered. For instance, an increase in (Drel,pore) would
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directly lead to an increase in (φpore), and thus a decrease in (φNMC), leading to

a lower energy density. Based on this, an “improved microstructure” in terms

of electrochemical performance would involve a trade-off between the available

microstructural and transport properties. Nonetheless a complete analysis of

microstructures with different properties, particularly an incremental analysis of

one varying property keeping the others constant, is of interest to understand the

effect of certain property in the electrode performance. It is therefore the purpose

of this study to generate microstructures with a wide range of microstructural

and transport properties to further produce databases of structures with specific

desired properties. In this work, only the specific surface area and the relative

diffusivity in the pore phase are chosen as properties to be optimised based on

their known effect on the battery performance and their indirect correlation.

Nonetheless it is important to point out that other microstructural properties,

such as the volume fraction and conductivity of the CBD phase, are relevant to

the battery performance and should be considered as future work. Additionally,

it is worth mentioning that the optimisation of the properties is performed as a

static process (i.e. time independent) and therefore the effect of these properties

(e.g. maximised SSANMC) in degradation processes are not accounted for.

To prove the method of generation-optimisation of electrode microstructure,

the following properties are maximised separately by defining a specific maximi-

sation function for each case:

• Specific surface area of NMC phase (SSANMC)

• Relative diffusivity of the pore phase (Drel,pore)

• Relative diffusivity of the pore phase along the x direction (Drel,pore,x)

• Relative diffusivity of the pore phase (Drel,pore) and Specific surface area of

NMC phase (SSANMC) simultaneously.

• Specific surface area of the NMC phase (SSANMC) constrained by a constant

phase volume fraction of the NMC phase φNMC

• Relative diffusivity of the pore phase (Drel,pore) constrained by a constant

porosity φpore

The following section shows the results of generating microstructure with
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maximised or user-specified properties according to the method described in this

section.
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6.4 Results and Discussion

6.4.1 Optimisation of microstructural and transport properties

As a first step, a set of microstructural properties were maximised without

constraints according to equation 6.25. This was performed in order to prove

the concept of a closed-loop generation-optimisation algorithm along various

properties essential for electrode design. Subsequently, a set of properties were

optimised (i.e. Drel,b and SSANMC) by constraining the secondary effect on the

other properties. Finally, a function is defined to generate microstructures with

graded porosity along one direction, for microstructures of size 643 and 1283

voxels. An analysis of the distribution of microstructural properties in the latent

space of the generator is further performed in order to understand and visualise

the existence of a correlation between these variables.

It must be pointed out that a full electrochemical model would be the ideal

cost function to optimise. However, a three-dimensional pore-scale simulation is

computationally expensive and beyond the scope of this work. For this reason, a

variety of microstructural properties are implemented as proxy metrics to obtain

improved microstructures more efficiently, and to demonstrate the capability of

GPs to combine loss contributions.

Specific Surface Area of the NMC phase

The objective function to maximise the specific surface area of the NMC phase

without constraints is defined as

f(z) = SSANMC (6.27)

The results of the maximisation process as a function of the number of

iterations is shown in the inserted plot in figure 6.3. It can be seen that as the

iterations increase, the specific surface area of the NMC phase also increases

without reaching a maximum since the optimisation is unconstrained. As shown

in the inserted plot, the iterative process is not smooth but rather oscillates

significantly. The reason for this is the existence of the search term when updating
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the Gaussian Process, which allows the exploration of further points within a trust

region of 95%. From each of the explored points throughout the optimisation

process, a set of microstructures can be generated, as shown in Figure 6.3, where

30 samples were generated from a latent vector zi, where i corresponds to the

iteration number. Each of these microstructures are unique, since z is different

for each sample, but are visually similar given that their respective z is within the

same region of the latent space, as will be shown in section 6.4.2, and therefore

have similar properties. This assertion indicates that a set of values in the latent

space is correlated with the properties of the generated microstructure. When the

samples of z are obtained from a normal pdf, the properties are in the same region

as the GAN training set. However, as the latent vector z is optimised and moves

further from the normal distribution, microstructure with different properties can

be generated.

Figure 6.3: Estimated SSA of 30 generated samples at points 0, 50, 150, 350

and 500 during the maximisation process. The inserted figure shows the complete

unconstrained maximisation of SSA of NMC phase for 500 iterations.

As previously stated, maximising the SSA of the active material, in this case

the NMC phase, is of interest to ensure a high utilisation of the active material and
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to enhance the electrochemical reaction. When an unconstrained optimisation is

performed, the averaged properties of the particles do not change, as is reported

in Table 6.2 for the mean particle diameter at each iteration, but the phase

volume fraction of the NMC phase increases. This is shown by comparing the SSA

and volume fraction of the NMC phase as a function of the number of iterations,

shown in Figure 6.4. An increase in NMC loading would lead to a higher capacity,

which is desirable for a “high energy” battery. However, as expected, when the

NMC volume fraction increases, the pore volume fraction is reduced, leading to a

reduced relative diffusivity in the pore phase Drel,pore. This property would result

in a reduced volume of percolating paths, causing an increased resistance due to

a limited transport of Lithium ions through the liquid electrolyte. Therefore, an

interplay between the effect of an enhanced specific surface area and a reduced

relative diffusivity must be considered in the electrode design and will be further

discussed in section 6.4.1.

Figure 6.4: Comparison between the estimated SSANMC, Drel,pore and φNMC at

iteration 0 and 500 for 30 generated samples

Although previous macro-homogeneous models have used mathematical cor-

relations between the SSANMC and φpore, the applicability of these correlations is

dependent on the type of microstructure and is based on idealised particle systems

with a homogeneous particle size (dp). An analysis of three different expressions

proposed to estimate the SSA as a function of the porosity is performed to compare

the estimated values using macro-homogeneous models and the SSA calculated

over the generated microstructures, as can be seen in Figure 6.5. The equations

used for comparison purposes are defined as:
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• Packed particles:

SSANMC =
6 · (1− φpore)

dp

(6.28)

• Grains47:

SSANMC =
4.23 · (1− φpore)

dp

(6.29)

• Li-ion modification10:

SSANMC =
6 · (1− φpore − φCBD)

dp

(6.30)

Where dp corresponds to the mean particle diameter, which was assigned the

value of 6µm based on Table 6.2.

Figure 6.5: Estimated SSANMC as a function of φpore using different correlations

compared to the image-based estimated values of the generated microstructures

with different φpore

From Figure 6.5, it can be seen that even though for the four cases the SSA

follows a negative slope with respect to the porosity, the values of SSA obtained

with equations 6.29 and 6.30 is underestimated with respect to the generated

ones in all cases. The values of SSA estimated with equation 6.28 for ideal packed

particles is the closest one to the generated dataset; nonetheless, the variability
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of the calculated SSA at a micro-scale level due to other microstructural factors

apart from the porosity, is not captured with these macro-homogeneous models.

Thus, the validity of these correlations can be assessed based on the generation of

large amount of non-idealised synthetic microstructures with different properties.

Table 6.2: Equivalent diameter and sphericity of Li-ion microstructures samples

during SSANMC unconstrained maximisation

Iteration
Equivalent

Sphericity
diameter /µm

0 6.45 0.85

100 5.51 0.87

250 5.15 0.87

350 5.57 0.88

500 6.25 0.87

Relative diffusivity of the pore phase

As described previously, an improvement in the design of “high power” Li-ion elec-

trodes would enable the fast transport of Lithium ions through the liquid elec-

trolyte in the porous phase. Thus, a maximum relative diffusivity in the porous

phase is desired to enhance the ionic transport. This unconstrained maximisation

problem is defined by the objective function:

f(z) = Drel,pore =
φpore

τ
(6.31)

The results of the unconstrained maximisation of Drel of the pore phase are

shown in from Figure 6.6.

The inserted 3D reconstructions show that the maximisation process changes

the transport properties, however the resulting microstructures are visually

indistinguishable from the training data. This is a property attributed to the

generator since it is trained to recreate synthetic microstructures with the same

probability distribtuion function as the real tomographic data. Comparing the

SSANMC of the initial and optimised microstructures as given in Figure 6.7, it is

seen that the SSANMC decreases as Drel,pore increased.
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Figure 6.6: Estimated Drel,pore of 30 generated samples at each 100 points during

the maximisation process. The inserged figure shows teh complete unconstrained

maximisation of Drel,pore for 400 iterations.

Figure 6.7: Comparison of the estimated SSANMC, Drel,pore, φpore, and τb for itera-

tion 0 and 400 of the unconstrained maximisation process of Drel,pore.

This inverse correlation between these two properties is expected and

analysed in the previous section. Additionally, a maximisation of Drel,pore could

be purely attributed to an increase in the pore volume fraction, however as it

can be seen in Figure 6.7, in comparing the properties of the initial and the

optimised microstructures after 400 iterations, not only is φpore increased, but

also the tortuosity factor τ is reduced. This indicates that the configuration of

the microstructure is manipulated through the optimisation of the latent space to
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enable the existence of less tortuous paths that can reduce the resistance of the

material towards an incoming diffusive flow.

These results show the existence of a strong correlation between the mi-

crostructural and transport properties and therefore highlight the need to imple-

ment constraints during the optimisation process. By considering the trade-off

between the SSA of the NMC phase and the Drel of the pore phase, a question

arises whether an equilibrium exists for maximising these two properties simulta-

neously, thus enhancing both the electrochemical reaction and the fast transport

of ions. The following section addresses this question.

Relative diffusivity of the pore phase and Specific Surface Area of the NMC

phase

The results from the previous sections (6.4.1 and 6.4.1) proved that the mi-

crostructure can be manipulated in order to maximise the microstructural and

transport properties that are known for increasing the cell performance. How-

ever, these properties are not independent and are strongly correlated. Although

previous authors have presented mathematical functions to correlate the effect of

tortuosity factor with porosity and SSA with porosity, these correlations present

deviations for different microstructures (as proved in section 6.4.1)4. Therefore,

in order to understand the effect of maximising mutually correlated properties,

an objective function must be defined which performs and optimisation of the de-

sired microstructural and transport properties while constraining the values of the

correlated properties. For the purpose of this work, to obtain a microstructure

with maximum values of SSANMC and Drel,pore, both properties must be optimised

simultaneously in the definition of f(z). Based on this, the objective function is

defined as

f(z) = β ·Drel,pore,norm + γ · SSANMC,norm (6.32)

where

Drel,pore,norm =
Drel,pore

Drel,pore,range

(6.33)

Drel,pore,range = Drel,pore,max −Drel,pore,min (6.34)
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SSANMC,norm =
SSANMC

SSANMC,range

(6.35)

SSANMC,range = SSANMC,max − SSANMC,min (6.36)

By definition, β, γ ∈ [0, . . . , 1] are coefficients that determine the weight of

each property in the objective function. These two coefficients are related to each

other by equation 6.37

β = 1− γ (6.37)

A sensitivity analysis was performed to evaluate the impact of each property in

the objective function by varying the values of β and γ from γ = {0.25, 0.5, 0.75}.

The results for each value of γ for an optimisation of 500 iterations are given in

Figure 6.8.

Based on the assumption that both properties contribute equally to the max-

imisation of the objective function, it would be predicted that a microstructure

with maximum SSANMC and Drel,pore simultaneously would be obtained by assign-

ing the value of γ = 0.5. However, from the results in Figure 6.8, it is seen that

a value of γ = 0.5 leads to an increase in SSANMC (positive slope) while keeping

the values of Drel,pore almost constant (slope approx. 0). By reducing the value of

γ to 0.25, the slope of the values of Drel,pore becomes positive and the slope of the

values of SSANMC becomes negative. The fact that the slope of SSANMC is inverted

indicates that a maximum in f(z) where both properties present a positive slope

would be found at a value of γ between 0.5 and 0.25. This analysis shows that

the objective function is more sensitive towards a variation in the SSANMC than a

variation in Drel,pore, and therefore a small increase in the coefficient of SSANMC

leads to a significant increase in the objective function. This is also indicative that

there is a more direct correlation between the latent space of the generator and

the SSANMC than with other properties. This finding is important to point out for

future work where the latent space could be implemented as parameters of design

of optimum microstructure.
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Figure 6.8: Results of estimated SSANMC and Drel,pore as a function of the iterations

number for different values of β: a) β = 0.25, b) β = 0.5, c) β = 0.75

When analysing the other two cases where γ = 0.75 and 0.25, it is important

to point out that even though the correlation between the two properties is in-

verse, by manipulating the coefficient of each property in the objective function

(i.e. β and γ) it is possible to obtain microstrcutures with a large improvement

in a specific property (maximisation with positive slope) while constraining the

decrease in the values of the correlated property. These results highlight the im-
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portance of considering the trade-off between properties values when optimising

and designing electrode microstructure.

Specific Surface Area of the NMC phase constrained by the NMC volume frac-

tion

One pathway to obtain a maximum SSANMC is to increase the volume fraction of

the NMC material (φpore). Although this is theoretically achievable and desired for

a “high energy” battery, an increase in the NMC loading leads to a decrease in the

porosity, and therefore a decrease in the Drel,pore, which implies a reduction in the

battery power. Therefore, in an attempt to balance the energy and power of the

battery, it is desired to optimise the accessible capacity for a fixed total loading

(i.e. fixed volume fraction of NMC material). Based on this, a maximisation of

the SSANMC must be constrained to maintaining the volume fraction of the NMC

material constant. Thus, the objective function to optimise is defined by

f(z) =
SSANMC

SSANMC,range

−
RMSE(φNMC − φNMC,mean)

φNMC,range

(6.38)

where the second term is a penalisation term to keep the volume fraction

constant, defined as

RMSE =

√

∑N
i=1 (φNMCi

− φNMCmean
)2

N
(6.39)

Equation 6.39 corresponds to the Root-Mean-Squared Error (RMSE) of φNMCi

fori = {1, . . . , N} where N constitutes the total number of samples, and φNMCmean

corresponds to the mean value of φNMC in the training set.

Previous authors have proposed an optimisation of the microstructure by

decreasing the particle size to enable a higher specific surface area. These works

however are based on idealised representations of the microstructure constituted

by spherical particles which can be decreased according to an objective function.

In this work the particle size is not a target of the objective function, but rather

the result of optimising the SSA. The optimisation is performed directly over the

architecture of the microstructure defined by the latent space, without targeting a
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particular property.

Figure 6.9: Results of estimated SSANMC and φNMC as a function of the iterations

number for the SSANMC maximisation process constrained by a constant φNMC.

The results show a confidence interval of 95%.

The results of the maximisation of the SSANMC constraining the NMC volume

fraction are shown in Figure 6.9. These results show an increase in the SSANMC

while the values of the φNMC remain constant. This proves that it is possible to max-

imise the specific surface area of microstructures without increasing the amount of

NMC material, which can be experimentally difficult. By comparing the estimated

average particle size and sphericity of the initial microstructure with the optimised

microstructure reported in Table 6.3, it is shown that the mean particle size does

not vary significantly. This implies that the maximisation of the SSANMC is not

always related to the particle size or sphericity, but can be a result of a redistribu-

tion of the active particles in the given space, or a change in the roughness of the

outer surface that lead to an increase in surface area. A change in roughness can

be seen by the change in particle sphericity reported in Table 6.3. Additionally,

even though the mean particle size remains constant throughout the optimisation,

it is possible that the distribution of particle sizes changes, which could potentially

lead to the generation of microstructures with a particular arrangement of particle

sizes which enhances the specific surface area.
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Table 6.3: Equivalent diameter and sphericity of Li-ion microstructures samples

during SSANMC maximisation constraining φg

Iteration
Equivalent

Sphericity
diameter /µm

0 5.31 0.88

100 6.13 0.85

200 7.03 0.81

300 5.73 0.83

500 6.43 0.81

Relative diffusivity of the pore phase constrained by the pore phase volume

fraction

As previously stated, an unconstrained maximisation of the relative diffusivity in

the pore phase (Drel,pore) leads to an increase in the porosity of the system, which

subsequently decreases the loading of active material. In this respect, a maximisa-

tion of the Drel,pore needs to be constrained by keeping the porosity constant. This

is defined as

f(z) =
Drel,pore

Drel,pore,range

−
RMSE(φpore − φpore,mean)

φpore,range

(6.40)

where the second term of the RHS of the equation corresponds to the RMSE

of the porosity φpore calculated for each of the N generated samples.

Figure 6.10: Results of estimated Drel,pore, φpore and φCBD as a function of the

iterations number for the Drel,pore maximisation process constrained by a constant

φpore. The results show a confidence interval of 95%.
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The results of the increase in Drel,pore as a function of the number of iterations

is shown in Figure 6.10. This shows that an increase in the Drel,pore is achieved after

500 iterations, while the φpore is kept constant. In comparing the constrained and

unconstrained maximisation, the positive slope of the constrained iterative process

is not as steep as the one for the unconstrained maximisation of Drel,pore, shown

in Figure 6.10. This proves the tight correlation between Drel,pore and φpore. Given

that the φpore is constant, it is rationalised that the maximisation of the relative

diffusivity is achieved by a decrease in the electrode tortuosity. This means that

the latent space optimisation allows a restructuring of the microstructure which

results in the opening of flow paths that enable the transport of lithium ions. An

additional analysis of the effect of the CBD during the constrained optimisation

is considered in this work. The purpose of the CBD is to provide mechanical

integrity to the electrode and conduct electrons. Thus, a change in the CBD load

would directly impact the conductivity of electrons. From figure 6.10 it is seen that

a constraint in the porosity leads to a fixed volume fraction of the CBD (and by

definition of volume fraction, the loading of active material φNMC is also constant).

Relative diffusivity of the pore phase along the x direction

A characterisation of the original microstructure shown elsewhere20 indicates that

the microstructure is isotropic and therefore all its properties are statistically the

same along the three directions (through-plane and in-plane). Nonetheless, it is

known that the transport of lithium ions during cycling is predominant along the

through-plane direction which consists of the transport from the membrane to the

current collector. Based on this, an improved relative diffusivity in the pore phase

is desired along this direction of transport, and therefore a maximisation of the

Drel,pore,x is considered as the objective function, defined as

f(z) = Drel,pore,x =
φb,x

τx
(6.41)

This equation does not constraint the increase of the Drel,pore along the other

two directions, nonetheless it favours an increase in the direction to be maximised

(i.e. x).

As seen in Figures 6.11 and 6.12, the Drel,pore along direction y and z remains
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Figure 6.11: Results of the estimated Drel,pore as a function of the iterations num-

ber for the three directions x, y and z for the unconstrained maximisation of

Drel,pore,x. The results show a confidence interval of 95%.

Figure 6.12: Results of estimated Drel,pore of 30 microstructure samples generated

at four points during the unconstrained maximisation process of Drel,pore,x.

constant throughout all iterations, until iteration 300, where a further increase in

the Drel,pore,x imposes an increase in Drel,pore,y and Drel,pore,z. In order to constrain

the Drel,pore to be constant along y and z directions, a penalisation term for each

direction is added to the objective function, as given by equation 6.42

f(z) = Drel,pore,x − RMSE (Drel,pore,y, Drel,pore,ymean
)− RMSE (Drel,pore,z, Drel,pore,zmean

)

(6.42)

where

RMSE =

√

∑N
i=1 (Drel,pore,yi −Drel,pore,ymean

)2

N
(6.43)
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Equation 6.43 constitutes the RMSE of Drel,pore,yi for i = {1, . . . , N} where

N constitutes the total number of samples, and Drel,pore,ymean
corresponds to the

mean value of Drel,pore,y in the training set. Equation 6.43 is also applicable for z

direction.

Figure 6.13: Results of the estimated Drel,pore as a function of the iterations num-

ber for the three directions x, y and z for the maximisation of Drel,pore,x constrained

by a constant value of Drel,pore,y and Drel,pore,z. The results show a confidence inter-

val of 95%

Figure 6.14: Results of estimated Drel,pore of 30 microstructure samples gener-

ated at four points during the maximisation process of Drel,pore,x constrained by a

constant value of Drel,pore,y and Drel,pore,z.

The results from Figure 6.13 and 6.14 show that by imposing two penalisa-

tion terms in the objective function corresponding to the increase of the relative

diffusivity in y and z, the maximisation of Drel,pore,x is achieved while Drel,pore,y and

Drel,pore,z are kept constant. In comparing Figure 6.11 and Figure 6.13, it is clear

that the increase in Drel,pore,x is not as steep when a penalisation terms is added in

the other two directions. This proves the tight correlation between the properties
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along each direction; however it also shows that the directionality of each prop-

erty can be treated independently and does not necessarily change the properties

along the other directions.

Graded porosity

Previous authors have shown an improved battery performance through the de-

sign of electrodes with graded porosity and graded particle size distribution7. This

graded properties are achieved through a direct manipulation of the tomographic

data by changing a specific set of voxels to increase or decrease the phase vol-

ume fraction. As an alternative method, this work proposes the implementation

of the closed-loop generation optimisation approach for the generation of new

microstructure with graded porosity or particle distribution. By implementing a

target volume fraction at the inlet and outlet walls (i.e. 2D slices at the inlet and

outlet of the 64 × 64 × 64 microstructure) and defining a linear space between

these points and the electrode length (i.e. 64 voxels), an objective function can

be defined to fit the volume fraction of each image to the target volume fraction.

This function is defined as

f(z) = RSME(φp,i, φlinspace,i) (6.44)

where p refers to the phase (i.e. pore, NMC or binder), and i corresponds to

the size of the electrode length. In this case the total length in voxels is 64, which

corresponds to the number of stacked 2D images obtained from tomographic data.

Figure 6.15 shows the initial and optimised volume fraction of the pore and

NMC phases as a function of the electrode length. It can be seen that the initial

image contained a random distribution of the phase volume fraction. After 30 iter-

ations, the resulting volume fraction is graded along a positive or negative slope in

the direction of the corresponding values of the linear space. These results show

that an optimisation of the z space not only leads to a change in the microstruc-

tural properties as homogenised values, but can also provide directionality to the

properties. This can be implemented for any property by defining an objective

function similar to equation 6.44.
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Figure 6.15: Porosity as a function of the electrode length along the direction to

be optimised

Implementation of the method to a larger microstructure

The method described in section 6.3.2 was implemented to generate volumes

of 643 voxels. Based on the fully convolutional architecture of the generator,

microstructures of any size can be generated by increasing the size of the latent

space. For instance, with a latent space of 1 × 4 × 4 × 4 = 64, a volume of 643 is

generated; however, a latent space of dimensions 1 × 6 × 6 × 6 = 216 is required

to generate a volume of 1283 voxels. The inconvenience with this is the estimation

of the covariance matrix K (given by equation 6.16), and the inversion of this

matrix to find the hyperparmeters of the GP.

During the first iterations where the size of the training set is 50, the input

X has dimensions of 216 × 50, and K has dimensions of 50 × 50. However, as

the number of iterations increase, the estimation of the new covariance matrix

becomes more expensive since Xnew includes all the previous data points and has

dimensions of 216×n, where n corresponds to the number of data points. The size

of K also increases at each time-step, with dimensions n × n, and therefore the

inversion process becomes more computationally expensive with each iteration.

A solution was proposed by Roberts et al.48 where the optimisation algorithm is

modified and previous iterations are forgotten, leaving a matrix of constant size

for each iteration. Nonetheless, given that the GP is updated at each iteration
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with the search term α that involves the GP variance, after a number of iterations

where the previous steps are forgotten the algorithm will search for the optimum

in places previously explored which are no longer contained in the updated

{Z,Y}. This is considered a disadvantage of the method in terms of efficiency

and therefore a larger number of iterations is required to reach an maximum.

Notwithstanding this inconveniences, to the author’s knowledge the proposed

method is the first one introduced for designing large microstructure with speci-

fied properties and of a size enough to contain the thickness of the entire electrode.

In order to demonstrate the implementation of this method to larger mi-

crostructures, a maximisation of the effective diffusivity in the pore phase is imple-

mented for a volume of 1283 voxels. The objective function is defined as equation

6.41. The results of the maximisation process for a maximum of 800 iterations

is shown in Figure 6.16.These results prove the effectiveness of implementing the

proposed closed-loop optimisation process for a large microstructure. From Fig-

ure 6.16 it is seen that the visually realistic microstrucutre with increased relative

diffusivity in the pore phase is achieved. Moreover, a larger set of microstructures

of the same size with different properties can be generated based on the optimisa-

tion process of the latent space. Thus, knowing the values of the vectors z which

are correlated to their respective values of of Drel,pore is equivalent to encoding the

large microstructures into a 64-digit ”code” where the 1283 microstructure can be

rapidly generated (∼ 3 seconds) with the generator. This allows a large amount

of three-dimensional data to be saved in a computationally inexpensive manner.

6.4.2 Analysis and visualisation of the microstructural proper-

ties as a function of the latent space

Up until now, this work has proved that an optimisation of the latent vector (z) of

the generator as parameters of design can lead to the generation of microstruc-

tures (G(z)) with customised properties. However, a question arises whether the

correlation of the latent space with the various microstructural properties can

be visualised or further implemented for the generation of new microstructures.

As an answer to this question and for visualisation purposes, the 64-dimensional

latent space was reduced to a 2-dimensional space by implementing a Principal
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Figure 6.16: Unconstrained maximisation of the relative diffusivity of the pore

phase Drel,pore for an image of size 1283 voxels.

Component Analysis (PCA).

PCA is a feature extraction technique that reduces the inputs into a smaller

dimensionality space. This method finds the directions of greatest variance in

the data set, which means the lines that capture most information of the data,

and projects each data point by its coordinates along each of these directions49.

Given a data set of n dimensions (i.e. x(1), x(2), . . . , x(n)), the data is projected

from an n−dimensional space to a p−dimensional space. From the standardised

data, the covariance matrix is calculated, as described in equation 6.12. The

eigenvalues (λ) of the covariance matrix are calculated, and the p largest

eigenvalues (λi=1,...,p) are selected. The p eigenvectors associated with the p

largest eigenvalues are called principal components. Finally the data is projected

on the space of dimension p according to the principal components. The first

principal component captures most of the information of the data, while the

second component captures less information, and so on.49

In this work, the 64-dimensional space is squeezed into two principal compo-

nents, as shown in Figure 6.17. This dimensionality reduction process is a ma-

jor task which could lead to uncorrelated data according to the microstructural

properties since these are not considered in the dimensionality reduction process.
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Figure 6.17: Two principal components of the 64-dimensional latent space as a

function of different microstructural and transport properties: a) porosity (φpore),
b) Specific surface area of the NMC phase (SSANMC), c) relative diffusivity of the

pore phase along the x direction (Drel,pore,x), d) relative diffusivity of the pore

phase (Drel,pore)

Nonetheless, in this case, it is clear that the two principal components of the la-

tent space are related to the electrode’s microstructural properties. Moreover, the

implementation of PCA allows the creation of a space where the neighbouring

principal components contain similar microstructural properties. Therefore, this

2D continuous space can be separated into regions of different properties, each

of which is associated with a region in the 64-dimensional latent space, and an

interpolation in the 2D space from one region to the other can be performed in

order to obtain microstructures with different properties.
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6.5 Conclusions

Exploring the effect of the latent space of GANs is one of the main topics of interest

for the Machine Learning community. However, only a few selected works have

implemented GANs for the stochastic reconstruction of microstructure. Thus, no

previous work has performed a detailed analysis of the effect of the latent space

of the generator in the resulting microstructural properties. This work introduces

a method for analysing the latent space as optimisation parameters the electrode

microstructure and implements this method for the design of microstructures of

Li-ion cathodes with user-specified properties.

For the design of electrodes, it is essential to obtain a function that defines

the geometric space and morphology of the microstructure. This work uses a

trained deep-convolutional generator as such a function that captures the pdf

that defines the microstructure. Based on this, an algorithm is introduced to

perform a closed-loop generation-optimisation process to enable the generation

of synthetic microstructure with optimum properties. It is demonstrated in this

work that the implementation of a Gaussian Process (GP) regression is able to

serve as a surrogate function that maps the latent space of the generator with

the microstructural and transport properties of the generated microstructure.

This process is key in the development of a closed-loop generation-optimisation

process of images with desired optimum properties. Based on the existence

of a GP, a Bayesian optimisation approach can be implemented for iteratively

searching for an optimum latent space that generates microstructures with a

particular set of properties.

It has been proved in this work that the method developed can be imple-

mented for the unconstrained maximisation of properties such as SSA and relative

diffusivity. Additionally, this work is able to perform a simultaneous optimisation

of correlated properties such as SSA and relative diffusivity by defining an

objective function that accounts for the trade-off between both properties. In a

similar way, it is possible to maximise these properties while constraining the

value of the phase volume fractions to be constant. This step is key for future

work in which the optimisation of microstructural properties is correlated with
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the experimental synthesis methods. To the author’s knowledge, this is the first

work that presents a methodology for defining a constrained function that can

optimise only a desired set of microstructural properties. Based on this, the results

of this work show the advantage of implementing this method due to its ability to

perform constrained and unconstrained optimisation of various microstructural

and transport properties. The effect of these improvements is expected to be

quantified with a full electrochemical simulation over the generated microstruc-

tures; however this falls beyond the scope of this work and is recommended as

future work.

It is important to point out that in the generation-optimisation process, an

exploration of the microstructural design space was performed in terms of some

morphological and transport properties. However, an “optimum microstructure”

was not established since the optimality depends on the target or purpose of the

electrode. As pointed out in section 6.4.1, a trade-off between certain properties

must be taken into account to define which property would have a preferred

weight over the other. In this context, it is worth mentioning that an optimum

microstructure would be the one that delivers the best functional performance

(high C rate, energy density, durability, etc.). Thus, as future work it is suggested

to implement a full electrochemical simulation that can provide a metric of

performance based on the generated microstructures and link this to the GP and

Bayesian optimisation process. This metric is expected to provide an insight into

which microstructural properties possess a higher impact on the performance in a

closed-loop optimisation process.

An analysis of the correlation between the latent space and the output

properties is performed by reducing its dimensions from a 64-dimensional space

to a 2D space. These results show that the solution of the microstructure with the

desired properties is not necessarily unique. Nonetheless, as can be seen from the

correlation of the latent space plots with the output properties, microstructures

with similar properties are located in areas close together, and an interpolation in

this continuous optimised latent space allows the generation of microstructures

with a large spectrum of properties.
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Even though it has been shown in this work that the manipulation of the

latent space leads to the generation of synthetic microstructures, this latent space

possess no physical meaning. Thus, there is also a need to correlate experimental

synthesis methods with microstructural and transport properties. A direct design

of the microstructure based on experimental data requires a vast dataset, which in

some cases is expensive. Correlating the latent space of a generative model with

synthesis methods could lead to a fast detection of the optimum synthesis methods

required to obtain improved electrodes.
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Chapter 7

Conclusions and further work

The overall aim of this project was the characterisation and optimisation of

electrode microstructures for energy storage devices. For this purpose, a series of

computational techniques were implemented, which involved the development

of multiphysics pore-scale models, the implementation of machine learning

techniques and the use of Gaussian Processes coupled with Bayesian optimisation

algorithms.

The specific objectives considered in this work were the following:

1. The development of a computationally inexpensive model based on a PNM

to correlate the electrode morphology with the system performance.

2. The stochastic reconstruction of multi-phase three-dimensional electrode mi-

crostructures through the implementation of GANs.

3. The development of a closed-loop generation- optimisation algorithm for the

design of electrode microstructures with customised properties.

The fulfilment of each of these objectives was described separately in Chapters

3 and 4 (item 1), Chapter 5 (items 2), Chapter 6 (items 3). The key outcomes from

each chapter are summarised below.

223
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7.1 Summary and conclusions

7.1.1 Chapter 3: A Pore Network Model for electrochemical

energy storage devices

A computationally inexpensive model based on a PNM was introduced to simulate

the coupled flow, mass and charge transport that occur within electrodes in elec-

trochemical devices. This model is able to represent the concentration and current

distributions inside the electrode and bridges the gap between volume-averaged

continuum models and pore-scale direct numerical simulations.

The methodology was validated with a cubic hypothetical PNM to represent

the anode of a VRFB. A comparison between the results obtained in this work

and those reported in the literature for a continuum model under the same

conditions prove that the model is able to produce similar results in terms of

averaged electrode potentials and overpotentials. Nonetheless the present model

is able to show microstrucutral details and provide insight into the effect of the

microstructure in the electrode transport and reactive processes.

From this chapter it is concluded that an implementation of a hypothetical

PNM that couples the flow, mass, reactive and electrophoretic transport is able to

represent the transport processes that occur within the electrode at a pore-scale.

This is a key step for understanding the microstructure-performance correlation

from a forward perspective, since it provides an insight into the effect of some

microstructural parameters, such as permeability and tortuosity, in the battery

performance at various SOC.

7.1.2 Chapter 4: PNM implementation for various VRFB elec-

trodes

The previously introduced PNM framework was implemented to simulate the

transport processes in a VRFB anode over pore-networks extracted from XCT data

of three different carbon-based electrodes: Toray 090, SGL 29AA, Freudenberg

and ELAT-H cloth. The results show that in electrodes with large pore-size
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diversity, the flow draws preferred paths that connect the largest pores across

the electrode length where convection is predominant. Contrary to this case, the

areas where convective flow is minimum are limited by mass transport as the

movement of species is almost purely diffusive. This non-uniform flow leads to

a non-uniform electrode utilisation, which results in the existence of “starved

zones” where the pores are not constantly replenished with fresh electrolyte. This

causes areas that discharge at a faster rate than the pores on routes with high

convective flow.

This analysis proves the advantage of using a pore-scale model over a

continuous volume-averaged one for representing with more detail the effects

of transport processes in electrode utilisation. Based on this, it is reasonable

to conclude that an analysis of the effect of electrode microstructure in mass

transport processes is crucial for the design of RFBs with improved performance.

These results represent the first visual showcase of how regions limited by low

convective flow affect the rate of discharge in an electrode.

7.1.3 Chapter 5: Generative Adversarial Networks for the re-

construction of three-dimensional multi-phase electrode

microstructure

This work presents a method for generating synthetic multi-phase three-

dimensional microstructures through the implementation of DC-GANs. This

method allows the model to represent the statistical and morphological properties

of the real microstructure, which are captured in the weights of the trained

generator networks.

The method was implemented for two datasets corresponding to a Li-ion

cathode and a SOFC anode. A statistical comparison of the microstructural

properties of 100 generated microstructures and 100 real sub-volumes showed

excellent agreement between the two datasets. Two particular highlights of this

work include the ability to generate arbitrarily large synthetic microstructural

volumes and the generation of periodic boundaries, both of which are of high
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interest to the electrochemical modelling community.

7.1.4 Chapter 6:Gaussian Processes and Bayesian optimisation

for the design of microstructures with optimum proper-

ties

This work introduces a method for analysing the latent space of a GAN as

parameters of design of the electrode microstructure of a Li-ion cathodes. This

work uses a trained generator as a function that captures the pdf that defines

the microstructure. Based on this, an algorithm is introduced to perform a

closed-loop generation-optimisation process to enable the generation of synthetic

microstructure with optimum properties. It is demonstrated in this work that the

implementation of a Gaussian Process (GP) regression is able to serve as a surro-

gate function that maps the latent space of the generator with the microstructural

properties of the generated microstructure. Based on the existence of a GP, a

Bayesian optimisation approach can be implemented for iteratively searching for

an optimum latent vector that generates microstructures with a particular set of

properties.

The method developed in this work is implemented for the unconstrained

maximisation of properties (i.e. specific surface area and relative diffusivity) as

well as for the simultaneous optimisation of correlated properties. This is per-

formed by defining an objective function that accounts for the trade-off between

both properties. In a similar way, a maximisation of these properties is performed

while constraining the value of the phase volume fractions to be constant, which

constitutes a major step towards the generation of microstructures with optimum

properties.

An analysis of the correlation between the latent space and the output

properties is performed by reducing its dimensions from a 64-dimensional

space to a 2D space. A correlation of the latent space plots with the output

properties show that microstructures with similar properties are located in areas

close together, and therefore an interpolation in this continuous optimised latent
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space allows the generation of microstructures with a large spectrum of properties.

This work represents a major breakthrough in the generation of optimum elec-

trode microstructure since it is able to capture the essence of the microstructure

in a lower dimensionality function. Based on this fully defined function it is possi-

ble to manipulate and optimise the microstructural properties that are able to in-

crease the electrode performance. In this way, this work provides for the first time

an analysis of the microstructure-properties correlation from a forward and back-

ward perspective, which is key for understanding the microstructure-performance

correlation as a closed-loop process.

7.2 Further work

This work merges a series of computational techniques, commonly used in other

scientific areas (i.e. geostatistics, machine learning, computer vision, etc), for the

characterisation and optimisation of electrode microstrucutres. Thus, the present

work hereby sets the basis for future opportunities in the area of electrode de-

sign and pore-scale modelling for the development of the next generation energy

storage technologies.

1. From Chapters 3 and 4 the following steps are recommended as future work:

• Implementing the PNM over XCT data of a REV to represent the com-

plete electrode of a RFB, and implement a flow-through simulation of

the whole cell, including the anode and cathode.

• Couple the PNM extracted from XCT images with a continuum model

that represents the flow through the channel in a RFB. Perform this

study with different channel configurations to estimate the effect of the

channel in the electrode utilisation and the transport processes within

the electrode.

• Implement a mathematical expression that involves a mass transfer co-

efficient to correlate the concentration at the bulk of the pore and at the

pore surface as a correction to the mixed-cell method.

• Explore the capabilities of extending the PNM algorithm for different
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types of batteries, such as Li-ion batteries, and analyse the effect of

changing the pore sizes during cycling due to degradation.

2. From Chapter 5, the following future work is recommended:

• Implement a modification of the vanilla-GAN divergence (i.e. Jensen-

Shanon divergence) with a Wasserstein divergence to implement

WGANs in order to avoid mode collapse during training and ensure

a larger variability in the generated data.

• Perform a stochastic optimisation of the GAN hyperparameters to en-

sure the implementation of an optimised architecture.

• Use of the method described in this work for different types of elec-

trodes, such as carbon-based electrodes.

• Extend the method presented in this work to the implementation of con-

ditional GANs to include microstructural properties in the training set

for the further generation of microstructures with different properties.

3. From Chapter 6, the following point are recommended for future work:

• The integration of experimental synthesis data in the training set to

perform a correlation between the various synthesis methods with the

output microstructural properties.

• Establish a correlation of the synthesis methods with the latent space to

a) provide physical meaning to the latent space; b) allow the interpola-

tion in the latent space to generate microstructures with real synthesis

parameters ;c) perform an optimisation in the latent space to generate

optimum microstructures with their respective synthesis parameters.

• Develop a full electrochemical model that can predict the electrode per-

formance and integrate it to the generation-optimisation algorithm.

7.3 Dissemination

7.3.1 Papers

A. Gayon-Lombardo, B. A. Simon, O. O. Taiwo, S. J. Neethling, N.P. Brandon. “A

pore network model of porous electrodes in electrochemical devices.” Journal of
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Energy Storage, 24, pp. 100736, (2019).

https://doi.org/10.1016/j.est.2019.04.010

A. Gayon-Lombardo, L. Mosser, N. P. Brandon, S. J. Cooper. “Pores for thought:

generative adversarial networks for stochastic reconstruction of 3D multi-phase

electrode microstructures with periodic boundaries.” npj Comput. Mater. 6, 82,

pp. 1-11 (2020). https://doi.org/10.1038/s41524-020-0340-7

7.3.2 Oral presentations

A. Gayon-Lombardo, L. Mosser, N. P. Brandon, S. J. Cooper. “Pores for thought:

generative adversarial networks for stochastic reconstruction of 3D multi-phase

electrode microstructures with periodic boundaries”, SE-lectrochem (2019)

A. Gayon-Lombardo, L. Mosser, N. P. Brandon, S. J. Cooper. “Pores for

thought: generative adversarial networks for stochastic reconstruction of 3D

multi-phase electrode microstructures with periodic boundaries”, 17th Sym-

posium on Modeling and Experimental Validation of Electrochemical Energy

Technologies - Modval (2020)

A. Gayon-Lombardo, L. Mosser, N. P. Brandon, S. J. Cooper. “Pores for

thought: generative adversarial networks for stochastic reconstruction of 3D

multi-phase electrode microstructures with periodic boundaries”, Machine Learn-

ing and batteries workshop MREX (2020)

A. Gayon-Lombardo, B. A. Simon, O. O. Taiwo, S. J. Neethling, N.P. Brandon.

“A pore network model of porous electrodes in electrochemical devices”, PRiME

meeting of The Electrochemical Society (2020)

A. Gayon-Lombardo, L. Mosser, N. P. Brandon, S. J. Cooper. “Pores for thought:

generative adversarial networks for stochastic reconstruction of 3D multi-phase

electrode microstructures with periodic boundaries”, PRiME meeting of The Elec-

trochemical Society (2020)
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tional Renewable Energy Storage Conference (2018)
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Appendix A

Flow chart of PNM iterative process

This chapter shows the flow chart that outlines the numerical algorithm imple-

mented in the development of a Pore Network Model for electrochemical energy

storage devices.
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Figure A.1: Flow chart graphically outlining the numerical algorithm.
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