
Parameterised Model Checking of
Probabilistic Multi-Agent Systems

By Edoardo Pirovano

Department of Computing

Imperial College London

May 2021

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing at Imperial College London.

ABSTRACT

Swarm robotics has been put forward as a method of addressing a number of scenarios

where scalability and robustness are desired. In order to deploy robotic swarms in safety-

critical situations, it is necessary to verify their behaviour. Model checking gives a possible

approach to do this; however, with traditional model checking techniques only systems of a

finite size can be considered. This presents an issue for swarm systems, where the number

of participants in the system is not known at design-time and may be arbitrarily large. To

overcome this, parameterised model checking (PMC) techniques have been developed which

enable the verification of systems where the number of participants is not known until run-

time. However, protocols followed by robotic swarms are often stochastic in nature, and this

cannot be modelled with current PMC techniques. This is the gap that this thesis aims to

overcome.

In particular, two parameterised semantics for reasoning about multi-agent systems are

extended to incorporate probabilities. One of these semantics is synchronous, whilst the

other is interleaved. Abstract models which overapproximate the systems being considered

are constructed using counter abstraction techniques. These abstract models are used to

develop parameterised verification procedures for a number of specification logics on both

bounded and unbounded traces. The decision procedures presented are shown to be sound,

and in some cases also complete. Further, the techniques are extended to allow modelling of

situations where agents may exhibit faulty behaviour, as well as scenarios where the strategic

capabilities of the participants needs to be verified.

The procedures are all implemented in a novel verification toolkit called PSV (Probabilistic

Swarm Verifier), built on top of the probabilistic model checker PRISM. This toolkit is used

to verify three case studies from both swarm robotics and other application domains.

ACKNOWLEDGMENTS

Firstly, I would like to thank my supervisor Alessio Lomuscio for his guidance. Without his

valuable insights into my work and impeccable feedback, this thesis would never have been

written. I would also like to thank all my colleagues, and in particular Michael Akintunde

and Panagiotis Kouvaros, for many useful discussions. I am very grateful to my friend

Benjamin Walker for a number of helpful comments on early drafts of my work. Finally, a

massive thank you to my parents for their motivation and support throughout my PhD.

3

DECLARATION OF ORIGINALITY

I hereby declare that this thesis and the research presented within it are my own work, except

where otherwise indicated. The work presented here has not been submitted for any other

degree or professional qualification.

4

COPYRIGHT

The copyright of this thesis rests with the author. Unless otherwise indicated, its contents are

licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence

(CC BY-NC).

Under this licence, you may copy and redistribute the material in any medium or format.

You may also create and distribute modified versions of the work. This is on the condition

that: you credit the author and do not use it, or any derivative works, for a commercial

purpose.

When reusing or sharing this work, ensure you make the licence terms clear to others

by naming the licence and linking to the licence text. Where a work has been adapted, you

should indicate that the work has been changed and describe those changes.

Please seek permission from the copyright holder for uses of this work that are not

included in this licence or permitted under UK Copyright Law.

5

Table of Contents

Page

1 Introduction . 13
1.1 Objectives . 14
1.2 Contributions . 15
1.3 Publications . 17
1.4 Thesis Outline . 18
1.5 Notation . 19

2 Background . 20
2.1 Probabilistic Model Checking . 20

2.1.1 Probability Distributions and Measures 21
2.1.2 Discrete Time Markov Chains . 22
2.1.3 Markov Decision Processes . 24
2.1.4 Applications to Multi-Agent Systems 26

2.2 Parameterised Model Checking . 28
2.3 Fault Tolerance . 34
2.4 Summary . 36

3 Unbounded Probabilistic Multi-Agent Systems 37
3.1 Synchronous UPMAS . 38
3.2 Asynchronous UPMAS . 45
3.3 Specifications for UPMAS . 54

3.3.1 PLTL . 54
3.3.2 PLTLk . 56
3.3.3 P[ATL*] . 59

3.4 Summary . 60

4 Verifying Bounded-Time Properties . 62
4.1 Parameterised Model Checking Problem . 62

6

4.2 Abstract Model . 63
4.2.1 Simulating Larger Systems . 67
4.2.2 Simulating the Abstract System . 73

4.3 Verification Procedure . 78
4.4 Summary . 80

5 Verifying Unbounded Properties . 81
5.1 Parameterised Model Checking Problem . 81
5.2 Abstract Model . 82
5.3 Verification Procedure . 95
5.4 Summary . 98

6 Extensions . 99
6.1 Strategic Specifications . 99

6.1.1 Parameterised Model Checking Problem 100
6.1.2 Bounding the Maximal Probability 100
6.1.3 Bounding the Minimal Probability . 103
6.1.4 Verification Procedure . 104

6.2 Faulty Systems . 106
6.2.1 Fault Injection . 106
6.2.2 Fully Faulty Systems . 108
6.2.3 Probabilistically Faulty Systems . 113

6.3 Summary . 119

7 Implementation and Evaluation . 121
7.1 Implementation Details . 121

7.1.1 Modelling SPMAS . 122
7.1.2 Modelling APMAS . 125
7.1.3 Modelling Faults . 126
7.1.4 Specifying Properties . 127

7.2 Case Studies . 128
7.2.1 Autonomous Robots . 128
7.2.2 Foraging Protocol . 130
7.2.3 Channel Jamming Scenario . 133

7.3 Summary . 136

7

8 Conclusions . 139
8.1 Summary of Contributions . 139
8.2 Comparison with Other Approaches . 140
8.3 Future Work . 142

8.3.1 Remaining Decision Problems . 142
8.3.2 Scalability and Applications . 143
8.3.3 Increased Expressivity . 144

References . 145

8

List of Figures

2.1 An example DTMC. 22

2.2 An example MDP. 26

3.1 An example SPMAS. 41

3.2 An example concrete system instantiated from an SPMAS. 44

3.3 An example APMAS. 49

3.4 An example concrete system instantiated from an APMAS. 53

4.1 An example abstract system from an SPMAS. 65

5.1 An example abstract system from an APMAS. 86

6.1 An example APMAS to illustrate faulty behaviour. 107

6.2 The result of applying fault injection to our example agent. 111

6.3 The APMAS for a probabilistically faulty system. 117

7.1 An example of PSV code for an SPMAS. 124

7.2 An example of PSV code for an APMAS. 125

7.3 An example of PSV code for describing faults. 126

7.4 A snippet of the APMAS code modelling the autonomous robots scenario. . 129

7.5 Our results for the autonomous robots scenario. 130

9

7.6 A snippet of the APMAS code modelling the foraging scenario. 131

7.7 Our results for the faulty foraging example. 133

7.8 The SPMAS code modelling the channel jamming scenario. 134

7.9 Graph showing the probability of messages being transmitted. 135

10

List of Tables

7.1 Our results for the non-faulty forgaging example. 132

7.2 Our results for the channel jamming scenario. 137

8.1 A summary of our theoretical results. 140

11

List of Algorithms

4.1 Decision procedure for the PMCP of SPMAS against PLTLk 78

5.1 Decision procedure for the PMCP of APMAS against PLTL 96

6.1 Decision procedure for the PMCP of SPMAS against P[ATL*] 105

6.2 Decision procedure for the PFTP . 119

12

13 Introduction

Chapter One

Introduction

Multi-agent systems (MAS) arise in a number of useful real-life scenarios, such as auctions

and Internet of Things applications. In this thesis, however, most of the scenarios we consider

will come from swarm robotics. Swarm robotics is an approach to performing a task by using

a large number of robots that coordinate to accomplish their common goal. Robotic swarms

have been put forward a good alternative to single robots in a number of scenarios [Şahin and

Winfield, 2008], including tasks such as surveillance and maintenance of industrial plants.

There are several properties of swarm systems that make them a better solution than

a single robot in many situations. One of these is scalability – the ability to operate with

different group sizes [Şahin, 2005]. Scalability allows for a different number of robots to be

deployed depending on the circumstances. For instance, one proposed application of swarm

robotics is the automated monitoring of the condition of pipelines [Parrott et al., 2020]. In

this application, the size of the swarm could be adapted depending on the length of the

pipeline and the desired frequency of monitoring.

Another key property of swarm systems is robustness – the ability to continue to operate

(usually at reduced functionality) despite failures in the individuals, or disturbances in the

environment. Some proposed applications of swarm systems depend entirely on robustness.

For instance, swarms have been put forward as a way of providing a communication network

in a battlefield [Şahin, 2005], where agents would re-arrange themselves if one is destroyed

14 Introduction

to keep the overall communication network intact. Even for applications where robustness

is not part of the specification, it is still usually a desirable property.

In safety-critical situations like the ones considered above, it is necessary to verify that

these swarm systems will behave as expected regardless of how many agents are present in

the system. One technique that has been put forward to verify the behaviour of complex

systems is that of model checking [Clarke et al., 1999]. Traditional model checking techniques

can only be used to verify systems of a finite size and, therefore, are not suited to verifying

properties of robotic swarms due to their unbounded nature. However, parameterised model

checking [Bloem et al., 2015] extends traditional model checking to enable the verification

of arbitrarily large systems.

A number of swarm protocols are stochastic in nature [Bonabeau et al., 1999; de Oca et al.,

2011]. Existing parameterised model checking techniques mostly do not consider probabilities

(with a couple of exceptions that are discussed in Section 8.2). Thus, with current techniques

it is not possible to verify probabilistic specifications in multi-agent systems such as swarms

that may be unbounded in size.

The overall aim of this thesis is to address this gap in current model checking

techniques by developing a method to verify multi-agents systems that are both

stochastic and possibly unbounded in size.

1.1 Objectives

This thesis will have three main objectives, corresponding to different stages in the research

being carried out.

1. Develop a semantics for reasoning about unbounded probabilistic MAS.

This objective will involve two parts. First, we will aim to define models for unbounded

probabilistic multi-agent systems (UPMAS). To achieve this we will extend existing

models for non-probabilistic MAS [Kouvaros and Lomuscio, 2016] to incorporate prob-

15 Introduction

abilities. Secondly, we will define a number of logics for reasoning about properties of

these UPMAS. To achieve this we will adapt existing logics from probabilistic model

checking [Hansson and Jonsson, 1994] to allow us to reason about UPMAS.

2. Develop decision procedures for our verification problems. Having defined

decision problems for the verification of UPMAS, we will aim to develop procedures

that solve them. To do this, we will develop abstract models based on counter ab-

straction [Pnueli et al., 2002] that overapproximate the behaviour of arbitrarily large

systems. As is typical in parameterised model checking, some of the decision problems

we consider will be undecidable [Apt and Kozen, 1986]. In these cases, we will nonethe-

less aim to obtain useful partial decision procedures. We will also formally prove the

soundness of all our decision procedures.

3. Implement and assess the methods we have developed. Having defined and

proved the corectness of our decision procedures, we will implement them on top of the

existing probabilistic model checker PRISM [Kwiatkowska et al., 2011]. Further, we

will assess their usability by considering a number of case studies from swarm robotics

and other application domains.

1.2 Contributions

This thesis makes contributions in a number of ways.

1. Conceptual

• We introduce synchronous probabilistic multi-agent systems (SPMAS), a seman-

tics for reasoning about synchronous multi-agent systems that are both proba-

bilistic and possibly unbounded in size.

16 Introduction

• We introduce asynchronous probabilistic multi-agent systems (APMAS), a seman-

tics for reasoning about asynchronous multi-agent systems that are both proba-

bilistic and possibly unbounded in size.

• We present the logics PLTL, PLTLk and P[ATL*] which are closely based on

existing logics but adapted to allow us to reason about probabilistic MAS.

• We introduce a framework for reasoning about faults in probabilistic multi-agent

systems.

2. Theoretical

• We introduce a procedure for checking SPMAS against PLTLk and prove that it

is sound and complete.

• We introduce a procedure for checking APMAS against PLTL and prove that it

is sound.

• We introduce a procedure for checking SPMAS against P[ATL*] and prove that

is sound.

• We introduce a procedure for injecting faults into an APMAS to obtain a faulty

system that can be verified using the above procedure.

3. Practical

• We introduce Probabilistic Swarm Verifier (PSV), a toolkit implementing the

procedures described above.

• We present implementations of three case studies in PSV and give results obtained

for these case studies.

17 Introduction

1.3 Publications

The results presented in this thesis have previously appeared, in a shorter form, in the

following papers [Lomuscio and Pirovano, 2018, 2019, 2020a,b]:

• A. Lomuscio, E. Pirovano. Verifying Emergence of Bounded Time Properties in Prob-

abilistic Swarm Systems. Proceedings of the 27th International Joint Conference on

Artificial Intelligence and 23rd European Conference on Artificial Intelligence (IJCAI-

ECAI18). Stockholm, Sweden. AAAI Press.

• A. Lomuscio, E. Pirovano. A Counter Abstraction Technique for the Verification

of Probabilistic Swarm Systems. Proceedings of the 18th International Conference

on Autonomous Agents and Multi-Agent Systems (AAMAS19). Montreal, Canada.

IFAAMAS Press.

• A. Lomuscio, E. Pirovano. Parameterised Verification of Strategic Properties in Prob-

abilistic Multi-Agent Systems. Proceedings of the 19th International Conference on

Autonomous Agents and Multi-Agent Systems (AAMAS20). Auckland, New Zealand.

IFAAMAS Press.

• A. Lomuscio, E. Pirovano. Verifying Fault-Tolerance in Probabilistic Swarm Systems.

Proceedings of the 29th International Joint Conference on Artificial Intelligence and the

17th Pacific Rim International Conference on Artificial Intelligence (IJCAI-PRICAI20).

Yokohama, Japan. AAAI Press.

This thesis builds on the papers above by combining the theoretical results into a unified

presentation, and giving full proofs rather than the proof outlines included in our papers.

Further, the individual tools presented in the papers are combined into one toolkit that

supports all the different systems previously considered.

The definitions from each paper are pulled out into Chapter 3. The main theoretical

results are then presented in the same order as they are listed above in Chapter 4, Chapter 5,

18 Introduction

Section 6.1, and Section 6.2 respectively. Finally, the experimental results of the papers are

again presented jointly in Chapter 7.

1.4 Thesis Outline

After introducing some of the notation that will be used in this thesis in the next section,

the rest of the thesis is structured as follows.

In Chapter 2 we give a review of existing literature, both in probabilistic model checking

and in parameterised model checking for multi-agent systems.

We introduce the theoretical background for this thesis in Chapter 3. In particular, we

define our two frameworks for reasoning about unbounded probabilistic multi-agent systems

(SPMAS and APMAS), and our specification logics for reasoning about their properties

which are based on existing logics but adapted to our specific needs.

Our main theoretical contribution is in Chapters 4 and 5. In Chapter 4 we give our proce-

dure for verifying SPMAS against PLTLk, and prove that is sound and complete. Similarly,

in Chapter 5 we give our procedure for verifying APMAS against PLTL, and prove that is

sound.

In Chapter 6 we give two extensions of our results. In particular, we give a procedure

for checking SPMAS against P[ATL*] (a richer logic that can describe strategic properties of

what the agents can achieve) and a procedure for creating a faulty APMAS from a non-faulty

one and a description of faults that may occur.

We present our toolkit PSV, which implements all the procedures described earlier, in

Chapter 7. In the same chapter, we also introduce three case studies and give verification

results for all of them obtained using PSV.

Finally, we conclude in Chapter 8 where we summarise the contributions we have made

and compare this thesis to related work in areas outside of model checking. We also highlight

some possible areas for future work in this closing chapter.

19 Introduction

1.5 Notation

Before continuing with the rest of this thesis, we introduce a few non-standard pieces of

notation that the reader may not have come across before. In particular:

• N1 is used to denote the set of all positive integers, i.e. N1 = N \ {0} = {1, 2, 3, . . .}.

• Given a positive integer k ∈ N1, we use k̇ to denote the set of all positive integers up

to and including k, i.e. k̇ = {1, . . . , k}.

• Given a finite set X, we use P(X) to denote the power set of X sometimes also written

as 2X , i.e.

P(X) = 2X = {A : A ⊆ X}

• 1̄k ∈ Nk
1 is the vector of length k composed entirely of ones, i.e. 1̄k = (1, . . . , 1). When

it is clear from context, we omit the k and just write 1̄.

20 Background

Chapter Two

Background

In this chapter, we summarise the main existing research in both probabilistic model check-

ing and parameterised model checking. We conclude by discussing why neither of these is

adequate for the verification of probabilistic swarm systems. This chapter aims to provide

a background in the work that this thesis will build upon in order to enable the reader

to understand the work presented and its novelty. We defer discussing less closely related

approaches and comparing to these until Section 8.2.

2.1 Probabilistic Model Checking

Probabilistic model checking is a large and well-studied field, with many different mod-

els being studied. In this section we will discuss discrete-time Markov chains (DTMCs)

and Markov decision processes (MDPs), and their use in the verification of multi-agent

systems, as these aspects are most relevant to the rest of the thesis. Other models exist

(such as continuous-time Markov chains [Kwiatkowska et al., 2007] and probabilistic timed

automata [Norman et al., 2013]) and applications exist in many other domains (such as sys-

tems biology [Kwiatkowska et al., 2010] and network protocols [Duflot et al., 2010]). We do

not cover these as they are not used in this thesis, and refer the reader to [Katoen, 2016]

for a more comprehensive survey. Efficient implementations of all the techniques discussed

21 Background

here exist in toolkits such as PRISM [Kwiatkowska et al., 2011] and STORM [Dehnert et al.,

2017].

2.1.1 Probability Distributions and Measures

We now cover some background definitions on probability. We will assume some familiarity

with the basics of probability theory, as can be found in a number of text books [Feller, 1968],

though we briefly summarise the important definitions below. Our first definition is that of

a discrete probability distribution, which assigns to each element of a set a probability.

Definition 2.1 (Discrete Probability Distribution). A discrete probability distribution over

a countable set S is a function µ : S → [0, 1] satisfying
∑

s∈S µ(s) = 1.

We use Dist(S) to denote the set of all discrete probability distributions over S. We now

go on to define the concept of a probability space.

Definition 2.2 (Probability Space). A probability space over a sample space Ω is a triple

(Ω,F , P r), where F ⊆ P(Ω) is a σ-algebra over Σ, i.e. satisfies:

1. ∅,Ω ∈ F

2. if A ∈ F , then Ω \ A ∈ F

3. if Ai ∈ F for all i ∈ N then ∪i∈NAi ∈ F

and Pr : F → [0, 1] is a probability measure over (Σ,F), i.e. satisfies:

1. Pr(∅) = 0

2. Pr(Σ) = 1

3. For all countable pairwise disjoint sequences A1, A2, . . . of elements from F it is the

case that Pr(∪i∈NAi) =
∑

i∈N Pr(Ai)

When working with a probability space (Ω,F , P r), we say that sets contained in F are

measurable.

22 Background

Figure 2.1 An example DTMC.

2.1.2 Discrete Time Markov Chains

We briefly summarise discrete time Markov chains (DTMCs). For more background on

DTMCs and their model checking see [Kwiatkowska et al., 2007; Baier and Katoen, 2008;

Kemeny et al., 1976].

Definition 2.3 (DTMC). A discrete time Markov chain (DTMC) is a tuple D = 〈S, ι, t, L〉

where S is a set of states, ι ∈ S is a distinguished initial state, t : S → Dist(S) is a transition

function that returns a probability distribution on the next state given the current one and

L : S → P(AP) is a labelling function on a set AP of atomic propositions.

For convenience, we will typically write t(s2 | s1) as shorthand for (t(s1))(s2), i.e. the

probability of transitioning to s2 from s1. We use this notation whenever we consider a

function that emits a probability distribution.

A path in a DTMC is a sequence of states s0s1s2 . . . such that for every i ∈ N it is the

case that t(si+1 | si) > 0. We use FPathD,s and IPathD,s respectively, to denote the set

of all finite and infinite paths in D starting from a state s. For a finite path we define its

probability by PD(s0 . . . sn) ,
∏n−1

i=0 t(si+1 | si). Following [Kemeny et al., 1976], this can be

23 Background

extended to a probability space on the set of all infinite paths. In particular, we can define

for each finite path its basic cylinder as follows.

Definition 2.4 (Basic Cylinder). Let ρ ∈ FPathD,s, then we define its basic cylinder:

Cρ , {ρ′ ∈ IPathD,s | ρ ∈ Prefs(ρ′)}

where Prefs(s0s1s2 . . .) = {s0, s0s1, s0s1s2, . . .} is the set of finite prefixes of an infinite

path.

Informally, the basic cylinder of a finite path is the set of infinite paths which are an

extension of it. We can then use this to define the probability space (IPathD,s,FD,s, P rD,s)

where FD,s is the smallest σ-algebra generated by the basic cylinders {Cρ | ρ ∈ FPathD,s}

and PrD,s is the unique measure such that PrD,s(Cρ) = PD(ρ) for all ρ ∈ FPathD,s.

Example 2.1. An example DTMC D = (S, ι, t, L) can be seen in Figure 2.1. Here, S =

{s0, s1, s2} and ι = s0. The transition probability is given as in the diagram. L(s0) = {start},

L(s1) = ∅, and L(s2) = {second}. Some properties that we could consider include:

• PrD,s0({π : π starts s0s1s2s0}) = 0.3 · 0.5 · 0.4 = 0.06

• PrD,s0({(s0s1s2)ω}) = lim
n→∞

PrD,s0({π : π starts (s0s1s2)n})

= lim
n→∞

0.3 · 0.5 · (0.4 · 0.3 · 0.5)n−1

= 0

We note that while all infinite paths in our example DTMC have probability 0, we can

still assign meaningful probabilities to sets of paths that we are interested in if they share

the same initial prefix.

DTMCs are typically checked against logics such as PCTL [Kwiatkowska et al., 2007].

One proposed algorithm for checking PCTL properties on DTMCs [Courcoubetis and Yan-

nakakis, 1995] works in a similar way to the model checking algorithm for CTL [Clarke et al.,

1986] by evaluating sets of states that satisfy sub-formulas and inductively building up to

24 Background

the formula being checked. This gives an algorithm that is linear in the size of the formula,

and polynomial in the number of states in the DTMC.

2.1.3 Markov Decision Processes

We now summarise some key aspects ofMarkov decision processes (MDPs) [Puterman, 1994].

We refer to [Baier and Katoen, 2008; Forejt et al., 2011] for more details. We mostly follow

the notation used in [Forejt et al., 2011].

Definition 2.5 (MDP). A Markov decision process (MDP) is a tupleM = 〈S, ι, A, P, t, L〉

where S is a set of states, ι ∈ S is a distinguished initial state, A is a finite set of actions,

P : S → P(A) is a protocol function (such that P (s) 6= ∅ for all s ∈ S), t : S×A→ Dist(S)

is a transition function and L : S → P(AP) is a labelling function on a set AP of atomic

propositions.

Intuitively, a transition from a state s of an MDP occurs by first non-deterministically

selecting some action a ∈ P (s) and then transitioning to a new state according to the

probability distribution given by t(s, a). MDPs thus give a way of describing systems that

include both probabilistic and non-deterministic choice, unlike DTMCs which do not capture

the latter.

A path in an MDP is a sequence of states and actions s0a0s1a1s2 . . . such that for all

i ∈ N it is the case that ai ∈ P (si) and t(si+1 | si, ai) > 0. We use FPathM (IPathM,

respectively) to denote the set of all finite (infinite, respectively) paths starting from the

initial state ι. For a finite path ρ = s0a0 . . . sn, we use last(ρ) , sn to denote its last state.

In order to reason about the probability of a path occurring in an MDPs, we need a way

to resolve the inherent non-determinism. This is captured by a strategy (also referred to as

an adversary, scheduler or policy in some literature).

Definition 2.6 (Strategy). Given an MDP M = 〈S, ι, A, P, t, L〉 a strategy for M is a

function σ : FPathM → Dist(A) such that for any finite path ρ ∈ FPathM, we have

25 Background

σ(a | ρ) > 0 only if a ∈ P (last(ρ)).

We denote by StratM the set of all strategies forM. Various classes of strategies may

be defined [Forejt et al., 2011]. Note that when maximising or minimising the probability of

reaching a target set of states, it is sufficient to consider strategies that are memoryless (only

make choices based on the final state of the path) and deterministic (only assign values from

{0, 1} to all actions). When it simplifies the presentation of our results we will consider such

subclasses of strategies; for memoryless strategies we will consider a single state S instead

of a path FPathM, and for deterministic ones we will return a single action from A instead

of a distribution Dist(A).

We now proceed to define the DTMC induced by a strategy on an MDP. Intuitively, this

describes the purely probabilistic system that results from fixing a given choice of strategy

in an MDP.

Definition 2.7 (Induced DTMC). Given an MDP M = 〈S, ι, A, P, t, L〉 and a strategy

σ : FPathM → Dist(A), the induced DTMC is given by Mσ = 〈FPathM, ι, t′, L′〉 where

t′ : FPathM → Dist(FPathM) is given by:

t′(ρ′ | ρ) ,

σ(a | ρ) · t(s | last(ρ), a) if ρ′ = ρas

0 otherwise

And L′ : FPathM → P(AP) is given by L′(ρ) , L(last(ρ)).

Notice that when considering memoryless strategies, instead of considering finite paths

FPathM in the induced DTMC, we can simply consider states S. We now go on to give an

example of an MDP, a strategy, and the DTMC that this induces.

Example 2.2. An example MDP M = 〈S, ι, A, P, t, L〉 can be seen in Figure 2.2. Here,

S = {s0, s1, s2} and ι = s0. We have A = {go, stay, tryMove,move} with P (s0) = {go},

P (s1) = {stay, tryMove}, P (s2) = {move}. The transition probability is given as in the

diagram. L(s0) = {start}, L(s1) = ∅, and L(s2) = {second}.

26 Background

Figure 2.2 An example MDP.

One possible memoryless and deterministic strategy σ : S → A for this MDP could be

given by σ(s0) = go, σ(s1) = tryMove, σ(s2) = move. The induced DTMC Mσ that results

from fixing this choice of strategy in the MDP is precisely the one from Example 2.1.

MDPs can also be verified against PCTL [Forejt et al., 2011]. As with DTMCs, a model

checking algorithm [Bianco and de Alfaro, 1995] has been developed that is similar to the

one for CTL [Clarke et al., 1986]. Once again, this algorithm is polynomial in the size of the

model and linear in the size of the formula.

2.1.4 Applications to Multi-Agent Systems

There has been much work in using probabilistic model checking to verify swarm systems of

a fixed size. For example, in [Gainer et al., 2016] a swarm protocol that aims to have drones

search for a target is analysed by probabilistic model checking. There, the semantics for the

scenario under consideration are expressed as DTMCs and properties in PCTL are checked

against these DTMCs. In a similar fashion, in [Konur et al., 2012] a foraging protocol in which

27 Background

drones retrieve food and bring it back to a nest is analysed by expressing it as a DTMC

and verifying PCTL properties against it. In [Winfield et al., 2008], probabilistic models

are constructed to reason about the behaviour of a swarm that is following an aggregation

protocol (that is, the robots in the swarm have the goal of grouping together and remaining

in a group).

In all these papers, counting abstractions are used which exploit the fact that all partici-

pants are behaviourally identical by not tracking the state of each agent but instead tracking

only the total number of agents in each state. This reduces the state space explosion, but

still limits the verification techniques to systems of a finite size. This thesis, on the other

hand, aims to address systems in which there may be an unbounded number of participants

at run-time.

In [Lukina et al., 2018], statistical model checking is used to analyse a flocking protocol.

Statistical model checking is a technique used when analysing probabilistic systems that

have large or infinite state spaces. In such systems, finding the exact probability of an

event occurring may be impossible or prohibitively expensive. Thus, the system is instead

simulated and a number of runs are carried out in order to estimate the probability to within

acceptable statistical guarantees.

One recent paper [Gainer et al., 2018] has addressed the problem of efficiently verifying

a number of closely related Markov chains by exploiting the similarity between them. This

work may prove useful in developing verification techniques for drone swarms. However, in

this thesis we intend to take a different angle and instead aim to develop techniques that will

allow checking of properties for all instances of a system, as has been done for some classes of

non-probabilistic systems by work on parametric model checking (discussed in Section 2.2).

There has been little work in the verification of probabilistic systems with a potentially

unbounded number of agents. The few pieces of work that have been carried out [Graham,

2008; Fournier, 2015] used semantics and case studies focussed on network protocols. It is

not clear if it is possible to adapt this work to model swarm algorithms, as we do in this

28 Background

thesis.

2.2 Parameterised Model Checking

In many scenarios it is not sufficient to check properties on systems with a fixed number of

agents; it is necessary for specifications to hold in instances of any size, since the number

of agents in a system may not be known at design time. This is the aim of parameterised

model checking.

Given a template description of a system that for any given size returns a concrete

instance of that size, the parameterised model checking problem (PMCP) involves checking

whether a certain specification holds in all (infinitely many) instances of the system [Bloem

et al., 2015]. This can be formalised as:

Definition 2.8 (PMCP). Let S be a template description of a system, which when provided

with an integer n giving the number of agents in a particular instantiation of the system

returns this concrete system. Let φ be a formula in a suitable specification logic. Then, the

PMCP is concerned with checking if:

∀n ∈ N1 : S(n) |= φ

Depending on the context, the details of the template and the specification logic can be

adapted. We discuss one semantics that is particularly useful for model checking of swarm

systems later in this section. In its most general formulation, the problem is known to

be undecidable [Apt and Kozen, 1986]. Nonetheless, given the problem’s importance, it is

desirable to identify decidable fragments of it and develop and implement algorithms to solve

these fragments. This has been a very active area of research, which we give a survey of in

this section.

Closely related to the work on parametric model checking is a line of work that considers

fault tolerance in parametric systems. We defer discussing this till Section 2.3.

29 Background

Early work in parameterised model checking focussed on networks of communicating

processes [Clarke et al., 1989]. These methods relied on restricting the communication pat-

tern between the processes, for example by arranging the processes in a ring and having

each process only communicate with its left and right neighbour, to restore decidability.

These restrictions, while useful to model certain network protocols, prove too limiting when

considering drone swarms where richer communication patterns are needed.

One notion that is often used to restore decidability in certain fragments of the PMCP

is that of a cut-off [Kaiser et al., 2010; Kouvaros and Lomuscio, 2013; Spalazzi and Spegni,

2020]. Informally, a cut-off for a given property is a threshold such that, for any system larger

than the cut-off, the property will hold iff it holds for the cut-off system. More formally:

Definition 2.9 (Cut-off). Let S be a parameterised system, and φ a formula. Then, c ∈ N1

is a cut-off for φ in S iff S(c) |= φ implies S(n) |= φ for all n ≥ c.

Notice that a cut-off identification procedure gives a decision procedure for the PMCP

by identifying a cut-off c and then checking all systems of size up to c. Thus, such a

procedure cannot exist in general. Indeed, there are systems and formulas for which no cut-

off exists, an example of which can be found in [Kouvaros and Lomuscio, 2016]. Nonetheless

such procedures exist for certain classes of systems and can be used to verify meaningful

properties.

Full details and correctness proofs for a number of cut-off identification procedures can

be found in [Kouvaros, 2015]. These have been implemented in a toolkit on top of MCMAS [Lo-

muscio et al., 2017] known as MCMAS-P [MCMAS-P, 2015]. We briefly summarise the results

here. The semantics considered are referred to as parameterised interleaved interpreted sys-

tems (PIISs). These are an extension of IIS [Fagin et al., 1995] to deal with systems of

unbounded size. They involve template agents (one for each type of agent in the system)

which give a description of the behaviour of an individual agent, and an environment which

captures the rest of the behaviour of the system.

30 Background

An agent template T = 〈L, ι, Act, P, t〉 contains a finite, non-empty set of local agent

states L together with a distinguished initial state ι ∈ L. The non-empty set Act = A ∪

AE ∪GS gives the actions that can be performed by the agents, which can be of a number

of (disjoint) different types. The actions are performed in compliance with a protocol P :

L → P(Act) that defines which actions are enabled in each state. The agent’s transition

function t : L × Act → L describes the evolution of the agent’s state: given its local state

and the action performed, it returns its new local state.

Each type of action involves different sets of agents that participate and update their

state accordingly. This is formalised in Definition 2.11. Informally, the types of action are:

• Asynchronous (A): Performed independently by one agent.

• Agent-environment (AE): Performed synchronously by one agent and the environment.

• Global-synchronous (GS): Performed synchronously by all agents in the system and

the environment.

In [Kouvaros and Lomuscio, 2016] two further types of actions (role-synchronous, and

multi-role) are also defined. As these are not used in this thesis, we do not discuss these.

The environment e = 〈Le, ιe, Acte, Pe, te〉 defines a finite, non-empty set of local states

LE, a distinguished initial state ιE ∈ LE, a non-empty set of actions ActE = AE ∪AE ∪GS ,

a protocol PE : LE → P(ActE), and a transition function tE : LE × ActE → LE.

Definition 2.10 (PIIS). A parameterised interleaved interpreted system (PIIS) is a tuple

S = 〈T, e,V〉, where V : L→ 2AP is a labelling function on the agent template’s states for a

set AP of atomic propositions.

Each PIIS describes an unbounded collection of concrete systems obtained by choosing

different numbers of agents in the system. Given a PIIS S and n ∈ N1 the IIS S(n) of n

agents is the result of the composition of n copies of T with the environment. Denote the set

of concrete agents instantiated from T by A = {1, . . . , n}. A global state g = 〈l1, . . . , ln, lE〉

31 Background

is a tuple of local states for all the agents and the environment in S(n); it describes the

system at a particular instant of time. We denote the set of all such global states by G. For

a global state g, we let g.i denote the local state of agent i in g and g.e denote the state of

the environment in g. The system’s global states evolve over time in compliance with the

global transition relation.

Definition 2.11 (Global Transition Relation). The global transition relation R ⊆ G×(Act∪

ActE)×G is defined as (g, a, g′) ∈ R iff one of the following holds:

• (Asynchronous). (i) a ∈ A ∪ AE; (ii) there is i ∈ A ∪ {E} s.t. a ∈ P (g.i) and

t(g.i, a) = g′.i; (iii) for all j 6= i, g.j = g′.j.

• (Agent-environment). (i) a ∈ AE; (ii) there is i ∈ A s.t. a ∈ P (g.i) and t(g.i, a) = g′.i;

(iii) a ∈ PE(g.e) and tE(g.e, a) = g′.e; (iv) for all j 6= i, j 6= e, g.j = g′.j.

• (Global-synchronous). (i) a ∈ GS; (ii) for all i ∈ A, a ∈ P (g.i) and t(g.i, a) = g′.i;

(iii) a ∈ PE(g.e) and tE(g.e, a) = g′.e.

Having defined the global transition relation, we can proceed to give the concrete seman-

tics describing the behaviour of a system S(n) composed of n agents and an environment.

Definition 2.12 (Concrete Semantics). Given a PIIS S and n ∈ N1, the IIS S(n) is a

tuple S(n) = 〈G, g0, R, V 〉, where G = Ln × LE is the set of global states, g0 = 〈ι, . . . , ι, ιE〉

is the initial global state, R is the global transition relation defined in Definition 2.11 and

V : G → 2AP×A is the labelling function on the global states defined by (p, i) ∈ V (g) iff

p ∈ V(g.i), for each p ∈ AP , i ∈ A, where AP is a finite set of atomic propositions.

Notice that for each atomic proposition p, a copy for each of the n agents is created and

a global state is labelled with (p, i) if the agent i is at a local state labelled with p by the

template labelling function.

32 Background

A path π is an infinite sequence π = g0a0g1a1g2 . . . such that (gi, ai, gi+1) ∈ R for every

i ≥ 0. Let π(i) denote the i-th state in π. The set of all paths originating from a state g is

denoted by Π(g).

Specifications for PIISs are typically expressed in the ACTL*K\X logic [Kouvaros and

Lomuscio, 2013]. This logic describes the universal fragment of the temporal-epistemic logic

CTL*K without the next time operator. Given a set AP of atomic propositions, and a set

A of agents, ACTL*K\X formulae are defined by the following BNF grammar:

φ ::= p | ¬p | φ ∧ φ | φ ∨ φ | A(φUφ) | A(φRφ) | Kiφ | ∀v:φ

where p ∈ AP and i ∈ A.

Informally, the epistemic modality Kiφ is read as “agent i knows that φ”. The temporal

modality A(φUψ) stands for “for all paths, at some point ψ holds and before then φ is true

along the path”; and A(φRψ) denotes “for all paths, ψ holds along the path up to and

including the point when φ becomes true in the path”. We now formally define satisfaction

for ACTL*K\X formulas.

Definition 2.13 (Satisfaction of ACTL*K\X). The satisfaction relation |= for an IIS S(n),

and an ACTL*K\X formula φ is inductively defined as follows:

(S(n), g) |= A(φ1Uφ2) iff for every π ∈ Π(g), for some i ≥ 0 (S(n), π(i)) |= φ2

and for all 0 ≤ j < i, (S(n), π(j)) |= φ1;

(S(n), g) |= A(φ1Rφ2) iff for every π ∈ Π(g), for all i ≥ 0, if (S(n), π(j)) 6|= φ1,

for all 0 ≤ j < i, then (S(n), π(i)) |= φ2;

(S(n), g) |= Kiφ iff for all g′ ∈ G, g.i = g′.i implies (S(n), g′) |= φ;

We omit the clauses for atomic propositions, conjunction and negation since these are

clear.

In [Kouvaros and Lomuscio, 2016], a number of decidability results are given for checking

fragments of PIIS against specifications expressed in ACTL*K\X. In particular, it is shown

that systems constructed using only asynchronous, global-synchronous and role-synchronous

33 Background

actions always have a cut-off that can be identified (hence, the PMCP is decidable for

such systems). It is also shown that sound but incomplete cut-off identification procedures

exist for systems constructed using asynchronous and agent-environment actions along with

either global-synchronous or multi-role actions. The procedures given work when there is an

agent-environment simulation in the system which, informally, means that the environment

behaves like a mutual exclusion controller with the actions representing access to a shared

resource.

The cut-offs considered thus far in the context of modelling swarm systems do not depend

on the property in question, so they give a cut-off for any formula. This type of cut-off is

known as a static cut-off, in contrast to a dynamic cut-off which depends on the property

being considered [Kaiser et al., 2010].

Another problem that frequently arises in real-life applications of verification techniques is

that of checking a system that has an infinite state space due to the presence of variables such

as integers with an infinite domain. Incomplete techniques based on predicate abstraction

have been put forward for verifying such systems [Lomuscio and Michaliszyn, 2015]. These

have also been combined with results on parameterised systems in order to obtain results on

systems with an unbounded number of agents which themselves can be in infinitely many

different states [Belardinelli et al., 2017; Kouvaros and Lomuscio, 2017a]. While interesting,

this line of work is only tangentially related to the problems we aim to address, so we do not

discuss this further.

Another problem of interest is the identification of emergent behaviours [Bonabeau et al.,

1999], sometimes referred to as emergent properties, in a parameterised system. Informally,

an emergent property is a property that is displayed once a sufficient number of agents is

present in the system. For example, a simple local protocol governing the behaviour of a

drone in a swarm may result in an overall flocking behaviour, as long as the number of the

agents in the formation is larger than a certain threshold [Winfield et al., 2005]. The number

of agents needed for a property to be displayed is known as the emergence threshold of that

34 Background

property. Formally:

Definition 2.14 (Emergence). Given a parameterised system S, a property φ is said to be

an emergent property of S if there is some k ∈ N1 such that for all n ≥ k it is the case that

S(n) |= φ. If this is the case, k is said to be an emergence threshold.

Emergence identification techniques have been developed for certain classes of sys-

tems [Kouvaros and Lomuscio, 2015] but there is still work to be done in this area. The

problem of identifying emergent properties is distinct but closely related to the parameterised

model checking problem. Indeed, it is possible to translate between the two.

2.3 Fault Tolerance

Inspired by safety-analysis techniques for software verification [Bozzano and Villafiorita,

2007], fault injection methods have been developed for models of swarm systems [Ezekiel

and Lomuscio, 2009, 2017]. These rely on adding transitions to the system that represent

faulty behaviour (for example, a variable not being updated or being updated erroneously).

In addition, extra atomic propositions are added that label where faults have occurred to

allow specifications to be written that account for these. These fault injection techniques

have been used to model real-life scenarios such as an underwater exploration vehicle that

may exhibit faults [Ezekiel et al., 2011].

In [Kouvaros and Lomuscio, 2017b], the work in fault injection was adapted to the PIIS

semantics in order to derive results on fault tolerance in a parameterised setting. In par-

ticular, the paper addressed the question of checking if it is always the case that a certain

property holds in systems of any size even if one in λ of the agents may exhibit faults (where λ

is a user-supplied constant). Formally, it addresses the parameterised fault tolerance (PFTP)

problem:

Definition 2.15 (PFTP). Let Sf be a parameterised system with two agent types: the first

35 Background

capturing the possible behaviours of a non-faulty agent and the second capturing the possible

behaviours of a faulty agent. Let λ ∈ N1 and φ a specification. Then, the problem is concerned

with checking if:

S((nn, nf)) |= φ for all nn, nf ∈ N1 with nf = bnn/λc

In the paper, an incomplete decision procedure for this problem is presented that works

by reducing it to an instance of the PMCP and then using existing incomplete techniques,

such as cut-off identification, to solve this. Notice a complete procedure for this problem

cannot exist since it would give a decision procedure for the PMCP, which is known to be

undecidable [Apt and Kozen, 1986].

The procedure is then used to verify the alpha algorithm with three types of faults

injected: direction failures (a robot adopts the wrong movement direction), detection failure

(a robot fails to detect some robots in its communication range), and motion failure (a robot

fails to move). The specification that is checked is the connectedness property [Dixon et al.,

2012] that “every non-faulty robot knows it will infinitely often be connected.” The algorithm

is found to be tolerant to one in four robots being faulty, but not to one in three.

We have since extended this work to address the related issue of efficiently identifying the

maximal ratio of agents that can exhibit faulty behaviour whilst still satisfying a specification

instead of simply checking the system with a fixed ratio of faulty agents [Kouvaros et al.,

2018]. This work is not reported on in this thesis as the systems studied in it are non-

probabilistic.

Another line of work addresses fault tolerance in distributed algorithms [John et al., 2013;

Aminof et al., 2018]. The semantics used in this context are distinct from those used to model

swarm algorithms as we do in this thesis. In particular, restrictions on the communication

patterns between processes make them not amenable to the verification of AI systems.

36 Background

2.4 Summary

In summary, work has been carried out separately in the fields of parameterised and prob-

abilistic model checking. In the former, this has enabled verification of systems with an

unbounded number of agents, which has led to the verification of a number of swarm proto-

cols in settings where the number of agents is not known at design time. In the latter, it has

enabled verification of meaningful properties of probabilistic systems with a fixed number of

agents. While efficient techniques mean that large systems can be verified quickly, they still

cannot give any guarantees about systems of sizes larger than those considered.

Limitations. The main gap in existing research, in our opinion, is that the techniques

developed give no way to verify that desirable properties of probabilistic swarm algorithms

hold regardless of the number of agents in the swarm. While it is possible to strip away the

probabilities in a model of the system and replace them with non-determinism, this will often

yield a model in which properties of interest that require probabilities cannot be expressed.

37 Unbounded Probabilistic Multi-Agent Systems

Chapter Three

Unbounded Probabilistic

Multi-Agent Systems

In this chapter, we will present two semantics for reasoning about unbounded probabilistic

multi-agent systems (UPMAS); that is, stochastic systems that may contain an arbitrarily

large number of participants. Our first semantics will be a synchronous one, with agents

choosing actions in rounds and then all performing their action simultaneously. In contrast,

our second semantics will be an asynchronous one in which agents can act independently

(although it will also possible for them to synchronise with other agents through special

actions). After presenting these semantics we will go on to define several logics for expressing

probabilistic properties of our systems.

The asynchronous semantics we consider second will be more expressive, and enable the

modelling of cases where agents typically act independently such as the foraging scenario

described in Section 7.2.2. However, the synchronous semantics we describe first will allow

us to obtain more decidability results and more naturally model scenarios where interactions

occur in fixed rounds, such as the channel jamming scenario considered in Section 7.2.3.

38 Unbounded Probabilistic Multi-Agent Systems

3.1 Synchronous UPMAS

Our model for synchronous probabilistic multi-agent systems (SPMAS) will be made up of

a number of agent templates, which capture the possible different behaviours of the par-

ticipants in the system (there may be arbitrarily many of each type) and an environment,

which captures the rest of the state of the system. In particular, our system will be a tuple

S = 〈T , E,V , VE〉 where T = {T1, . . . , Tk} is a finite set of different possible behaviours

of participants in the system (noting that for each type of behaviour there may be an un-

bounded number of agents exhibiting this behaviour), E represents the behaviour of the

environment, V = {V1, . . . , Vk} defines what atomic propositions hold in different states for

each type of agent, and VE defines what atomic propositions hold for the environment.

We begin by defining the agent templates.

Definition 3.1 (Synchronous Probabilistic Agent Template). A synchronous probabilistic

agent template is a tuple Ti = 〈Si, ιi, Acti, Pi, ti〉 where:

• The finite set Si 6= ∅ represents the agent’s local states.

• ιi ∈ Si is a distinguished initial state.

• Acti 6= ∅ is a finite set of possible local actions, where we assume a null action ε ∈ Acti

exists.

• The agent’s protocol function Pi : Si → P(Acti) gives the set of enabled actions in each

state. Note we assume that for all s ∈ Si we have ε ∈ Pi(s), i.e. the null action is

always possible.

• The agent’s transition function ti : Si×ActE×P(∪j∈k̇Actj)×Acti → Dist(Si) returns a

distribution on the agent’s next state given its current state, the environment’s action,

the set of actions performed by all the agents (including the one performed by the agent

being considered) and the action performed by this agent at this time-step. We assume

39 Unbounded Probabilistic Multi-Agent Systems

that, for all s, X and aE, it is the case that:

ti(s | s, aE, X, ε) = 1 (3.1)

We also assume that, for all s′, s, X, aE and a:

ti(s
′ | s, aE, X, a) = ti(s

′ | s, aE, X ∪ {ε}, a) (3.2)

Notice that by Equation (3.1) it is the case that agents performing the null action never

change state. Further, by Equation (3.2), other agents cannot observe that the null action

has been performed. These two conditions ensure that agents can always choose to behave as

if they are not there, and not affect the other agents. This will be critical for our procedure

to model check strategic properties in Section 6.1.

Notice that we have assumed that there is a unique initial state, rather than a proba-

bility distribution on the initial states as is sometimes done in probabilistic model checking

literature. This simplifies the presentation of some of our results.

We now define the environment the agents interact with.

Definition 3.2 (Synchronous Probabilistic Environment). A synchronous probabilistic en-

vironment is a tuple E = 〈SE, ιE, ActE, PE, tE〉 where:

• The finite set SE 6= ∅ represents the environment’s local states.

• ιE ∈ SE is a distinguished initial state.

• ActE 6= ∅ is a finite set of possible environment actions.

• The environment’s protocol function PE : SE → P(ActE) gives the set of enabled

actions in each state.

• The environment’s transition function tE : SE × P(∪j∈k̇Actj) × ActE → Dist(SE)

returns a distribution on the environment’s next state given its current state, the actions

performed by all the agents and the action it performed.

40 Unbounded Probabilistic Multi-Agent Systems

We assume that, for all s′E, sE, X and aE:

tE(s′E | sE, X, aE) = t(s′E | sE, X ∪ {ε}, aE) (3.3)

Note that, by Equation (3.3), the environment cannot observe whether a null action

was performed by any of the agents, thus agents performing null actions do not affect the

transition of the system in any way. Having defined its key components, we now define a

probabilistic MAS as consisting of a number of agent templates and an environment, together

with labelling functions that define what atomic propositions hold in different states of the

system.

Definition 3.3 (Synchronous Probabilistic Multi-Agent System). A synchronous probabilis-

tic multi-agent system (SPMAS) is a tuple S = 〈T , E,V , VE〉, where T = {T1, . . . , Tk} is a

finite set of probabilistic agent templates, E is an environment, V = {V1, . . . , Vk} is a set of

agent labelling functions Vi : Si × SE → P(AP), and VE : SE → P(AP) is an environment

labelling function.

An example SPMAS can be seen in Figure 3.1. Here, agents of the first type begin in

an initial state 0 where they can perform an a action, which with equal probability takes

them either back to state 0 or to state 1. In state 1, agents can perform the b action that

does not change their state. Similarly, agents of the second type begin in state 2. Here,

they can perform action c which takes them to state 3 if some other agent has performed

b and back to 2 otherwise. In state 3 the agent performs action d and does not change

state. The environment is similarly defined except that in order for a transition to change

the environment’s state the d action must have occurred.

A SPMAS S gives a description of an infinite number of concrete systems that can be

obtained by fixing a number n̄ ∈ Nk
1 of agents in it with n̄i of type i for each i. We will refer

to the j-th agent of type i by (i, j) and denote the set of all agents by

A(n̄) , {(i, j) ∈ N1 × N1 | 1 ≤ i ≤ k, 1 ≤ j ≤ n̄i}.

41 Unbounded Probabilistic Multi-Agent Systems

(a) An example synchronous probabilistic agent template T1.

(b) An example synchronous probabilistic agent template T2.

(c) An example environment E.

Figure 3.1 An example SPMAS. We use X to denote the set of actions performed
by all the agents. Note that for clarity the null actions ε are omitted.

42 Unbounded Probabilistic Multi-Agent Systems

For a system of size n̄ ∈ Nk
1, a global state g = 〈s̄1, . . . , s̄k, sE〉 is a (k + 1)-tuple. The

vector s̄i ∈ (Si)
n̄i gives the local state of the n̄i agents of type i. The state sE ∈ SE gives

the local state of the environment. Thus, the global state encodes all the information to

describe the system at a particular instant of time. Let Gn̄ denote the set of all such global

states. For a global state g = 〈s̄1, . . . , s̄k, sE〉 ∈ Gn̄ we write g.(i, j) to denote the local state

of the j-th agent of type i in g, i.e. (s̄i)j and g.E to denote the state of the environment in

g, i.e. sE.

An action in this model will correspond to an action of each of the agents, with all

agents taking actions at each time step. For a system of size n̄ ∈ Nk
1, a global action

a = 〈ā1, . . . , āk, aE〉 is a (k + 1)-tuple. The vector āi ∈ (Acti)
n̄i gives the actions of the n̄i

agents of type i, while aE ∈ ActE gives the action of the environment. We denote by Actn̄

the set of all such global actions. As with global states, we use a.(i, j) to denote the action

of the j-th agent of type i in a and a.E to denote the action of the environment in a.

States in the concrete model will be labelled according to the definition given below.

Definition 3.4 (Global Labelling Function). The global labelling function Vn̄ : Gn̄ →

P((AP ×A(n̄)) ∪ AP) is defined by:

Vn̄(g) , {(p, (i, j)) ∈ AP ×A(n̄) : p ∈ Vi(g.(i, j), g.E)} ∪ VE(g.E)

Notice our labelling function creates a new atomic proposition (p, (i, j)) for each atomic

proposition p and agent (i, j) that holds precisely in the global states where p holds for the

local state of agent (i, j). Additionally, atomic propositions p that hold for the environment

are added to the set without such a label.

We now define how to obtain a concrete model giving the behaviour of a system in which

the number of agents of each type has been fixed. This will be encoded as a Markov decision

process (see Section 2.1.3).

Definition 3.5 (Concrete Model). Given an SPMAS S, a concrete model of n̄ agents for

43 Unbounded Probabilistic Multi-Agent Systems

S is an MDP S(n̄) = 〈Gn̄, ιn̄, Actn̄, Pn̄, Vn̄〉, representing the behaviour of a global system

composed of n̄ agents and the environment, where:

• The global state ιn̄ = ((ι1, . . . , ι1), . . . , (ιk, . . . , ιk), ιE) ∈ Gn̄ is the initial global state in

which every agent and the environment are in their respective initial states.

• The protocol function Pn̄ : Gn̄ → P(Actn̄) is defined by:

Pn̄(g) , {a ∈ Actn̄ | ∀(i, j) ∈ A(n̄) : a.(i, j) ∈ Pi(g.(i, j)), a.E ∈ PE(g.E)}

• The transition probability tn̄ : Gn̄ × Actn̄ → Dist(Gn̄) is given by:

tn̄(g′ | g, a) , tE(g′.E | g.E,X, a.E) ·
k∏
i=1

n̄i∏
j=1

ti(g
′.(i, j) | g.(i, j), a.E,X, a.(i, j))

where X , {a.(i, j) | (i, j) ∈ A(n̄)} is the set of actions performed by at least one

agent.

• The labelling function Vn̄ is as in Definition 3.4.

An example of a concrete system can be seen in Figure 3.2. In the initial state, the agent

of the first type can perform the a action and with probability 0.5 transition to a local state

of 2. The other agent and environment can perform actions c and e, respectively, and do

not change state. Once in global state (1, 2, 4) the system behaves deterministically with

the second agent transitioning to state 3 after performing action c at the same time as the

first agent performs b. Following this, the second agent will perform action d causing the

environment to move to state 5.

For a richer example of an SPMAS with more states that models a real-life scenario, we

refer the reader to the channel jamming scenario described in Section 7.2.3.

Before proceeding we should check that the definition we have given for the transition

probability function is a valid probability distribution. We do so below.

44 Unbounded Probabilistic Multi-Agent Systems

Figure 3.2 The concrete system corresponding to instantiating the SPMAS in
Figure 3.1 with one agent of each type. Note that transitions involving the null
action ε are omitted for clarity; the full system with null transitions has more
choices of transitions and reachable states.

Observation 3.1. Given an SPMAS S and n̄ ∈ Nk
1, for all g ∈ Gn̄ and a ∈ Pn̄(g) it is the

case that: ∑
g′∈Gn̄

tn̄(g′ | g, a) = 1

Proof. We can compute that∑
g′∈Gn̄

tn̄(g′ | g, a)

=
∑
g′∈Gn̄

(
tE(g′.E | g.E,X, a.E) ·

k∏
i=1

n̄i∏
j=1

ti(g
′.(i, j) | g.(i, j), a.E,X, a.(i, j))

)

=
∑
sE∈SE

tE(sE | g.E,X, a.E) ·
∑

g′∈Gn̄:g′.E=sE

(
k∏
i=1

n̄i∏
j=1

ti(g
′.(i, j) | g.(i, j), a.E,X, a.(i, j))

)

=
∑
sE∈SE

tE(sE | g.E,X, a.E) ·
k∏
i=1

n̄i∏
j=1

(∑
s′∈Si

ti(s
′ | g.(i, j), a.E,X, a.(i, j))

)

= 1

with the first equality following by splitting the sum on its change to the state of the

environment and the state of the agents and rearranging, and the second equality following by

45 Unbounded Probabilistic Multi-Agent Systems

splitting the sum on the states of the individual agents. Finally, the last equality follows by

noting that tE and all the ti are valid probability distributions so the sums being multiplied

are all 1.

Notice that before we can reason about the probability of a path occurring in this concrete

system we need to resolve the non-determinism of the choice of actions by the agents and

environment. We do this with the definition below.

Definition 3.6 (Agent Strategy). Given a concrete system S(n̄), a strategy for an agent

(i, j) ∈ A(n̄) is a function σi,j : Gn̄ → Dist(Acti) such that for all g ∈ Gn̄ it is the case that

σ(a | g) > 0 implies a ∈ Pi(g.(i, j)).

We note that the strategy of agents uses the full global state Gn̄ and thus our agents

have full observability on the state of the concrete system. This differs from the partial

observability choice often made in multi-agents systems literature, and is required to obtain

our decidability results.

A strategy for the environment σE is similarly defined. Given a set of agents, possibly

including the environment, A ⊆ A(n̄) ∪ {E} we use σA to denote a strategy profile giving a

strategy for each of these. We use Ac , (A(n̄) ∪ {E}) \ A to denote the complement of A.

When we fix a joint strategy σ for all the agents and the environment then the non-

determinism in the system is eliminated and the system becomes a discrete time Markov

chain as described in Definition 2.7.

3.2 Asynchronous UPMAS

We begin by defining an asynchronous probabilistic multi-agent system. An APMAS is com-

posed of a finite number of agent templates, which describe the different possible behaviours

of individual agents and an environment which captures the behaviour of the other parts of

the system.

46 Unbounded Probabilistic Multi-Agent Systems

Definition 3.7 (Asynchronous Probabilistic Agent Template). An asynchronous probabilis-

tic agent template is a tuple Ti = 〈Si, ιi, Acti, Pi, ti〉 where:

• The set Si is a finite set of agent local states.

• ιi ∈ Si is a distinguished initial state.

• Acti = Ai ∪ AE i ∪ GS is the non-empty set of actions that can be performed by

the agents. These may either be asynchronous actions, agent-environment actions

or global-synchronous actions. Each type of action implies a different communication

pattern between the agents, as will be outlined in Definition 3.11.

• The agent’s protocol function Pi : Si → P(Acti) defines which actions are enabled at a

given state.

• The agent’s transition function ti : Si×Acti → Dist(Si) describes the evolution of the

agent’s state: given a local state s and an action a it returns a probability distribution

on the state that will be reached when performing action a from state s.

The agent template is closely related to MDPs (see Section 2.1.3), suitably extended to

encode action types to account for synchronisation purposes.

One particular class of agent templates that is worthwhile to distinguish is those that

transition deterministically when performing a global-synchronous action. We formalise this

below.

Definition 3.8 (Deterministic-synchronous Agent Template). A probabilistic agent template

Ti = 〈Si, ιi, Acti, Pi, ti〉 is said to be deterministic-synchronous if it is the case that whenever

a ∈ GS then ti(s′ | s, a) ∈ {0, 1} for all s, s′ ∈ Si.

Throughout this thesis, we will assume that all the agent templates being considered are

deterministic-synchronous. We note that this is not a very severe restriction to our templates

since when designing a model for a system one could choose to use asynchronous actions after

47 Unbounded Probabilistic Multi-Agent Systems

a global synchronous action has been performed to model any stochastic behaviour. As we

will see in Section 7.2, many realistic scenarios can be modelled even with this restriction.

We now proceed to define the environment that the agents operate in.

Definition 3.9 (Environment). An environment E is a tuple E = 〈SE, ιE, ActE, PE, tE〉

where:

• SE is a finite set of local states,

• ιE ∈ SE is a distinguished initial state,

• ActE is a non-empty set of actions ActE = AE ∪
(⋃k

i=1 AE i

)
∪GS ,

• The environment protocol PE is a function PE : SE → P(ActE),

• tE : SE × ActE → Dist(SE) is a transition function.

Once again, the environment is similar to an MDP but has been extended to encode

different action types. We can now go on to define APMAS, which will be made up of a

finite number of agent templates together with an environment and labelling functions which

capture what atomic propositions hold at different points of the system’s evolution.

Definition 3.10 (APMAS). An asynchronous probabilistic multi-agent system (APMAS)

is a tuple S = 〈T , E,V , VE〉, where T = {T1, . . . , Tk} is a non-empty and finite set of

probabilistic agent templates, E is an environment and V = {V1, . . . , Vk} is a set of valuation

functions Vi : Si×SE → P(AP), one for each agent template, to a set of atomic propositions

AP . Finally, VE : SE → P(AP) is a valuation function for the environment to the atomic

propositions.

Notice that we assume that the sets Si of local states of each agent template Ti are

disjoint, and likewise the sets of actions Acti are disjoint, with the exception of the global

actions GS which are the same for all agents and the environment.

48 Unbounded Probabilistic Multi-Agent Systems

Further, notice that while each agent template has its own valuation function Vi in order

to allow us to express local properties of that agent, the valuation functions can all also use

the local state of the environment in order to allow us to consider this when deciding what

atomic propositions hold. The VE valuation function allows us to express global properties

that are only concerned with the state of the environment.

An example APMAS with two agent templates can be seen in Figure 3.3. The agent

template T1 has two states. In the initial state, it can perform the asynchronous a action

which with equal probability takes it back to the same state, or takes it to its other state.

Once in its second state, the agent can perform the global-synchronous action g. The agent

template T2 is similar except it uses an agent-environment action e instead of an asynchronous

one a. Finally, the environment has two states. In its initial state, it can perform the e action

or the g one. On performing the g action it can, with probability 0.5, transition to its second

state. Once in the second state, it can only perform the g action and remain there.

For a richer example of an APMAS with more states that models a real-life scenario, we

refer the reader to the foraging scenario described in Section 7.2.2.

APMASs, as defined above, extend the framework of parameterised interpreted systems

(PIISs) presented in [Kouvaros and Lomuscio, 2016] to reason about multi-agent systems

composed of an unbounded number of agents. In turn, parameterised interpreted systems

extend interleaved interpreted systems (IISs) [Lomuscio et al., 2010]. The framework we

introduced above is a modification of PIISs to account for probabilistic behaviour of the

agents and the environment.

Each APMAS describes an unbounded collection of concrete systems obtained by choos-

ing a different number of agents in the system. Given an APMAS S and n̄ ∈ Nk
1, the system

S(n̄) of n̄ agents is the result of the composition of n̄i copies of Ti for each 1 ≤ i ≤ k and

one environment.

In exactly the same way as for SPMAS (see Section 3.1), we will denote each agent by

its identity (i, j) and the set of all agents by A(n̄). As before, we denote by Gn̄ the set of

49 Unbounded Probabilistic Multi-Agent Systems

(a) An agent tem-
plate (T1).

(b) An agent tem-
plate (T2). (c) The environment (E).

Figure 3.3 An example APMAS S = 〈{T1, T2}, E, {V1, V2}, VE〉 with two agent
templates. The a action is asynchronous, the e action is an agent-environment one,
while the g action is global-synchronous.

all global states.

Actions of the global system are of one of four types:

1. Global-synchronous actions are performed by all agents and the environment together.

2. Asynchronous environment actions are performed by the environment on its own.

3. Asynchronous agent actions are performed by one agent on its own, and in the global

system are labelled with which agent performed the action.

4. Agent-environment actions are performed by one agent together with the environment

and in the global system are labelled with which agent performed the action.

We denote by Actn̄ the set of all such global actions, i.e.

Actn̄ , GS ∪ AE ∪
⋃

(i,j)∈A(n̄)

(
(Ai ∪ AEi)× {(i, j)}

)
We now go on to define the global protocol, which determines which actions are available

at each state in the global system.

50 Unbounded Probabilistic Multi-Agent Systems

Definition 3.11 (Global Protocol). The global protocol Pn̄ : Gn̄ → P(Actn̄) is defined by

a ∈ Pn̄(g) if and only if

• (Global-synchronous). (i) a ∈ GS; (ii) for all (i, j) ∈ A(n̄), a ∈ Pi(g.(i, j)); (iii)

a ∈ PE(g.E).

• (Asynchronous environment). (i) a ∈ AE; (ii) a ∈ PE(g.E).

• (Asynchronous agent). (i) a = (a′, (i, j)) ∈ Ai ×A(n̄); (ii) a′ ∈ Pi(g.(i, j)).

• (Agent-environment). (i) a = (a′, (i, j)) ∈ AEi × A(n̄); (ii) a′ ∈ Pi(g.(i, j)); (iii)

a′ ∈ PE(g.E).

Thus, global-synchronous actions must be enabled for all agents and the environment.

Asynchronous environment actions must be enabled for the environment. Asynchronous

agent actions must be enabled for the agents performing them and, finally, agent-environment

actions must be enabled for both the agent performing them and the environment.

The next definition gives the global transition function, which defines the probability of

transitioning between two states of the global system.

51 Unbounded Probabilistic Multi-Agent Systems

Definition 3.12 (Global Transition Function). The global transition function tn̄ : Gn̄ ×

Actn̄ → Dist(Gn̄) is defined by

tn̄(g′ | g, a) ,

tE(g′.E | g.E, a) ·
∏k

i=1

∏n̄i
j=1 ti(g

′.(i, j) | g.(i, j), a) if a ∈ GS

tE(g′.E | g.E, a) if a ∈ AE and

∀(i, j) ∈ A(n̄) : g.(i, j) = g′.(i, j)

ti(g
′.(i, j) | g.(i, j), a′) if a = (a′, (i, j)) ∈ A×A(n̄) and g.E = g′.E and

∀(i′, j′) ∈ A(n̄) \ {(i, j)} : g.(i′, j′) = g′.(i′, j′)

tE(g′.E | g.E, a′)· if a = (a′, (i, j)) ∈ AE ×A(n̄) and

ti(g
′.(i, j) | g.(i, j), a′) ∀(i′, j′) ∈ A(n̄) \ {(i, j)} : g.(i′, j′) = g′.(i′, j′)

0 otherwise

Thus, the probability of a global transition is always given by multiplying the probability

of the agent(s) involved in the action (and, if applicable, the environment) performing their

local transition, whilst forcing all those not involved in the action to remain in the same

state.

Having given this definition, we should now prove that it does indeed define a valid

probability distribution. We do so below.

Observation 3.2. For any g ∈ Gn̄ and a ∈ Actn̄, it is the case that:

∑
g′∈Gn̄

tn̄(g′ | g, a) = 1

Proof. We check this for each different type of action a:

52 Unbounded Probabilistic Multi-Agent Systems

• a ∈ GS. Then:

∑
g′∈Gn̄

tn̄(g′ | g, a) =
∑
sE∈SE

∑
g′∈Gn̄:g′.E=sE

(
tE(sE | g.E, a) ·

k∏
i=1

n̄i∏
j=1

ti(g
′.(i, j) | g.(i, j), a)

)

=
∑
sE∈SE

tE(sE | g.E, a) ·
∑

g′∈Gn̄:g′.E=sE

(
k∏
i=1

n̄i∏
j=1

ti(g
′.(i, j) | g.(i, j), a)

)

=
∑
sE∈SE

tE(sE | g.E, a) ·
k∏
i=1

n̄i∏
j=1

(∑
s′∈Si

ti(s
′ | g.(i, j), a)

)
= 1

with the first equality following by splitting the sum on its change to the state of the

environment and the state of the agents, and the second equality following by splitting

the sum on the states of the individual agents.

• a ∈ AE. Then: ∑
g′∈Gn̄

tn̄(g′ | g, a) =
∑
sE∈SE

tE(sE | g.E, a) = 1

with the first equality following from all g′ with g.(i, j) 6= g′.(i, j) for some (i, j) ∈ A(n̄)

having tn̄(g′ | g, a) = 0.

• a = (a′, (i, j)) ∈ Ai ×A(n̄). Then:

∑
g′∈Gn̄

tn̄(g′ | g, a) =
∑
s∈Si

ti(s | g.(i, j), a′) = 1

with the first equality following again from all other terms of the sum being 0.

• a = (a′, (i, j)) ∈ AEi ×A(n̄). Then:∑
g′∈Gn̄

tn̄(g′ | g, a) =
∑
sE∈SE

∑
s∈Si

tE(sE | g.E, a′)ti(s | g.(i, j), a′)

=
∑
sE∈SE

tE(sE | g.E, a′)

(∑
s∈Si

ti(s | g.(i, j), a′)

)
= 1

with the first equality following by splitting the terms of the sum up between those

that change the state of the environment and those that change the state of agent (i, j)

and noting that those that change any other component of the state will be 0.

53 Unbounded Probabilistic Multi-Agent Systems

Figure 3.4 An example concrete system S((1, 1)) where S is the APMAS from
Figure 3.3.

This covers all cases for the action a, and thus completes our proof.

Having defined all the necessary components and shown the validity of our definitions,

we now go on to combine these to define the concrete system.

Definition 3.13 (Concrete System). Given an APMAS S with k agent templates and n̄ ∈

Nk
1, the concrete system of n̄ agents is defined by S(n̄) = 〈Gn̄, ιn̄, Actn̄, Pn̄, tn̄, Vn̄〉, where

ιn̄ = 〈(ι1, . . . , ι1), . . . , (ιk, . . . , ιk), ιE〉 is the initial state where all agents and the environment

are in their respective initial states, Pn̄ is the protocol function from Definition 3.11, tn̄ is the

transition function from Definition 3.12, and Vn̄ is the labelling function from Definition 3.4.

An example of such a concrete system with two agents (one of each type) can be seen in

Figure 3.4. In the initial state, either the agent of type 1 can perform the a action or the

agent of type 2 can perform the e action. If an agent changes state, then it can no longer

perform any action (since the only available action is the g one, but the other agent cannot

yet perform it). So, the other agent now performs its action until it changes state, at which

point the g action becomes possible. This action may change the state of the environment

with probability 0.5, at which point the system reaches state ((2), (4), 6) and no further state

changes occur (though the g action can continue being performed).

54 Unbounded Probabilistic Multi-Agent Systems

3.3 Specifications for UPMAS

In this section, we will define a few different logics that can be used to express proper-

ties of UPMAS. Much of this thesis will focus on giving some decidability results for the

parameterised verification problems of these logics against both SPMAS and APMAS.

All of our logics will be constructed to not support nesting of probabilistic operators.

This will be crucial for the decidability results presented in Chapters 4 to 6 as the abstract

models we present there are focussed on generating abstractions that hold in the initial state,

and therefore would not give meaningful results in cases where a probabilistic operator is

evaluated on a state other than the starting one.

3.3.1 PLTL

The first logic we consider is probabilistic linear temporal logic (PLTL) [Vardi, 1985], which

is an extension of LTL [Pnueli, 1977] to handle probabilistic systems and properties. Note

we make a slight modification to atomic propositions in order to label them with the agents

for which they need to hold, but the logic is otherwise unchanged from its typical presenta-

tion [Forejt et al., 2011].

Definition 3.14 (PLTL). For a ∈ AP and i, j ∈ N1, the probabilistic LTL logic is the set

of formulas φ defined by the following BNF:

φ ::= Pmax
./x [ψ] | Pmin

./x [ψ] for x ∈ [0, 1] and ./∈ {≤, <,≥, >}

ψ ::= > | (a, (i, j)) | a | ¬ψ | ψ ∧ ψ | Xψ | ψ U ψ

Our formulas have atomic propositions of two types – (a, (i, j)) refers to the j-th agent

of type i, whilst a refers to the state of the environment. We note that our formulas can

only express local properties of the agents or the environment and cannot described global

properties such as “half the agents are in a certain state”.

55 Unbounded Probabilistic Multi-Agent Systems

We say a formula is m̄-indexed, where m̄ ∈ Nk, if m̄ is the least tuple such that for

any atomic proposition (a, (i, j)) that appears in the formula it is the case that j ≤ m̄i.

Intuitively, this means that satisfaction of the formula is based only on the states of the first

m̄i agents for each type of agent i. Notice that since formulas are finite, every formula has

a well-defined index.

The formula Pmax/min
./x [ψ] is read as “with a strategy that tries to maximise/minimise the

probability of ψ occurring, this probability is ./ x”. The choice to support both min/max

and all operators is not important for later results, but maximises the expressiveness of the

logic.

The path formula Xψ is read as “after one time-step ψ holds”, whilst ψ1 U ψ2 is read as

“at some point ψ2 will hold, and before then ψ1 must hold.”

We will also use standard LTL abbreviations such as Fψ ≡ >Uψ to mean “at some point

ψ holds” and Gψ ≡ ¬F¬ψ to mean “ψ always holds”.

We now formalise the satisfaction relation for this logic.

Definition 3.15 (Satisfaction of PLTL). Given a concrete system S(n̄) and φ an m̄-indexed

PLTL formula, where n̄i ≥ m̄i for all i, the satisfaction of φ on S(n̄) is inductively defined

as follows:

S(n̄) |= Pmax
./x [ψ] iff supσ∈StratM P({ω ∈ IPathS(n̄)σ : ω |= ψ}) ./ x

S(n̄) |= Pmin
./x [ψ] iff infσ∈StratM P({ω ∈ IPathS(n̄)σ : ω |= ψ}) ./ x

Satisfaction for path formulae is defined as usual in LTL, i.e.

ω |= > always holds

ω |= (a, (i, j)) iff (a, (i, j)) ∈ Vn̄(ω0)

ω |= a iff a ∈ Vn̄(ω0)

56 Unbounded Probabilistic Multi-Agent Systems

ω |= ¬ψ iff ω 6|= ψ

ω |= ψ1 ∧ ψ2 iff ω |= ψ1 and ω |= ψ2

ω |= Xψ iff ω(1) |= ψ

ω |= ψ1Uψ2 iff for some i ≥ 0, ω(i) |= ψ2 and for all 0 ≤ j < i, ω(j) |= ψ1

Notice that the set of paths defined by the path formula ψ is always measurable (see

Corollary 2.4 in [Vardi, 1985]), so the probability in our definition is well-defined.

For an example PLTL formula, consider a collective transport scenario [Ferrante et al.,

2013] where a group of robots (all of the same type) aims to collaborate to move an object

to a destination. In this scenario we might want to consider a property such as:

Pmin
>0.7[FobjectAtDestination]

which says that even with a strategy that tries to minimise the chances of this happening,

there is still a probability of over 0.7 that the object will eventually reach its destination.

The index of this formula is (0) since it refers to no agents.

For another example, consider an opinion formation scenario [de Oca et al., 2011] where

a group of agents (of two different types) must agree on a choice from a set of actions. In

this scenario it might be desirable to consider a property such as:

Pmax
≤0.1 [G(¬(decisionReached, (2, 1))]

which says that even with a strategy that tries to maximise the chances of this happening,

the probability of agent (2, 1) never reaching a decision is at most 0.1. The index of this

formula is (0, 1) since it refers to no agents of the first type, and the first agent of the second

type.

3.3.2 PLTLk

Having defined the PLTL logic, we also define a similar logic, which we will call PLTLk.

This will be a variation of PLTL to only contain operators that look a bounded distance into

57 Unbounded Probabilistic Multi-Agent Systems

traces. This restriction will be important as the abstract models we introduce later in this

thesis will be able to almost exactly simulate the behaviour of arbitrarily large systems only

for a finite number of steps. Thus, we will be able to develop a complete decision for PLTLk

but not for PLTL.

Note that while our logic is related to the logic PLTLf [Maggi et al., 2019], the two are

distinct in that our logic uses operators that explicitly only consider a finite part of the trace,

while the logic presented there interprets the standard PLTL operators on finite traces.

Definition 3.16 (PLTLk). For a ∈ AP and i, j, k ∈ N1, the PLTLk logic is the set of

formulas φ defined by the following BNF:

φ ::= Pmax
≤ [ψ] for x ∈ (0, 1)

ψ ::= > | (a, (i, j)) | a | ¬ψ | ψ ∧ ψ | Xψ | ψ U<k ψ

The PLTLk logic is similar to PLTL, except that the unbounded until operator U has

been replaced by a bounded-time version U<k (this could also be a non-strict U≤k as is

sometimes found in other probabilistic model checking literature without affecting any of

the results presented later in this thesis).

Further, instead of supporting more general formulas of the form P
max/min
./ [ψ], we only

support formulas of the form Pmax
≤ [ψ]. Here, the choice to support only the weak ≤ is

crucial for the decidability result presented in Chapter 4, as our abstract models can only

approximate concrete systems and are therefore not suited to verifying properties with strict

inequalities.

The path formula ψ1 U
<k ψ2 is read as “at some point within k time steps the formula

ψ2 holds, and until then the formula ψ1 holds”. The other cases are interpreted as in PLTL.

This new logic is less expressive than PLTL since it cannot describe properties of infinite

paths such as requiring an event to occur at some point arbitrarily far in the future. The

index m̄ of a PLTLk formula is defined as for PLTL. We now define satisfaction for this logic.

58 Unbounded Probabilistic Multi-Agent Systems

Definition 3.17 (Satisfaction of PLTLk). Given a concrete system S(n̄) and φ an m̄-indexed

PLTLk formula, where n̄i ≥ m̄i for all i, the satisfaction of φ on S(n̄) is inductively defined

as in Definition 3.15 with the case for the new U<k operator being given by

ω |= ψ1U
<kψ2 iff for some 0 ≤ i < k, ω(i) |= ψ2 and for all 0 ≤ j < i, ω(j) |= ψ1

We now define precisely how far in the future a PLTLk formula describes. We will denote

this the time bound of the formula.

Definition 3.18 (Time Bound). The time bound of a PLTLk formula is inductively defined

by:

tb(Pmax
≤x [ψ]) , tb(ψ)

tb(>) , 0

tb((a, (i, j))) , 0

tb(a) , 0

tb(¬ψ) , tb(ψ)

tb(ψ1 ∧ ψ2) , max(tb(ψ1), tb(ψ2))

tb(Xψ) , tb(ψ) + 1

tb(ψ1U
<kψ2) , max(tb(ψ1), tb(ψ2)) + k

For an example of a PLTLk formula, consider an aggregation protocol [Nembrini, 2005]

in which a group of agents (all of the same type) aim to move around so they are all within

communication range of each other (“connected”).

A property of interest in such a scenario is that, irrespective of the choice of strategy, a

certain agent is connected to the swarm within 10 time steps with a probability of over 0.9.

This can be expressed by a PLTLk formula such as

Pmin
>0.9[F≤10(connected, (1, 1))],

where connected is an atomic proposition holding when an agent is connected. This formula

has index (1) since it refers to only the first agent. It has time bound 10 since in order to

evaluate it the first 10 states of a trace would need to be considered.

59 Unbounded Probabilistic Multi-Agent Systems

3.3.3 P[ATL*]

Finally, we will consider specifications that enable the verification of strategic properties of

the system. To do this, we introduce a fragment of PATL* [Chen and Lu, 2007], which we

call P[ATL*].

Definition 3.19 (P[ATL*]). For a ∈ AP and i, j ∈ N1, the P[ATL*] logic is the set of

formulas φ defined by the following BNF:

φ ::= 〈〈A〉〉P./x[ψ] for x ∈ [0, 1] and ./∈ {≤, <,≥, >}

ψ ::= > | (a, (i, j)) | a | ¬ψ | ψ ∧ ψ | Xψ | ψUψ,

where A ⊂ (N1 × N1) ∪ {E} is a finite set of agents (and possibly the environment).

Notice this corresponds to the fragment of PATL* in which we only allow one strategy

operator at the top of the formula. While not as general as full PATL*, this fragment is still

expressive enough to allow us to verify properties of interest in multi-agent systems, as we

will see in Chapter 7. The index m̄ of a P[ATL*] formula is defined as for PLTL.

The formula 〈〈A〉〉P./r[ψ] is read as “agents A have a strategy to ensure that ψ occurs

with probability ./ r”. The path formulas ψ are interpreted as in PLTL.

Consider again the opinion formation scenario from earlier [de Oca et al., 2011] where a

group of agents (of two different types) must agree on a choice from a set of actions. Then,

the P[ATL*] formula

〈〈(1, 1), E〉〉P≥0.5[G¬(decisionReached, (2, 1))]

represents that agent (1,1) and the environment have a strategy that ensures with probability

at least 0.5 that agent (2,1) does not reach a decision. The index of this formula is (1, 1)

since it refers to the first agent of each of the two types.

We now formally define the satisfaction relation for this logic.

60 Unbounded Probabilistic Multi-Agent Systems

Definition 3.20 (Satisfaction). Given a concrete system S(n̄) and an m̄-indexed P[ATL*]

formula φ = 〈〈A〉〉P./x[ψ] with m̄i ≤ n̄i for all i, we say the formula is satisfied in S(n̄),

denoted by φ |= S(n̄) iff there is some strategy profile σA for the agents in A such that for

all strategy profiles σAc for the agents in Ac it is the case that:

PS(n̄)σ({ω ∈ IPathS(n̄)σ(ι) : ω |= ψ}) ./ x

where S(n̄)σ denotes the DTMC obtained by fixing the joint strategy given by σA and σAc in

S(n̄). Satisfaction of path formulas is defined as in PLTL (see Definition 3.15).

Note that the strategy profile associates with each agent a strategy in the sense of Defi-

nition 3.6, i.e. with full observability of the global state.

3.4 Summary

This chapter introduced SPMAS and APMAS, two distinct semantics for modelling un-

bounded probabilistic multi-agent systems (UPMAS) as well as three specification logics for

describing properties of these systems: PLTL, PLTLk, and P[ATL*].

The first semantics, synchronous probabilistic multi-agent systems (SPMAS) involves

agents interacting in distinct rounds, with agents simultaneously choosing an action and

then the result of the actions being resolved for all agents. Given an SPMAS S and a vector

n̄ fixing the number of agents of each type, we defined how to obtain an MDP S(n̄) that

describes the behaviour of the system with precisely n̄i agents of each type i.

The second semantics introduced in this chapter, asynchronous probabilistic multi-agent

systems (APMAS) involves different types of actions: asynchronous environment actions,

asynchronous agent actions, agent-environment actions, and global-synchronous actions. De-

pending on the type of action, different combinations of agents and/or the environment par-

ticipate in the resulting transition. Once again, we defined the MDP S(n̄) describing the

behaviour of concrete systems.

61 Unbounded Probabilistic Multi-Agent Systems

We then introduced three specification logics for reasoning about properties of concrete

systems. Our first logic, PLTL, enables the verification of temporal properties on traces of

possibly infinite length. We then restricted this logic to a less expressive fragment, which we

called PLTLk. This logic only contains operators that look a bounded distance into traces.

Finally, we defined a logic P[ATL*] which enables the verification of strategic properties, i.e.

specifications describing what temporal properties a coalition of agents can enforce.

62 Verifying Bounded-Time Properties

Chapter Four

Verifying Bounded-Time Properties

In this chapter, we will define the parameterised model checking problem (PMCP) for

bounded-time properties. We will then present an abstract model that gives a finite repre-

sentation of all possible behaviours of an SPMAS of any size. Using this abstract model, we

will define a decision procedure for our PMCP, and prove that this procedure is sound and

complete.

The material presented in this chapter has been heavily adapted to fit the rest of this

thesis, but is loosely based on research first presented in our 2018 IJCAI paper [Lomuscio

and Pirovano, 2018].

4.1 Parameterised Model Checking Problem

In this section we define the parametrised model checking problem that we will consider for

the rest of the chapter. In particular, this will be the problem of checking whether a PLTLk

formula holds in an SPMAS of any size. We define this below.

Definition 4.1 (PMCP of PLTLk on SPMAS). Given an SPMAS S and an m̄-indexed

PLTLk formula φ, the parameterised model checking problem (PMCP) involves establishing

whether it is the case that S(n̄) |= φ for all n̄ with n̄i > m̄i for all i. We write S |= φ if this

is the case.

63 Verifying Bounded-Time Properties

The rest of this chapter will be devoted to building a sound and complete procedure for

solving the above problem, which will work by constructing an abstract model that captures

all possible behaviours of the system in instantiations of any size.

4.2 Abstract Model

In this section, we develop our abstract model whose states have two components: the first

captures the state of the first m̄ agents which are referred to in the formula, the second

records the set of states that arbitrarily many other agents are in. Note that the number

of agents in each state is not recorded for these; we abstract away the exact number and

instead just track whether there are some agents in a certain state or none. This abstract

model is inspired by the counter abstraction models defined in [Pnueli et al., 2002]. However,

these are adapted to the different semantics developed here.

Definition 4.2 (Abstract Model of an SPMAS). Given an SPMAS S, the abstract model

of m̄ agents for the system S is an MDP Ŝ(m̄) = 〈Ŝm̄, ι̂m̄, Âctm̄, P̂m̄, V̂m̄〉, where:

• The set of possible global states Ŝm̄ , Sm̄ × P(∪ki=1Si) has two components. The first

records the state of the first m̄ agents and the environment, the second is a set recording

all local states of all other agents.

• The initial state is ι̂ , (ιm̄, {ι1, . . . , ιk}).

• The set of possible actions is Âctm̄ , Actm̄ × P(∪ki=1Acti).

• The protocol function P̂m̄ : Ŝm̄ → P(Âctm̄) is defined by:

P̄m(g,X) , {(a, Y) ∈ Âctm̄ | a ∈ Pm̄(g),∀a′ ∈ Y ∃i ∈ k̇, s ∈ X : a′ ∈ Pi(s)}

64 Verifying Bounded-Time Properties

• The transition probability t̂m̄ : Ŝm̄ × Âctm̄ → Dist(Ŝm̄) is given by:

t̂m̄((g′, X ′) |(g,X), (a, Y)) ,

tE(g′.E |g.E, Z, a.E)×
k∏
i=1

m̄i∏
j=1

ti(g
′.(i, j) | g.(i, j), a.E, Z, a.(i, j))

×

1 if X ′ = RX,(a,Y)

0 otherwise

where Z , {a.(i, j) | (i, j) ∈ A(m̄)} ∪ Y is the set of actions performed by at least

one agent in either the first component or the second and

RX,(a,Y) =
k⋃
j=1

{s′ ∈ Sj | ∃s ∈ X∃a ∈ Ŷ ∩ P (s) : ti(s
′ | s, a.E, Z, a) > 0}

is the set of states that could be reached in one step by performing the actions Y from

the set X.

• The labelling function V̂m̄ : Ŝm̄ → P(AP ×A(m̄)) is given by:

V̂m̄(g,X) , Vm̄(g)

The function V̂m̄ discards information not pertaining to the first m̄ agents, since this

is not needed to evaluate an m̄-indexed formula.

Intuitively, the second component captures the states that it is possible for one of the

agents after the first m̄ to be in. Note that since we want to capture in the abstract model the

behaviour of arbitrarily large systems, we assume in our model that there are many agents

in each state and, therefore, any state that has a non-zero probability of being reached by

an agent will be reached by at least one of them with probability 1.

Given an abstract state ĝ = (g,X) ∈ Sm̄, we write ĝ.(i, j) , g.(i, j) for the local state

of the j-th agent of type i as before. We also write ĝ.abs , X for the state of the abstract

agents in the second component.

65 Verifying Bounded-Time Properties

F
ig
u
re

4.
1
T
he

ab
st
ra
ct

m
od

el
w
it
h
on

e
ag

en
t
of

ea
ch

ty
pe

fo
r
th
e
SP

M
A
S
in

F
ig
ur
e
3.
1.

W
e
om

it
th
e
nu

ll
ac
ti
on

s
ε
fo
r
cl
ar
ity

.

66 Verifying Bounded-Time Properties

An example abstract model can be seen in Figure 4.1. In the initial state, the first agent

can perform action a and with probability 0.5 may change its state to 1. The second agent

can only perform action c and does not change state. Similarly, the environment can only

perform action e and remain in its state. The remaining agents could choose to either perform

a or not. If they perform a then the abstract model assumes that the state 1 is reached by at

least one of them, and the second component is updated to {0, 1, 2}. Otherwise, the second

component remains unchanged. The rest of the states in the abstract model have similarly

defined transitions.

Notice that when defining a joint strategy for the abstract model, this also includes a

choice of the set of actions performed by the abstract agents in the second component of the

state.

Before proceeding, we should check that the transition function for our abstract model

is always a valid probability distribution. We do so now.

Observation 4.1. For any ŝ ∈ Ŝm̄ and â ∈ Âctm̄, it is the case that:

∑
ŝ′∈Ŝm̄

t̂m̄(ŝ′ | ŝ, â) = 1

Proof. Let ŝ = (s,X) ∈ Ŝm̄ and â = (a, Y) ∈ Âctm̄. Then:

∑
ŝ′∈Ŝm̄

t̂m̄(ŝ′ | ŝ, â) =
∑
s′∈Sm̄

(
tE(s′.E | s.E, Z, a.E)×

k∏
i=1

m̄i∏
j=1

ti(s
′.(i, j) | s.(i, j), a.E, Z, a.(i, j))

)

=
∑
sE∈SE

tE(sE | g.E, Z, a.E)×
∑

g′∈Gn̄:g′.E=sE

(
k∏
i=1

n̄i∏
j=1

ti(g
′.(i, j) | g.(i, j), a.E, Z, a.(i, j))

)

=
∑
sE∈SE

tE(sE | g.E, Z, a.E)×
k∏
i=1

n̄i∏
j=1

(∑
s′∈Si

ti(s
′ | g.(i, j), a.E, Z, a.(i, j))

)

= 1

where Z , {a.(i, j) | (i, j) ∈ A(m̄)} ∪ Y . The first equality follows from the definition of

t̂m̄ in Definition 4.2, removing the terms which are 0. The rest follows similarly to Observa-

67 Verifying Bounded-Time Properties

tion 3.1, except that instead of just the actions of the concrete agents being used in the set

Z, the actions of the abstract ones are used too.

In the next subsection, we will show that our abstract system is capable of simulating

larger systems and give a result showing what this implies for the parametric model checking

of PLTLk formulae. Following this, in the second subsection we will show a converse result –

the behaviour of large systems approaches that of the abstract system. Again, this will give

us a result that enables the parametrised model checking of PLTLk formulae.

4.2.1 Simulating Larger Systems

In order to achieve our goal for this subsection, we need to formalise in what sense our

abstract model captures the same paths as larger concrete systems. As a stepping stone to

doing so, we first define how a concrete state can be mapped to an abstract one.

Definition 4.3 (State Abstraction). Let n̄, m̄ ∈ Nk
1 with n̄i > m̄i for all i. Then, the

abstraction map on states λn̄,m̄ : Sn̄ → Ŝm̄ is given by:

λn̄,m̄(s̄1, . . . , s̄k, sE) , ((s̄′1, . . . , s̄
′
k, sE), X) where

s̄′i , (s̄i,1, . . . , s̄i,m̄i) and X ,
k⋃
i=1

{s̄i,m̄i+1, . . . , s̄i,n̄i}

Intuitively, for each type of agent i this map preserves the exact state of the first m̄i such

agents in the first component. The states of the remaining agents are projected into the set

in the second component, thus preserving which states are present in one or more agents but

discarding the information on precisely how many agents are in each state. We now go on

to define a similar abstraction notion for actions.

Definition 4.4 (Action Abstraction). Let n̄, m̄ ∈ Nk
1 with n̄i > m̄i for all i. Then, we define

68 Verifying Bounded-Time Properties

the action abstraction map λn̄,m̄ : Actn̄ → Âctm̄ by:

λn̄,m̄(a) , ((ā1, . . . , āk), X)

where āi = (a.(i, 1), . . . , a.(i, m̄i))

and X =
k⋃
i=1

{a.(i, m̄i + 1), . . . , a.(i, n̄i)}

Once again, for each type of agent i this map preserves the exact action of the first m̄i

such agents while projecting the rest into a set, discarding the information about precisely

how many agents performed each action.

Another notion that will be useful for us is defining when a concrete state agrees with

the first component of an abstract one. This will be important since the first m̄ agents in

the first component are the ones that are considered when evaluating a formula. We define

this notion below.

Definition 4.5 (Concrete Equivalence). Let n̄, m̄ ∈ Nk
1 with n̄i > m̄i for all i. Then, we say

an abstract state ĝ ∈ Ŝm̄ and a concrete state g ∈ Sn̄ agree on the concrete states if:

ĝ.E = g.E and ĝ.(i, j) = g.(i, j) for all 1 ≤ i ≤ k and 1 ≤ j ≤ mi

When this is the case, we write ĝ =conc g.

Note that this requires the first m̄i agents for each type i to have the same state, but

says nothing about the state of the remaining agents. This brings us to our first technical

lemma, which shows that the probability of a transition in the abstract model is precisely

the sum of the concrete transitions it could represent.

Lemma 4.1. Let n̄, m̄ ∈ Nk
1 with n̄i > m̄i for all i. Let g ∈ Sn̄ and a ∈ Pn̄(g). Then, letting

ĝ = λn̄,m̄(g) and â = λn̄,m̄(a):

t̂m̄(ĝ′ | ĝ, â) =
∑

g′∈Sn̄:g′=concĝ′

tn̄(g′ | g, a)

whenever ĝ′.abs = Rĝ.abs,â.

69 Verifying Bounded-Time Properties

Proof. Starting from the right-hand side, we get:∑
g′∈Sn̄:g′=concĝ′

tn̄(g′ | g, a) = tE(ĝ′.E | ĝ.E,X, a.E)×
k∏
i=1

m̄i∏
j=1

ti(ĝ
′.(i, j) | ĝ.(i, j), a.E,X, a.(i, j))

×
∑

g′∈Sn̄:g′=concĝ′

(
k∏
i=1

n̄i∏
j=m̄i

ti(g
′.(i, j) | g.(i, j), a.E,X, a.(i, j))

)

= tE(ĝ′.E | ĝ.E,X, a.E)×
k∏
i=1

m̄i∏
j=1

ti(ĝ
′.(i, j) | ĝ.(i, j), a.E,X, a.(i, j))

= t̂m̄(ĝ′ | ĝ, â)

with the first equality following by applying the definitions and re-arranging, the second

equality following by noting that all the ti’s are valid transition functions and therefore sum

to 1, and the final equality following by applying the definitions again.

While useful, this lemma alone does not yet allow us to reason about the satisfaction of

formulae. To do this, we need a result establishing a link between the abstract model and

the concrete ones for not just individual transitions but entire paths. Before we can do this,

we need a few more technical definitions. Our first definition, below, establishes precisely

which concrete paths are represented by paths in the abstract model.

Definition 4.6 (Path Simulation). Let n̄, m̄ ∈ Nk
1 with n̄i > m̄i for all i. Then, we say an

abstract path ρ̂ = ŝ1â1ŝ2 . . . ∈ IPathŜ(m̄) simulates a concrete path ρ = s1a1s2 . . . ∈ IPathS(n̄)

if for all i ∈ N1:

(i) ŝi =conc si

(ii) âi = λm̄,n̄(ai)

(iii) ŝi+1.abs = Rŝi.abs,âi

If this is the case, we write ρ̂ ∼ ρ.

We observe that if ρ̂ ∼ ρ then ρ and ρ̂ satisfy the same LTL formulas provided these are

at most m̄-indexed. This follows trivially from condition (i) since the formula only references

atomic propositions that appear in the concrete state.

70 Verifying Bounded-Time Properties

Note that the above definition is a relation rather than a function since each path in the

abstract model can represent many paths in the concrete model. We restrict the definition

above to finite paths in the obvious way (i.e. requiring the same conditions to hold up to

the length of the path).

Recall that our main goal in this subsection is to show an abstract system of size m̄ can

simulate the behaviour of larger systems. In order to achieve this, we need to define a way

in which given a strategy for a system of size n̄ (with n̄i > m̄i for all i), we can simulate this

in the abstract system of size m̄.

Before we go on to give this definition, we note that each path in the abstract system

can represent many paths in the concrete system. Thus, when choosing how to act based on

a path in the abstract system, the equivalent strategy cannot simply lookup the choice that

our original strategy would’ve made in the concrete system. Instead, it has to look up all the

possible choices for the different concrete paths that our abstract path could represent and

build a probability distribution according to these. The precise definition of this follows. As

we will see Lemma 4.2 this definition achieves the desired outcome of having paths in the

abstract system being as likely as the sum of the concrete paths that they represent.

Definition 4.7 (Equivalent Strategy). Let n̄, m̄ ∈ Nk
1 with n̄i > m̄i for all i. Given a strategy

σ : FPathS(n̄) → Dist(Actn̄) in S(n̄), we define the equivalent strategy σ̂ : FPathŜ(m̄) →

Dist(Âctm̄) by:

σ̂(â | ρ̂) ,

∑
ρ∈FPathS(n̄)σ

:ρ̂∼ρ
∑

a∈λ−1
n̄,m̄(â) PS(n̄)σ(ρ) · σ(a | ρ)∑

ρ∈FPathS(n̄)σ
:ρ̂∼ρPS(n̄)σ(ρ)

Note that after having followed a path ρ̂ in the abstract system, we are not sure which

of the paths ρ with ρ̂ ∼ ρ we want to simulate. So, we consider all the paths we could wish

to simulate, and weight our choice of action by which ones are more likely. Before reasoning

about the behaviour of this strategy, we verify its validity.

Observation 4.2. σ̂ : FPathŜ(m̄) → Dist(Âctm̄) is a valid strategy.

71 Verifying Bounded-Time Properties

Proof. First, suppose that σ̂(â | ρ̂) > 0. Then, there is at least one ρ ∈ FPathS(n̄)σ
and one

a ∈ λ−1
n̄,m̄(â) such that ρ̂ ∼ ρ and σ(a | ρ) > 0. Then it must be the case that a ∈ Pn̄(last(ρ))

since σ is a valid strategy. It follows that â ∈ P̂n̄(last(ρ̂)).

It remains to check that for any ρ̂ ∈ FPathŜ(m̄) we have that
∑

â∈Âctm̄ σ̂(â | ρ̂) = 1. For

this notice that:∑
ρ∈FPathS(n̄)σ

:ρ̂∼ρ

∑
â∈Âctm̄

∑
a∈λ−1

n̄,m̄(â)

PS(n̄)σ(ρ) · σ(a | ρ) =
∑

ρ∈FPathS(n̄)σ
:ρ̂∼ρ

∑
a∈Actn̄

PS(n̄)σ(ρ) · σ(a | ρ)

=
∑

ρ∈FPathS(n̄)σ
:ρ̂∼ρ

PS(n̄)σ(ρ)

with the first equality following simply from λn̄,m̄ being a function and the second from

σ being a valid strategy. So
∑

â∈Âctm̄ σ̂(â | ρ̂) = 1, as desired.

Our next lemma shows that the strategy we defined achieves the desired result – the

probability of a path in the abstract model is equal to the sum of the probabilities of the

concrete paths it represents.

Lemma 4.2. Let n̄, m̄ ∈ Nk
1 with n̄i > m̄i for all i. Let σ : FPathS(n̄) → Dist(Actn̄) be a

strategy in S(n̄). Then it is the case that, for any path ρ̂ ∈ FPathŜ(m̄):

PŜ(m̄)σ̂
(ρ̂) =

∑
ρ∈FPathS(n̄)σ

:ρ̂∼ρ

PS(n̄)σ(ρ)

Proof. We proceed by induction on the length of the path ρ̂. The base case is clear, as

on both sides there is a unique path of length 1 with just the initial state, and this has

probability 1.

Now, suppose the statement holds for a path ρ̂′ and consider its extension ρ̂ = ρ̂′âŝ for

some â ∈ Âctm̄ and ŝ ∈ Ŝm̄. Note that if ŝ.abs 6= Rlast(ρ̂′).abs,â then both sides of the equation

72 Verifying Bounded-Time Properties

are 0 as the sum on the right is empty, so we can ignore this case. Otherwise:

PŜ(m̄)σ̂
(ρ̂) = PŜ(m̄)σ̂

(ρ̂′) · σ̂(â | ρ̂′) · t̂m̄(ŝ | last(ρ̂′), â)

=

 ∑
ρ′∈FPathS(n̄)σ

:ρ̂′∼ρ′

∑
a∈λ−1

n̄,m̄(â)

PS(n̄)σ(ρ′) · σ(a | ρ′) · t̂m̄(ŝ | last(ρ̂′), â)

=

∑
ρ′∈FPathS(n̄)σ

:ρ̂′∼ρ′

∑
a∈λ−1

n̄,m̄(â)

(
PS(n̄)σ(ρ′) · σ(a | ρ′) ·

∑
g′∈Sn̄:g′=concĝ′

tn̄(g′ | last(ρ′), a)

)

=
∑

ρ∈FPathS(n̄)σ
:ρ̂∼ρ

PS(n̄)σ(ρ)

with the first equality following from the definitions, the second from the inductive hypoth-

esis, the third from Lemma 4.1 and the final one simply by rearranging. Thus, by induction

on the length of the path, the lemma holds for all finite paths.

This lemma completes our goal for this subsection and proves that it is possible for an

abstract system to simulate the behaviour of larger concrete systems. This enables us to

prove our main result of this subsection, which shows that if we can check a formula Pmax
≤x [ψ]

on the abstract model, it will hold on larger models. We do this below.

Theorem 4.1. Suppose Ŝ(m̄) |= Pmax
≤x [ψ] for some m̄-indexed PLTLk formula. Then,

S(n̄) |= Pmax
≤x [ψ] for all n̄ ∈ Nk

1 with n̄i > m̄i for all i.

Proof. We prove the contrapositive of this statement. Suppose we have S(n̄) |= Pmax
>x [ψ] for

some n̄ ∈ Nk
1 with n̄i > m̄i for all i. Then, by definition, for some strategy σ in S(n̄) we

have:

PS(n̄)σ({ρ ∈ IPathS(n̄)σ : ρ |= ψ}) > x

Now, let σ̂ be the equivalent strategy in Ŝ(m̄) as given by Definition 4.7. But now every path

in the concrete model has a corresponding path in the abstract model where, by definition,

the same atomic propositions hold at each step (and thus the same LTL formulas hold along

the path). So:

PŜ(m̄)σ̂
({ρ̂ ∈ IPathŜ(m̄)σ̂

: ρ̂ |= ψ}) > x

73 Verifying Bounded-Time Properties

since by Lemma 4.2 the probability of a path in the abstract model is the same as that of

the corresponding paths in the concrete model.

Thus, by considering σ̂ as our strategy, we see that Ŝ(m̄) |= Pmax
>x [ψ] and our result

holds.

Note that the above theorem gives a partial decision procedure for the parameterised

model checking problem given in Definition 4.1. In particular, given an m̄-indexed formula

Pmax
≤x [ψ], if we can verify it on the abstract model Ŝ(m̄) we have succeeded in checking it for

all larger systems. However, if wish to have a complete decision procedure we also need to

develop a converse result. This is what the next subsection aims to do.

4.2.2 Simulating the Abstract System

In order to develop a converse to the theorem in the previous subsection, we need to prove

that large concrete systems simulate the behaviour of the abstract system. While they will

not be able to exactly simulate the abstract system, we will see that they can do so to an

arbitrarily high probability for paths of a finite length. Because of the way our logic PLTLk

is defined, this will be sufficient to obtain a converse to Theorem 4.1. Before we can do this,

though, we need to give a few technical definitions. Our first definition describes the paths

that an individual agent could follow with some non-zero probability.

Definition 4.8 (Finite Local Path). Let S be an SPMAS with k agent templates, and l ∈ N1

be a path length. We say that ρ = s1a1s2 . . . sl where each sj ∈ Si and each aj ∈ Acti is a

valid finite local path if:

(i) For all 1 ≤ j ≤ l, aj ∈ Pi(sj).

(ii) For all 1 ≤ j < l, there is some X ⊆ ∪j∈k̇Actj and some aE ∈ ActE such that

ti(sj+1 | sj, aE, X, aj) > 0. We write pj for the least such non-zero value of ti(sj+1 |

sj, aE, X, aj).

74 Verifying Bounded-Time Properties

If ρ is a valid finite local path, we write MinProb(ρ) =
∏l−1

j=1 pj.

Notice that MinProb(ρ) gives us a lower bound on the probability of a given finite local

path, assuming that the other agents and the environment are behaving in such a way as to

minimise our agent’s chances of managing to follow the local path ρ.

We denote the set of all finite local paths of length l for agents of type i by Pathsl,i.

Note that Pathsl,i is a finite set, so we can enumerate its elements. Whenever we do this,

we will assume this is always done in the same ordering so that the r-th element used in one

place is the same as the r-th element elsewhere.

Now, we aim to define a number of agents N̄E,l
i for each type of agent i, such that should

our strategy wish to do so, it can ensure that for any path of length l the probability of

at least one agent performing every possible transition is at least E. Note that since the

transitions of agents are independent, one sufficient number for this to be the case is to

have enough agents following each path that the probability of them succeeding is at least

E
1
kri where ri is the number of different local paths for agents of type i. This is the idea

underpinning the definition below.

Definition 4.9 (Sufficient Number). Let S be an SPMAS with k different types of agents, l ∈

N1 a path length and 0 < E < 1 a target probability. Further, let Pathsl,i = {ρi,1, . . . , ρi,ri}

for each agent type i. Now, we define the sufficient number of agents of type i to ensure with

probability E that the first r paths are followed by:

si(E, l, r) =
∑

1≤j≤r

⌈
log1−MinProb(ρi,j)(1− E

1
kri)
⌉

Finally, we define the sufficient number N̄E,l ∈ Nk
1 by N̄E,l

i = si(E, l, ri).

Certainly, tighter choices of sufficient numbers are possible by exploiting the fact that

many finite paths will share the same prefixes. However, as our bound N̄E,l is only used in

theoretical results and does not affect the running time of any of our algorithms (indeed, it

does not ever even need explicitly calculating), the above is adequate for our purposes.

75 Verifying Bounded-Time Properties

Before we continue, we give a definition of how we can map a path in the concrete model

to a corresponding one in the abstract model. While similar, this definition is stronger than

our previous notion in Definition 4.6 of an abstract path simulating a concrete one.

Definition 4.10 (Path Abstraction). Let n̄, m̄ ∈ Nk
1 with n̄i > m̄i for all i. We define

the path abstraction map λn̄,m̄ : IPathS(n̄) → IPathŜ(m̄) by mapping each abstract path

ρ = s1a1s2 . . . to the unique abstract path ρ̂ = ŝ1â1ŝ2 . . . such that for all i ∈ N1:

(i) ŝi = λn̄,m̄(si)

(ii) âi = λn̄,m̄(ai)

Like before, we restrict this definition to finite paths in the obvious way. Equipped with

this notion, we can now go on to define the strategy by which a concrete system of size

m̄ + N̄E,l can simulate paths of length up to l in the abstract system of size m̄ with a

probability E of success. We do this below.

Definition 4.11 (Simulating Strategy). Let m̄ ∈ Nk
1, l ∈ N1, 0 < E < 1 and σ̂ :

FPathŜ(m̄) → Âctm̄. As before, let Pathsl,i = {ρi,1, . . . , ρi,ri} and let ρi,r = si,r,1ai,r,1 . . . si,r,l.

Then, we define the simulating strategy σE,l : FPathS(m̄+N̄E,l) → Actm̄+N̄E,l by:

σE,l(ρ).(i, j) ,

σ̂(λm̄+N̄E,l,m̄(ρ)).(i, j) if 1 ≤ j ≤ m̄i

ai,r,o if | ρ |= o < l and for some 1 ≤ r ≤ ri

m̄j + si(E, l, r − 1) < j ≤ m̄j + si(E, l, r)

and ai,r,o ∈ Pi(last(ρ).(i, j)) ∩ σ̂(λm̄+N̄E,l,m̄(ρ)).abs

ε otherwise

In our simulating strategy, the first m̄ agents follow the same behaviour as the ones in

the abstract system. Then, for each type of agent i and each possible finite path ρi,j we have

76 Verifying Bounded-Time Properties⌈
log1−MinProb(ρi,r)

⌉
agents attempt to follow that path if doing so respects the strategy of the

abstract system (otherwise, they just perform the null action ε). Before going on to prove a

lemma about the behaviour of this strategy, we check its validity.

Observation 4.3. σE,l : FPathS(m̄+N̄E,l) → Actm̄+N̄E,l is a valid strategy.

Proof. We need to show that for any path ρ ∈ FPathS(m̄+N̄E,l), and for every (i, j) ∈

A(m̄ + N̄E,l) we have σE,l(ρ).(i, j) ∈ Pi(last(ρ).(i, j)). Note that our definition has three

cases. In the first case, the result follows from σ̂ being a valid strategy. In the second case, it

is enforced in the condition for the case that σE,l(ρ).(i, j) ∈ Pi(last(ρ).(i, j). Finally, in the

last case note that the null action ε is always enabled. This covers all cases for our definition

and completes the proof.

Having proved the validity of our strategy, we note that following it will ensure with

probability at least E that our simulating strategy manages to perform every transition

encoded in the abstract system for the first l time steps. This notion is formalised in the

lemma below.

Lemma 4.3. Let m̄ ∈ Nk
1, l ∈ N1, 0 < E < 1 and σ̂ : FPathŜ(m̄) → Âctm̄. Then, for any

path ρ̂ ∈ FPathŜ(m̄) with | ρ̂ |= l it is the case that:

∑
ρ∈λ−1

m̄+N̄E,l,m̄
(ρ̂)

PS(m̄+N̄E,l)σE,l
(ρ) ≥ E ·PŜ(m̄)σ̂

(ρ̂)

Proof. Let ρ̂ = ŝ1â1 . . . ŝl and for each type of agent i take Pathsl,i = {ρi,1, . . . , ρi,ri} to be

its set of local paths. We write ρi,r = si,r,1ai,r,1 . . . si,r,l. Given a concrete path ρ = s1a1 . . . sl

we the j-th agent of type i followed path ρi,r if for all 1 ≤ o ≤ l we have so.(i, j) = si,r,o and

for all 1 ≤ o < l we have ao.(i, j) = ai,r,o. When this is the case, we write ρ |i,j= ρi,r.

We say a local path ρi,r is enabled if for all 1 ≤ o < l, ai,r,o ∈ âo.abs. We let EPathsl,i ⊆

Pathsl,i be the subset of local paths that are enabled.

77 Verifying Bounded-Time Properties

Now, consider the following set of paths:

X = {ρ ∈ λ−1
m̄+N̄E,l,m̄

(ρ̂) :∀i ∈ k̇∀ρi,r ∈ EPathsl,i there is some j with

m̄j + si(E, l, r − 1) < j ≤ m̄j + si(E, l, r) such that ρ |i,j= ρi,r}

Since X ⊆ λ−1
m̄+N̄E,l,m̄

(ρ̂), to show our result it would be sufficient to show:

∑
ρ∈X

PS(n̄)σE,l
(ρ) ≥ E ·PŜ(m̄)σ̂

(ρ̂)

In particular, our result will hold if we show that the probability in S(n̄)σE,l(ρ) of at least

one of the abstract agents following each path in EPathsl,i is at least E. We note that for

each ρi,r ∈ EPathsl,i there are

mi,r =
⌈
log1−MinProb(ρi,r)(1− E

1
kri)
⌉

agents attempting to follow it. It follows that the probability that at least one succeeds is

at least 1− (1−MinProb(ρi,j))
mi,r . Now, the probability that this is the case for all types

of agent i and all paths ρi,r ∈ EPathsl,i is at least:

k∏
i=1

∏
ρi,r∈EPathsl,i

(1− (1−MinProb(ρi,r))
mi,r) ≥

k∏
i=1

∏
ρi,r∈EPathsl,i

E
1
kri ≥ E

by applying the definitions and then noting that for each i there are at most ri paths in

EPathsl,i. This completes our proof.

This lemma proves that large concrete systems can simulate the behaviour of the abstract

system for a finite number of steps to an arbitrarily high probability. Having proved this,

we are now equipped to show the main result of this subsection which is a converse of

Theorem 4.1.

Theorem 4.2. Suppose Ŝ(m̄) 6|= Pmax
≤x [ψ] for some m̄-indexed PLTLk formula ψ. Then,

S(n̄) 6|= Pmax
≤x [ψ] for some n̄ ∈ Nk

1 with n̄i > m̄i for all i.

78 Verifying Bounded-Time Properties

Algorithm 4.1 Decision procedure for the PMCP of SPMAS against PLTLk

Input: SPMAS S, PLTLk formula φ
Output: Boolean

1: function PMCP-Bounded(S, φ)
2: m̄← ComputeIndex(φ)
3: Build the abstract model Ŝ(m̄) using Definition 4.2
4: return Ŝ(m̄) |= φ

5: end function

Proof. If our assumption holds, then there is a strategy σ̂ : Ŝm̄ → Âctm̄ such that

PŜ(m̄)σ̂
({ρ̂ ∈ IPathŜ(m̄)σ̂

: ρ̂ |= ψ}) > x > 0 (4.1)

Let l = tb(ψ) be the time bound of the path formula ψ. Then, we define n̄ = m̄ + N̄E,l

and take σE,l to be the equivalent strategy for 0 < E < 1. By Lemma 4.3:

PS(n̄)σE,l
({ρ̂ ∈ IPathS(n̄)σE,l

: ρ |= ψ}) ≥ E ·PŜ(m̄)σ̂
({ρ̂ ∈ IPathŜ(m̄)σ̂

: ρ̂ |= ψ})

So, the result holds by simply taking:

E =
x+ PŜ(m̄)σ̂

({ρ̂ ∈ IPathŜ(m̄)σ̂
: ρ̂ |= ψ})

2 ·PŜ(m̄)σ̂
({ρ̂ ∈ IPathŜ(m̄)σ̂

: ρ̂ |= ψ})

noting 0 < E < 1 by Equation (4.1).

Note that together with Theorem 4.1, this gives a complete decision procedure for the

PMCP in Definition 4.1. In particular, to check the validity of an m̄-indexed formula on

arbitrarily large systems, we just need to check its validity in the abstract system Ŝ(m̄). We

formalise this procedure and show its correctness in the next section.

4.3 Verification Procedure

In this section, we tie together the results from the rest of this chapter, showing that we

have developed a technique to solve the parameterised model checking problem of SPMAS

79 Verifying Bounded-Time Properties

against PLTLk specifications. This simple procedure is shown in Algorithm 4.1. We now

show its correctness using the results from the previous section.

Corollary 4.1. PMCP-Bounded is a sound and complete decision procedure for the PMCP

in Definition 4.1.

Proof. In order to prove soundness, we need to show that PMCP-Bounded(S, φ) holds iff

S |= φ. When the return value is true, this follows from Theorem 4.1. For return values of

false it follows from Theorem 4.2. Completeness is clear as there are no loops.

Having shown the correctness of our procedure, we make an observations regarding its

time complexity.

Observation 4.4. The run-time of PMCP-Bounded(S, φ) is exponential in the number of

states in agent templates, polynomial in the number of environment states, and doubly expo-

nential in the size of the formula.

Proof. First, observe that the states of Ŝ(m̄) are drawn from Sm̄ ×P(∪ki=1Si) and therefore

the size of Ŝ(m̄) is exponential in | ∪ki=1Si | but polynomial in | SE |. Further, note that

our underlying procedure for checking Ŝ(m̄) |= φ is polynomial in the size of the MDP and

doubly exponential in the size of the formula (see Section 7 of [Forejt et al., 2011]). This

gives our desired result.

In practice, this complexity result will mean that, as we see in Chapter 7, our method is

limited to verifying properties of systems where the number of different states agents can be

in is small.

80 Verifying Bounded-Time Properties

4.4 Summary

In this chapter, we have developed a technique to solve the PMCP of SPMAS against PLTLk

specifications (Definition 4.1). To achieve this, we first defined an abstract model for SPMAS

(Definition 4.2). We then proved both that the abstract model can simulate larger systems

(Theorem 4.1) and conversely that larger systems can simulate the abstract system (Theo-

rem 4.2). These two results were then combined into a verification procedure (Algorithm 4.1)

which we proved to be sound and complete (Corollary 4.1).

81 Verifying Unbounded Properties

Chapter Five

Verifying Unbounded Properties

In this chapter, we will define the parameterised model checking problem (PMCP) for AP-

MAS against PLTL specifications. Similarly to the previous chapter, we will present an

abstract model which allows us to solve this decision problem. This model will follow the

same inspiration as the one in the previous chapter, but adapted to APMAS rather than

SPMAS. As in the previous chapter, we will introduce a decision procedure using our ab-

stract model, and show that it is sound. The procedure presented here will not, however, be

complete as the richer decision problem considered here is undecidable in general.

The material presented in this chapter has appeared, in a shorter form, in our 2019

AAMAS paper [Lomuscio and Pirovano, 2019].

5.1 Parameterised Model Checking Problem

In this section we define the parametrised model checking problem that we will address this

chapter. In particular, this is the problem of checking whether a PLTL formula holds in an

APMAS of any size. Notice that while this problem appears similar to the one in Defini-

tion 4.1, because the underlying models and specifications are different, distinct techniques

are required.

Definition 5.1 (PMCP of PLTL on APMAS). Given an APMAS S and an m̄-indexed

82 Verifying Unbounded Properties

PLTL formula φ, the parameterised model checking problem (PMCP) involves establishing

whether it is the case that S(n̄) |= φ for all n̄ with n̄i > m̄i for all i. We write S |= φ if this

is the case.

Since this is a probabilistic extension of a problem that is known to be undecidable in

general [Apt and Kozen, 1986], it is clear that it is also undecidable in general. The rest of

this chapter is devoted to building a sound but incomplete procedure for solving the above

problem using an abstract model.

5.2 Abstract Model

As in the last chapter, our abstract model will aim to capture the behaviour of arbitrarily

large concrete systems. This will mean that for every path in a concrete system (of any size)

there will be a corresponding path in our abstract model. We will exploit this property to

give a partial decision procedure for the parameterised model checking problem.

We now go on to define our abstract model which is again based on a counter abstraction

technique [Pnueli et al., 2002].

Definition 5.2 (Abstract Model of an APMAS). Given an APMAS S and an m̄ ∈ Nk
1, the

abstract model of m̄ agents is defined by Ŝ(m̄) = 〈Ŝm̄, ι̂m̄, Âctm̄, P̂m̄, t̂m̄, V̂m̄〉, where:

• Ŝm̄ , Sm̄ × P(
⋃k
i=1 Si) is the set of abstract global states.

• ι̂m̄ , (ιm̄, {ι1, . . . , ιk}) is the initial abstract global state.

• Âctm̄ , Actm̄ ∪
⋃k
i=1((Ai ∪ AEi)× Si × {↑, ↓}) is the set of abstract global actions.

83 Verifying Unbounded Properties

• P̂m̄ : Ŝm̄ → P(Âctm̄) is defined by:

P̂m̄(g,X) , (Pm̄(g) \ {a ∈ GS : ∃i ∈ k̇, x ∈ X with x ∈ Si and a /∈ Pi(x)})

∪
k⋃
i=1

{(a, s, v) ∈ Ai ×X × {↑, ↓} : a ∈ Pi(s)}

∪
k⋃
i=1

{(a, s, v) ∈ AEi ×X × {↑, ↓} : a ∈ Pi(s) ∩ PE(g.E)}

• t̂m̄ : Ŝm̄× Âctm̄ → Dist(Ŝm̄) is the transition function, defined for asynchronous agent

actions by:

t̂m̄((g′, X ′) | (g,X), a, l, ↑)) ,
ti(l
′ | l, a) if X ′ \X = {l′} and l, l′ ∈ Si and g = g′∑
l′∈X∩Si ti(l

′ | l, a) if X ′ = X and l ∈ Si and g = g′

0 otherwise

t̂m̄((g′, X ′) | (g,X), (a, l, ↓)) ,

ti(l
′ | l, a) if X ′ = (X \ {l}) ∪ {l′} and l ∈ Si

and l′ ∈ Si \X and g = g′∑
l′∈X′∩Si ti(l

′ | l, a) if X ′ = X \ {l} and l ∈ Si and g = g′

0 otherwise

t̂m̄((g′, X ′) | (g,X),(a, i)) ,

tm̄(g′ | g, a) if X ′ = X

0 otherwise

84 Verifying Unbounded Properties

For agent-environment actions, we similarly define:

t̂m̄((g′, X ′) | (g,X), (a, l, ↑)) , tE(g′.E | g.E, a)×

tk(l
′ | l, a) if X ′ \X = {l′} and l, l′ ∈ Sk

and ∀(i, j) ∈ A(m̄) : g.(i, j) = g′.(i, j)∑
l′∈X∩Sk tk(l

′ | l, a) if X ′ = X and l ∈ Sk

and ∀(i, j) ∈ A(m̄) : g.(i, j) = g′.(i, j)

0 otherwise

t̂m̄((g′, X ′) | (g,X), (a, l, ↓)) , tE(g′.E | g.E, a)×

tk(l
′ | l, a) if X ′ = (X \ {l}) ∪ {l′} and l ∈ Sk and l′ ∈ Sk \X

and ∀(i, j) ∈ A(m̄) : g.(i, j) = g′.(i, j)∑
l′∈X′∩Sk tk(l

′ | l, a) if X ′ = X \ {l} and l ∈ Sk

and ∀(i, j) ∈ A(m̄) : g.(i, j) = g′.(i, j)

0 otherwise

t̂m̄((g′, X ′) | (g,X), (a, i)) ,

tm̄(g′ | g, a) if X ′ = X

0 otherwise

For asynchronous environment actions, we define:

t̂m̄((g′, X ′) | (g,X), a) ,

tm̄(g′ | g, a) if X ′ = X

0 otherwise

Finally, for global actions we define:

t̂m̄((g′, X ′) | (g,X), a) ,
tm̄(g′ | g, a) if X ′ = {s′ ∈ S | ∃i ∈ k̇, s ∈ X ∩ Si : ti(s

′ | s, a) = 1}

0 otherwise

85 Verifying Unbounded Properties

• V̂m̄ : Ŝm̄ → P((AP ×A(m̄))∪AP) is the labelling function given by V̂m̄(g,X) , Vm̄(g).

Intuitively, the abstract global state records the exact state of the first m̄ agents (since

we need this to check whether a formula holds). For all other agents, it stores a set of states

which corresponds to the states that have one or more agents in that state. We will refer to

these agents in the second component of the state as the abstract agents.

Abstract global actions are either concrete actions of the first m̄ agents, or they are

actions of the abstract agents. In the latter case, we add some further labelling to the

actions that we need to resolve how the transition occurs. In particular, we label the action

with both the state it was performed from and whether the agent performing the action was

the only agent in that state (“shrinking” actions, labelled by ↓) or one of several (“growing”

actions, labelled by ↑).

The protocol then enables all concrete actions for the concrete agents with the exception

of global-synchronous actions that cannot be performed by one of the abstract agents. For

the abstract agents, it enables their actions along with the corresponding labelling (notice

that since we do not actually know how many agents are in each state, we always enable

both the ↑ and the ↓ version of actions).

For the labelling function, we are only interested in the m̄ concrete agents in the first

component of the state (since these are the ones for which corresponding atomic propositions

are used in the formula), so we simply discard the second component.

The first transitions of an example abstract system can be seen in Figure 5.1. In the

initial state, the two concrete agents (1, 1) and (2, 1) may perform their concrete transitions

with a and e actions exactly as in Figure 3.4. Further, the abstract agents can also perform

a or e. This gives abstract actions like (a, 1, ↑) which denotes one of several abstract agents

in state 1 performing the a action and could result in a transition that updates the abstract

state from {1, 3} to {1, 2, 3}. The abstract action (a, 1, ↓) corresponds to the last abstract

agent in state 1 performing the a action and may result in the abstract state being updated

86 Verifying Unbounded Properties

Figure 5.1 The first state and its outgoing transitions of the abstract system
Ŝ((1, 1)) where S is the APMAS from Figure 3.3. Note the full abstract system
is much larger (it contains 19 states and 105 transitions) so is not shown.

from {1, 3} to {2, 3}. The transitions for the abstract e action are similar.

Before we proceed, it remains to check that the transition function we have defined gives

a valid probability distribution. We do so now.

Observation 5.1. For any s ∈ Ŝm̄ and a ∈ Âctm̄, it is the case that:

∑
s′∈Ŝm̄

t̂m̄(s′ | s, a) = 1

Proof. Let ŝ = (g,X) ∈ Ŝm̄. We consider different choices of action.

• a ∈ Actm̄ \GS. Then:

∑
s′∈Ŝm̄

t̂m̄(s′ | (g,X), a) =
∑
g′∈Sm̄

t̂m̄((g′, X) | (g,X), a) =
∑
g′∈Sm̄

tm̄(g′ | g, a) = 1

The equalities follow by noting which terms are non-zero, then applying the definition

of t̂ and finally using Observation 3.2.

• a ∈ GS. Similarly to the above case, we have:

∑
s′∈Ŝm̄

t̂m̄(s′ | (g,X), a) =
∑
g′∈Sm̄

t̂m̄((g′, X ′) | (g,X), a) =
∑
g′∈Sm̄

tm̄(g′ | g, a) = 1

87 Verifying Unbounded Properties

where X ′ = {s′ ∈ S | ∃i ∈ k̇, s ∈ X ∩ Si : ti(s
′ | s, a) = 1}. Once again, this follows

by picking out the non-zero terms of the sum, applying the definition of t̂, and finally

using Observation 3.2.

• a = (a′, l, ↑) for a′ ∈ Ai and l ∈ Si. Then:∑
s′∈Ŝm̄

t̂m̄(s′ | (g,X), a) =
∑

l′∈Si\X

ti(l
′ | l, a) +

∑
l′∈X∩Si

ti(l
′ | l, a) =

∑
l′∈Si

ti(l
′ | l, a) = 1

by picking out the non-zero terms, performing some rearranging and then noting that

ti is a valid transition function.

• a = (a′, l, ↓) for a′ ∈ Ai and l ∈ Si. This is almost identical to the above case.

• a = (a′, l, ↑) for a′ ∈ AEi and l ∈ Si. Then:∑
s′∈Ŝm̄

t̂m̄(s′ | (g,X), a) =
∑
sE∈SE

(∑
l′∈Si\X

tE(sE | g.E, a′)ti(l′ | l, a)

+
∑

l′∈X∩Si

tE(sE | g.E, a′)ti(l′ | l, a)

)
=
∑
sE∈SE

(
tE(sE | g.E, a′)

∑
l′∈Si

ti(l
′ | l, a)

)
=
∑
sE∈SE

tE(sE | g.E, a′) = 1

by picking out the non-zero terms, performing some rearranging and then noting first

that ti is a valid transition function and subsequently that tE is also a valid transition

function.

• a = (a′, l, ↑) for a′ ∈ AEi and l ∈ Si. This is almost identical to the above case.

This covers all possible cases for the action a and completes our proof.

Having defined our abstract system and shown that this definition is correct, we now

wish to formalise in what sense this captures the same paths as concrete systems. Firstly, we

borrow the concept on a state abstraction map λn̄,m̄ : Sn̄ → Ŝm̄ exactly as in Definition 4.3

88 Verifying Unbounded Properties

(with SPMAS replaced by APMAS). However, as the actions of agents in APMAS are distinct

from those in SPMAS we will need a new notion of action abstraction. We define this below.

Definition 5.3 (Action Abstraction). Let n̄, m̄ ∈ Nk
1 with n̄i > m̄i for all i. Then, the

abstraction map on actions λn̄,m̄ : Sn̄ × Actn̄ → Âctm̄ is given by:

λn̄,m̄(s̄, a) ,

a if a ∈ Actm̄

(a′, s̄.(i, j), ↓) if a = (a′, (i, j)) for some a′ ∈ (Ai ∪ AEi) and

(i, j) ∈ A(n̄) \ A(m̄) with

| {j′ ∈ {m̄i + 1, . . . , n̄i} | s̄.(i, j) = s̄.(i, j′)} |= 1

(a′, s̄.(i, j), ↑) if a = (a′, (i, j)) for some a′ ∈ (Ai ∪ AEi) and

(i, j) ∈ A(n̄) \ A(m̄) with

| {j′ ∈ {m̄i + 1, . . . , n̄i} | s̄.(i, j) = s̄.(i, j′)} |> 1

Intuitively, for each type of agent i this maps actions concerning the first m̄i such agents

to themselves. For actions of the remaining agents, these are labelled with the state that

they occurred from and whether they were shrinking (↓) or growing (↑) ones.

Note that unlike the similar Definition 4.4, here we also need the state the action is being

performed from in order to map a concrete action to an abstract one as without this we

would not be able to know whether we should use the shrinking or growing version of an

action.

We now give a technical lemma that will be helpful to prove the the validity of our

algorithm later. Intuitively, this lemma says that the probability of a transition in the

abstract model is precisely the sum of the probabilities of the concrete transitions it could

represent.

Lemma 5.1. Let n̄, m̄ ∈ Nk
1 with n̄i > m̄i for all i. Let g ∈ Sn̄ and a ∈ Pn̄(g). Then, for

89 Verifying Unbounded Properties

any ĝ′ ∈ Ŝm̄:

t̂m̄(λn̄,m̄(g, a) | ĝ′, λn̄,m̄(g)) =
∑

g′∈λ−1
n̄,m̄(ĝ′)

tn̄(g′ | g, a)

Proof. Let g = (s1, . . . , sk, sE) and λn̄,m̄(g) = ((ŝ1, . . . , ŝk, ŝE), X). Denote by ĝ′ =

((ŝ′1, . . . , ŝ
′
k, ŝ
′
E), X ′). We now consider different possible cases for a:

• a ∈ AE. Note that if X 6= X ′, both sides of the equation are 0 following the definitions.

Similarly, if for any i ∈ N1 we have ŝi 6= ŝ′i then both sides are 0. It remains to consider

the case where X = X ′ and ŝi = ŝ′i for all i ∈ N1. Then, note that:

t̂m̄(ĝ′ | λn̄,m̄(g), λn̄,m̄(g, a)) = tm̄((ŝ1, . . . , ŝk, ŝ
′
E) | (ŝ1, . . . , ŝk, ŝE), a) = tE(ŝ′E | sE, a)

by following the definitions from the left hand side. On the right hand side we have:∑
g′∈λ−1

n̄,m̄(ĝ′)

tn̄(g′ | g, a) = tn̄((s1, . . . , sk, ŝ
′
E) | (s1, . . . , sk, sE), a) = tE(ŝ′E | sE, a)

with the first equality following from the fact that since a ∈ AE, the only cases for tn̄

that are not 0 are those where only the state of the environment changes. The second

equality follows by the definition giving the result.

• a ∈ GS. Note that since the agent transitions are deterministic (Definition 3.8), if we

have X ′ 6= {s′ ∈ S | ∃i ∈ k̇, s ∈ X ∩ Si : ti(s
′ | s, a) = 1} then both sides would be

equal to 0 (the left simply by definition, the right by noting that no g′ ∈ λ−1
n̄,m̄(ĝ′) is

reachable from g so every term being summed is 0). So, we need only consider the case

when X ′ = {s′ ∈ S | ∃i ∈ k̇, s ∈ X ∩ Si : ti(s
′ | s, a) = 1}.

Further note that (once again by the agent transitions being deterministic) there are

unique states p̂1, . . . , p̂k ∈ Sm̄ such that tm̄((p̂1, . . . , p̂k, ŝ
′
E) | (ŝ1, . . . , ŝk, ŝE), a) 6= 0. If

for any i ∈ N1 it is the case that ŝ′i 6= p̂i then both sides are equal to 0. So, we only

need to check that case where ŝ′i = p̂i for all i ∈ N1. Then, on the left hand side we

have:

t̂(ĝ′ | λn̄,m̄(g), λn̄,m̄(g, a)) = tm̄((ŝ1, . . . , ŝk, ŝ
′
E) | (ŝ1, . . . , ŝk, ŝE), a) = tE(ŝ′E | sE, a)

90 Verifying Unbounded Properties

since all of the deterministic agent transitions are 1, so only the transition of the

environment is needed to determine the probability. On the right hand side, we note

that once again by the deterministic nature of the agent transitions there is precisely

one reachable g′ = (s′1, . . . , s
′
k, ŝ
′
E) ∈ λ−1

n̄,m̄(ĝ′). Then:∑
g′∈λ−1

n̄,m̄(ĝ′)

tn̄(g′ | g, a) = tn̄((s′1, . . . , s
′
k, ŝ
′
E) | (s1, . . . , sk, ŝE), a) = tE(ŝ′E | sE, a)

with the second equality following once again from the deterministic agent transitions

being 1. Thus, the result holds.

• a = (a′, (i, j)) ∈ Ai × Agtm̄. We consider only the case when X = X ′, ŝE = ŝ′E and

ŝl,m = ŝ′l,m for all (l,m) 6= (i, j). If any of those conditions are violated, it follows easily

from the definitions that both sides are 0. In the remaining case note that:

t̂(ĝ′ | λn̄,m̄(g), λn̄,m̄(g, a)) = ti(ŝ
′
i,j | ŝi,j, a) = ti(s

′
i,j | si,j, a)

by definition. On the right hand side, note that the only non-zero term of the sum is

when g′ = (s′1, . . . , s
′
k, ŝ
′
E) with s′l,m = sl,m for all (l,m) 6= (i, j) and s′i,j = ŝ′i,j. Thus:∑

g′∈λ−1
n̄,m̄(ĝ′)

tn̄(g′ | g, a) = tn̄((s′1, . . . , s
′
k, s
′
E) | (s1, . . . , sk, sE), a) = ti(s

′
i,j | si,j, a)

• a = (a′, (i, j)) ∈ AEi × Agtm̄. This case is identical to the one above, except that

we needn’t have ŝE = ŝ′E and thus the final result is multiplied by tE(ŝ′E | sE, a) to

account for the environment’s transition.

• a = (a′, (i, j)) ∈ Ai × (Agtn̄ \ Agtm̄). We consider only the case when ŝE = ŝ′E and

ŝl = ŝ′l for all l. If either of those conditions are violated, it follows easily from the

definitions that both sides are 0. We further subdivide this case into two:

– {j′ ∈ {m̄i + 1, . . . , n̄i} | si,j = si,j′} = 1. Then, λ(g, a) = (a′, si,j, ↓). Here, there

are two non-zero cases. If X ′ = X \ {si,j} then on the LHS we have:

t̂(ĝ′ | λn̄,m̄(g), (a′, si,j, ↓)) =
∑

l′∈X∩Si

ti(l
′ | si,j, a′)

91 Verifying Unbounded Properties

by definition. But note this is equal to the RHS since the only g′ =

(s′1, . . . , s
′
k, sE) ∈ λ−1(ĝ′) for which tn̄(g′ | g, a) is non-zero are those where s′o = so

for all o 6= (i, j), and in order to be in the pre-image, it must be the case that

si,j ∈ X ∩ Si.

The other non-zero case is when X ′ = (X \ {si,j}) ∪ {l′} for some l′ ∈ Si \ X.

Then, on the LHS we have:

t̂(ĝ′ | λn̄,m̄(g), (a′, si,j, ↓)) = ti(l
′ | si,j, a′)

by definition. But this is equal to the RHS, since the only g′ = (s′1, . . . , s
′
k, sE) ∈

λ−1(ĝ′) for which tn̄(g′ | g, a) is non-zero is the one with s′o = so for all o 6= (i, j)

and s′i,j = l′.

– {j′ ∈ {m̄i + 1, . . . , n̄i} | si,j = si,j′} > 1. Then, λ(g, a) = (a′, si,j, ↑), and once

again there are two non-zero cases which are similar to the ones for the case above.

• a = (a′, (i, j)) ∈ AEi × (Agtn̄ \ Agtm̄). This case is identical to the one above, except

that we needn’t have ŝE = ŝ′E and thus the final result is multiplied by tE(ŝ′E | sE, a)

to account for the environment’s transition.

This covers all types of action and completes the proof.

Having defined the notion of abstraction on states and actions (and proved a desirable

property of this) we now go on to extend these definitions to cover paths in a similar way

to what we did in the previous chapter – mapping every state and action in the path to the

corresponding abstract state.

Definition 5.4 (Path Abstraction). Let n̄, m̄ ∈ Nk
1 with n̄i > m̄i for all i. Then, the

abstraction map on paths λn̄,m̄ : IPathS(n̄) → IPathŜ(m̄) is given by sending each infinite

path ρ = g0a0g1 . . . in S(n̄) to the unique infinite path ρ̂ = ĝ0â0ĝ1 . . . in Ŝ(m̄) such that, for

all i ∈ N:

92 Verifying Unbounded Properties

(i) ĝi = λn̄,m̄(gi);

(ii) âi = λn̄,m̄(gi, ai).

Note that this is similar to Definition 4.10, however it differs slightly because in (ii) we

need to use the state the action is being performed from to decide whether the abstract

action should be a growing or a shrinking one. We restrict this definition to finite paths in

the obvious way – we map to an abstract path of equal length such that conditions (i) and

(ii) hold for all i up to the length of the path.

Having defined this abstraction function, we now define the equivalent strategy. Given

a strategy in a concrete system of size n̄, the equivalent strategy defines a strategy in the

abstract model of size m̄ which achieves “the same behaviour” (precisely what we mean by

this is formalised later in Lemma 5.2). This definition will be similar to Definition 4.7, but

adapted for APMAS.

Definition 5.5 (Equivalent Strategy). Let σ : FPathS(n̄) → Dist(Actn̄) be a strategy

in S(n̄). Then, for any m̄ with m̄i < n̄i for all i, we define the equivalent strategy

σ̂ : FPathŜ(m̄) → Dist(Âctm̄) by:

σ̂(â | ρ̂) ,

∑
ρ∈λ−1

n̄,m̄(ρ̂)

∑
a∈Actn̄:λn̄,m̄(last(ρ),a)=âPS(n̄)σ(ρ) · σ(a | ρ)∑

ρ∈λ−1
n̄,m̄(ρ̂) PS(n̄)σ(ρ)

Intuitively, as in the abstract model we do not know precisely which path would have

been followed in the concrete model, we have to consider all paths that could have been

followed (these are precisely the paths in the preimage of λn̄,m̄) and weight our probabilistic

choice of the next action according to the probability of each path.

Before we proceed any further, we should stop to prove that this definition is indeed a

valid strategy. This proof is similar to that for Observation 4.2, but modified for the case of

APMAS.

Observation 5.2. σ̂ : FPathŜ(m̄) → Dist(Âctm̄) is a valid strategy.

93 Verifying Unbounded Properties

Proof. First, suppose that σ̂(â | ρ̂) > 0. Then, there is at least one ρ ∈ λ−1
n̄,m̄(ρ̂) and one

a ∈ Actn̄ such that λn̄,m̄(last(ρ), a) = â and σ(a | ρ) > 0. Then it must be the case that

a ∈ Pn̄(last(ρ)) since σ is a valid strategy. It follows that â ∈ P̂n̄(last(ρ̂))

It remains to check that for any ρ̂ ∈ FPathŜ(m̄) we have that
∑

â∈Âctm̄ σ̂(â | ρ̂) = 1. For

this notice that: ∑
ρ∈λ−1

n̄,m̄(ρ̂)

∑
â∈Âctm̄

∑
a∈Actn:λn̄,m̄(last(ρ),a)=â

PS(n̄)σ(ρ) · σ(a | ρ)

=
∑

ρ∈λ−1
n̄,m̄(ρ̂)

∑
a∈Actn̄

PS(n̄)σ(ρ) · σ(a | ρ) =
∑

ρ∈λ−1
n̄,m̄(ρ̂)

PS(n̄)σ(ρ)

with the first equality following simply from λn̄,m̄ being a function and the second from σ

being a valid strategy. So
∑

â∈Âctm̄ σ̂(â | ρ̂) = 1, as desired.

Having proved the validity of our definition, we present a further lemma. This shows the

desirable property that when following the equivalent strategy, the probability of a path in

the abstract model is exactly equal to the sum of the probabilities of the concrete paths that

it could represent.

Lemma 5.2. Let σ : FPathS(n̄) → Dist(Actn̄) be a strategy in S(n̄). Then it is the case

that, for any path ρ̂ ∈ FPathŜ(m̄):

PŜ(m̄)σ̂
(ρ̂) =

∑
ρ∈λ−1

n̄,m̄(ρ̂)

PS(n̄)σ(ρ)

Proof. We proceed by induction on the length of the path ρ̂. For the base case, note the

only path of length 1 has just the initial state ι̂m̄. This has probability 1. Further, ρ = ι is

the only element of λ−1
n̄,m̄(ρ̂) for which PS(n̄)σ(ρ) is non-zero, and this is also 1. So, both sides

of the equation are 1, and the statement holds.

Now, suppose the statement holds for a path ρ̂′ and consider its extension ρ̂ = ρ̂′âŝ for

94 Verifying Unbounded Properties

some â ∈ Âctm̄ and ŝ ∈ Ŝm̄. Now:

PŜ(m̄)σ̂
(ρ̂)

= PŜ(m̄)σ̂
(ρ̂′) ·

∑
ρ∈λ−1

n̄,m̄(ρ̂′)

∑
a∈Actn̄:λn̄,m̄(last(ρ),a)=âPS(n̄)σ(ρ) · σ(a | ρ)∑

ρ∈λ−1
n̄,m̄(ρ̂′) PS(n̄)σ(ρ)

· t̂m̄(ŝ | last(ρ̂′), â)

=

 ∑
ρ∈λ−1

n̄,m̄(ρ̂′)

∑
a∈Actn̄:λn̄,m̄(last(ρ),a)=â

PS(n̄)σ(ρ) · σ(a | ρ)

 · t̂m̄(ŝ | last(ρ̂′), â)

=
∑

ρ∈λ−1
n̄,m̄(ρ̂′)

∑
a∈Actn̄:λn̄,m̄(last(ρ),a)=â

PS(n̄)σ(ρ) · σ(a | ρ) ·
∑

s∈λ−1
n̄,m̄(ŝ)

tn̄(s | last(ρ), a)

=

∑
ρ∈λ−1

n̄,m̄(ρ̂)

PS(n̄)σ(ρ)

with the first equality following from the definitions, the second from the inductive hypoth-

esis, the third from Lemma 5.1 and the final one simply by rearranging. Thus, by induction

on the length of the path, the lemma holds for all finite paths.

Having proved this lemma, we now have enough to prove one of the main results of this

chapter. In particular, we will now prove that if an m̄-indexed formula of the form Pmax
≤x [ψ]

holds in the abstract model of size m̄ then it will hold in any larger concrete system. This

will enable us to partially solve the PMCP from Definition 5.1.

Theorem 5.1. Suppose Ŝ(m̄) |= Pmax
≤x [ψ] for some m̄-indexed formula ψ. Then, S(n̄) |=

Pmax
≤x [ψ] for all n̄ ∈ Nk

1 with n̄i > m̄i for all i.

Proof. We prove the contrapositive of this statement. Suppose we have S(n̄) |= Pmax
>x [ψ] for

some n̄ ∈ Nk
1 with n̄i > m̄i for all i. Then, by definition, for some strategy σ in S(n̄) we

have:

PS(n̄)σ({ρ ∈ IPathS(n̄)σ : ρ |= ψ}) > x

Now, let σ̂ be the equivalent strategy in Ŝ(m̄) as given by Definition 5.5. But now every path

in the concrete model has a corresponding path in the abstract model where, by definition,

95 Verifying Unbounded Properties

the same atomic propositions hold at each step (and thus the same LTL formulas hold along

the path). So:

PŜ(m̄)σ̂
({ρ̂ ∈ IPathŜ(m̄)σ̂

: ρ̂ |= ψ}) > x

since by Lemma 5.2 the probability of a path in the abstract model is at least as much as

that of the corresponding path in the concrete model.

Thus, by considering σ̂ as our strategy, we see that Ŝ(m̄) |= Pmax
>x [ψ] and our result

holds.

Note the above theorem also gives a method to check properties of the form Pmin
>x [ψ] since

this is equivalent to checking Pmax
≤1−x[¬ψ]. Further, if we can verify Pmax

≤x [ψ] then certainly it

cannot be the case that Pmax
>x [ψ]. This enables us to falsify properties of the form Pmax

>x [ψ]

(and thus also properties of the form Pmin
≤x [ψ], which are equivalent to Pmax

>1−x[¬ψ]).

Theorem 5.2. Suppose Ŝ(m̄) |= Pmax
<x [ψ] for some m̄-indexed formula ψ. Then, S(n̄) |=

Pmax
<x [ψ] for all n̄ ∈ Nk

1 with n̄i > m̄i for all i.

Proof. This is identical to the proof for Theorem 5.1 with strict and non-strict inequalities

swapped.

As before, this theorem can also be used to verify properties of the form Pmin
≥x [ψ], and to

falsify properties of the form Pmax
≥x [ψ] or Pmin

<x [ψ].

5.3 Verification Procedure

All the above combine to give our partial decision procedure for solving the PMCP, which

can be seen in Algorithm 5.1. We now prove its correctness.

Corollary 5.1. Let S be an APMAS, and φ an m̄-indexed PLTL formula. Then,

if PMCP-Unbounded(S, φ) = true, it is always the case that S |= φ. Further, if

PMCP-Unbounded(S, φ) = false, then it is the case that S 6|= φ.

96 Verifying Unbounded Properties

Algorithm 5.1 Decision procedure for the PMCP of APMAS against PLTL
Input: APMAS S, PLTL formula φ
Output: Boolean, or FAIL

1: function PMCP-Unbounded(S, φ)
2: m̄← ComputeIndex(φ)
3: switch φ do

4: case φ = Pmax
≤x [ψ] or φ = Pmax

<x [ψ]

5: if Ŝ(m̄) 6|= φ then

6: return FAIL

7: end if

8: return true

9: case φ = Pmax
>x [ψ]

10: if Check(S, Pmax
≤x [ψ]) = true then

11: return false

12: end if

13: return FAIL

14: case φ = Pmax
≥x [ψ]

15: if Check(S, Pmax
<x [ψ]) = true then

16: return false

17: end if

18: return FAIL

19: case φ = Pmin
>x [ψ]

20: return Check(S, Pmax
≤1−x[¬ψ])

21: case φ = Pmin
≥x [ψ]

22: return Check(S, Pmax
<1−x[¬ψ])

23: case φ = Pmin
<x [ψ]

24: return Check(S, Pmax
≥1−x[¬ψ])

25: case φ = Pmin
≤x [ψ]

26: return Check(S, Pmax
>1−x[¬ψ])

27: end function

97 Verifying Unbounded Properties

Proof. If we return true on line 8, then by either Theorem 5.1 or Theorem 5.2 (depending

on the form of φ), we know that S(n̄) |= φ for all n̄ ∈ (N1)k with n̄i > m̄i for all i, showing

that S |= φ.

If we return on line 11, then φ = Pmax
>x [ψ] and (by the reasoning in the previous parts of

the proof) we have proved that we must have S |= Pmax
≤x [ψ]. Thus, it must be the case that

S 6|= φ. The same argument proves the return value on line 16.

For the return value on line 20, note that checking Pmin
>x [ψ] is identical to checking

Pmax
≤1−x[¬ψ] since the strategy that minimises ψ is just the one that maximises ¬ψ, and if this

achieves a probability ≤ 1− x of satisfying ¬ψ, it will certainly achieve a probability > x of

satisfying ψ. A similar argument shows the validity of the return values on lines 22, 24 and

26.

Thus, we have proved that our procedure’s result (when it returns one) is correct. Further,

the procedure always terminates. This is clear since when it makes a recursive call this call

is always to one of the cases above it, and further there are no loops. However, the procedure

is not complete since in some cases it will not return a result but will return FAIL instead.

This is inevitable, since the PMCP decision problem it is solving (Definition 5.1) is a more

general version of one that is already known to be undecidable [Apt and Kozen, 1986] and

thus is also undecidable. As we did for the procedure in the previous section, we now make

an observation on our procedures run-time.

Observation 5.3. The run-time of PMCP-Unbounded(S, φ) is exponential in the number

of states in agent templates, polynomial in the number of environment states, and doubly

exponential in the size of the formula.

Proof. The proof is identical to that of Observation 4.4.

98 Verifying Unbounded Properties

5.4 Summary

In this chapter, we have developed a technique to solve the PMCP of APMAS against PLTL

specifications (Definition 5.1). To achieve this, we first defined an abstract model for APMAS

(Definition 5.2). We then proved that to check properties of larger systems, it is sufficient to

verify them in the abstract model (Theorems 5.1 and 5.2). This result allowed us to develop

a verification procedure (Algorithm 5.1) which we proved to be sound (Corollary 5.1).

99 Extensions

Chapter Six

Extensions

In this chapter, we will introduce two extensions to our semantics that will allow us to model

richer scenarios. In particular, in the first section we will consider strategic properties that

allow us to express goals that a coalition of agents may achieve. Subsequently, in the second

section we will introduce a framework to inject faults in the behaviour of the agents, thus

allowing us to model situations where agents may malfunction.

The first part of this chapter is based on research that was first presented in our 2020

AAMAS paper [Lomuscio and Pirovano, 2020a], while the second part was first presented in

our 2020 IJCAI paper [Lomuscio and Pirovano, 2020b].

6.1 Strategic Specifications

In this section we introduce a parameterised model checking problem for unbounded prob-

abilistic systems against strategic properties. We then develop a partial decision procedure

for this problem which relies on computing upper and lower bounds for what probabilities

coalitions of agents can achieve of satisfying a certain path formula. Some of these bounds

will be computed using the abstract model we introduced in Section 4.2.

100 Extensions

6.1.1 Parameterised Model Checking Problem

As we have done in previous chapters, we now introduce the parameterised model checking

problem that we will consider for the rest of this section. This problem will be similar to

the one in Definition 4.1 but using the richer specification logic of P[ATL*].

Definition 6.1 (PMCP of P[ATL*] on SPMAS). Given an SPMAS S and an m̄-indexed

P[ATL*] formula φ, the parameterised model checking problem (PMCP) involves establishing

whether it is the case that S(n̄) |= φ for all n̄ with n̄i > m̄i for all i. We write S |= φ if this

is the case.

Once again, note that this decision problem is an extension (to incorporate probabilities

and strategies) of one that is already know to be undecidable [Apt and Kozen, 1986]. Thus,

it is also undecidable. Nonetheless, we devote the rest of this section to developing a partial

decision procedure for it.

6.1.2 Bounding the Maximal Probability

In this subsection, we aim to compute lower and upper bounds on the maximal probability

with which a coalition of agents can enforce a path formula. Before doing so, we need to

define what we mean by this.

Definition 6.2 (Maximal Probability). Let S be an SPMAS, A a coalition of agents and ψ

a path formula. Then we use 〈〈A〉〉Pn̄,max=?[ψ] to denote the maximal value of r ∈ [0, 1] for

which it is the case that S(n̄) |= 〈〈A〉〉P≥r[ψ].

Intuitively, in the above definition 〈〈A〉〉Pn̄,max=?[ψ] is the maximum probability with

which the agents A can ensure ψ is achieved in a system of size n̄. Note that since the

system of size n̄ is finite, this is well-defined and there is a strategy that achieves it.

Observe that if we can compute the minimum and maximum values for 〈〈A〉〉Pn̄,max=?[ψ]

as we range over n̄, we can obtain a decision procedure for the PMCP against formulas of the

101 Extensions

form 〈〈A〉〉P≥r[ψ] or 〈〈A〉〉P>r[ψ]. We will explore how to do this in this subsection, before

providing symmetric results for minimum values in the next subsection.

The following result gives the maximum value as it shows that 〈〈A〉〉Pn̄,max=?[ψ] is non-

increasing.

Lemma 6.1. Let S be an SPMAS. Then, for any set of agents A and path formula ψ it is

the case that:

〈〈A〉〉Pm̄,max=?[ψ] ≥ 〈〈A〉〉Pn̄,max=?[ψ]

where n̄i ≥ m̄i for all i ∈ k̇ and m̄ is at least the index of the formula.

Proof. Consider the strategy σ′A for the agents in A that achieves the maximal probability

r = 〈〈A〉〉Pn̄,max=? in the larger system of size n̄. Denote by σA the stategy for the agents in

A in the system of size m̄ that behaves the same way. We claim that for any strategy σAc

for the remaining agents in the system of size m̄ it is the case that

PS(m̄)σ({ω ∈ IPathS(m̄)σ(ι) : ω |= ψ}) ≥ r

where σ is the complete strategy given by σA and σAc . Suppose for a contradiction that

this were not the case for some strategy σAc . Now let σ′Ac denote the stategy obtained by

extending σAc to the larger system of size n̄ by having all the extra agents always perform

the null action ε. Now, note that

PS(n̄)σ′
({ω ∈ IPathS(n̄)σ′

(ι) : ω |= ψ}) < r

where σ′ is the complete strategy given by σ′A and σ′Ac . This gives our desired contradiction,

completing the proof.

This lemma is a probabilistic equivalent of the intuitive property that in a non-

probabilistic system with null actions, adding an agent that is not part of the coalition

trying to achieve a formula will not make it satisfied if it was not already. In particular, the

lemma shows that if the agents A have a strategy to achieve a certain probability of success

102 Extensions

in the system of size n̄, then they will also have a strategy to achieve at least this probability

in the smaller system of size m̄.

It follows from the lemma that to compute the maximum value of 〈〈A〉〉Pn̄,max=?[ψ] as we

vary n̄ for an m̄-indexed formula, it suffices to compute the value of 〈〈A〉〉Pm̄,max=?[ψ]. Note

that it is immediate that this maximum is attained, since the system of size m̄ achieves it.

We now define a concept analogous to Definition 6.2 for the abstract system.

Definition 6.3 (Maximal Abstract Probability). Let S be an SPMAS, A a coalition of

agents and ψ a path formula. Then we use 〈〈A〉〉P̂n̄,max=?[ψ] to denote the maximal value

of r ∈ [0, 1] for which it is the case that Ŝ(n̄) |= 〈〈A〉〉P≥r[ψ] where Ŝ is the abstract model

defined in Definition 4.2.

Intuitively, this defines the maximum probability with which agents in A can ensure the

property ψ in the abstract system of size n̄. This brings us to the other main result of this

section, which gives a lower bound on the values of 〈〈A〉〉Pn̄,max=?[ψ].

Lemma 6.2. Let S be an SPMAS. Then, for any set of agents A and path formula ψ it is

the case that:

〈〈A〉〉Pn̄,max=?[ψ] ≥ 〈〈A〉〉P̂m̄,max=?[ψ]

where m̄ is the index of the formula and n̄i > m̄i for all i ∈ k̇.

Proof. Let σ̂A denote the strategy for the agents A in Ŝ(m̄) that achieves the maximum

probability r = 〈〈A〉〉P̂m̄,max=?[ψ]. Consider the strategy σA in S(n̄) which behaves in the

same way. We claim that for any strategy σAc for the remaining agents in S(n̄), it is the

case that:

PS(n̄)σ({ω ∈ IPathS(n̄)σ(ι) : ω |= ψ}) ≥ r

where σ is the complete strategy given by σA and σAc . Suppose for a contradiction that

this is not the case for some σAc . Now, define σ̂Ac as the equivalent strategy according to

103 Extensions

Definition 4.7. Then, it follows from Lemma 4.2 that:

PŜ(m̄)σ̂
({ρ̂ ∈ IPathŜ(m̄)σ̂

: ρ̂ |= ψ}) < r

where σ̂ is the complete strategy given by σ̂A and σ̂Ac . This gives a contradiction as desired.

Intuitively, the abstract model represents a more powerful opponent for the agents in

A than any concrete system, since within the second component it captures the possible

behaviours of an arbitrarily large number of agents. Thus, if a coalition of agents has a

strategy to achieve a certain probability in the abstract system of size m̄, they must also

have a strategy to achieve at least this probability in the concrete system of size n̄.

6.1.3 Bounding the Minimal Probability

Having defined in the previous subsection some bounds for the maximal probabilities that

coalitions of agents can enforce, we briefly outline the symmetric results for minimal values.

Firstly, we repeat Definition 6.2 for minimum values.

Definition 6.4 (Minimum Probability). Let S be an SPMAS, A a coalition of agents and

ψ a path formula. Then we use 〈〈A〉〉Pn̄,min=?[ψ] to denote the minimal value of r ∈ [0, 1]

for which it is the case that S(n̄) |= 〈〈A〉〉P≤r[ψ].

As in Definition 6.3, we write 〈〈A〉〉P̂n̄,min=?[ψ] for the variation of the above definition to

the abstract model Ŝ. We now give equivalents of Lemmas 6.1 and 6.2 for minimum values.

Lemma 6.3. Let S be an SPMAS. Then, for any set of agents A and path formula ψ it is

the case that:

〈〈A〉〉Pm̄,min=?[ψ] ≤ 〈〈A〉〉Pn̄,min=?[ψ]

where n̄i ≥ m̄i for all i ∈ k̇ and m̄ is at least the index of the formula.

104 Extensions

Lemma 6.4. Let S be an SPMAS. Then, for any set of agents A and path formula ψ it is

the case that:

〈〈A〉〉Pn̄,min=?[ψ] ≤ 〈〈A〉〉P̂m̄,min=?[ψ]

where m̄ is the index of the formula and n̄i > m̄i for all i ∈ k̇.

We omit the proofs for these two lemmas, which are similar to those for Lemmas 6.1

and 6.2 but with inequalities reversed.

6.1.4 Verification Procedure

Having given versions of our lemmas for the minimum cases, we can now combine all our

results into a decision procedure for strategic properties, which is shown in Algorithm 6.1.

We now prove its correctness.

Theorem 6.1. For any SPMAS S and P[ATL*] formulas φ for which PMCP-Strategy re-

turns a value, it is the case that S |= φ iff PMCP-Strategy(S, φ) = true.

Proof. The correctness of the return values on lines 7 and 11 follow from Lemma 6.1 and

Lemma 6.2, respectively. For the return values on lines 17 and 21, the correctness follows

from Lemma 6.3 and Lemma 6.4, respectively.

105 Extensions

Algorithm 6.1 Decision procedure for the PMCP of SPMAS against P[ATL*]
Input: SPMAS S, P[ATL*] formula φ

Output: Boolean, or FAIL

1: function PMCP-Strategy(S, φ)

2: m̄← ComputeIndex(φ)

3: switch φ do

4: case φ = 〈〈A〉〉P./r[ψ] for ./∈ {≥, >}

5: upper ← 〈〈A〉〉Pm̄+1̄,max=?[ψ]

6: if r ./ upper then

7: return false

8: end if

9: lower ← 〈〈A〉〉P̂m̄,max=?[ψ]

10: if lower ./ r then

11: return true

12: end if

13: return FAIL

14: case φ = 〈〈A〉〉P./r[ψ] for ./∈ {≤, <}

15: lower ← 〈〈A〉〉Pm̄+1̄,min=?[ψ]

16: if r ./ lower then

17: return true

18: end if

19: upper ← 〈〈A〉〉P̂m̄,min=?[ψ]

20: if upper ./ r then

21: return false

22: end if

23: return FAIL

24: end function

106 Extensions

6.2 Faulty Systems

In this section, we introduce a method for reasoning about how faults that may be exhibited

by agents can affect the satisfaction of a specification. In order to do so, we first extend

a notion of faults from safety analysis to our semantics. After doing this, we define how

to obtain a faulty system from a non-faulty one and a description of the faults that may

occur. We then extend this definition to a probabilistically faulty system, in which rather

than all agents exhibiting faults we only wish for each agent to exhibit faults with a certain

probability.

6.2.1 Fault Injection

In order to model faults, we assume that the local states Si of each agent type i are defined

by a set of integer, Boolean, and enumerate (over a domain Ωi) variables V ARi = BV ari ∪

IV ari ∪ EV ari. More formally, we write

Si = (bool : BV ari → {⊥,>})× (int : IV ari → Z)× (enum : EV ari → Ωi)

With a slight abuse of notation, we will simply write the values of the variables directly when

this is clear from context.

Before proceeding with our definition of how faults are injected, we introduce an example

that we will use throughout this section to illustrate the definitions being presented. This

is inspired by the autonomous robot scenario [Fagin et al., 1995] but adapted to include

probabilities.

Example 6.1 (Robots on track). A group of robots begin at the left end of a track of length

k + 1. A robot at a position x < k can (independently of other robots) choose to move right

one unit, which it will do with probability 1. At position k there is a button which the robots

can press. The button press is successful with probability 0.5. Regardless of whether the press

is successful or not, the robot that pressed it is moved to the right. Once the button has been

107 Extensions

(a) An example agent template.

(b) An example environment.

Figure 6.1 The APMAS for our version of the autonomous robots scenario with
k = 2. The move action is an asynchronous one, whilst the push action is an
agent-environment one. The atomic proposition buttonPressed holds when the
environment is in the bold state.

successfully pressed, no other robot can press it. Note the robots can never move left, so each

robot only gets one chance to press the button. The APMAS that models this scenario (for

a track of length 3) can be seen in Figure 6.1.

We denote by Fi the set of all possible faults for agents of type i. Various studies

have been conducted in safety analysis to identify the faults normally of interest [Bozzano

and Villafiorita, 2007]. We here consider the most widely used faults by assuming that Fi

contains:

• For every x ∈ BV ari, a fault invert(x) that inverts the value of x and a fault setB(x, k)

(where k ∈ {⊥,>}) that sets the value of x to k.

• For every y ∈ IV ari, a fault up(y) that increments the value of y, a fault down(y) that

decrements the value of y, and a fault setI(y, k) (where k ∈ Z) that sets the value of

y to k.

• For every z ∈ EV ari, a fault setE(z, v) (where v ∈ Ωi) that sets the value of z to v.

108 Extensions

More formally, Fi is given by:

Fi ,{invert(x), setB(x, k) : x ∈ BV ari, k ∈ {>,⊥}}

∪ {up(y), down(y), setI(y, k) : y ∈ IV ari, k ∈ Z}

∪ {setE(z, v) : z ∈ EV ari, v ∈ Ωi}

Given a fault f ∈ Fi and a state s ∈ Si, we will denote by (s)f the result of applying f

to s. Formally:

((bool, int, enum))f =

(boolx 7→¬bool(x), int, enum) if f = invert(x)

(boolx 7→k, int, enum) if f = setB(x, k)

(bool, inty 7→int(y)+1, enum) if f = up(y)

(bool, inty 7→int(y)−1, enum) if f = down(y)

(bool, inty 7→k, enum) if f = setI(y, k)

(bool, int, enumz 7→v) if f = setE(z, v)

where gx7→y denotes the function obtained by replacing the value of g at x with y.

6.2.2 Fully Faulty Systems

In this subsection, we will build on the above definitions of faults to explore how a faulty

system can be constructed from a non-faulty one and a description of the faults. This notion

of fault injection is similar to the one previously considered in the literature [Bozzano and

Villafiorita, 2007; Ezekiel and Lomuscio, 2017]. However, we note the important difference

that we here consider unbounded stochastic systems, with stochastic faults. To the best

of our knowledge, this has not been studied before as without the foundation of the work

carried out in the previous chapters of this thesis it is a difficult problem to tackle.

Before defining faulty systems, we introduce the notion of fault profiles, which define the

probability of each fault occurring when performing a certain action from a certain state.

109 Extensions

These fault profiles will complete the necessary information to build faulty systems from

non-faulty ones.

Definition 6.5 (Fault Profile). A fault profile is a function χi : Si×Acti → Dist(Fi∪{X}).

The expression χii(s, a) gives a probability distribution on what fault will occur when action

a is performed from state s, with the X being used to denote no fault occurring.

Note that the above restricts our systems to having at most one fault at each time-step.

This restriction could be lifted by considering sets of faults instead of individual faults in

the fault profile. For ease of presentation we do not pursue this here.

We now go on to define how an agent template can be modified to exhibit the faults

given by a fault profile.

Definition 6.6 (Faulty Agent). Given an agent template Ti = 〈Si, ιi, Acti, Pi, ti〉 and a

fault profile χi : Si × Acti → Dist(Fi ∪ {X}), we define the faulty agent template T χii =

〈Sχii , ι
χi
i , Acti, P

χi
i , t

χi
i 〉 as follows:

• Sχii = Si×{⊥,>}×{⊥,>}, where the first Boolean variable encodes whether the agent

has ever exhibited a fault and the second whether the agent exhibited a fault in the

previous transition.

• ιχii = (ιi,⊥,⊥) is a new initial state.

• P χi
i : Sχii → P(Acti) is given by P χi

i ((s, f, i)) , Pi(s).

• tχii : Sχii × Acti → Dist(Sχi) is defined by:

tχii ((s′, f ′, e′) | (s, f, e), a) ,

ti(s

′ | s, a)χi(X | s, a) if f = f ′ and e′ = ⊥∑
x∈Fi,s′′∈Si:(s′′)x=s′ ti(s

′′ | s, a)χi(x | s, a) if f ′ = e′ = >

0 otherwise

110 Extensions

The definition above includes both non-faulty transitions (corresponding to e′ = ⊥) in

which the value of f is not affected, and faulty transitions (e′ = >) in which f is set to

>. Note that transitions where f = > and f ′ = ⊥ are not allowed; so once an agent has

exhibited faulty behaviour, it is labelled as faulty for the rest of the run of the system.

However, faulty agents may still carry out correct transitions. Further, note that faults are

never injected into our two new variables that track faults.

Example 6.2. Consider again the track scenario from Example 6.1. Suppose we wish to

model that with probability 0.2 when a robot moves it may malfunction and move two units

instead of one.

To model this in our framework, let x be the variable representing the location of the robot

in its state. Then, we could consider a fault profile χi : Si × Acti → Dist(Fi ∪ {X}) of:

χi(f | s, a) ,

0.2 if a = move and f = up(x)

0.8 if a = move and f = X

1 if a 6= move and f = X

0 otherwise

The faulty agent resulting from applying our construction (with a track of length 3) can

be seen in Figure 6.2.

Before proceeding, we need to show that our definition of faulty agents is valid. In

particular, we should check that tχii defines a valid probability distribution.

Observation 6.1. Let χi : Si × Acti → Dist(Fi ∪ {X}) be a fault profile and Ti =

〈Si, ιi, Acti, Pi, ti〉 a non-faulty agent. Then, it is the case that for any l = (s, f, e) ∈ Sχii and

a ∈ Acti we have
∑

l′∈Sχii
tχii (l′ | l, a) = 1.

Proof. Note that we only have two non-zero cases in our transition function (a faulty tran-

111 Extensions

Figure 6.2 An example faulty agent template resulting from adding a fault (cor-
responding to the move action moving the agent two units instead of one with
probability 0.2) to the agent in Figure 6.1.

sition and a non-faulty one). So, the sum on the LHS can be split into:

∑
l′∈Sχi :l′=(s′,>,>)

tχii (l′ | l, a) +
∑

l′∈Sχi :l′=(s′,f,⊥)

tχii (l′ | l, a)

Then, we can apply the definition of the transition function and rearrange to get:∑
x∈Fi

χi(x | s, a)
∑

l′∈Sχii :l′=(s′,>,>)

∑
s′′∈Si:(s′′)x=s′

t(s′′ | s, a)

+ χi(X | s, a)
∑

l′∈Sχii :l′=(s′,f,⊥)

ti(s
′ | s, a)

We can simplify some of the subscripts by noting that the second two components of the

tuple are not needed to get:

∑
x∈Fi

χi(x | s, a)
∑
s′∈Si

∑
s′′∈Si:(s′′)x=s′

ti(s
′′ | s, a) + χi(X | s, a)

∑
s′∈Si

ti(s
′ | s, a)

Now, note that since s′ ranges over all possible states we have that:

∑
s′∈Si

∑
s′′∈Si:(s′′)x=s′

ti(s
′′ | s, a) =

∑
s′′∈Si

ti(s
′′ | s, a) = 1

112 Extensions

with the second equality following from t being a valid transition function. So, the LHS is

equal to: ∑
x∈Fi

χi(x | s, a) + χi(X | s, a) =
∑

x∈Fi∪{X}

χi(x | s, a) = 1

with the final equality following from χi(x | s, a) being defined as a valid distribution on

Fi ∪ {X}.

Having defined the behaviour of a faulty agent, and observed the validity of our definition,

we now proceed to use this to define a faulty system.

Definition 6.7 (Fully Faulty APMAS). Let S = 〈T , E,V , VE〉 be an APMAS, with agents

T = {T1, . . . , Tk} and valuation functions V = {V1, . . . , Vk}. Further, let χ be a vector

containing for each agent type a fault profile χi : Si × Acti → Dist(Fi ∪ {X}). Then, the

fully faulty APMAS Sχ = 〈T χ, E,Vχ, VE〉 is constructed by taking T χ = {T χ1

1 , . . . , T χkk } with

each T χii defined as in Definition 6.6, and Vχ = {V χ1

1 , . . . , V χk
k } with each V χi

i : Sχii × SE →

P(AP ∪ {faulty, injected}) defined by:

((s, f, e), sE) 7→

{faulty, injected} ∪ Vi(s, sE) if e = >

{faulty} ∪ Vi(s, sE) if e = ⊥ and f = >

Vi(s, sE) otherwise

Notice that the environment does not exhibit any faults. We add two additional atomic

propositions to the language: faulty and injected, tracking whether an agent has ever exhib-

ited faulty behaviour (and whether it exhibited faulty behaviour at the previous time step,

respectively). These atomic propositions allow us to express a number of specifications such

as:

Pmax
≤0.5 [G¬(faulty, (1, 1))]

which expresses that the probability of an agent ever exhibiting a fault does not exceed 0.5.

113 Extensions

We can also express probabilistic variants of properties often considered in fault-tolerance

literature. For instance:

Pmax
>0.9 [G((injected, (1, 1))→ Fφ)] (Recoverability)

expresses that with high probability even if an agent exhibits a fault the system will still

satisfy φ at some point in the future. This expresses a notion of resilience of the agents in

the system with respect to the fault and the specification φ. Note that φ may depend on

the state of other agents or the environment, and thus can express a property of the whole

system rather than just of agent (1, 1).

Finally, the new atomic propositions allow us to limit specifications to agents which have

not exhibited faulty behaviour. For instance:

Pmax
>0.9 [G(¬(faulty, (1, 1))→ φ)]

expresses that with high probability whenever an agent is not faulty, the formula φ is satisfied.

6.2.3 Probabilistically Faulty Systems

The above notion of a faulty system, in which every agent may exhibit faults, is far too

restrictive for many real-life scenarios. It is a more typical assumption is safety analysis

that only a certain proportion of agents will exhibit faults. To model these scenarios, we

introduce a more realistic model, in which each type of agent is associated with a probability

that defines how likely it is to ever exhibit faults.

We note that while the fully faulty systems described in the previous systems could be

defined by simply modifying the agents to introduce faults this is not the case here. Each

agent needs to be given an opportunity to establish if it will be faulty or not according to

its faultiness probability, and due to the possibly unbounded number of agents we do not

known at design-time how many agents will be in the system and thus do not know how

many time-steps to wait in order for this to have happened. In order to overcome this, we

114 Extensions

define an initialisation phase which is terminated by a global-synchronous action once all

agents have chosen if they will exhibit faults or not.

Definition 6.8 (Probabilistically Faulty APMAS). Let S = 〈T , E,V , VE〉 be an APMAS,

with agents T = {T1, . . . , Tk} and valuation functions V = {V1, . . . , Vk}. Further, let χ be a

vector containing for each agent type a fault profile χi : Si × Acti → Dist(Fi ∪ {X}), and

p ∈ [0, 1]k be a vector of faultiness probabilities for each agent type. Then, the probabilistically

faulty APMAS Sχ,p = 〈T χ,p, Eχ,p,Vχ,p, V χ,p
E 〉 is defined as follows.

The faulty agent template are given by T χ,p = {T χ1,p1

1 , . . . , T χk,pkk } with each T χi,pii =

〈Sχi,pii , ιχi,pii , Actχi,pii , P χi,pi
i , tχi,pii 〉 defined by:

• Sχi,pii = Si ∪ Sχii ∪ {ιχi,pi , ιf , ι′f , ιn, ι′n}, defined by considering all the faulty and non-

faulty states, as well as five fresh states used for initialisation below.

• ιχi,pii , the new initial state.

• Actχi,pii = Acti ∪ {init, g, g′} where init ∈ A and g, g′ ∈ GS, defined by introducing a

fresh asynchronous action init and fresh global-synchronous actions g and g′, used for

initialisation.

• P χi,pi
i : Sχi,pii → P(Actχi,pii) is given by:

s 7→

{a} if s = ιχi,pii

{g} if s ∈ {ιf , ιn}

{g′} if s ∈ {ι′f , ι′n}

Pi(s) if s ∈ Si

P χi
i (s) if s ∈ Sχii

115 Extensions

• tχi,pii : Sχi,pii × Actχi,pii → Dist(Sχi,pii) is given by:

tχi,pii (s′ | s, a) ,

pi if s = ιχi,pii , a = init, s′ = ιf

1− pi if s = ιχi,pii , a = init, s′ = ιn

1 if s = ιf , a = g, s′ = ι′f

or s = ι′f , a = g′, s′ = ιχii

or s = ιn, a = g, s′ = ι′n

or s = ι′n, a = g′, s′ = ιi

ti(s
′ | s, a) if s, s′ ∈ Si

tχii (s′ | s, a) if s, s′ ∈ Sχii

0 otherwise

The environment Eχ,p = 〈Sχ,pE , ιχ,pE , Actχ,pE , P χ,p
E , tχ,pE 〉 is given by:

• Sχ,pE = SE ∪ {ιχ,pE , ι′}, defined by adding two states to SE used for initialisation.

• ιχ,pE , the new initial state.

• Actχ,pE = ActE∪{g, g′} where g, g′ ∈ GS, defined by adding two fresh global-synchronous

actions.

• P χ,p
E : Sχ,pE → P(Actχ,pE) is given by:

s 7→

{g} if s = ιχ,pE

{g′} if s = ι′

PE(s) if s ∈ SE

116 Extensions

• tχ,pE : Sχ,pE × Act
χ,p
E → Dist(Sχ,pE) is given by:

tχ,pE (s′ | s, a) ,

1 if s = ιχ,pE , a = g, s′ = ι′

or s = ι′, a = g′, s′ = ιE

tE(s′ | s, a) if s, s′ ∈ SE

0 otherwise

The agent valuation functions Vχ,p = {V χ1,p1

1 , . . . , V χk,pk
k } with each V χi,pi

i : Sχi,pii × Sχ,pE →

P(AP ∪ {starting, faulty, injected}) is defined by:

(s, sE) 7→

V χi
i (s, sE) if s ∈ Sχii , sE ∈ SE

Vi(s, sE) if s ∈ Si, sE ∈ SE

∅ otherwise

Finally, the environment valuation function V χ,p
E : Sχ,pE → P(AP ∪ {starting, faulty,

injected} is defined by:

sE 7→

{starting} if sE = ι′

VE(sE) if sE ∈ SE

∅ otherwise

Intuitively, the original system is extended with an initialisation phase where each agent

asynchronously uses the init transition to determine whether it will be faulty with probability

pi. Following this, the global-synchronous transition g takes the system to a state where our

new atomic proposition starting holds. Finally, the global-synchronous transition g′ starts

the system. This initialisation process is depicted in Figure 6.3.

Note that the definition above results in a valid APMAS – the agent transition functions

tχi,pii and the environment transition function tχ,pE all define valid probability distributions.

Observation 6.2. Let S = 〈T , E,V , VE〉 be an APMAS, with agents T = {T1, . . . , Tk} and

valuation functions V = {V1, . . . , Vk}. Further, let χ be a vector containing for each agent

117 Extensions

(a) One of the agent templates.

(b) The environment.

Figure 6.3 The APMAS for a probabilistically faulty system. The bold states
represent ones where the atomic proposition starting holds. The g and g′ actions
are global-synchronous ones, whilst the init action is asynchronous.

118 Extensions

type a fault profile χi : Si × Acti → Dist(Fi ∪ {X}), and p ∈ [0, 1]k be a vector of faultiness

probabilities for each agent type. Then, for each agent type i we have∑
s′∈Sχi,pii

tχi,pii (s′ | s, a) = 1 (6.1)

for all s ∈ Sχi,pii and a ∈ P χi,pi
i (s). We also have∑

s′E∈S
χ,p
E

tχ,pE (s′E | sE, aE) = 1 (6.2)

for all sE ∈ Sχ,pE and aE ∈ P χ,p
E (sE).

Proof. For Equation (6.1), we proceed by considering the different possibilities for the state

s of the agent. If s ∈ {ιf , ι′f , ιn, ι′n} note there is precisely one non-zero transition and it has

probability 1. If s ∈ Si or s ∈ Sχii , the result follows from ti or tχii defining a valid probability

distribution. Finally, if s = ιχi,pii note that the two transitions have probability pi and 1− pi

and therefore sum to 1.

For Equation (6.2), we again proceed by considering different possibilities for the state

sE of the environment. If sE ∈ {ιχ,pE , ι′} note there is precisely one non-zero transition and

it has probability 1. Finally, if sE ∈ SE the result follows by tE defining a valid probability

distribution.

Armed with the above definitions, we are interested in assessing whether an unbounded

probabilistic system is resilient with respect to a specification when subjected to probabilis-

tically faulty agents. To do so, we formulate the following decision problem. This is an

extension of the PMCP in Definition 5.1 to incorporate the notion of faults.

Definition 6.9 (PFTP of PLTL on APMAS). Let S be an APMAS, and φ = P
max/min
./x [ψ]

be a PLTL formula. Further, let χ be a vector of fault profiles and p a vector of faultiness

probabilities. Then, the parameterised fault-tolerance problem (PFTP) concerns checking

Sχ,p |= Pmax/min
./x [G(starting → Xψ)]

where |= denotes satisfaction according to Definition 5.1. If this holds, we write S |=χ
p φ.

119 Extensions

Algorithm 6.2 Decision procedure for the PFTP
Input: APMAS S, PLTL formula φ = P

max/min
./x [ψ], fault profiles χ, faultinesses p

Output: Boolean, or FAIL

1: function PFTP(S, φ, χ, p)

2: Construct Sχp via Definition 6.8

3: return PMCP-Unbounded(Sχp , P
max/min
./x [G(starting → Xψ)])

4: end function

Definition 6.9 allows us to recast the problem of checking fault tolerance as a simpler

parameterised model checking query for the amended system under a revised specification.

We note that this problem is an extension of Definition 5.1, which was already undecidable.

Thus, it is also undecidable in general.

So, to check whether a system S satisfies a path formula ψ under the fault profiles χ

and with the probabilities of agents being faulty given by p, we instead check the formula

G(starting → Xψ) in the transformed system Sχ,p. This corresponds to what we would intu-

itively expect, since we wish to check that ψ holds after we have completed the initialisation

phase where each agent chooses whether to behave in a faulty manner.

Given the above, we can introduce a simple procedure for checking the PFTP. This

is presented in Algorithm 6.2. Note that this procedure is incomplete, since it relies on

Algorithm 5.1, which is itself incomplete.

6.3 Summary

This chapter has explored two possible extensions to our models and specifications. In the

first half, we considered the PMCP of P[ATL*] on SPMAS (Definition 6.1). We showed

that the same abstract model we previously considered can also be used to find bounds on

both the maximal probability a coalition of agents can achieve (Lemmas 6.1 and 6.2) and

the minimal probability (Lemmas 6.3 and 6.4). We combined these results to show that our

120 Extensions

verification procedure (Algorithm 6.1) is sound (Theorem 6.1).

In the second half of the chapter, we considered methods for analysing the behaviour

of systems that may exhibit faults. To achieve this, we defined both fully faulty systems

in which all agents may exhibit faults (Definition 6.7) and probabilistically faulty systems

in which there is a fixed probability that an agent will exhibit faults (Definition 6.8). We

defined the problem of verifying such a faulty system (Definition 6.9) and gave a procedure

for solving this verification problem using our previous techniques (Algorithm 6.2).

121 Implementation and Evaluation

Chapter Seven

Implementation and Evaluation

In this chapter, we present our implementation of some of the techniques described ear-

lier. Further, we evaluate our implementation against three case studies and report some

experimental results, in order to check the usability and scalability of our techniques.

The material presented here is drawn from the experimental sections of all the papers

discussed in the previous chapters [Lomuscio and Pirovano, 2018, 2019, 2020a,b], with the

important distinction that we have combined all the separate implementations previously

developed into one complete toolkit. Additionally, the toolkit has been extended to support

models with multiple different agent templates rather than just the single agent templates

that were supported in our conference papers.

7.1 Implementation Details

We implemented the techniques described in this thesis into a Java toolkit called PSV

(Probabilistic Swarm Verifier). The source codes for both the toolkit and the case studies

reported below are released as open source.1

The underlying model checking procedures are provided by two different toolkits de-

pending on the types of properties being considered as no one toolkit supports all the

properties we wish to consider. In particular, when considering strategic properties, the
1They are available here: https://github.com/edoardopirovano/psv

https://github.com/edoardopirovano/psv

122 Implementation and Evaluation

procedure is implemented by an extension of PRISM-games to handle concurrent stochastic

games [Kwiatkowska et al., 2018a]. The other model checking procedures come from PRISM

4.0 [Kwiatkowska et al., 2011].

The toolkit takes as input a description of the behaviour of one or more agent templates

and of the environment. The language used to describe the system is inspired by that used

in PRISM (which we also re-used some of the parsing procedures from), suitably extended

to handle parameterised systems. Further, the toolkit can take a description of faults that

may occur, and finally a list of specifications to check the system against.

Depending on the arguments passed to the toolkit, PSV will first inject faults into the

agent template (if a description of possible faults was provided). Then, it will either construct

the abstract model (according to Definition 4.2 if the model is an SPMAS, or Definition 5.2

if the model is an APMAS) or the concrete model of a given number of agents (according

to Definition 3.5 if the model is an SPMAS, or Definition 3.13 if the model is an APMAS).

It then passes the model constructed to either PRISM-games or PRISM (depending on the

property under consideration) to verify the specifications given against it. In particular,

our classes implement PRISM’s ModelGenerator API2 which PRISM calls to obtain lists of

transitions and resulting states in order to explore the model.

PSV can also be passed an additional argument to export the full model constructed to a

Graphviz DOT file in order to visualise it using a suitable viewer.3

7.1.1 Modelling SPMAS

We write models for SPMAS in a “synchronous swarm file”, and by convention use the

extension .ssf for these files. An example of one of these files can be seen in Figure 7.1.

The code is composed of one or more agent templates, followed by an environment. Note

that the environment differs from the agent templates in that there will only ever be one
2https://github.com/prismmodelchecker/prism/blob/master/prism/src/prism/ModelGenerator.java
3We recommend xdot for this: https://pypi.org/project/xdot/

https://github.com/prismmodelchecker/prism/blob/master/prism/src/prism/ModelGenerator.java
https://pypi.org/project/xdot/

123 Implementation and Evaluation

copy of the environment in concrete systems, whereas there may be arbitrarily many copies

of each agent template. However, the syntax used to define the two is identical.

An agent template or environment definition begins with a number of variable declara-

tions using the syntax

vi : ti init ki;

which declares a new variable vi of type ti with initial value ki. The variable types

supported are the same as those in PRISM – they can either be Booleans (declared with

bool), unbounded integers (declared with int) or integers bounded between a and b (declared

with [a, b]). Note that while unbounded integers can be used for convenience, in order for

PSV to terminate it must be the case that the part of the model that is actually explored is

finite.

After the variable definitions, there are one or more statements of the form

[actionName] (guard);

which declares that the action actionName is enabled in states that satisfy guard. Again,

the types of guard supported are exactly the expressions supported by PRISM including a

number of comparison operators, connectives, etc.4

Following the declarations of where actions are enabled, there is a number of updates of

the form

(actionName, guard, {a1, . . . , ak}) -> p1:(update1) + ... + pn:(updaten);

These updates are interpreted as follows: When performing actionName from a state

satisfying guard, the update is triggered if the set of actions performed by the agents and

the environment contains all of the actions {a1, . . . , ak}. It is also possible to write ! before

the set, which will require instead that none of the actions {a1, . . . , ak} are performed in

order to trigger the update. If this update is triggered, then there is a probability pi of

updatei being performed for each i in order to transition to the next state. Note that it

must be the case that Σi∈{1,...,n}pi = 1.

4Details can be found at https://www.prismmodelchecker.org/manual/ThePRISMLanguage/Expressions

https://www.prismmodelchecker.org/manual/ThePRISMLanguage/Expressions

124 Implementation and Evaluation

agent
stateA : [0..1] init 0;

[a] (stateA=0);
[b] (stateA=1);

update
(a, true, {}) -> 0.5:(stateA’=0) + 0.5:(stateA’=1);

endupdate
endagent

agent
stateB : [2..3] init 2;

[c] (stateB=2);
[d] (stateB=3);

update
(c, true, {b}) -> 1.0:(stateB’=3);

endupdate
endagent

environment
state : [4..5] init 4;

[e] true;

update
(e, state=4, {d}) -> 1.0:(state’=5);

endupdate
endenvironment

Figure 7.1 An example of PSV code for an SPMAS. In particular, this code models
the system in Figure 3.1.

125 Implementation and Evaluation

asynchronous = {a}
agentEnvironment = {e}
globalSynchronous = {g}

agent module AgentA
stateA : [1..2] init 1;
[a] (stateA=1) -> 0.5:(stateA’=1) + 0.5:(stateA’=2);
[g] (stateA=2) -> 1.0:(stateA’=2);

endmodule

agent module AgentB
stateB : [3..4] init 3;
[e] (stateB=3) -> 0.5:(stateB’=3) + 0.5:(stateB’=4);
[g] (stateB=4) -> 1.0:(stateB’=4);

endmodule

environment module Environment
stateE : int init 5;
[e] (stateE=5) -> 1.0:(stateE’=5);
[g] (stateE=5) -> 0.5:(stateE’=5) + 0.5:(stateE’=6);
[g] (stateE=6) -> 1.0:(stateE’=6);

endmodule

Figure 7.2 An example of PSV code for an APMAS. In particular, this code models
the system in Figure 3.3.

7.1.2 Modelling APMAS

We write models for APMAS in an “asynchronous swarm file”, and by convention use the

extension .asf for these files. An example of one these files can be seen in Figure 7.2.

The code begins with three sets that define the type of each action (asynchronous, agent-

environment or global synchronous). Every action used later in the model must appear in

one of these sets in order to specify what synchronisation is required when performing the

action. If this is not the case, an exception will be thrown during construction of the model.

This is followed by a number of agent modules. Each agent module defines a number

of variables using the same syntax as for SPMAS. These variable definitions are followed

by a number of update actions, which use a different syntax from the ones in SPMAS. In

126 Implementation and Evaluation

agent
(g, stateA=2) -> 0.4:(stateA’=1) + 0.6:true;

agent
(g, stateB=4) -> 0.2:(stateB’=3) + 0.8:true;

Figure 7.3 An example of PSV code for describing faults. This extends the model
in Figure 7.2 to introduce a faults that may send agents back to the starting state
when performing the g action, with probability 0.4 and 0.2 respectively for the two
agent types.

particular an update action for an APMAS is of the form

[actionName] (guard) -> p1:(update1) + ... + pn:(updaten);

These update actions are interpreted as follows: If guard evaluates to true in the current

state, then the agent may perform action actionName. Upon performing this action, there

is a probability pi of updatei being performed for each i in order to transition to the next

state. Note that it must be the case that Σi∈{1,...,n}pi = 1.

The agent modules are followed by an environment module which is defined in exactly

the same way as an agent (but is distinct in what synchronisation it gives rise to, and in the

fact that there may only be one copy of it).

7.1.3 Modelling Faults

Faults for systems are specified in a “fault file” (by convention, using the extension .ff). An

example of one of these files can be seen in Figure 7.3.

A fault file contains for each agent template the keyword agent followed by zero or more

faults for that agent template. Note that the agents should appear in the same order in the

fault file as they do in the corresponding swarm file. The faults for agents are of the form

(actionName, guard) -> p1:(faultyUpdate1) + ... + pn:(faultyUpdaten);

This fault is interpreted as follows: When performing action actionName from a state

satisfying guard, then with probability pi the update faultyUpdatei will occur. While we

127 Implementation and Evaluation

do require Σi∈{1,...,n}pi = 1 for simplicity, it is possible to model the X case where no fault

occurs by simply having true (i.e. not changing anything) in one of the updates.

7.1.4 Specifying Properties

We first note that at the bottom of either type of swarm file, it is possible to add one or

more labels using the syntax

label "name" = expr;

which defines a new label called name and corresponding to an expression expr. Within

the expression, to refer to variable v of the i-th agent of type j we use v_j_i. To refer to a

variable k of the environment we use k_E. For instance, in the example from Figure 7.2, we

could write

label "firstAgentTransitioned" = (stateA_1_1 = 2);

to label the states where the agent (1, 1) has transitioned to state 2. These labels can be

used in the properties file which, by convention, we use the extension .prop for. This file

must contain a sequence of properties expressed in the desired logic, such as

P<=0.9 [F<4 ("firstAgentTransitioned")]

which expresses that the probability of the first agent transitioning within four time-steps

is at most 0.9.

For non-strategic properties, the full syntax of properties that can be expressed in the

properties file is those supported by PRISM5 with the exception of the reward operator,

which is not considered here.

For strategic properties, PSV supports the same syntax as PRISM-games,6 once again

with the exception of reward-based properties. When specifying coalitions, the identifier

agent_j_i can be used to refer to the i-th agent of type j, and env can be used to refer to

the environment.
5See https://www.prismmodelchecker.org/manual/PropertySpecification/SyntaxAndSemantics
6See https://www.prismmodelchecker.org/games/properties.php

https://www.prismmodelchecker.org/manual/PropertySpecification/SyntaxAndSemantics
https://www.prismmodelchecker.org/games/properties.php

128 Implementation and Evaluation

7.2 Case Studies

We now describe three case studies that can be analysed by using PSV. All timing results were

obtained on a machine running Ubuntu 20.04 (Linux kernel 5.4.0) with an Intel i9-9940X

processor and 128GB of RAM. The code was run using OpenJDK 15 (64-bit version), with

96GB of RAM allocated to the Java heap.

We do not provide a comparison of our toolkit to any others as no other toolkit provides

a way of checking unbounded probabilistic multi-agent systems as we do here. The checking

of the concrete and abstract models that we build is handled by PRISM and PRISM-games,

both of which have already been extensively benchmarked elsewhere [Kwiatkowska et al.,

2012, 2018b].

7.2.1 Autonomous Robots

As a first case study to verify the applicability of PSV we consider a probabilistic variant

of the autonomous robots example from [Fagin et al., 1995]. In this scenario, there are a

number of robots moving along a track of infinite length. The robots begin at the start of

the track and are moved synchronously along by an environment until they decide to stop.

The robots aim to stop in a target region (for our experiment, we fixed this to be between 19

and 21 units of distance along the track). Some of the robots are equipped with sensors to

detect their position, but others are not and must rely on communication from robots with

a sensor in order to decide when to stop.

For our experiment, we assumed that the sensor of the robots equipped with one is noisy

and can give readings up to two below or up to two above the actual position. Further, we

assumed that all these readings are equally likely (i.e., they all have a probability of 0.2).

The robots with a sensor decide to halt if the reading they receive from their sensor is at least

20. When they halt, they also broadcast a signal to sensorless agents telling them to stop.

Our model is an APMAS and includes a combination of asynchronous, agent-environment

129 Implementation and Evaluation

...
agent module WithoutSensor

location : [1..22] init 1;
stopped : bool init false;
[move] (!stopped) -> 1.0:(location’=location+1);
[signal] (true) -> 1.0:(stopped’=true);

endmodule
...

Figure 7.4 A snippet of the APMAS code modelling the autonomous robots sce-
nario giving the code for sensorless robots.

and global-synchronous actions. Part of the code for the model can be seen in Figure 7.4.

We considered the (0, 1)-indexed PLTL property

Pmax
≤p [F ((stopped, (2, 1)) ∧ ¬(target, (2, 1)))]

where stopped is an atomic proposition that holds when an agent has halted, and target

holds when an agent is within the target region. The property expresses that we are certain

that the probability of a sensorless agent stopping outside the target region is at most p. We

checked this for a different number of concrete agents with sensors, and recorded the largest

p for which this holds in each case. The results are shown in Figure 7.5.

We see that when the number of agents with sensors is increased the probability also

increases. This is as expected, since when the number of agents is increased it is more

likely that at least one of the agents with a sensor will misjudge the stopping position and

start broadcasting a signal too early, causing our sensorless agent to stop early. Further,

note that the maximum probability computed by the abstract model is 1. This corresponds

to our intuition that when we have arbitrarily many agents the probability of at least one

misjudging the position will tend to 1.

The abstract model has 3,352 states and 21,146 transitions. It takes PSV around 0.24

seconds to construct this model and pass it to PRISM, which then needs around 0.08 seconds

to compute the value of p. The largest of the concrete models (with 7 concrete agents) has

15,676,417 states and 99,246,301 transitions. It takes around 164 seconds for our tool to

130 Implementation and Evaluation

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Number of concrete agents (n)

M
ax

im
um

pr
ob

ab
ili
ty

(p
)

Figure 7.5 For different numbers of concrete type 1 agents (robots with a sen-
sor), the maximum value of p for which the property Pmax

≤p [F ((stopped, (2, 1)) ∧
¬(target, (2, 1)))] holds, i.e. how likely it is for a sensorless robot to stop outside
the target region. The red line shows the maximum value computed by the abstract
model.

construct the model and pass it to PRISM which then computes p in around 278 seconds.

7.2.2 Foraging Protocol

For a richer example, we also modelled a foraging protocol [Campo and Dorigo, 2007; Liu

and Winfield, 2010]. In this scenario, agents begin resting in a nest. They may choose to

leave the nest and search for food, which they then retrieve and bring back to the nest. Upon

returning to the nest the agents return to the resting state.

We considered agents of two types. Both types of agents choose to stop resting with

probability 0.5. However, when searching for food the first type of agent will look up to

two units of distance away whereas the second will only look one unit of distance away.

Accordingly, we gave the second type of agent a probability of 0.15 of finding food when

searching for it, and the first a higher probability of 0.3 (with a 0.15 chance it is one unit of

distance away, and a 0.15 chance it is two). Both types of agent immediately travel to the

food and bring it back to the nest upon locating it.

131 Implementation and Evaluation

...
agent module Agent1

state : [0..3] init 0;
fromHome : [0..2] init 0;
...
[move] state=3 & fromHome>0 -> 1.0:(fromHome’=fromHome-1);
[deposit] state=3 & fromHome=0 -> 1.0:(state’=0);

endmodule
...
environment module Env

deposited : [0..2] init 0;
[deposit] deposited<2 -> 1.0:(deposited’=deposited+1);

endmodule

Figure 7.6 A snippet of the code for the APMAS modelling the foraging scenario
giving the part of the model that encodes robots moving back to the nest with food
and depositing it.

Our model for this scenario is an APMAS involving a combination of asynchronous and

agent-environment actions. Asynchronous actions are used to model the agents moving,

searching for food, and collecting the food. Agent-environment actions are used to model

the agents depositing food in the nest (which is captured by the environment). Part of the

code for our model can be seen in Figure 7.6.

We used PSV to investigate the probability that two units of food will be found and

deposited within a certain number of time-steps. In particular, we checked for different

values of p and k the (0, 0)-indexed PLTLk property

Pmax
≤p [F<kdeposited2],

where deposited2 is an atomic proposition that holds when two units of food have been

deposited in the nest by any agent. The results of checking this property for different values

of p and k against the abstract model are recorded in Table 7.1.

The results match our expectations: when the agents are given a longer number of

time-steps to collect food then there is a higher probability that they will succeed. The

abstract model constructed to verify the properties takes around 46 seconds to build and has

132 Implementation and Evaluation

k

8 9 10 11 12 13 14 15

0.25 True False False False False False False False

0.50 True True False False False False False False

0.75 True True True False False False False False

0.80 True True True False False False False False

0.85 True True True False False False False False

0.90 True True True True False False False False

0.95 True True True True True False False False

0.98 True True True True True True False False

p

0.99 True True True True True True True False

Table 7.1 For different numbers of time-steps k and probabilities p, whether or not
the property Pmax

≤p [F<kdeposited2] holds in the abstract model.

259,560 states and 6,684,624 transitions. Once the abstract model is constructed, checking

the individual properties on it takes a negligible time (around 200ms per property).

As a further analysis, we inject one fault into the system encoding the fact that whenever

a robot tries to move and is carrying food, it may drop the food with some probability pf .

If it does this, it will return to the nest with no food. After fault injection, we study once

again specifications of the form Pmax
≤p [F<kdeposited2].

Intuitively the probabilities p for which this specification will hold depends on the fault

probability pf . By using PSV we can ascertain this relation precisely; we conducted this

analysis and recorded in Figure 7.7 the maximum p for which the property holds for dif-

ferent values of k and pf . The abstract model that PSV generated had 727, 828 states and

21, 628, 009 transitions. Injecting the faults was instantaneous, constructing the model took

approximately 187 seconds and each specification was checked in approximately 1 second.

As would be expected, increasing the probability pf that agents will exhibit a fault and

133 Implementation and Evaluation

8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

k

p

pf
0

0.4
0.8
1

Figure 7.7 For different fault probabilities pf and time-steps k, the maximum value
of p for which Pmax

≤p [F<kdeposited2] holds in the abstract model.

drop the food they are carrying reduces their likelihood of success. Reassuringly, however,

when given enough time (i.e. as k gets larger) the probability that the agents will manage

to bring two units of food back to the nest still converges to 1.

7.2.3 Channel Jamming Scenario

For our final case study, we modelled a channel jamming security protocol [Zhu et al., 2010].

In our model of the protocol, there are k channels available to agents to send messages. At

each time-step, each agent can choose one channel to send a message. A number of agents

in the system are attackers; each of them can jam a channel. It is assumed that if a message

is sent along a non-jammed channel, then it is successfully transmitted with probability 0.4.

If it is sent along a channel that is jammed by at least one attacker then this probability

drops to 0.1.

The sending of messages and jamming of channels is modelled in an SPMAS, with the

choices of action for agents at each time-step being to send one message along a channel i

134 Implementation and Evaluation

agent
transmitted : bool init false;

[transmit] (transmitted=true);

[block0] true;
[block1] true;

[transmit0] (transmitted=false);
[transmit1] (transmitted=false);

update
(transmit0, true, !{block0}) -> 0.4:(transmitted’=true);
(transmit0, true, {block0}) -> 0.1:(transmitted’=true);

(transmit1, true, !{block1}) -> 0.4:(transmitted’=true);
(transmit1, true, {block1}) -> 0.1:(transmitted’=true);

(transmit, true, {}) -> 1.0:(transmitted’=false);
endupdate

endagent

environment
received : [0..3] init 0;

[receive] true;

update
(receive, received<3, {transmit}) -> 1.0:(received’=received+1);

endupdate
endenvironment

Figure 7.8 The code for the SPMAS modelling the jamming scenario in the case
with two channels and three messages.

135 Implementation and Evaluation

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Number of agents (n)

M
ax

im
um

P
ro
ba

bi
lit
y

Figure 7.9 Graph showing the maximum value of p for which the property
〈〈(1, 1), E〉〉P≥p[F≤15received3] holds for different numbers n of concrete agents.
The number of channels is fixed to 4. The red dashed line shows the expected
lower bound computed by the abstract model.

(with 0 ≤ i < k) or block a channel i (with 0 ≤ i < k). The environment acts as a receiver

for the messages, and tracks how many messages have been received. The code for the model

with two channels and three messages being transmitted can be seen in Figure 7.8.

We wish to verify the property that with probability p the first agent can ensure that

at least i messages are transmitted within j time-steps. This can be expressed by the (1)-

indexed P[ATL∗] property

〈〈(1, 1), E〉〉P≥p[F≤jreceivedi]

where receivedi is an atomic proposition that holds after i messages have been received.

For our first experiment, we fixed the number of channels available to 4, the number of

messages being transmitted to 3, and the number of time-steps allowed for transmission to

15. We then used our tool to compute the lower bound for our property as the number of

agents n varies (as given by Lemma 6.2, using the abstract model). We also computed the

actual value of this for different numbers of agents n. Our results are shown in Figure 7.9.

As expected, the actual values are above the calculated lower bound. Further, the mini-

136 Implementation and Evaluation

mum value is attained once there are at least 5 agents in the system. This is expected since

this corresponds to the system where there are 4 attackers, which is enough for them to have

a joint strategy to block every channel. The computation of the minimum value using the

abstract model is much more efficient than constructing systems of increasing size to find

this; constructing and verifying the abstraction takes around 4 seconds, whilst constructing

and checking the system of size 5 takes around 567 seconds.

As a further experiment to verify the scalability of our tool, we checked the time taken

to construct the abstract model and use this to compute the maximum value of p for which

〈〈(1, 1), E〉〉P≥p[F≤15receivedi] holds as we varied the number of messages that we wished

to receive and the number of channels. Our results are in Table 7.2, along with the total

number of states and total number of transitions in the abstract model.

Note that varying the number of channels does not change the probability of success of

our transmitting agent. This is as expected, since in our abstract model we assume the worst

case where there may be arbitrarily many opposing agents. Therefore, all the channels will

always be blocked and increasing the number of them does not benefit our agent. Increasing

the number of messages that our agent needs to transmit reduces its chances of success.

Further, notice that varying the number of channels changes only the number of transi-

tions in the model since there are more choices of channel to transmit on but the number

of messages we have to keep track of remains unchanged. Varying the number of messages

being sent, on the other hand, also changes the number of states.

7.3 Summary

In this chapter, we have presented our Java implementation of the techniques previously

outlined which we named PSV. The code for both our toolkit and the case studies analysed are

released as open-source and our experiments are easily reproducible on a Linux workstation.

As we rely on PRISM and PRISM-games for the underlying model checking procedures, we

137 Implementation and Evaluation

k

3 4 5

i

5

0.999

24 states

14,976 transitions

0.34 sec + 0.23 sec

0.999

24 states

78,336 transitions

3.53 sec + 1.56 sec

0.999

24 states

387,072 transitions

94.0 sec + 34.0 sec

10

0.903

44 states

27,456 transitions

0.57 sec + 0.35 sec

0.903

44 states

143,616 transitions

5.97 sec + 2.81 sec

0.903

44 states

709,632 transitions

172 sec + 55.0 sec

15

0.374

64 states

39,936 transitions

0.67 sec + 0.50 sec

0.374

64 states

208,896 transitions

8.50 sec + 3.92 sec

0.374

64 states

1,032,192 transitions

258 sec + 90.2 sec

20

0.034

84 states

52,416 transitions

0.81 sec + 0.65 sec

0.034

84 states

274,176 transitions

10.9 sec + 5.33 sec

0.034

84 states

1,354,752 transitions

335 sec + 101 sec

25

0.001

104 states

64,896 transitions

0.94 sec + 0.77 sec

0.001

104 states

339,456 transitions

13.8 sec + 6.30 sec

0.001

104 states

1,677,312 transitions

419 sec + 146 sec

Table 7.2 For different values of k (available channels) and i (number of messages to
transmit), the maximum value of p for which 〈〈(1, 1), E〉〉P≥p[F≤15received3] holds
in the abstract model, the number of states and transitions in this model, and the
time needed to respectively build the model and compute the value.

138 Implementation and Evaluation

note that future improvements to these will improve the times required to verify properties

against our systems.

Nonetheless, construction of the abstract models for both SPMAS and APMAS is very

time consuming and limits the scalability of our toolkit. To some extent, this is inevitable as

we showed in Observation 4.4 and Observation 5.3 that these models can grow exponentially

in the number of reachable states in an agent template.

However, one limitation of PSV is that models are completely constructed before being

passed to PRISM or PRISM-games for checking. More sophisticated approaches that build

the model on-the-fly as it is required by the verification procedure could also be explored,

and these may improve the scalability of our tool in some cases.

Our toolkit is highly expressive; it supports two types of models, three specification logics,

and fault injection techniques. However, there are certainly areas where more expressivity

could be explored. For instance, we have not studied reward-based properties that are often

considered in the probabilistic model checking literature. We survey in more detail some

possible avenues to increase the expressivity of our toolkit in Section 8.3.3.

139 Conclusions

Chapter Eight

Conclusions

This thesis has tackled the verification of unbounded probabilistic multi-agent systems, thus

making an initial contribution to combining parameterised model checking with probabilistic

techniques.

8.1 Summary of Contributions

In this thesis we have achieved the main objectives we set out in Section 1.1. In particular, we

have defined two semantics for reasoning about unbounded probabilistic multi-agent systems

which we named SPMAS and APMAS. We went on to define three logics for specifying

properties of these systems (PLTL, PLTLk, and P[ATL*]) and we studied the parameterised

model checking problems that these logics give rise to. In particular, we gave a complete

decision procedure for one problem and an incomplete decision procedure for two others.

We also presented a method for injecting faults into APMASs. These theoretical results are

summarised in Table 8.1.

On the practical front, we have implemented our procedures into the toolkit PSV, and

used this to study three practical case studies from a variety of different application domains:

the autonomous robots example, a foraging protocol, and a channel jamming scenario. All

our code is released as open-source, and the experiments presented in this thesis can be

140 Conclusions

PMCP with properties in

PLTL PLTLk P[ATL∗] Fault Injection

SPMAS 4 X

APMAS X 4

Table 8.1 A summary of the decision problems we have considered on our two
models for UPMAS. A light checkmark (X) denotes that we have developed an
incomplete decision procedure, whilst a bold checkmark (4) denotes that we have
developed a complete procedure. Blank cells indicate we did not study the problem.

reproduced on a standard workstation.

8.2 Comparison with Other Approaches

As we previously discussed in Chapter 2, extensive work has been carried out in both pa-

rameterised and probabilistic model checking with the former enabling the verification of

unbounded multi-agent systems and the latter of stochastic systems. We do not cover this

background again here, and instead highlight some differences between the work presented

in this thesis and alternative approaches.

The parameterised verification of probabilistic systems is a relatively unexplored area.

In [Graham et al., 2009], the authours present a technique for verifying probabilistic network

protocols that is based on identifying a sub-class of systems (named degenerative) in which

larger networks eventually behave like smaller ones. The approach in this thesis tackles a

similar problem but instead of studying a sub-class of systems, we here aimed to give a more

general verification technique for a broader ranger of systems.

In [Bertrand and Fournier, 2013], a parameterised semantics is introduced that includes

both probabilities and continuous time. Reachability properties are studied on both systems

where the number of participants is fixed and ones where participants may enter and leave at

run-time. Some of the resulting decision problems are found to be decidable whilst others are

141 Conclusions

shown to be undecidable. The models considered there are distinct from ours. In particular,

we do not have a continuous notion of time and the communication pattern between agents

in our systems is different from the broadcasting and receiving pattern used there which is

more suited to network protocols than the AI applications we considered here. Further, the

specification languages we have considered in thesis are more expressive than the qualitative

reachability ones considered there.

Model checking approaches like the one presented in this thesis are not the only technique

that has been considered to verify properties of multi-agent systems. Another formalism that

has been widely studied is that of Petri nets [Reisig, 1985] or equivalently vector addition

systems [Rackoff, 1978]. This work has included analysis of reachability properties [Ler-

oux and Schmitz, 2015] and techniques to identify dynamic cut-offs [Kaiser et al., 2010;

Spalazzi and Spegni, 2020]. Extensions have also been developed that incorporate contin-

uous time [Penczek and Pólrola, 2004; Abdulla and Nylén, 2001; Jacobsen et al., 2011].

We note that encoding a system into a Petri net requires significant input from an expert,

whereas the model checking approach we have presented aims to verify systems in a more

automated manner.

A further formalism that has been used to analyse multi-agent systems is that of popula-

tion protocols [Angluin et al., 2004]. In this semantics, agents interact in a pair-wise manner

and update their state according to the state of the agent they are interacting with. A proto-

col is well-defined, and said to compute a predicate P if all fair sequences of interactions from

an initial configuration C eventually result in the agents agreeing on a value P (C). It has

been proved [Angluin et al., 2006] that the predicates computable by population protocols

are exactly those definable in Presburger arithmetic [Ginsburg and Spanier, 1966]. Further,

it has also been shown [Esparza et al., 2017] that the problem of checking whether a protocol

is well-defined and computes a given predicate is decidable by reduction to reachability in

Petri nets. As with Petri nets, significant human input is needed to encode a system into a

population protocol. This limits the applicability of the technique.

142 Conclusions

There are also a variety of other methods that have been proposed to certify the behaviour

of multi-agents that are less closely related to the verification approaches considered here,

including techniques such as process calculi [Meyer, 2009] and rate equations [Lerman and

Galstyan, 2002]. As with the other techniques described, some expert input is required

to define the models used in these systems. Further, the properties considered with these

techniques are typically of the whole population and properties of individual agents cannot

be checked as we have done in this thesis.

8.3 Future Work

The combination of parameterised model checking with probabilistic systems is a novel area.

Accordingly, there are still many possible avenues for further work. We outline some in this

section.

8.3.1 Remaining Decision Problems

One fairly natural extension of this work would be to fill in the gaps in Table 8.1 by studying

the remaining decision problems. We briefly outline here some thoughts on how each of these

could be tackled:

• PMCP of SPMAS against PLTL: A partial decision procedure for this could be

developed as was done in Chapter 5 but using the abstract model for SPMAS instead

of the one for APMAS. We did not pursue this as many of the results would be very

similar to the ones we already obtained.

• PMCP of APMAS against PLTLk: Similarly, following the same process as in

Chapter 4 but substituting APMAS for SPMAS should allow a procedure for this

decision problem to be developed.

143 Conclusions

• PMCP of APMAS against P[ATL∗]: Here, defining the decision problem would

prove difficult. Notice that in a synchronous system, every agent is making a choice

of action at each step, so it makes sense to define joint strategies as combining the

choices of each agent. This allowed us to define the decision problem of SPMAS

against P[ATL∗]. However, in asynchronous systems like APMAS there can be more

than one agent able to perform an asynchronous action in each state. This means that

we also need a way to reason about which agent is given the opportunity to act; this

would have to be a part of how the decision problem is defined.

• Fault Injection on SPMAS: While we illustrated fault injection on APMAS, the

same definitions with some minor tweaks could also be used for SPMAS. This would

allow a definition for fully faulty systems. Further, defining a probabilistically faulty

system is simpler on SPMAS, as instead of an initialization phase like the one illus-

trated in Figure 6.3, one can simply use the first action (which all agents perform

simultaneously in an SPMAS) to decide whether each agent is faulty or not.

8.3.2 Scalability and Applications

The case studies presented in Section 7.2 allowed us to verify the functioning of PSV and

demonstrate the potential usefulness of our techniques. However, there are still limitations in

the size of the systems that can verified. In particular, because our procedure is exponential

in the number of states that agents can be in, it is computationally infeasible to verify

scenarios with many reachable agent states.

In order to improve the applicability of our toolkit to modelling richer scenarios, we would

need to develop a more scalable algorithm. One way this could be achieved is by identifying

a subclass of APMAS or SPMAS that can be verified in a more efficient manner.

144 Conclusions

8.3.3 Increased Expressivity

A final possible avenue for future work is expanding the number of situations that can

be modelled by introducing more expressive models and/or considering richer specification

logics. Some potential options could include:

• Reward properties: A number of probabilistic logics, such as PCTL [Kwiatkowska

et al., 2007] and rPATL [Chen et al., 2013], include a way of reasoning about rewards.

In particular, when using these logics the models and specifications under consideration

are augmented with numerical rewards that are obtained by visiting states. We did not

pursue reward-based properties in this thesis, but it would be fairly natural to extend

our analysis to cover these.

• Probabilistic knowledge: Logics have been proposed to reason about knowledge in

a probabilistic setting [Huang and Luo, 2013; Moses and Zamir, 2020]. It would be

interesting to study the parameterised model checking problem of these logics against

models such as the SPMAS and APMAS ones we have developed here. To the best

of our knowledge, no work has ever been carried out in the overlap of parameterised

model checking with probabilistic knowledge.

• Open systems: Most work on verification of multi-agent systems, including this

thesis, focusses on systems in which the number of participants does not change during

the course of a run. There are, however, some formalisms which consider open systems,

in which agents can join and leave the system at run-time [Belardinelli et al., 2015;

Kouvaros et al., 2019]. It should be possible to extended some of the results in this

thesis to study open systems.

• Continuous time: One could consider extending work in this thesis to reason about

systems that are both probabilistic and have a continuous notion of time [Norman

et al., 2013], rather than the discrete notion of time considered here.

145 REFERENCES

References

Abdulla, P. A. and Nylén, A. (2001). Timed Petri Nets and BQOs. In Proceedings of the

22nd International Conference on Applications and Theory of Petri Nets (ICATPN01),

volume 2075 of Lecture Notes in Computer Science, pages 53–70. Springer.

Aminof, B., Rubin, S., Stoilkovska, I., Widder, J., and Zuleger, F. (2018). Parameterized

model checking of synchronous distributed algorithms by abstraction. In Proceedings of

the 19th International Conference on Verification, Model Checking, and Abstract Inter-

pretation (VMCAI18), volume 10747 of Lecture Notes in Computer Science, pages 1–24.

Springer.

Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M., and Peralta, R. (2004). Computation in

networks of passively mobile finite-state sensors. In Proceedings of the 23rd Annual ACM

Symposium on Principles of Distributed Computing (PODC04), pages 290–299. ACM.

Angluin, D., Aspnes, J., and Eisenstat, D. (2006). Stably computable predicates are semi-

linear. In Proceedings of the 25th Annual ACM Symposium on Principles of Distributed

Computing (PODC06), pages 292–299. ACM.

Apt, K. and Kozen, D. C. (1986). Limits for automatic verification of finite-state concurrent

systems. Information Processing Letters, 22(6):307–309.

Baier, C. and Katoen, J. P. (2008). Principles of Model Checking (Representation and Mind

Series). The MIT Press.

146 REFERENCES

Belardinelli, F., Grossi, D., and Lomuscio, A. (2015). Finite abstractions for the verification

of epistemic properties in open multi-agent systems. In Proceedings of the 24th Interna-

tional Joint Conference on Artificial Intelligence (IJCAI15), pages 854–860. AAAI Press.

Belardinelli, F., Kouvaros, P., and Lomuscio, A. (2017). Parameterised verification of data-

aware multi-agent systems. In Proceedings of the 26th International Joint Conference on

Artificial Intelligence (IJCAI17), pages 98–104. AAAI Press.

Bertrand, N. and Fournier, P. (2013). Parameterized verification of many identical proba-

bilistic timed processes. In Proceedings of the 33rd Foundations of Software Technology and

Theoretical Computer Science conference (FSTTCS13), pages 501–513. Schloss Dagstuhl

- Leibniz-Zentrum fuer Informatik.

Bianco, A. and de Alfaro, L. (1995). Model checking of probabalistic and nondeterministic

systems. In Proceedings of the 15th Conference on Foundations of Software Technology and

Theoretical Computer Science (FSTTCS95), volume 1026 of Lecture Notes in Computer

Science, pages 499–513. Springer.

Bloem, R., Jacobs, S., Khalimov, A., Konnov, I., Rubin, S., Veith, H., and Widder, J. (2015).

Decidability of Parameterized Verification. Morgan and Claypool Publishers.

Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm intelligence. Oxford University

Press.

Bozzano, M. and Villafiorita, A. (2007). The FSAP/NuSMV-SA safety analysis platform.

Software Tools for Technology Transfer, 9(1):5–24.

Campo, A. and Dorigo, M. (2007). Efficient multi-foraging in swarm robotics. In Advances

in Artificial Life, pages 696–705. Springer.

Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., and Simaitis, A. (2013). Automatic

147 REFERENCES

verification of competitive stochastic systems. Formal Methods in System Design, 43(1):61–

92.

Chen, T. and Lu, J. (2007). Probabilistic alternating-time temporal logic and model check-

ing algorithm. In Proceedings of the 4th International Conference on Fuzzy Systems and

Knowledge Discovery (FSKD07), pages 35–39. IEEE Computer Society.

Clarke, E., Grumberg, O., and Browne, M. (1989). Reasoning about networks with many

identical finite state processes. Information and Computation, 81(1):13–31.

Clarke, E. M., Emerson, E. A., and Sistla, A. P. (1986). Automatic verification of finite-state

concurrent systems using temporal logic specifications. ACM Trans. Program. Lang. Syst.,

8(2):244–263.

Clarke, E. M., Grumberg, O., and Peled, D. A. (1999). Model Checking. The MIT Press,

Cambridge, Massachusetts.

Courcoubetis, C. and Yannakakis, M. (1995). The complexity of probabilistic verification.

J. ACM, 42(4):857–907.

de Oca, M., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M., and Dorigo, M. (2011).

Majority-rule opinion dynamics with differential latency: a mechanism for self-organized

collective decision-making. Swarm Intelligence, 5(3-4):305–327.

Dehnert, C., Junges, S., Katoen, J., and Volk, M. (2017). A storm is coming: A modern

probabilistic model checker. In Proceedings of the 29th International Conference on Com-

puter Aided Verification (CAV17), volume 10427 of Lecture Notes in Computer Science,

pages 592–600. Springer.

Dixon, C., Winfield, A., Fisher, M., and Zeng, C. (2012). Towards temporal verification of

swarm robotic systems. Robotics and Autonomous Systems, 60(11):1429–1441.

148 REFERENCES

Duflot, M., Kwiatkowska, M., Norman, G., Parker, D., Peyronnet, S., Picaronny, C., and

Sproston, J. (2010). FMICS Handbook on Industrial Critical Systems, chapter Practical

Applications of Probabilistic Model Checking to Communication Protocols, pages 133–150.

IEEE Computer Society Press.

Esparza, J., Ganty, P., Leroux, J., and Majumdar, R. (2017). Verification of population

protocols. Acta Informatica, 54(2):191–215.

Ezekiel, J. and Lomuscio, A. (2009). Combining fault injection and model checking to verify

fault tolerance in multi-agent systems. In Proceedings of the 8th International Conference

on Autonomous Agents and Multiagent Systems (AAMAS09), pages 113–120. IFAAMAS

Press.

Ezekiel, J. and Lomuscio, A. (2017). Combining fault injection and model checking to verify

fault tolerance, recoverability, and diagnosability in multi-agent systems. Information and

Computation, 254(2):167–194.

Ezekiel, J., Lomuscio, A., Molnar, L., and Veres, S. (2011). Verifying fault tolerance and

self-diagnosability of an autonomous underwater vehicle. In Proceedings of the 22nd In-

ternational Joint Conference on Artificial Intelligence (IJCAI11), pages 1659–1664. AAAI

Press.

Fagin, R., Halpern, J. Y., Moses, Y., and Vardi, M. Y. (1995). Reasoning about Knowledge.

MIT Press, Cambridge.

Feller, W. (1968). An Introduction to Probability Theory and Its Applications. Wiley.

Ferrante, E., Brambilla, M., Birattari, M., and Dorigo, M. (2013). Socially-Mediated Nego-

tiation for Obstacle Avoidance in Collective Transport, volume 83 of Springer Tracts in

Advanced Robotics (STAR), pages 571–583. Springer Berlin Heidelberg.

149 REFERENCES

Forejt, V., Kwiatkowska, M., Norman, G., and Parker, D. (2011). Automated verification

techniques for probabilistic systems. In International School on Formal Methods for the

Design of Computer, Communication and Software Systems, volume 6659 of Lecture Notes

in Computer Science, pages 53–113. Springer.

Fournier, P. (2015). Parameterized verification of networks of many identical processes. PhD

thesis, Université de Rennes 1.

Gainer, P., Dixon, C., and Hustadt, U. (2016). Probabilistic model checking of ant-based

positionless swarming. In Proceedings of the 17th Annual Conference Towards Autonomous

Robotics (TAROS16), pages 127–138. Springer.

Gainer, P., Hahn, E. M., and Schewe, S. (2018). Incremental verification of parametric

and reconfigurable markov chains. In Proceedings of the 15th International Conference on

Quantitative Evaluation of Systems (QEST18), volume 11024 of Lecture Notes in Com-

puter Science, pages 140–156. Springer.

Ginsburg, S. and Spanier, E. (1966). Semigroups, presburger formulas, and languages. Pacific

Journal of Mathematics, 16(2):285–296.

Graham, D. (2008). Parameterised verification of randomised distributed systems using state-

based models. PhD thesis, University of Glasgow.

Graham, D., Calder, M., and Miller, A. (2009). An inductive technique for parameterised

model checking of degenerative distributed randomised protocols. Electronic Notes in

Theoretical Computer Science, 250(1):87–103.

Hansson, H. and Jonsson, B. (1994). A logic for reasoning about time and reliability. Formal

Aspects of Computing, 6(5):512–535.

Huang, X. and Luo, C. (2013). A logic of probabilistic knowledge and strategy. In Proceedings

150 REFERENCES

of the 12th International Conference on Autonomous Agents and Multi-Agent systems

(AAMAS13), pages 845–852. IFAAMAS.

Jacobsen, L., Jacobsen, M., Møller, M., and Srba, J. (2011). Verification of timed-arc petri

nets. In Proceedings of the 37th Conference on Current Trends in Theory and Practice

of Computer Science (SOFSEM11), volume 6543 of Lecture Notes in Computer Science,

pages 46–72. Springer.

John, A., Konnov, I., Schmid, U., Veith, H., and Widder, J. (2013). Parameterized model

checking of fault-tolerant distributed algorithms by abstraction. In Formal Methods in

Computer-Aided Design (FMCAD), pages 201–209. IEEE.

Kaiser, A., Kroening, D., and Wahl, T. (2010). Dynamic cutoff detection in parameterized

concurrent programs. In Proceedings of the 22nd International Conference on Computer

Aided Verification (CAV10), volume 6184 of Lecture Notes in Computer Science, pages

645–659. Springer.

Katoen, J.-P. (2016). The probabilistic model checking landscape. In Proceedings of the 31st

Annual ACM/IEEE Symposium on Logic in Computer Science, pages 31–45. ACM.

Kemeny, J. G., Snell, J. L., and Knapp, A. W. (1976). Denumerable Markov Chains. Grad-

uate Texts in Mathematics. Springer.

Konur, S., Dixon, C., and Fisher, M. (2012). Analysing robot swarm behaviour via proba-

bilistic model checking. Robotics and Autonomous Systems, 60(2):199–213.

Kouvaros, P. (2015). Parameterised Verification for Multi-Agent Systems. PhD thesis, Im-

perial College London.

Kouvaros, P. and Lomuscio, A. (2013). A cutoff technique for the verification of parameterised

interpreted systems with parameterised environments. In Proceedings of the 23rd Inter-

151 REFERENCES

national Joint Conference on Artificial Intelligence (IJCAI13), pages 2013–2019. AAAI

Press.

Kouvaros, P. and Lomuscio, A. (2015). Verifying emergent properties of swarms. In Pro-

ceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI15),

pages 1083–1089. AAAI Press.

Kouvaros, P. and Lomuscio, A. (2016). Parameterised verification for multi-agent systems.

Artificial Intelligence, 234:152–189.

Kouvaros, P. and Lomuscio, A. (2017a). Parameterised verification of infinite state multi-

agent systems via predicate abstraction. In Proceedings of the 24th International Joint

Conference on Artificial Intelligence (IJCAI17), pages 3013–3020. AAAI Press.

Kouvaros, P. and Lomuscio, A. (2017b). Verifying fault-tolerance in parameterised multi-

agent systems. In Proceedings of the 24th International Joint Conference on Artificial

Intelligence (IJCAI17), pages 288–294. AAAI Press.

Kouvaros, P., Lomuscio, A., and Pirovano, E. (2018). Symbolic synthesis of fault-tolerance

ratios in parameterised multi-agent systems. In Proceedings of the 27th International

Joint Conference on Artificial Intelligence and 23rd European Conference on Artificial

Intelligence (IJCAI-ECAI18), pages 324–330. IJCAI.

Kouvaros, P., Lomuscio, A., Pirovano, E., and Punchihewa, H. (2019). Formal verification

of open multi-agent systems. In Proceedings of the 18th International Conference on

Autonomous Agents and MultiAgent Systems (AAMAS19), pages 179–187. ACM.

Kwiatkowska, M., Norman, G., and Parker, D. (2007). Stochastic model checking. In Formal

Methods for the Design of Computer, Communication and Software Systems: Performance

Evaluation (SFM’07), volume 4486 of Lecture Notes in Computer Science, pages 220–270.

Springer.

152 REFERENCES

Kwiatkowska, M., Norman, G., and Parker, D. (2010). Symbolic Systems Biology, chapter

Probabilistic Model Checking for Systems Biology, pages 31–59. Jones and Bartlett.

Kwiatkowska, M., Norman, G., and Parker, D. (2011). PRISM 4.0: Verification of probabilis-

tic real-time systems. In Proceedings of the 23rd International Conference on Computer

Aided Verification (CAV11), volume 6806 of Lecture Notes in Computer Science, pages

585–591. Springer.

Kwiatkowska, M., Norman, G., Parker, D., and Santos, G. (2018a). Automated verification

of concurrent stochastic games. In Proceedings of the 15th International Conference on

Quantitative Evaluation of SysTems (QEST18), volume 11024 of Lecture Notes in Com-

puter Science, pages 223–239. Springer.

Kwiatkowska, M., Parker, D., and Wiltsche, C. (2018b). PRISM-games: verification and

strategy synthesis for stochastic multi-player games with multiple objectives. Software

Tools for Technology Transfer, 20(2):195–210.

Kwiatkowska, M. Z., Norman, G., and Parker, D. (2012). The PRISM benchmark suite.

In Proceedings of the 9th International Conference on Quantitative Evaluation of Systems

(QEST12), pages 203–204. IEEE Computer Society.

Lerman, K. and Galstyan, A. (2002). Mathematical model of foraging in a group of robots.

Autonomous Robots, 13(2):127–141.

Leroux, J. and Schmitz, S. (2015). Demystifying reachability in vector addition systems.

In Proceedings of the 30th Annual ACM/IEEE Symposium on Logic in Computer Science

(LICS15), pages 56–67. IEEE.

Liu, W. and Winfield, A. (2010). Modeling and optimization of adaptive foraging in swarm

robotic systems. International Journal of Robotics Research, 29(14):1743–1760.

153 REFERENCES

Lomuscio, A. and Michaliszyn, J. (2015). Verifying multi-agent systems by model check-

ing three-valued abstractions. In Proceedings of the 14th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS15), pages 189–198. ACM.

Lomuscio, A., Penczek, W., and Qu, H. (2010). Partial order reduction for model checking

interleaved multi-agent systems. Fundamenta Informaticae, 101(1–2):71–90.

Lomuscio, A. and Pirovano, E. (2018). Verifying emergence of bounded time properties in

probabilistic swarm systems. In Proceedings of the 27th International Joint Conference on

Artificial Intelligence (IJCAI-ECAI18), pages 403–409. IJCAI.

Lomuscio, A. and Pirovano, E. (2019). A counter abstraction technique for the verification

of probabilistic swarm systems. In Proceedings of the 18th International Conference on

Autonomous Agents and MultiAgent Systems (AAMAS19), pages 161–169. ACM.

Lomuscio, A. and Pirovano, E. (2020a). Parameterised verification of strategic properties in

probabilistic multi-agent systems. In Proceedings of the 19th International Conference on

Autonomous Agents and MultiAgent Systems (AAMAS20), pages 762–770. ACM.

Lomuscio, A. and Pirovano, E. (2020b). Verifying fault-tolerance in probabilistic swarm

systems. In Proceedings of the 29th International Joint Conference on Artificial Intelligence

(IJCAI-PRICAI2020), pages 325–331. IJCAI.

Lomuscio, A., Qu, H., and Raimondi, F. (2017). MCMAS: A model checker for the verifica-

tion of multi-agent systems. Software Tools for Technology Transfer, 19(1):9–30.

Lukina, A., Tiwari, A., Smolka, S. A., and Grosu, R. (2018). Adaptive neighborhood resizing

for stochastic reachability in multi-agent systems. CoRR, abs/1805.07929.

Maggi, F. M., Montali, M., and Peñaloza, R. (2019). Probabilistic temporal logic over finite

traces. CoRR, abs/1903.04940.

154 REFERENCES

MCMAS-P (2015). Model Checking Parameterised Multi-Agent Systems http://vas.doc.ic.

ac.uk/software/extensions.

Meyer, R. (2009). A theory of structural stationarity in the π-calculus. Acta Informatica,

46(2):87–137.

Moses, Y. and Zamir, N. (2020). Probably approximately knowing. In Proceedings of

the ACM Symposium on Principles of Distributed Computing (PODC20), pages 375–384.

ACM.

Nembrini, J. (2005). Minimalist Coherent Swarming of Wireless Networked Autonomous

Mobile Robots. PhD thesis, University of the West of England.

Norman, G., Parker, D., and Sproston, J. (2013). Model checking for probabilistic timed

automata. Formal Methods in System Design, 43(2):164–190.

Parrott, C., Dodd, T., Boxall, J., and Horoshenkov, K. (2020). Simulation of the behav-

ior of biologically-inspired swarm robots for the autonomous inspection of buried pipes.

Tunnelling and Underground Space Technology, 101:103356.

Penczek, W. and Pólrola, A. (2004). Specification and model checking of temporal properties

in time Petri nets and timed automata. In Proceedings of the 25th International Conference

on Applications and Theory of Petri Nets (ATPN04), volume 3099 of Lecture Notes in

Computer Science, pages 37–76. Springer.

Pnueli, A. (1977). The temporal logic of programs. In Proceedings of the 18th International

Symposium Foundations of Computer Science (FOCS77), pages 46–57. IEEE.

Pnueli, A., Xu, J., and Zuck, L. (2002). Liveness with (0, 1,infinity)-counter abstrac-

tion. In Proceedings of the 14th International Conference on Computer Aided Verification

(CAV02), volume 2404 of Lecture Notes in Computer Science, pages 93–111. Springer.

http://vas.doc.ic.ac.uk/software/extensions
http://vas.doc.ic.ac.uk/software/extensions

155 REFERENCES

Puterman, M. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Program-

ming. John Wiley & Sons, Inc.

Rackoff, C. (1978). The covering and boundedness problems for vector addition systems.

Theoretical Computer Science, 6(2):223–231.

Reisig, W. (1985). Petri Nets. An Introduction, volume 4 of EACTS Monographs on Theo-

retical Computer Science. Springer.

Şahin, E. (2005). Swarm robotics: From sources of inspiration to domains of application.

In Proceedings of the 2004 International Conference on Swarm Robotics (SAB04), volume

3342 of Lecture Notes in Computer Science, pages 10–20. Springer.

Şahin, E. and Winfield, A. (2008). Special issue on swarm robotics. Swarm Intelligence,

2(2):69–72.

Spalazzi, L. and Spegni, F. (2020). Parameterized model checking of networks of timed

automata with boolean guards. Theoretical Computer Science, 813:248–269.

Vardi, M. Y. (1985). Automatic verification of probabilistic concurrent finite-state pro-

grams. In Proceedings of the 26th Annual Symposium on Foundations of Computer Science

(FOCS85), pages 327–338. IEEE.

Winfield, A., Liu, W., Nembrini, J., and Martinoli, A. (2008). Modelling a wireless connected

swarm of mobile robots. Swarm Intelligence, 2(2-4):241–266.

Winfield, A., Sa, J., Fernández-Gago, M., Dixon, C., and Fisher, M. (2005). On formal

specification of emergent behaviours in swarm robotic systems. International Journal of

Advanced Robotic Systems, 2(4):363–370.

Zhu, Q., Li, H., Han, Z., and Basar, T. (2010). A stochastic game model for jamming in

multi-channel cognitive radio systems. In Proceedings of IEEE International Conference

on Communications (ICC10), pages 1–6. IEEE.

	Title Page
	Abstract
	Acknowledgments
	Declaration of Originality
	Copyright
	1 Introduction
	1.1 Objectives
	1.2 Contributions
	1.3 Publications
	1.4 Thesis Outline
	1.5 Notation

	2 Background
	2.1 Probabilistic Model Checking
	2.1.1 Probability Distributions and Measures
	2.1.2 Discrete Time Markov Chains
	2.1.3 Markov Decision Processes
	2.1.4 Applications to Multi-Agent Systems

	2.2 Parameterised Model Checking
	2.3 Fault Tolerance
	2.4 Summary

	3 Unbounded Probabilistic Multi-Agent Systems
	3.1 Synchronous UPMAS
	3.2 Asynchronous UPMAS
	3.3 Specifications for UPMAS
	3.3.1 PLTL
	3.3.2 PLTLk
	3.3.3 P[ATL*]

	3.4 Summary

	4 Verifying Bounded-Time Properties
	4.1 Parameterised Model Checking Problem
	4.2 Abstract Model
	4.2.1 Simulating Larger Systems
	4.2.2 Simulating the Abstract System

	4.3 Verification Procedure
	4.4 Summary

	5 Verifying Unbounded Properties
	5.1 Parameterised Model Checking Problem
	5.2 Abstract Model
	5.3 Verification Procedure
	5.4 Summary

	6 Extensions
	6.1 Strategic Specifications
	6.1.1 Parameterised Model Checking Problem
	6.1.2 Bounding the Maximal Probability
	6.1.3 Bounding the Minimal Probability
	6.1.4 Verification Procedure

	6.2 Faulty Systems
	6.2.1 Fault Injection
	6.2.2 Fully Faulty Systems
	6.2.3 Probabilistically Faulty Systems

	6.3 Summary

	7 Implementation and Evaluation
	7.1 Implementation Details
	7.1.1 Modelling SPMAS
	7.1.2 Modelling APMAS
	7.1.3 Modelling Faults
	7.1.4 Specifying Properties

	7.2 Case Studies
	7.2.1 Autonomous Robots
	7.2.2 Foraging Protocol
	7.2.3 Channel Jamming Scenario

	7.3 Summary

	8 Conclusions
	8.1 Summary of Contributions
	8.2 Comparison with Other Approaches
	8.3 Future Work
	8.3.1 Remaining Decision Problems
	8.3.2 Scalability and Applications
	8.3.3 Increased Expressivity

	References

