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Abstract

Bayesian optimization is a powerful technique for the optimization of expensive black-box

functions. It is used in a wide range of applications such as in drug and material design

and training of machine learning models, e.g. large deep networks. We propose to extend

this approach to high-dimensional settings, that is where the number of parameters to be

optimized exceeds 10–20. In this thesis, we scale Bayesian optimization by exploiting different

types of projections and the intrinsic low-dimensionality assumption of the objective function.

We reformulate the problem in a low-dimensional subspace and learn a response surface and

maximize an acquisition function in this low-dimensional projection. Contributions include i) a

probabilistic model for axis-aligned projections, such as the quantile-Gaussian process and ii) a

probabilistic model for learning a feature space by means of manifold Gaussian processes. In

the latter contribution, we propose to learn a low-dimensional feature space jointly with (a) the

response surface and (b) a reconstruction mapping. Finally, we present empirical results against

well-known baselines in high-dimensional Bayesian optimization and provide possible directions

for future research in this field.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Carefully planning experiments is a crucial problem in research studies. In software optimiza-

tion [HHLB11], for instance, selecting the most promising parameter configurations improves

the performances of integer programming solvers. In drug and material design [GBWD+18],

identifying the right molecular structure allows for novel drug discovery. In all these experimental

design problems, we are concerned with a set of parameters and an unknown or black box

objective function. The parameters specify the degrees of freedom, that is the design choices

that one is allowed to modify. The black box objective function, instead, denotes a measure of

performance of the outcome of a set of parameters for which no analytic expression is available.

Examples of parameter configurations are, in algorithm optimization [HHLB11], the configurable

numbers and categorical decision variables implicit in a mixed integer programming solver.

Here, the black box objective function could be defined as the mean runtime, which we wish to

reduce, of a solver with different sets of instances. In drug design [GBWD+18], for instance,

the degrees of freedom coincide with the discrete molecular representations and the objective

function quantifies drug-likeness and accessibility score.

The overall goal in our experimental design setting is to reach the global optimum of the

objective function in as few trials of parameter configurations as possible. In fact, the process

1



2 Chapter 1. Introduction

of obtaining an output from a utility function may be time consuming or expensive to evaluate.

As an example, a software may take hours to find a specific solution. Testing and making new

compounds is both costly and time consuming. 1

Bayesian optimization (BO) is a powerful technique for the optimization of black box functions

that are prohibitively costly to evaluate. BO is a model based optimization method that lies at

the intersection of statistical inference and Bayesian decision theory. The idea with the model

based approach is to build a surrogate model, by means of statistical inference approaches, of

the costly objective function and use it as a proxy for the expensive black box optimization.

This proxy model is also known as the response surface. Bayesian decision theory instead

identifies which sets of parameters are more useful for the optimization purpose by trading off

exploration and exploitation in the probabilistic surrogate model with an acquisition function.

The acquisition function is a score that quantifies the notion of utility, that is how useful

each parameter configuration is for the purpose of optimization. This acquisition function is a

heuristic approach that trades off exploration and exploitation of the response surface and is

maximized to select the new location to query the black box objective function at.

The Bayesian optimization approach was initially introduced in 1933 by William Thomp-

son [Tho33]. In this first example, a probabilistic approach to a decision problem involving

sequential clinical treatment experiments was proposed. The idea was to estimate probabilities

of success of a set of treatments and then weight them based on their estimated chances of

success. The novelty in this was to not discard the seemingly sub-optimal treatment based on a

single trial but rather weight all of them according to their probability of success. Thompson

argued that, with this novel approach, the fraction of patients receiving a sub-optimal treatment

would tend to zero. An early work on Bayesian optimization was introduced by Kushner

in 1964 [Kus64] which was based on a one-dimensional unconstrained optimization problem

solved with the use of Wiener processes [RY13]. The idea of the proposed approach was to

maximize the probability of the improvement with each new selection of the decision variable.

The strategy for selecting the new points featured a term which was trading off exploration

1The objective function need not be a cost function to be minimized. The black box objective function may
also represent a reward function and therefore require to be maximized instead of minimized.
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and exploitation of the search space. The term Bayesian optimization was then introduced

later in [MTZ78] by Jonas Močkus who also developed a multidimensional BO based on a

linear combination of Wiener fields [MTZ78, Moč94] in the nonparametric setting. These early

works, together with kriging [Kri51] developed by a master student named Krige in 1951, have

been seminal for the development of the design and analysis of computer experiments (DACE)

[SWMW89, JSW98, Jon01].

Bayesian optimization seeks the global extrema of objective functions for which an analytic

expression is missing and the evaluation process is particularly cumbersome and expensive. It

has proven successful for a wide range of experimental design problems. For instance, selecting

gait properties of legged robots that lead to robust and fast walking performances [CSPD16];

adjusting controller configurations in robotic platforms and drones which results in reduced

feedback-error of closed loop systems [BSK16]; clever tuning of hyper-parameters settings

in multi-layer convolutional neural networks speeds up learning and lowers generalization

error [SLA12].

Despite the great success of this approach in many applications, the employment of Bayesian

optimization has been limited only to problems that feature a moderate number of parameters

to tune, namely 10–20 parameters. In fact, as we increase the number of dimensions of the

parameter space we incur in a series of challenges. The amount of data required for learning a

response surface increases exponentially with the number of dimensions of the search space. This

implies large amounts of input parameters and observations of the black box objective function

which is in general expensive to evaluate. Learning and making predictions with the response

surface model, for some choices of models that are standard in Bayesian optimization, become

computationally challenging due to the amount of data involved in the Bayesian training and

prediction derivation. The acquisition function is a score that tells us how useful each parameter

configuration is for the purpose of optimization. This acquisition function needs to be maximized

to select a new parameter configuration and requires an exponential number of evaluations

in the number of dimensions to be maximized. In order to elevate Bayesian optimization to

state-of-the-art in global optimization we therefore need to address the challenges that arise in

high dimensional settings.
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The purpose of this thesis is to introduce techniques and methods to tackle the curse of

dimensionality that affects Bayesian optimization. In particular, we aim at attacking the high

dimensional BO problem with novel strategies based on projections.

Among the benefits that this thesis could bring to the scientific community in Bayesian opti-

mization, one important aspect to consider is that of a democratization of technology. The

task of tuning hyper-parameter and parameter settings in academic research and industry is

now performed by only few human experts that have prior knowledge about the system to be

optimized [SSW+15]. An extension of optimization algorithms to high dimensions would benefit

non expert users and allow a wider community to use highly parametric models. An example

of these highly parametric models is that of machine learning models such as deep networks.

A large number of parameters in optimization would also imply the applicability of Bayesian

optimization to a wider class of problems. An automated approach to hyper-parameter tuning

would also allow exploiting inter-dependencies and relationships between parameters that are

overwhelmingly high to deal with by humans and cannot be captured or exploited by experts.

1.2 Contributions

This thesis collects contributions made in the direction of high-dimensional Bayesian optimization.

In particular, we argue that the use of projections is particularly beneficial in the field of high-

dimensional Bayesian optimization. Using projections allows reformulating the optimization

problem on a low dimensional subspace characterized by a feasible dimensionality for optimization

which is less or equal to 20 dimensions. Both the challenges that arise in high-dimensions, such

as the exponential number of evaluations of the objective function and exponential number of

maximization steps of the acquisition function, become feasible in a projected space. In fact, if

we project to a low dimensional space characterized by dimensionality less or equal to 20, the

optimization becomes feasible again.
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1.2.1 Axis aligned projections

One contribution of this thesis is to present a Bayesian optimization method that divides the

original search space into disjoint subsets of dimensions and then performs optimization on

each subset of dimensions independently. This optimization strategy is based on axis aligned

projections, that is selecting a subset of dimensions from the original search space. In this

thesis, we address challenges that arise from the introduction of axis aligned projections in the

optimization framework. The result of axis aligned projections is the presence of ambiguities

in the data. This means that more than one observation may be associated with the same

input variable. For instance, in a two dimensional example, two distinct input variables

that share the same first dimension will result in the same point if we suppress the second

dimension which makes them different. This suppression of the second dimensions makes the

two distinct points in a two-dimensional space become equal in the first single dimension.

The corresponding observation variables will remain two distinct values therefore causing an

ambiguity or inconsistency that is multiple observation values for the same input point.

The problem of performing optimization on axis aligned projections of the search space has been

addressed in [UBC+16] where different subsets of dimensions are assigned different datasets

resulting in a data-costly optimization. A similar optimization strategy was also presented

in [KSP15] where the objective function is characterized by a the additivity property which

implies a structural assumption about the composition of the subsets of dimensions. In our work,

we adopt a probabilistic model that allows exploiting all the data available in each axis aligned

projection. In addition, our proposed method does not require the introduction of structural

assumptions about the objective function. In particular, we consider a probabilistic model based

on Gaussian processes that generalizes only on a specific quantile of the data available. By

selecting a small quantile in a minimization setting, a quantile Gaussian process automatically

generalizes on the lowest observations therefore overcoming the problem of inconsistencies. The

response surface obtained with this model results to be a good indicator of the location of the

optimum in a minimization framework. We present in this thesis empirical evidence of the

competitive performances of the proposed method across a set of well established baselines in
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high-dimensional Bayesian optimization.

1.2.2 Projections onto feature space

In this thesis we present the contribution of a Bayesian optimization algorithm in a low

dimensional feature space. This method learns a low dimensional manifold of the data and

then performs Bayesian optimization in this learned feature space. The idea is to model the

composition of two functions, namely a feature mapping that takes care of the dimensionality

reduction and a nonparametric mapping that learns the objective function in a low dimensional

manifold of the original search space. The feature mapping models the relationship between the

high-dimensional inputs and the low dimensional features, the response surface then models the

link between the data in this low dimensional space and the data in observation space. The

observation space is the space of the objective function evaluations. This allows for learning

a response surface under the assumption that the objective function has an intrisically lower

dimensionality, that is the high-dimensional objective function effectively depends on a small set

of parameters. In the literature, this assumption is common and has been used in [WZH+13],

where a linear mapping is assumed to model the relationship between the high dimensional

search space and the low dimensional features. In the case of an intrinsically low dimensional

objective function, a nonlinear feature mapping could achieve a higher compression rates between

the high dimensional search space and the features.

The feature mapping therefore allows for learning the response surface and maximizing the

acquisition function in a feature space, which is characterized by a feasible dimensionality,

which means a dimensionality less or equal to 20. One additional step that is required for the

optimization of the high dimensional objective function is the reconstruction of the input in

the original data space. In this thesis, we present a probabilistic model that takes into account

the reconstruction part by means of multiple output Gaussian processes. The idea with this

approach is to introduce a decoder that takes features as input and transforms them back to

the high dimensional space. This is an essential requirement for the optimization of the high

dimensional objective function and defines an autoencoder like structure together with the
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feature mapping (encoder). The resulting probabilistic model is based on Gaussian processes

both for the response surface modeling and the reconstruction of the decoder mapping. The joint

training of this model allows learning features that are optimal in a marginal likelihood sense

for two distinct tasks: i) modeling the response surface for Bayesian optimization in feature

space and ii) reconstructing the original inputs via multi-output mapping.

Finally, we take into account the un-identifiability issues involved with a reconstruction mapping

based on multi-output Gaussian processes. We introduce a nonlinear constraint to reduce the

ambiguity set of the maximization of the acquisition function in feature space. The ambiguity

set is the set in feature space where the maximization of the acquisition function is performed.

This nonlinear constraint uses the Lipschitz constant of Gaussian process predictions and ensures

the maximization does not move the decision variable too far away from data in feature space.

In this thesis, we provide an empirical evaluation of the proposed Bayesian optimization in

feature space where we compare to well known baselines in the literature.

1.2.3 Publications

• Riccardo Moriconi, K.S. Sesh Kumar and Marc P. Deisenroth. High-dimensional

Bayesian optimization with projections using quantile Gaussian processes. Op-

timization Letters. Pages 51–64, Volume 14. Springer. 2020.

• Riccardo Moriconi, Marc P. Deisenroth and K.S. Sesh Kumar. High-dimensional

Bayesian optimization using low-dimensional feature spaces. NeurIPS Workshop

on Bayesian Deep Learning. 2019.

• Riccardo Moriconi, Marc P. Deisenroth and K.S. Sesh Kumar. High-dimensional

Bayesian optimization using low-dimensional feature spaces. Machine Learning

Journal. 2020.
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1.3 Outline of the thesis

Chapter 2 includes a background section where all required knowledge about Bayesian opti-

mization and its components is presented. It presents concepts related to the response surface

models, acquisition functions descriptions and Gaussian processes. Gaussian processes are

popular probabilistic approaches for modeling the response surface in Bayesian optimization

literature. We further introduce challenges that arise from high dimensional settings in more

detail. In Chapter 3, we present our first approach to the problem of high dimensional Bayesian

optimization with axis aligned projections. We present the notion of a quantile Gaussian process

and the approximate inference methods that are involved in its implementation. We conclude

the chapter with empirical results, which compare the proposed method to well known baselines

in the literature of high dimensional Bayesian optimization. In Chapter 4, we present the second

approach to scaling Bayesian optimization to high dimensions based on feature spaces. We

first present the probabilistic model and its components in detail. We describe the setting

adopted for learning the feature space and reconstructing the features into high dimensional

data. We present the results achieved for computational efficiency of multi output Gaussian

processes. Finally we describe the acquisition maximization with the nonlinear constraint based

on Lipschitz continuity of Gaussian process predictions. We conclude the chapter with an

experimental evaluation of our baseline in comparison with standard choices of competing

approaches. Chapter 5 describes the conclusions and the future work of this thesis.



Chapter 2

Bayesian optimization

In this chapter, we introduce the background required for the remaining of the thesis. In

particular, we describe the Bayesian optimization approach in all its main components. We

define the response surface as the surrogate model for learning the black box objective function.

We then introduce the acquisition functions employed in this thesis and describe them in detail.

We also present the main probabilistic model adopted in this thesis which is the Gaussian

process model. Finally, we describe the main challenges involved in all these components when

we increase the dimensionality of the search space.

Bayesian optimization is a field of study concerned with seeking the extrema of unknown

functions that are expensive to evaluate. It comprises families of optimization problems where

gradients or higher order derivatives are generally not accessible, observations of function values

are corrupted by noise, and linearity and convexity properties are not granted. In particular, we

consider minimization problems of the form

find x∗ ∈ arg min
x∈X

f(x) (2.1)

where f : Xf ⊂ RD → R is the objective function. The objective function is a scalar function

taking values in a D-dimensional domain Xf , which we can assume without loss of generality

to coincide with the ambiguity set X of the optimization problem (2.1), that is Xf ≡ X . The

9



10 Chapter 2. Bayesian optimization

ambiguity set X is also referred to as the search space of the optimization problem. Although

the domain and ambiguity set may involve categorical and conditional variables, we restrict

ourselves to the case where these sets involve continuous variables. Inputs x are associated

with design choices or parameter configurations for experiments and are typically required to be

bounded in all dimensions. In particular, the search space is assumed to be a box constrained

set in the D-dimensional space such as the hypercube X = [0, 1]D. Observations y of function

values may also be corrupted by noise which is usually assumed to be identically distributed

and independent (i.i.d.) Gaussian noise, with zero mean and σn standard deviation1

y = f(x) + ε, ε ∼ N (0, σ2
n). (2.2)

We consider objective functions f that are prohibitively costly to evaluate and for which no

analytic expression is available. We assume we can evaluate the function at arbitrary inputs

in the search space X . We restrict ourselves to the typical setting, where neither gradients

nor convexity properties of f are available. We further assume we are allowed a small budget

of evaluation queries to express our best guess of the optimum’s location x∗ in at most Tend

iterations. The main steps and components of the optimization routine are also described in

Algorithm 1. In particular, we start with an initial set of starting inputs X0 := {xi}N0
i=1 and

observations y0 := {yi}N0
i=1. Then, at each iteration t, we select a new input point xt+1 at which to

measure yt+1 i.e. a noisy evaluation of the objective function. At the last iteration Tend a Bayesian

optimization algorithm returns the best guess of the optimum’s location x∗T = arg min f(x).

The general framework models the unknown objective f with a surrogate model referred to as

response surface and then feeds it into an acquisition function α(x), which expresses utility of

evaluations with respect to the current estimate. Maximizing the acquisition function returns

input locations xt+1 where to evaluate the true objective, i.e.

xt+1 = arg max
x∈X

α(x). (2.3)

The true objective is then evaluated at the maximum utility input, xt+1, and the dataset D is

1Here the subscript n denotes the measurement noise
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updated with the new sample.

Algorithm 1 Key steps of Bayesian optimization.

1: Inputs: X0 = {x1, ...,xN0} ∈ RN0×D, y0 = {y1, ..., yN0} ∈ RN0

2: for t = 0, 1, 2, ..., Tend − 1 do

3: Response surface learning

4: p(f |Xt,yt)

{Training of the probabilistic model for data fit.}

5: Optimal input selection xt+1

6: xt+1 = argmax
x∈X

α(x)

{Acquisition function maximization}

7: Evaluation

8: yt+1 = f(xt+1) + ε

{Evaluation of the high-dimensional objective function with measurement noise}

9: Xt ∪ {xt+1}, yt ∪ {yt+1}

10: end for

11: Return x∗ = arg min {y0, ..., yTend−1}

{Computed minimizer of the objective function f}

2.1 Response surface

The response surface is the first component of the Bayesian optimization algorithm. It comprises

a surrogate model that is used for learning the expensive black box function. This surrogate

model is essentially used as a proxy for the expensive black box optimization process. In fact,

instead of optimizing directly the costly black box objective function one can use the inputs and

observations to derive an approximation of the objective function and use the response surface

to guide the search for the optimum.

A response surface provides a probabilistic description of the unknown objective function, that

is, given an input point x, a surrogate model should return the expected value of the true
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objective function and related uncertainty in the prediction. The Bayesian approach allows

for such probabilistic predictions based on data acquired during the optimization process. It

mathematically formalizes our prior beliefs about the true objective and then updates it based

on inputs and observations. In this framework, posterior predictions p(f |X,y), after observing

data inputs X = {x1, ...,xN} and observations y = {y1, ..., yN}, where N is the number of data

points, are obtained updating a prior p(f) by the likelihood p(y|X, f).

p(f |X,y) ∝ p(y|X, f)p(f). (2.4)

The prior p(f) embodies initial assumptions about the function, and these are of key importance

for reducing the sampling complexity of the overall Bayesian optimization algorithm. With

Lipschitz continuity alone, for instance, the number of evaluations required to guarantee

convergence of the optimization grows exponentially in the number of dimensions D [Moč94].

Covering the search space such that a final guess f̂ is guaranteed to be no further than ε from the

true optimum f ∗, i.e. |f̂ − f ∗| < ε needs at least [L/(2ε)]D data points, where L is the Lipschitz

constant [Bet91]. Prior probabilistic assumptions, instead, embody regularity properties, such

as smoothness, and can be integrated with evidence from data. This allows for discarding

pathological examples of objectives that would require extremely expensive exhaustive-search

strategies, with confidence.

The second component, the likelihood, p(y|X, f), updates the prior according to collected

data points. Each function satisfying our initial assumptions weights according to how well

it fits with the observations. The likelihood updates our state of knowledge about the true

objective function after observations as the posterior mass concentrates on plausible functions

that conform to data.

There are many examples of response surfaces in the literature, both parametric and nonpara-

metric. In the parametric setting, it is worth mentioning the use of the Beta-Bernoulli bandit

model as a probabilistic surrogate. This model has been applied successfully in recommendation

and advertisement systems [LCLS10, CL11] and for modeling drug effectiveness [SSW+15].
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In the literature, there are also present response surface examples that do no need to specify

a vector of parameters. Here we introduce nonparametric models for the response surface,

namely Gaussian processes and random forests. Nonparametric models are characterized by an

infinite dimensional parameter set that can be thought as a function. The parameters in this

set directly correspond to data points. As the amount of data grows, the amount of parameters

grows and therefore the learning capacity of the model grows. This renders nonparametric

models more flexible than parametric ones. In contrast, parametric models are characterized

by a fixed amount of parameters which capture all the information contained in the observed

data. In fact, given the parameter vector, parametric model predictions are independent of

the observed data. As the amount of data grows, the learning capacity of the parametric

model remains the same. This renders parametric models less flexible than nonparametric

ones. Gaussian processes are nonparametric probabilistic models that provide a distribution

over the unknown function. Gaussian processes have a central role in this thesis as they have

been employed as the probabilistic models in all our contributions and will be detailed in the

following section. In our Bayesian setting however, the Gaussian process model defines a prior

p(f) in the space of functions. This prior models the function values f(X) = {f(x1), ..., f(xN )}

as Gaussian random variables that have a joint distribution with mean specified through a

mean function and a covariance matrix specified through a covariance function or kernel. In the

case of Gaussian likelihood, that is y = f(x) + ε where the noise is Gaussian ε ∼ N (0, σ2
n) as

specified in equation (2.2), the posterior p(f |X,y) is also Gaussian and can be derived using

linear algebra equations from the rules of Gaussian conditioning.

The other nonparametric model described in this thesis is the random forest [Bre01]. Random

forests have been proposed as an alternative to Gaussian processes as a regression model for

the response surface in Bayesian optimization. The main advantage in their employment is

the scalability in the number of data points and their good performances in the presence of

categorical data. In particular, this regression model has been employed successfully for the

Bayesian optimization of the parameters of integer programming solvers [HHLB11]. Random

forests are collections of regression trees which are like decision trees: flowchart-like structures

in which each of the internal nodes generally represents a test or an attribute. Regression trees
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are decision trees where the variables involved are taken from the real numbers. Each leaf is

assigned a set of data points and the average of all the regression trees produces an estimate of

the unknown black box function. The estimate of the variance can be produced by computing

the empirical variance of the predictions of the regression trees [HHLB11]. The result of this

model is a jagged response surface. This characteristic can be useful when modeling black

box objectives that are non smooth. Moreover, this construction allows the random forest to

make fast predictions as computing predictions from regression trees is also fast and has been

applied successfully with categorical variables [BBM04, BHBG07]. One of the downsides of this

approach for modeling the response surface is that the extrapolation where data points are not

available is poor. An additional drawback for using the random forest is that the uncertainty is

underestimated because the empirical variance of identical regression trees results overconfident.

Another downside is that performing optimization on this jagged response surface may be

intrinsically hard and do not allow optimization with gradient based methods.

2.2 Gaussian processes

A central model for the response surface in this thesis is the Gaussian process (GP) [RW06] model.

Gaussian processes represent a consistent and popular choice of prior distribution in the Bayesian

optimization framework. They specify probability distributions over functions characterized by

intuitive and tunable regularity properties. They have been extensively employed in machine

learning [RW06] as an empirical inference method for, among other things, nonparametric

nonlinear regression.

Definition 2.1 [RW06] A Gaussian process is a collection of random variables, any finite

number of which have a joint Gaussian distribution.

A Gaussian process is fully specified by a mean function, m(·), and a positive definite covariance

function (or kernel), k(·, ·). A Gaussian process specifies a probability distribution over a

function space identified by the kernel, called Reproducing Kernel Hilbert Space (RKHS), which
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is characterized by properties, such as smoothness or periodicity, that depend on the functional

form of the covariance function and the hyperparameters that parametrize the kernel. Here, we

provide a definition of the RKHS

Definition 2.2 [RW06] Let H be a Hilbert space of real functions f defined on an index set X .

Then H is called a reproducing kernel Hilbert space endowed with an inner product 〈·, ·〉H (and

norm ‖f‖H =
√
〈f, f〉H) if there exists a function k : X × X → R with the following properties:

• for every x, k(x,x′) as a function of x′ belongs to H, and

• k has the reproducing property 〈f(·), k(·,x)〉H = f(x).

A key intuition behind the reproducing kernel Hilbert space is that the squared norm ‖f‖2
H

in this space can be considered as a generalization to functions of the quadratic form fTK−1f ,

where f is a finite vector containing function values and K is a matrix of covariances between

fi, fj (elements of the vector f). The matrix of covariances K is obtained from the evaluation

of the kernel k at the input points xi,xj of each function value in f = [f(xi)]
N
i=1. The positive

definiteness of the covariance function k ensures that the quadratic form fTK−1f is positive for

all vectors f different from the null vector 0 (vector of all zeros), i.e.

fTK−1f > 0 ∀f 6= 0. (2.5)

The condition in equation (2.5) ensures that the norm ‖f‖2
H is also positive definite. In fact, we

can recover a finite version of ‖f‖2
H if we express K and f , in the quadratic form, in terms of

the eigenvectors of K. Therefore, the positive definiteness of the kernel ensures the positive

definiteness of the norm ‖ · ‖H defined in the reproducing kernel Hilbert space. For a more in

depth treatment please refer to [RW06].

The resulting general assumption in this thesis is that the unknown objective function f is

distributed according to a Gaussian process

f(x) ∼ GP (m(x), k(x,x′)) . (2.6)
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This assumption allows for computing probabilistic predictions of objective function values

for arbitrary inputs simply via linear algebra expressions. In particular, it implies that the

function values f(x1), ..., f(xN ) taken at any arbitrary set of input locations X = {x1, ...,xN} are

distributed according to a Gaussian distribution with mean [m(x1), ...,m(xN )]T and covariance

[k(xi,xj)]
N
i,j=1. In the case of Gaussian likelihood, also the noisy observations y = {y1, ..., yN}

of the function values at the inputs are Gaussian distributed with mean [f(x1), ..., f(xN)]T

and variance INσ
2
n (the measurement noise variance of the observations) as specified in equa-

tion (2.2). Here the term IN denotes an N ×N identity matrix. The probabilistic prediction

of objective value at test point x? can then be obtained by conditioning the joint proba-

bility of p(f(x?), y1, ..., yN). In fact, the Gaussian likelihood implies that the joint vector

[f(x?), y1, ..., yN ]T has a joint Gaussian distribution. The GP prediction at test point x? is

again Gaussian distributed, and its mean and variance can be analytically computed with exact

expressions from conditioning rules

p(f(x?)|X,y) ∼ N (µ(x?), σ
2(x?)) (2.7)

µ(x?) = m(x?) + k(x?,X)[k(X,X) + σ2
nI]−1(y −m(X)) (2.8)

σ2(x?) = k(x?,x?)− k(x?,X)[k(X,X) + σ2
nI]−1k(X,x?). (2.9)

Here the 1×N vector k(x?,X) := [k(x?,xi)]
N
i=1 contains the evaluation of the covariance function

between test point x? and the training set X. The square N ×N matrix k(X,X) := [k(xi,xj)]

for i, j = 1, ..., N is obtained by computing the kernel for each possible pair of training inputs.

The column vector m(X) := [m(xi)]
N
i=1 is the collection of evaluations of the mean function at

the training input set while the term m(x?) is also the evaluation of the mean function but for

the single test set. The remaining term k(X,x?) := k(x?,X)T is just a transposition of the row

vector defined at the beginning and the k(x?,x?) is the kernel evaluated at all possible pairs of

the test set (single point). These equations allow for deriving probabilistic statements about

function values laying within the confidence intervals around the mean estimate. In particular,

equations (2.8)–(2.9) describe the posterior mean and posterior variance of the objective function

values at the location x?. These posterior predictions are used by the acquisition functions to
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evaluate the utility of each input location and will be detailed in the next section.

The kernel models the covariance of an arbitrary pair of function values f(x), f(x′) as a function

of the input locations x and x′ at which the function is evaluated. Stationary covariance

functions k(x,x′) depend on some notion of distance between the inputs. Intuitively, it follows

that points that are close in input space X have function values that have high covariance and

therefore are highly correlated. This also defines the property of smoothness in the function

modeled by the kernel that is for small variations in input space correspond highly correlated

function values. Here we report common choices of kernel functions in the literature of Bayesian

optimization, namely the squared exponential and Matérn kernels [RW06, Fra18]

kSE(r) = σ2
f exp

(
− r

2

2l2

)
(2.10)

kMatérn(r) = σ2
f

21−ν

Γ(ν)

(√
2νr

l

)ν

Kν

(√
2νr

l

)
. (2.11)

Here, ν, l and σ2
f are positive parameters, where the σ2

f denotes the signal variance of the

process. The Γ and Kν are the Gamma and the modified Bessel functions, respectively. The

kernels in equations (2.10)–(2.11) are stationary kernels, that is they only depend on a distance

measure r between two points x and x′. Distances are rescaled by length-scale hyperparameters

which express wiggly behavior of the function. The length-scales informally denote the distance

in input space that is required for two function values to become uncorrelated. Intuitively,

functions that rapidly vary are characterized by short length-scales. It is also possible to define

a family of kernels with different length-scales hyperparameters for each dimension. This allows

for representing different function variations with respect to input space directions. A kernel

that is characterized by a different length-scale parameter per input dimension is referred to as

automatic relevance determination (ARD) kernel [RW06]. In this thesis, we will focus on the

Matérn kernel with automatic relevance determination. The parameter ν is directly related to

the smoothness of the functions modeled by this kernel. A function f is k-times differentiable

if and only if k < ν [RW06]. This becomes relatively simple for values such as ν = p + 1/2

where p is a positive integer number. In our work we consider the value ν = 5/2 which is twice
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differentiable. The resulting Matérn5/2 kernel becomes

kν=5/2(rl) = σ2
f

(
1 +
√

5rl +
5r2

l

3

)
exp

(
−
√

5rl

)
. (2.12)

Here the term rl is obtained rescaling the distance between arbitrary inputs x and x′ by the

length-scales per each dimension, that is r2
l := (x − x′)TΛ(x − x′), where the Λ matrix is

a diagonal with the reciprocal of the squared length-scales on the main diagonal 1/l2i , for

i = 1, ..., D. Other common choices of the parameter ν are ν = 3/2 and ν = 1/2. Note that for

ν →∞ we recover the squared exponential kernel described in equation (2.10).

An essential step for the Gaussian process regression is the efficient training via marginal

likelihood maximization. The training via marginal likelihood maximization does not simply

favour the models that fit the training data the best but also that have low complexity and

therefore can explain simply and well the data observed. This effect is called Occam’s razor

because encourages simplicity in explanations [RW06]. The Gaussian process, although being a

nonparametric model, is characterized by a set of hyper-parameters that define the properties

of the function space identified by the kernel. In particular, for the Matérn5/2 kernel we selected

there are two sets of parameters that affect predictions: the signal variance (or kernel variance)

σ2
f and the characteristic length-scales l1, ..., lD. We will collect these hyper-parameters into

the variable θ, together with the noise variance σ2
n, which can be learned from data, that is

θ := {σ2
f , l1, ..., lD, σ

2
n}. In the rest of the thesis, we will assume without loss of generality that

the mean function is the zero function, i.e. m(x) = 0 for all x ∈ X and therefore we will

not have any mean function parameters to be learned from data. The marginal likelihood

p(y|X,θ) is obtained marginalizing over the latent function space, that is averaging the likelihood

p(y|X, f,θ) with respect to the GP prior p(f |θ) (here we have made explicit the dependency

on the parameter set θ). The log marginal likelihood is given by

log p(y|X,θ) = −1

2
yTK−1

y y − 1

2
log |Ky| −

N

2
log(2π). (2.13)

Here, the term Ky is defined as Ky := (k(X,X) + σ2
nI), which is the covariance matrix of the

noisy observations y1, ..., yN . Each term in this expression of the log marginal likelihood is easily
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interpretable. The quadratic form on the left-most term on the right-hand side of equation

(2.13) represents the data fit term, that is how well the model hyper-parameters explain the data.

The second term
1

2
log |Ky| is the log determinant and is related to the model complexity. This

is a penalty term that avoids the model to overfit to data and therefore impedes the lengthscales

to reach too small values. In fact, the determinant |Ky| represents the geometric volume of the

Gaussian distribution of the data, given the inputs and the parameters. If this distribution has

low variance the volume tends to zero and the corresponding logarithm log |Ky| tends to minus

infinity. Therefore, preventing the log-determinant to reach minus infinity requires increasing

the variance and reducing the data fit. The last term on the right hand side is a constant that

depends on the number of data points and shows that the marginal likelihood tends to decrease

as we increase the number of data points. The maximization of the log-marginal likelihood in

order to find the hyper-parameters of the kernel and the likelihood variance is referred to as type

II maximum likelihood (MLII). This approach for learning the hyper-parameters of a Gaussian

process is an instance of a Bayesian model selection. Bayesian model selection is a method for

selecting among different model instances that uses the rules of probability. The probability, in

Bayesian model selection, is computed by integrating over the unknown values in that model.

In the case of a Gaussian process, the integration is over the function space characterized by

the kernel. In the case of Matérn5/2 kernel, equation (2.13) can be differentiated with respect to

the hyper-parameters and optimized with gradient based methods.

Finally, we address the computational complexity involved in both training a Gaussian process

(learning the hyper-parameters θ) and producing posterior predictions of the black box objective

function values, given an optimal set of hyper-parameters θ∗ = arg maxθ log p(y|X,θ). The

computational bottleneck is the computation of the inverse matrix K−1
y that appears both in the

marginal likelihood in equation (2.13) and the posterior predictions in equations (2.8)–(2.9). The

computational complexity of this step is cubic in the number of data points, i.e. O(N3). This

inverse matrix has to be recomputed every time the hyper-parameters in θ change. However, it

can also be stored and be used multiple times for computing posterior predictions in equations

(2.8)–(2.9). The inverse step K−1
y has the same complexity as computing the log-determinant

log |Ky| in equation (2.13) but both steps can be solved from a Cholesky decomposition of the
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covariance matrix of noisy observations which has cubic complexity. In fact, the log determinant

is computed as twice the sum of logs of the diagonals in the Cholesky decomposition, i.e.

log |Ky| = 2
∑

i log(Lii). Where Lii is the i-th element in the diagonal of the Cholesky matrix

L. It also holds that Ky = LLT , hence the inverse can be computed from the Cholesky

decomposition. The computational complexity of posterior predictions is dominated by the

matrix multiplication of the full covariance term K−1
y times the cross-covariance term k(x?,X)

and its transpose (as in equation (2.9)). This operation has quadratic complexity in the number

of data points, i.e. O(N2). These complexities will be of crucial importance when attempting

to scale the Bayesian optimization approach to the high-dimensional problems featuring more

than 20 dimensions.

2.3 Acquisition function

Now that we have described a suitable model for the response surface as a Gaussian process, we

describe the second component in our Bayesian optimization algorithm, namely the acquisition

function. The acquisition function defines a utility that is based on the values of the GP response

surface. In this thesis we are mainly interested in the acquisition functions that use Gaussian

processes. Therefore, in the reminder we will assume a GP for the response surface and its

predictions as inputs for the acquisition function. Acquisition functions trade off exploration

and exploitation during the search for the optimum. During exploration, objective evaluations

concentrate where uncertainty in the response surface is high, while exploitation favors selecting

input locations where predictions reach small values (in the case of a minimization problem).

The acquisition function guides the search for the optimum and contributes to the data-efficiency

of the optimization applied to the expensive objective f . It is assumed in general that the

intermediate steps introduced for utility maximization are less computationally demanding

than evaluating the true objective unconditionally. The general assumptions for the acquisition

function are that i) acquisition functions usually have fixed parametric form, ii) Gaussian process

predictions are cheap to compute and therefore that iii) acquisitions can be evaluated and

optimized efficiently. The acquisition function lowers the evaluation budget required on the f ,
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which may be limited, economically demanding, or time consuming to obtain.

2.3.1 Probability of improvement

The first strategy proposed in the literature of Bayesian optimization is that of probability

of improvement (PI) [Kus64]. The strategy proposed here is to select points that maximize

the probability of observing lower (or higher in a maximization of the objective function

setting) function values than the ones explored during optimization. Given a Gaussian process

predictive distribution with mean µ(x) and variance σ2(x) at x, this acquisition function selects

inputs according to the cumulative Gaussian density of the improvement fmin − µ(x). Here

the term fmin := min
x∈Xt

f(x) is the current minimum observed in the exploration history and

Xt = {x1, ...,xt} represents the collection of input variables selected up to iteration t in the

Bayesian optimization algorithm. The expression for the probability of improvement acquisition

is as follows

xt+1 = arg max
x∈X

p(f(x) ≤ fmin) (2.14)

= arg max
x∈X

Φ

(
fmin − µ(x)

σ(x)

)
(2.15)

Here Φ denotes the cumulative distribution of a standard Gaussian N (0, 1). The consideration

with this acquisition function is that small improvements with high probability are preferred to

larger, but more uncertain gains. Samples concentrate where the current functional estimate

predicts high values with confidence, often favoring pure exploitation of the posterior mean.

Proposed alternative strategies have been empirically analyzed, which lower bound the minimum

improvement to be at least ξ, that is p(f(x) ≤ fmin− ξ). Each positive value of the ξ parameter

corresponds to a different exploration and exploitation trade-off [Liz08]. Setting a high minimum

improvement pushes sampling towards less likely but more promising areas of the search space.

Several empirical studies [Jon01, Liz08] have developed schedules for this parameter to control

the trade off over iterations. Good practices drive the selection of xt+1 towards uncertainty

reduction in the early stages (ξ large), and favor exploitation, ξ → 0, later in the optimization.
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2.3.2 Expected improvement

Another central utility function in Bayesian optimization is the expected improvement (EI) [Moč75,

MTZ78]. Instead of selecting input locations according to their probability of improving the

current optimum fmin := min
x∈Xt

f(x), another strategy proposed by Močkus is to formalize the

improvement I(x) = max{0, fmin − f(x)} and then maximize its expected value with respect to

the posterior prediction, i.e.

xt+1 = arg max
x∈X

E
p(f |X,y)

[I(x)] . (2.16)

The improvement I(x) models positive differences between function values and our best obser-

vation fmin, and the predictive distribution p(f |X,y) is a short notation to denote equations

(2.8)–(2.9). Given the best function value fmin observed so far we will obtain an improvement

I(x) if f(x) = fmin − I(x). Therefore, by definition, the likelihood of the improvement is

Gaussian distributed with the following form [Jon01]

1√
2πσ(x)

exp

(
−(fmin − I(x)− µ(x))2

2σ2(x)

)
. (2.17)

Here, the terms µ(x) and σ(x) are taken from the posterior Gaussian process predictions from

equations (2.8) and (2.9), respectively. The analytical expression for the expected improvement

is obtained evaluating the expectation E(I(x)) with respect to the above likelihood in equation

(2.17) [Jon01]

EI(x) =

∫ I=∞

I=0

I

[
1√

2πσ(x)
exp

(
−(fmin − I(x)− µ(x))2

2σ2(x)

)]
dI (2.18)

= σ(x)Z(x)Φ(Z(x)) + σ(x)φ(Z(x)), (2.19)

Z(x) =
fmin − µ(x)

σ(x)
, (2.20)

where Φ and φ are the cumulative density function (CDF) and probability density function

(PDF) of N (0, 1), respectively. Equation (2.19) can be derived applying integration by parts to

the integral in equation (2.18). The expected improvement acquisition function has been proven
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to find the global optimum when employed in a Bayesian optimization algorithm, that is the

iterates from this method are dense [Loc97]. However, one observation is that this strategy is

highly deceptive during early stages of the optimization. Small error bars around the best point,

yield high utility for inputs in the neighborhood. Several examples in [Jon01] show that this

method performs fairly exhaustive search around the best observed value fmin before starting the

search for the global minimum. Therefore, also for this strategy a least-improvement parameter

ξ can refine exploration performances over iterations with results similar to those shown for

probability of improvement acquisition function.

2.3.3 Upper confidence bound

A more recent strategy for selecting the new input location during a Bayesian optimization

iteration is the upper confidence bound (UCB) [SKKS10] acquisition function. Given the

posterior Gaussian process predictions in equations (2.8)–(2.9), the upper confidence bound

acquisition does not need any information regarding the best observation fmin obtained up to

iteration t. The selection step for the next point can be written as

xt+1 = arg max
x∈X

− µ(x) + βtσ(x). (2.21)

Here the βt parameter denotes the trade off between exploration and exploitation. In [SKKS10]

a schedule for this parameter is proposed that achieves cumulative regret bounds. We highlight

that this acquisition function is then maximized to select the next evaluation point for the BO

algorithm. The value of this acquisition function is high for values of the posterior mean that

are small. It will therefore prefer selecting points where the Gaussian process prediction has

low mean µ(x) with small uncertainty and this is also referred to as the exploitation behaviour.

The exploration behaviour, instead, will select locations xt+1 which feature a large value of the

posterior standard deviation σ(x) which represents the uncertainty in GP predictions. The

parameter βt guides the search in both these regions with high uncertainty or small posterior

mean value and tuning this parameter can offer an increase in performances of the overall

Bayesian optimization algorithm.
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2.3.4 Other acquisition functions

So far we have presented the acquisition functions that will be used in this thesis for obtaining

the experimental results. Here, we briefly describe other acquisition functions that can be

employed in the Bayesian optimization algorithm. One example of acquisition that is based

on the probability distribution of the minimizer p(x∗|D), where D = {X,y} denotes the data

set, is entropy search (ES) [HS12]. The idea with this acquisition function is to select the

input xt+1 that is expected to reduce the entropy of the distribution p(x∗|D) the most after

evaluation. However, evaluating the largest decrease in differential entropy is intractable in

continuous search spaces and requires approximations. The state of the art approximation to the

method of entropy search is the proposed predictive entropy search (PES) [HLHG14]. Predictive

entropy search exploits symmetry properties of the mutual information to derive an equivalent

reformulation of the entropy search acquisition function in terms of the mutual information

between the true global minimizer x∗ and observation y. Experiments have shown equivalent or

better performances with respect to discretized methods [VVW09] for entropy search, making

predictive entropy search the state of the art method in entropy search approximations.

A different approach that uses the posterior distribution p(f |X,y) of the Gaussian process after

having observed data is the Thompson sampling (TS) [Tho33] acquisition function. This simple

strategy is defined in both continuous and descrete spaces for optimization. In our Bayesian

optimization setting, we consider only the continuous spaces example which consists of selecting

a sample function fs from the posterior fs ∼ p(f |X,y). Then performing optimization of the

acquisition function by selecting the minimizer of this sampled function as the next query point

xt+1, that is xt+1 = arg minx∈X fs(x). Here, evaluating the sample function fs(x) for each

point can be done using spectral sampling techniques [Boc59, RR08, LGQCRFV10]. For a

detailed explanation of the mentioned acquisition functions the reader is referred to the review

in [SSW+15].

One drawback of common acquisition functions such as expected improvement is to select

one-step optimal points for the optimization. In fact expected improvement is one step optimal

meaning that EI would lead to the optimal choice of xt+1 if we only had one BO iteration left.
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Another acquisition function that has been presented recently is the two-step look-ahead [WF19]

acquisition function. The two-step look-ahead approach extends the acquisition function to be

optimal if there were two BO iterations left. The idea with the approach is to apply the envelope

theorem [MS02] to estimate the gradient of this multi-step acquisition. Moreover, Monte Carlo

variance reduction methods reduce the computational cost of evaluating the acquisition function

and its gradient.

2.4 Challenges in high dimensions

Now that we have defined the main components of the Bayesian optimization algorithm,

we mention the computational challenges that we encounter when trying to scale BO to high

dimensions. Points in high dimensional spaces, namely with D ≥ 20, become increasingly distant

with the dimensionality D. In fact, the lower bound on their distance depends exponentially

on the dimensinoality D of the input space [GKKW06]. Hence, the number N of data points

required to cover the search space, and therefore to learn an objective function f , increases

exponentially with the number of dimensions D of the search space X [SSW+15]. This becomes

challenging when using Gaussian processes to model the response surface. In fact, Gaussian

processes scale cubically in the number of data points O(N3). With an exponential number of

data points the cubic complexity of the Gaussian process easily becomes intractable. Evaluating

the acquisition function scales quadratically O(N2) in the number of data points since they

depend only on posterior GP predictions for computing the utility. However, it is not the

number of data points to concern in the acquisition maximization, but rather the number of

acquisition evaluations required to select the new point xt+1. In fact, acquisition functions are

generally multi-modal non convex and therefore require an exponential number of evaluations

in the number of dimensions to be maximized. In particular, common off-the-shelf numerical

optimization techniques based on discretization [SLA12] and adaptive grids [BK10] require

exponential computations in the number of dimensions D. This renders the maximization hard

since the acquisition needs to be evaluated too many times and becomes the computational

bottleneck of the overall optimization process. Gradient based methods for maximizing the
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acquisition function also suffer in high dimensional settings. With only a small evaluation budget,

the learned response surface and the resulting acquisition function are characterized by vast

flat regions interspersed with nonlinear landscapes [RLG+17]. This renders optimization with

gradients of the acquisition function inherently challenging [GOH14]. The optimizer either stops

because of absence of gradients or remains stuck in local optima. Therefore, the computational

burden, the runtime cost and the expenses of performing inference with high-dimensional

datasets become not negligible any more. Maximizing the acquisition function is not an easy

task any more either. This renders the Bayesian optimization more expensive than and not

suitable any more for the optimization of prohibitively costly black box objective functions.

In this setting, globally optimizing a high dimensional function is an hopeless task. In order

to solve this problem we therefore need to introduce additional assumptions such as intrinsic

low dimensionality of the black box objective f . This assumption basically implies that the

true objective function effectively depends on a low dimensional representation of the data

characterized by dimensionality d � D. This allows reformulating the problem as a low

dimensional Bayesian optimization with feasible dimensionality d and solving it efficiently with

off the shelf methods. The main challenge is therefore to reformulate the high dimensional

problem as a low dimensional one. In the following chapters we address this aspect with two

main approaches: i) a decomposition strategy that reformulates the high dimensional problem

as a collection of independent low dimensional instances and ii) a compression strategy that

uses an auto-encoder like probabilistic model to reformulate the Bayesian optimization problem

in a low dimensional manifold of the original search space.



Chapter 3

High-dimensional Bayesian

optimization with projections using

quantile Gaussian processes

In this chapter, we address the high dimensional Bayesian optimization with low dimensional

quantile Gaussian processes defined on independent subsets of dimensions. We have motivated

in Section 2.4 that high dimensionality requires an exponential number of observation points in

the number of dimensions in order to learn the response surface and an exponential number of

acquisition function evaluation also in the number of dimensions D for selecting a new location

for optimization. This makes Bayesian optimization in high dimensions a challenging task.

What we propose here is to exploit the intrinsic low dimensionality of the objective function to

reformulate the optimization problem as a collection of independent subproblems.

3.1 Related work

One common idea is to assume that the objective function is defined on a linear subspace

of the original parameter space. By performing a linear mapping it is therefore possible to

optimize the high dimensional objective function on a low dimensional linear subspace of the

27
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original data space. This linear subspace is characterized by dimensionality d with d � D,

where D is the original dimensionality. In [WZH+13] the optimization is performed on this

linear embedding of the original search space because of the assumption that the objective

lives only on a linear subspace of the input domain that is d-dimensional. Strong theoretical

results show that performing Bayesian optimization under these assumptions is equivalent to

learning and optimizing the true objective on a random embedding [WZH+13]. However, robust

implementation requires further deftness to account for box-constraints and non-injectivity of

the mapping from the embedding to the original domain. Another method based on linear

embeddings is the one presented in [GOH14]. In this work, the linear mapping necessary to

reduce the dimensionality to the d-dimensional subspace is actively learned from data.

Another approach that has proven successful is the employment of decomposition strategies for

the optimization problem at hand. The decomposition strategies consist of reformulating the high

dimensional Bayesian optimization problem into a collection of subproblems of dimensionalities

at most d. Again here the advantage with this reformulation is that the dimensionality d is much

smaller than the dimensionality of the original space D, that is d� D. One example of this

decomposition approach is the work presented in [KSP15]. In this work axis aligned projections

of the original data space are considered for optimization as a decomposition strategy. Axis

aligned projections coincide with the selection of subsets of variables from the original high

dimensional space with a budget of up to d dimensions per projection. In [KSP15] an additive

model is employed to compose the effects of the axis aligned projections on the underlying

objective function. Basically, the objective function is assumed to be additive, that is

f(x) = f1(x(1)) + ...+ fz(x
(z)), (3.1)

with additive components f1, ..., fz all defined on a partition of the original search space. By

partition of the search space we mean a set of disjoint subsets X1, ...,Xz of variables or components

x(i) (with up to d variables per each subset) such that their union forms the original data space

X . In [KSP15] each subproblem derived from the each axis aligned projection is optimized

independently using the Upper Confidence Bound (UCB) acquisition function [SKKS10]. This
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approach scales the optimization of the acquisition linearly in the number of components by

including specific structural assumptions about f . Another approach that is still based on

additive components for optimization has been presented in [RSBC18] where the additive

components are not defined any more on disjoint subsets of variables. In this work, there is

no partition of the parameter space but rather different axis aligned projections are allowed to

contain the same components or variables.

A promising direction in works related to axis aligned projections for Bayesian optimization

is the automatic selection of the projection based on which dimensions are effectively relevant

for the objective function optimization. In this case, the main problem is to identify a set of

useful dimensions for optimization; that is dimensions on which the objective function actually

depends. These dimensions are also referred to as active dimensions. In the work presented

in [CCK12], the active dimensions are selected by performing a test. In this test, a squared

exponential kernel, whose bandwidth depends on the number of active variables, is employed.

This work provides strong theoretical results regarding the sample complexity for selecting the

set of active dimensions which is logarithmic on the dimensionality of the high dimensional

parameter space. Albeit these theoretical results this approach requires employing a budget of

evaluations in order to discover the active dimensions prior to optimization.

Another way to exploit axis aligned projections is through the definition of tree structure

dependencies among dimensions in the problem at hand. For instance, in a deep learning

problem one may be interested in exploring multiple architectures of the deep network. These

deep network architectures may be characterized by their own set of hyper-parameters, which

may be shared across models. These shared and non shared parameters could be expressed in

a decision tree having the hyperparameters as leaf nodes and different architectures as nodes

of the tree. In the work presented in [JAGS17] this tree structure dependency is exploited to

transfer information between overlapping decision variables. In particular, in [JAGS17] a novel

surrogate model for the response surface is introduced that allows to combine independent

Gaussian processes with a linear model that captures the tree-based dependency structure.

Another approach based on axis aligned projections is proposed in [UBC+16] where a different



30 Chapter 3. High-dimensional Bayesian optimization with projections using quantile GPs

decomposition of the input is performed by randomly selecting subsets of the input parameters

and assigning a different model for each subset. Each model is then trained with a separate

dataset to address the problem of inconsistencies introduced by axis-aligned projections.

Axis aligned projections cause multiple observations for the same input variable x which we

refer to as inconsistencies or ambiguities. For instance, if we consider a two-dimensional

function we can observe different function values at two distinct points that share the same first

coordinate, that is the following input-function-value pairs can be observed ([x1, x2], f(x1, x2)),

([x1, x̃2], f(x1, x̃2)). Now, if we apply an axis-aligned projection on the first coordinate, that

is we remove from the data points the x2 and x̃2 variables, respectively we end up with the

following projected dataset: ([x1], f(x1, x2)), ([x1], f(x1, x̃2)). Since the function values may be

different f(x1, x2) 6= f(x1, x̃2) for the two data points, we end up with multiple function values

for the same projected input x1 which we refer to as inconsistency or ambiguity. An example of

this shortcoming is presented in Figure 3.1. As a result, optimization in these lower-dimensional

spaces suffers from observation ambiguity or inconsistency when applying the same principle

to noisy observations instead of noiseless function values. To amend the inconsistency issue in

[UBC+16] the authors adopt multiple separate subsets of experiments resulting in a strategy for

optimization that requires much data. This approach has shown to perform well in practice

but has been characterized by a data inefficient strategy because of the definition of a different

dataset for each model. In this work, there is no possibility to share information (data) across

models.

In this dissertation, we propose a scalable method based on axis-aligned projections that

overcomes issues inherent in this type of projections. We formulate an optimization approach

based on independent sub-problems for each subset of d � D parameters. This reduces the

complexity of both learning a response surface and optimizing the acquisition function in a

low dimensional space. We address the issue of inconsistencies with a sensible choice of the

model by using a quantile Gaussian process (QGP) [BBC12] on each axis aligned projection.

The quantile Gaussian process is a Gaussian process characterized by an asymmetric Laplace

likelihood. The key idea behind the QGP is that we only model a lower τ -quantile of function

values, which also allows us to retain a simpler explanation of the data. In fact, the overall result
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Figure 3.1: (a) vanilla GP hyper-parameter learning can result in unrealistic estimates and
largely useless generalization capabilities. This is a clear sign of underfitting where the data
with inconsistency is modeled as noise. The resulting acquisition function from this model will
favor pure exploitation leading to pre-mature convergence of the algorithm. (b) the Quantile
GP overcomes the issue of inconsistencies by explicitly modeling only a quantile function.

with the quantile Gaussian process is an automatic selection of most promising observations

for minimization where we can generalize with the response surface. The QGP maintains

well-calibrated confidence bounds in posterior predictions in the presence of noisy multiplicity

of outputs see Figure 3.1. A more detailed description of the model is provided in Section 3.3

3.2 High-dimensional Bayesian optimization with pro-

jections

We propose a novel Bayesian optimization algorithm based on axis-aligned projections that uses

quantile regression models for learning a low-dimensional projection of the response surface.

Under the assumption that the black-box function is effectively lower-dimensional, projections

onto d-dimensional features tackle the curse of dimensionality for both the learning of the

response surface and the maximization of the acquisition function.

We select a maximum of z possible axis-aligned projections that partition the D-dimensional

input/parameter space, such that X =
⋃z
i=1Xi and Xi ∩ Xj = ∅ for i 6= j and i, j = 1, ..., z.
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This convention allows us to partition the dimensions into a maximum of z projections, which

we refer to as components. We then define the projection as a set of d coordinates proj(i) =

{pi,1, ..., pi,d}, to select from the original parameter space for i = 1, ..., z. Given an input vector

x = [x1, ..., xD] ∈ RD, we identify its i-th projection as x(i) = [xpi,1 , ..., xpi,d ] ∈ Rd, that is from

the high-dimensional vector of parameters we select the coordinates with indices pi,1, ..., pi,d.

Essentially, the i-th axis aligned projection selects a subset of d dimensions of the high dimensional

ambient space where the selected dimensions are those with indices {pi,1, ..., pi,d}. The projected

vector is defined in the low-dimensional space Xi ⊂ Rd and we say that this d-dimensional space

is defined by the projection proj(i). When performing Bayesian optimization from axis-aligned

projected data, we consider the data set {Xi,Y} with lower-dimensional inputs x(i) and all

observations.

Projections along the axes cause inconsistencies or ambiguities, that is multiple observation

values y1, ..., ym for the same input location. For instance, if we observe y1, y2 from a function

with two-dimensional inputs, i.e., y1 = f̂(x1, x2) + ε1, y2 = f̂(x1, x̃2) + ε2, with ε1, ε2 being

additive1 identically distributed and independent Gaussian noise, and we plot them w.r.t. the

first coordinate we obtain multiple output values in correspondence to x1, that is (x1 , f̂(x1, x2))

and (x1 , f̂(x1, x̃2)). This multiplicity is not caused by noise, but it originates from the variation

of the unobserved parameter x2 in the original domain. The effect of these inconsistencies/

ambiguities is illustrated in Figure 3.1. A standard GP would model this multiplicity of

outputs as additive Gaussian noise. This modeling may result in a mis-interpretation of data

as unstructured noise. Figure 3.1 shows an example of this shortcoming. As can be seen, the

presence of inconsistencies negatively affects the hyper-parameter optimization resulting in

unrealistic estimates of the characteristic lengthscales, kernel variance and measurement noise

variance. This shortcoming also affects the capability of generalizing with the learned Gaussian

process model. In fact, the inconsistencies are interpreted as measurement noise and the model

is incapable to generalize showing clear signs of underfitting. A particular sign of underfitting is

the large value of the characteristic lengthscales even in the presence of slopes in the data.

1By additive we mean that the measurement noise is added to the function value
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Algorithm 2 Quantile-Gaussian process based Bayesian optimization. Main steps of a Bayesian

optimization algorithm with projections. The inner loop iterates over the z components and

trains a different quantile-GP model for each projection. The training of each quantile-GP model

in line 5 is performed by maximizing the marginal likelihood in equation (3.5) and selects the

kernel lengthscale hyper-parameters, the kernel variance and the measurement noise variance.

The update in line (8) in the outer loop concatenates all the selected updates x
(i)
t+1.

1: Inputs: X0 = {x1, ...,xN0} ∈ RN0×D, y0 = {y1, ..., yN0} ∈ RN0

2: Set: d� D

3: for t = 0, 1, 2, ..., Tend − 1 do

4: for i = 1, ..., z do

5: Train i -th Quantile-GP model fi|X(i)
t ,yt

6: Select i-th update x
(i)
t+1 = argmax

x(i)∈Xi
α(x(i)|fi)

7: end for

8: Update input with all components xt+1 = ∪zi=1x
(i)
t+1

9: Observe objective value yt+1 = f(xt+1) + εt+1

10: Augment Data set Xt ∪ {xt+1}, yt ∪ {yt+1}

11: end for

12: Return x∗ = arg min yt

For our purpose of obtaining reliable posterior predictions after training, we are interested in

removing such inconsistencies, e.g., by automatically selecting only the best (lowest) observations

for each parameter sub-configuration. Selecting extreme (small) observations is intuitive in our

minimization context, and we validate this choice with empirical results. Quantile regression

provides a method for function estimation that effectively embodies this notion of automatic

selection. We detail the steps of our method with quantile GP models for each projection in

Algorithm 2. Note that in Algorithm 2, in line 5, the variable X
(i)
t collects all the projected

data points in the i-th projection, that is X
(i)
t = {x(i)

1 , ...,x
(i)
Nt
}, where the Nt variable denotes

the number of data points available at the t-th iteration and the i-th projection takes values in

i = 1, ..., z.
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3.3 Quantile Gaussian process regression

We are interested in modeling a proportion of the data with a Gaussian process. This proportion

is referred to as quantile, τ , and defines the probability p(y ≤ µτ ) = τ of observations y to

be below the functional estimate µτ [TLSS06]. Quantile regression [KH01] is comprised of

techniques for estimating and expressing µτ through conditional quantile functions. The basic

intuition behind quantile regression is that minimizing the l1-loss function,
∑Nt

i=1 |yi − µτ (xi)|

yields a functional estimator of the median, which corresponds to quantile τ = 0.5. For an

arbitrary τ , direct estimation of the quantile functions is obtained by minimizing a tilted loss

function (pinball loss)

lτ (ξ) =


τξ if ξ ≥ 0

(τ − 1)ξ if ξ < 0,

(3.2)

where ξ = yi − µτ (xi) for i = 1, ..., Nt. The regression problem that optimizes the cumulative

loss
∑Nt

i=1 lτ (yi − µτ (xi)) consistently produces τ -th quantile function estimates [TLSS06].

In our predictions, we model the uncertainty of our estimate µτ as a posterior probability

over function values derived in a Bayesian framework. The quantile-Gaussian process model

(QGP) [BBC12] allows for such a formulation and computation of posterior predictions through

approximate inference via Expectation Propagation (EP) [Min01]. We introduce a standard

Gaussian process prior over quantile functions, i.e., µτ ∼ GP(m, k), and reformulate the tilted

loss in equation (3.2) in terms of a renormalized reward

R(yi, µτ ) = Zi exp (lτ (µτ , yi)) , (3.3)

where Zi is a normalizing constant, and R(yi, µτ ) evaluates the Asymmetric Laplace Distribution

(ALD). The basic intuition behind this definition is also displayed in Figure 3.2 for a quantile

τ = 0.1. The reward represents the likelihood p(yi|µτ ,xi,θGP ) of each input xi and model

hyper-parameters θGP , which includes the characteristic lengthscales of the kernel, the kernel

variance and the measurement noise variance. The joint distribution of the probabilistic model



3.3. Quantile Gaussian process regression 35

Loss minimization Bayesian formulation

likelihood

prior
Figure 3.2: Two different approaches to quantile regression. Red dots show inconsistencies, i.e.
different observations y1, ..., ym for the same input x. Left (direct estimation): the blue line
shows the tilted loss for τ = 0.1, the observations y above the functional estimate generate a
loss 10-times smaller than those that appear at the same distance below µτ . Right (Bayesian
formulation): the blue line represents how likely data points are given the quantile model µτ .

of the quantile Gaussian process is the following

p(yt, µτ |Xt,θGP ) = p(yt|µτ ,Xt,θGP )p(µτ |θGP ) (3.4)

Where p(yt, µτ |Xt,θGP ) is the joint distribution of observations and function values given the

inputs Xt and hyper-parameters θGP . The distribution p(yt|µτ ,Xt,θGP ) is the asymmetric

Laplace likelihood and the distribution p(µτ |θGP ) is the Gaussian process prior.

We perform training of the quantile Gaussian process hyper-parameters via a type-II maximum

likelihood approach [RW06], that is we select the characteristic lengthscale hyper-parameters of

the kernel by maximizing the marginal likelihood at each Bayesian optimization iteration, that

is

arg max
θGP

∫
p(yt|µτ ,Xt,θGP )p(µτ |θGP )dµτ . (3.5)

Here the vector yt is the collection of all observations encountered during optimization up to

iteration t, the µτ is the functional estimate modeled as a Gaussian process and the matrix Xt is

the collection of all locations selected during the optimization up to iteration t. The vector θGP

includes all the hyper-parameters of the Gaussian process, that is characteristic lengthscales

and kernel variance. The integral in equation (3.5) is intractable and we approximate it via
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Expectation propagation.

3.4 Expectation propagation

Expectation propagation (EP) [Min01] is an approximate inference method based on local

approximations used when both the posterior predictions and the marginal likelihood are

analytically intractable due to non Gaussian likelihood p(yt|µτ ,Xt,θGP ). The non conjugate

prior for this likelihood renders the computation of the integral in equation (3.5) intractable

and expectation propagation provides an approximation for both the marginal likelihood and

the posterior predictions. We preferred expectation propagation to the Laplace approximation

because the Laplace approximation provides a more coarse solution than EP for approximating

the intractable posterior with a Gaussian distribution [VGS+20]. We also considered EP

compared to variational methods. In our problem we considered the true density of the posterior

to be multimodal. In this case, expectation propagation allows to find an average of the modes.

Variational methods, instead, would pick one of the modes. Therefore, we preferred EP in order

to perform mode averaging on the intractable posterior.

Expectation propagation for Gaussian processes expresses the likelihood, p(yt|µτ ,Xt,θGP ), with

a product of unnormalized Gaussian distributions in the latent variable µτ,i (where the i in µτ,i

denotes the i-th functional estimate value of µτ in correspondence to the input xi, for each data

point that is for i = 1, ..., Nt) called local likelihood approximations π̃i = Z̃iN (µτ,i; µ̃i, σ̃
2
i ), in our

case

p(yt|µτ ,Xt,θGP ) ≈
Nt∏
i=1

π̃i :=
Nt∏
i=1

Z̃iN (µτ,i; µ̃i, σ̃
2
i ). (3.6)

In our setting, the rewards are independent for each observation yi collected during the op-

timization so that the model likelihood p(yt|µτ ,Xt,θGP ) factorizes over the rewards, that
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is

p(yt|µτ ,Xt,θGP ) =
Nt∏
i=1

R(yi, µτ,i). (3.7)

Expectation propagation approximates each of these Nt-likelihood factors with a local Gaussian

approximation; we therefore apply an approximation with Nt local Gaussian likelihoods. Each

local approximation is characterized by the site parameters : Z̃i, µ̃i, σ̃
2
i , for i = 1, ..., Nt, where

the effect of the normailzation constants, Z̃i, on the marginal likelihood can be expressed as

a function of the site parameters µ̃i, σ̃
2
i , [RW06]. These site parameters are are the targets of

the EP algorithm and are updated in an iterative process until convergence. The convergence

guarantee for the expectation propagation procedure has not been proven but rather conjectured

[RW06] for log-concave likelihoods, such as the asymmetric Laplace distribution and it has been

reported [RW06] that EP works relatively well for Gaussian process models.

The update of each local approximation is performed such that each π̃i will contribute to

the posterior as the original likelihood in p(yt|µτ ,Xt,θGP ), still retaining nice properties of

analytical integration against Gaussian distributions. We denote the product of the local

likelihood approximations with the following Gaussian distribution

Nt∏
i=1

π̃i = N (µ̃, Σ̃)
Nt∏
i=1

Z̃i, (3.8)

where the vector µ̃ contains the means µ̃i of the unnormalized local likelihood approximations and

the covariance matrix is a diagonal matrix containing the variances of each unnormalized local

likelihood approximation on the main diagonal, that is Σ̃ii = σ̃2
i , for i = 1, ..., Nt. Expectation

propagation approximates the true posterior p(µτ |Xt,yt) with the approximation q(µτ |Xt,yt),

which is defined as follows

q(µτ |Xt,yt) :=
1

ZEP
p(µτ |θGP )

Nt∏
i=1

π̃i = N (µ,Σ) (3.9)

Σ = (K−1 + Σ̃
−1

)−1 (3.10)

µ = ΣΣ̃
−1
µ̃. (3.11)
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The approximate posterior is obtained applying the rule of a product of two Gaussians. The two

Gaussians involved in the product are the Gaussian process prior p(µτ |θGP ) and the product

of local likelihoods approximations
∏Nt

i=1 π̃i. The result of a product of two Gaussians is an

unnormalized Gaussian distribution. This product is then renormalized with the marginal

likelihood factor ZEP . This implies that the posterior approximation is distributed as a Gaussian.

The term ZEP is expectation propagation’s approximation to the normalization constant in

Bayes’ rule for deriving the posterior distribution, that is ZEP = q(yt|Xt), where q(yt|Xt) is the

approximate marginal likelihood. Moreover the probability p(µτ |θGP ) is the Gaussian process

prior, µ is the mean vector of the approximate posterior and is derived from the rule of the

product of two Gaussians (the Gaussian prior of the GP and the Gaussian product of local

likelihood approximations). Similarly, the covariance matrix Σ of the approximate posterior is

derived from the same rules of products of Gaussians and the K matrix is the kernel matrix of

the Gaussian process prior, that is K = [k(xi,xj)]i,j for i, j = 1, ..., Nt.

The idea with expectation propagation is to start from the approximate posterior as defined in

equations (3.9)–(3.11) and remove the contribution of a single local likelihood approximation π̃i

(the i-th component) to obtain the cavity distribution. Then, expectation propagation combines

the cavity distribution with the exact likelihood p(yi|µτ ,Xt,θGP ) of the i-th observation yi,

resulting in a non Gaussian marginal. As an additional step, EP projects the non Gaussian

marginal to a Gaussian distribution with moment matching. Finally, the site parameters

Z̃i, µ̃i, σ̃
2
i of the i-th local likelihood approximation are computed such that the posterior have

the same marginal as that computed with the moment matching at the previous step. These

steps are performed for each i-th local likelihood approximation, that is for i = 1, ..., Nt. This

whole procedure is repeated until convergence.

To describe the above steps more in detail, here we report the probabilities derived from the

main steps of expectation propagation. First we consider the i-th marginal of the approximate

posterior described in equations (3.9)–(3.11)

q(µτ,i|Xt,yt) = N (µτ,i;µi, σ
2
i ), (3.12)
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that is the i-th component of the approximate posterior where the µi and the σ2
i are the i-th

components of µ and Σ, respectively such that σ2
i = Σii. The first step in expectation propagation

is therefore to compute the i-th cavity distribution q−i(µτ,i). The i-th cavity distribution

q−i(µτ,i) is obtained removing the contribution of the i-th local likelihood approximation from

the approximate posterior described in equations (3.9)–(3.11), that is

q−i(µτ,i) : = N (µτ,i;µ−i, σ
2
−i), (3.13)

σ2
−i = (σ−2

i − σ̃−2
i )−1, (3.14)

µ−i = σ2
−i(σ

−2
i µi − σ̃−2

i µ̃i). (3.15)

Expressions (3.14)–(3.15) can be verified by just multiplying the i-th cavity distribution by

the i-th local likelihood approximation Z̃iN (µτ,i; µ̃i, σ̃
2
i ) and using the rules for computing the

product of two Gaussian distributions to obtain the approximate marginal posterior in equation

(3.12). The second step is to multiply the cavity distribution by the exact i-th likelihood factor

p(yi|µτ ,Xt,θGP ) to obtain a non-Gaussian marginal, that is the current posterior approximation

with i-th contribution from the original likelihood

hi = q−i(µτ,i) p(yi|µτ ,Xt,θGP ). (3.16)

A third step is to project the combination hi of the marginal cavity distribution q−i(µτ,i) with the

exact likelihood p(yi|µτ ,Xt,θGP ) to an un-normalized Gaussian q̂i(µτ,i) via moment matching:

q̂i(µτ,i) : = ẐiN (µ̂i, σ̂
2
i ) = proj [hi] . (3.17)

Here we have introduced the projection operator proj, that matches the first two moments of

the distribution hi to a Gaussian distribution q̂i. Since the distribution is an un-normalized

Gaussian also the zeroth moment that is the normalizing constant should match. Moreover note

that since the q̂i(µτ,i) is an un-normalized Gaussian the moment matching operation minimizes

the KL divergence between the hi distribution and the un-normalized approximation q̂i(µτ,i),

that is KL(hi||q̂i). The fourth and last step removes the contribute of the cavity distribution
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from q̂i(µτ,i) to update the set of site parameters Z̃i, µ̃i, σ̃
2
i . This process is iterated for all factors

of the likelihood which coincide with the number of points collected by the optimization up to

iteration t, that is for i = 1, ..., Nt. Finally, this loop is repeated until convergence.

Algorithm 3 Expectation Propagation: in each update of site i, the expectation propagation

procedure computes the i-th marginal of the approximate posterior in equations (3.9)–(3.11).

Line 5 computes the cavity distribution, q−i(µτ,i). Expectation propagation then applies the

contribution of the i-th original likelihood to the cavity q−i to obtain the i-th hybrid distribution:

hi. The hybrid distribution is then projected to an un-normalized Gaussian, q̂i, via moment

matching (by minimizing KL(hi‖q̂i)). The local approximation is then obtained removing the

cavity term in Line 8

1: Initialize: σ̃−2
i µ̃i = 0, σ̃−2

i = 0 for i = 1, ..., Nt

2: for j = 0, 1, 2, ...until convergence do

3: for i = 1, ..., Nt do

4: Compute the i-th marginal of the approximate posterior distribution: q(µτ,i|Xt,yt)

5: Evaluate the i-th cavity distribution: q−i(µτ,i) = N (µτ,i;µ−i, σ
2
−i)

6: Multiply the cavity by the i-th true likelihood: hi = q−i(µτ,i) p(yi|µτ ,Xt,θGP )

7: Project to an un-normalized Gaussian distribution: q̂i = proj [hi]

8: Remove the contribute of the cavity distribution from q̂i(µτ,i): q̂i/q−i(µτ,i)

9: Update: µ̃i, σ̃
2
i

10: end for

11: end for

12: Return: µ̃i, σ̃
2
i for i = 1, ..., Nt

After convergence, each local approximation π̃i will contribute to the posterior as the original

likelihood in p(y|µτ ,Xt,θGP ), still retaining nice properties of analytical integration against

Gaussian distributions. Algorithm 3 shows the main steps involved in the approximate inference

procedure (the original implementation of the algorithm uses the natural parameters, τ̃i = σ̃−2
i

and ν̃i = σ̃−2
i µ̃i and these are initialized to zero). Further details on the expectation propagation

algorithm as approximate inference method are provided in [Min01][RW06].
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3.4.1 Posterior Gaussian process predictions

We have described the entire expectation propagation procedure with the derivation of the

steps necessary to update the site parameters. Now we detail the equations for obtaining the

posterior predictions given the convergence of the outer loop of Algorithm 3. The posterior

predictions can be derived in closed form and resemble the equations for Gaussian process

posterior predictions in expressions (2.8)–(2.9). The only difference is in the noise term: instead

of being an identity matrix it becomes a diagonal matrix, which contains the site parameters.

The posterior mean is derived as follows

E[µτ,?|Xt,yt,x?] = k(x?,Xt)K
−1µ (3.18)

= k(x?,Xt)K
−1(K−1 + Σ̃

−1
)−1Σ̃

−1
µ̃ (3.19)

= k(x?,Xt)(K + Σ̃)−1µ̃. (3.20)

Here, µτ,? is the value of the functional estimate µτ at the test location x? and the term k(x?,Xt)

evaluates the cross-covariance between the test point x? and the training inputs Xt. The first

equality in equation (3.18) is obtained combining the Gaussian process predictive mean in

equation (2.8) with the posterior mean µ defined in equation (3.11). The second equality in

expression (3.19) is obtained expanding the definition of the approximate posterior mean in

equation (3.11). The last equality in expression (3.20) is obtained from well-known matrix

identities [PP08]. The posterior variance is defined as follows

V[µτ,?|Xt,yt,x?] = k(x?,x?)− k(x?,Xt)[K
−1 −K−1(K−1 + Σ̃

−1
)−1K−1]k(x?,Xt)

T (3.21)

= k(x?,x?)− k(x?,Xt)(K + Σ̃)−1k(x?,Xt)
T . (3.22)

The kernel value k(x?,x?) describes the covariance at the test input as a function of x?. In

equation (3.21), there are two terms after the self covariance k(x?,x?) in square brackets. The

first term is due to the variance of the functional estimator µτ,? at test point x? if we condition
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on the posterior µτ ; that is the first term can be summarized by the following expression

Ep(µτ,?|Xt,x?,µτ )[(µτ,? − E[µτ,?|Xt,x?, µτ ])
2] = k(x?,x?)− k(x?,Xt)K

−1k(x?,Xt)
T . (3.23)

The second term in the square brackets of equation (3.21) is due to the fact that the expectation

E[µτ,?|Xt,x?, µτ ] on the left hand side of equation (3.23) depends on µτ . Therefore, we add the

variance term derived from the posterior over µτ

Eq(µτ |Xt,yt)[(E[µτ,?|Xt,x?, µτ ]−E[µτ,?|Xt,yt,x?])
2] =

k(x?,Xt)K
−1(K−1 + Σ̃

−1
)−1K−1k(x?,Xt)

T .

(3.24)

Finally, we obtain equation (3.22) from equation (3.21) by applying the matrix inversion

lemma [RW06]. For more detailed derivation of the posterior Gaussian process predictions with

expectation propagation the reader is referred to [RW06].

3.5 Experiments

In this section, we assess the quantile Gaussian process model for Bayesian optimization on

axis-aligned projections. In our analysis, we dedicate a set of experiments to validate our choice

of the quantile τ with empirical evidence. In high-dimensional settings, we test our approach

on the commonly assumed additivity property by imposing and violating this assumption. In

addition, we include an empirical analysis of performances when the axis-aligned assumption is

violated, that is under an arbitrary rotation of the original domain.

Performing Bayesian optimization on subsets of dimensions, we define fixed groups and update

each partition component in parallel during one optimization step. We avoid over-fitting to

a single acquisition function comparing performances across a set of acquisitions: expected

improvement (EI), [Moč75], upper confidence bound (UCB) [SKKS10], and probability of im-

provement (PI) [Kus64]. Note that for the improvement based acquisition functions, namely

expected improvement and probability of improvement, we need the value of the true optimum
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f(x∗) of the objective function. Since we do not access the true optimum either before or during

the optimization, we compute an approximation of it by selecting the best noisy observation

collected up to iteration t, in other words ymin := min yt. This change in the definition of the

improvement based acquisition functions favors aggressive exploitation behavior by probability

of improvement. For the Gaussian process model in each baseline, we select the Matérn5/2

kernel.

In our setting, we set the exploration exploitation trade off βt parameter of UCB acquisition

function in equation (2.21) to
√

3, which is a common choice in Bayesian optimization literature

[WMHD17] and has been shown to perform well in practice [MKD20]. The procedure performed

for the maximizing of the acquisition function is identical for each baseline: i) we first apply a

random search optimization step with 5000 samples drawn uniformly at random, ii) then we select

the 100 locations corresponding to the highest acquisition function values and perform gradient

based optimization from these 100 starting locations. For the gradient based maximization of

the acquisition function we employ the L-BFGS-B scipy optimizer [BLNZ95, ZBLN97].

Each Bayesian optimization progression curve displays the mean and standard error of the

immediate logarithmic regret log10 |f(xbest(t))−fmin|, where fmin is the true minimum of f , that

is the objective function evaluated at the true minimizer x∗, therefore fmin = f(x∗), and xbest(t)

is the location of the lowest value of the objective function encountered during the optimization

up to iteration t, that is xbest(t) ∈ arg mini=1:t f(xi). Mean and standard error are computed

over 20 experiments with different random initialization. The initialization of the starting points

is drawn uniformly at random in the interval [0, 1]D. All optimization experiments start with a

budget of 10 data points. The true measurement noise variance to be learned as a parameter in

our experiments is set to the value of 10−4.

3.5.1 Sensitivity analysis

The use of a quantile Gaussian process introduces the quantile parameter τ as an additional

hyper-parameter. This value models the proportion of observations that are modeled by the

quantile Gaussian process and, consequently, the shape of the response surface from posterior
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predictions. Here, we evaluate the sensitivity of Bayesian optimization to different choices of

the quantile parameter τ .

We restrict our selection of quantiles to a maximum of τ = 0.5 since we require our model to be

sensible with respect to low observations. Intuitively, in a minimization setting, proportions

of the data below the median represent good indicators of the location of a minimum and we

therefore expect performances to deteriorate for τ > 0.5 (a symmetric argument applies for

maximization problems).

We use the Hartmann benchmark function, which is defined as

f(x) = −
4∑
i=1

αi exp

(
−

6∑
j=1

Ai,j(xj −Pi,j)
2

)
, (3.25)

where α = [1.0, 1.2, 3.0, 3.2]T and A, P ∈ R4×6 are fixed given matrices. The Hartman

benchmark objective function has a total of six effective dimensions. We lift the dimensionality

of this objective function into a high-dimensional input space of dimensionality D = 60. Relevant

dimensions are distributed uniformly at random over the 60 dimensions, and care is taken to

ensure that all relevant dimensions are not contained in the same group. In fact, if all the

relevant dimensions were contained in the same group we would only obtain standard Bayesian

optimization in that group. With our approach, we avoid this scenario by imposing that the

relevant dimensions are distributed across different groups and therefore different projections.

Figure 3.3 shows the progression of the immediate regret collected during the independent opti-

mization runs. Error bars represent the standard error over 20 runs from different initializations.

We evaluate performances in terms of best observed value at termination of the algorithm and

data efficiency of each baseline which denotes the steepness of the descent in the succession

towards the optimum. The collected results show good performances for moderate values of

the quantile such as 0.1, 0.2, 0.3 while extreme values such as 0.5 and 0.01 retain a much slower

descent.

We observe that the extremely small quantile tends to overfit to lowest observations and reduces

generalization capabilities. This renders exploration of the Bayesian optimization algorithm



3.5. Experiments 45

0 50 100 150
iterations

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0 50 100 150
iterations

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0 50 100 150
iterations

3.0

2.5

2.0

1.5

1.0

0.5

0.1 0.2 0.3 0.5 0.01

0 50 100 150
iterations

0.75

0.50

0.25

0.00

0.25

0.50

lo
g1

0 
re

gr
et

(a) EI

0 50 100 150
iterations

0.75

0.50

0.25

0.00

0.25

0.50

lo
g1

0 
re

gr
et

(b) UCB

0 50 100 150
iterations

0.75

0.50

0.25

0.00

0.25

0.50

lo
g1

0 
re

gr
et

(c) PI

Figure 3.3: We show results on a set of quantile choices, τ = [0.01, 0.1, 0.2, 0.3, 0.4, 0.5], and
compare performances across different acquisition functions: 3.3(a) EI, 3.3(b) UCB, 3.3(c) PI.
Performances for small values, τ = [0.1, 0.2, 0.3], lead to similar convergence results both in
terms of data efficiency and in final optimal guess. Error bars show the standard error over a
set of 20 independent restarts.

expensive in the number of function evaluations and increases the number of local optima of

the optimization landscape. Large quantiles also correspond to poor performances. Selecting

τ = 0.5, the quantile GP models the median which is sensible with respect to mid-range outputs.

The lowest observations are treated as outliers and the resulting response surface landscape fails

to capture downhill slopes relevant for global minimization.

In our set of experiments, modeling the 0.1 proportion of observations proves effective, and

we identify the choice of τ = 0.1 as our best configuration for the remaining experiments on

synthetic data. In the subsequent we also introduce a Gamma hyper-prior for the lengthscales

Ga(shape=1, scale=1) in each baseline to enforce exploration during optimization.

3.5.2 Additive high-dimensional objectives

In our second experiment, we assess the scalability of Bayesian optimization with quantile

Gaussian processes by comparing to a set of baselines for high-dimensional optimization. We

include random embeddings (REMBO) [WZH+13], random search (RS) [BB12], additive models

(Add-GP) [KSP15] and Lipschitz continuous optimization with Gaussian processes (GP-Lip).

The algorithm REMBO: Random EMbeddings Bayesian Optimization [WZH+13] performs
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standard Bayesian optimization in a low-dimensional box constrained space (embedding), i.e.

z ∈ [zmin, zmax]d and then projects the selected location to the original input space via a

linear mapping x = Az. The matrix A has entries sampled from standard Gaussian, i.e.

[A]i,j ∼ N (0, 1) and the values zmin, zmax are provided such that there is a probability that the

optimum selected in the embedded space is also an optimum in the high dimensional ambient

space

Random Search [BB12] simply selects a set of Tend locations {xi}i=0:Tend−1 uniformly at random

in the high-dimensional input space and evaluates the objective functions on these locations

without any adaptive search strategy.

Add-GP [KSP15] learns a d-dimensional Gaussian process for each addend of the sum f1, ..., fz.

Each additive function component fi for i = 1, ..., z is defined on a subset of dimensions of

the input space with at most d dimensions. Each component then independently optimizes an

acquisition function and updates the corresponding set of d-coordinates.

The last baseline GP-Lip manually applies axis-aligned projections in a partition of the input

space and resolves the inconsistencies by selecting lowest observations in pairs of points that

violate Lipschitz continuity assumption. It then learns plain GP response surface (instead

of a quantile Gaussian process) in each axis-aligned projection. This baseline compares with

the automatic selection applied implicitly by the QGP in the presence of inconsistencies. The

Lipschitz constant is the maximum element of a set of 5 · 106 gradients evaluated on a random

selection of input locations for each benchmark function.

As an objective function for this set of experiments with additivity assumption satisfied we

choose the Michalewicz function. We select this benchmark function because its valleys are

aligned with the axis and therefore it is suitable for optimization algorithms based on axis-aligned

projections [SSW+15]. This benchmark function has effective dimensionality def = 10 and

satisfies the additivity assumption. It is a sum of one-dimensional components fi, each of which
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Figure 3.4: Results with Michalewicz benchmark function showing convergence results under
additivity assumption with error bars showing once the standard error. The figures show
comparison across different acquisition functions: 3.4(a) EI, 3.4(b) UCB, 3.4(c) PI. Convergence
results of QGP recover best results after Add-GP which complies with Michalewicz additive
properties.

is defined as fi(xi) = − sin(xi) sin2m
(
ix2i
π

)
, that is

f(x) = −
def∑
i=1

fi(xi) = −
def∑
i=1

sin(xi) sin2m

(
ix2
i

π

)
(3.26)

with parameter m = 0.5 for i = 1, ..., def . To assess scalability to high dimensions, we test the

optimization in a D = 100-dimensional input space and optimize components of dimensionality

d = 10, where the relevant dimensions are distributed uniformly randomly (with replacement)

across the 10 components of the partition by enforcing that all the relevant dimensions are not

contained in a single component. In this experiment we emphasize that Add-GP conforms to the

properties of the objective function and is therefore a reference baseline for good performances.

Figure 3.4 shows the progression of all optimization algorithms. Overall, we see that optimization

with axis-aligned projections with the QGP model is an effective and competitive method for

Bayesian optimization when f is decomposable as sum of low-dimensional components. We

also note that both QGP and Lip-GP show consistent gap in data efficiency and optimization,

which motivates the quantile Gaussian process as a model in the presence of inconsistencies for

effective optimization along projections.
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Figure 3.5: We compare results on an effectively 10-dimensional, non-additive, objective with all
acquisition functions: 3.5(a) EI, 3.5(b) UCB, 3.5(c) PI. We show performances with functions
that are effectively lower-dimensional and non additive and assess performances of the QGP
model.

3.5.3 Non-additive high-dimensional objective

This experiment analyzes the performance of the quantile Gaussian process Bayesian optimization

in a high-dimensional search space, when we no longer make any assumptions on additive

decomposability of the objective. More specifically, we define the objective,

f(x) = 10 sin(x1)

def∏
i=1

sin(xi). (3.27)

Again, we select the effective dimensionality def = 10. We optimize 10-dimensional components

in a fixed partition of a 100-dimensional input space avoiding condensing all relevant dimensions

in a single group.

Figure 3.5 shows that the quantile Gaussian process model attains the best observation at

termination with respect to other baselines in both EI and UCB acquisition functions. For

PI the QGP model shows a slower progression than Add-GP and GP-Lip during the early

stages of optimization. Other baselines, such as REMBO, flatten out quite early. We explain

poor performances of the REMBO baseline by noting that it performs exploration only on

a d-dimensional space. Using a linear mapping it can only span at most d directions in the

D-dimensional space, and this heavily restricts exploration. We observe that even relaxing
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assumptions on additivity, the additive model still maintains similar performances both in

terms of progress and value at termination for most acquisition functions considered remaining

however suboptimal on exploration with expected improvement and upper confidence bound.

Overall the QGP results are competitive for different properties of the black-box function and

prove robust with respect to model hyper-parameter τ . These results highlight the QGP as a

good model for optimization with projected data.

3.5.4 Rotated high-dimensional objective

Our last experiment analyses the performances of the QGP-Bayesian optimization approach

under arbitrary rotation of the high-dimensional domain. In particular, we consider the rotated

additive Michalewicz benchmark function, g(x) = f(Ux), where U ∈ RD×D is an arbitrary

orthogonal matrix, obtained by applying orthonormalization of a random matrix B, where

[B]i,j ∼ N (0, 1), and f is defined as in Section 3.5.2. We maintain the same model selection

procedure for the GP models in each baseline, i.e. with Gamma hyper-prior Ga(shape=1,

scale=1) on the kernel lengthscales and the marginal likelihood defined as in equation (3.5).

Figure 3.6 shows the results obtained with each baseline. Performances of both axis-aligned

projections-based baselines, namely QGP model and Add-GP, clearly deteriorate w.r.t. the

original experiment in Section 3.5.2. The random projection-based baseline REMBO, instead,

shows steeper descent and better optimum at termination of optimization. Moreover, lengthscale

kernel-parameters for the QGP model become shorter. By averaging over the 20 random

initializations and the 250 iterations, we observe that at least2 95% of lengthscales have

decreased from the axis-aligned experiment. The variance (over random initializations and

iterations) of the lengthscale parameters also becomes smaller. In particular, the average

variance (averaging over all lengthscales) for the rotated objective experiment decreases by a

factor3 of 0.014. This is a sign of a more highly nonlinear response surface, characterized by

many local minima and therefore harder to optimize. The QGP model, however, still retains

2This is the minimum percentage with respect to the different acquisition functions: we observe 97% with
UCB, 96% with EI and 95% with PI acquisition.

30.014 with PI, 0.003 with EI and 0.006 with UCB.
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Figure 3.6: Results with Michalewicz benchmark function showing convergence results under
arbitrary rotation of the high-dimensional space. We report a comparison across different
acquisition functions: 3.6(a) EI, 3.6(b) UCB, 3.6(c) PI. Convergence results of QGP recover
steepest descent and better optimum at termination on all acquisitions.

best performances also w.r.t. random projection-based methods on all acquisitions.

3.6 Summary

We proposed a framework for scaling Bayesian optimization to high dimensions by using axis-

aligned projections. We considered a quantile regression approach that allows for generalizations

from projected data and we empirically showed low sensitivity of quantile Gaussian process-based-

Bayesian optimization w.r.t. the choice of the quantile parameter τ . Based on experimental

results, we argue that modeling extreme functions from projected data maintains good indicators

of the optimum location.

One observation is that quantile Gaussian process-based-Bayesian optimization features sensible

modeling of the response surface from unstructured data and has an effective update strategy

on all. We acknowledge that careful modeling and corresponding complexity of the learning is

also an important trade-off to consider. The quantile GP approximates the Gaussian process

posterior with expectation propagation, which becomes computationally involved for a large

number of data points.
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To address this downside, future work will tackle computational efficiency with sparse GP

methods and extend applicability to a large number of data points in short time. Future work

will also investigate whether to concentrate Bayesian optimization updates on projections that

matter and neglect those that leave the objective function unchanged. Analysis of the Gaussian

process hyper-parameters could allow for introducing an on-line selection strategy based on the

optimization history.



Chapter 4

High-dimensional Bayesian

optimization using low-dimensional

feature spaces

In this chapter, we provide a method for high dimensional Bayesian optimization in a low

dimensional feature space. As we discussed in Section 2.4, attempting to globally optimize

a high dimensional black box function is an intractable task. Points in the space become

increasingly distant with the dimensionality D of the search space and this renders optimization

inherently hard. One possible solution to this problem is to introduce further assumptions about

the black box objective function. In particular we consider the assumption that the function is

intrinsically low dimensional. In other words, an intrinsically low dimensional function depends

on a small set of parameters that have much smaller dimensionality d� D than the original

search space X . This will be a central assumption on the derivation of our method.

4.1 Related work

One popular way to solve the high dimensional Bayesian optimization problem is to translate it

into a collection of sub-problems. These sub-problems can either be optimized independently

52
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or may be characterized by a dependency structure among them. In [MKD20] the problem

is decomposed into axis-aligned projections and then a probabilistic model based on quantile

regression is employed in order to i) address challenges from these type of projections and ii)

achieve successful optimization results from independent optimization of each projection. In

[KSP15] the axis aligned projections are composed into an additive model. In other words, the

function is assumed to be decomposable into additive components f1, ..., fm each defined on a

disjoint subset of variables. This structural assumption allows optimizing the m sub-problems

independently. An extension of this approach is proposed in [RSBC18] where the axis aligned

projections in the additive model are not constrained to be disjoint subsets of variables any

more. In this last work the projections are rather characterized by the presence of the same

variables in multiple components.

High dimensional optimization problems are often characterized by lower intrinsic dimensionality.

In particular, this assumption can be exploited by defining a feature mapping which maps the

original D-dimensional data onto a d � D feature space. One instance of this approach is

in [WZH+13], where the feature mapping is defined as a random linear mapping in order to

reduce the dimensionality of the optimization problem. Another approach that is based on

linear embeddings is presented in [GOH14]. In this work, the linear dimensionality reduction is

actively learned from data. Albeit these methods produce good performances in practice, they

remain confined to the linear feature mapping case. Nonlinear embeddings, instead of linear

ones, could achieve higher compression rates. In our work we focus on this nonlinear setting for

optimization in feature space.

Variational autoencoders (VAEs) [RMW14, KW14] offer the possibility to apply nonlinear

feature mapping and achieveing higher compression rates than with linear feature maps. Ap-

plying the VAEs in the context of Bayesian optimization has been proposed in [GBWD+18,

GLJL14, KPHL17, GHL17]. In [GBWD+18] the idea is to define a low dimensional latent space

characterized by continuous variables and learn it with a variational autoencoder. This VAE

models jointly the low dimensional representation and a property predictor which describes

the objective function values in the latent space. It is then possible to perform Bayesian

optimization with Gaussian processes once learnt offline i) the feature mapping from the high
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dimensional space into the latent space and ii) the reconstruction mapping from the latent

space back into the data space. Both the encoder and the decoder in [GBWD+18] are modeled

with deep neural networks and are trained with hundreds of thausands of chemical compound

examples. A characteristic of this approach is that the amount of data necessary for learning a

meaningful representation substantially exceeds small evaluation budgets that often constrain

a Bayesian optimization procedure. The method proposed in [GBWD+18] requires both large

amounts of data and learning the model offline without the possibility to update the learnt

feature space during optimization. However, in the specific application of automatic discovery

of molecules, where libraries of existing compounds are readily available prior to optimization,

this approach makes much sense. In our work we propose a probabilistic model that allows for a

small evaluation budget in order to learn the feature mapping and the reconstruction mapping.

We use a probabilistic model based on Gaussian processes which allows us to learn online during

optimization and ensures superior data efficiency with respect to variational autoencoders based

approaches [GBWD+18, GLJL14, KPHL17, GHL17].

VAEs were used to derive a low dimensional representation of the high dimensional Bayesian

optimization problem [LGDL18]. In this work, the uncertainty related to the latent space

representation is propagated through the response surface via Gaussian processes latent variable

models [Law05, TL10, LQC06]. One aspect with [LGDL18] that differs from our approach is

that the latent space representation is not learned specifically for the regression task. In other

words, in our work we learn a low dimensional representation Z jointly with the response surface.

This allows learning feature representations that are suitable for the regression task at hand.

Gradient-based methods [ATOF18] have been used to learn a lower-dimensional Riemannian

manifold for optimization and sampling.

Another example where nonlinear embeddings are employed is the modeling of non-stationary

objective functions. Informally, stationarity can be thought of as the function looking similar at

all input locations x [RW06]. Therefore non-stationary functions are characterized by abrupt

changes for small variations of input space such as discontinuities. In this context, a hierarchical

composition of GPs, referred to as deep GPs [DL13, SD17, DDGL16, Dam15, HL14] is especially

useful when the response surface is characterized by sudden variations or has constraints. An
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extensive investigation on the employment of deep GP models in Bayesian optimization is

proposed in [DDGL16, HBB+19]. In our work, we also exploit the idea of learning highly

nonlinear functions through the composition of simpler functions [LBH15], but we focus on the

deterministic dimensionality reduction and the optimization in feature space.

In this chapter, we propose a Bayesian optimization algorithm for high-dimensional optimization,

which learns a nonlinear feature mapping h to reduce the dimensionality of the inputs, and a

reconstruction mapping g based on Gaussian processes to evaluate the true objective function,

jointly, see Figure 4.1. This allows us to optimize the acquisition function in a lower-dimensional

feature space, so that the overall BO routine scales to high-dimensional problems that possess

an intrinsic lower dimensionality. Finally, we formulate a constrained maximization of the

acquisition function in feature space to prevent meaningless reconstructions.

4.2 Bayesian optimization in low-dimensional

feature spaces

In this section, we exploit the intrinsic low-dimensionality assumption of the high dimensional

black-box objective function by performing optimization on a nonlinear feature space Z ⊂ Rd,

where d � D. We refer to the high dimensional search space X ⊂ RD as the data space

and the low dimensional Z as the feature space. The idea with our approach is to compress

the high-dimensional inputs x into a low dimensional manifold with an encoder h and then

perform standard Bayesian optimization in this Z space. This implies learning the response

surface with a Gaussian process model in the low dimensional space Z and maximizing the

acquisition function to select an optimal candidate zt+1 ∈ Z to observe the black box function

at. However, the black box function cannot be evaluated at the selected point zt+1 in feature

space but requires us to map it back to the original high dimensional space xt+1 ∈ X , where

the objective function is defined. This is achieved by introducing a decoder model g that maps

the selected zt+1 back into the original data space X . Algorithm 4 summarizes the main steps

of our Bayesian optimization approach in feature space. In the following, we detail the model
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(see Figure 4.1) for jointly learning the feature map h(·), the low-dimensional response surface

in feature space, and the reconstruction mapping g(·).

Algorithm 4 Key steps of Bayesian optimization in feature space. The response surface learning

and acquisition function maximization are performed in feature space Z with dimensionality

d� D. The reconstruction step in line 9 allows us to run experiments with the original objective

function, f .

1: Inputs: X0 = {x1, ...,xN0} ∈ RN0×D, y0 = {y1, ..., yN0} ∈ RN0

2: for t = 0, 1, 2, ..., Tend − 1 do

3: Response surface learning

4: f = fZ ◦ h

{Composition of a feature map and a low-dimensional response surface}

5: Zt = h(Xt)

{Dimensionality reduction}

6: p(fZ |Zt,yt)

{Low-dimensional surface learning in feature space}

7: Optimal input selection xt+1

8: zt+1 = argmax
z∈Z

α(z)

{Acquisition function maximization in feature space}

9: xt+1 := g(zt+1)

{Reconstruction of high-dimensional input}

10: Evaluation

11: yt+1 = f(xt+1) + ε

{Evaluation of the high-dimensional objective function with measurement noise}

12: Xt ∪ {xt+1}, yt ∪ {yt+1}

13: end for

14: Return x∗ = arg min yt

{Computed minimizer of the objective function f}
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4.3 Probabilistic model

In this section, we detail the components of the probabilistic model employed for performing

Bayesian optimization on a low dimensional feature space. We refer to the encoder model

h : RD → Rd as the feature mapping and to the decoder g : Rd → RD as the reconstruction

mapping. Our idea with the feature mapping and the reconstruction mapping is to learn a

nonlinear embedding from data that

• i) is useful for optimization

• ii) can be learned in a data efficient way

• iii) can be trained online during the optimization process (at each Bayesian optimization

iteration t).

In our model, we compose the feature mapping jointly with the response surface. In particular,

we express the true objective function f : RD → R as a composition of a feature mapping h

and a function fZ : Z → R so that f = fZ ◦ h and therefore f(x) := fZ(h(x)). In this way we

learn features z = h(x) that are useful for the regression task of the response surface. We train

this model of the response surface jointly with the reconstruction model such that the features

learned from the training are useful for two distinct tasks i) learning a response surface and ii)

reconstructing the original inputs from the feature space Z into data space X . Figure 4.1 shows

the structure of the described probabilistic model.

This structure of the probabilistic model allows us to achieve higher compression rates with

respect to linear encoder-decoder structured models. In particular, it allows us to learn the

response surface and maximize the acquisition function in a feature space Z that is feasible for

Bayesian optimization. Both the response surface model and the reconstruction model are based

on Gaussian processes and therefore achieve superior data efficiency with respect to variational

autoencoders, which instead require much more data for learning an embedding. Moreover GP

models can be trained online at each Bayesian optimization iteration by maximizing the log
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Figure 4.1: Structure of the model for the optimization in feature space. The feature space Z is
learned from data and is useful for two different tasks: i) the regression of the response surface
and ii) the reconstruction into the original data space X .

marginal likelihood as shown in Section 2.2 in Chapter 2. Figure 4.1 describes the structure of

the probabilistic model adopted in this chapter.

4.3.1 Manifold Gaussian process for response surface learning in

feature space

In our Bayesian optimizatin in feature space, we require the response surface to predict the

value of the black box objective function f with uncertainty associated to each prediction.

We use GPs for modeling the response surface as also introduced in Section 2.2 of Chapter

2. In our optimization in feature space, we aim at learning both the feature mapping h and

the low dimensional response surface fZ jointly. These two components are described in lines

5–6 of Algorithm 4 and are part of a single learning problem. Therefore, we need a Gaussian

process that accomplishes two tasks at once: i) learning useful representations z of inputs x

for the regression task at hand and ii) learning the response surface fZ in feature space. A

manifold Gaussian process (MGP) [CPRD16, WHSX16] addresses these tasks by composing

two mappings: the deterministic feature mapping h, characterized by parameters θh and a

GP fZ ∼ GP(m, k) with kernel hyper-parameters and noise parameters θk = {σf , l1, ..., ld, σn}

(signal variance, characteristic length-scales and measurement noise variance, respectively). The

GP models the relationship between feature vectors z and noisy function evaluations y ∈ R in

observation space. The overall composition f = fZ ◦ h of the feature mapping and the GP in
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feature space is still a Gaussian process (because h is a deterministic mapping) so that

f ∼ GP(mM , kM) (4.1)

mM(x) = m(h(x)) (4.2)

kM(x,x′) = k(h(x),h(x′)) (4.3)

where the function mM(x) denotes the mean function and kM(x,x′) denotes the covariance

function of the manifold GP. Given high-dimensional training inputs Xt and corresponding

observations yt of the objective function, we find model parameters {θh,θk} that maximize

the marginal likelihood (evidence) {θ∗h, θ∗k} ∈ arg max
θh,θk

p(yt|Xt,θh,θk). By maximizing this

objective function for training the manifold GP, we learn a low dimensional embedding as a

by-product of the supervised regression framework.

Unsupervised methods for dimensionality reduction such as PCA [Pea01, Jol03] or variational

autoencoders [RMW14, KW14] achieve high compression rates but solve an orthogonal task

to that of learning a response surface. This is because the objective function being optimized

for training these methods differs from the one used in the regression framework. As a

result, the representation learned from unsupervised methods may not be optimal for supervised

regression task [WSD15]. We highlight that in both PCA and variational autoencoder techniques

the objective is solely to compress data and not learning a function in a low-dimensional

representation of the input space. This renders PCA and variational autoencoders not suitable

for learning a function in a feature space. With the manifold Gaussian process, instead, the

feature space learned from the supervised regression framework is optimal (locally), in a marginal

likelihood sense, for the regression task at hand. In other words, the manifold Gaussian process

is able to learn a function (the response surface) jointly with a low-dimensional representation

of its inputs (feature space). The dimensionality reduction, with the manifold Gaussian process,

is a by-product of the regression framework.

We consider a multi-layer feed-forward neural network with sigmoid activation function as the

feature mapping h. This choice of architecture allows us to learn a nonlinear embedding of the

original dataset X . Because of the sigmoid activation function, the resulting feature space is
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characterized by the set Z = [0, 1]d. Neural networks as an explicit feature map within a manifold

Gaussian process have already been applied successfully for modeling non-smooth responses in

robot locomotion [CPRD16, CCTM15]. Deep networks have also proven successful for learning

the orientation of pictures from high-dimensional images [WHSX16]. With a Gaussian likelihood,

the MGP posterior predictive distribution at a test point x? ∈ X is Gaussian distributed with

mean and variance given by

E[f(x?)] = mM(x?) + kM(x?,Xt)K
−1
My(yt −mM(Xt))

= m(z?) + k(z?,Zt)K
−1
Zy(yt −m(Zt))

(4.4)

V[f(x?)] = kM(x?,x?)− kM(x?,Xt)K
−1
MykM(Xt,x?)

= k(z?, z?)− k(z?,Zt)K
−1
Zyk(Zt, z?),

(4.5)

respectively, with z? := h(x?) and Zt := h(Xt) as also described in line 5 of Algorithm 4. Here,

the training dataset is defined as follows Xt = {x1, ...,xNt} and its representation in feature

space is Zt = {z1 = h(x1), ..., zNt = h(xNt)}, where Nt is the size of the datasets at the current

Bayesian optimization iteration t. Moreover, kM(x?,Xt) = k(z?,Zt) = [k(z?, zi)]
Nt
i=1 is a row

vector of cross covariance terms. The inverse terms are defined as KMy := kM(Xt,Xt) + σ2
nI

and KZy := k(Zt,Zt) + σ2
nI. By definition it holds that kM (Xt,Xt) = k(Zt,Zt), and mM (Xt) =

m(Zt), where m(Zt) = [m(zi)]
Nt
i=1 computes the prior mean function evaluated at the embedded

training inputs Zt. In the remainder of this chapter we will assume the mean function to be the

zero function that is m(z) = 0 for all z ∈ Z. Given the equations (4.4)–(4.5) we are allowed to

compute the posterior predictions both from inputs in data space x ∈ X and from inputs in

feature space z ∈ Z. Equations (4.4)–(4.5) redefine the posterior Gaussian process predictions

previously defined in Section 2.2 of Chapter 2 by equations (2.8)–(2.9). Specifically, we define

the posterior mean as µ(x) := E[f(x)] and the posterior variance as σ2(x) := V[f(x)].

One advantage of the manifold Gaussian process is that we obtain a GP in the high dimensional

space X together with a response surface in the low dimensional feature space Z. This low

dimensional response surface allows us to perform standard Bayesian optimization in feature

space instead of the original data/parameter space. In particular, we maximize the acquisition
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function in feature space as described in line 8 of Algorithm 4. The candidate point to be

evaluated next zt+1 is in feature space and cannot be evaluated on the black-box objective

function f whose domain is X . Therefore, we need to map the maximizer of the acquisition

function zt+1 ∈ Z back to the original data/parameter space into the vector xt+1 ∈ X as

described in line 9 of Algorithm 4. In the following, we detail the probabilistic model for the

reconstruction mapping g employed in our Bayesian optimization in feature space.

4.3.2 Input reconstruction with manifold multi-output Gaussian pro-

cesses

In this subsection, we detail the model for the reconstruction from feature space to data space

as also described in figure Figure 4.1 with the g mapping. This is a key step in our Bayesian

optimization in feature space, which requires decoding the low dimensional features z ∈ Z into

the high dimensional data x ∈ X . This reconstruction step is also summarized in line 9 of

Algorithm 4 and is crucial in order to evaluate the true black box objective function f at the

selected new location xt+1. We model the reconstruction mapping with a vector valued function

g = {gi}Di=1, which has components gi : Z → Xi for i = 1, ..., D. Each component gi maps low

dimensional vectors in feature space to the i-th coordinate of the high dimensional data, i.e.

gi(z) = x̃(i) ∈ Xi. Here, we denote the reconstructions with x̃ ∈ X with components x̃(i) ∈ Xi

taking values in each component set Xi for i = 1, ..., D. Multi-output Gaussian processes

(MOGPs)[ÁRL11, ÁL11, BCS+09, WKG11, ÁL09, ORR+08, STJ05, BF05] define a prior in

the space of vector valued functions and explicitly model output correlations. A MOGP is

defined as

g ∼ GP(m,K) (4.6)

It is fully specified my a mean vector valued function m : Z → RD and a positive, semi-definite

matrix-valued covariance function K : Z → RD×D, which computes the correlation between

observations in the same output coordinate and cross-correlations between the D different

outputs.
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The model that we adopt for the multi-output GP is the intrinsic coregionalization model

(ICM) [Goo97, Wac13], which is characterized by a covariance matrix with Kronecker structure.

This model allows trading off the number of parameters with expressiveness of the vector

valued function. In the intrinsic coregionalization model the covariance function expresses the

correlation between different output dimensions thus facilitating information sharing across

different tasks (dimensions of the output). One successful application of the ICM has been in

robotics for learning inverse dynamics [WKVC09]. The advantages in selecting the intrinsic

coregionalization model for modeling the reconstruction mapping is that it requires fewer

parameters than the linear model of coregionalization [ÁRL11] and is particularly suitable for

exploiting the properties of the Kronecker product for efficient training of the MOGP and

posterior prediction computation.

In our reconstruction model, we are interested in ensuring that the set of the reconstructions is

exactly X . In other words, if we defined the data space to be the hypercube X = [0, 1]D, then

the reconstructions from the multi-output GP will need to belong in this specific interval. Multi-

output Gaussian processes do not guarantee such a reconstruction property since they map to the

whole set of real numbers. In order to address this issue, we introduce a strictly monotonic output

squashing function Ψ, to constrain the values returned by the MOGP to the [0, 1]D hypercube.

This idea was initially introduced in the context of warped Gaussian processes [SGR04]. Since

the squashing function is strictly monotonic we can define a corresponding inverse transformation

Ψ−1 that we apply to the data x in input to our model. The output resulting from our MOGP

model for any given test point is then squashed through the transformation Ψ. However, the

reconstruction provided by the MOGP for any test point z? is a probability distribution on

the value of the reconstruction x̃?, that is p(x̃?|Xt, X̃t, z?). In fact, the distribution is the

multi-output Gaussian process prediction which provides a mean and a covariance matrix for

the reconstruction x̃?. Here the set X̃t denotes the training set of the reconstruction model

that is X̃t = {x̃1, ..., x̃Nt}, where x̃i = xi for i = 1, ..., Nt. Since we require our reconstruction to

be a point in data space we evaluate the expectation with respect to this distribution of the
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transformed outputs, i.e.

xt+1 = Ex̃?∼p(x̃?|Xt,X̃t,z?)[Ψ(x̃?)|Xt, X̃t, z?] (4.7)

In our work, we select the Gaussian cumulative density function as our strictly monotonic

squashing function Ψ := Φ for warping the outputs of our reconstruction model [SGR04]. The

motivation for choosing such a squashing function is twofold: i) the inverse mapping Ψ−1 of

the cumulative density function is a well known function and is defined as the Probit function

and ii) the computation of the expectation Ep[Ψ(x̃?)|Xt, X̃t, z?] with respect to the distribution

p(x̃?|Xt, X̃t, z?) at test reconstructions can be derived in closed form [RW06]. The derivation of

the analytical result can be summarized in the following steps

Ẽ
xi

[
Φ

(
x̃i −mi

vi

)∣∣∣∣Xt, X̃t, z?

]
=

∫ +∞

−∞
Φ

(
x̃i −mi

vi

)
N (x̃i|µi, σ2

i ) dx̃i (4.8)

Φ(x) =

∫ x

−∞
N (y| 0, 1) dy (4.9)

where mi is a constant and vi is a positive constant. The terms µi and σ2
i denote the i-th

components of the posterior mean and posterior variance obtained from the reconstruction

predictions p(x̃?|Xt, X̃t, z?) for i = 1, ..., D. By joining the two expressions in equations (4.8)–

(4.9), we obtain the following expression, here we rewrite the expectation in shorter form by

omitting the terms after the conditioning

E
p

[
Φ

(
x̃i −mi

vi

)]
=

1

2πσivi

∫ +∞

−∞

∫ x̃i

−∞
exp

(
−(y −mi)

2

2v2
i

− (x̃i − µi)2

2σ2
i

)
dy dx̃i (4.10)

=
1

2πσivi

∫ +∞

−∞

∫ µi−mi

−∞
exp

(
−(z + w)2

2v2
i

− w2

2σ2
i

)
dw dz. (4.11)

This last integral in equation (4.11) is obtained applying the following substitution to the integral

in equation (4.10) z = y− x̃i +µi−mi and w = x̃i−µi. The second integral in expression (4.11)

can be rewritten as an incomplete integral over a joint Gaussian. Therefore, we can compute the

outer integral (the one between −∞ and +∞) by simply marginalizing the joint Gaussian over
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one of its variables, namely the variable w. With this marginalization we obtain the solution as

E
p

[
Φ

(
x̃i −mi

vi

)]
=

1√
2π(v2

i + σ2
i )

∫ µi−mi

−∞
exp

(
− z2

2(v2
i + σ2

i )

)
dz (4.12)

= Φ

(
µi −mi√
v2
i + σ2

i

)
. (4.13)

Equation (4.13) is again a cumulative density function of a Gaussian distribution and can be

easily evaluated at the point (µi −mi)/
√
v2
i + σ2

i . We apply this equation to each dimension of

the output that is for indices i = 1, ..., D.

Intrinsic coregionalization model

The intrinsic coregionalization model [Goo97, Wac13] is the result of a linear mapping applied

to a set of P latent functions ui : Z → R for i = 1, ..., P that are assumed to be sample paths,

i.e. sample functions independently drawn from the same Gaussian process prior GP(mc, kc).

Here the mean function and covariance function are defined as mc : Z → R and kc : Z ×Z → R,

respectively. The intrinsic coregionalization model applies two distinct transformations, one from

a d-dimensional space to a P -dimensional space, and a second one that is from the P -dimensional

space to a D-dimensional one. In our setting, the d-dimensional set characterizes the feature

space which is our Z space. The P -dimensional space is the collection of P independent GP

sample paths and the D-dimensional space is our data space X . The first transformation is

characterized by u(z) = {ui(z)}Pi=1. Each point in the training set in feature space is evaluated

on all the GP sample paths obtaining a P -long vector of evaluations for each training input,

that is zi ∈ Zt → u(zi), where u(zi) = [u1(zi), ..., uP (zi)]
T , for i = 1, ..., Nt. Note that u is a

vector valued function. Then a linear map is applied to the result of this vector valued function

g(z) = Au(z). Here A ∈ RD×P is the linear mapping that couples the independent vector and
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parameterizes the ICM model. As a result, g is an MOGP

g ∼ GP(m,K) (4.14)

m = Amc (4.15)

K(z, z′) = AAT ⊗ kc(z, z′) (4.16)

where equation (4.15) denotes the mean function and equation (4.16) the covariance function

of the multi-output Gaussian process in equation (4.14). Here, mc = [mc]
P
i=1 is obtained by

repeating the single-valued mean function mc in a P -vector. Moreover, kc is the covariance

function for the GP prior, ⊗ is the Kronecker product and the matrix AAT is the coregional-

ization matrix. Note that kc may differ from the covariance function k used for the response

surface fZ . The kernel of the intrinsic coregionalization model is thus characterized by a set of

parameters θc = {σ2
fc, l1c, ..., ldc,A, σ

2
nc} which consist on signal variance σ2

fc of the kernel kc, a

set of d characteristic length-scales l1c, ..., ldc, the component A of the coregionalization matrix

AAT and the noise variance parameter σ2
nc.

Reconstruction Model

Here we address the reconstruction task that we defined in line 9 of Algorithm 4. For this

purpose we define the manifold MOGP with intrinsic coregionalization model (mMOGP). This

joint model is characterized by the same feature mapping h used for learning the response surface

in feature space with the manifold GP which has been introduced in Section 4.3.1. We apply the

same trick as seen in Section 4.3.1 to obtain the mMOGP’s covariance function which combines

the feature mapping h and the covariance function of the intrinsic coregionalization model kc,

that is kMO(x,x′) = kc(h(x),h(x′)). The resulting Gaussian process is g ◦h ∼ GP(0,B⊗kMO),

where the covariance function is specified by the coregionalization matrix B = AAT . Here,

we have assumed without loss of generality a prior zero-mean vector function for the manifold

MOGP. We can interpret this model as an auto-encoder, where the MGP plays the role of the

encoder with h : X → Z and the MOGP the role of the decoder, which maps low-dimensional

features back into data space.
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4.3.3 Joint training

The joint training of the MGP, which models the response surface, and the mMOGP, which is

used for the reconstruction (see also Figure 4.1), is performed by maximizing a rescaled version

of the log-marginal likelihood. We first write the joint model of the response surface and the

mMOGP

p(y,Xt, f, g) = p(y, f) p(Xt, g) (4.17)

= p(y|f)p(f) p(Xt|g)p(g) (4.18)

Here y is the vector of noisy observations and f is the response surface in feature space. The

variable Xt denotes the training data and g is the multi-output reconstruction mapping. Both

probabilities p(y|f) and p(Xt|g) are Gaussian likelihoods. The probabilities p(f) and p(g)

are the Gaussian process priors of the response surface and the multi-output reconstruction,

respectively. The joint distribution on the left hand-side of equation (4.17) is then marginalized

with respect to f and g to obtain the following marginal likelihood

L ∝− yTK−1
Zyy − log |KZy| −

1

D

(
xTV K−1

V xV + log |KV |
)

+ const. (4.19)

Here, L comprises terms from both the MGP and mMOGP models, where KZy is defined in

equations (4.4)–(4.5) and denotes the covariance matrix obtained from the training inputs in Z

space. The covariance matrix of the mMOGP KV = K̄ + σ2
ncI is obtained by evaluating the

Kronecker product K̄ = B ⊗ kc(Zt,Zt) with the MOGP kernel kc evaluated at the training

inputs Zt in feature space. The vector xV is a concatenation of the columns of the training data

Xt ∈ RNt×D. The maximizers [θ∗h,θ
∗
k,θ

∗
c ] of the log-marginal likelihood are the parameters θ∗h

of the feature mapping h (which is shared between the MGP and the mMOGP), the hyper-

parameters θ∗k of the kernel k of the manifold GP and the hyper-parameters θ∗c of kc including

the component A of the coregionalization matrix B for the mMOGP, respectively.

We balance the contribution of the two components of the log-marginal likelihood involved in

training by introducing a 1/D factor that multiplies the log-marginal likelihood of the manifold
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MOGP (the term in brackets in equation (4.19)). The two components are the log-marginal

likelihood of the manifold GP (first and second term on the right hand side of equation (4.19))

and the log-marginal likelihood of the MOGP in feature space (term in brackets in equation

(4.19)). The two log-marginal likelihood terms are characterized by different dimensions of the

covariance matrices involved in their computation, namely KZy and KV . In order to balance

the two terms we would expect the dimensions of these two matrices to be the same. The

dimensions of the matrix KV are NtD × NtD, while the dimensions of the matrix KZy are

Nt ×Nt. In order to achieve the same dimensions we could repeat the KZy matrix D times in a

block diagonal fashion. This block diagonal would then have quadratic form equal to DyTK−1
Zyy

and log determinant equal to D log |KZy|. The meaning of this operation is that we model and

train the response surface D-times instead of a single time. Therefore, an equivalent rescaling

is to divide the reconstruction terms xTV K−1
V xV and log |KV | by D. Optimization of equation

(4.19) can be performed via gradient-based methods [BLNZ95, ZBLN97].

Modeling the black box function f with the response surface in feature space is an orthogonal

task to that of reconstructing the original inputs in data space from features z in feature space

Z. However, by training these tasks jointly in our log-marginal likelihood in equation (4.19),

they have a regularization effect on the optimization of the parameters θh of the neural network

encoder in the sense that the feature mapping h will not overfit to a single regression task: the

parameters θh will determine a feature space embedding that is useful for both the modeling of

the objective function and the reconstruction of the original inputs in data space.

The major computational bottleneck for evaluating the log-marginal likelihood in equation (4.19)

comes from the term xTV K−1
V xV . The matrix involved in this quadratic form has size NtD×NtD

and needs to be inverted. The computational complexity of this operation is cubic in the number

of rows/columns of the matrix and would therefore require O(N3
t D

3) operations which easily

become intractable for moderate dimensionality D of the data space and training set size Nt.

However, thanks to the intrinsic coregionalization model adopted for the reconstruction task,

the matrix KV has a particular Kronecker structure that can be exploited for efficient training.

In our work, we reduce the computational complexity of this matrix inversion to O(N3
t ) +O(D3)

by exploiting the properties of the Kronecker product, tensor algebra [RHB99] and structured



68 Chapter 4. High-dimensional Bayesian optimization using low-dimensional feature spaces

Gaussian processes [GSC13, Saa12] as shown in the following section.

4.3.4 Computationally efficient mMOGP

In our work, the reconstruction mapping is defined as the expectation, with respect to the

posterior distrbution p(x̃?|Xt, X̃t, z?) of the MOGP, of a Gaussian cumulative density function

evaluated at the test reconstruction x̃?, that is Ep[Φ(x̃?)|Xt, X̃t, z?]. This allows us to derive the

reconstruction in closed form given the test predictions of the manifold multi output GP. We

also train the mMOGP with a rescaled version of the log-marginal likelihood. However, both

these two operations of computing the test predictions, which are essential for the reconstruction

step, and evaluating the log-marginal likelihood require the computation of a Kronecker product.

This Kronecker product enables modeling the correlation between arbitrary pairs of dimensions

in the intrinsic coregionalization model. In the ICM model the full covariance matrix of all

outputs can be written as

KV = B⊗ kc(Zt,Zt) + σ2
ncI, (4.20)

where kc(Zt,Zt) is the covariance matrix obtained from the training inputs Zt in feature space,

the B matrix is the coregionalization matrix of the intrinsic coregionalization model and the

σ2
ncI term denotes the additive spherical Gaussian noise that affects the observations of the

reconstructions. Inverting the full covariance matrix KV in equation (4.20) scales cubically

in the number of dimensions D and the number of training data points Nt, i.e. O(N3
t D

3).

Therefore, this inversion operation easily becomes intractable in high dimensional spaces even for

small Nt. Even the storage of the full covariance matrix in memory becomes quite challenging

in high dimensions since the number of elements contained in the matrix scales quadratically

with dimension D and training set size Nt, that is O(N2
t D

2). Here we propose an efficient

implementation of the ICM. In particular, we exploit the properties of the Kronecker product

and apply results from structured GPs [GSC13, Saa12] that allow for efficient computation

of the log-marginal likelihood in equation (4.19) and efficient posterior predictions with the

manifold multi output Gaussian process decoder. We reduce the complexity of inverting the

matrix KV to a sum of cubic terms, that is O(N3
t ) +O(D3). Moreover we reduce the storage
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requirements for our algorithm for training and posterior prediction to O(NtD) memory space.

We are interested in the full covariance matrix under the assumption of a Gaussian likelihood

for the multi-output observations, i.e. K̄ + σ2
ncI, where K̄ = B⊗ kc(Zt,Zt). We first express

the full covariance matrix in terms of its eigendecomposition, i.e. K̄ = QΛQT , where Q is

an orthogonal matrix whose columns are the eigenvectors of K̄ and Λ is a diagonal term that

contains the eigenvalues of K̄ in its main diagonal. This allows expressing the inverse of the

covariance from noisy targets as

(
K̄ + σ2

ncI
)−1

= Q
(
Λ + σ2

ncI
)−1

QT , (4.21)

where both Λ and σ2
ncI are diagonal and can be trivially inverted. However, the eigendecom-

position of the NtD ×NtD matrix K̄ would still be cubic in the product between the number

of dimensions D and the number of training data Nt. Here, we exploit the properties of the

Kronecker product and therefore express the eigendecomposition itself as a Kronecker product,

i.e.
W⊗
l=1

Kl =
W⊗
l=1

Ql

W⊗
l=1

Λl

( W⊗
l=1

Ql

)T
, (4.22)

where each term of the Kronecker product on the left-hand side Kl ∈ RGl×Gl has eigendecompo-

sition Kl = QlΛlQ
T
l for l = 1, ...,W , where W is number of factors in the Kronecker product.

In our intrinsic coregionalization model we have W = 2, because the coregionalization matrix B

Kronecker multiplies kc(Zt,Zt), the covariance matrix of the observations; see equation (4.20).

Thus, from (4.21)–(4.22), we are allowed to invert the covariance from noisy targets by separately

decomposing the covariance matrix kc(Zt,Zt) = QkΛkQ
T
k and the coregionalization matrix

B = QbΛbQ
T
b , which require O(N3

t ) and O(D3) time, respectively; see line 5 of Algorithm 5.
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Algorithm 5 Efficient computation of the inverse for matrices that have a Kronecker structure

and spherical additive noise. Subroutine matvecmul: fast matrix-vector multiplication for

matrices that can be expressed as a Kronecker product. Here the function eigh returns the

eigen-decomposition of a matrix.

1: Input matrices: {Kl ∈ RGl×Gl}Wl=1

2: Input vector: xV ∈ RNV , NV =
∏W

l=1 Gl

3: Input variable: σ2
nc

4: for l = 1, 2, ...,W do

5: Λl,Ql,= eigh(Kl) {Eigen-decomposition of each input matrix}

6: end for

7: s = matvecmul(
⊗W

l=1 QT
l ,xV ) {Fast matrix-vector multiplication}

8: D =
⊗W

l=1 Λl + σ2
ncI {Diagonal term with eigenvalues and noise}

9: w = D−1s = [si/Di,i]
NV
i=1 {Standard matrix-vector multiplication}

10: Return r = matvecmul
(⊗W

l=1 Ql,w
)

=
(⊗W

l=1 Kl + σ2
ncI
)−1

xV

{Fast matrix vector multiplication of an inverse with Kronecker structure and a vector}

1: Procedure matvecmul(
⊗W

l=1 Kl,x)

2: Input matrices: {Kl ∈ RGl×Gl}Wl=1

3: Input vector: x ∈ RNV , NV =
∏W

l=1 Gl

4: r = x {Initialize result}

5: for l = W,W − 1, ..., 1 do

6: R = reshape(r, [Gl, NV /Gl]) {Reshape results}

7: Z = KlR

Matrix-tensor product

8: r = vec(Z>) {Reshape results}

9: end for

10: Return r =
(⊗W

l=1 Kl

)
x

{Fast matrix vector multiplication for matrix with Kronecker structure}

Now that we are able to perform efficiently the inversion of matrix KV defined in equation (4.20)
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we address the challenge of storing this matrix in memory. In particular, storing this inverse

matrix and multiplying it by a vector still requires O(N2
t D

2) space and run time, respectively.

Therefore this computational step becomes the main bottleneck for efficient manifold multi-

output GP training and posterior GP predictions. Ideally we wish to be able to compute the

matrix multiplication of the KV matrix times a vector without evaluating the Kronecker product.

This can be achieved by representing the expensive matrix-vector multiplication as a sequence

of small matrix-tensor multiplications [RHB99]. In particular, we are interested in efficiently

evaluating

r =

(
W⊗
i=1

Ki

)
x. (4.23)

We first represent the multiplication of a matrix with Kronecker structure by a vector as a

tensor product. A tensor Ti1,...,iV can be interpreted as an extension of matrices to objects

where elements are indexed using a set of V indices: i1, ..., iV , where the number V is referred

to as the order of the tensor (instead of usual matrix notation which only requires two indices:

i, j). Given the definition of the Kronecker product, we express the left-hand side of (4.22) as a

tensor

[ W⊗
l=1

Kl

]
i,j

= [K1]i1,j1 · ... · [KW ]iW ,jW
, (4.24)

1 ≤ il, jl ≤ Gl , 1 ≤ i, j ≤
W∏
l=1

Gl.

The right-hand side of (4.24) coincides with a tensor TK
i1,j1,...,iW ,jW

, and a similar tensor-

representation can be obtained for the
∏W

l=1Gl-long vector x, i.e. TX
jW ,...,j1

. A tensor product

between the tensors TK
i1,j1,...,iW ,jW

and TX
jW ,...,j1

applies a contraction along the indices of the

second tensor, i.e.

∑
j1

...
∑
jW

TK
i1,j1,...,iW ,jW

TX
jW ,...,j1

. (4.25)

This tensor contraction can be expressed in terms of a sequence of tensor-transposed matrix-
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tensor products

( W⊗
l=1

Kl

)
x = vec

((
K1 · · ·

(
KWTX

)>)> )
(4.26)

KlT
X =

Gl∑
k=1

[Kl]i1,k TX
k,j2,...,jW

. (4.27)

Here, the function vec(·) returns the vectorized form of a matrix by stacking its columns vertically.

The tensor transposition > applies a cyclic permutation to the order of the indices in a tensor.

As a result, the right-hand side in (4.26) allows us to evaluate the expensive matrix-vector

product without computing and storing the Kronecker product. Algorithm 5 shows the main

steps of the efficient matrix inversion and matrix-vector multiplication for matrices that are

characterized by a Kronecker structure. The matrix vector multiplication subroutine is expressed

as a sequence of tensor-transpose matrix-tensor products.

4.4 Constrained acquisition function maximization

We have addressed the probabilistic modeling for our Bayesian optimization using low dimensional

feature spaces. In particular we have defined a joint probabilistic model for both the response

surface learning and the input reconstruction task in data space. The steps covered so far

coincide with lines 4–6 and 9 of Algorithm 4, respectively. Now we take care of the maximization

of the acquisition function in a low-dimensional feature space Z of the original data/parameter

space X .

One problem that arises at this stage with the mMOGP decoder is that locations zt+1 in feature

space, which are too far away from data, will be mapped back to the mMOGP prior in data space.

Under a standard zero-mean assumption, the high-dimensional reconstruction of these locations

will be almost zero for all coordinates, g(zt+1) ≈ 0. This implies that the reconstructions

through the expectation of the monotonic squashing function in equation (4.7) coincide with

xt+1 = 1D0.5 where 1D is a D-dimensional vector of all ones. The acquisition function is a key

driver for exploration in Bayesian optimization. This means that when attempting exploration
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in feature space the reconstructions will collapse to a single point in data/parameter space.

This characteristic of the algorithm is problematic and we address this limitation by restricting

the search space of the acquisition function maximization in feature space. In particular, we

introduce a constraint based on the Lipschitz continuity of the manifold multi output Gaussian

process posterior. This will ensure that candidates zt+1 ∈ Z selected in feature space will not

collapse to a single point.

We want to leverage the information from observed data for the multi-output Gaussian process

mapping and exploit it when optimizing the acquisition function in feature space. Leveraging

information from observed data implies bounding the distance in feature space between the

optimization variable and the training data in feature space. This can be achieved by upper

bounding the Euclidean distance

dist(z,Zt) = min
1≤i≤Nt

‖zi − z‖2 (4.28)

in feature space between the optimization variable z and the embedded training data Zt =

{z1, ..., zNt}. Recall that here Nt is the number of data points available at Bayesian optimization

iteration t. The desired upper bound is obtained by exploiting the Lipschitz continuity property

of the multi-output posterior mean for which

|[µ(z)]i − [µ(z′)]i| ≤ L‖z− z′‖. (4.29)

Here, L denotes the Lipschitz constant of the posterior mean µ of the manifold multi-output

Gaussian process. For common kernels, such as Matérn52 and squared exponential, the posterior

mean is Lipschitz continuous. Now we define the upper bound that needs to be satisfied in our

maximization of the acquisition function

dist(z,Zt) ≤
µmax(z∗)

L
. (4.30)

This constraint allows us to specify how far from the data we can move in feature space without

falling back to the prior on all coordinates of the reconstruction. Here z∗ is the closest point
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in the training set Zt to the decision variable z. One can see z∗ as the minimizer of the

Euclidean distance expressed in equation (4.28). The numerator µmax(z∗) on the right hand

side of equation (4.30) is the maximum component-wise of the posterior mean of the mMOGP

evaluated at z∗, i.e. the maximum component-wise in µ(z∗).

We estimate the Lipschitz constant as the maximum norm of the Jacobian of the posterior mean

of the manifold multi-output Gaussian process [GDHL16]

L = max
z∈Z
‖∇zµ(z)‖. (4.31)

This maximization problem returns as a solution a valid Lipschitz constant [GDHL16] for the

multi output posterior mean for any choice of norm in equation (4.31). The Jacobian of the

posterior mean is represented by a D × d matrix and we adopt the max norm ‖∇zµ(z)‖max =

max |µ′
i,j| for i = 1, ..., D and j = 1, ..., d. This specific choice of matrix norm is motivated by

the equivalence relationship with other example matrix norms, such as 2-norm ‖ · ‖2, Frobenius

‖ · ‖F and trace norm ‖ · ‖∗ for which it holds that [GVL96, HJ12], for any given value of the

matrix ∇zµ(z)

‖∇zµ(z)‖max ≤ ‖∇zµ(z)‖2 ≤ ‖∇zµ(z)‖F ≤ ‖∇zµ(z)‖∗. (4.32)

Lower values of valid Lipschitz constants L allow for exploration in larger regions of the feature

space that still satisfy the nonlinear constraint in equation (4.30).

4.5 Experiments

In this section, we report the results obtained on i) a set of high dimensional benchmark

functions and ii) a real world application. Here, the objective functions to optimize in both

these categories of problems are characterized by intrinsic low dimensionality. In particular,

we are interested in i) assessing the benefits of adopting a probabilistic model structure as

presented in Figure 4.1; ii) analyzing the benefits of applying a constrained maximization of the
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acquisition function with the constraint defined in equation (4.30). Our purpose for this section

is to compare empirical performances across i) different characterization of the feature spaces,

for instance linear subspaces versus nonlinear subspaces; ii) different properties of the objective

function to be optimized such as additivity or non-additivity; iii) a real world optimization

problem.

Approaches

In our experimental evaluation we consider our approach (MGPC-BO) [MDK20] and compare

it to a set of different baselines which include random embeddings Bayesian optimization

(REMBO) [WZH+13], additive models Bayesian optimization (ADD-BO) [KSP15], one recently

proposed VAE-based model (VAE-BO) [GBWD+18] and the quantile Gaussian process baseline

(QGP-BO) [MKD20] proposed in Chapter 3. The REMBO baseline performs Bayesian optimiza-

tion on a linear subspace of the inputs in data space. ADD-BO assumes an additive structure

(across dimensions) of the objective function f and therefore decomposes the problem into

additive components and optimizes each component independently. The baseline VAE-BO learns

a feature space for Bayesian optimization with deep networks offline. Finally, the QGP-BO

baseline decomposes the problems into independent components each characterized by a QGP

response surface as described in Chapter 3. We also include a version of our model presented in

Figure 4.1 (HMGPC-BO) that uses a hierarchical ICM for the input reconstruction mapping g.

The hierarchical intrinsic coregionalization model partitions the data space into low-dimensional

disjoint subsets, i.e. {X1, ...,XQ}, with Xi ⊂ R3, and assumes statistical independence between

reconstructions of different subsets, i.e. x̃(i) ⊥ x̃(j), where x̃(i) ∈ Xi, x̃(j) ∈ Xj for i 6= j. To each

subset in the partition is applied a different ICM with different kernel hyper-parameters that is

different kernels kic and different coregionalization matrices Bi for i = 1, ..., Q.

We also compare our baselines MGPC-BO and HMGPC-BO with a version of the algorithm that

features the same probabilistic model structure but without the nonlinear Lipschitz constraint

in equation (4.30). This will allow us to assess the beneficial effect of the nonlinear constraint

introduced in Section 4.4. We therefore compare our baselines MGPC-BO and HMGPC-BO
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with their constraint free version MGP-BO and HMGP-BO, respectively. Moreover, we also

compare our approach with a different parametrization of the covariance function of the decoder

g. In particular, the baselines DMGP-BO and DMGPC-BO assume a single kernel kc for the

reconstruction mapping while HMGP-BO and HMGPC-BO assume different kernels {k1
c , ..., k

Q
c },

one for each subset of the partitioning of the data space. Here, DMGPC-BO and DMGP-

BO denote the same baseline with and without Lipschitz regularization, respectively. For all

the approaches we specify the dimensionality dfs of a feature space where the optimization

is performed. This is the intrinsic dimensionality that is assumed by the algorithm during

optimization. Note that this value may differ from the true intrinsic dimensionality d of the

objective functions proposed in the following i.e. dfs 6= d.

Acquisition functions

We evaluate the performances of all baselines across a set of common acquisition functions:

expected improvement (EI) [Moč75], upper confidence bound (UCB) [SKKS10] and probability of

improvement (PI) [Kus64]. The motivation for selecting these acquisition function is that we

wish to test performances of our Bayesian optimization approach on a range of different decision

strategies: aggressive exploitation (PI), aggressive exploration (UCB) and one-time-step optimal

selection (EI). Note that the improvement based acquisition function PI is not necessarily prone

to aggressive exploitation. In fact this acquisition function is based on the improvement with

respect to the true optimum f(x∗). However, since we do not have access to the true optimum

prior or during the optimization, we approximate it with the best noisy observation obtained up

to iteration t, that is ymin := min yt. This change in the definition of the acquisition function

favours aggressive exploitation behaviour. The substitution with the best noisy observation

ymin := min yt instead of the true optimum f(x∗) for improvement based acquisition functions

is applied also to the expected improvement acquisition.

In our experiments, we set the βt parameter of UCB acquisition function in equation (2.21)

to
√

3. This choice of the parameter βt is common in Bayesian optimization [WMHD17]. We

apply an identical algorithm for the maximization of the acquisition function to all baselines:
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we first perform a random search step with 5000 samples drawn uniformly at random, then

we select the most promising 100 locations and we apply gradient based optimization from

these 100 starting locations. For box constrained acquisition maximization we use the L-BFGS-

B optimizer [BLNZ95, ZBLN97]. For constrained acquisition maximization with nonlinear

Lipschitz constraints we use a trust-region interior point method [BHN99].

Model parameters

In our experiments, we select the Matérn5/2 kernel, defined in equation (2.12) of Section 2.2

as the covariance function for the Gaussian processes in each baseline. For the neural network

employed in the encoder, the architecture was a single hidden layer with 20 units, and as the

activation function we use the sigmoid activation.

Experiment setup

Each Bayesian optimization progression curve shows the mean and standard error of the

immediate logarithmic regret log10 |f(xbest(t)) − fmin|, where fmin is the true optimum of f ,

that is the objective function evaluated at the true minimizer fmin = f(x∗), and xbest(t) is the

location of the lowest value of the objective function encountered during the optimization up

to iteration t, that is xbest(t) ∈ arg mini=1:t f(xi). Mean and standard error are computed over

20 experiments with different random initialization. The initialization of the starting points is

drawn uniformly at random in the interval [0, 1]D. All optimization experiments start with a

budget of 10 data points and perform a total of 300 Bayesian optimization iterations. The true

noise variance to be learned as a parameter in our experiments is set to the value of 10−4.

4.5.1 Linear feature space

We consider benchmark functions that are defined in a d = 10-dimensional space. We map

their input space to a D = 60-dimensional space using an orthogonal matrix Rd×D so that the

overall objective is f(z) = f(Rx). For each objective function, care is taken to ensure that
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Figure 4.2: Results with Rosenbrock objective function of Bayesian optimization in feature space.
The objective function is characterized by a linear embedding to reach D = 60 dimensions.
Baselines MGPC-BO, HMGPC-BO and DMGPC-BO (solid lines) apply nonlinearly constrained
acquisition maximization and recover no worse regret at termination than the unconstrained
versions MGP-BO, HMGP-BO and DMGP-BO.

there exists a location x∗ ∈ [0, 1]D that maps to the actual minimizer Rx∗ ∈ arg minz f(z) of

the low-dimensional benchmark f .

Additive objective

We minimize the Rosenbrock benchmark function

f(z) =
d−1∑
i=1

[100(zi+1 − z2
i )

2 + (zi − 1)2] (4.33)

in a dfs = 10-dimensional feature space. Note that in this particular case the intrinsic dimen-

sionality of the objective function is equal to the assumed dimensionality of the feature space,

that is d = dfs = 10. Figure 4.2 shows that HMGPC-BO baseline descends quickly to relatively

low regret in the early stages of optimization and recovers better regret at termination than

the unconstrained baseline HMGP-BO. The VAE-BO baseline features a steep descent but also

flattens out quite early. This behaviour is due to a lack of exploration from the feature space

to data space. In particular, the reconstruction mapping is insufficiently expressive and ends

up mapping most feature space locations to similar values in data space. We highlight that
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the model of the VAE-BO baseline was trained on a budget of 500 inputs-observation pairs

prior to starting the BO experiments. This additional budget, however, still does not allow

the VAE-BO to compare well with baselines that learn a feature mapping and a reconstruction

mapping during optimization. The baseline REMBO shows a competitive descent for two main

reasons: i) the fact that the baseline conforms with the linear embedding assumption that

characterizes the intrinsically low dimensional objective function and ii) the employment of an

orthonormal linear mapping which is supposed to improve performances and again conforms to

structural assumption about the linear embedding R. The ADD-BO baseline suffers from the

coupling effects of the linear dimensionality reduction R. In fact, the underlying assumption

with ADD-BO is that additive components can be optimized independently. However, due to

the linear dimensionality reduction R this assumption is no longer satisfied. Therefore, albeit

being an additive benchmark function, ADD-BO struggles to find a competitive solution. The

QGP-BO baseline is a competitive baseline that reaches the best value at termination of the

optimization for two out of three acquisition functions. The QGP-BO baseline, however, is

characterized by a slower descent in the early iterations and is sensitive with respect to the

choice of the acquisition function. The poor performances may be due to a too aggressive

exploitation behavior with PI acquisition. Overall, Figure 4.2 highlights the fast learning of

feature space representations that are effective for optimization with MGPC-BO, HMGPC-BO

and DMGPC-BO baselines.

Non-additive objective

Here, we optimize the product of sines with intrinsic dimensionality d = 10

f(z) = 10 sin(z1)
d∏
i=1

sin(zi) (4.34)

and compare results when the additivity assumption is not satisfied. Figure 4.3 shows the

regret curves obtained optimizing the objective on a dfs = 10-dimensional feature space.

Note that also in this case the dimensionality of the true objective function f is equal to

the dimensionality assumed for the feature space in our optimization, that is d = dfs = 10.
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Solid lines describe the Lipschitz-regularized baselines MGPC-BO, HMGPC-BO and DMGPC-

BO (with nonlinear constraint), while dashed lines are baselines that apply box-constrained

maximization of the acquisition in feature space. The regrets of HMGP-BO, MGP-BO and

DMGP-BO (box constrained baselines) flatten quite early in both improvement-based acquisition

functions (EI and PI) since these acquisition functions highlight locations in feature space that

are too far away from the training data. In this setting, the decoder g returns the same high-

dimensional reconstruction, which prevents the Bayesian optimization algorithm from exploring.

The constrained maximization of the acquisition function is beneficial for all our models. We also

note that the REMBO baseline conforms to the intrinsic linear low-dimensionality assumption

described in Section 4.5.1 and is the most competitive baseline especially for UCB acquisition

function. However, the linear reconstruction mapping applied by REMBO also suffers from

non-injectivity, and this slows down exploration in the high-dimensional space. The linear

projection deteriorates performances of the additive model. ADD-BO assumes independence

between axis-aligned projections of the high-dimensional space, while the linear mapping R

couples all subsets of dimensions. This linear mapping, therefore, penalizes optimization with

independent additive components. The VAE-BO approach requires much larger amounts of

data to learn a meaningful reconstruction mapping than available in our experiment. Therefore,

most locations in feature space are mapped to similar reconstructions. This explains the flat

curve observed on all VAE-BO progressions with different acquisition functions. Again the

performances of the QGP-BO depend on the choice of the acquisition function. With an

aggressive exploration strategy, such as UCB, QGP-BO is very competitive. This highlights that

the QGP model can be employed also when the relevant dimensions of the objective function

are not axis-aligned. With improvement based acquisition functions, such as EI and PI, the

optimization of the QGP-BO baseline remains stuck in local optima due to a more aggressive

exploitation.
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Figure 4.3: Optimization progression on product of sines characterized by linear embedding
with EI 4.3(a), UCB 4.3(b) and PI 4.3(c). Baselines with Lipschitz nonlinear constraint,
namely MGPC-BO, HMGPC-BO and DMGPC-BO learn low-dimensional representations of
the objective that are useful for optimization. Curves and confidence bounds represent mean
and standard error over 20 experiments with different restarts, respectively.

4.5.2 Nonlinear feature space with non-additive objective

We consider the product of sines function and, in this section, we apply a nonlinear dimensionality

reduction to the objective function. We define a single-layer neural network mapping to elevate

the dimensionality of the objective to D = 60, i.e. f(γ(Rx)). Here γ is the sigmoid activation

function. We select a dimensionality of the feature space as in previous sections dfs = 10 which

is equal to the intrinsic dimensionality of the objective function d = 10. Figure shows the

progression of the regret over 300 Bayesian optimization iterations. We can observe consistent

improvements of MGPC-BO, HMGPC-BO and DMGPC-BO with respect to VAE-BO which

also assumes a nonlinear embedding for the objective. The performance of MGPC-BO, HMGPC-

BO and DMGPC-BO also retain better regret at termination of the optimization than with

box-constrained acquisition maximization (MGP-BO, HMGP-BO, DMGP-BO, respectively).

Here, we apply a significance testing with the Wilcoxon signed-rank test [Wil92]. A Wilcoxon

signed rank test is a nonparametric statistical hypothesis test. It is employed to assess whether

two observed sets of samples are drawn from the same distribution. We apply the Wilcoxon

signed rank test to assess whether the log-regrets, collected at the last BO iteration of two

baselines, are sampled according to the same distribution. We perform 20 different runs of BO
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Figure 4.4: BO performances expressed as log regret of the product of sines function in a
nonlinear embedding. Results are shown for EI 4.4(a), UCB 4.4(b) and PI 4.4(c). All our
baselines with nonlinear constraint, namely MGPC-BO, DMGPC-BO and HMGPC-BO learn
useful representations in feature space for optimization. There is highly significant difference of
0.014% between DMGPC-BO and ADD-BO.

per each baseline (20 different random initializations). Therefore, the sample of each baseline

consists of the 20-log-regrets at termination of the BO iterations corresponding to that baseline.

The Wilcoxon signed rank test assigns a p-value to a pair of samples. Small p-values (in the

order of magnitude of 10−3) correspond to highly significantly different samples. This means

that the two baselines are significantly different in performances. We apply the Wilcoxson

signed rank test between the best performing of our baselines, namely DMGPC-BO and the

best competitive baseline that is ADD-BO. We observe a significance of at least 0.014% for all

acquisition functions (largest p-value p = 0.00014 for UCB acquisition) meaning that our best

baseline DMGPC-BO is highly significantly different than the ADD-BO baseline and attains

better regret than ADD-BO at termination of the optimization.

Overall, we observe that the constrained maximization of the acquisition function is beneficial

for the proposed model. The advantages with respect to ADD-BO, REMBO and VAE-BO

baselines are more evident with the product of sines objective with nonlinear embedding while

with the Rosenbrock we retain no worse regret. The QGP-BO baseline maintains competitive

performances across product of sines and Rosenbrock objective functions for the UCB acquisition.

When using improvement based acquisition functions the optimization in feature space retains
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similar performances while the QGP-BO suffers from too aggressive exploitation.

4.5.3 Sensitivity analysis on real data

Here we apply a sensitivity analysis with respect to the dimensionality of the feature space dfs

on a D = 12-dimensional real problem. We consider the Thomson problem of finding the lowest

potential configuration of a set of electrons on a sphere [DMM04]. This is a central problem in

physics and chemistry for identifying a structure with respect to atomic locations [DMM04].

The potential of a set of np electrons on a unit sphere is given by the objective

np−1∑
i=1

np∑
j=i+1

((xi − xj)2 + (yi − yj)2 + (zi − zj)2)−
1
2 . (4.35)

This is a constrained minimization problem with constraints x2
i + y2

i + z2
i = 1 for i = 1, ..., np,

which means that all electrons must lie on a unit sphere. We represent the variables of the

problem as spherical coordinates with unit radius. This allows us to define two variables per

point with a total number of 2np (azimuthal and polar angles) parameters to optimize within

box constraints. For optimization, we select np = 6m which results in a D = 12-dimensional

problem and we optimize it on low-dimensional feature spaces of dimensionalities dfs = 6, 4, 3, 2

to observe the effect of this hyper-parameter in the optimization.

Figure 4.5 shows a comparison of our approaches with ADD-BO, REMBO and VAE-BO

baselines on all three acquisition functions: expected improvement, upper confidence bound and

probability of improvement. For the acquisition function PI, overall, we observe a deterioration

of performances with diminishing dimensionality of the feature space. The regret clearly

increases for our baselines when we select dfs = 2 meaning that, with a high compression

rate, the probabilistic model for MGPC-BO, DGPC-BO and HMGPC-BO learns less useful

features for optimization. We observe the most competitive baseline to be ADD-BO which

decomposes the 12-dimensional problems into D/dfs sub-problems with dimensionality dfs. A

similar approach that decomposes the problem into independent subproblems is the QGP-BO

baseline. This baseline retains similar regret to ADD-BO and performs better than the additive
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model for dfs = 6. Another competitive baseline is REMBO, which uses a linear embedding for

optimization. We highlight that for the REMBO baseline we perform optimization on a linear

subspace within the interval [−5/
√
dfs, 5/

√
dfs]. This allows us to maintain the same ratio

between i) coordinates that get reconstructed inside the data space and ii) coordinates that need

to be projected onto the hypercube in data space because they happen to be outside the allowed

interval in data space. By performing optimization within the interval [−5/
√
dfs, 5/

√
dfs], this

ratio is maintained constant across the different dimensionalities dfs = 2, 3, 4, 6 of the linear

feature space. The effect of this constant ratio is a meaningful deterioration of performance of

optimization as we decrease the dimensionality dfs of the linear feature space.

In Figure 4.5 we also report the results obtained on the sensitivity analysis with the expected

improvement acquisition function. Overall, we observe a deterioration of performances for our

baseline, namely MGPC-BO, HMGPC-BO and DMGPC-BO (solid lines). The best performances

are retained by the QGP-BO baseline and reaches lower regret as we increase the dimensionality

of the feature space dfs. Both MGPC-BO and the hierarchical ICM model HMGPC-BO are

competitive both in terms of data efficiency and value of the regret at termination of the

optimization. In particular, by data efficiency we mean how quickly a good optimum is found

by the algorithm. Therefore data efficiency translates into how steep is the descent for the

optimization curve (steeper is more data efficient). Also REMBO progressively reaches lower

regret values as we increase the dimensionality dfs of the feature space. The baseline REMBO

remains competitive for all dimensionalities of the feature space. VAE-BO fails to learn useful

representations of data in feature space and maintains high regret over all dimensionalities

dfs = 2, 3, 4, 6 of the feature space.

Finally, we analyze the results obtained with the upper confidence bound acquisition function.

Here we do not observe a substancial deterioration of performances between dfs = 3 and

dfs = 2. However, we still observe lower regret as we progress towards higher feature space

dimensionalities, namely dfs = 4, 6. Both REMBO and ADD-BO are competitive baselines for

optimization progression and value of the regret at termination. Because of the poor learning of

the embedding, VAE-BO does not perform comparatively well with the rest of the baselines also

in this acquisition function. Overall, we observe QGP-BO as the best baseline in the comparison.
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Figure 4.5: Sensitivity analysis with respect to the dimensionality of the feature space dfs on a
real problem set. We test all approaches on a set of feature space dimensionalities dfs = 2, 3, 4, 6.
The performances of our baselines clearly deteriorate for dfs = 2. Our baseline MGPC-BO show
better performances than the best competing baseline ADD-BO and REMBO and reach the
minimum in notably less iterations.
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The choice of acquisition function UCB proves effective with the QGP-BO baseline in all our

experiments. MGPC-BO and HMGPC-BO are competitive baselines in the comparison and

perform better than ADD-BO, REMBO and VAE-BO.

We apply a significance test to the results obtained with PI acquisition function and compare

our nonlinearly constrained baseline MGPC-BO with the competitive baselines (ADD-BO

and REMBO) for each plot of Figure 4.5 at termination of the optimization. We select the

Wilcoxon signed-rank test [Wil92], which does not assume that the difference between the

sample populations is Gaussian. For feature space dimensionality dfs = 2 we do not observe

values significantly different since the p-value is p = 0.135. This is due to the deterioration

of performances at dfs = 2 for the optimization with probability of improvement acquisition

function. For dfs = 3 we observe a more significant difference between MGPC-BO and ADD-BO

with p-value p ≤ 0.002. With hyper-parameter values dfs ≥ 4 we observe significantly different

baselines with significance at 0.6% (difference between MGPC-BO and ADD-BO for dfs = 4 with

p-value p ≤ 0.003 and between MGPC-BO and REMBO for dfs = 6 with p-value p ≤ 0.006).

Overall, we observe our constrained baselines to perform better than ADD-BO and REMBO

and to reach the lowest value in notably less BO iterations.

4.5.4 Run-time complexity

The computational complexity of MGPC-BO is O(D3 +N3) due to the eigen-decomposition

of both the coregionalization matrix (D3) and kernel matrix (N3). The baseline HMGPC-BO

scales with O(d3
outQ+N3Q) with Q being the number of independent subsets of dimensions,

i.e. Q = D/dout, with dout being a small constant value (dout = 3). This baseline achieves faster

computations when having small number of data points N , for large number of data points

and large number of dimensions (both tending to infinity) the MGPC-BO results more efficient.

The baseline DMGPC-BO instead has complexity O(d3
outQ + N3), which is faster than the

MGPC-BO. MGP-BO, DMGP-BO and HMGP-BO have the same complexity of MGPC-BO,

DMGPC-BO and HMGPC-BO, respectively. The remaining baselines have all computational

complexity O(N3) due to the matrix inversion of the covariance matrix for GP training which
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is used in ADD-BO, REMBO and VAE-BO. In the QGP-BO the cubic complexity is obtained

by computing the approximate posterior in the EP routine. Our baseline has an additional

overhead of at least a linear term d3
outQ which implies slower training times for our probabilistic

model. This is a reasonable trade off for improved optimization performances and better data

efficiency in our reconstruction model. In the comparison with the QGP-BO baseline we note

that the performances of QGP-BO are dependent on the choice of the acquisition function

while the MGPC-BO, HMGPC-BO and DMGPC-BO are competitive (better than ADD-BO,

REMBO and VAE-BO) across all acquisitions.

4.6 Summary

In this chapter, we proposed a framework for efficient Bayesian optimization of intrinsically

low-dimensional black-box functions based on nonlinear embeddings. In our model, a manifold

GP learns useful low-dimensional feature representations of high-dimensional data by jointly

learning the response surface and a reconstruction mapping. Our approach allows for optimizing

acquisition functions in a low-dimensional feature space. Since exploration in feature space

(driven by the acquisition function) does not necessarily mean exploration in the high-dimensional

parameter space, we introduce a nonlinear constraint based on Lipschitz continuity of predictions

of the reconstruction mapping, which encourages exploration in the vicinity of the training data

and avoids un-identifiability issues in data space, which would otherwise hinder optimization.
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Conclusion

We have presented a spectrum of approaches for high dimensional Bayesian optimization

that range from the decomposition strategies (in Chapter 3) to the feature space learning (in

Chapter 4). In particular, we have shown empirical evidence that the quantile Gaussian process

model is suitable for Bayesian optimization. This is possible when the optimization problem is

reformulated as a collection of sub-problems defined on disjoint axis-aligned projections. We

have also provided empirical evidence that the low intrinsic dimensionality assumption can be

exploited by learning a nonlinear projection with manifold Gaussian processes. We presented a

method that learns a feature space online during optimization and therefore allows exploiting all

the data available up to iteration t. This is possible thanks to a probabilistic model that allows

encoding, decoding and learning the response surface by means of manifold Gaussian processes.

In both our contributions we have presented a Bayesian optimization strategy that allows for

exploiting all the data available at each Bayesian optimization iteration. In fact, the quantile

Gaussian process uses all the data available and applies an automatic selection of the most

promising observations according to the quantile. On the other hand, the optimization in feature

space is characterized by a probabilistic model that can be learned online during optimization.

This allows exploiting the data collected at each Bayesian optimization iteration.

In our work, we have shown that a sensitivity analysis with respect to a hyper-parameter can

lead to an improvement of performances. In fact, with the sensitivity analysis in Chapter

88
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3, we represented the problem of identifying the quantile τ not as a learning problem but

as an optimization problem with respect to BO performances. The difference is that we no

longer search hyper-parameters of the model that are able to explain the data but rather that

improve the performances of the BO algorithm. Our conclusion is therefore that not always the

hyper-parameter that explains the data well is the one that yields the better performances.

Thanks to the contributions provided in this thesis a number of problems may now be addressed

without incurring in the curse of dimensionality. Among these problems we highlight: optimizing

the 14 parameters of a random forest body part classifier [SFC+11]. For instance, we could now

address the problem of optimizing walking controllers for a simulated hexapod robot [LCRB20].

With our Bayesian optimization algorithms we could now optimize policy parameters such that

the robot can walk to a target location while avoiding high joint velocities and height deviations.

Another instance problem is selecting the most promising parameter configurations to improve

the performances of integer programming solvers [HHLB11].

In conclusion, optimizing a high-dimensional objective function that has intrinsic low dimen-

sionality is a feasible challenge. In this challenge, projections constitute a fundamental step for

tackling the curse of dimensionality and scaling Bayesian optimization. Another important step

is the definition of a probabilistic model that is sensible with respect to the choice of projection.

For instance, the quantile Gaussian process is sensible choice in the presence of inconsistencies.

On the other hand a manifold Gaussian process is essential for dimensionality reduction and

both response surface learning and reconstruction mapping. Using projections and defining

sensible probabilistic models is crucial and has proven effective in high-dimensional Bayesian

optimization.

5.1 Future Work

One of the downsides of the quantile Gaussian process approach is the computational efficiency.

The quantile Gaussian process approximates the marginal likelihood and the posterior predictions

by means of expectation propagation. This step has computational complexity that is cubic
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in the number of data points and becomes computationally challenging for large numbers of

data points. A possible solution to this problem is the employment of sparse Gaussian process

regression methods that will reduce the computational burden of both the inference and marginal

likelihood computation [SG06].

A challenging aspect with manifold Gaussian processes is that they are prone to overfitting in

the presence of large number of parameters [CPRD16]. These are the parameters present in

the deep network used as encoder. This behavior is due to the optimization of the marginal

likelihood, which may get stuck in local optima during the optimization of the hyper-parameters.

A possible alternative to the Bayesian model selection that maximizes the marginal likelihood

is the maximization of the lower bound on the marginal likelihood. In particular, we could

introduce uncertainty in the feature space and treat each input in Z space as a latent variable.

We could then apply the same approximations that have been used for Gaussian processes

with uncertain inputs for inference and training. This would allow defining a multi-output

Gaussian process as the encoder instead of the parametric neural network and therefore avoiding

over-parametrization of the probabilistic model.

By using axis aligned projections and by learning a feature space we have shown stratagems

for dimensionality reduction. These stratagems allow us to transform input representations

to make them amenable to Bayesian optimization. In this regard, nonlinear projection may

extend the work of Benjamin Letham, Roberto Calandra et al. [LCRB20] who provide a deep

analysis on the use of linear embeddings for high-dimensional Bayesian optimization. Another

ramification of our work may concern Calandra’s work on Bayesian gait optimization for bipedal

locomotion [CGS+14, CSPD16]. In fact, using manifold Gaussian processes for response surface

learning would be beneficial for optimization. Manifold Gaussian processes are able to model

the nonlinearities inherent in the bipedal walking motion [CPRD16].
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[BK10] Rémi Bardenet and Balázs Kégl. Surrogating the surrogate: accelerating

Gaussian-process-based global optimization with a mixture cross-entropy algo-

rithm. International Conference on Machine Learning, 2010.

[BLNZ95] Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited

memory algorithm for bound constrained optimization. SIAM Journal on

Scientific Computing, 16(5):1190–1208, 1995.

[Boc59] Salomon Bochner. Lectures on Fourier integrals. Princeton University Press,

1959.

[Bre01] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[BSK16] Felix Berkenkamp, Angela P. Schoellig, and Andreas Krause. Safe controller

optimization for quadrotors with Gaussian processes. International Conference

on Robotics and Automation, 2016.



BIBLIOGRAPHY 93

[CCK12] Bo Chen, Rui Castro, and Andreas Krause. Joint optimization and variable

selection of high-dimensional Gaussian processes. International Conference on

Machine Learning, 2012.

[CCTM15] Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. Robots

that can adapt like animals. Nature, 521(7553):503–507, 2015.

[CGS+14] Roberto Calandra, Nakul Gopalan, André Seyfarth, Jan Peters, and Marc Peter

Deisenroth. Bayesian gait optimization for bipedal locomotion. In International

conference on learning and intelligent optimization, pages 274–290. Springer,

2014.

[CL11] Olivier Chapelle and Lihong Li. An empirical evaluation of Thompson sampling.

Advances in Neural Information Processing Systems, 2011.

[CPRD16] Roberto Calandra, Jan Peters, Carl E. Rasmussen, and Marc P. Deisenroth.

Manifold Gaussian processes for regression. International Joint Conference on

Neural Networks, 2016.
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