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Abstract

This thesis addresses problems inherent to the development of complex applications for reconfig-

urable systems. Many projects fail to complete or take much longer than originally estimated by

relying on traditional iterative software development processes typically used with conventional

computers. Even though designer productivity can be increased by abstract programming and

execution models, e.g., dataflow, development methodologies considering the specific properties

of reconfigurable systems do not exist.

The first contribution of this thesis is a design methodology to facilitate systematic develop-

ment of complex applications using reconfigurable hardware in the context of High-Performance

Computing (HPC). The proposed methodology is built upon a careful analysis of the original

application, a software model of the intended hardware system, an analytical prediction of

performance and on-chip area usage, and an iterative architectural refinement to resolve identi-

fied bottlenecks before writing a single line of code targeting the reconfigurable hardware. It is

successfully validated using two real applications and both achieve state-of-the-art performance.

The second contribution extends this methodology to provide portability between devices in

two steps. First, additional tool support for contemporary multi-die Field-Programmable Gate

Arrays (FPGAs) is developed. An algorithm to automatically map logical memories to hetero-

geneous physical memories with special attention to die boundaries is proposed. As a result,

only the proposed algorithm managed to successfully place and route all designs used in the

evaluation while the second-best algorithm failed on one third of all large applications. Second,

best practices for performance portability between different FPGA devices are collected and

evaluated on a financial use case, showing efficient resource usage on five different platforms.

The third contribution applies the extended methodology to a real, highly demanding emerging

application from the radiotherapy domain. A Monte-Carlo based simulation of dose accumu-

lation in human tissue is accelerated using the proposed methodology to meet the real time

requirements of adaptive radiotherapy.

7



8



Acknowledgements

First and foremost, I would like to thank my advisor Prof. Wayne Luk for all the help and

assistance he provided during the course of my research. Only through his advice and encour-

agement it was possible to create this thesis. He provided invaluable advice on how to tackle

technical as well as social problems, organise my research, structure papers and presentations

and approach all the people I had to bring together to perform this work.

Similarly, I would like to thank my second advisor and long-time manager at Maxeler Technolo-

gies, Prof. Georgi Gaydadjiev. Georgi not only helped me to obtain the unique opportunity

to combine my research at Imperial College with my work at Maxeler but also was always

there to provide advice and encouragement when needed. We spend countless hours discussing

potential research problems and solutions, revising papers and preparing presentations. I am

deeply thankful for all of these.

I would also like to thank Maxeler Technologies and especially its CEO and CTO Prof. Oskar

Mencer for assisting this research. Without the access to tools, materials and source code

most of my contributions would not have been possible. Similarly, I would like to thank all my

colleagues at Maxeler for their assistance and help. I would like to especially thank Dr. Stephen

Girdlestone, Chris Jones and Simon Tilbury for introducing me to the Maxeler technology stack

and FPGA development in general. Additionally, I would like to thank Marco Bacis, Dr. Tobias

Becker, Dr. Sotiria Fytraki, Dr. Joost Hoozemans, Dr. Bastiaan Kwaadgras, Pablo Quintana

and Ir. Lukas Vermond for contributing directly to my research and helping me with the work

for some of my publications. I would like to also thank all the current and past members of the

hardware team, which had to deal with my requests for assistance and questions, the compiler

team, which also helped me in so many cases and which I had the pleasure of joining for some

time, the machine learning team, which I had the pleasure of working with and the Delft office

which provided me a refuge on the continent.

I would also like to thank all the academic partners that helped me through fruitful discussions

and joint research. I would like to especially thank Konstantina Koliogeorgi, Anna Maria

Nestorov and Enrico Reggiani for publishing papers with me. Similarly, I am thankful to the

assistance I received from the Joint Department of Physics at The Institute of Cancer Research

for my radiotherapy related work. Without the help of Dr. Peter Ziegenhein and Prof. Uwe

9



Oelfke it would not have been possible to perform this research.

I would also like to express my gratitude to the members of the Custom Computing Research

Group at Imperial for the discussions we had and the assistance that was provided.

Finally, I would like to thank my parents and friends for all the assistance they provided over

the last few years. You always kept me motivated and focused.

10



Publications

The following publication contributes to the overview on HLS tools provided in chapter 2:

• Nils Voss, Tobias Becker, Oskar Mencer, Georgi Gaydadjiev, “Rapid Development of Gzip

with MaxJ”, in Wong S., Beck A., Bertels K., Carro L. (eds) Applied Reconfigurable

Computing. ARC 2017. Lecture Notes in Computer Science, vol 10216.

The following publication contributes to the methodology described in chapter 3:

• Nils Voss, Bastiaan Kwaadgras, Oskar Mencer, Wayne Luk, Georgi Gaydadjiev, “On

Predictable Reconfigurable System Design”, in ACM Transactions on Architecture and

Code Optimization (TACO), vol. 18, no. 2, 2021.

The following publication contributes to the evaluation of the methodology as presented in

chapter 3:

• Nils Voss, Marco Bacis, Oskar Mencer, Georgi Gaydadjiev, Wayne Luk, “Convolutional

Neural Networks on Dataflow Engines”, in 2017 IEEE International Conference on Com-

puter Design (ICCD).

The following publication contributes to the memory mapping algorithm described in chapter

4:

• Nils Voss, Pablo Quintana, Oskar Mencer, Wayne Luk, Georgi Gaydadjiev, “Memory

Mapping for Multi-die FPGAs”, in 2019 IEEE 27th Annual International Symposium on

Field-Programmable Custom Computing Machines (FCCM).

The following publications contribute to the performance portability best practices described

in chapter 4:

• Nils Voss, Tobias Becker, Simon Tilbury, Anna Maria Nestorov, Enrico Reggiani, Oskar

Mencer, Georgi Gaydadjiev and Wayne Luk , “Performance Portable FPGA Design”,

as abstract in The 2020 ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays (FPGA).

11



• Nils Voss, Tobias Becker, Oskar Mencer, Georgi Gaydadjiev and Wayne Luk , “Exploring

Performance Portability and Scalability”, prepared for submission.

The following publications contribute to the evaluation of the methods and algorithms devel-

oped in this thesis as described in chapter 5:

• Nils Voss, Peter Ziegenhein, Lukas Vermond, Joost Hoozemans, Oskar Mencer, Uwe

Oelfke, Wayne Luk, Georgi Gaydadjiev, “Towards Real Time Radiotherapy Simulation”,

in 2019 IEEE 30th International Conference on Application-specific Systems, Architec-

tures and Processors (ASAP).

• Nils Voss, Peter Ziegenhein, Lukas Vermond, Joost Hoozemans, Oskar Mencer, Uwe

Oelfke, Wayne Luk, Georgi Gaydadjiev, “Towards Real Time Radiotherapy Simulation”,

in Journal of Signal Processing Systems, vol. 92, no. 9, 2020.

The following publication was created as part of my research using some of the methodology

results presented in this thesis but is not further discussed here:

• Konstantina Koliogeorgi, Nils Voss, Sotiria Fytraki, Sotirios Xydis, Georgi Gaydadjiev,

Dimitrios Soudris, “Dataflow acceleration of Smith-Waterman with Traceback for high

throughput Next Generation Sequencing”, in 2019 29th International Conference on Field

Programmable Logic and Applications (FPL).

The following publication was published during my research but is not discussed in this thesis:

• Nils Voss, Stephen Girdlestone, Tobias Becker, Oskar Mencer, Wayne Luk, Georgi Gay-

dadjiev, “Low Area Overhead Custom Buffering for FFT”, in 2019 International Confer-

ence on ReConFigurable Computing and FPGAs (ReConFig).

12



Contents

Declaration of Originality 3

Copyright Declaration 5

Abstract 7

Acknowledgements 9

Publications 11

List of Tables 19

List of Figures 21

Glossary 25

1 Introduction 35

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.2 Research Challenges and Contributions . . . . . . . . . . . . . . . . . . . . . . . 40

1.2.1 Methodology for Reconfigurable System Development . . . . . . . . . . . 43

13



14 CONTENTS

1.2.2 Extensions for Modern FPGAs and Performance Scalability . . . . . . . 44

1.2.3 Methodology Validation using a Real Application . . . . . . . . . . . . . 46

1.3 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2 Background and Related Work 49

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.2 Field-Programmable Gate Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.2.1 Reconfigurable Fabric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2.2 Connectivity to External Devices . . . . . . . . . . . . . . . . . . . . . . 52

2.2.3 Clocking Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2.4 Trends in Modern FPGA Architecture . . . . . . . . . . . . . . . . . . . 52

2.3 Programming Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3.1 Hardware Description Languages . . . . . . . . . . . . . . . . . . . . . . 58

2.3.2 High-Level Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.3.3 OpenCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.3.4 Sandpiper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.3.5 MaxCompiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.3.6 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.4 Performance and Area Prediction Methodologies . . . . . . . . . . . . . . . . . . 82

2.5 Development Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.6 Applications used for Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.6.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 88



CONTENTS 15

2.6.2 Asian Option Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

2.6.3 Monte Carlo Based Dose Simulation for Radiotherapy . . . . . . . . . . . 94

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3 Methodology for Reconfigurable System Development 102

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.2 Application Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.2.1 Static and Dynamic Code Analysis . . . . . . . . . . . . . . . . . . . . . 109

3.2.2 Loopflow Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.3 Software model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.3.1 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.3.2 Bit-level Accurate Fixed-Point Simulation . . . . . . . . . . . . . . . . . 117

3.4 Forecasting System Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.4.1 Predicting Area Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.4.2 Predicting the Compute Performance . . . . . . . . . . . . . . . . . . . . 124

3.4.3 Predicting I/O Bandwidth Usage . . . . . . . . . . . . . . . . . . . . . . 125

3.4.4 Modeling On-Board Memory Behaviour . . . . . . . . . . . . . . . . . . . 126

3.4.5 Comparison to Roofline Model . . . . . . . . . . . . . . . . . . . . . . . . 126

3.5 Architectural Optimisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.5.1 Improving Bandwidth Utilisation . . . . . . . . . . . . . . . . . . . . . . 130

3.5.2 Reducing Area Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

3.5.3 Overlapping Host and Accelerator Execution . . . . . . . . . . . . . . . . 131



16 CONTENTS

3.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.6.1 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . . . 133

3.6.2 Berlin Quantum Chromodynamics . . . . . . . . . . . . . . . . . . . . . . 143

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4 Extensions for Modern FPGAs and Performance Portability 148

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.2 Memory Mapping Algorithm for Multi-Die FPGAs . . . . . . . . . . . . . . . . 151

4.2.1 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.2.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.3 Performance Portable FPGA Designs . . . . . . . . . . . . . . . . . . . . . . . . 167

4.3.1 Performance Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

4.3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

5 Methodology Validation using a Real Application 183

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.3 Performance Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.3.1 Area Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.3.2 Electron Processing Speed . . . . . . . . . . . . . . . . . . . . . . . . . . 197

5.3.3 Memory Bandwidth Requirements . . . . . . . . . . . . . . . . . . . . . . 198



5.3.4 PCIe Bandwidth Requirements . . . . . . . . . . . . . . . . . . . . . . . 198

5.3.5 Lessons Learned from the Performance Model . . . . . . . . . . . . . . . 199

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.4.1 Area Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

5.4.2 Performance Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

5.4.3 Comparison to Traditional Systems . . . . . . . . . . . . . . . . . . . . . 210

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

5.5.1 Thoughts on Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

5.5.2 Comparison to other Methodologies . . . . . . . . . . . . . . . . . . . . . 219

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

6 Conclusion 224

6.1 Summary of Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

6.2.1 General Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

6.2.2 Portability Extension and Support for Modern FPGAs . . . . . . . . . . 231

6.2.3 Dose Accumulation Simulation for Radiotherapy . . . . . . . . . . . . . . 233

6.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Bibliography 237

17



18



List of Tables

2.1 Overview of the platforms used in this thesis . . . . . . . . . . . . . . . . . . . . 75

2.2 Comparison between the different Programming Frameworks. . . . . . . . . . . . 80

2.3 VGG-16 layer properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2.4 Convolutional Neural Network (CNN) Performance comparison. . . . . . . . . . 92

3.1 CNN Performance comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.1 Comparison of the designs for the different target platforms. . . . . . . . . . . . 174

5.1 Overview of operation count and predicted area usage for the simulation of one

electron per cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

5.2 Design points evaluated for the proposed architecture. . . . . . . . . . . . . . . . 201

5.3 Area usage for the different design points. . . . . . . . . . . . . . . . . . . . . . 202

5.4 Predicted area usage results for the proposed design points and prediction error. 202

5.5 Actual and Predicted Runtime. . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

5.6 Application of the individual parts of the methodology to the applications. . . . 212

19



20



List of Figures

1.1 Thesis organisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.1 Column based architecture of the Xilinx Ultrascale FPGA family. . . . . . . . . 51

2.2 Maxeler Computer System Architecture. . . . . . . . . . . . . . . . . . . . . . . 67

2.3 Unscheduled dataflow graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.4 Scheduled dataflow graph to enable pipelining. . . . . . . . . . . . . . . . . . . . 70

2.5 MaxJ toolflow [93]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.6 Control-flow system using von Neumann architecture. . . . . . . . . . . . . . . . 81

2.7 Architecture of the Asian option pricing application. . . . . . . . . . . . . . . . . 95

3.1 Design methodology breakdown and its four parts and seven steps. . . . . . . . 105

3.2 VGG-16 CNN Loopflowgraph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.3 Heatmap of the exponent distribution for a convolutional layer during training. . 117

3.4 DDR4 memory efficiency of an FPGA card. . . . . . . . . . . . . . . . . . . . . 127

3.5 A roofline model for a chosen architecture of VGG-16 CNN. . . . . . . . . . . . 128

3.6 Suboptimal vs overlapped use of resources. . . . . . . . . . . . . . . . . . . . . . 131

3.7 Convolution design architecture, PE connectivity. . . . . . . . . . . . . . . . . . 135

21



22 LIST OF FIGURES

3.8 Design space of the proposed architecture for the VGG-16 network. . . . . . . . 141

3.9 Berlin Quantum Chromodynamics (BQCD) design architecture. . . . . . . . . . 145

3.10 BQCD Conjugate Gradient (CG) time-to-solution. . . . . . . . . . . . . . . . . . 146

4.1 Balanced Memory Mapping (BMM) algorithm with greedy, score-based propor-

tional mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.2 Wastage Reducing Memory Mapping (WRM2) algorithm with greedy, global

area optimised mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.3 BRAM usage for the four different algorithms on the test set of small applications.161

4.4 URAM usage for the four different algorithms on the test set of small applications.161

4.5 BRAM usage for the four different algorithms on the test set of medium appli-

cations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

4.6 URAM usage for the four different algorithms on the test set of medium appli-

cations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

4.7 BRAM usage for the four different algorithms on the test set of large applications.164

4.8 URAM usage for the four different algorithms on the test set of large applications.165

4.9 Number of SLR crossings for the different mapping algorithms on the medium

and large test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

4.10 Average TNS for test cases, where more than one algorithm produced a non zero

TNS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

4.11 LUT and DSP usage predicted by the performance model for one design instance

of the Asian option application implemented on Xilinx Ultrascale+ technology. . 177

4.12 Chip image of the F1 bitstream. . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

4.13 Extended design methodology including the contributions in this chapter. . . . . 182



5.1 Loopflow Graph of the Central Processing Unit (CPU) implementation. . . . . . 188

5.2 The simplified architecture of the dose accumulation simulation. . . . . . . . . . 189

5.3 The architecture of the dose accumulation simulation for a single FPGA die if

the Kernel processes two electrons on every cycle. . . . . . . . . . . . . . . . . . 193

5.4 Loopflow Graph of the FPGA implementation. . . . . . . . . . . . . . . . . . . . 194

5.5 Visualisation of the Kernel and PCIe activity for run 7. . . . . . . . . . . . . . . 208

6.1 Thesis contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

23



24



Glossary

ALM Adaptive Logic Module: The hardware unit in which logic resources on Altera/Intel

FPGAs are organised. 74

ANSI American National Standards Institute: A private, US based, non-profit organisation

developing standards. 60

API Application Programming Interface: The definition of interactions between different soft-

ware components. It defines which functionalities are available, how they can be accessed

as well as the data and its formats. 61, 62, 72–74, 76, 77, 79, 114, 122, 171, 172, 235

ASIC Application-Specific Integrated Circuit: Completely custom and highly optimised inte-

grated circuits for a very specific application. As a result, they are not flexible and can

typically be used to execute only one specific task in a specific way. This disadvantage is

mitigated by the ability to achieve the best performance and energy efficiency on a given

semiconductor technology node. 35, 36, 49, 50, 55, 60, 100, 107, 224

BMM Balanced Memory Mapping: A memory mapping algorithm developed in this thesis. It

aims to improve the locality of designs and their timing closure while minimising hardware

usage. More details in section 4.2. 22, 150, 153–155, 157, 158, 161–167, 181

BQCD Berlin Quantum Chromodynamics: A popular implementation of Lattice QCD. 22,

44, 133, 143–147, 160, 211–214, 227

BRAM Block Random-Access Memory: One of the main components of Xilinx FPGAs (M20K

is the Intel equivalent). Used to store data on the FPGA itself. Usually, a BRAM can

25



store tens of kbits. More details in section 2.2.1. 47, 53–55, 151–158, 160–163, 166, 196,

197, 202–204, 222, 232

CG Conjugate Gradient: An iterative numerical method used to solve large systems of linear

equations of the form Ax = b where A is symmetric positive-definite. 22, 143–146

CNN Convolutional Neural Network: A class of deep neural networks. They are most com-

monly applied to computer vision problems. CNNs are characterised by the use of con-

volutional layers. These layers convolve the input data with a set of weights and heavily

rely on weight sharing. As a result, CNNs are invariant to shifts in the input data. 19,

44, 88–92, 101, 104, 108, 112, 113, 116, 128, 133, 134, 136, 139, 142, 147, 212, 213, 225,

227

CPU Central Processing Unit: A processing unit which can execute instructions of a computer

program. Modern CPUs usually follow the von Neumann architecture. The CPU is able

to perform arithmetic, logic, control and I/O operations. 23, 35–39, 41, 43, 44, 46, 47,

50, 58, 61, 62, 66, 70, 73, 74, 82, 86, 87, 90, 94, 98–100, 103, 106–112, 116, 118, 119, 122,

131–133, 149, 168, 175–178, 185, 188–191, 195, 198–200, 204–212, 215–217, 219, 222, 224,

231, 235

DDR Double Data Rate Synchronous Dynamic Random-Access: An implementation of DRAM

which transfers data on both the rising and falling clock edges. 52, 62, 66, 75–79, 87, 111,

123, 126, 128, 130, 138–140, 160, 163, 174, 186, 187, 189–192, 195, 198, 199, 204, 205,

217, 233

DFE Dataflow Engine: The definition used by Maxeler to describe their FPGA based compute

accelerator cards. These PCIe extension cards combine a large capacity FPGA with

parallel, high-bandwidth DDR memory and in some cases network interfaces. 30, 46, 66,

68, 72–75, 78, 79, 93, 94, 120, 139, 144, 170, 172, 178, 200, 215

DIMM Dual In-Line Memory Module: A module which contains multiple individual DDR

chips. It can be inserted in a slot on modern computer systems. 75, 76, 139, 187, 190–

192, 201
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DMA Direct Memory Access: A method to access the main memory of a computer system

without direct CPU involvement. This results in reduced load on the CPU and often

higher speeds. 66, 71, 120, 125, 206, 209, 222, 231

DPM Dose Planning Method: An implementation of a Monte Carlo technique that simulates

the dosimetric effect of high-energy photons in organic materials. More details in section

2.6.3. 96, 97, 186

DRAM Dynamic Random-Access Memory: Very dense volatile semiconductor-based memory.

DRAM uses a refresh circuit which regularly rewrites the data in the memory cells to

avoid data loss due to a leak of the charge in the tiny capacitors used to implement the

individual memory cells. 126

DSE Design Space Exploration: In the context of hardware design DSE refers to a design stage

in which different possible implementations for a specific design are considered. Usually

there is a trade-off between the required hardware resources, bandwidth requirements,

energy usage and the achievable performance or functionality. 42, 83, 84, 91, 100, 101,

139, 141, 203, 204, 222, 223, 227

DSL Domain Specific Language: A programming language which is customised for a specific

use case or environment and is not intended for general purpose computing. 57

DSP Digital Signal Processor: A hardware component of modern FPGAs. Mostly used to

implement multiplications but also contains adders and in some more recent devices

dedicated support for floating point operations. More details in section 2.2.1. 50, 51, 71,

130, 152, 172, 174, 176–178, 180, 197, 202, 204, 212, 213

FF Flip-Flop: A circuit with two states used to store information. In digital circuits they are

often used to store data on a clock edge which results in the clock driven synchronisation

of the design. As a result, they can be used to facilitate pipelined designs. 50, 51, 75,

196, 197, 204

FFT Fast Fourier Transformation: An algorithm to calculate the discrete Fourier transforma-

tion (or its inverse (IFFT)) with reduced computational complexity. 48
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FIFO First In, First Out: A strategy for buffering data. The items which are written to the

buffer first are also read first. 54, 68, 70, 71, 112, 122, 124, 154, 193, 197, 203

FPGA Field-Programmable Gate Array: Semiconductor devices which are able to implement

arbitrary hardware circuits while also being reconfigurable. More details in section 2.2.

7, 14, 16, 17, 21, 23, 35–47, 49–63, 65, 66, 68, 71–76, 81–87, 90, 93, 94, 98–103, 105–112,

114–116, 119–121, 123–134, 136, 137, 139, 140, 147–153, 157, 160, 167–183, 185, 186,

189–194, 198, 200, 204, 207–212, 214–219, 222–227, 229, 231–236

GEMM General Matrix Multiply: In the context of BLAS (Basic Linear Algebra Subprogram)

libraries refers to the general form of matrix multiplications. The operation calculates

C = αAB + βC, where A,B and C are matrices and α and β scalars. 215

GPGPU General Purpose Graphics Processing Unit: This term is often used to refer to the

usage of GPUs for problems which do not fall into the domain of computer graphics. The

GPU is usually used to accelerate a CPU based computing system by offloading parts of

an application and the associated data to it. 35

GPU Graphics Processing Unit: A specialised electronic device which can be used to create

images intended for the output on a display. GPUs have a highly parallelised architecture

with many execution units. Modern GPUs can also be used as GPGPUs. 36, 37, 43, 44,

47, 50, 58, 61, 62, 65, 98–100, 119, 149, 168, 185, 210, 217, 219, 224, 235

HBM High Bandwidth Memory: A DDR based technology to offer higher bandwidth memory

to digital circuits. Multiple DRAM dies are stacked on the top of each other in 3D and

implemented in a singe package with the digital circuit accessing the memory. This allows

for a very wide memory bus leading to higher bandwidth. 128, 235

HDL Hardware-Description Language: A class of languages used to describe the structure

and behaviour of digital electronic circuits. They allow the synthesis into a netlist and

contain a notion of time. More details in section 2.3.1. 36, 55, 56, 58–60, 64, 81, 85, 100,

219, 220, 223
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Heterogeneous Memory This term refers to the usage of fundamental different dedicated

memory resources on modern FPGAs. The Xilinx Ultrascale+ architecture introduced

URAMs as a new dedicated memory type. This new resource differs fundamentally from

the also present BRAMs in terms of capacity, possible aspect ratios and supported feature

set (number of ports, dual clock support). Despite these difference for the implementation

of many logical memories they can still be used interchangeably. 41, 42, 44, 45, 53, 54,

148, 149, 152, 182, 226

HLS High-level Synthesis: A design process which creates a hardware design from an be-

havioural algorithmic description. More details in section 2.3.2. 48, 57, 59, 60, 62–64, 79,

81, 83, 84, 90, 100, 216–219, 221, 223, 231, 235

HPC High-Performance Computing: A domain of computing requiring a high amount of mem-

ory or computational performance. Often performed on super computers or large com-

puting clusters. 7, 38, 40, 41, 43, 44, 46, 50, 57, 61, 71, 81, 90, 93, 100, 133, 160, 161,

172, 209, 210, 224, 225, 228, 234, 235

I/O Input/Output: The communication interface of a computer system with its external com-

ponents. From the view of a single device (e.g., FPGA) this can include the communi-

cation with other parts of the same computer system (e.g., host computer) but also the

interaction with other external devices. 39, 52, 65, 68, 69, 71, 75, 76, 79, 83, 84, 103, 108,

115, 119, 128, 136, 144, 146, 150, 168–170, 175, 177, 200

IP Intellectual Property: In the context of hardware design this usually refers to a pre-designed

functional unit which can be integrated in larger designs. Often IP-Cores are provided

by chip vendors or third parties. The content of the IP-Cores is the intellectual property

of the provider and the usage has to follow a specific license agreement. Often the term

is used more freely to refer to reusable functional blocks in a hardware design which are

packaged in a way to ease future reuse. 59, 71, 75, 86, 121–123, 150, 163, 168, 171, 203

ISA Instruction Set Architecture: The definition of the interface between software and hard-

ware for instruction-based processors. It defines all instructions which can be used by the
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software and provides an abstraction for the functionality of the processor. 44, 168

LLVM-IR LLVM Intermediate Representation: An intermediate representation used by the

LLVM compiler infrastructure. A language specific frontend generates LLVM-IR which

can then be used to generate instructions for a specific machine. 86

LMEM Large Memory: Maxeler’s name for the off-chip memory on their Dataflow Engines

(DFEs). Usually implemented using DDR memory. 66, 68, 71, 77

Logical Memory A logical memory is an abstract description of a memory resource. It de-

scribes the required number of read and write ports, depth, width and requirements for

other hardware features like dual-clock support. Logical memories are used to describe

the required behaviour of a memory before they are mapped to a physical memory which

will provide this behaviour. 42, 44, 47, 54, 55, 124, 148, 149, 151–158, 161, 181, 232

LQCD Lattice Quantum Chromodynamics: An approach to computationally simulate sub-

atomic particles, based on discretising space and time into a 4D lattice. 143

LUT Look-Up Table: A standard building block of FPGAs used to implement arbitrary logic

and arithmetic functions. It has multiple inputs and depending on the status of these

inputs an output value is created. The relation between the inputs and outputs is fully

configurable. More details in section 2.2. 50, 51, 53, 71, 75, 174, 177, 196, 197, 202

MAC Multiply Accumulate: An operation that first performs multiplication and then adds

the result of this operation to an accumulator. 88, 91, 137

Machine Model A machine model provides an abstraction to describe the organisation of

a computer. It describes the basic blocks of the computer and how they interact. It

defines how data is stored, moved through the system and how operations on the data

are performed. 36, 39, 56–58, 62, 64, 66–68, 71, 72, 79, 183, 231

ML Machine Learning: A field of computing looking at algorithms that improve through

experience. Usually training data is used to train the algorithm to make predictions on

future data. 35, 36, 85, 143
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MLS Mid-Level Synthesis: A term recently coined by Microsoft. The idea is to provide a tool

which is more appealing to software engineers but not as detached from hardware design

as HLS. More details in section 2.3.4. 63

Multi Die FPGA The newer generations of FPGAs contain multiple multi-die FPGAs. In

this case a single FPGA is built by connecting multiple individual silicon dies (called

SLR in the context of Xilinx devices) on the same package. While the FPGA is presented

as a single device to the user, it consists of multiple distinguishable parts with limited

interconnectivity. More details in section 2.2.4. 41, 42, 44, 45, 47, 52, 148, 149, 151, 152,

158, 169, 171, 181, 182, 192, 212, 218, 226, 227, 231, 232

NCDF Normal Cumulative Distribution Function: A function which calculates the probability

that the value of a random variable X is smaller or equal than x. 93

NN Neural Network: A class of machine learning algorithms which build networks using com-

putational neuron models. 88, 89

OpenCL Open Computing Language: A framework to implement applications which can be

executed on heterogeneous parallel computing systems. These systems can consist of

a combination of CPUs, GPUs, FPGAs, Digital Signal Processors and other hardware

accelerators. More details in section 2.3.3. 57, 58, 62, 63, 69, 86, 87, 221, 235

OpenSPL Open Spatial Programming Language: A standard programming framework for

designing spatial computing systems. 64

PCIe Peripheral Component Interconnect Express: A standard for the connection of peripheral

devices to a computer. 52, 66, 68, 71, 74–77, 121, 123, 125, 139, 141, 145, 160, 172, 174,

175, 189, 192, 195, 197, 198, 200, 204, 206–209, 233, 234

PE Processing Element: An element which implements a specific function. The parallelism of

a design can be increased by adding more PEs which all perform the same functionality.

91, 134–139, 141, 212
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Physical Memory A physical memory refers to a memory resource which is physically present

on the chip. FPGAs have multiple classes of memory resources. These are memories

implemented through logic either by FFs or LUTs and dedicated memory resources like

BRAMs. In the case of the Xilinx Ultrascale+ architecture, URAMs are another physical

memory resource class. All of these physical memories have different properties in terms

of capacity, possible aspect ratios and supported features. 42, 44, 47, 53–55, 124, 148,

149, 151, 153, 155–158, 181, 193, 196, 232

Platform Refers to a specific development target, for example a single FPGA based accelerator

card. Even if two cards use the same or a very similar FPGA device and a similar system

architecture, they are considered as two different platforms since implementation details

(e.g., pinout) differ resulting in required changes to any design targeting both cards. 41,

42, 44–46, 59, 60, 74, 76–79, 82, 84, 93, 101, 103, 107, 118, 120, 125, 149–151, 167, 168,

170–175, 177, 178, 180–182, 192, 200, 218, 222, 227

Programming Language A programming language is a formal language used to describe

algorithms which after the necessary transformations (e.g., compilation, assembly) can

be executed using a computer. The formal syntax has to be followed to generate a valid

program description. A programming language is based around a programming model.

36, 43, 55–61, 63, 72, 74, 85, 100, 217, 231

Programming Model A programming model provides an abstraction for the underlying ma-

chine model and thereby helps to manage complexity. It defines how programs for a

machine model can be designed. For example, a programming model for a von Neumann

machine usually introduces functions, loops and conditionals which can then be mapped

to the instructions of the machine by a compiler. Typically, when a parallel machine

model consisting of multiple von Neumann machines is considered, a programming model

usually represents this parallelism as independent threads or processes which, e.g., use a

shared memory (e.g., OpenMP) or send messages over an interconnect (e.g., MPI). 36,

56–58, 60–62, 68, 69, 71–73, 76, 81, 119, 120, 231, 236

QCD Quantum Chromodynamics: The physical theory of strong interactions between sub-
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atomic particles. 104, 108, 143, 144

RAM Random-Access Memory: A form of computer memory where the physical location of

the data has no or only very limited impact on the time needed to access it. 53, 153, 154,

157, 158, 161, 162

ReLU Rectifier Linear Unit: An activation function used in NNs. It implements the function

f(x) = max(x, 0). 89, 134, 137

ROM Read-Only Memory: A memory which can only be read but not written to. 111, 195

RTL Register-transfer-level: An abstraction level used in the development of integrated cir-

cuits. The system is modelled through the signal flow between registers. 48, 58–60, 63,

73, 83, 85, 220

SDK Software Development Kit: A collection of tools and libraries used for the software

development. 63

SIMD Single Instruction Multiple Data: A computer architecture where a single instruction

is applied to multiple data items. 56

SLiC Simple Live CPU Interface: A part of the MaxCompiler toolchain. Used to interface the

hardware accelerator on the DFE with an application on the host system. 66, 74

SLR Super Logic Region: Used in the context of multi-die Xilinx FPGAs. Refers to a single

silicon die of the device. More details in section 2.2.4. 52–55, 75, 139, 140, 149, 150,

152–154, 156, 160, 162–167, 170, 171, 175–178, 191, 201, 218, 219, 226, 232

SPECT Single-Photon Emission Computed Tomography: A medical imaging technology able

to provide 3D data. 100

SSI Stacked Silicon Interconnect: A Xilinx technology to mount multiple FPGA dies on a

single silicon interposer. More details in section 2.2.4. 52
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TBM2 Threshold Based Memory Mapping: A memory mapping algorithm introduced in this

thesis for the comparison between different memory mapping strategies. More details in

section 4.2.2. 157, 158, 161, 162, 164–167

TNS Total Negative Slack: In clock based digital hardware design signals are synchronised

using FFs. This means that a signal has to be stable on the FF data input at the time

of the active clock edge. The slack refers to the time between the signal stabilising and

the point in time at which it has to be stable to guarantee correct operation. If the value

is negative the timing constraint is violated. The total negative slack is the sum of all

negative slack values. 166, 167

TPU Tensor Processing Unit: A class of ASICs for the acceleration of ML applications and

especially NNs. The best-known examples for these devices are the TPUs developed by

Google. 35, 90

URAM Ultra Random-Access Memory: A memory block introduced with the Ultrascale+

Xilinx FPGAs. The have a larger capacity than BRAMs but have a more limited func-

tionality. More details in section 2.2.4. 47, 53–55, 151–158, 160–163, 166, 196, 202–204,

222, 232

VHDL Very High Speed Integrated Circuit Hardware Description Language: A widely used

HDL. 59, 60, 75, 157, 168, 220

VLIW Very Long Instruction Word: A instruction set architecture focused on instruction level

parallelism. The compiler groups instructions of a program which can be executed using

parallel execution units of the given VLIW processor to accelerate the execution. 56

WRM2 Wastage Reducing Memory Mapping: A memory mapping algorithm introduced in

this thesis for the comparison between different memory mapping strategies. More details

in section 4.2.2. 22, 158, 159, 161–167

XML Extensible Markup Language: A markup language for hierarchically structured data in

a format which is readable by machines and humans. 59
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Chapter 1

Introduction

1.1 Motivation

The recent trends of big data, cloud computing, machine learning and race towards exascale

computing call for significantly more powerful and energy efficient machines than currently

available general-purpose computers. Furthermore, the unavoidable end of Moore’s Law sup-

ports the need for highly heterogeneous systems which can outperform state-of-the-art Central

Processing Units (CPUs) in both performance and energy efficiency.

This development has led to significant commercial and academic interest into alternative com-

puting platforms. As a result, the usage of General Purpose Graphics Processing Units (GPG-

PUs) is, especially for Machine Learning (ML) workloads, becoming more and more common

practice, alternative approaches make use of Application-Specific Integrated Circuits (ASICs),

like Google’s Tensor Processing Unit (TPU) [59], True North by IBM [97] and specialised coarse

grained reconfigurable devices [141] or Field-Programmable Gate Arrays (FPGAs). The use

of FPGAs is of special interest, since they promise improved power efficiency and performance

compared to GPGPUs and especially CPUs [10, 27, 40, 46, 85, 96], while offering significantly

better flexibility and a reduction in development costs by orders of magnitude in contrast to

ASICs. Additionally, due to the flexibility offered by FPGAs they enable even smaller com-

panies to differentiate their products from competitors and to highly optimise them to specific
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use cases without the need to make the significant investments that would be needed for an

ASIC based solution. This trend can be seen especially in the context of big data and ML.

For these reasons multiple industry vendors have started to support the use of FPGAs in a

high-performance computing environment. One of the most notable efforts in this direction is

the general availability of FPGA based cloud instances in the Amazon AWS EC2 cloud [8].

Other cloud vendors follow the same approach. Microsoft uses FPGAs in the Azure cloud [99],

IBM offers SuperVessel in their OpenPOWER cloud [83] and Baidu also has FPGA based

cloud offerings [147] Additionally, some server vendors like Dell sell servers with FPGA support

directly for on premise use [162]. This development is also in line with the production of

multiple dedicated FPGA accelerator cards for the data centre by Xilinx [158].

However, there is still no widespread adoption of FPGAs and while there have been some

significant commercial deployments (e.g., at Microsoft [100]) in general they seem to be limited.

The main challenge to FPGA adoption is the programming challenge. Traditionally most

computers are based on a von Neumann architecture and operate on instructions. This trend

is carried forward by Graphics Processing Units (GPUs) which have a different machine model

than CPUs but still operate on instructions and have a fixed architecture. In contrast FPGAs do

not have a fixed machine model and instead it is up to the designer to define the architecture

and how an application is executed. This leads to a fundamental problem in developing a

programming model suited to FPGAs.

Traditionally FPGAs were programmed using Hardware-Description Languages (HDLs) which

are normally used to implemented integrated circuits and enable the designer to express spatial

structures and contain a notion of time. However, these languages are complicated and not

well suited for fast development cycles.

To mitigate these issues both academia and industry have tried to develop new development

tools to target FPGAs. Some of them tried to apply programming models or programming

languages which are normally used for CPUs or GPUs to FPGAs while others tried to develop

more modern HDLs or adopted other programming models (e.g., dataflow) for FPGAs. How-

ever, often the design methodology and the development process used to program the FPGA
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devices is overlooked. Due to their fine-grained control and highly deterministic behaviour, it

is possible to predict application performance with very good accuracy, thereby enabling the

employment of significantly different design methodologies as compared to the ones used to

program conventional computing systems.

Conventional CPU development often uses an incremental approach, where a first implemen-

tation is quickly developed and subsequently is gradually improved step by step with the help

of different profiling tools. However, there are multiple problems with applying this methodol-

ogy to FPGA designs. It is very hard to profile an existing FPGA implementation, making it

difficult to identify what specific part of the design needs improvement. This is especially true

when the initial implementation cannot entirely fit onto the FPGA fabric, or does not reach

the required frequency to highlight, e.g., bandwidth limitations. In addition, the identified im-

provements can easily require a complete redesign of the application especially if they change

the way in which data are stored. Finally, the significant amount of time required to generate

FPGA bitstreams makes any incremental process practically unusable.

The application of traditional CPU development to FPGA systems is therefore very likely to

result in a suboptimal design, failure or delays. This problem is exacerbated by the fact that

the majority of developers learn to program software first and thereby pick up the normal

software development processes which they will automatically apply to FPGAs as well. The

lack of a structured design process for FPGA is therefore one of the main contributing fac-

tors contributing to the programmability challenge of FPGAs and hinders especially novice

developers.

An additional major factor to the slow adoption of FPGAs is the lack of portability between

different devices. For CPUs and GPUs device vendors spent significant effort maintaining

backwards compatibility so that existing programs can be executed on new hardware. In

addition, one can usually see a performance increase on new devices without many changes as

long as the application is not too heavily optimised for a very specific architecture.

These observations lead me to ask the following research questions:
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Q1. Does a structured approach for accelerating HPC applications with reconfigurable plat-

forms exist?

Q2. Is there an accurate method able to predict reconfigurable systems’ performance prior to

the creation of a synthesisable implementation of the reconfigurable sub-system?

Q3. Are there techniques to achieve state-of-the-art performance for a given application and

reconfigurable platform?

Q4. If such techniques exist, can a single implementation target different reconfigurable plat-

forms while delivering maximum performance on each?

Q5. What are the issues when the techniques mentioned above are applied to multi-die de-

vices?

To address these questions this thesis proposes a design methodology tailored to FPGA based

systems which aims to addresses the common challenges faced by FPGA developers while de-

signing well-performing High-Performance Computing (HPC) applications. The process starts

with the initial analysis of the application and its dataset properties. The information obtained

is used to accurately model and predict performance and hardware requirements. An archi-

tecture which aims to maximise performance is developed based on these results. Overall, the

process focuses on discovering potential performance bottlenecks early on and resolving those

at the architecture design stage before the hardware implementation is started. This is achieved

by careful analysis and prediction of computation and communication patterns throughout the

complete system. Furthermore, the methodology contains best practices to support portability

between different FPGA designs.

In order to use the methodology, one needs to have or be able to create a working CPU based

implementation of the application that one wishes to accelerate using an FPGA. This imple-

mentation is important for some of the analysis stages and for debugging. It is for example used

to verify that software and FPGA implementations created in the context of the methodology

produce the expected output. If possible, a more abstract definition of the application is benefi-

cial. The usage of a specific algorithm always limits the possible freedom for different hardware
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implementations. If instead an abstract problem description is used it might be possible to use

many different algorithms which might offer different trade-offs in the context of the hardware

design. As such this abstract description is not a necessary input to the methodology but might

yield additional benefits. The last required input is a representative set of input and output

data. This dataset should provide a good representation for the usage of the application once

it is deployed. It is used to analyse the dynamic behaviour of the application and test changes

to the used algorithm and numeric implementation.

The methodology assumes that Maxeler’s static dataflow machine model is used. This model

tries to achieve high throughput by automatically generating deep uninterruptible pipelines

from a dataflow-based programming model. By using this static execution model, the perfor-

mance of the resulting FPGAs is highly predictable. This behaviour is used by the methodology

to carry out large parts of the design process a-priori before the hardware implementation is

started based on a performance model of the hardware design. This predictable performance

motivates the development of a special design process tailored to static dataflow-based FPGA

systems in order to achieve optimal usage of the available hardware and Input/Output (I/O)

resources while keeping the development time and costs acceptable. Especially in the context

of exascale computing it is crucial to minimise the amount of data transfers and their relative

distances at all system levels so that computation can be performed as local as possible to

remain within practically acceptable power budgets. Additionally, it is assumed that the target

system consists of a FPGA and a CPU component.

The result of following the proposed methodology is an architecture for a system consisting of

a FPGA component which accelerates parts of or a complete application together with a CPU

based system hosting the FPGA. This architecture describes the components that have to be

implemented on the FPGA and what role they should fulfil. Furthermore, the area requirements

and the expected performance of these components are predicted by the performance model

together with the required communication bandwidth and the required communication between

all components of the system. While following the methodology a software model of the planned

FPGA implementation is created which can be used for verification and debugging purposes.
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While the methodology is developed around Maxeler’s static dataflow technology generalisation

to other technologies should be possible, even though it is not discussed in this work. The major

requirement in order to apply the methodology to other toolflows is that the performance of

the FPGA design is highly predictable.

One major issue faced in the development of any technology, tool or methodology targeted at

improving developer productivity is the question how improvements can be evaluated. The

only real way to measure productivity and therefor the success of the proposed methodology

is to measure how long the development process takes using the methodology in contrast to

other methodologies or an unstructured design process. However, one cannot use the same

developer to implement the same application using these different processes one after another,

since the experience made using one process will influence decisions and development speed on

subsequent attempts. Similarly, it is not possible to use different developer since the personal

experience and skill might differ significantly and these factors cannot be measured objectively.

This would mean that many developers would be required to try the same process on the same

application in the hope that the average development time is comparable. This problem is made

worse by the fact that designing a complex FPGA application can take many months or even

years. As a result, performing a study which accurately measures productivity improvements

is very costly and beyond the scope of this thesis. Instead, I focus on measuring performance

of the resulting design created by applying the methodology and compare the quality of the

result to other designs. The focus is therefor on how good the output created by applying the

methodology is in comparison to designs created using other methodologies. Productivity is

only reported qualitatively.

1.2 Research Challenges and Contributions

The objective of this thesis is to propose a development methodology and create the required

tool support to enable developers to create state-of-the-art HPC FPGA designs and therewith

facilitate wide FPGA adoption. The focus is on heterogeneous computing systems consisting
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of a CPU and FPGA sub-systems, where the FPGA is used as a powerful highly customisable

coprocessor. As such the FPGA side of the system handles the time consuming and compute

heavy parts of the targeted application, while the CPU performs all remaining parts of the

application which might not map well onto FPGAs or will require prohibitive porting efforts.

In my research I discovered that the following three challenges are major obstacles towards

large scale adoption of FPGAs in real HPC systems:

1. There exists no development methodology for the design of complex FPGA based systems

which reduces the risk of unexpected delay in the development process and provides state-

of-the-art performance. Current development methodologies for FPGA based system de-

sign rely on a large degree of automation or an iterative design approach. Methodologies

relying on highly automated systems struggle to exploit the performance advantages of

FPGAs and as a result cannot compete with other hardware platforms. Iterative ap-

proaches lead to a very long and risky design process due to the complexity of hardware

design, long compilation times and the danger to discover major bottlenecks late in the

design process leading to unexpected and often expensive redesign efforts.

2. The large differences between FPGAs even within the same device family prevent porta-

bility of hardware designs. Methodology and tool support are required to facilitate porta-

bility between different FPGA devices and to deal with emerging hardware features like

highly heterogeneous memory architectures and multi-die systems in a package.

3. Current FPGA tools and design methodologies are often not evaluated on representative,

complex applications. Instead, simple benchmarks are used, which are not sufficient to

evaluate their usefulness in the development of complex applications. Only complex and

real applications show the communication patterns that need to be addressed in order to

deliver state-of-the-art overall speedup.

To address these major challenges the following three main contributions to reach the objective

described at the beginning of this section are made:
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1. The development of a methodology for FPGA design based around the accurate predic-

tion of compute performance as well as on-chip area and bandwidth requirements for the

interconnect. The methodology also entails the detailed analysis of the target application

in terms of compute complexity, data movements and numeric properties. A software

model is used as a testbed for numeric and algorithmic explorations as well as a debug-

ging tool. The main target of the methodology is to provide a first-time-right approach

in which Design Space Exploration (DSE) is performed before the first line of code tar-

geting the hardware is written and the first hardware implementation manages to fulfil

all design goals removing the need for complex design iterations in hardware. The entire

methodology is published in [137] and an application developed using the methodology,

achieving state-of-the-art performance, is published in [131].

2. Support for portability between different target platforms, which is achieved by first pro-

viding tool support for the usage of modern multi-die FPGAs and, second, the integration

of methodology steps and best practices to facilitate portability. A memory mapping algo-

rithm is developed to assist in the mapping of logical to physical memory resources. This

automated approach solves the problem of mapping to heterogeneous memory resources

found on modern FPGAs as well as the prevalence of multi-die FPGAs. The problem

of multi-die FPGAs also has to be addressed in the context of portability between dif-

ferent FPGAs platforms. As a result, the methodology is extended accordingly and the

portability and performance scalability across FPGA platforms from different vendors is

evaluated using a common application from the financial industry. The memory mapping

algorithm is published in [132] and the performance portability contribution is prepared

for submission.

3. The developed methodology is demonstrated on a real, highly demanding application

from radiotherapy. The dose accumulation as a result of radiotherapy is simulated using

a Monte Carlo method. This simulation is needed to plan a treatment which limits the

dose accumulated in healthy tissue. Modern radiotherapy machines enable the imaging of

the patient at the same time as the treatment thus making adaptive radiotherapy [167,168]

possible. The first real time dose accumulation simulation is presented which is a major
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steppingstone towards facilitating adaptive radiotherapy. This application was developed

using the methodology proposed in this thesis and makes use of the memory mapping

algorithm as well as the portability methods presented. The radiotherapy simulation is

published in [133] and an extended version is published in [138].

In the following three subsections a short overview of the individual contributions and the

challenges involved is provided. More details can be found in the related chapters.

1.2.1 Methodology for Reconfigurable System Development

The first contribution of this thesis is a methodology based on predictive analysis for first-time-

right application development. The contribution focuses on developing a structured design

process based on the estimation of system performance to maximise the performance of the

overall system according to research questions Q1, Q2 and Q3.

FPGAs present a promising alternative to purely CPU based or GPU accelerated systems in the

context of HPC. This is motivated by their ability to implement massively parallel customised

data paths. The ability to develop customised solutions for each encountered computing prob-

lem reduces overheads found in general purpose computing systems. However, adoption of

FPGAs for HPC is still very limited. This is commonly attributed to implementation complex-

ity, required expert knowledge and the resulting long development times and high development

costs. While novel programming languages are designed to tackle these challenges there is still

a lack of development methodologies tailored to FPGAs.

A design methodology to facilitate structured development of complex applications using re-

configurable hardware is proposed. The target is to enable first-time-right FPGA application

development, which means that the initial hardware implementation fulfils all design goals, and

no design iterations have to be performed in hardware. The methodology relies on analytical

estimation of system performance and area utilisation for a given application and a decoupled

controlflow/dataflow reconfigurable system. The targeted application is carefully examined,
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and the parts intended for hardware acceleration are reimplemented as a representative soft-

ware model. Next, with the results of the previous step a suitable system architecture is devised,

and its performance is evaluated to determine all bottlenecks. The architecture is iteratively

refined, until the final version satisfying the system requirements is obtained which can then

be implemented. The methodology is validated based on the design of a widely used Convolu-

tional Neural Network (CNN) (VGG-16) and the Berlin Quantum Chromodynamics (BQCD)

application. In both cases it relieved and alleviated all system bottlenecks before the hardware

implementation was started. As a consequence, the first implementations of the resulting ar-

chitectures achieved state-of-the-art performance within 15% of the modelling predictions for

these two applications.

The proposed methodology has already been adopted in industry and academia. For example,

parts of it were used in [71] and it is used in two master thesis projects ([129] and one yet

unpublished) as well as in multiple internal Maxeler projects. It is now also part of the user

facing Maxeler documentation [94].

1.2.2 Extensions for Modern FPGAs and Performance Scalability

The second contribution of this thesis is an extension to the proposed methodology to support

portability between multiple target platforms using a unified code base including modern multi-

die FPGAs. It thereby addresses the research questions Q4 and Q5.

Another hindering factor in the adoption of FPGAs for HPC is the difficulty in upgrading from

one device generation to the next and the even more complicated migration between FPGA

vendors. While CPUs and GPUs sharing the same Instruction Set Architecture (ISA) provide

functional portability between targets, changing the target of an FPGA design often involves

significant effort. This is further exacerbated by recent trends in FPGA device organisation

including the addition of heterogeneous memory architectures and multi-die systems.

To address the challenge of portability an algorithm for mapping logical to physical memory

resources on FPGAs is proposed. This algorithm based on a greedy strategy is specifically
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designed to facilitate timing closure on modern multi-die FPGAs for static-dataflow acceler-

ators utilising most of the on-chip resources. The main objective of the proposed algorithm

is to ensure that specific sub-parts of the design under consideration can fully reside within a

single die to minimise inter-die communication. The above is achieved by performing stepwise

memory mapping for each sub-part of the design separately while keeping allocation of the

available physical resources balanced across the entire device. As a result, the number of inter-

die connections is reduced which enables the place and route to successfully finish for all 33

evaluated test cases. The second-best performing algorithm failed on one third of the nine large

applications tested to place and route the design. To my knowledge there exists no previous

work which tackles the challenge of heterogeneous memory resources in multi-die FPGAs. It

was integrated without further modifications into MaxCompiler and is used by default in all re-

leases since version 2017.2.2. As such it was successfully applied to a wide range of commercial

and academic projects.

To further address the challenge of portability design guidelines to assist with performance

portability and scalability are proposed. To demonstrate the proposed techniques, a large-

scale application used to price Asian options and originally developed for an Intel Stratix-

V FPGA platform is ported to several new targets which are based on the Xilinx Virtex

UltraScale+ generation. The accelerated application, developed in a high-level framework,

is rapidly moved onto the new platforms with minimal changes. The original, unmodified

kernel code delivers a 1.74x speed-up due to higher clock frequency achievable on the new

platform. Subsequently, using the proposed methodology the application is further optimised to

make use of the additional resources available on the larger Ultrascale+ FPGAs, guided by the

simple analytical performance model of the proposed methodology. This results in an additional

performance increase of up to 7.4x. The speedup normalised to the board capabilities is between

0.95x and 1.35x for all targeted platforms, showing that the capabilities of the platforms are well

used. Using the presented framework, I demonstrate rapid deployment of the same application

across a number of different platforms that leverage the same FPGA family but differ in their

low-level implementation details, the available peripherals and the overall system organisation.

To summarise, the same application code can be compiled to use five different platforms: a
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Maxeler MAX5C Dataflow Engine (DFE), Amazon EC2 F1, Xilinx Alveo U200 and U250 as

well as the original Intel Stratix-V based accelerator card, while efficiently using the hardware

capabilities of all platforms.

1.2.3 Methodology Validation using a Real Application

The third contribution of this thesis is the validation of the extended methodology using a real

highly demanding medical application.

Since measuring designer productivity is a major issue this thesis focuses on exploring if the

methodology can be used to successfully develop a complicated HPC application for FPGAs.

The performance of the resulting work is used to judge if the methodology helps in the devel-

opment of well performing designs.

A novel reconfigurable hardware architecture to implement real time Monte Carlo based simu-

lation of physical dose accumulation for intensity-modulated adaptive radiotherapy is proposed.

This provides the first step in a long-term effort towards accurate online dose calculation in

real time during patient treatment. Adaptive radiotherapy will allow wider adoption of highly

personalised patient therapies which has the potential to greatly reduce radiation dose expo-

sure of the patient as well as significantly shorter treatments and greatly reduce costs. The

proposed architecture exploits the embarrassingly parallel nature of Monte Carlo simulations

by performing domain decomposition and provides high resolution simulation without being

limited by on-chip memory capacity. The architecture was developed using the methodol-

ogy proposed in this thesis by creating a performance model and using it to derive the most

promising architecture.

Following the guidelines of the methodology a performance model is created. This is especially

challenging, since the number of simulation steps which have to be performed is not fixed but

depend on random number generators. This issue provides the major motivation for the se-

lection of this application to challenge the static nature of the performance model (Q2). By

simulating typical runs on the CPU, it was possible to identify all the required parameters nec-
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essary to build an accurate performance model. The performance model provides an estimate

for the Block Random-Access Memory (BRAM) and Ultra Random-Access Memory (URAM)

usage as created by the memory mapping algorithm presented in this thesis. As such this

application provides a very good and challenging example to verify whether the creation of

accurate performance models is feasible for complex real-life applications. Finally, the architec-

ture is evaluated on a Maxeler MAX5C as well as the Xilinx Alveo U250 using the performance

portability and scalability methods described in this thesis. An in-depth comparison between

predictions and execution results is performed showing that the predicted performance is ac-

curate for the most common configurations and the differences can be clearly explained in the

remaining cases. Lessons learned from these discrepancies are discussed. The real time target

of processing 100 million randomly generated particle histories per second was achieved using

three MAX5Cs. Compared to previously published CPU and GPU implementation this offers

a speedup of 4.1x and 8x respectively.

1.3 Thesis Organisation

The background of this thesis is described in Chapter 2. It provides an overview on recon-

figurable technology, programming frameworks for FPGAs, existing methodologies for perfor-

mance and area prediction as well as FPGA development and the applications implemented in

this thesis. The first contribution is presented in Chapter 3. A methodology to develop com-

plex applications on FPGAs is proposed which is based on accurate performance prediction of

the final implementation. The methodology is applied to two application examples to evaluate

its applicability to real life problems. In Chapter 4 it is further extended to support mod-

ern FPGA devices and portability as well as performance scalability between different device

generations. For this an algorithm is developed which automatically maps logical to physical

memories on modern multi-die FPGAs. Novel steps in the methodology are developed to ease

porting between different FPGA generations and especially when targeting modern multi-die

devices. These steps are evaluated on a financial Asian option pricing application. The pre-

vious two contributions are applied together to a real, computationally demanding medical
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application in the context of adaptive radiotherapy in Chapter 5. Using the methodology, a

real time capable dose simulation is developed which might enable new treatment methods in

the future. Lastly the conclusions and results as well as future research opportunities and a

personal outlook are presented in Chapter 6. Fig. 1.1 shows how the individual contributions

of this thesis link together. The chapters 3 and 4 together build a complete methodology for the

acceleration of complex applications using the dataflow abstraction. The resulting methodology

is then evaluated on a complex real application in chapter 5.

Complete Methodology
General Methodology

(Chapter 3)
Portability and Multi-Die

(Chapter 4)

Validation with a Real Application
(Chapter 5)

Figure 1.1: Thesis organisation.

Parts of this thesis have been published in [131–133,137,138]. Additionally, during the creation

of this work multiple related papers have also been created. [134] describes the acceleration of

the gzip compression algorithm using MaxJ and a comparison to a Register-transfer-level (RTL)

and High-level Synthesis (HLS) based implementation. The productivity differences discussed

in this paper motivated parts of this work and contributed to the background chapter. In [71]

the acceleration of the Smith-Waterman algorithm is discussed. For the development of this

paper parts of the methodology as described in this thesis were used. Finally, [135] describes an

optimised Fast Fourier Transformation (FFT) implementation based on an area saving double

buffering approach. This work is not discussed in this thesis but is a building block which can

be used in a larger design built using the methodology.
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Background and Related Work

2.1 Introduction

This chapter begins with a brief overview of FPGAs in section 2.2. Their applications, fun-

damental building blocks and recent trends are discussed. Afterwards section 2.3 discusses

different frameworks for FPGA programming and discusses their advantages and disadvan-

tages. Existing methodologies to predict area and performance of FPGA based systems are

presented in section 2.4. Section 2.5 discusses FPGA development methodologies. The appli-

cations employed to evaluate the contributions of this thesis are presented in section 2.6 and

finally section 2.7 provides a summary of this chapter.

2.2 Field-Programmable Gate Arrays

Field-Programmable Gate Arrays (FPGAs) are semiconductor devices able to implement arbi-

trary hardware circuits while also being reconfigurable. Initially one of the main use cases for

FPGAs was the emulation and verification of ASICs. Since FPGAs can implement the same cir-

cuits as ASICs it is possible to emulate the ASIC design for testing and verification purposes,

reducing design turnaround times significantly. Both tape out and complicated technology

mapping are not required which makes design cheaper and faster.

49
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However, the usage of FPGAs was quickly expanded to other use cases most notable networking,

signal processing and more recently HPC. The main motivation for this is the massive paral-

lelism supported by the FPGAs combined with the possibility to develop highly customised

architectures for the intended use case. Compared to GPUs and especially CPUs, FPGAs

support a higher level of parallelism at a lower clock frequency. They often achieve higher or

at least comparable application-level performance with lower energy usage. In comparison to

ASICs the performance and energy efficiency are often worse using the same technology node,

however, the costs of ASICs production are very high. Additionally, the circuit implemented on

an ASIC cannot be changed once it is produced, limiting the options for updating functionality

later on. From a cost standpoint ASICs are usually only the best choice if enough units are

deployed to offset the increased development costs through reduced unit costs or the benefits

of improved performance and energy efficiency.

Modern FPGAs often follow a column-based architecture as shown in fig. 2.1. This is the case

for the current FPGAs of both major chip vendors Intel and Xilinx. Within these columns

different resources are present which can be grouped into three major classes:

1. Freely usable reconfigurable fabric;

2. connectivity to external devices;

3. and clocking infrastructure.

These resources are explained in more detail in the following subsections.

2.2.1 Reconfigurable Fabric

The reconfigurable fabric of the FPGA itself consists of three main user configurable classes.

These are logic resources, memories and Digital Signal Processors (DSPs).

The logic resources are made up of Look-Up Tables (LUTs) and Flip-Flops (FFs). A LUT

is a structure which is usually implemented as a memory itself. It has multiple inputs and
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Figure 2.1: Column based architecture of the Xilinx Ultrascale FPGA family [153].

depending on these inputs an output value is created. The input bits form the address for the

memory of the LUT and as a result for every combination of input signals an answer can be

generated. This allows for the implementation of all possible logic and arithmetic functions.

An FF can store a single bit of information based on the input signals read at a clock edge.

The second class of resources are dedicated on-chip memory resources. These resources have a

limited number of bits and read and write ports to access the data within the memory. However,

in most cases they have highly configurable aspect ratios, meaning that the relation between

depth and width can be changed. For example, the same memory might be configured with an

aspect ratio which has a width of 36 bits and a depth of 512 entries or a width of 18 bits and

depth of 1024.

The last class of resources directly used by the user are the DSPs. These blocks usually consist

of dedicated multipliers and additional units, e.g., pre- and post-adders. As a result, DSPs

are less versatile than most other FPGA resources, but enable a significantly more efficient

multiplication implementation than possible when using LUTs.

Besides these resources directly accessible by the programmer there are also routing resources,

which are required to connect the different units in the reconfigurable fabric. These are usually

hidden from the programmer and implemented using horizontal and vertical connections across

the FPGA. At points where the wires cross each other switches can be used to configure the

signal flow.
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2.2.2 Connectivity to External Devices

FPGAs also have components dedicated to providing connectivity to other devices. In fact,

many FPGAs are specially optimised for high connectivity for example to fit networking ap-

plications. While some of this I/O can be configured in more detail by the user, other blocks

are preconfigured to support specific protocols or connection types, e.g., high speed network-

ing, Double Data Rate Synchronous Dynamic Random-Access (DDR) memory or Peripheral

Component Interconnect Express (PCIe) connections.

2.2.3 Clocking Infrastructure

Besides the normal routing resources most FPGAs also contain dedicated clocking networks.

These are similar to the normal routing networks but are dedicated to be used specifically to

distribute the FPGA clock across the chip. To complete the clocking infrastructure there are

hardware units to generate different clocks based on a single base clock and to help with the

clock distribution across the FPGA.

2.2.4 Trends in Modern FPGA Architecture

Apart from the fundamental building blocks described above a few recent trends in modern

FPGAs deserve special attention. This section will specifically focus on changes which were

introduced in the last three generations of Xilinx FPGAs.

Super Logic Region (SLR)

In order to increase chip area, while keeping yield and production costs in check Xilinx has in-

troduced devices consisting of multiple die, called Super Logic Regions (SLRs), in recent FPGA

generations. This is achieved by a technology which Xilinx calls Stacked Silicon Interconnect

(SSI), where multiple FPGA die are mounted on a single silicon interposer [148].
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As a result, the inter-die communication can only be performed using a limited number of

wires on the silicon interposer. For example, the Xilinx VU9P has just above 20,000 inter-die

connections in total. However, SLR crossings are only available between neighbouring SLRs.

Additionally, the achievable frequency on SLR crossings is often limited especially if the signal

is not carefully pipelined. This makes routing between different and especially nonadjacent

SLRs challenging and requires special attention.

Memory Resources

With recent advancements in silicon technology the overall memory capacity of FPGAs has in-

creased significantly faster than the availability of other resources. To achieve this chip vendors

have introduced heterogeneous memory resources, meaning that more than one dedicated mem-

ory resource exists. The Xilinx UltraScale+ FPGAs contain three different physical memory

types [154,155]:

1. Distributed Random-Access Memory (RAM);

2. Block Random-Access Memory (BRAM);

3. Ultra Random-Access Memory (URAM).

Each of the many logic slice of the Xilinx Ultrascale+ FPGAs contains eight 6-input LUTs that

can be used to construct a single 512 bit distributed RAM. In the Xilinx documentation this is

referred to as SLICEM. Multiple SLICEM can be combined together to form deeper memories,

however, this comes with a significant overhead. Individual SLICEMs can be configured to a

multitude of different aspect ratios in terms of depth, width as well as the number of read and

write ports.

BRAM modules are separate physical hardware memory units. Each BRAM of the UltraScale+

architecture can store up to 36 Kbits of data and can be used as one or two independent memory

units. In both cases they consist of two read and two write ports and it is possible to configure

different aspect ratios between depth and width. As an example, a 68 bit wide and 850 deep
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single port logical memory would occupy two BRAM modules with an aspect ratio of 36x1,024.

The number of aspect ratio options is further increased considering all supported read and write

port combinations.

Finally, the URAMs represent an additional dedicated memory resource. One URAM module

can store up to 288 Kbits of data but has only one single write and one read port. Additionally,

URAMs can be used only as 72 bit wide and 4,096 deep memories. They only support a limited

subset of the functionality supported by BRAMs and for example cannot be used to implement

dual clock First In, First Outs (FIFOs). To summarise, URAMs are the least flexible from all

available memory types but usually contribute most to the overall on-chip memory capacity of

the Xilinx Ultrascale+ devices.

Logical To Physical Memory Mapping

The mapping of logical to physical resources is one of the basic problems in FPGA tool de-

velopment. It describes the need to map structures defined by the designer, e.g., memories of

an arbitrary size, to the physical hardware resources with limited possible sizes on the device.

This often involves using multiple physical resources to implement a single logic resource. In

the context of memories this problem is further exacerbated by the recent move to more hetero-

geneous on-chip memory resources. As such there is a multitude of research trying to address

this problem, but it does not cover the changes to the memory architecture of modern FPGAs

and the addition of SLRs.

In [49] the authors present an algorithm which maps logical memories to shared physical mem-

ories, by taking advantage of dual port functionality. The algorithm reduces resource wastage

by letting two logical single port memories share the same physical dual port memory. Ad-

ditionally, it tries to tile logical memories to use fewer physical memories. This means that

different aspect ratios of the physical memories are combined to reduce the overall resource

usage. For example, a platform might have physical memories supporting an aspect ratio of

36x512 and another aspect ratio of 18x1,024. A logical memory with a depth of 1,700 and

width of 45 bits can be implemented most efficiently by combining memories configured with
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both aspect changes (e.g., four memories of aspect ratio 36x512 and two with an aspect ratio

of 16x1,024 in this example).

In [121] a technique to improve energy efficiency is presented. The power usage can be reduced

by disabling the clock enable in cases where a memory is idle. Logical memories are allocated

purely based on their depth. The proposed power optimisations is independent on the used

mapping, since it is an optimisation on the hardware level.

An additional problem in the context of memory mapping is the presence of SLRs. Each SLR

has only a limited memory capacity which in the case of the Xilinx Ultrascale+ architecture is

split between BRAMs and URAMs. If a circuit that is supposed to be implemented in a single

SLR for example only allocates BRAMs it might exceed the memory capacity of the BRAMs

in that SLR which would lead to using BRAMs in another SLR. However, if that circuit would

also use URAMs it would be possible to fully reside the circuit in a single SLR, avoiding SLR

crossings and the resulting negative impact on timing closure.

To my knowledge there is no previous work on memory allocation, which takes SLRs into consid-

eration, however, multi-chip partitioning algorithms like [25,92,113] have a similar optimisation

target. These algorithms partition the complete design, which provides a possible solution to

decide on which SLR a logical memory should be implemented. However, since logical memory

resources first have to be mapped to a range of different physical memory resources, they are

not directly applicable. Additionally, moving data between SLRs is a different problem com-

pared to moving data between different FPGAs, since it still operates within the same design

and only the impact on timing closure has to be considered. Bandwidth and especially latency

is less of a concern.

2.3 Programming Frameworks

Since FPGAs were initially mostly used for ASIC emulation historically tools and programming

languages used in ASIC design were also applied to FPGAs. This resulted in the widespread

usage of dedicated HDLs. They enable a formal description of the hardware circuit under
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design. One of their main features is the ability to express time. They do not have a strict

programming or machine model in mind but instead allow you to describe a circuit in a

well-defined and formal way. Section 2.3.1 will discuss HDLs in more detail.

The low designer productivity and steep learning curve of HDLs has led to large interest into

interest into new programming languages and frameworks for more productive FPGA design.

This trend has seen further acceleration due to the application of FPGAs to more general use

cases. Companies and research institutes working in these fields do not normally work with

hardware designers and would prefer to use development tools which behave similar to their

normal software development environment. This also usually includes a desire to describe the

behaviour of the algorithm to be implemented on the FPGA instead of the circuit used to

implement it.

The major challenge to this endeavour is the high flexibility of FPGAs. In fact, one can easily

make the argument that there is no machine model for FPGAs since the way in which data

and the execution are organised is completely up to the designer. This lack of a machine model

also leads to the inability to design a programming model around it which could be used by a

programming language.

Over the years many tools and programming languages have been proposed to raise the ab-

straction level and improve designer productivity. One suggestion is the usage of overlay archi-

tectures, e.g., [110]. In this case the targeted FPGA can be configured with a predefined set of

overlays. These overlays implement a given architecture and thereby create a machine model

which can be abstracted by a programming model and as a result it is possible to construct a

programming language which matches the problem. In many cases these overlay architectures

construct a microprocessor on the FPGA which uses a Single Instruction Multiple Data (SIMD)

or Very Long Instruction Word (VLIW) architecture. As a result, the overlay will always be

at a disadvantage compared to devices which use a similar architecture but are directly imple-

mented as integrated circuits. Furthermore, they work against the main advantage of FPGAs

which is the opportunity to fully customise a design for a specific use case. For this reason,

they are not considered in this thesis.
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Another approach is the automatic generation of FPGA designs from domain-specific tools

such as Matlab, Simulink or LabView. In this case a subset of the functionality can be synthe-

sised into a hardware design. For different functions of the original programming language or

environment highly optimised blocks are defined which only need to be connected. Similarly,

there are Domain Specific Languages (DSLs) which create FPGA designs for a specific problem

domain. An example of this is MaxGenFD [86] which targets finite difference computations. In

both cases the problem of mapping an algorithm to FPGAs is reduced, since the functionality

required is limited and a few predefined system architectures can be chosen which are known to

map well to the problem domain. In the case of adopting domain specific tools for FPGA pro-

gramming an existing programming model is reused and a sensible machine model is inferred.

In the case of DSLs a machine model well suited to the targeted domain is used to construct a

programming model and the DSL itself. Since these domain specific solutions cannot be used

for general purpose computing in the context of HPC they are of no further interest in this

thesis.

Another widely explored route is the extension of existing sequential languages to support

FPGA designs. The target is to provide behavioural synthesis from a sequential algorithm

description, which is also known as High-level Synthesis (HLS). In these cases, usually only a

subset of the language is supported. Most importantly functionality like pointer arithmetic or

dynamic memory allocation is usually not supported, since these techniques prevent a-priori

knowledge about the required resources. Another common technique is to extend the syntax,

e.g., through pragmas, to provide the developer with the opportunity to provide hints to the

tool on how components of the algorithm are supposed to be mapped to hardware. For example,

it is possible to define how many loop iterations are supposed to be unrolled and if parts of the

design should be executed iteratively or in a pipelined fashion. This means that a programming

model developed based on a von Neumann machine model is extended to target FPGAs. This is

achieved by providing a set of architectural patterns and options as well as optimisations which

can be manually targeted by the designer. HLS will be discussed in more detail in section 2.3.2.

Open Computing Language (OpenCL) also counts as an HLS tool. The major difference here

is that the programming model of the original language used is not based on a pure von



58 Chapter 2. Background and Related Work

Neumann machine model. Instead, OpenCL targeted both GPUs and CPUs from its inception

and therefor its programming model has an inherent concept of parallelism. OpenCL uses

compute units and processing elements to indicate that a single compute device can execute

multiple functions (or kernels in OpenCL language) in parallel. However, fundamentally the

programming model is based around a certain memory hierarchy and originally processing

elements were assumed to be instruction based. Especially the memory hierarchy does not map

very well to FPGAs. OpenCL is discussed in more detail in section 2.3.3.

A tool which deserves some attention is Sandpiper which was recently announced by Microsoft

but is not release yet. It claims to be based on both a spatial and an imperative programming

model and puts a lot of emphasis on the predictability of the generated hardware circuit. Since

it is not released yet it is not possible to discuss the details of the used machine or programming

model yet, but a discussion of the already known features can be found in section 2.3.4.

Another approach is the employment of a dataflow-based machine model. An example of this is

Maxeler’s MaxCompiler which is discussed in section 2.3.5. In this case Maxeler defined its own

machine model which is based around static dataflow execution. The programming toolflow

is then build around this machine model. The idea behind this approach is that it is easier

possible to efficiently express parallelism in the resulting programming model and to map the

resulting machine onto the FPGA hardware. Maxeler’s toolchain is discussed in great detail

in section 2.3.5. Section 2.3.6 compares the different approaches and motivates the usage of

Maxeler’s toolchain in this thesis.

2.3.1 Hardware Description Languages

The traditional way to design most hardware circuits, including FPGA designs, is based on

the usage of HDLs. These languages operate at the Register-transfer-level (RTL). A circuit is

described as registers and the combinational logic between these registers. As such the RTL

provides a higher abstraction level compared to the logic gate or even more detailed transistor

level. As a result, the usage of HDLs delivered a significant improvement in design productivity

compared to the previous description of circuits at an even lower level. However, HDLs still
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provide a significantly lower abstraction level than most commonly used software languages,

significantly limiting designer productivity.

The most commonly used HDLs are Verilog and Very High Speed Integrated Circuit Hardware

Description Language (VHDL). VHDL was initially developed to document hardware circuits

but was quickly adopted for hardware simulation and verification. Similarly, Verilog was ini-

tially developed to facilitate hardware circuit simulation and verification. Both languages con-

tain a synthesizable language subset, which can be used to directly describe hardware circuits

on the RTL. As a result, most FPGA synthesis toolchains accept VHDL and Verilog as input.

Chisel is a Scala based hardware description language. The concept behind Chisel is to add

modern programming language features to a hardware description language. It is therefore a

fundamental different approach to HLS in that one still describes the hardware circuit and not

the behaviour of the algorithm. Design is still low level, but the goal is to improve productivity

by supporting high-level abstractions in the language [14].

A problem of HDLs is that they often contain FPGA device and vendor specific extensions,

Intellectual Property (IP) cores and constraints. The authors of [69] try to mitigate this prob-

lem. They propose the usage of user configurable virtual platform interfaces. This enables a

user to use a platform independent interface to create a memory while a middleware handles

the implementation on a given hardware platform. The approach is limited to memories in the

presented work, but the same approach could be extended to other hardware resources. The

same authors further develop their contribution in [68] by providing a complete development

environment which also supports external FPGA interfaces. This tool flow is based on an

application description in Extensible Markup Language (XML) and HDL and automatically

maps the application to individual platform resources. The authors focus on portability and

not on achieving the best performance on each individual device.
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2.3.2 High-Level Synthesis

To mitigate the productivity challenges of HDLs and make hardware design more accessible

to software developers many High-level Synthesis (HLS) tools have been developed. These

typically attempt to create FPGA designs from conventional programming languages such as C

and often require some form of manual intervention in the transformation process. These tools

have seen a rapid adoption across industry and academia in recent years. While the productivity

advancements are undeniable, there is still an ongoing debate on the quality of results compared

to HDL designs. On of the main reasons for this perceived disadvantage compared to HDL is

caused by the imperative, sequential programming model used by these tools. All notions of

parallelism are added as additional manual hints to the toolchain and implementation options

are limited to some predefined design patterns, architectures and optimisations. This section

aims to give an overview of commonly used HLS languages and tools.

Vivado HLS is a tool developed by Xilinx. It accepts C, C++ and System-C as inputs and

supports arbitrary precision data types. Xilinx claims a 4x speed up in development time and

a 0.7x to 1.2x improvement for the quality of result compared to traditional RTL design [160].

However, Vivado HLS is not intended as a simple push-button C-to-FPGA synthesis tool and

requires various manual transformations to customise the hardware architecture and achieve

well performing designs. The programmer is expected to annotate the source code, usually

using pragmas, to direct the tool. These pragmas for example control the unrolling of loops or

the pipelining method.

Catapult C creates FPGA and ASIC designs from American National Standards Institute

(ANSI) C/C++ and System-C descriptions [1]. Similar to other HLS tools, it requires the

designer to perform iterations on the original C-code and manually tweak the hardware archi-

tecture in order to achieve a fast implementation.

ROCCC is a C to VHDL compiler designed without extending the C syntax. ROCCC is also

independent of specific FPGA platforms. A productivity gain of 15x is claimed in [130].

HeteroCL [79] presents an approach to separate the algorithmic parts from platform-specific
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optimisation. The target of the proposed language is to separate individual parts of an FPGA

design, e.g., algorithm description, quantisation and memory optimisations from each other.

First the algorithm is described in sequential python through usage of the HeteroCL Appli-

cation Programming Interface (API). Afterwards HeteroCL enables the user to customise the

datatypes of variables used before, customise the memory, instruct the compiler how to im-

plement computational functions and which architecture to use. For example, it is possible to

define the usage of a systolic array or a stencil.

IBM’s liquid metal attempts to target heterogenous computer architectures by using a single

language to program CPUs, GPUs and FPGAs. It uses a Java based language called lime. lime

is an extension of Java which can be executed on the normal JVM. It was first developed to

accommodate FPGA and CPU design and as such Java was extended by additional keywords

and abstractions to enable better mapping to FPGAs. These extensions for example include

the addition of fixed sized arrays, a support for datatypes with an arbitrary number of bits,

the concept of local and global functions and a task-based programming model. The type of

hardware the application runs on gets chosen at runtime based on available capacities in the

data centre [12, 52].

The Barcelona Supercomputing Center proposes the usage of OmpSs@FPGA for the program-

ming of FPGAs in heterogeneous HPC systems. It is based around the OmpSs programming

model which uses task-based parallelism and is used as a testbed for future OpenMP features.

OmpSs@FPGA uses VivadoHLS to create the FPGA configuration. Its major contribution

is the ability to program host and FPGA source code together and describe communication

between both using directives. The Nanos++ runtime is used to automatically resolve data

dependencies and provides the ability to schedule the same task either on the FPGA accelera-

tor or the CPU [17]. It is also possible to integrate FPGA configurations generated by other

tools, e.g., Maxeler’s MaxCompiler, which will be discussed in more detail in section 2.3.5 [43].

In that case the FPGA component will be programmed using Maxeler’s toolflow and only the

integration with the host code is handled by OmpSs.
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2.3.3 OpenCL

OpenCL is a standard that aims at providing a single API to target different heterogeneous

computing platforms with a special focus on parallelisation and allows a programmer to tar-

get different hardware platforms and instruction sets with the same code. Initially it mostly

targeted GPUs and multi-core CPUs and was later extended to Digital Signal Processors and

FPGAs. OpenCL is a widely used HLS tool and will be discussed in more detail here. While

OpenCL does not guarantee optimal performance for the same code on all hardware platforms

it does guarantee correct functionality (if no vendor specific extensions are used) [120].

OpenCL uses a machine model in which a compute device, e.g., a single FPGA accelerator

card, consists of multiple compute units which can implement multiple processing elements.

This allows for a task parallelism in the programming model where a kernel can be executed on

each of the processing elements. A scheduler distributes the computing tasks to the processing

elements, potentially even on multiple compute devices. Additionally, OpenCL supports data

parallelism through vectorised data types.

The machine model also contains a model for the memory of the compute device. Fundamen-

tally it assumes that the memory on the host and the compute device a separate and before

any computation can be executed the data has to be copied from the host memory in the global

device memory. This global device memory would for example be implemented through DDR

memory on the FPGA card. Additionally, there is a concept of constant, local and private

memory. Constant memory is global read-only memory, local memory can be potentially ac-

cessed by all processing elements in the same compute unit and private memory is only used

by a single processing element.

This means that OpenCL has a fundamental different programming model compared to the

HLS tools described in the last section. It has for example inherent concepts of parallelism.

The disadvantage of this solution is that the machine and programming model is very much

tailored to GPUs and significant tool effort is required to provide a mapping to FPGAs. This

also motivates the need for pragma extensions to OpenCL to, for example, define the unrolling



2.3. Programming Frameworks 63

of loops. The support for FPGA programming using OpenCL has been added by both Xilinx

and Altera (now Intel). This means that both major FPGA vendors have released an OpenCL

Software Development Kit (SDK) for FPGAs [4,119,159].

The Intel OpenCL compiler supports the core OpenCL 1.0 features as well as extensions, which

for example support streaming of data from an Ethernet interface to a compute kernel. It also

provides an emulator for functional verification of the created designs in order to speed up the

development time. In addition, a detailed optimisation report and a profiler are provided to

allow easier development of more efficient designs.

Xilinx provides SDAccel which is a programming environment for OpenCL, C and C++. Addi-

tionally to the compiler, it also contains a simulator and profiling tools. Xilinx claims to achieve

up to 20% better results than with hand-coded RTL designs and 3x better performance and

resource efficiency compared to OpenCL solutions from competitors. SDAccel also supports

partial runtime reconfiguration on the FPGAs without halting any other computations running

on the chip [159].

2.3.4 Sandpiper

Sandpiper is the name of a FPGA programming tool developed by Microsoft. They plan to

open source it in the close future and refer to it as a Mid-level Synthesis (MLS) tool [19]. The

main idea is to provide a language which is more appealing to software engineers, but not as

far detached from the hardware as HLS. This means that the language has to be expressive and

imperative but also has to lead to predictable performance. Additionally, they aim to be target

independent. Similar to HLS they want to include integration with software development tools

and platforms and fast, accurate simulators. The analogy used by Microsoft is that MLS should

be similar to C, which hides a lot of the low-level hardware details still present in assembly but

exposes the fundamental hardware characteristics as necessary.

To accomplish this Microsoft’s Sandpiper language uses a spatial and imperative programming

model with C style syntax built around the concept of pipelining. They make parallelism
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and memory access, including different types of memory, explicit which leads to a predictable

performance. While they admit that more lines of code are required compared to HLS, they

still claim a significant productivity improvement over HDLs. On the other hand, the pre-

dictable performance and ability to express parallelism in more detail, targeting more versatile

architectures and designs, provides a significant advantage over HLS.

2.3.5 MaxCompiler

MaxCompiler is a tool developed by Maxeler Technologies and follows the Open Spatial Pro-

gramming Language (OpenSPL) standard [3]. The machine model used by MaxCompiler is

based on dataflow and systolic array concepts [35,76]. MaxCompiler can be seen as a newer ver-

sion of the ASC compiler [95] and uses very similar abstractions and concepts. Since the designs

of this thesis are implemented using the Maxeler toolchain and extensions to this toolchain are

presented as well, this section will focus on this toolchain. First the dataflow and systolic array

concepts are introduced and then the Maxeler toolchain will be discussed in detail.

Dataflow

The commonly used von Neumann machine model is not well suited to describe explicit par-

allelism. Instead, in order to achieve parallelism, in most cases von Neumann machines are

replicated so that they can work on multiple execution threads at the same time. To overcome

these limitations the dataflow model was proposed. Here a program is represented in the form

of a directed graph in which nodes represent operations and the edges the communication be-

tween the operations. Each node can execute if all inputs are ready and generates its output as

a result. Those outputs can then enable further nodes to be executed. If the inputs to multiple

nodes are ready, they can all be executed in parallel. As such the dataflow execution model

provides a natural way to describe massive parallelism [11,33,34,57,60,61,73].

The usage of the dataflow model has seen only very limited adoption outside of academia. The

main reason for this is that there are very few devices which were built around a dataflow model.
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One example for such a device is the dataflow processor presented in [36] which allows for the

native execution of dataflow programs. Similarly, a FPGA softcore based on dataflow has been

proposed in [107]. The authors of [44] argue that dataflow programming languages could also

be used to assist with GPU programming. They motivate this by detailing similarities in the

restrictions in terms of shared state memory access and communication between the dataflow

model and current GPU architectures.

Systolic Arrays

Systolic arrays were first introduced for some matrix operations in [77] and further developed

in [76]. They describe an architecture developed for the design of integrated circuits. The

author notes that there are three main problems faced in the context of hardware design.

These are the high complexity involved, the need to use parallelism since the gate speed does

not increase as fast as transistor density and that I/O bandwidth does not increase as fast

as computational performance. The last problem means that the number of bytes loaded per

operation has to be reduced in order to scale computational performance. Systolic arrays try

to address all these issues.

Systolic arrays consist of multiple cells which are connected to each other. Each cell performs

a simple operation and I/O cells on the edge of the array handle the communication with

elements outside of the array. This design means, that an array is built from small regular

structures with a simple communication and control network, addressing the first identified

issue. The communication between the cells is implemented in a pipelined fashion. Data is

read by I/O cells and flows through the centrally clocked systolic array where the cells perform

their individual operations on the way. This means that cells are operating in parallel addressing

the second issue. The last issue can be addressed by systolic arrays by increasing the number

of cells in the array. Since each cell performs one operation on the data flowing through it the

larger the number of cells in the array the higher the rate of operations per byte read.
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The Maxeler System Architecture

Fig. 2.2 shows the general system architecture of the computer systems targeted by Maxeler.

The system always consists of a controlflow and a dataflow component. This means that a

CPU based host is always working in conjunction with a dataflow component to facilitate the

execution of a program.

The dataflow component is realised through what Maxeler calls a Dataflow Engine (DFE).

A DFE hosts a dataflow processor which is currently realised using FPGA technology but

could also use a dedicated integrated circuit in the future. Additionally, it has access to large

amounts of memory which are not part of the processor. Maxeler calls this memory Large

Memory (LMEM) and on current DFEs it is implemented using DDR memory. Additionally,

the DFE has multiple interfaces to communicate with other devices. First, a DFE has a PCIe

connection to connect to the host. Second, a DFE can have MaxRing which is a proprietary

interconnect to connect multiple DFE and lastly a DFE can have network interfaces. While

the PCIe interface is mandatory the usage of MaxRing and network interfaces is optional.

The host CPU executes a CPU application which can communicate to the DFE using Maxeler’s

Simple Live CPU Interface (SLiC) runtime library. Additionally, MaxelerOS1 is running on the

host machine which consists of the driver and some additional tools for DFE management. The

driver can than communicate with the DFE over PCIe. A Direct Memory Access (DMA) data

transfer from the host memory to the DFE is possible. The dataflow program is executed on

the dataflow processor of the DFE.

The Maxeler Machine Model

This section introduces the machine model used for the dataflow processor. On a high level

the dataflow processor follows the dataflow concept. All interconnects are represented as data

producing or consuming nodes in the dataflow graph. Additionally, other nodes can represent

complex operations that are executed on the data streamed through the dataflow graph.

1Despite the name this is no full operation system. It is a module installed on the host operating system,
which is usually CentOS.
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Figure 2.2: Maxeler Computer System Architecture.

As discussed above in the typical dataflow concept nodes only execute when all their inputs

have data ready. This is not always the case in the Maxeler machine model. The nodes in this

dataflow graph can define which inputs and outputs are currently active to decide if they should

execute. Additionally, they can be configured to always accept or send data independently of

other execution requirements. This can lead to data loss if a node cannot keep up processing,

but this functionality was added to the machine model to support network processing at a

constant bandwidth. The resulting execution is fully driven by the presence of data and the

configuration of the nodes. Each input or output of a node in the graph can operate on its

own clock and at maximum of one datum can be consumed or created per input/output per

clock cycle. Different inputs and outputs as well as nodes can share the same clock. It is

asynchronous and not explicitly scheduled.

As mentioned above the nodes in this high-level dataflow graph can implement complex opera-

tions. Each node can implement a complete functional block with multiple inputs and outputs.

Most of the algorithm is supposed to be implemented in a systolic array style execution logic
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which would be represented by a single node in this high-level dataflow graph. The systolic

array is very deeply pipelined and has a non-interruptible pipeline. It cannot only consist of

logical or arithmetic operations but also contains memory blocks to delay or store data within

the systolic array. This leads to highly predictable timing characteristics in the context of map-

ping the resulting structure to the FPGA. It is also possible to define blocks following different

design patterns within each node of the high-level dataflow graph. All these nodes can make

use of arithmetic and logic functions as well as memory but have to interact with the high-level

dataflow graph.

The Maxeler Programming Model

The programming model used by MaxCompiler is based on this machine model. The high-

level dataflow graph is represented by a Manager. In the Manager the I/O can be configured.

The PCIe connection is implemented as incoming FIFOs for data being sent from the host

and as outgoing FIFOs for the connections from the DFE to the host. Similarly, MaxRing is

implemented based on a FIFO in each direction between the different communication partners.

The network connections are also implemented using FIFOs containing the networking packets.

The packets are split over multiple cycles and on each cycle new data of a packet arrives.

The last type of I/O node in the Manager handles the communication with LMEM. This node

implements a memory controller which Maxeler calls MCP. The MCP can handle multiple read

and write connections to a block of on-board memory. Each stream consists of two connections

which are again implemented using FIFOs. One connection is used to transport the actual data

to or from the memory. The width of this FIFO is as wide as the used memory interface. The

second connection is used to send a command stream to the MCP. These commands consist of

the physical addresses of the on-board memory that are supposed to be accessed and additional

commands, e.g., the number of memory words that should be accessed. The MCP does Round-

Robin arbitration between the different connections to the memory to make sure no single

connection starves. A memory command is only executed if the execution can be atomic. This

means that there has to be enough data in the FIFO for write commands and enough space
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for read commands. There is no automatic handling of read before write or write before read

conflicts, but it is possible to get status streams from the MCP containing notifications of the

executed commands.

Additionally, to the I/O nodes the Manager also contains compute nodes. The most commonly

used compute node is called a Kernel. A Kernel is itself represented by a dataflow graph, which

basically means that a node in the dataflow graph of the Manager can contain a complete

dataflow graph of itself. The dataflow graph of the Kernel can contain multiple inputs and

multiple outputs. Each input or output can be disabled. These I/O nodes interact with the

Manager dataflow graph. The other nodes in the dataflow graph implement operations or

memories. It is possible to map memories in the Kernel to the host, so data can be written into

or read directly from nodes in the Kernel dataflow graph. The nodes in the dataflow graph are

connected by edges, which have a data type attached. As a result, the types of all operations

are well defined. It is important to stress that the dataflow Kernel used by Maxeler is in scope

and usage fundamentally different to the kernel used in OpenCL or the more common term of

a computational kernel as often used in software development.

The execution of the Kernel dataflow graph is fully synchronous. This means that if an active

input has not incoming data or an active output cannot forward data to the Manager the

complete execution stalls. As such not the individual nodes of the Kernel dataflow graph

decide about the execution but the node representing the Kernel on the Manager level. This

also means that the complete Kernel uses the same clock. Following the programming model, a

very deep pipeline from the Kernel dataflow graph is built. This pipeline is not interruptible, so

data send in is always processed to the end. Additionally, the pipeline always gets completely

filled and there is no concept of pipeline bubbles.

The programming model uses the concept of ticks to abstract from this pipeline. The program

presents itself to the user as if everything would happen on a single tick. This means that each

individual pipeline stage operates on a different tick once the execution in hardware is started.

To facilitate this static execution pattern the dataflow graph is scheduled. Each node in the

dataflow graph has a latency, which describes how many cycles are required to execute its
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Figure 2.4: Scheduled dataflow graph to enable
pipelining.

operation. The scheduler uses these latencies to insert FIFOs as required to ensure that data

arrives at the dataflow nodes at the correct time. Fig. 2.3 and fig. 2.4 show how an unscheduled

dataflow graph needs to be scheduled to facilitate correct execution once it gets pipelined.

Additionally, it is possible to manually add scheduling constraints to access data from previous

or future ticks. This allows the implementation of loops in the dataflow graph.

Kernels also have a concept of filling and flushing of the computational pipeline. A fill signal is

used to indicate which nodes become active on which cycle as the Kernel gets executed for the

first time. This might be important to ensure that, for example, an accumulator only operates

on valid data. Similarly, a flush cycle is used to deactivate nodes as the Kernel execution ends.

There are fundamentally three ways to decide when to finish the execution. The first option is

to set the number of ticks the Kernel is supposed to execute from the CPU. The second option

is to generate a signal within the dataflow graph of the Kernel which is used to trigger the

flushing of the Kernel pipeline. Finally, it is possible to disable the flushing logic altogether

and keep the Kernel running indefinitely. This is for example often used in network-based

applications or the inputs and outputs are disabled at some point by the Kernel which results

in a flush like behaviour.

A KernelLite is a more reduced version of the normal Kernel. The main difference is that it does
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not match the stalling pattern of a normal Kernel. By default, all operations in the dataflow

graph of the KernelLite operate on every cycle. It is possible to stall parts of the KernelLite

based on control signals generated in the KernelLite itself.

Finally, ManagerStateMachines provide an abstraction to the programmer which do not map

to systolic arrays. They are based on finite state machines but also have the ability to contain

memories and some arithmetic operations. All registering, pipelining and scheduling has to be

done manually by the programmer.

In this thesis I will mostly use Kernels and in some rare cases ManagerStateMachines. Ker-

nelLites are not used. The reason for this is that ManagerStateMachines and KernelLites are

mostly used in the context of networking, while this thesis focuses on HPC.

Mapping to FPGAs

After discussing the machine and programming model of MaxJ it is important to consider how

these elements are mapped onto the actual hardware to understand design decisions made later

on. The Manager is mostly a structure to organise other components. The I/O interfaces will

be implemented as IP cores. They usually consist of the normal vendor specific IP cores and

some additional control logic developed by Maxeler to integrate the interfaces into remaining

toolflow and for example add the DMA engine talking to the driver on the host in the case of

PCIe or the MCP in the case of LMEM. The connections between the different nodes in the

dataflow graph of the Manager are implemented using FIFOs which will use on-chip memory.

The different nodes in the dataflow graph of the Kernel will be mapped to the appropriate

components of the FPGA. This means that memories will be mapped to on-chip memory re-

sources, multiplications to DSPs and the remainder to LUTs. The edges of the dataflow graph

of the Kernel are implemented using wires and where FIFOs are inserted again on-chip memory

is used. One very important property of this mapping is that the timing properties of Kernels

are highly predictable, and Kernels of similar size will always meet timing closure at similar

frequencies on the same FPGA device. This is a direct result of the deeply pipelined systolic
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array architecture used to implement the Kernel. The mapping for KernelLites behaves in the

same way and ManagerStateMachines are similar, but timing characteristics are a bit less pre-

dictable. However, ManagerStateMachines are usually very small, so that simple optimisations

for the critical path can usually resolve all timing issues.

It is important to note here that there is a direct mapping from every component in the

programming model through the machine model to the FPGA hardware. This makes the

design of FPGA designs using MaxJ highly predictable.

The Maxeler Programming Environment

Maxeler developed the MaxJ programming language which is used to program DFEs using the

programming model described above. MaxJ is a Java based meta language. This means that

it uses normal Java syntax but has a few additional keywords and added operator overloading.

MaxJ needs a modified compiler to be compiled but can be executed on a normal JVM.

MaxJ makes heavy use of metaprogramming. The program written in MaxJ is not mapped

to the FPGA. Instead MaxJ is used to create a program which creates the structures of the

Maxeler programming model. This means for example that the MaxJ code generating a Kernel

describes a program to generate the dataflow graph of this Kernel. As a result, normal Java

structures like for loops and if-else blocks are all evaluated at the compile time of the FPGA

configuration. In the case of loops the code generating parts of the dataflow graph in the loop

body is executed multiple times, resulting in the same subgraph being added to the dataflow

graph multiple times. Similarly, in if-else structures only the branch taken is executed and only

the subgraph generated in this branch is added to the dataflow graph.

This is achieved by calling API provided by MaxCompiler. Only calls using this API generate

any kind of hardware structure. As a result, MaxCompiler is a very confusing name, since

it is only a library which is used to generate code and automate the FPGA vendor toolflow.

The imperative and sequential MaxJ programming language is used to generate highly parallel

structures and MaxCompiler does not have to infer parallelism automatically. All decisions
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relating to parallelism, pipelining or optimisation techniques are either explicitly made by the

programmer or defined by the programming model.

An overview of the complete MaxCompiler toolflow is provided in fig. 2.5. The dataflow

program is written in MaxJ to define the Manager and Kernels (and ManagerStateMachines

as well as KernelLites as required) using the MaxCompiler API. The resulting Java bytecode

is executed to generate the dataflow graphs. MaxCompiler then maps the resulting dataflow

graphs to VHDL and starts the FPGA vendor tool to generate a FPGA bitstream. It is

possible to configure the vendor tools from the MaxJ code in the Manager. This mostly provides

directives to the place and route algorithm to assist with timing closure. The resulting bitstream

is packed into a MAX file which also contains some additional information on the content of the

bitstream and how the software can integrate with it. It is also possible to create a simulated

version of the DFE instead of the bitstream. This is a cycle accurate simulator which runs on

normal CPUs and is supposed to help with debugging. While it is faster than an RTL based

simulation, it is not optimised for performance and will usually be significantly slower than a

normal sequential implementation of the same functionality.
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Figure 2.5: MaxJ toolflow [93].

To ease the design and especially optimisation of applications MaxCompiler generates multiple

reports showing how the dataflow graph is mapped into hardware. An example for this is the

resource annotation, which annotates the resource usage for each line of MaxJ source code, and
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the timing report, which highlights timing violations.

The CPU application running on the host uses the SLiC library to interact with the dataflow

design. SLiC offers functions to, e.g., initiate PCIe data transfers or access shared memories.

Additionally, it has functions for card management, e.g., to allocate a DFE or load a bitstream

on it. The SLiC library has a C API but there are also tools to generate interfaces from other

programming languages like Python or Matlab.

The CPU application is statically linked with SLiC and the maxfile. Additionally, there is also a

shared MaxelerOS library which facilitates the low-lever interaction with the driver. MaxelerOS

also provides a demon monitoring card status and tools for debugging and card management.

It is no full operating system but a tool which can be installed on CentOS based operating

systems. The compiled CPU binary can be executed on any system which has MaxelerOS and

DFEs installed.

Dataflow Engines

Five examples for different DFEs are Maxeler’s MAX4C and MAX5C DFEs, the Amazon EC2

F1 instance and the Xilinx Alveo U200 and U250 cards. The MAX4C and MAX5C DFEs are

developed and sold by Maxeler, while the Amazon EC2 F1 instance is a cloud instance which is

available within the AWS cloud [8]. It follows the same system architecture as Maxeler’s DFEs

and they are fully supported by Maxeler’s toolchain. The Xilinx Alveo cards are FPGA cards

developed by Xilinx to target the data centre market [158]. Currently there are the U50, U200,

U250 and U280 which differ in the used FPGA and the resulting capabilities. All of these cards

use the same system architecture as used by Maxeler and the U200 and U250 are both fully

supported by the Maxeler tools. The MAX4C DFE is based on the Intel Stratix-V 5SGSD8

FPGA, which is a 28nm device, while all remaining platforms use the Xilinx Ultrascale+ FPGAs

realised in 16nm. For the MAX5C and F1 this is a VU9P, for the U200 an XC200 (equivalent

to a VU9P) and for the U250 card an XC250 (equivalent to a VU13P).

The FPGA of the MAX4C DFE has 262,400 Adaptive Logic Modules (ALMs), 1,963 27x27
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bit multipliers and 50 MBit of on-chip memory. The card uses PCIe Gen2 x8 interface to the

host and has six on card 8GB DDR3 Dual In-Line Memory Modules (DIMMs). The Xilinx

VU9P FPGA provides 1,182,240 LUTs, twice as many FFs, 6,840 27x18 bit multipliers and 341

MBit of on-chip memory in the form of two different memory resources. On the MAX5C DFE

and the Alveo U200 and U250 cards the PCIe interface uses Gen2 x8 even though Gen3 x16

is physically available, while the F1 instance always uses PCIe Gen3 x16. The limitations to

Gen2 x8 is due to current limitations in Maxeler’s tools. The MAX5C DFE uses three on-card

16 GB DDR4 DIMMs, while the Alveo U200 card and the F1 instance both use four on-card

16 GB DDR4 DIMMs. On the F1 instance, not all resources are available to the user, since

roughly 30% of the overall on-chip resources are reserved for the AWS shell which manages the

card and provides access to I/O interfaces. The MAX4C, MAX5C and Alveos are used bare

metal (i.e., with no shell) in order to fully utilise the available resources. The I/O capabilities

of the Alveo U200 and U250 are identical, however, the U250 offers 1,728,000 LUTs, 12,288

27x18 bit multipliers and 455 MBit of on-chip memory. The Xilinx VU9P FPGA (as used in

the MAX5C, F1 and U200) consists of three separate die also called SLRs, while the VU13P

(as used in the U250) has four SLRs. An overview of all cards is provided in tab. 2.1.

Table 2.1: Overview of the platforms used in this thesis

LUTs DSPs SRAM PCIe DDR FPGA
MAX4C 262,400 1,963 50 Mbit Gen2 x8 6x8GB DDR3 Stratix V
MAX5C 1,182,240 6,840 341 Mbit Gen3 x16 (only Gen2 x8 usable) 3x16GB DDR4 VU9P

U200 1,182,240 6,840 341 Mbit Gen3 x16 (only Gen2 x8 usable) 4x16GB DDR4 VU9P
U250 1,728,000 12,288 455 Mbit Gen3 x16 (only Gen2 x8 usable) 4x16GB DDR4 VU13P

AWS F1 900,000 5,832 298 Mbit Gen3 x16 4x16GB DDR4 VU9P

Device Portability in MaxCompiler

An important ability of MaxCompiler is, that it can target multiple different FPGA based

accelerators from different vendors. To target different FPGA devices Maxeler generates VHDL

and IP cores specific to the chosen device, invokes the correct toolchain and generates the

required resource usage and timing reports for the user. The user is only required to write

normal MaxJ code without any device specific extensions.

However, isolating the user from other device specific characteristics like the I/O capabilities
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and the FPGA architecture is not that easily achievable and often also not desirable. These

characteristics include the system architecture of the underlying device (e.g., number of logic

resources and multiplier architecture) and target platform (e.g., number of memory channels

and I/O bandwidth). For example, a user should be able to make use of the specific port widths

of the hardware multipliers or use additional networking ports present on one platform and not

the other.

In cases where user input is required to mitigate changes between devices it is crucial to limit

the scope of changes and isolate platform specific code blocks from the remaining code base.

This is achieved by the difference between the Manager and the Kernel as discussed in the

programming model section. As a result, mostly the Manager code has to be changed to deal

with device specific characteristics. Kernels are less affected, and the changes needed in Kernels

are discussed at the end of this section.

To support portability between different FPGA devices, feature specific APIs for components

that might be available on a specific platform were added. These APIs contain for example the

functions required to instantiate networking ports, PCIe connections and DDR interfaces but

also more generic functionality for example, to instantiate Kernels or ManagerStateMachines.

While the former are highly specific to the specific platform the latter are supported by all

devices. This API definition can also deal with platform specific differences and for example

report port widths or, e.g., in the case of DDR, the number of physical DIMMs available. A

simplified example for the PCIe API can be seen in listing 2.1. The API provides platform

independent functions to create PCIe interfaces to stream data to and from the host.

Listing 2.1: Simplified example for the ManagerPCIe API.

1 public interface ManagerPCIe extends ManagerIO {

2

3 public DFELink addStreamToCPU(String name);

4

5 public DFELink addStreamFromCPU(String name);

6
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7 }

As a result, for each platform supported in MaxCompiler there exists an appropriate platform

specific Manager using this API. Due to this object orientated approach it is possible to write

platform agnostic functions which only operate on the defined APIs.

An example of this is shown in listing 2.2. A Java interface for platform specific Managers is

defined which provides access to the functions required to create a compute Kernel and PCIe

connections. Within this interface a default implementation is created which instantiates a

Kernel and connects it to PCIe and DDR (LMEM). Since the connection to DDR is platform

specific the interface only defines a function which provides access to the required hardware

interface. This function has to be implemented by the platform specific Manager.

Listing 2.2: Using object orientation to isolate platform specific from generic code.

1 public interface ExampleManager extends ManagerKernel , ManagerPCIe {

2

3 default void createDesign () {

4 final KernelBlock kernel = addKernel(new ExampleKernel(

makeKernelParameters("ExampleKernel")));

5 kernel.getInput("x") <== addStreamFromCPU("x");

6 addStreamToCPU("y") <== kernel.getOutput("y");

7 LMemInterface iface = createLmemInterface ();

8 kernel.getInput("z") <== iface.addStreamFromLMem("z",

MemoryAccessPattern.LINEAR_1D);

9 }

10

11 public LMemInterface createLmemInterface ();

12

13 public class ExampleU200Manager extends XilinxAlveoU200Manager

implements ExampleManager {

14 public ExampleU200Manager(EngineParameters params) {
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15 super(params);

16 createDesign ();

17 }

18 @Override

19 public LMemInterface createLmemInterface () {

20 getLMemGlobalConfig ().setMemoryFrequency(LMemFrequency.

LMEM_1200MHZ);

21 return addLMemInterface ();

22 }

23 }

24

25 public class ExampleMax4CManager extends MAX4CManager implements

ExampleManager {

26 public ExampleMax4CManager(EngineParameters params) {

27 super(params);

28 createDesign ();

29 }

30 @Override

31 public LMemInterface createLmemInterface () {

32 getLMemGlobalConfig ().setMemoryFrequency(LMemFrequency.

LMEM_800MHZ);

33 return addLMemInterface ();

34 }

35 }

36 }

In the lines 13 to 23 a platform specific Manager for the Xilinx Alveo U200 card is created.

It calls the interface function to create the design and implements the function to create a

DDR interface. Similarly, a Manager for Maxeler’s MAX4C DFE can be created. It should

be noted that the implementations for both cards are nearly identical and mainly consist of

Java boilerplate code in this simplified example. However, the creation of the DDR interface is
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actually different. The reason for this is that the MAX4C DFE is based on DDR3 technology

while the Alveo U200 uses DDR4. As such different memory frequencies are supported. Within

the platform specific Manager only supported configurations are offered, but by exploiting the

object orientated API based approach to isolate these functionalities, the programmer is able

to share as much code as possible between the different platforms to ease maintainability.

A similar, but slightly more manual, approach can be used to isolate other architecture specific

features like native hardware multiplier sizes and I/O port widths. MaxCompiler has a fully

customisable type system. As such it is possible to define the appropriate types for each

platform within the platform Manager and pass them to the Kernels. Similarly, the Kernels

can query port widths from the Managers and instantiate functions performing the appropriate

aspect change automatically. These functions assist the programmer in developing applications

which are deployable on different hardware targets.

2.3.6 Comparison

A comparison between the four main tool options is provided in tab. 2.2. It should be stressed

that the classification in terms of possible customisation, designer productivity and expected

performance is not the result of an elaborated objective study, but my subjective opinion

based on functional considerations, my personal experience and the literature I have read

during my research. Obviously especially performance can differ significantly between use

cases. However, it is also clear that the machine model the HLS languages were originally

developed for introduces additional challenges to the toolchains.

To provide an example for these challenges one can consider the simplified implementation of

a von Neumann architecture in fig. 2.6. Fundamentally, all instructions have to be loaded

from memory. Additionally, the data the operations are executed on have to be loaded from

memory as well and the resulting data are written back to memory in the end. While caches

and registers can alleviate some of the disadvantages of this architecture the languages still

assume that data are constantly stored and loaded which will result in increased memory

bandwidth requirements. It is normal to store intermediate results of a computation in an
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Table 2.2: Comparison between the different Programming Frameworks.

Framework HDL Sequentiell HLS GPU based HLS MaxCompiler

Machine model None Von Neumann machine

Compute device
with hierarchy of

compute units
and processing elements

as well as predefined
memory hierarchy

Custom dataflow
based machine model

Programming model
Based on spatial

structures and notion
of time

normal imperative
programming model with

annotations to direct
hardware compilation

Data and task
based parallelism

and annotations to
direct hardware

compilation

Custom dataflow
based programming
model build around

Managers and Kernels

Connection between
source code and

hardware
implementation

Direct. The hardware
structure is specified
in the source code

Indirect.
The behaviour of
an algorithm is

described by the program
and the annotations only

direct the tool.
The tool infers the
resulting structure

of the hardware

Indirect.
The behaviour of
an algorithm is

described by the
program and the
annotations only
direct the tool.
The tool infers

the resulting structure
of the hardware

Mostly direct.
There is a direct relation

between every source
code line written
and the resulting

hardware implementation.
The remaining properties

can be inferred from
the machine model.

Possibility for
Customisation

All designs possible.
Only limited by the

targeted
hardware / technology

Limited.
A set of design patterns,

optimisation schemes
and architecture options

can be used

Limited.
A set of design

patterns, optimisation
schemes and

architecture options
can be used.

Focus on processing
elements which

are mapped to the FPGA

High.
While the machine
and programming
model is mostly
aimed at high

throughput implementations
using systolic arrays,

it is possible to
implement completely
arbitrary functionality.

Additionally, the architecture
within the systolic
array structure is

highly customisable

Designer
Productivity

Low Very High

High.
A bit harder to
use compared to
sequential HLS,
but still easily
accessible for

software developers

Medium.
While MaxJ is a

modern software language
fundamental hardware

design principles
need to be understood.

Greater space of
architectural options

requires more knowledge
by the designer.

Metaprogramming
and programming

model not as
widely known

Expected
Performance

High.
HDLs enable many

low level optimisations.
However, due to
the complexity of
the design system
level optimisations
can be challenging

Good.
HLS tools will be
able to efficiently

implement the predefined
design patterns and
provide tool support

for optimisations.
However, it will, for
example, be difficult

or impossible to optimise
memory access patterns

on and off chip to maximise
bandwidth and reduce
the number of memory
accesses per operation

Good.
HLS tools will be
able to efficiently

implement the predefined
design patterns and
provide tool support

for optimisations.
However, it will, for
example, be difficult

or impossible to optimise
memory access patterns

on and off chip to maximise
bandwidth and reduce
the number of memory
accesses per operation

High.
While MaxCompiler

will in some cases
introduce slight overheads

due to the machine
model, the designer

has access to
some low level

optimisations and some
will be performed

automatically. Additionally,
the higher level

of abstraction will
enable rapid system
level optimisations

Predictability

Area usage will
be easy to predict

due to direct relationship
between source code

and hardware.
Achievable frequency

is hard to predict
and depends on

implementation by
the designer

Low.
Only possible once
implementation is

complete

Low.
Only possible once
implementation is

complete

Very high.
Area usage can

be predicted since
implemented hardware is

predictable and controllable
by designer.

The systolic array
architecture makes

achievable frequency
predictable as well
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array when writing an imperative sequential program. The HLS toolchain has to identify these

intermediate results to avoid the need to store them in memory. In contrast the systolic array

structure used in the Kernels of Maxeler’s dataflow-based programming model is designed to

address precisely this issue. As a result, the toolchain design is simplified, and the quality of

result is less dependent on how good the compiler is at optimising the code.

CPU

Function
Unit

Memory
Controller

Memory Instructions

Compiler

.c

Data/Instructions

Data

Figure 2.6: Control-flow system using von Neumann architecture.

MaxCompiler attempts to find a balance between the fine-grained control of HDLs and the

programmability improvements of HLS. The target is to automate as much as possible, without

impacting the ability of the designer to control the actual hardware generation. In order to

address this balance, usually there is a direct relation between every line of MaxJ and the

generated hardware. This enables to predict the final system in terms of performance and

resource requirements which will become very important in later chapters of this thesis.

This design decision is the main reason for the usage of MaxCompiler in this thesis. It enabled

me to quickly design architectures in great detail and map them onto the FPGA without

being limited to only the architectures supported by the toolchain. I was able to quickly

implement even complicated applications. The above effort would have required significantly

more development time to achieve the same while using one of the HDLs.

A second reason is the integration of MaxCompiler into current European research projects

which explore the use of FPGAs in HPC systems of the future. Most notable the EuroEXA
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project [2] which develops a testbed for future FPGA based exascale machines. One of the main

differences in the employment of FPGAs in that project, is that the dependence onto CPUs

is reduced and FPGA are usable as a standalone device [80, 81]. Due to the integration of

MaxCompiler into this approach the applicability of the work in this thesis is not only provided

for current but also potential future systems.

The third and final reason is that Maxeler provided full source code access to MaxCompiler to

me. As a result, I was able to make changes to a commercial FPGA toolchain to implement

and test ideas I developed during my research.

2.4 Performance and Area Prediction Methodologies

For the development of FPGA applications, it is crucial to predict performance and area usage.

Only then is it possible to assess if the porting to FPGA will yield the required benefits to justify

the required system and development costs. Especially area usage predictions are important to

avoid a case in which at the end of a long development project the design does not fit into the

device potentially resulting in the need for a complete redesign.

The authors of [50] propose a methodology, which can be used to predict the achievable speed-

up for a given application on a specific FPGA platform. The target is to quickly perform a cost

benefit analysis for a specific acceleration project and provide information necessary to decide

whether a given acceleration project is worth doing.

Their methodology focuses on predicting host to accelerator communication time as well as the

time needed to perform the computation. The prediction of the communication time assumes

an either single or double buffered architecture, where a working set is written to a buffer,

processed and then written back. The computational performance is based around the number

of operations that are needed to process a given element and the number of operations that

can be performed on the FPGA per cycle. However, the computational performance is only

modelled to a certain level of accuracy and then an inefficiency factor is used to avoid overly

optimistic predictions.
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The authors also mention the need to predict the resource usage and provide some guidelines

on how this might be achieved, but do not present any examples where this was done. The

prediction of the speed-up for the three presented use cases has an error of up to 40%.

In [116] a framework for the performance and power prediction of standard cell-based accelera-

tors is presented. It uses the intermediate representation generated by a just-in-time compiler to

capture the algorithm described in a C program. This is then used to generate a dynamic data

dependence graph to represent the accelerator. The authors mention that a problem of this ap-

proach is that representative input data are needed to capture the intermediate representation

and operations like system calls and dynamic memory allocation are not considered.

The tool automatically optimises this graph and analyses data dependencies to capture an

accurate model of the accelerator. The framework includes simulators for memory and cache

behaviour, but it is not possible to influence the optimisations performed manually or describe

a target architecture. Instead, the C algorithm has to be changed and the framework performs

DSE for a set of parameters like loop unrolling factors and frequencies.

The tool is validated against RTL and HLS designs and the reported error for the tested

benchmarks is less than 1% for the execution time, less than 5% for the power prediction and

less than 6.5% for area prediction.

In [91] a similar technique is used, to estimate the resource usage for HLS tools. The input

is C/C++ code with a selected number of HLS pragmas, like loop pipelining. The tool uses

the application trace to create a dynamic data dependence graph which is then optimised.

Analytical equations are used to predict the resulting area usage with an error of less than

10%. Still the tool makes multiple assumptions, like usage of only single precision floating-

point arithmetic. As such only a limited number of operations is required. The port width of

on-chip memory is ignored and only the total number of bits is observed. The proposed tool

does not model I/O, but only the FPGA fabric itself.

The authors of [166] follow a similar approach. The resource usage and execution time of

applications synthesised using HLS tools are predicted, by supporting a limited number of
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pragmas and applying analytical formulas. In contrast to [91] more pragmas are supported,

and more detailed analytical formulas are used to calculate the hardware usage. However, the

logic usage is ignored completely.

The authors spent considerable effort to predict the latency of the application with a high

degree of accuracy. In order to do this most optimisations performed by the used HLS tool are

modelled, including scheduling of the operations. While this technique leads to a low error, it

will not adapt well to different HLS tools or even new versions of the same tool. I/O bandwidth

limitations are not considered.

The developed tool is integrated in a tool flow to automatically perform DSE. A brute force ap-

proach is used to consider all possible combinations of pragmas, and the performance prediction

is used to identify the most promising design point.

In contrast in [32] machine learning is used to predict hardware usage and timing characteristics

for HLS toolchains. Different machine learning methods are used to reduce the error of the

HLS toolchain estimations significantly, but the method requires a completely developed design

as input.

In [30] the normal Roofline model [143] is extended to also support FPGAs. This is achieved by

for example considering area requirements. The model assumes that FPGA implementations

always make use of processing elements. The area usage for one processing element is measured

by performing place and route. Additionally, the performance of a single processing element can

be measured. With linear interpolation the maximum number of processing elements possible

can be calculated which also provides the potentially best computational performance. The

authors note that linear scaling is a simplification.

The I/O bandwidth is measured in bytes per second that can be transmitted. Together with

the computational performance this provides the maximum achievable performance on a given

platform. The same authors test their model on more use cases and with a different HLS tool

in [31].

To summarise there is a multitude of approaches to predict system performance and resource
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utilisation of varying complexity. Most of them focus on specific use cases and assume a certain

architecture or toolchain. Some use advanced predictive analysis techniques like ML, while

others use a simpler linear equation. However, with increasing complexity of the implemented

design it becomes harder and harder to understand what causes performance bottlenecks or

high resource usage. As a result, it is not easily possible to improve the system design to

improve performance or to save resources. Some of the methods require a complete or partial

hardware design leading to design iterations in hardware, if the performance is supposed to

be improved. To alleviate these problems this thesis will propose to use simple equations to

predict system performance and resource usage at a high degree of accuracy.

2.5 Development Methodologies

To assist programmers with the design of FPGA based applications multiple development

methodologies have been proposed.

In [111] a methodology based on hardware description languages is presented. It focuses on

a top-down approach, starting with a specification, potentially even in an HDL, and leading

towards a physical implementation via the stages of architectural design and logic design.

The methodology puts specific emphasis on specification, documentation and testability via

simulators at every stage in the design process. It is mentioned that larger blocks of a specific

design can be reused in other designs. The paper focuses in large parts on available tools, their

pitfalls and shortcomings as well as design guidelines but there is no guidance provided on the

general system design.

The authors of [101] propose a methodology specifically designed for industrial control systems.

The methodology is independent of the used language but requires a functional description of

the developed controller on the system, behavioural, RTL or synthesis as well as physical level.

The reason for this is the ability to test, debug and verify the system under development at

every stage of the development process, in which the implementation is incrementally refined.

The methodology itself has three major parts. The first is the already mentioned algorithm
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refinement, which for example includes a transformation into fixed-point arithmetic and po-

tential algorithmic transformations used to reduce area usage or increase performance. The

second part is the ability to reuse modules between different designs for example in the form

of IP cores.

The final part is called ”A3” methodology. Most importantly it refers to a process with the

goal of finding the optimal solution within the system constraints. These constraints include

the physical limitations of the hardware device, like timing characteristics and area constraints

but also the requirements that the controller needs to meet operational requirements in order

to produce a working system.

This is achieved by transforming the arithmetic part of the controller into a dataflow graph,

then multiple possible hardware implementations for this dataflow graph are implemented and

synthesised, thus enabling the designer to pick the best solution. The possible implementations

are mostly differentiated by the fact that hardware units, like adders and multipliers, are reused

for different operations needed by the algorithm.

While this proposed solution might be feasible for industrial controllers and very small dataflow

graphs, it is not feasible for dataflow graphs of sufficient size, since the number of possible

implementations increases exponentially with the algorithm complexity. Performing place and

route for all these possible design points will require a significant amount of time.

In [139] a design methodology based on OpenCL is discussed. It is similar to the normal CPU

based methodology, where an initial algorithm implementation is incrementally improved, using

tool reports and profiling tools. The authors of [140] provide another methodology for OpenCL

based FPGA application optimisation. The OpenCL code is parsed using a LLVM based

frontend to collect the LLVM Intermediate Representation (LLVM-IR), which is then analysed.

The tool estimates computational performance based on the latency of loops and the level of

parallelism and predicts memory access time using a drastically simplified memory efficiency

model. The resource usage of the design is measured by running place and route.

The authors embrace a CPU based methodology of incremental improvement, where an ini-
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tial algorithm is improved. They mention by themselves, that for example a memory bound

algorithm might require a complete rewrite to resolve this bottleneck. The proposed tool pro-

vides four simple metrics, which are supposed to guide the programmer on how to improve the

existing application. These metrics are the utilisation of the resources, the utilisation of the

memory bandwidth as well as the balance between different computational kernels and the size

of the dataset used.

The tool is evaluated on a few simple use cases like matrix multiplication and k-means, where

the runtime is predicted with high accuracy and the proposed metrics show the bottlenecks of

the design. As such the authors manage to achieve multiple orders of speed-up on their base

implementation by following the suggestions made by their tool.

In [103] an execution environment similar to the OpenCL approach is used. The target ap-

plication is written on a fully functional level without any expression for parallelism and is

then automatically transformed into multiple variants in an intermediate representation. The

roofline model is used to automatically explore the design space and implement the pareto-

optimal implementation.

Similarly [70] automates the complete design process including design space exploration using a

performance model consisting of analytic equations and machine learning models. The tool uses

an intermediate representation which contains a set of parameterizable architectural templates.

Overall, the approach is based on parallel patterns which can be used to describe the parallelism

within the application by the programmer. Again, the authors assume an architecture in

which all initial data as well as results are copied into DDR. No direct communication between

the FPGA fabric and other components is possible. The performance model uses analytical

equations and additional machine learning models to also model the optimisations and decisions

made by the synthesis tool. They test their tool on multiple computational kernels and achieve

speedups between 0.1x and 16.73x. The authors only use small benchmarks to validate their

work and even for those simple examples the speedup over CPUs is often limited. The time to

transfer the initial data into DDR memory is ignored.

All these approaches might be feasible for small applications. For bigger applications, place
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and route time as well as the need to rewrite the complete application, based on bottlenecks

discovered late in the design process, will become prohibitive.

2.6 Applications used for Evaluation

To evaluate the techniques, tools and methodology developed in this thesis different real ap-

plications are employed. In this section a quick introduction for each of them is provided

summarising the reasons for selecting this specific application, the desired functionality as well

as the current state-of-the-art.

2.6.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of Neural Networks (NNs) which contain

convolutional layers. Convolutional layers perform a convolution between the input data and a

set of weights having the same dimension, called a kernel, to produce the input to the activation

function. As a result, convolutional layers can extract proximity-based features.

CNNs are often used in the context of image processing. The convolutional layers are used to

extract features from an image and have shown good results to common problems including

recognition and detection tasks. The kernels are usually shared for all pixels of the same input

channel. This parameter sharing leads to an equivariance to translations, which is often desired

in image-based problems. Additionally, the parameter sharing reduces the overall memory

requirements to store all the required weights. It should be noted that CNNs often require

significant compute performance to calculate all the Multiply Accumulate (MAC) operations

required for the convolutions [15].

Eq. 2.1 shows how the output of a (2D) convolutional layer is calculated, where Z represents

the output, X the input, K the weight kernel and b the bias. Additionally, i is the output

number, j and k are the x- and y-positions, l represents the input number and m and n are
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the x- and y-offsets in the convolution [?].

Zi,j,k =
∑
l,m,n

Xl,j+m,k+nKi,l,m,n + bi (2.1)

Another commonly used technique in CNNs is called pooling. Pooling combines multiple values

of the input into a single output value. While this aggregation of information has the risk of

data loss it also provides spatial invariance and reduces the complexity of the following layers.

Finally, the last part of a network is often composed by a standard NN, implemented as the

weighted sum of the inputs plus a bias term, where the weights and the bias represent the

learned coefficients. These last layers are used to perform the final classification/recognition of

the input.

In order to introduce nonlinearities into the CNN model, activation functions are usually applied

to the output of the convolutional layer. Possible activation functions include sigmoid, SoftMax,

the Rectifier Linear Unit (ReLU) and arctangent. In particular, the ReLU function is applied

after the convolutional layer, helping to improve generalisation of the network [163].

One widely used CNN is VGG-16 [118], which has 13 convolutional layers and 3 fully connected

layers. The convolutional layers are distributed into five different groups. In each of those groups

the input size and the number of outputs stays constant and between two groups pooling is

applied. All layers apart from the last fully connected layer use the ReLU function as activation

function, while the last layer uses SoftMax. The input sizes and the numbers of outputs can

be found in table 2.3.

All convolutional layers of VGG-16 use precisely the same filter size of 3 by 3 data elements.

This simplifies any potential hardware implementation.

In recent years there has been significant commercial and academic interest in high performance

implementations of CNN applications. As a result, I decided that the implementation of the

widely used VGG-16 CNN provides a good opportunity to test the development methodology

proposed in this thesis. There are two main reasons for this decision. First, since the proposed
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Table 2.3: VGG-16 layer properties

Layer Group Input Size Outputs
conv1 224x224 64
conv2 112x112 128
conv3 56x56 256
conv4 28x28 512
conv5 14x14 512

fc6 25,088 4,096
fc7 4,096 4,096
fc8 4,096 1,000

methodology targets HPC systems selecting a common HPC use case provides a good opportu-

nity for evaluation. Second, due to the high interest into implementing CNNs on FPGA based

platforms there is a wide body of current related work which can be used for comparison. This

enables a fair comparison on a similar set of know optimisations.

To enable this fair comparison, I only consider work which was developed in the same time

frame (2017) as the implementation presented in this thesis. The progress in the field of CNN

acceleration in the last few years has been significant. Newer work will outperform the CNN

implementation proposed in this thesis and the related work presented in this section by multiple

factors. It will therefore not be helpful to evaluate the proposed methodology but only to show

how badly the proposed implementation has aged.

Interest into high performance implementations of CNNs increased during the last few years.

The most notable work is the TPU chip, which is specifically designed for neural networks [59].

The TPU was developed by Google for their machine learning needs and offers up to 200x speed-

up compared to conventional CPUs. The major TPU advantages are the short computation

latency and up to 10x cost reductions compared to other solutions.

The remainder of this section compares different FPGA implementations for CNNs. I compare

the achieved performance while executing a CNN (VGG-16 if not stated otherwise).

One notable work is Caffeine [164], in which the authors demonstrate the implementation of

a general framework based on a matrix multiplication architecture. The proposed architecture

uses an HLS generated systolic array which exploits data locality thanks to a weight-major
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mapping technique for both convolution and fully connected layer execution. Their implemen-

tations, integrated with the deep learning framework Caffe, obtained 354 GOPS throughput

when configured as VGG-16 on the complete network and 488 GOPS if only the convolutional

part is considered.

A different approach is reported in [89]. The authors perform an analysis of the CNN computa-

tion loop structure and compare different optimisations (in particular loop unrolling, tiling and

interchange). Their analytical model based on the loop order and parameters is then used to

perform the DSE. The best design found in the work uses loop unrolling of the external loops

of the convolution layer. This allows to reuse the weights and minimise memory accesses and

size requirements, and to achieve 645 GOPS performance.

In [142], the authors propose an end-to-end automation flow for systolic array design synthesis.

A 2D systolic array structure improves the timing and the data reuse of the design and is

obtained from the analysis of the nested loops implementing the considered algorithm. By

performing a two-phase DSE (first generic and then platform-specific), the authors are able to

map an arbitrary user-defined CNN algorithm to few pre-designed templates. As a result, an

example VGG-16 design achieves 1.17 TOPS.

Adyonat et al. present another accelerator for CNNs called DLA [13]. In their work, they

describe a methodology to reduce bandwidth requirements through the use of stream-buffers in

conjunction with batching, and to reduce the number of MAC operations by using the Winograd

transformation [145]. These optimisations allow the proposed work to obtain a 1.38 TFLOPS

running the AlexNet network.

Zhang et al. [165] propose a 2D interconnection between the different Processing Elements

(PEs) in the design, enhanced by a 2D dispatcher and a shared buffer technique to prevent

memory duplication and optimise the use of on-chip memory and required bandwidth. The

proposed work was thus able to reach a 1.79 TOPS throughput running VGG-16.

In [87] the authors use the 2D Winograd algorithm (instead of the 1D proposed in [13]) and

buffer the needed data in a line buffer. The architecture performs the 2D Winograd over a tile
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with a fixed stride, in order to compute multiple results at the same time. In this way, the

authors have been able to implement an automatic tool flow and reach 2.94 TOPS with their

VGG-16 implementation and 3.04 TOPS if only the convolutional layers are considered.

Tab. 2.4 provides an overview of the related work. For the Intel based platform the number of

multipliers used is provided and not the number of used DSPs. This is the case since on this

Intel platform a single DSP can be used to implement two multiplications for the datatypes used

in the work that is considered here. Additionally, in order to compare the performance between

different devices easier I added a normalised performance figure. For this the performance in

TOPS is divided by the number of multipliers and the frequency. This results in the average

number of operations executed per multiplier on one cycle. One can see that most of the

related work has a relatively similar normalised performance between 1.1 and 1.7 operations

per multiplier. However, the work presented in [87] manages to outperform the other related

work significantly due to the usage of the 2D Winograd algorithm.

Table 2.4: CNN Performance comparison.

[164] [89] [142] [13] [165] [87]
Implemented

Network
VGG-16 VGG-16 VGG-16 AlexNet VGG-16 VGG-16

Device Xilinx VX690T Intel GX1150 Intel GT1150 Intel GX1150 Intel GX1150 Xilinx ZVU102

Precision 16 bits fixed 8-16 bits fixed 8-16 bits fixed
16 bits

shared exponent
floating-point

16 bits fixed 16 bits fixed

Freq (MHz) 150 150 231.85 303 385 200
Logic cell (K) 300 161 313 246 - 600
SRAM (Kb) 1, 248 × 18 1, 900 × 20 1, 668 × 20 2, 487 × 20 1, 450 × 20 1, 824 × 18
Multipliers 2,833 3,036 3,000 2,952 2,756 2,520

TOPs 0.488 0.645 1.17 1.38 1.79 3.04
Normalised
Performance

OP/Multiplier
1.148 1.416 1.682 1.543 1.686 6.032

2.6.2 Asian Option Pricing

An option is a financial instrument which represents a contract between at least two parties.

Within a predefined time horizon the holder of an option has the right, but not the obligation,

to buy or sell the asset the option is referring to at a predefined price. In the case of Asian

options, the outcome is depending on the average price during the predefined time horizon and
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not only on the prize at the valuation date. As a result, calculating the value of an Asian option

is more challenging than for other options.

The evaluation of the option payoff requires an approximation, as the probability distribution of

the variable defining the option payoff at valuation date has no closed-form solution. Curran’s

approximation algorithm [29] is widely used in the financial industry to calculate the value of

an Asian option due to its high accuracy. The algorithm calculates the expected option payoff

at multiple averaging points. This means that in order to successfully price an Asian option

prices at multiple averaging points for multiple possible market scenarios have to be calculated.

This is compute intensive and acceleration is desirable as financial institutions carry out option

pricing repeatedly and over large datasets.

In [106] a dataflow architecture of the Curran approximation algorithm for a MAX4C DFE

is presented. I use this implementation of Asian option pricing to evaluate methods and best

practices to support multiple different FPGA platforms from a single code base. Asian option

pricing is highly relevant in the context of risk calculations which itself is a prominent use

case in the HPC domain. As such this application provides a good example of a typical HPC

workload. Additionally, the usage of this application was highly practical, since I had full access

to the source code and documentation and did not need to implement another application from

scratch. This allowed me to focus on the process of porting the application to multiple platforms.

Implementing the Curran approximation algorithm involves accelerating the calculation of a

Normal Cumulative Distribution Function (NCDF), the most compute-intensive part in the

approximation model. The authors note that mapping this computation to an FPGA is very

resource intensive due to the reliance on floating-point computations and non-elementary func-

tions such as exponential, square roots, and logarithms. As a first step, they carried out several

algorithmic and numeric optimisations which include reordering of computations, changing the

approximation model for the NCDF, and replacing floating-point with fixed-point calculations,

such that the output satisfies an application-specific accuracy requirement of 9 decimal places.

Next, they developed a dataflow architecture which consists of a chain of five asynchronous

Kernels, each implementing different stages of the Curran’s algorithm. Stages two and four can
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benefit from parallelism, as each stage carries out loop computations related to the number of

averaging points n in the option. However, attempting to fully unroll these loops is challenging

because the number of averaging points is a runtime parameter that changes for different option

settings. Also, for large numbers of n, loop unrolling will be limited due to FPGA resource

constraints. Hence, the authors developed a parametric design where loops are partially unrolled

by a factor of k and an arbitrary number of averaging points is supported at runtime.

Fig. 2.7 shows an overview of the architecture. Each Kernel is annotated with the main tasks

it fulfils and it also shows the communication pattern between the different Kernels. The

Kernels one, three and five operate independently of the number of averaging points used for

the calculation, which also means they operate for a fixed number of cycles for each scenario

and option. Kernels two and four are configurable in size through the parameter k and the

number of cycles they are executed for needs to be adjusted based on the number of averaging

points, since k averaging points are processed per cycle.

The degree of parallelism k is a design parameter in the dataflow implementation that can

be easily tweaked to maximise performance and resource utilisation according to the targeted

device. For the targeted MAX4C DFE a parallelism of k = 13 was found to be the best

value. The accelerated Asian option pricer was benchmarked in a Value-at-Risk application

that evaluates 5,000 scenarios with 10,000 options each. The authors achieve speed-ups of

278.3x and 9.2x comparing to baseline software versions that were executed on a 48 core CPU

either single-threaded or multi-threaded, respectively [106].

2.6.3 Monte Carlo Based Dose Simulation for Radiotherapy

Radiotherapy is a commonly used treatment for various cancer types. High doses of radiation

are used to kill cancer cells. Modern radiotherapy relies on an intensity modulation technique

that aims to deliver high dose gradients to cancerous tissues while sparing the surrounding

healthy organs as much as possible. This is achieved by setting up a therapy treatment plan

which takes into account the anatomy as well as the clinical case and dose delivering machine.

In order to validate and optimise such therapy plans, the expected spatial dose distribution
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PCIe Input

K1:
Receive data, calculate constants for K2

K2:
Calculate adjusted price of the option. Requires a sum over all averaging

point. Calculates k partial sums every cycle.

K3:
Calculate constants for K4

K4: 
Calculate price. Needs to evaluate NCDF function. Requires a sum over all

averaging point. Calculates k partial sums every cycle 

K5:
Final calculations and accumulate final result for all options in one

scenario

PCIe Output

Figure 2.7: Architecture of the Asian option pricing application proposed in [106].
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within the patient has to be simulated before the actual treatment. This is often implemented by

Monte Carlo methods which simulate the pathway of millions of radiation particle trajectories

as they enter the patient body. These simulations are highly accurate on the one hand but

require relatively long computation times on the other hand.

Using Monte Carlo simulations to calculate the dose distribution in radiotherapy is widely

considered to be the most accurate method. The software simulates particle interactions and

calculates the dose deposition along the trajectories following fundamental physical laws. How-

ever, this accuracy comes at a cost, since a significant amount of particles need to be simulated

to achieve statistically significant results.

This work will focus on the Dose Planning Method (DPM) [115] implementation of a Monte

Carlo technique that simulates the dosimetric effect of high energy photons in organic materials.

This algorithm is specifically optimised for radio therapy. DPM provides implementations for

all relevant photon-matter and electron-matter interactions that occur in radiotherapy. High

efficiency is achieved by optimising the physical interaction description as well as their imple-

mentation on modern processors. The authors distinguish between hard interaction processes

which have to be calculated analogously and soft interactions which can be accumulated and

only simulated once over a certain distance. Especially the latter technique reduces the simu-

lation time of electron interactions significantly.

In DPM the patient data is represented in a so-called patient cube. This cube is discretised

into multiple voxels with a given resolution (e.g., 1 cm cubed). Each voxel contains information

on its material, e.g., tissue, bone or water, and the accumulated dose. During the simulation

photons and electrons travel through this patient cube and the relevant interactions that occur

are simulated to calculate the dose deposited.

The deposited dose is calculated as follows. Initially particles are generated with a direction

and energy and multiple fuel values. While a particle moves along its trajectory fuel is used

up and once it runs out an interaction occurs. Depending on the type of fuel a different

interaction subroutine is executed. This can be a hard inelastic scattering interaction modelled

according to Moller, an elastic particle scattering using the Hinge theory or the bremsstrahlung
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interaction modelling a change in speed of charged particles. These subroutines calculate the

radiation deposited in the voxel in which the interaction occurs as well as the new values for

the fuels, the particle energy and the new trajectory. Once the energy of the particle falls below

a threshold it gets absorbed leading to further dose deposition.

In order to reach statistically significant results more than 100 million particles have to be sim-

ulated according to medical experts [26]. Additionally, for the use case of adaptive radiotherapy

it is important to finish the complete simulation in less than one second to adjust for natural

patient movements like breathing. Alg. 2.3 provides a simplified pseudocode description of the

DPM algorithm.

Algorithm 2.1: Simplified pseudocode for the DPM algorithm

1 input : n = number o f p a r t i c l e s to s imulate

2 begin

3 f o r 0 to n :

4 Crea t ePa r t i c l e (E)

5 I n i t i a l i s eC on s t a n t s (E)

6 I n i tFu e l s (E)

7 while E not absorbed :

8 begin

9 // The f o l l ow i n g func t i on dec ide s i f an i n t e r a c t i on occurs , and i f so , which one

10 BurnFuel (E)

11 ModelContinuousEnergyLoss (E)

12 DepositDoseBasedOnContinuousEnergyLoss (E)

13 i f E. energy <= thre sho ld :

14 AbsorbPart i c l e (E)

15 DepositDoseFromAbsorption (E)

16 end i f

17 MovePartic leAlongTrajectoryThroughPatientCube (E)

18 i f Moller i n t e r a c t i o n occured :

19 Mol l e r I n t e r a c t i on (E)

20 DepositDoseFromMoller (E)

21 end i f

22 i f Hinge i n t e r a c t i o n occured :

23 Hinge In t e rac t i on (E)

24 DepositDoseFromHinge (E)

25 end i f

26 i f Bremsstrahlung i n t e r a c t i o n occured :

27 Bremsst rah lungInte rac t ion (E)
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28 BremsstrahlungGeneratePhoton (E)

29 BremsstrahlungRefue l (E)

30 DepositDoseFromBremsstrahlung (E)

31 end i f

32 i f E. energy <= thre sho ld :

33 AbsorbPart i c l e (E)

34 DepositDoseFromAbsorption (E)

35 end i f

36 end while

37 end f o r

38 end

This application is selected to evaluate the overall development methodology. Due to the

stochastic nature of the Monte Carlo simulation and the significant impact on the resulting

execution time this application is a worst-case scenario for the analysis and prediction-based

development methodology. As such it will be helpful to discover if the methodology can handle

even this more complicated case and if there are any weaknesses in the current methodology

that it will highlight. Furthermore, the application has a complicated memory access and

communication pattern which complicates the implementation on a FPGA. This will help to

evaluate if the methodology can really support the development of complex applications.

Due to the practical relevance of Monte Carlo dose simulation and the high computational

requirements related to it a considerable amount of research has focused on accelerating it.

This includes algorithmic improvements as presented in [18,62,63,88,115,146]. There are also

multiple studies which use GPUs to accelerate the workload, e.g., [55] and [125]. In these

cases, speed-ups of up to multiple 100x are reported in comparison to CPU code. However,

the authors of [82] and [54] report that this performance advantage is actually a lot smaller,

if realistic test cases are considered and the comparison is performed against optimised CPU

code. In those cases, the speed-up of GPU over CPU implementations is closer to 2.5x.

In addition to the GPU implementations, also CPU based implementations were proposed.

Examples for these can be found in [24], [126] and [168]. The latter manages to finish the dose

simulation in less than a minute and outperforms well-known GPU implementations.

To facilitate adaptive radiotherapy and the required real time dose simulation, the work in [168]
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was further expanded in [167] by adding support for cloud computing. The authors propose

to use the scalability of cloud-based systems to create a bigger cluster of cloud instances to

perform the simulation. They manage to reduce the runtime of Monte Carlo dose simulations

to values between 1.1 and 10.9 seconds depending on the specific configuration. Additionally,

they make use of encryption to facilitate privacy for the medical data transferred into the cloud.

However, cloud-based solutions have the disadvantage of requiring a fast and stable internet

connection in the hospital to be usable for reliable medical treatment.

In [39] the authors propose an FPGA implementation for Monte Carlo based dose simulation.

They simulate photons and electrons, where the initial photons are generated by an external

source and sent to the FPGA. Afterwards, the dose is calculated and accumulated in the

patient cube. However, the patient cube voxels are only saved in on-chip memory, limiting the

resolution of the patient cube to 64 voxels in each dimension. A speed-up of up to two orders

of magnitude compared to a CPU implementation is claimed.

In [27] a methodology to develop FPGA based mixed precision Monte Carlo designs is presented.

The authors propose an analytical model to determine the optimal precision and resource

allocation for a given Monte Carlo simulation. They combine an FPGA and a CPU to achieve

the desired accuracy while using reduced precision. As a result, they report speed-ups of up to

4.6x, 7.1x and 163x compared to state-of-the-art GPU, FPGA and CPU designs respectively.

A run-time adaptive FPGA based Monte Carlo architecture is proposed in [122]. The authors

note that the ability to use custom number formats tailored to the Monte Carlo simulation is

one of the main advantages of FPGAs compared to CPUs and GPUs. As a result, they propose

an architecture which monitors and reconfigures the used number representation at runtime

to fully exploit this advantage. On average this method manages to achieve an increase in

throughput of 1.35x compared to a conventional implementation.

The authors of [84] present a domain specific language for the development of Monte Carlo

simulations which targets FPGAs and GPUs. They report a 3.7x speed-up compared to CPUs

for the generated FPGA designs. The advantage of this work is that the user only needs to

describe the Monte Carlo simulation using a high-level framework based on LATEX equations to
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obtain the FPGA design.

A significant amount of other related work exists, in which different Monte Carlo simulations

are accelerated using FPGAs. This includes image reconstruction for Single-Photon Emission

Computed Tomography (SPECT) [67], pricing of Asian options [114], simulation of electron

dynamics in semiconductors [105] and simulation of biological cells [161].

2.7 Summary

This chapter introduces the architecture of current FPGAs and provides an overview of pro-

gramming languages in addition to performance and area prediction as well as development

methodologies. Reconfigurable chips provide a highly efficient and flexible option for appli-

cation acceleration. They provide energy and performance benefits to GPUs and especially

CPUs, while providing a lower cost to market compared to ASICs. As such this technology

provides a great fit for HPC.

This chapter also discusses the programming challenges of the traditional HDL design flow.

An introduction into multiple HLS tools is provided and the Maxeler’s dataflow computing

toolflow, which will be used throughout this thesis, is discussed in more detail.

Additionally, an overview of different performance and area usage prediction solutions is pre-

sented. It is shown that all of the presented solutions have severe shortcomings, by either

assuming a specific system architecture, having a low accuracy, too high complexity or relying

on specific tools. Later in this thesis, I will present simple equations to perform these predictions

with a high degree of accuracy providing valuable insight into the systems behaviour.

Furthermore, different methodologies for FPGA development are discussed. They either per-

form a brute force design space exploration, which requires a very high amount of place and

route runs or are based on normal CPU methodologies. As such they contain severe shortcom-

ings for the design of large-scale applications, which is made possible due to recent advances in

semiconductor technology. Most notably they require too much place and route time for DSE
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and might require the complete rewrite of an application based on bottlenecks, found only at

the end of the design process. This thesis will propose a methodology which is based around

area and performance predictions to derive an optimal architecture. As a result, bottlenecks

are discovered before the first line of hardware code is written and DSE can be performed based

on the performance model without needing a place and route tool.

Finally, the applications employed to evaluate the contributions of this thesis are presented. The

concept of CNNs is explained and the state-of-the-art in CNN acceleration is summarised. This

thesis will show how the methodology developed in this thesis can produce acceleration results

in line with state-of-the-art results. Additionally, the Asian option pricing application as an

example for a typical financial application is presented. This thesis will show how the existing

dataflow-based implementation can be extended to target a wide range of target platforms.

Finally, the Monte Carlo based dose simulation for radiotherapy represents a real time critical

medical application. The methods and tools developed in this thesis will be used to create an

FPGA accelerated version of this application.



Chapter 3

Methodology for Reconfigurable

System Development

3.1 Introduction

This chapter addresses the challenge of a missing development methodology for the design of

complex FPGA based systems which minimises the risk of delay introduced through design it-

erations in hardware and provides state-of-the-art performance. To accomplish this, it presents

a methodology for application acceleration using FPGAs and applies it to two real applications.

The aim of the methodology is a first-time-right design process, delivering state-of-the-art per-

formance for highly complex applications. This means that the hardware implementation is

only done once and all major design improvements are finished, before the hardware implemen-

tation is started removing the need to perform time consuming design iterations in hardware.

The proposed methodology provides guidelines orthogonal to any algorithm and dataset spe-

cific optimisations. It uses an analytical model to highlight bottlenecks in a given architecture

based on these algorithm properties and optimisations. This knowledge can be used by the

designer to resolve the bottlenecks with a new architecture working towards maximising the

utilisation of all system resources as highlighted by the analytical model. The combination of

many different individual best practices into a coherent, structured methodology based around

102
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performance modelling and a software model is the main novel contribution of this chapter.

It is important to stress that the methodology does not aim at the highest performance ever

achievable, but rather facilitates the best performance for a given set of known optimisations to

meet design requirements. New optimisations might be discovered or designed and older ones

can become obsolete. Nevertheless, the proposed methodology does not focus on individual

optimisations; it only guides the design process. As such, no changes to the methodology are

needed as the set of considered optimisations evolves. When new techniques arise an update

of the design might still be desired. In such cases, the methodology will assist the designers

to rapidly evaluate the impact of these techniques and enable a precise cost benefit analysis.

Similarly, the proposed methodology enables designers to quickly evaluate the relevant system

characteristics of different hardware platforms.

Traditional CPU development methodologies usually follow an incremental approach, whereby

a first implementation is gradually improved step by step with the help of different profiling

and debugging tools. However, there are multiple problems with applying this methodology to

FPGA based designs. (Problem 1) It is difficult to profile an existing FPGA implementation,

making it difficult to identify what specific part of the design needs improvement. This is es-

pecially true if the initial implementation cannot entirely fit onto the FPGA fabric or does not

reach the frequency required to highlight certain issues, like bandwidth limitations. (Problem

2) Incremental hardware changes can easily require a complete redesign of the existing appli-

cation, which might render nearly all previously undertaken development efforts useless. This

is especially the case if the fundamental handling and storage of data are reconsidered to work

around bandwidth or memory capacity limitations. (Problem 3) The process to generate an

FPGA bitstream is extremely time consuming and can take days. Combined with the high

complexity of FPGA programming this results in prohibitive development times.

It is however possible to avoid these problems altogether. Given that the performance of

FPGAs is highly predictable, especially for deeply pipelined designs able to hide I/O latency,

it is possible to save a lot of time and developer effort by performing a large part of the

design process a-priori, before even a single line of hardware code is written. The proposed
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methodology provides a guide through this process.

The proposed methodology is applied to a CNN and a Quantum Chromodynamics (QCD)

simulation to demonstrate its advantages.

The proposed methodology consists of four main parts:

1. accurate analysis of the targeted application;

2. design of a representative software model;

3. modelling of architectural candidates; and

4. development of an application specific architecture based on the results of the above parts.

Fig. 3.1 shows how these four parts interact with each other. All individual steps are explained

in more detail in subsequent sections. The methodology involves an iterative process, which

requires incremental refinement until the final result cannot be further improved. The natural

starting point is the analysis of the original application (Part 1). Based on the analysis of the

application an initial partitioning in hardware and software components is performed (Step a).

The parts selected to be moved onto hardware are modelled in software (Part 2). Additionally,

an initial architecture is designed (Part 4) which informs the representative performance model

(Step d, Part 3). The performance model predicts the achievable performance as well as area

and bandwidth requirements. It relies on the analysis of the original application (Step c), which

is further improved by making additional measurements of, for example., data movements and

numerical properties. These are hard to obtain in the original application and as a result

the software model (Step b) is used instead. The performance model is used to refine the

architecture by identifying bottlenecks, e.g., bandwidth limitations which can be addressed

by changes to the architecture (Step e). However, the architectural choices determine the

components and structure of the model, since the performance model is based on a given

architecture (Step d). Next, the software model can be used to verify algorithmic and numerical

changes of the architecture (Step f).
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(1) Analysis

(3) Forecast System Properties

(2) Software Model

(4) Architecture Optimisations

(a) create hardware/software partitioning

(b) measure profiling results

(c) refine model

(e) determine bottlenecks

(d) define what to model
(f) verify architecture

(g) start implementation once
all bottlenecks are resolved

Figure 3.1: Design methodology breakdown and its four parts and seven steps.

Usually all of these steps are continuously repeated in an iterative fashion, where, for example,

a change of the architecture causes changes to the software model and the performance model.

Similarly, the performance model might highlight that additional measurements of the initial

application are necessary. This iterative process is also shown in alg. 3.1. The programming of

the FPGA only starts, once the bottlenecks highlighted by the performance model are resolved

and full utilisation of all system resources is achieved (Step g).

Algorithm 3.1: Iterative refinement using the methodology (Numbers and letters in brackets do

not describe specific transition, but only refer to the different parts and steps described above).

1 begin

2 perform i n i t i a l analysis o f o r i g i n a l app l i c a t i o n (1 )

3 c r e a t e i n i t i a l p a r t i t i o n i n g in hw and sw ( a )

4 c r e a t e f i r s t i n i t i a l software model , performance model and architecture (2 , 3 , 4)

5 while bot t l eneck e x i s t i n g

6 i d e n t i f y bo t t l en e ck s us ing performance model ( e , 3)

7 r e s o l v e bo t t l en e ck s with new architecture or hw/sw pa r t i t i o n i n g (4 , a )

8 v e r i f y new architecture in updated sw model ( f )

9 perform fu r th e r analysis as nece s sa ry (b , c )

10 r e f i n e performance model based on updated analysis and architecture (d , c )

11 end

12 s t a r t implementation ( g )

13 end

As a result, the analysis (Part 1) combined with the software (Part 2) and the performance

model (Part 3) erases the need to profile the FPGA implementation (Problem 1) since bottle-

necks are discovered beforehand. Needs to perform redesigns late in the design process (Problem
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2) will be avoided, since the architecture (Part 4) is based on the performance model (Part 3),

moving this issue to design time. This, combined with the availability of functional simulators

for verification, also removes the need to perform place and route for multiple different design

points (Problem 3).

In order to use the methodology a working CPU implementation of the application is needed. It

is used for debugging and verification throughout the development and is crucial to ensure that

the correct functionality is implemented. It is possible to create such an implementation before

the methodology is used if needed. Furthermore, it might be beneficial to have a more abstract

description of the application, which might make it easier to explore alternative algorithms

or implementation strategies. This is not strictly required, since in many cases it can be also

inferred from the CPU implementation, but it can be of advantage to achieve better results.

Finally, it is necessary that a representative set of input data is available. Again, this is required

to ensure that changes made to the implementation, especially on the numeric aspects, still leads

to correct results.

The methodology is based around Maxeler’s toolflow as discussed in section 2.3.5 and assumes

a system architecture consisting of a reconfigurable accelerator connected to a CPU. This is

mostly required to perform accurate prediction of the area requirements, performance and

achievable frequency of the implemented design. Additionally, it means that at least significant

parts of the application can be implemented in a deeply pipelined fashion and that the pipeline

is not interruptible. If the chosen architecture includes a pipeline that has to be interrupted

this would have to be modelled as well and is not discussed here. If the application is purely

control based or latency and not throughput is of major concern the methodology is not a good

fit (even though it might still provide some interesting insight).

The methodology produces a detailed architecture which can be used to implement a FPGA

design. This includes a description of the major building blocks, how they work and interact,

what tasks each of them performs, the area required, performance achieved and the numerics

used. The implementation itself is not part of the methodology.

While the analysis of the initial application is usually only application dependent, all the other
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steps might be device dependent. For example, the compute and communication capabilities

of specific accelerators might be different and, as a result, the developed architecture might

need to circumvent different bottlenecks. However, in general, the same performance model

and architecture can be used for different devices as long as they are similar enough in terms

of compute and communication ratios. In other cases, it is usually possible to reuse most of

the work leading to the system design for the initial target platform. Even though this chapter

covers the case where the target system is already selected, it is also possible to identify a

system for optimal performance or energy efficiency by adjusting the performance model and

the architecture for different target systems under consideration. Similarly, it is possible to

quickly evaluate the performance impact a new device might have on the complete system and

the changes required to the architecture and implementation to achieve this.

While the methodology assumes the usage of Maxeler’s static dataflow model, to ease pre-

diction, it should be possible to generalise the methodology even further, as long as accurate

system prediction is possible. Similarly, the toolchain used for programming the target device

has to provide enough fine-grained control over the hardware to the programmer, to allow for

an accurate implementation of the developed architecture. An example of a tool which can

potentially benefit from this methodology is Sandpiper [19,20], since it is based around explicit

control over parallelism, memory access and is promising predictable performance. The main

challenge here is to achieve predictable timing closure, since otherwise the error of the per-

formance predictions can increase significantly. Even though this thesis will focus on FPGAs

the methodology is also applicable to ASICs and supports highly heterogeneous systems with

multiple, potentially different, accelerators.

For simplicity FPGA to FPGA communication is not explicitly considered in the description of

the methodology presented in this chapter. However, the same steps to handle any kind of CPU

to FPGA communication can be applied in the same way to FPGA to FPGA communication.

The main contributions of this chapter are as follows.

• A methodology for first-time-right development of complex, FPGA based systems, deliv-

ering the forecasted performance;
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• The evaluation of the application of the proposed methodology using two real and complex

applications: a CNN and QCD.

The rest of this chapter is organised as follows. Section 3.2 describes the analysis of the original

application and what information is needed for a successful application acceleration process.

In section 3.3 the purpose of the software model is discussed and details on how it should be

developed are provided. Section 3.4 explains how the performance and behaviour of the FPGA

and the overall system can be estimated. In section 3.5 usual trade offs encountered in the

architectural definition phase are described. The methodology is evaluated in section 3.6 with

the example of a CNN and a QCD application. Section 3.7 summarises the chapter.

3.2 Application Analysis

The first step, as depicted in fig. 3.1, is the analysis (Part 1) of the original CPU application

in order to identify its compute and data intensive parts and build some understanding of

the challenges which will be faced in the architecting stage. If no CPU implementation is

available, it is necessary to create a runtime optimised implementation at this stage in order to

enable the analysis. However, in most real-world applications there will be an existing reference

application, which has been developed for CPUs, before operational requirements created the

need for further acceleration.

In classical general-purpose computing, the view on the performance characteristics is often

limited to analysing instructions and their order of execution, as well as the assignment to

execution units. This view, however, is not optimal for applications on massively parallel

architectures like FPGAs. Instead, it is crucial to also understand the required data movements

in the system. As a result, a strategy where data placement and movement are optimised at

all levels of the system has to be developed. Only then is it possible to make maximal use

of the available computing resources by providing undelayed access to the working dataset to

mitigate limited I/O bandwidths.
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The target of the control/dataflow analysis is twofold. First this step will help to make an initial

assessment of which parts of the application should be ported to FPGAs, since in most cases

it is not feasible and/or desirable to port the entire application. However, following Amdahl’s

Law [9] the designer needs to be careful to address a significant part of the execution time, in

order to make sure that the code remaining on the CPU will not dominate the runtime. For

example, if the part of the application that contributes 90% of the execution time is ported

onto the FPGA the maximum theoretical achievable speedup is 10x, due to the remaining CPU

parts of the application.

The second target is to collect all the information needed to model the performance of the

accelerated application and consequently make correct design decisions. This includes the

amount of data that is needed and when it is needed as well as which operations are executed

and in what order.

3.2.1 Static and Dynamic Code Analysis

In order to identify the parts of the application that can benefit most from hardware accel-

eration, various profiling tools like gprof [45] or Intel Advisor [53] can be used. With their

assistance, it is possible to annotate the execution time of all functional blocks within the ap-

plication. These measurements should be made using multiple sets of realistic data in order

to approximate the envisioned real-world applications as accurately as possible. Erroneous

test data selection can invalidate the entire porting process, if the compute pattern differs

significantly in the real operational setting.

However, not only the computational complexity, but also the data requirements are essential

to decide on an optimal partitioning of the algorithm onto the available computing resources.

One has to keep in mind that the bandwidth between the different subsystems, e.g., CPUs and

FPGAs, is often limited and frequently becomes a major bottleneck. As a result, it might be

beneficial to also port parts of the code with small contributions to the overall runtime onto the

FPGA, as a consequence of the need to reduce the amount of data that needs to be transferred.
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As such, the size of the data structures and their accessing patterns need to be well understood.

In the case of statically allocated memory this might be trivial, but in many cases the size of

the allocated data structures depends on the input dataset. However, most profiling tools

only have limited support to monitor the data structure size and as a result it is often only

possible to add debugging statements into the original application. Since those statements

might have a significant impact on execution times it is necessary to perform the runtime and

data analysis separately. Similarly, access patterns to those data structures should be analysed.

Sometimes only a tiny fraction of the data is accessed even though a reference to the complete

data structure is provided.

Based on the findings of this analysis it is possible to create the initial partitioning between the

CPU and FPGA. However, once the performance is modelled (Part 3), as it will be described

in section 3.4, it might be necessary to revisit and reconsider this partitioning. This is the case

if bandwidth limitations between components of the system exist or individual components are

under- or over-utilised.

The parts of the application selected for porting to the FPGA require further analysis to provide

sufficient information for the later performance modelling stage (Step c). This analysis stage

can either be performed on the original application or on a software model (Step b, Part 2) as

described in section 3.3.

Within the parts of the application selected for porting, the operation count for each operation

type needs to be obtained. This information is needed in order to estimate the area usage of the

circuit which will be implemented (see section 3.4.1 for more details). The process of counting

operations can be performed manually or with performance analysis tools.

Control structures like if statements and loops typically introduce additional challenges. In

order to accurately model the area requirements for multiple branches, which are present as a

result of an if-else statement or a switch case construct, it is necessary to count the operations

in each branch separately. In general, it will be necessary to implement all the branches in

hardware separately, however, in certain conditions optimisations can be performed. It is not

necessary to port branches onto the FPGA, if they are never active for the representative
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input data set. Additionally, it is beneficial to remove as many branches as possible by code

restructuring. For the remaining branches the probability of taking or not taking the branch

should be captured for more accurate modelling later on.

For loops it is important to determine the maximum and, in some cases, the average number

of iterations for which the loop is active. In order to determine these numbers accurately it is

again crucial to have a large and representative test dataset.

The second part of this analysis aims at the identification of data movements and memory

access patterns. In case the data used on the FPGA cannot be generated on the FPGA itself,

it has to be sent over from the host1. For these transfers it is important to determine the

amount of data that will be transferred, but also if the data stay constant or change on regular

basis, since in the first case it might be possible to store the data in Read-Only Memories

(ROM) while in the second case a regular retransmission might be necessary depending on the

application control flow.

In most real-world applications it is often not possible to store the entire working dataset in

the very high bandwidth on-chip memory of the FPGA. As a result, even the data which are

only generated and used on the FPGA, including temporary results, need to be analysed. In

these cases, again, not only the size of the data structure but also its access pattern needs to be

examined. The access pattern is of special interest, since it has a significant impact on the read

and write rates the on-board DDR memory can achieve, if the data need to be stored there.

This will be further discussed in section 3.4.4.

3.2.2 Loopflow Graphs

Counting operations for a given set of functions is typically easier than the observation of data

movements, which are often harder to analyse, represent and understand. For this reason, it is

beneficial to create a loopflow graph, which will help to visualise some of the most important

results of the previous analysis. Loopflow graphs are generated manually using the results of the

1The CPU side of the system
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analysis and provide a good overview of the results collected. Loopflow graphs focus on the loops

in the program and how they interact with each other. Since in general most of the execution

time is spent in loops this provides a good level of abstraction. Each loop is represented by a

rectangle and the number of nested loops is annotated by a factor. Additionally, the operation

count can be annotated inside each rectangle.

The dataflow between the loops is depicted using directed arrows, where the width of the arrow

alludes to the amount of data that needs to be transferred. Consequently, the computational

and data requirements can be easily visualised together, which helps to identify the portions of

the code which should be moved to the FPGA (Step a).

The loopflow graph for the VGG-16 CNN [118] in fig. 3.2, provides a good example on how

this graph can help to perform the code split between CPU and FPGA. One can easily spot

that the operations needed to compute the fully connected layers, depicted in the box at the

bottom, are two orders of magnitude less than for the convolutional layers, depicted by the

remaining boxes. Additionally, only a tiny amount of data needs to be transferred between

the convolutional and the fully connected part of the network. As such, splitting between the

convolutional and the fully connected part of the network becomes the obvious choice.

The loopflow graph captures the data transfer and compute requirements during the complete

execution of the application. As a result, it does not necessarily capture the dynamic properties

of the system. If, for example, data transfers or certain compute passes have highly dynamic

properties and only operate at certain points in time it might be beneficial to generate multiple

loopflow graphs for these different phases. It is important to consider, that FIFOs can often be

used to smooth over data transmission happening in bursts. If this technique is used a constant

resource usage can be achieved, however if the amount of data that is sent in a burst pattern

is too large this has to be considered in the performance model (Part 3) and architecture (Part

4) later on. This is usually achieved by modelling the computation in different phases in which

the different components are active or inactive.
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Figure 3.2: VGG-16 CNN Loopflowgraph. Boxes represent loops and their internal operation
types and counts. Arrows show data movements, thickness hints transferred data amounts.
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3.3 Software model

The software model (Part 2) is a simplified software implementation of the parts of the appli-

cation which are to be ported onto the FPGA. It is not intended to be optimised for speed, but

instead it should be an accurate representation of the intended FPGA implementation. This

means that it should be as close as possible to the planned FPGA architecture and use the same

API. For example, it should mirror changes to the algorithm, to verify correct functionality. It

serves three different purposes.

1. Insight into the selected code and easier measurement of profiling results (Step b);

2. Testbed for verifying numeric and algorithmic changes (Step f); and

3. Debugging reference for the FPGA implementation (Step f).

In order to achieve the first goal of the software model the algorithm can be implemented as

a simple, not optimised code, helping with the analysis described in section 3.2.1, and as a

result the lessons learned from this implementation are used to refine the performance model

and architecture. In the software one would not profile runtimes, but for example memory

access patterns or the number of loop iterations executed. Similarly, the software model will

be used to quickly evaluate different algorithmic and numerical options, which then feed back

into the architecture and performance prediction. As a result, the software model is typically

co-developed with those two components.

It is important to integrate the software model back into the original application. This ensures

that the planned API between the original application and the accelerated modules is sufficient

to recreate the original functionality. It also enables the verification of the software model by

comparing the results of the original software and the application using the software model.

Using the same API for the software model as for the FPGA implementation also creates

an easy-to-use debugging tool for the FPGA implementation. The reason to not only verify

against the original application is that the software model is supposed to undergo the same
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numeric and algorithmic changes as the FPGA implementation. As such it is easy to check if an

unexpected result for a given input dataset is due to an error in the FPGA design, side effects

or fundamental problems with the selected algorithm or its numerical properties. Numerical

and algorithmic problems are significantly easier to resolve in the software model than in an

FPGA implementation. Additionally, this provides an FPGA mock-up implementation for

earlier integration into the host application.

While the creation of the software model and especially its continuous improvement during

the design process represents an overhead in terms of design effort, it avoids the need to make

these design iterations in hardware. It is widely accepted that software development, especially

if code is not optimised for performance, is easier to accomplish than hardware development,

meaning that it is easier and cheaper to perform these design iterations in software.

3.3.1 Numerical Analysis

One of the most crucial and often also hardest steps in the process of porting an application

onto FPGAs is the change from floating-point to custom fixed-point arithmetic. This is due

to fixed-point number formats having a limited dynamic range, which is fixed at compile time.

As such the numerical properties of the algorithm to implement need to be well known, which

is especially complicated regarding operations that have a big impact on the value range, e.g.,

multiplications or exponential functions.

However, in order to maximise the usage of the available hardware resources this is usually

necessary, since for example, a floating-point addition needs roughly one order of magnitude

more logic resources than a fixed-point addition [149,151]. The reason for this is that exponent

alignment requires expensive barrel-shifters before and after each floating-point operation.

The usage of fixed-point operations will, in most cases, allow significantly more operations to

be placed on the FPGA. However, if a design is mostly constrained by the I/O bandwidth and

there is no option to remove this bottleneck, floating-point precision might still be sufficient.

This can be determined using the performance model (Part 3).
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In general, it is of importance to consider the precision required by the final application. In

many cases the algorithm or model used by the application has inherent limitations in terms

of achievable precision. This means that it is not necessary to use datatypes which can repre-

sent numbers with a higher precision. Additionally, one can consider reducing the achievable

precision of the application and accept a slightly larger error for additional performance gains.

The selection of the correct precision and reduced precision implementations are common op-

timisation techniques in FPGA design.

The first step in order to generate a fixed-point implementation is to understand the numerical

properties. This can be achieved using tools which collect data during the execution of the

software. Usually, the easiest way to integrate these tools is by instrumenting the software

model which is supposed to use the same number representation as the final design. As in

section 3.2.1, it is crucial to select a representative input data set to ensure correctness of the

finished system.

An example for such a tool is Maxeler’s proprietary value profiling library. This library offers

tracing variables, which behave like normal floating-point types, but are able to record the value

distribution. This is implemented by having an array of integers representing the possible

exponents of the floating-point value under observation. Each time the observed variable is

updated, the exponent value is read, and the according member of the array is incremented.

It is possible to dump this array to disk at any given time using a function call and additionally

it is possible to turn monitoring on and off. Fig. 3.3 shows the value distribution of the result

of the convolution operation in a CNN during training. Each training batch is recorded as a

separate iteration and 20,000 iterations are then aggregated to generate the presented heat-map,

showing the value distribution over the complete training period. Using these data educated

decisions can be made regarding possible fixed-point types.

Using the Maxeler library it is not only possible to instrument CPU code to generate data for

visualisation, but it is also possible to use the Maxeler hardware simulator to generate similar

histograms based on the actual behaviour of the accelerator.
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Figure 3.3: Heatmap of the exponent distribution for a convolutional layer during training. The
y-axis shows the exponent of the floating-point values the variable holds. The x-axis represents
different data snapshots, which are collected over the execution time. The colour indicates the
percentage of occurrence for the individual exponent buckets.

3.3.2 Bit-level Accurate Fixed-Point Simulation

Using the results of the numerical analysis the software model is adjusted to use fixed-point

arithmetic and deliver a functionally correct fixed-point implementation. It is important to

note that choosing minimal data width has the potential of reducing resource utilisation. The

functional correctness is verified by comparison with the original software using a representative

data set.

The problem of floating-point to fixed-point conversion is widely covered and there are many

tools available addressing this problem [16,21,22,28,64–66,117]. However, in the scope of this

work a small library to simulate fixed-point datatypes was developed, to provide an easy-to-use

drop-in floating-point replacement.

The library is designed to work in conjunction with the Maxeler toolchain. As a result, it

supports all three rounding modes which are supported by MaxCompiler, which is one of

the main differences compared to other fixed-point libraries, which normally do not support

different rounding modes. The type creation is based on C++ templates. As such any number

of integer and fraction bits is possible in combination with all rounding types, but each type
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is differentiable at compile time. All common arithmetic operations are supported as well.

Internally the library uses 128 bit unsigned integers and scales them appropriately to convert

between different datatypes.

Additionally, to the functionality as a fixed-point simulator the library also allows the logging of

overflows. Overflows are logged with a stack trace and a user can attach additional information,

e.g., a loop counter, as supportive information from within the application source code. Further

it is possible to log the precise values after every calculation and every assignment if required.

Performing the fixed-point conversion at an early stage of the design process enables much larger

acceleration structures, improves performance model precision and avoids complex debugging

of numerical problems in hardware.

If the dynamic range of the algorithm is so large that the required data width causes problems,

further strategies can be used. One option is the usage of a method similar to denormalised

floating-point, where a shift value, similar to an exponent, is used in addition to the bits

representing the significand. This reduces the resource usage if either the shift value can be

applied to multiple values at the same time (this is also called block floating-point [102]) or if

renormalising is only needed sporadically and not after every operation. This solution is for

example often used to solve partial differential equations for the oil and gas industry, where a

wavefield decays over time, but all values in the wavefield can share the same shift value [108].

A different solution is to handle overflows on the CPU, if they only occur rarely.

3.4 Forecasting System Properties

With the results of the code analysis (Part 1) and the initial version of the software model

(Part 2), an accurate performance model (Part 3) capturing the implementation of the planned

architecture (Part 4) on the selected platform can be built. In order to achieve this, the

hardware and bandwidth usage, as well as the execution time for a problem of a defined size,

are estimated. A preliminary speed-up expectation is thus obtained.
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The performance model enables the design space exploration but also emphasises potential

problems and bottlenecks (Step e) of the architecture before the implementation is started.

Since the architecture tries to alleviate the bottlenecks highlighted by the performance model

(Step d), an iterative improvement of performance model and architecture is often necessary.

As such, it is possible to perform design space exploration early on in the acceleration process,

enabling cost-benefit analysis and resulting decision making.

Additionally, it is possible to perform a cost-benefit analysis for the different feasible archi-

tectures and design points identified. This means that dependent on the requirements, the

available resources and the achievable speedup figures, the best architecture can be selected, or

the project can be reconsidered, if the costs exceed the benefits. In my experience it is usually

possible to reach this point very early in the design process, significantly reducing the risk of

the FPGA porting project to fail under great cost.

Estimating the benefits of the project that can be achieved given a certain architecture is

straight forward using the performance model, since it accurately predicts the expected speedup.

A sufficiently experienced developer can judge how complicated it will be to implement a

given architecture. Using the performance model an optimal balance between FPGA and CPU

resources in the final system can be found and consequently the costs of the final system can

be estimated with high accuracy. This provides all the numbers necessary to perform the

aforementioned cost benefit analysis.

Since FPGAs consist of essentially predictable building blocks, it is possible to estimate the

performance for a given architecture very accurately using only a few simple equations. This is

especially true for statically scheduled, deeply pipelined applications as created by MaxCom-

piler, which can hide potential I/O latencies. In contrast, on a CPU or GPU, performance

improving components like caches and branch predictors greatly limit the ability to predict

the performance of a given application. Even though fine grained models and simulators are

developed to simulate these side effects, their accuracy is still often limited [51,112].

The performance model presented here is based around Maxeler’s programming model and re-

quires the ability to accurately predict resource usage, performance of components and achiev-
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able frequencies. It does not use specific constructs of the programming model. As such other

toolchains with similar properties can be used as well. Furthermore, it is necessary that the

application can be accurately analysed and split into phases in which computational and data

transfer patterns are similar. If the latter is not the case the accuracy of the resulting model

might be worse and worst-case assumptions have to be made.

The time it takes to process a given workload on an FPGA (Ttot) can be represented as the

sum of the time it takes to initialise the FPGA (Tinit), for example to set up DMA requests, set

registers or to fill the computational pipeline and the time the actual execution takes (Texec).

This is shown in equation 3.1.

Ttot = Tinit + Texec (3.1)

If the workload is sufficiently large, which is normally one of the prerequisites for FPGA ac-

celeration, the execution time is supposed to dominate over the initialisation time so that it

can be safely ignored. The precise initialisation time depends on the used platform and frame-

work. For example, the initialisation time of a Maxeler system is usually between 1 and 100

ms. Additionally, it is possible to take the time for reconfiguration into account. If regular

reconfiguration is not required during execution, this can be modelled as an additional part of

the initialisation. Again, the time required for reconfiguration is dependent on the platform

and the size of the FPGA configuration memory and is usually between 100 and 2000 ms.

For example, reconfiguring Maxeler’s MAX4C DFE requires roughly 100 ms while the newer

MAX5C DFE requires more than 2 seconds for reconfiguration, due to the bigger chip size and

a different physical implementation.

In a streaming dataflow design the execution time is the maximum of the time it takes to

perform the computations performed by the algorithm (Tcomp, section 3.4.2), the time it takes

to transfer the data between host and FPGA (Tcomm, section 3.4.3) and the time required to

transport data between FPGA and on-board memory (Tmem, section 3.4.4). As a result, the

longest latency dominates the overall execution time of the accelerated task (eq. 3.2) and
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becomes the primary focus.

Texec = max(Tcomp, Tcomm, Tmem) (3.2)

It should be noted that this is only the case if all resources are utilised at a constant rate

with respect to time. This, however, may not always be the case, e.g., it might be that all

communication to the host has to happen before the compute can start. When the utilisation

is non-constant, but its moving average is, contiguous flow can be mimicked by sufficiently

large buffers smoothing the effect over time. If this is not possible the execution has to be

split into multiple parts, in which each part represents on state of the application (e.g., certain

data transfers and computations active or not active). For each of those parts an individual

performance model can be used to calculate the resulting execution time. The execution time

of these parts as has to be treated as an additive term to the overall runtime.

3.4.1 Predicting Area Usage

In order to determine the time requirements for the computation one first needs to find out what

degree of parallelism is achievable for a given device. This is mainly limited by the hardware

resources available on the FPGA fabric.

In general, the FPGA hardware resources are used for three different purposes. First, to

implement the arithmetic operations, second the scheduling of operations and finally other IP

modules, e.g., the PCIe, memory controllers, etc.

In order to predict the area usage for arithmetic operations it is first necessary to find out the

amount of hardware resources required to implement a simple operation on the target FPGA

device. Those figures can be determined either by using automated tools, finding appropriate

tool and FPGA vendor documentation (e.g., [6, 7, 149–152]) or by creating micro applications

and running them through the vendor tools. The overall area usage can be estimated as the

area cost of a single operation multiplied by the number of operations to be implemented on
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the fabric.

Additionally, some tools might provide an API to query this information. For example, Max-

eler’s MaxCompiler toolchain provides an API, which provides area estimations for single opera-

tions and memories, based on the used datatypes and current configuration. This configuration

includes for example the level of pipelining as well as the currently used rounding mode.

The scheduling is implemented using FIFOs, which usually use on-chip memory resources,

which will be discussed in more detail later in this section, or registers.

For IP modules, the resource requirements can typically be predicted using micro benchmarks.

In general, it is recommended to assume a slightly higher memory and logic usage, in order to

keep some safety margins especially for scheduling but also additional control logic.

Conditional statements

On CPUs it is only necessary to execute the selected branch of a conditional statement. How-

ever, in hardware it is necessary to implement logic which can deal with all possible branches.

The final result is then selected from all computed alternatives using a multiplexer. As such

the resource requirements for the different branches need to be accumulated together with the

cost of the multiplexer.

In cases where only one branch is active at a time, resources can be time shared. If for example

two branches perform a multiplication, one can use multiplexers on the inputs of the multiplier

instead of on the output. This can be done manually or automatically using tools like Maxeler’s

Kernel Merger [136].

As described above it is beneficial to collect data on the likelihood of each branch being taken.

This can be used to decide on the used implementation strategy and if it might be required to

model individual stages of the computation separately. A major factor here is the size of the

branch and if it is present in an inner loop or at the top level of the application. In the case

of inner loops, it is usually necessary to implement both branches, while branches on the top

level can lead to completely different designs. Having completely different designs might not
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be highly problematic if there is no dependency between different data items processed and the

likelihood of each branch being taken is known. Then the system can be built to include all

required designs separately and replicated in such a manner that the overall data set can be

computed without any design being idle for a significant amount of time.

Dealing with loops

In general, loops either have to be fully unrolled, partly unrolled or not implemented at all. If

a loop is unrolled, the operation count has to be multiplied with the unrolling factor. Unrolling

is especially recommended, if dependencies between loop iterations exist. If the loop cannot be

fully unrolled due to area limitations, the loop is normally implemented in a pipelined fashion.

This means that the loop is only partially unrolled and then the full loop is computed iteratively

across multiple cycles. Again, the operation count has to be multiplied by the number of

unrolled loop iterations to generate an accurate resource model. While in the case of for-loops

it is usually straight forward, to determine how many loop iterations need to be implemented

on the surface of the reconfigurable fabric, for while-loops this is not the case. If possible, all

while-loops should be transformed into loops with a fixed number of iterations. If this is not

possible the loop cannot be completely unrolled. In order to estimate the computation time one

can assume the average number of iterations for the average case and the maximum number of

iterations for the worst case.

Predicting on-chip Memory Usage

On-chip memory is normally used for three different main purposes:

1. in operations and IP-blocks, e.g., DDR memory, FPGA to FPGA communication or PCIe;

2. for on-chip buffering or reordering of data; or

3. for scheduling of the Kernel’s dataflow graph.
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Predicting the area usage for the first case is straight forward, since it can be estimated with

micro benchmarks. The same can be done for the second case, however it is also possible to

model it using eq. 3.3, where the number of memory blocks required (nmem) is calculated as

the product of the width (w) required divided by the native width of the on-chip memory read

and write ports, the depth (d) required divided by the possible depth of the hardware unit and

the number of read ports (p) required divided by the number of read ports physically present.

nmem =

⌈
wreq

whardware

⌉
×
⌈

dreq
dhardware

⌉
×
⌈

preq
phardware

⌉
(3.3)

The on-chip memory resources of FPGAs can often be used in different aspect ratios. For

example, the same memory block might be configured with an aspect ratio with a width of

18 bits and a depth of 1,024 or with a width of 9 bits and a depth of 2,048. It is possible

to tile logical memories to fit into these physical on-chip memories of different size. The total

hardware cost of the memory is the sum of the costs for each individual tile.

Predicting operation scheduling resources accurately is nearly impossible, since this would re-

quire deep knowledge of the scheduling algorithm used by the toolchain or manual scheduling.

However, it is possible to identify the largest FIFOs needed to access data from previous cycles

and treat them as normal buffers. The amount of memory resources required by the smaller

FIFOs is highly dependent on the application. As such only a rough estimate is possible.

3.4.2 Predicting the Compute Performance

After having estimated the area usage, one can predict the achievable level of parallelism and

the number of data items processable per clock cycle, ignoring bandwidth limitations.

The time needed to compute a set of data items can be calculated as shown in eq. 3.4, by dividing

the number of items that need to be processed by the product of the targeted frequency and
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the number of items processed per cycle.

Tcomp =
nitems

items per cycle× f
(3.4)

The frequency cannot be precisely predicted. However, if sufficiently deep pipelining is applied

and no more than 80% of the chip resources are used, the frequency for different designs using

the same FPGA can be safely estimated based on previous experience or experiments using

artificial designs to fill up the chip if a similar implementation scheme is used. The systolic array

style implementation scheme used by MaxCompiler for example results in a highly predictable

frequency. A Maxeler FPGA card using an Altera Stratix V FPGA usually achieves 200 MHz

if the chip is only filled up to 80%.

3.4.3 Predicting I/O Bandwidth Usage

The bandwidth between the host and the FPGA depends on the physical interconnect used.

For most acceleration platforms the interconnect is PCIe. PCIe is built by bidirectional links,

meaning that the full bandwidth can be used in both read and write direction at the same time.

For example, second generation PCIe can transport up to 4 GB/s over an eight-lane link. The

full speed of the link is usually not achievable due to overhead introduced by the protocol and

encoding schemes. In the case of DMA using MaxCompiler a bandwidth of 3.5 GB/s can be

achieved. If data is transported in other ways, the achievable bandwidth might be even lower

and needs to be measured with a benchmark.

As a result, the communication time between host and accelerator can be estimated using the

maximum data sizes transferred in either direction (Sin and Sout) divided by the bandwidth

(BW ), as written in eq. 3.5.

Tcomm =
max(Sin, Sout)

BW
(3.5)
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3.4.4 Modeling On-Board Memory Behaviour

On-board memory for FPGA accelerators is mostly based on DDR memory. The bandwidth to

this memory is unidirectional, meaning that the bandwidth is shared between both directions

(read and write). As such the time it takes to transfer data between on-board memory and the

FPGA can be calculated as shown in eq. 3.6.

Tmem =
Swrite + Sread

BW × efficiency
(3.6)

The parameter efficiency represents the proportion of the theoretical DDR bandwidth achiev-

able for a given data set. Only large linear access patterns allow efficient memory access.

Fig. 3.4 shows the achievable memory efficiency based on the amount of data which are ac-

cessed in one linear read for DDR4 memory as used on an FPGA card. Different DDR based

memory technologies behave in a similar manner. The term burst refers to the native word

width of the DDR memory.

The location in memory at which the data are stored also has significant impact on memory bus

efficiency. The address space is divided into multiple ranks2. Due to the fact that if one rank is

currently accessed the next rank can already be prepared, accessing data from different ranks

will make sure that efficiency is improved. If only one burst at a time is used the efficiency will

be halved, but if more bursts are accessed this penalty will be significantly reduced. For this

reason, it is beneficial to distribute different chunks of data across the available address space.

3.4.5 Comparison to Roofline Model

The roofline model [143] is a commonly used tool to estimate system performance, perform

design space exploration and identify optimal architectures. It was initially developed for

floating-point programs executed on multicore architectures and is based around operational

intensity, which is a measure describing the number of computations per byte accessed from

2All Dynamic Random-Access Memory (DRAM) chips sharing the same chip select [98]
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Figure 3.4: DDR4 memory efficiency of an FPGA card.

memory. The roofline model is a 2D chart, where both axes are logarithmic. The x-axis in this

chart is the computational intensity, which represents the number of operations executed on

each byte accessed from off-chip memory. The y-axis represents the performance in floating-

point operations per second.

Using these two metrics one can add two ceilings, the roofline, to describe the maximum at-

tainable performance of the system. The first ceiling, on the top right, is based around the

maximum achievable performance in floating-point operations per second, while the second

ceiling, on the left, is limited by the memory bandwidth. This roofline describes the maximal

attainable performance given a specific processor at different levels of operational intensity. To

evaluate an intended implementation one can identify the operational intensity of the imple-

mentation and determine the maximum achievable performance by comparing to the roofline.

Additionally, it is possible to add multiple ceilings to tune the roofline model to different algo-

rithm characteristics. For example, one can add multiple memory bandwidth ceilings based on
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memory efficiency or multiple compute ceilings based on different operations and datatypes.

The roofline model was expanded to be also applicable to FPGAs in [31] and [30]. Fig. 3.5 shows

an example roofline model for a VGG-16 CNN which will be discussed in more detail in section

3.6.1. It can be used to quickly provide an overview and a visualisation of the communication

to computation ratio of an architecture and the resulting performance impact.
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Figure 3.5: A roofline model for a chosen architecture of VGG-16 CNN. Individual dots rep-
resent potential design points. The green dot is the chosen design, blue dots are valid design
points, red dots are not feasible, e.g., due to on-chip memory requirements, and grey dots
introduce significant design complexity and are ignored as a result.

One can see how the roofline model can provide a good overview of the possible design points

and, as a result, ease decision making, however, it also has a few shortcomings. First and

foremost, the model can only focus on one I/O bandwidth at a time. In reality, systems are not

only limited by external memory but also host communication bandwidth. Furthermore, some

systems might additionally have heterogeneous memory architectures, e.g., High Bandwidth

Memory (HBM) and DDR, or accelerator to accelerator communication. Integrating those into

the simplified roofline model is often not achievable.
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Factors like on-chip memory capacity are not considered and would need to be addressed sepa-

rately. Another problem is that for FPGA based systems the computational roofline inherently

includes the frequency the computation is run at. However, the achievable frequency is highly

dependent on the routing complexity and the overall resource usage. The proposed method-

ology works around this problem by using MaxCompiler with its very predictable frequency

properties. Finally, the roofline model is based on the assumption that the overall system per-

formance is constrained by one computational kernel focused on a specific type of computation.

Even though this is the case in many scenarios, especially highly complex applications benefit

most from implementing multiple computational kernels on the same accelerator. These com-

putational kernels might even operate on different datatypes. In those cases, it will prove to

be problematic to determine consistent computational ceilings.

To conclude, the roofline model provides a good tool to quickly perform design space exploration

for a given architecture, however, the more detailed performance model described in this section

provides a lot of additional information. This additional information can, in many cases, prove

crucial in the discovery of better architectures. It is possible to convert a detailed performance

model into a roofline model but not the other way round.

3.5 Architectural Optimisations

The details of developing an efficient architecture (Part 4) go beyond the scope of this thesis.

However, some general concepts should be explained here, since only the development of a good

architecture promises optimal results.

In general, the target is to achieve a balance, where all system resources are fully and equally

used, and all bottlenecks of the system as indicated by the performance model (Step e) are

removed (Step g). If, for example, all the memory bandwidth is utilised but only 50% of the

chip resources are in use, a better architecture should try to save memory bandwidth. This will

allow an increase of the degree of parallelism, using more of the chip resources and reducing

the overall execution time.
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The techniques described below are very general and can be applied to applications developed

using other methodologies as well. The main advantage of the proposed methodology is the

detailed knowledge about bottlenecks as provided by the performance model (Part 3). While

other methodologies and performance prediction tools, e.g., the roofline model, might also

provide knowledge on the existence of certain bottlenecks the detailed performance model also

provides information on where optimisations might be most beneficial. For example, it informs

on the size of all memories or which functions use, e.g., DSPs or a lot of memory bandwidth and

as a result one can quickly judge which problems to tackle first. This insight into the details

of the design enables fast design iterations.

3.5.1 Improving Bandwidth Utilisation

Reducing the memory-to-accelerator or host-to-accelerator bandwidths are similar. There are

three main strategies to achieve this. Firstly, one can buffer more data on-chip, reducing the

need for streaming it back and forth. Secondly, customised compression can be used. This

could be as simple as changing the data width (e.g., from 32 bit to 12 bit integers). However,

more advanced compression algorithms, e.g., run length encoding, might provide additional

benefits. Thirdly, data sequences with predictable values can be generated on the FPGA,

avoiding transmission altogether.

In the case of on-board memory, it is often also possible to increase memory efficiency, e.g., by

reordering data on the chip just before it is written or after it is read in order to create linear

access patterns. Reordering operations to reduce the amount of data that need to be moved is

also an option. Additionally, it is possible to optimise the access into the different ranks of the

DDR memory, as discussed in section 3.4.4, by using an optimised memory layout.

3.5.2 Reducing Area Usage

Usually the most important step, in order to make efficient use of the available hardware

resources, is the selection of the datatype and width. It is usually inefficient to use floating-point
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arithmetic, but even if fixed-point arithmetic is used, smaller data widths use less resources.

Otherwise, it is possible to replace area expensive operations with cheaper ones. One option to

achieve this is by considering alternative implementations of a given algorithm. Even if those

implementations are less efficient on a CPU, they might be cheaper to implement in hardware.

For example, sorting networks are often used in hardware, while on CPUs other algorithms,

e.g., merge sort, are usually preferred. Moreover, one could consider moving calculations to the

CPU or precompute some values, if possible.

The on-chip memory usage can easily be reduced by moving buffers into on-board memory.

If double buffering3 is used, it is sometimes possible to recreate the same functionality and

read-write speed with only one memory by developing a custom addressing logic. This custom

addressing logic has to ensure that only elements which are already read are overwritten and

usually involves switching between multiple complex addressing patterns [135].

3.5.3 Overlapping Host and Accelerator Execution

Usually, applications are not fully ported onto FPGAs, but instead less compute and more

control heavy code parts remain on the CPU. The simplest way of integrating the FPGA into

the CPU implementation is to call the FPGA as a function. As shown in fig. 3.6 a), this leads

to an inefficient usage of the available hardware resources, where only one of the resources is

fully used at any time.
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Figure 3.6: Suboptimal vs overlapped use of resources.

3A technique with two copies of the buffer is used to resolve write before read dependencies. One is written,
while the other is read.
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A better way to handle this integration is to overlap the execution as shown in fig. 3.6 b).

One way to achieve this is by calling the FPGA in a separate thread. If the CPU and FPGA

calculations are independent, then it is easy to parallelise them. Otherwise, it is recommended

to have the CPU and the FPGA work either on different parts of the same dataset or completely

disjoint tasks.

3.6 Evaluation

To properly evaluate the proposed methodology, one would need to compare the complete de-

velopment process of an application using the proposed methodology and other methodologies.

Then one could compare the quality of result in terms of achieved performance, maintainability

and area usage as well as the designer productivity usually measured in development time.

The problem with this kind of evaluation is to isolate the impact of the methodology on these

metrics. For example, if the same developer implements the same application multiple times

using multiple methodologies the designs created later will benefit from the experience made

earlier on. Similarly, if different designers are used to perform the evaluation one would need to

consider the individual skill and experience of each developer. These factors are hard to quan-

tify and as a result the only way to measure designer productivity with any kind of certainty

in the results is by designing a bigger study where for each application and methodology pair

multiple designs are created by different engineers. Performing such a study is very resource

intensive and beyond the scope of what was achievable in this thesis. Similarly, it is not possible

to compare the designer productivity based on related work since most publications do neither

state the time it took to develop the design nor the used methodology.

As such, I decided to compare the methodology to the development processes currently used

by comparing the quality of the resulting implementations against published work. While this

does not consider designer productivity, it does show that the methodology is able to produce

state of the art designs, which is an important consideration in the selection of a develop-

ment methodology. This comparison does not manage to compare the proposed methodology
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against a specific methodology, but only the different not described processes which were used

in the creation of the specific designs used for comparison. I assume that this presents a fair

representation of how FPGA designs are currently created within academia and industry.

In this section the proposed methodology is evaluated on two realistic applications. One is the

acceleration of the inference of the VGG-16 [118] CNN discussed in section 3.6.1 and the second

is the acceleration of BQCD which is discussed in section 3.6.2. The latter was independently

performed by Maxeler Technologies using the methodology described in this chapter.

VGG-16 is selected as a use case since it is a very commonly used CNN and there is very high

interest in research on efficient CNN implementations on FPGAs. As such there is a well-defined

state-of-the-art with highly optimised and current designs. This enables a good evaluation of

the quality of results achievable using the proposed methodology. BQCD is selected to show

how the methodology can help on a very large and complex HPC application. To my knowledge

there exists no other FPGA based implementation of BQCD.

3.6.1 Convolutional Neural Network

The details of the analysis (Part 1) and software model (Part 2) for the CNN are not described

here, since their results are already encapsulated in fig. 3.2. The loopflow graph also motivates

the split of the application (Step a). In this case the convolutional layers are ported onto the

FPGA, while the fully connected layers stay on the CPU.

First the architecture (Part 4) is introduced, and a series of applied optimisations is presented.

Afterwards the performance model (Part 3) and the design space exploration based on it are

shown. Finally, the resulting implementation and its performance compared to related work

are discussed.
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Architecture

In this section first an initial architecture (Part 4) is defined to determine what to model

(Step d) in the performance model (Part 3). There are two fundamentally different options

to implement a CNN on FPGAs. The first option is the implementation of a fully streaming

architecture, in which hardware is dedicated to each layer separately and all layers are computed

in parallel. However, this architecture often requires a prohibitive amount of on-chip memory,

since on-board memory does not provide the required bandwidth. The second option is the

usage of a generic hardware unit, often called a PE, which is able to perform the necessary

computations for all layers. In this case only parallelism within a layer is exploited.

To estimate the on-chip memory usage of the fully streaming architecture, it is possible to

calculate the memory needed to store the results of the first layer. If a resolution of 224x224

pixels is assumed, the 64 output channels of the VGG-16 CNN produce in total 3,211,264

elements of data. This means that approximately 3MB of on-chip memory is required if each

element occupies one byte of memory.

As a result, it is not feasible to implement the fully streaming architecture (Step e). Instead,

the PE based architecture shown in fig. 3.7 is selected. Each PE performs the convolution

operations, accumulation over input channels and the ReLU activation functions [163]. To save

on-board memory bandwidth, all PEs operate on the same input channel producing different

output channels, but the units performing pooling and writing data to on-board memory are

shared between PEs.

Optimisations

In this section a series of different optimisations to the proposed architecture are introduced.

The main goal of the applied optimisations is to fully utilise all available arithmetic resources

in addition to maximising usage of the on-chip memory.
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Figure 3.7: Convolution design architecture, PE connectivity.

Processing Elements count The number of used PEs defines directly the required resource

utilisation and memory bandwidth. In particular, the more PEs are used the more on-chip

memory is needed, but on the other hand the memory bandwidth requirements are reduced,

as less pixels have to be processed per cycle. In addition, more PEs mean that less iterations

have to be performed to generate all outputs. To simplify control logic and to avoid stalling,

the number of PEs is a divisor of the specific number of outputs.

Processing of Multiple Inputs in Parallel An option to narrow the PEs’ memory write

port width is to process multiple inputs in parallel. While this has no direct impact on the

required off-chip memory bandwidth, it requires more weights to be loaded at the same time.

Multiple parallel inputs can be used to make it easier to match the aspect ratios of the available

on-chip memory or to fit the output size of each layer better to the available PEs.
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Datatype Customisation CNNs are ideal for custom data representations [42,124,128]. It

is possible to successfully use very low precision for inference as shown for example in [127] and

also in training as shown in [109]. However, these very low precision types usually also lead to

changes to the network architecture.

Because of the specific CNNs characteristics only fixed-point datatypes are considered in this

work. The precise fixed-point type used is determined by simulating the system (with a device

simulator or using software libraries for fixed-point computation) and checking the classification

results on a test set against a reference floating-point version. A different option to optimise the

trade-off between the used area and the achieved performance is to use asymmetric arithmetic.

For example, the weights can be represented with less bits than the actual network data. This

also helps when the port widths of the available hardware multipliers are asymmetric.

Modelling Host to Accelerator Communication

First the I/O communication time will be predicted, using eq. 3.5. For this the amount of data

needed to be transferred to and from the FPGA would need to be determined. This consists

of the weight and input image data.

The weight data are constant across iterations and as a result only need to be transmitted once.

As such they can be neglected since the one-time transmission is of no consideration as soon

as thousands of images are processed.

In cases when it is not possible to compute all output channels of the first layer in parallel, it is

necessary to retransmit the input or buffer it in memory. Eq. 3.7 shows the situation when the

data is retransmitted. nout is the number of output channels of the first layer, nPE the number

of PEs and n the number of images transferred.

Tcomm =
n×max(Sin × nout,L1

nPE
, Sout)

BW
(3.7)

Eq. 3.7 becomes eq. 3.8, to estimate the number of items that can be processed in a given time.
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To obtain the number of input items per second, Tcomm is set to one second.

n = min

(
BW × Tcomm

Sin × nout,L1

nPE

,
BW × Tcomm

Sout

)
(3.8)

Forecasting Accelerator Computational Latency

Similarly, the accelerator runtime can be estimated as shown in eq. 3.9, where n again denotes

the number of input images, OPSneeded the number of operations performed per input image and

OPSavailable the number of operations that can be performed on the FPGA for the developed

architecture within a given amount of time.

Tcomp =
n×OPSneeded

OPSavailable

(3.9)

The maximal number of processed elements, as limited by the on-chip computational capabili-

ties, is given by eq. 3.10.

n =
OPSavailable × Tcomp

OPSneed

(3.10)

Convolutional layers mainly consist of MAC operations; hence the total number of MAC oper-

ations and the FPGA capacity are needed to estimate Tcomp. This assumes the implementation

of the ReLU and pooling functions inside the PEs as proposed in this architecture.

Estimating On-Chip Memory Usage

Depending on the on-chip memory size, it might be feasible to buffer all the input and output

channels to each layer on-chip. However, on smaller chips, or for layers having either more

or bigger output channels, this is not feasible. Similarly, there are networks like ResNet-101

or other residual networks, which reuse data from earlier layers [47], and therefore require

even more buffer space. In those cases, it is necessary to store the results produced by the

computation of each layer in on-board memory. Only this case will be modelled here.
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Each PE works on a separate output channel, hence all the data produced by each PE need to

be written back to memory.

Based on eq. 3.3, eq. 3.11 describes the amount of required on-chip memory, where nPE is the

number of PEs, p the number of output pixels created per PE per cycle and w the datapath

width. Furthermore, elemout,layer presents the number of elements in a given output channel.

MEMwidth and MEMdepth are the memory port width and memory depth.

nmem =

⌈
nPE × p× w

whardware

⌉
× max

layer

(⌈
2 × elemout,layer

p× dhardware

⌉)
(3.11)

The first term in eq. 3.11 represents the requirement to write all results produced by the PEs

into memory on every cycle, while the second term represents the need to store the complete

output channel calculated by each PE on-chip, employing double buffering. Only one read port

is needed, removing the last term of eq. 3.3.

Double buffering is needed, to avoid writing all outputs to external memory at the same time.

The latter would require a prohibitively large buffer to the on-board memory in order to smooth

over this burst while consuming enough data at each cycle. Double buffering additionally

improves the efficiency of the DDR memory if each output can be written back separately,

since it enables data access in long continuous bursts.

Estimating On-Board Memory Bandwidth Utilisation

The amount of data that needs to be read to load the weights is shown in eq. 3.12, where nin

and nout represent the number of inputs and outputs per layer and Sweights represents the size

per weight filter.

Sweights,total =

layer∑
l=0

nin,l × nout,l × Sweights,l (3.12)

The amount of memory that need to be accessed for the data per layer can be estimated by

eq. 3.13, where nin represents the number of input channels of layer and nout the number of

output channels. SX represents the size of one input channel, SZ the size of one output channel
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and nPE the number of PEs and therefore output channels processed in parallel.

Slayer = SX × nin ×
⌈
nout

nPE

⌉
+ SZ × nout (3.13)

The boundary can be estimated as shown in eq. 3.14, where again the efficiency will be close

to the maximum since all memory accesses are linear and most of them will use the maximum

number of bursts.

n =
BWmem × efficiency × Tmem∑

layer Slayer + Sweights,total

(3.14)

Design Space Exploration

Using these equations from the performance model (Part 3) it is straight forward to perform

DSE. The targeted hardware is a MAX5C DFE using the Xilinx VU9P FPGA. This FPGA

consists of three separate die, called SLRs, which are mounted on the same silicon interposer.

The communication between those die is a significant bottleneck.

To get around this problem, all three SLRs are treated as individual FPGAs. Each SLR is

connected to one separate DDR DIMM and the PCIe bandwidth is shared.

The size of the images fed into the CNN is fixed to 224 × 224 images and as a result 150, 528

pixels need to be sent into the FPGA and 100, 352 elements need to be received. Assuming

that 16 PEs are used the number of images that can be processed within one second can be

calculated using eq. 3.8 as shown in eq. 3.15.

n = min(
4GB/s× 1s

401,408B × 512
16

,
4GB/s× 1

602,112B
) = 334 (3.15)

The design is heavily constrained by the number of on-chip multipliers. As such only modelling

of the multipliers will be presented here. If each of the 16 PEs processes 14 pixels per cycle, the

number of multipliers used can be calculated as shown in eq. 3.16, where nfilter represents the
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number of elements in each weight filter. This fits within one SLR, which has 2,280 multipliers.

nmul = nfilter × nPE × npixelspercycle = 9 × 16 × 14 = 2,016 (3.16)

The number of convolutions required to compute one image using the whole network can be

calculated as shown in eq. 3.17. The result is obtained, by accumulating the multiplication

between the input channel count, the output channel count and the number of elements in the

input channel for each layer.

OPSneeded =

layer∑
l=0

nin,l × nout,l × elemin,l = 1,705,181,184OPS (3.17)

For the whole network 1,705,181,184 convolutions need to be computed for each image. The

proposed architecture can perform, as just calculated 16 × 14 = 224 convolutions per cycle.

Using eq. 3.10, one can calculate the compute bound processing speed based on the frequency

as shown in eq. 3.18. For a frequency of 250 MHz this would mean that 32.8 images can be

processed per cycle. The 250 MHz are determined based on previous experience with this

version of MaxCompiler and the used FPGA.

n =
224OPS

cycle
× f × 1s

1,705,181,184OPS
(3.18)

It was decided that the data between layers should be buffered on-board. As a result, the DDR

bound performance can be estimated using eq. 3.19. Per image, 355 MB of pixel data and 33

MB of weights need to be transported. The memory efficiency is estimated as 0.85 for this case.

n =
14GB/s× 0.85 × 1s

388MB
= 33 (3.19)

As a result, the overall expected performance of all three SLRs is 99 images per second for

all three SLRs combined. Fig. 3.8 shows other possible design points, where the equations are

evaluated for the different degrees of parallelism and the area usage is predicted to discard all
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invalid design points. Blue dots in the figure are considered in the DSE (chosen design point in

green). Red and grey dots were not considered because of resources and complexity constraints.
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Figure 3.8: Design space of the proposed architecture for the VGG-16 network. Individual
dots represent potential design points. The green dot is the chosen design, blue dots are valid
design points, red dots are not feasible, e.g., due to on-chip memory requirements, and grey
dots introduce significant design complexity and are ignored as a result.

It is possible to also represent the results of the design space exploration in a roofline model.

This is shown in fig. 3.5. In this case only the memory bandwidth with full efficiency and

the optimal computational performance for multiply-adds at 250 MHz frequency are consid-

ered to determine the ceilings. In comparison to fig. 3.8, the roofline model includes memory

bandwidth, but does still not include on-chip memory requirements, which would increase with

additional PEs, or PCIe bandwidth. As such, the more detailed performance model is required

to determine invalid design points due to prohibitive on-chip memory usage.
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Experimental Results and Discussion

Table 3.1: CNN Performance comparison.

[164] [89] [142] [13] [165] [87] This Work
Implemented

Network
VGG-16 VGG-16 VGG-16 AlexNet VGG-16 VGG-16 VGG-16

Device Xilinx VX690T Intel GX1150 Intel GT1150 Intel GX1150 Intel GX1150 Xilinx ZVU102 Xilinx VU9P

Precision 16 bits fixed 8-16 bits fixed 8-16 bits fixed
16 bits

shared exponent
floating-point

16 bits fixed 16 bits fixed 18-27 bits fixed

Freq (MHz) 150 150 231.85 303 385 200 240
Logic cell (K) 300 161 313 246 - 600 788
SRAM (Kb) 1, 248 × 18 1, 900 × 20 1, 668 × 20 2, 487 × 20 1, 450 × 20 1, 824 × 18 3, 128 × 18
Multipliers 2,833 3,036 3,000 2,952 2,756 2,520 6,057

TOPs 0.488 0.645 1.17 1.38 1.79 3.04 2.45
Normalised
Performance

OP/Multiplier
1.148 1.416 1.682 1.543 1.686 6.032 1.685

Following the results of the design space exploration, the actual implementation was performed

(Step g). Tab. 3.1 extends tab. 2.4 and shows hardware utilisation as well as performance of

the proposed implementation in comparison to other state-of-the-art designs. Benchmarking

of the CNN shows that the implemented design delivers 84.5 images per second at 240 MHz.

This means that the error of the performance model is less than 15%. If a frequency of 240

MHz is used in the model the error decreases to less than 10%. This remaining difference can

be explained by an overestimation of the on-board memory efficiency.

Comparing the performance of the proposed implementation with other state-of-the-art results

of the year it was created in (2017), one can see that the proposed design is faster than [165]

but slower than [87]. If the normalised performance is considered as well, one can see that the

proposed implementation is on par with [142] and [165] and again slower than [87] and faster

than the remaining designs. The difference in normalised performance between the proposed

implementation and [87] is significant. The reason for this is that in the authors of that work

use the Winograd efficient filtering algorithm [145] which reduces the number of multiplications

necessary for each convolution. As such they can use the multipliers on the device with a

significantly better efficiency.

It should be stressed that the methodology does not promise the best performance achievable

in general, but only the state-of-the-art performance given a set of optimisations. For the

architecture presented in this chapter the Winograd optimisation was not considered. One
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example of a design using Winograd was still included in the comparison to show how the

proposed methodology leads to a design which either outperforms or is on par with related work

using the same set optimisations but is itself outperformed once a wider optimisation space is

considered. Especially in the space of ML the huge research interest leads to rapid improvements

and many novel optimisation approaches. For example, more recent work presented in [74]

achieves more than 3.5 times as many operations per second per DSP at only two thirds of the

frequency. As a result, every design developed using the proposed methodology only delivers

a snapshot of the achievable performance considering the current known optimisations and in

fields with such rapid progress regular re-evaluation of the architecture might be required. Due

to quick performance estimation enabled by the proposed methodology it is possible to judge

if an update to a design yields sufficient advantages to justify the required effort. For the same

reason, a comparison to more recent related work is not provided, since the rapid progress

in ML acceleration would only show the limitations of this specific implementation, but not

contribute to the evaluation of the overall methodology.

3.6.2 Berlin Quantum Chromodynamics

The methodology was applied to a widely used Quantum Chromodynamics (QCD) application.

QCD is the physical theory of strong interactions between subatomic particles, and Lattice

Quantum Chromodynamics (LQCD) is an approach to computationally simulate such particles,

based on discretising space and time into a 4D lattice [144]. Berlin Quantum Chromodynamics

(BQCD) [104] is a popular implementation of LQCD. It natively supports timing its compute

steps and a generated output file includes a detailed timing report that made utilities like

gprof unnecessary (Part 1). Since the majority of the BQCD compute time was spent in its

Conjugate Gradient (CG) solver, Maxeler focused on porting this (Step a). Overall BQCD

contains roughly 200, 000 lines of source code illustrating the complexity of the application,

motivating the need for a more elaborate design process and explains the inclusion in this

evaluation.

The results presented below are compared with BlueGene/Q system with 32,768 cores. This
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system needs 4.04 ms for one iteration on a problem size of 8,388,608 points in the spacetime

grid. One DFE needs 5.34 ms for a problem of size 131,072. If linear scaling is assumed (which

is valid at least for the DFE), 388 cores of the reference system achieve the same performance

as a single DFE. Similarly, the complete system could be replaced by a system using 64 DFEs.

A CG algorithm [48] iteratively solves an Mx = b equation for the unknown vector x, where M

and b are known. The algorithm relies on repeated multiplication of M by conjugate vectors.

In the case where M is sparse, rather than performing explicit matrix-vector multiplication, it

is more efficient to infer the effect of M when applied to a vector p by referencing only selected

elements of M .

In the case of BQCD, each lattice point contains a so-called spinor which, for the purposes of

this thesis, is a block of 12 complex numbers, and the vectors are enumerations of the spinors

of all the lattice points. The matrix M consists of repeated application of so-called Wilson /D

(d-slash) and clover operators (both sparse) to the lattice of spinors. Rather than explicitly

constructing M and computing a matrix multiplication, BQCD applies /D and clover to a

lattice of spinors four times in succession for each CG iteration. For the application of /D the

program needs to make reference to the current output site’s neighbouring spinors (in 4D) and,

furthermore, one so-called gauge matrix (3×3 matrices with complex elements) per neighbour.

Architecture

During performance modelling (Part 3), it became clear that the QCD application would be

bound by on-board memory bandwidth (Step e) and, hence, most design decisions were taken

in order to minimise on-board memory I/O (Part 4). The resulting architecture is displayed in

fig. 3.9. Spinors, gauges and clover matrices are read from on-board memory and streamed into

the CG algorithm. Each CGKernel performs a /D and clover operation and some perform addi-

tional ax + y operations required by the CG algorithm. Some spinor vector results are output

by CGKernel0, whereas the result of the matrix multiplication Mp is output by CGKernel3.

These results are streamed back to on-board memory to be used by the next CG iteration.

CGKernels 0 and 1 accumulate the square norm of certain spinor vectors, which are fed to
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the CGControlKernel at the end of a CG iteration, which uses these numbers to compute the

scalars required for the next CG iteration. Note that to save chip space, the CGKernels process

a lattice site only every 4 cycles. Since a CGKernel needs to reference all neighbours in 4D, its

latency is effectively 2LXLYLZ × 4, where Li denotes the number of sites in direction i, and 4

the cycles needed per site.

On Board 
Memory
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d-slash

clover

axpy

normsq

CG 1
clover

axpy

d-slash

normsq

CG 2
d-slash

clover

CG 3
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clover

Init Gauge

CG Control
compute next 

scalars

Figure 3.9: BQCD design architecture.

Performance modelling

Architecture (Part 4) performance (Part 3) can be modelled as follows (Step d). Eq. 3.20 and

3.21 show compute bound and memory bound times to solution.

Tcomp =
4LXLYLZ(LT + 11)

f
(3.20)

Tmem =
LXLYLZ (2, 064 + 480LT ) × 3B

BW × efficiency
(3.21)

The theoretical time-to-solution from eq. 3.22 is plotted in fig. 3.10 in yellow. The BQCD

initialisation time is assumed to be 10 ms, while time for data transfer via PCIe is 11.7 ms.

Texec = max (Tcomp, Tmem) + TPCIe + Tinit (3.22)
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Experimental Results and Discussion

Fig. 3.10 depicts the experimental results. Generally, the estimated results represent measure-

ments very closely. However, at high frequencies, a discrepancy in time-to-solution of around

10% is observed. This discrepancy is due to the assumption that data accesses to on-board

memory can be averaged over the run. In reality, on-board memory I/O varies during a CG

iteration, being lower for halo sites than when computing ordinary sites. This means that there

will be a transitional frequency range where part of the execution is on-board memory bound

and the other part is compute bound. By treating the halo and core compute separately, whilst

assuming the “flushing” cycles after each CG iteration to be compute bound, a more accurate

model is created (the grey line in fig. 3.10). It should be noted, that more simplified models,

e.g., the roofline model, will not be able to accurately predict this behaviour.
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Figure 3.10: BQCD CG time-to-solution.
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3.7 Summary

This chapter presented a methodology for the development of complex applications using FP-

GAs. It facilitates application-centric modelling to accurately predict system performance and

to help with the identification of the best system architecture before the first line of hardware

code is written. As such, complicated and time-consuming design iterations on the actual hard-

ware design are omitted. The precise prediction of the final system properties is available early

in the development process facilitating early business and overall system design decisions.

The proposal involves four phases, analysis, software modelling, forecasting of system properties

and architectural development, which have to be co-developed in an iterative fashion to gain

optimal results. Two case studies based on a CNN and BQCD were presented, demonstrating

that following the proposed methodology yields state-of-the-art performance. In both cases

the predicted speedup remained within 15% of real measurements and as intended the first

implementation achieved specification targets. This high accuracy is achieved by using a highly

predictable toolchain. Additionally, both applications have a predictable execution pattern

which benefits the analysis used in the methodology. An application with a less predictable

execution pattern is discussed in chapter 5.

The methodology has already seen initial adoption both within Maxeler itself as well as in

academia and has received positive feedback. For example, the work presented in [71] uses parts

of the methodology. Additionally, two master thesis projects used the complete methodology

successfully ([129] and one yet unpublished). Maxeler has integrated the methodology proposed

in this thesis into their tool documentation to teach it to internal and external developers [94].



Chapter 4

Extensions for Modern FPGAs and

Performance Portability

4.1 Introduction

This chapter addresses the challenge of portability between different FPGA devices. In order

to accomplish this, the methodology from the last chapter will be extended to support multiple

current FPGA devices using the same code base. The challenge of portability is divided into

two major aspects.

1. The heterogeneous memory of modern multi-die FPGAs; and

2. The missing methodology and tool support for portability between devices.

This means that tool support to efficiently target modern multi-die FPGAs with heterogeneous

memory architecture and support for performance scalability are added. In both cases the

proposed solution strategy is applied to relevant real-world applications.

The first challenge addressed in this chapter is the automatic mapping from logical into physical

memory resources. This has become a lot more challenging for modern FPGA devices. The

reason for this is twofold. Xilinx introduced additional memory types with their latest chips

148
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[156], increasing the diversity of the available memory resources a FPGA programming tool

has to manage. Additionally, Xilinx’ biggest FPGAs consist of multiple silicon die on the same

interposer, also known as SLRs [148]. One example of such a device is the VU9P which powers

the Amazon EC2 F1 instances. In order to facilitate timing closure, it is beneficial when a

hardware structure described by the designer can fully reside within a single SLR to avoid

the usage of slow and scarce inter-SLR connections. Since the number of individual memory

resources within each SLR is limited, efficient logical to physical memory mapping is important.

The reason for this is that over allocation of a specific memory resource, e.g., allocating more of

one of the physical memory resources than available within a single SLR, will automatically lead

to a design in which the hardware structures span across multiple SLRs. Such a SLR crossing

will hinder timing closure and often produce slower designs. As a result, it is important for

an FPGA programming tool to allocate different memory resources so that the programmed

structure resides as much as possible within a single SLR.

While it is possible to manually resolve this challenge within the methodology, this chapter

proposes a greedy algorithm which automatically allocates hardware memory resources for user

defined memories. As a result, this step of the methodology can be fully automated. This

algorithm considers modern technology trends like SLRs and increasingly heterogeneous on-

chip memory resources. The aim of the algorithm is to balance the allocation of different

memory resources for individual sub-parts of the design and minimise the number of inter-SLR

connections, which will facilitate timing closure and reduce routing congestion. The algorithm

targets the latest Xilinx technology; however, the algorithm is generally applicable to systems

with similar properties.

The second challenge addressed in this chapter is performance scalability between different

FPGA based devices and different FPGA generations. Due to the high flexibility of FPGAs, it

is possible to heavily customise and optimise designs. The resulting implementation is typically

specific to the chosen target platform. This severely limits its portability to other FPGA-based

target platforms.

In contrast CPU and GPU vendors spend significant effort to ensure forward compatibility
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between devices. As such the same binary can be executed on new devices, often even offering a

small speed-up. Additionally, binaries can be optimised with low designer effort by recompiling

with a compiler, which is able to tune for the selected platform. As a result, the absence of

performance scalability for FPGAs is severely impacting their adoption due to the need to

spend significant designer effort in upgrading to new devices.

The optimisations used in the FPGA implementation include various types of computational

patterns such as pipelining and parallelisation, numeric optimisations, e.g., custom fixed-point,

and various types of memory access schemes and buffering. Other optimisations take platform

specific information such as the total amount of resources or I/O bandwidth into account.

Many of these optimisations capture aspects of the target platform and hence, target-specific

optimisations become intertwined with application code. Combined with differences in the

vendor tools and IP core libraries this severely limits the portability of the optimised application

code to a different target device.

As a result, a solution to the problem of performance scalability requires not only tool support

to provide abstractions for the device dependent components of the targeted platform, but also

support by a development methodology and best practices to deal with changes in compute

to communication ratios. It is crucial that it is possible to share a single code base between

multiple platforms, to ensure that future functional changes and bug fixes can apply to all

supported platforms without further problems. As such an isolation of platform dependent

settings and configurations is desirable to ensure maintainability.

This chapter proposes best practices which can be integrated into the methodology introduced

in the last chapter to ease portability between FPGA platforms. The proposed methodology

steps are evaluated by porting an existing financial application to a wide range of platforms

and measuring the achieved speed-up.

The contributions of this chapter are as follows:

• A simple greedy Balanced Memory Mapping (BMM) algorithm, which optimises timing

closure by reducing the number of SLR crossings;
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• A careful evaluation of three proposed memory mapping algorithms based on a set of use

cases for small, medium and large workloads;

• And best practices to achieve performance scalability between FPGA platforms;

• As well as an evaluation of these best practices using a financial application.

The remainder of this chapter is organised as follows. In section 4.2 the mapping of logical to

physical memories for multi-die FPGAs is discussed and the proposed algorithm is described

in section 4.2.1. Section 4.2.2 provides an evaluation using a rich set of different workloads.

The topic of performance scalability is discussed in section 4.3. The proposed best practices

are explained in section 4.3.1. An evaluation of these best practices is provided in section 4.3.2

and a summary in section 4.4 concludes the chapter.

4.2 Memory Mapping Algorithm for Multi-Die FPGAs

Generally, a good memory mapping algorithm should:

1. use as few resources as possible; and

2. facilitate timing closure.

In order to address the first objective, the utilisation of the available memory resources needs

to be considered. As shown in eq. 4.1, the utilisation of a given physical memory resource

(BRAM or URAM) is the maximum utilisation of its valid aspect ratios. The utilisation of

each aspect ratio is the ratio between the user defined logical memory size and the product of

the physical memory unit size (both in #bits) and the required number of physical memories.

To minimise hardware wastage the memory type with the best utilisation is selected.

max

(
logical memory size

unit size ∗ #units

)N

aspect ratio=1

(4.1)
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This thesis will call a group of hardware resources with high interconnectivity placed in close

proximity on the FPGA fabric a design unit. Design units can be specified explicitly by the

user, implicitly by using language structures or by creating a high-level floorplan model. As

such a design unit could, for example, contain all resources of a single computational unit,

e.g., a Maxeler Kernel. Alternatively, if a floorplan is used, a design unit could also contain

all the resources which are mapped to a certain SLR. In order to reduce SLR crossings and

as a result aid timing closure, it is of major concern to balance the allocation of different

memory resources between different design units. Consider a case where a specific design unit

requires more BRAMs than available in a single SLR. As a result, BRAMs from neighbouring

SLRs have to be allocated, increasing SLR crossings and routing congestion as a result. As such

redirecting some of the memories to URAMs is beneficial even though this introduces overheads

in terms of allocated memory bits. In short, balanced allocation between BRAMs and URAMs

is expected to improve SLR locality of individual design units. In the authors experience SLR

crossings and the related routing congestion limit timing closure. As a result, the major goal

for a timing optimised multi-die aware memory mapping algorithm is avoidance of unnecessary

SLR crossings.

The problem addressed by this algorithm only occurs for memories using current devices. This

is caused by the heterogenous memory architecture used by the modern FPGAs. The problem

discussed above only occurs because there a BRAMs and URAMs and the same logical memory

can be mapped to both resources. As such mapping decision influence if a design unit can reside

within an SLR or not. This is not the case for, e.g., DSPs since one cannot decide to map a

multiplier to one type of DSP or the other (since there only is one). If FPGA vendors should

decide to introduce other heterogenous resources to the FPGA the algorithm can probably be

adopted to those resources as well.

Another aspect in the context of this algorithm is general placement locality. E.g., if a DSP

is connected to a memory one could consider which resources should be used to make the

connection between them as short as possible. However, this aspect is beyond the scope of this

work, since it needs significantly more knowledge of other mapping and placement decisions.

It should probably be integrated with the placement algorithm in the FPGA vendor tools.
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However, due to the need to route SLR crossings through the silicon interposer leading to long

signal runtimes and their limited availability they usually have a larger impact on timing closure

than routes within the FPGA die itself.

4.2.1 Algorithm Description

To address the above the following Balanced Memory Mapping (BMM) algorithm is proposed.

BMM runs per design unit and its input is the list of logical memories. In a few cases a logical

memory can only be mapped to a specific physical memory, due to specific hardware feature

requirements, e.g., dual clock domain support. Such special logical memories are handled first

to ensure mapping to the appropriate hardware resources.

Afterwards another pre-processing stage decides which of the remaining logical memories should

be mapped to distributed RAM. Since the logic resources used to implement distributed RAM

are less scarce, this mapping can be based on a simple heuristic and does not need to consider

SLRs. This heuristic is based on the BRAM utilisation calculated using eq. 4.1. It is not needed

to test URAM utilisation, since URAMs have a significantly larger capacity than BRAMs and

because of the aspect ratio restrictions will never achieve a better utilisation for a given logical

memory than BRAMs. The decision on mapping to distributed RAM uses a simple BRAM

threshold. When the BRAM utilisation of a logical memory unit is lower than 1/8 it will be

mapped to distributed RAM. Otherwise, the algorithm decides between URAMs and BRAMs

on a later stage. The BRAM threshold value was deduced by considering the BRAM aspect

ratio with the smallest possible depth of 512 and a width of 36 bits. The above datapath

width was chosen based on the knowledge that 18 bits is typically not sufficient for small

memories implemented in distributed RAM. If a 36 bits wide logical memory, matching BRAM

widths, is considered, it will be mapped to distributed RAM when its depth is 64 or less.

It should be noted that a depth of 64 matches a distributed RAM aspect ratio. Comparing

utilisation provides a simple metric which accounts for both, width and depth. The reason

for this low utilisation requirement is that the capacity of available distributed RAM is very

small in comparison to the other memory resources. Additionally, logic resources are also used
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to implement arithmetic and other user design features. As such saving logic resources is in

general considered beneficial. However, in the context of static dataflow designs with many

shallow FIFOs distributed RAM has to be used. For those FIFOs BRAM utilisation will be

very low.

When beneficial, the BRAM threshold value can be customised for each specific design depend-

ing on the overall logic utilisation. For example, when a design requires an exceptional amount

of logic resources it is possible to skew the balance towards BRAMs by decreasing the threshold.

As a result, the best BRAM threshold value is application specific; however, the setting used

here achieved good results for all applications and benchmarks used in the evaluation.

After the first memory mapping stage all memories not mapped to distributed RAM are grouped

by design units. Each design units’ memories are stored in a global list, sorted by decreasing

URAM utilisation. This list is used by the memory allocation algorithm to decide if a particular

logical memory should be implemented as BRAMs or URAMs.

Fig. 4.1 shows the BMM algorithm in more detail. The algorithm uses a score, which is

initialised to zero and is used to decide in which order the memories are allocated. The score

is based on BRAM cost and used to keep track of the balance between BRAMs and URAMs.

As a result, when the algorithm selects to map a given logical memory to BRAMs the score is

increased by the number of BRAMs allocated. When URAMs are selected, the score will be

decreased as explained next. Since the score is based on BRAM cost a factor relating BRAM

to URAM cost needs to be found. This is achieved by using the ratio between the available

BRAM and URAM modules. Consequently, if a logical memory is mapped to URAMs the

score will be decreased by the product of this ratio and the number of URAMs needed to

implement the logical memory resource. This procedure is repeated for each design unit until

the corresponding list of unmapped memories is emptied. As a result, the proposed algorithm

will perform best in the case of a single design unit per SLR. This will avoid segmentation

and the consequent suboptimal mapping resulting in slightly increased memory utilisation.

However, when the toolflow does not support floor planning, the above is highly unlikely and

resources have to be grouped into design units based on other properties. The evaluation
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presented here assumes the less advantageous later option, where design units are implicitly

inferred by language structures.
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Figure 4.1: BMM algorithm with greedy, score-based proportional mapping.

Within the mapping loop of the BMM algorithm there are three possible cases which are

handled separately. If the score is close to zero, the allocation between BRAMs and URAMs

is considered as balanced. In this case the next unmapped logical memory is picked from the

beginning of the list. Since the list is ordered by URAM utilisation, highest URAM suitability

of the selected unmapped logical memory is ensured. The memory will be actually mapped

to URAMs only when its utilisation is bigger than the URAM threshold. Otherwise, a new

memory from the end of the list, hence suited to BRAMs, is selected and mapped to BRAMs.

This URAM threshold together with the score determines when a logical memory is mapped

to URAMs and can be modified by the designer. In the authors experience a URAM threshold

of 0.6 provides good results. This means that logical memories with at least 60% URAM

utilisation are directly mapped. The URAM threshold ensures that design units with only a

single logical memory benefit from the best suited physical memory resource.



156 Chapter 4. Extensions for Modern FPGAs and Performance Portability

It should be mentioned that the URAM threshold in most cases has a limited impact, due to

the algorithm capability to balance allocation between BRAMs and URAMs within the same

design unit. However, the URAM threshold becomes important for certain rare edge cases.

These consist of designs composed of multiple design units with only one or two memories

of significant size. The default value of 0.6 tries to find a good balance with the target of

decreasing the overall memory wastage. However, it might be necessary to adapt the URAM

threshold manually in those rare edge cases.

In the case of a positive score more BRAMs than URAMs are used and again the logical memory

from the beginning of the list is mapped to URAMs without considering the URAM threshold.

Finally, in the case of a negative score a memory from the list end will be mapped to BRAMs.

Each time a memory is mapped to a specific resource the score is adjusted as described above.

It will be increased in the case of mapping a logical memory to BRAMs or decreased in the

case of mapping to URAMs. As a result, BRAMs and URAMs are allocated at comparable

rates with respect to the overall availability.

By ordering the memories based on URAM utilisation it is ensured that always the memories

most suited to URAMs or BRAMs are mapped first. This greedy strategy ensures that as many

memories as possible are mapped to their best suited physical memory resource therefore saving

area and addressing the first objective of the algorithm. To further improve memory resource

utilisation, it is possible to combine the proposed algorithm with already existing memory

allocation approaches, e.g., by tiling logical memories and making use of dual port memories

as in [49]. However, it is necessary that all additional optimisation algorithms do not disturb

accurate estimation of the number of physical memory resources that have to be allocated.

Additionally, the second algorithm objective is fulfilled by allocating memories to URAMs and

BRAMs at the same rate and hence minimising SLR crossings, which causes routing congestion

reduction and aids timing closure.



4.2. Memory Mapping Algorithm for Multi-Die FPGAs 157

4.2.2 Evaluation

In order to evaluate the proposed BMM algorithm place and route on multiple designs for the

Xilinx VU9P FPGA using Vivado 2017.4 is performed. In all cases Maxeler’s MaxCompiler is

used and only the memory selection is influenced to enforce VHDL with the desired memory

macros instantiated. This means that the design will be completely the same and only the used

physical memory resources are changed. As a result, when the designs satisfy the same timing

constraints, the achieved throughput remains the same as well as the logic and arithmetic

resources utilisation. For all designs the set of implementation strategies able to achieve the

best results in meeting a specific frequency is used. In cases where designs could not fit on the

chip, the synthesis results on area utilisation are reported to emphasise the reason why designs

failed to fit. For all experiments the URAM and BRAM thresholds suggested in the last section

are used. First the memory mapping algorithms used to compare against are described. Later

the used test cases are introduced, and finally experimental results are provided.

Algorithms

To evaluate the proposed BMM algorithm, three other mapping algorithms are used in the

comparison below.

In the first case all mapping decisions are left to the Xilinx Vivado toolchain by using the

XPM MEMORY core and setting the memory style to auto. Vivado, however, currently only

uses distributed RAM and BRAMs [157]. Since URAMs are not yet supported by Vivado

for the sake of fair comparison I introduce two additional algorithms. They both implement

traditional memory mapping approaches and extend them with URAM support to form a

realistic comparison base line.

The first additional algorithm, called Threshold Based Memory Mapping (TBM2), uses the

same mapping to distributed RAM as BMM, but it simply uses the same fixed URAM threshold

as in BMM to decide which memories should be mapped to URAMs or to BRAMs. As a result,

if the URAM utilisation for a logical memory is above 0.6 it will be mapped to URAMs otherwise
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BRAMs will be selected. This algorithm implements standard techniques which, for example,

only consider the depth of a logical memory as in [121]. It aims only at efficient utilisation of

each individual physical resource.

Additionally, I introduce the Wastage Reducing Memory Mapping (WRM2) algorithm. This

third and final algorithm, as depicted in fig. 4.2 improves on the Threshold Based Memory

Mapping (TBM2), by alleviating over usage of a single resource when other memory resources

are still available. First, it uses the same mapping to distributed RAM as described before.

Next, all remaining unmapped memories are ordered by URAM suitability as with BMM. In

contrast to the BMM this ordered logical memory resources list is global and not on a per

design unit basis.

The memories on that list are then allocated using the same URAM threshold of 0.6 as for

the previous algorithms. In addition, Wastage Reducing Memory Mapping (WRM2) also keeps

track on how much of the available resources are already allocated. When more than 80%

of one physical memory resource is allocated, the remaining memories will be mapped to the

other resource type. If both resources exceed 80% this limit will be increased in steps of 10%.

For example, when 80% of BRAMs are used, the algorithm will only map to URAMs until

the overall URAM usage also exceeds 80%. Due to ordering by suitability, when mapping to

URAMs, the algorithm will only pick memories from the front of the list and consequently,

when mapping to BRAMs it considers memories from the back. As a result, this algorithm

tries to maximise physical memory utilisation and always aims at mapping logical memories to

the best suited physical memory resource while not over-allocating resources. This approach

allows the study of the area overhead introduced by the proposed BMM algorithm.

To the best of my knowledge no alternative multi-die aware memory mapping algorithm with

the target to facilitate timing closure exists that can be used for direct comparison.
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sorted memories by suitability

limit = 0.8

all
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first
memory
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pick first memory;
map to URAM
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if URAM allocation ≥ 0.8 && BRAM
allocation ≥ 0.8; limit += 0.1
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no

yes

no

yes

no
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Figure 4.2: WRM2 algorithm with greedy, global area optimised mapping.
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Test Cases

The four algorithms in this study are applied to three different sets of use cases. The first set

consists of 16 small benchmarks (S1-S16), which only occupy a small area on the VU9P and

can comfortably reside within a single SLR.

The second set of use cases consists of eight different medium sized designs (M1-M8). These

examples occupy more than a single SLR, but still do not fully fill up the VU9P chip. M1-M5 are

small synthetic examples, while M6-M8 are different versions of an FPGA based implementation

of a real application, SPECFEM3D [72]. SPECFEM3D is a widely used HPC workload, which

simulates different geophysical events, like wave propagation through different materials.

Finally, the last set of use cases consists of nine real applications (L1-L9). These applications

represent real HPC workloads, which typically use most of the available on-chip resources, span

multiple SLRs and make extensive use of the PCIe and DDR interfaces and hence decrease the

overall number of available BRAMs and URAMs.

L1-L5 are machine learning applications. L1 is a fully connected network, while L2-L5 imple-

ment two convolutional neural networks with and without Winograd transform and all incor-

porate three copies of the same network implementation. L2 and L3 do not use Winograd and

are based on the design presented in section 3.6.1. They differ only in forcing the design copies

to specific SLRs using placement constraints or not. L4 and L5 use Winograd and follow L2

and L3 in their placement constraints.

L6 is a nanoscale material simulation application called Quantum ESPRESSO [41] another

widely used HPC workload. L7 is an FPGA implementation of BQCD [104] a quantum chro-

modynamics application as presented in section 3.6.2. L8 implements the ocean engine of

NEMO [90] a commonly used weather simulation tool. Lastly, L9 is a dense matrix-matrix-

multiplication1, a main building block of many HPC applications.

The smaller synthetic test cases are included to study how the proposed algorithm behaves for

smaller applications which do not make use of all on-chip resources even though this was not its

1https://github.com/nilsv/Dense-Matrix-Multiplication
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typical optimisation target. The use cases M6-M8 as well as L1-L8 are real world applications

which are deployed in HPC environments and as a result represent the primary target for the

design of the presented algorithm. Especially M6-M8 as well as L6-L8 represent a significant

portion of the workloads running currently on HPC systems.

Results

Fig. 4.3 and fig. 4.4 show the BRAM and URAM usage for the small use cases. It can be

observed that all algorithms apart from BMM use the exact same number of BRAMs and

URAMs. Since the BMM algorithm tries to find a balance between allocating BRAMs and

URAMs, it maps some of the logical memories to URAMs. As a result, the overall memory

usage in allocated bits is increased by 38%. As this may seem quite high, the total number of

allocated memory blocks and therefore the expected power consumption stay close. All four

algorithms allocate the same amount of distributed RAM.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

100

200

300

7
6
.5

6
7
.5

7
0

2
8
9

1
7
6

8
6

8
3
.5

8
5

5
6 7
5
.5 1
0
5

6
2
.5

6
4 7
0

7
2

1
5
5

7
6
.5

6
7
.5

7
0

2
8
9

1
7
6

8
6

8
3
.5

8
5

5
6 7
5
.5 1
0
5

6
2
.5

6
4 7
0

7
2

1
5
5

7
6
.5

6
7
.5

7
0

2
8
9

1
7
6

8
6

8
3
.5

8
5

5
6 7
5
.5 1
0
5

6
2
.5

6
4 7
0

7
2

1
5
5

7
4
.5

6
7
.5

6
8

2
1
9

1
3
4

8
4

8
1
.5

8
1

5
6 7
3
.5 1
0
1

6
0
.5

6
2 6
8

6
9
.5

1
4
9

R
es

ou
rc

e
U

sa
ge

Vivado
TBM2
WRM2
BMM

Figure 4.3: BRAM usage for the four different algorithms on the test set of small applications.
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Figure 4.4: URAM usage for the four different algorithms on the test set of small applications.

The memory resource usage for the set of medium sized use cases is shown in fig. 4.5 and

4.6. The standard Vivado algorithm does not map any logical memories to URAMs. As a
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result, M8 does not fit into the chip, due to a significant overallocation of distributed RAM.

The simple TBM2 algorithm and WRM2 both reached the same mapping decisions, since no

single resource exceeded 80%. The proposed BMM algorithm again uses URAMs and BRAMs

more balanced than the other algorithms. As a result, the overall number of allocated bits is

increased by 85% compared to the WRM2 algorithm. However, it should be noted that using

large amounts of a particular resource usually makes timing closure harder. The allocation of

distributed RAM is similar between all algorithms. Only for the use case of M8 the standard

Vivado algorithm allocates significantly more distributed RAM.
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Figure 4.5: BRAM usage for the four different algorithms on the test set of medium applications.
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Figure 4.6: URAM usage for the four different algorithms on the test set of medium applications.

Finally, the resource usage for the large test cases is shown in fig. 4.7 and 4.8. Vivado and

the simple TBM2 algorithm both fail to place and route test cases L2, L3, L6, L8 and L9.

Additionally, the high resource usage for the standard Vivado algorithm prevents successful

place and route of L7.

L2 and L3 designs instantiate three copies of the same large design unit. In the case of L2,

Vivado placement constraints are used to force each design unit in a single SLR, while L3 has

no placement constraints. The WRM2 algorithm has difficulties with designs like the above.
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It maps one of the three design units mainly to BRAMs and the other two mainly to URAMs.

This causes all three design units to span across multiple SLRs. As a result, L2 fails to meet

its placement constraints and L3 fails due to high routing congestion, even though the total

count of allocated BRAMs and URAMs is similar between WRM2 and the proposed BMM

algorithm. Only the latter finds a mapping, facilitating successful place and route completion.

L9 provides a similar test case as above consisting of three individual design units. WRM2 again

allocates resources unevenly between the three design units, mapping one entirely to URAMs

and the other two mostly to BRAMs. However, the mapped workload is less complex making

successful place and route possible, even though the number of SLR crossings is increased by a

factor of 2.6.

The mapping behaviour for designs with multiple big design units was the main motivation

behind the proposed BMM algorithm. Since both memory resources are allocated at the same

rate, it is guaranteed that no single resource is heavily overused. Only when the overall memory

usage of a design unit is larger than a single SLR capacity, multiple SLRs will be used. This

ensures that the toolchain does not limit place and route of valid, well designed architectures.

In the case of L8 the WRM2 algorithm also fails to facilitate successful place and route comple-

tion. Here WRM2 makes use of all available URAMs, which leads to a violation of a placement

constraint introduced by the Xilinx DDR IP core causing place and route to fail. This could be

potentially avoided by predicting the BRAM usage more accurately, since only 85% of BRAMs

are used. In general, it can be noticed that WRM2 requires precise estimations in order to

avoid overallocation of a single resource.

To summarise, only the proposed BMM algorithm manages to successfully generate place and

route results for all large designs, even though the memory usage in number of bits is on average

13% higher. However, in cases where the memory usage of both physical resources approaches

levels above 80% the BMM and the WRM2 algorithm both allocate a similar amount of BRAMs

and URAMs.

Fig. 4.9 shows the average number of SLR crossings across multiple implementation strategies
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Figure 4.7: BRAM usage for the four different algorithms on the test set of large applications.

for all medium and large use cases and all four mapping algorithms. The main target of the

mapping algorithm is to improve the timing closure behaviour of the design. The problem is

that this is very hard to accurately measure especially on a bigger set of large applications. It

would be desirable to consider the frequency for which each individual design for each frequency

would meet. There are two major problems with this. First, the variance between different place

and route runs and implementation strategies2 is large. Second, it would be required to dial

the frequency for each application manually for each algorithm until the design meets timing.

While Maxeler was able to provide me with a cluster of servers to record the experimental

values presented in this chapter performing that many place and route runs would have used

more cluster time than made available to me.

As such, I report the SLR crossings since the strongly correlate with the timing closure be-

haviour. The reason for this can be found in their limited nature, their comparatively long

routing delay and their fixed position leading to further routing constraints. Additionally, as

discussed above, the algorithm attempts to reduce SLR crossings as a way to improve timing

closure and this comparison shows how well the algorithm performs for this intermediate goal.

In order to compare the average number of SLR crossings between algorithms, only those cases

where place and route finished successfully are considered since this is necessary to obtain a

figure on SLR crossings. This means that cases in which those algorithms performed especially

poorly are not taken into account, creating a bias against the proposed BMM algorithm. In

general, there is no straight forward way to include the test cases currently not taken into

2The optimisation goals for the place and route algorithm.
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account. One could for example assume that in the not routable cases all SLR crossings are

fully used, which is not realistic and would create unnecessary bias in favour of the proposed

BMM. However, even the current selection shows the advantages of the proposed algorithm.
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Figure 4.8: URAM usage for the four different algorithms on the test set of large applications.
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Figure 4.9: Number of SLR crossings for the different mapping algorithms on the medium and
large test set. Missing bars corresponds to failed builds.

For the medium use cases the proposed BMM algorithm achieves a reduction in the average

number of SLR crossings by 46%, 11% and 6% compared to the standard Vivado, the TBM2

and the WRM2 algorithms respectively. For the three large cases successfully routed by Vivado

and BMM on average the same number of SLR crossings was created. However, in the six other

test cases Vivado failed to finish place and route. In comparison to TBM2 and WRM2 the usage

of the BMM algorithm leads to an average reduction in number of SLR crossings by 7% and

52% respectively.

L3 provides a good example on how the proposed mapping algorithm can reduce the number

of SLR crossings. L3 consists of three copies of the same design. This also means that each of

those copies has the same types of memories and additional most memories in the design have



166 Chapter 4. Extensions for Modern FPGAs and Performance Portability

the same size. The WRM2 algorithm now maps all of these memories to the most suitable

resource, BRAMs, until no more BRAMs are available. The remaining one will be allocated to

URAMs. In this case this means that one of the three design copies will mostly use BRAMs

while the other two will mostly use URAMs. The design copy mostly using BRAMs will need to

span across all three SLRs since no single SLR has enough available BRAMs to accommodate

it. The other two copies will also need to span across two SLRs since not enough URAMs are

present within one SLR (due to the low URAM suitability). This results in the difference of

nearly 3x in terms of SLR crossings between WRM2 and BMM. While this presents a worst-

case scenario to WRM2s it was not deliberately constructed as such but is the result of the

implementation of VGG-16 as discussed in section 3.6.1.

Lastly, fig. 4.10 shows the Total Negative Slack (TNS) for test cases in which at least one algo-

rithm produced a TNS value while failing timing closure. Additionally, at least two algorithms

produce TNS values to facilitate comparison. In the case where a design is very congested TNS

values are often not generated by Vivado. As a result, it is only possible to draw meaningful

conclusions from the five test cases shown in the figure. The depicted TNS is the average over

multiple implementation strategies.
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Figure 4.10: Average TNS for test cases, where more than one algorithm produced a non-zero
TNS. Missing bars corresponds to failed builds.

By comparing fig. 4.9 and fig. 4.10 one can observe that there is a strong correlation (not a

causation) between the number of SLR crossings and the average TNS. For example, in the case

of M6 the standard Vivado algorithm creates by far the most SLR crossings, resulting in the



4.3. Performance Portable FPGA Designs 167

worst average TNS. Accordingly, BMM creates the least amount of SLR crossings and achieves

the lowest TNS.

The same correlation holds true for L1 and L4. However, in the case of L7 BMM creates the

highest average TNS even though the number of SLRs crossings is the lowest. The reason for

this is that for one of the implementation strategies the TNS is 50,114,977 ps. This single

outlier impacts average TNS significantly. If this implementation strategy is excluded the

average drops to 1,265,720 ps, which would be the lowest average TNS for this use case. It was

sadly not possible to identify the precise frequencies each application can achieve for each of

the test cases due to the limitations described above.

As a result, it can be concluded that comparing the number of SLR crossings is a good metric

to estimate the impact of memory mapping algorithms on TNS. The advantage of this is that

it provides an easier to compare metric, generating more data points in a smaller value range,

whereas TNS can be prone to outliers. Similarly, it is hard to take into account if for a few

implementation strategies no TNS value is generated, since the design cannot be routed.

More importantly, for the test cases considered in this comparison only the proposed BMM

managed to successfully place and route all designs. In contrast the standard Vivado algorithm

failed on M8 and all large applications apart from L1, L4 and L5. This means it only managed

to be successful on three out of the nine large applications. TBM2 only managed to additional

place and route M8 and L7, meaning that it still fails for more than half of all large applications.

The only algorithm getting close is WRM2 which only fails on L2, L3 and L8, which improves

the failure rate to one third. All in all, the proposed BMM algorithm provides a significant and

noticeable improvement over all other algorithms tested.

4.3 Performance Portable FPGA Designs

Generally speaking, when moving between different FPGA platforms there are typically three

major challenges:
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1. Different vendor tool chains;

2. Different vendor and platform-specific programming constructs as well as hardware IP

cores; and

3. Different FPGA device architectures, characteristics and platform capabilities.

If one switches the FPGA chip vendor usually a different toolchain has to be used. While all

commonly used toolchains support a set of widely used languages like VHDL and Verilog the

required design description might still differ profoundly. For example, the way in which timing

and placement constraints are applied is usually not portable between toolchains. Similarly,

the build process might differ significantly.

Even if the vendor is not changed, porting to a newer FPGA often requires significant changes

to the design. For example, it is usually necessary to use newer IP cores.

Finally, new device generations often also introduce new hardware features or changes to the

chip architecture. It might not be possible to simply instantiate an existing design on the new

hardware platform without either decreasing the area usage of the design or exploiting the new

architectural features. This can also include changes to I/O like the usage of different memory

or interconnect technology, which go hand in hand with changes to the required port widths

and data alignments.

In contrast on conventional CPU and GPU technologies programs can be easily moved between

devices using the same ISA. Usually chip vendors also guarantee backwards compatibility, where

programs can be executed on all future devices and only the usage of new instructions requires

changes to the binary.

Especially the first two challenges are solved through more advanced tool support which ab-

stracts these details away from the user. There are multiple FPGA programming tools available,

including MaxCompiler, which address these issues.

If the area and memory capacity of the newly targeted FPGA increases or at least stays the

same and the tools resolve the first two portability challenges it is possible to port an application
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to the new device without significant changes. In this case it is only necessary to deal with the

changes to the I/O interfaces and introduce the required aspect changes if hardware port widths

change (BP1). However, this only provides functional correctness and not good performance.

It might even worsen performance compared to older devices, if I/O cannot be used efficiently

or high clock frequencies are no longer achievable due to device architectural changes, e.g., new

multi-die architectures.

Moving to smaller or otherwise more restricted devices requires changes to the application to

reduce the area usage. As a result, techniques used for performance scalability have to be

applied as described in the next section.

4.3.1 Performance Scalability

A performance model as described in section 3.4 is a necessary part of any process deliver-

ing performance scalability (BP2). It can be used to quickly analyse the performance of a

given architecture for different devices and also highlight which changes might be necessary to

circumvent potential bottlenecks.

Most FPGA applications contain a set of standard optimisations, including loop unrolling or

the instantiation of multiple copies of the same computation. In these cases, it is easily possible

to parameterise the degree of parallelism and therefore steer hardware usage (BP3). Similarly,

data path widths can be adjusted based on the underlying hardware substrate for efficient use

of, e.g., hardware multipliers (BP4). By using an accurate performance model, it is possible to

predict the resulting area usage, memory and I/O requirements of a design point. This enables

design space exploration of architectural options without waiting for time consuming place and

route jobs.

If the computational abilities increase faster than the available I/O bandwidths, it is necessary

to make further changes to the design to take advantage of this. In most designs on-chip

memories are used to buffer bigger chunks of data for fast access. An example for this is tiling

(BP5), which is, e.g., often used in the context of linear algebra. In these cases, a bigger tile size
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can reduce the pressure on the I/O system. If the on-chip memory capacity increased similarly

to the compute capability the additional on-chip memory capacity can be used to resolve I/O

bottlenecks (BP6). For example, considering the MAX4C DFE and the Alveo U200 cards, the

memory bandwidth of the U200 card only increased by roughly 10% while the on-chip memory

capacity increased nearly seven-fold. As such it is important that the application designer

makes the size of these on-chip buffers configurable.

It should be noted that there are also cases where such a simple solution is not applicable, e.g.,

if data are truly streamed and not buffered at all. In those cases, changes to the implementation

are required. In the best-case additional compression and decompression blocks are sufficient,

which can be added without requiring significant changes to the remaining code base. As a

result, it is possible to still maintain code sharing between different platforms. In the worst

case a fundamental change to the architecture is required which will limit code sharing options

between platforms.

Similarly, changes to the overall memory capacity including on card memory have to be consid-

ered. If the memory capacity of the new target device is big enough to hold the same amount

of data as the current device no further changes are necessary. However, it might be possible to

transfer a bigger working data set to the FPGA if the memory capacity increases, potentially

reducing communication overheads. If the capacity decreases and falls below the required ca-

pacity a domain decomposition has to be introduced (BP7). In that case the dataset is split

into smaller parts which are processed individually.

An issue often encountered with big, modern Xilinx FPGAs is the internal split into separate

SLRs. If SLRs are ignored, timing closure and routing congestion can become challenging. As

a result, it is important to limit the number of connections between different SLRs to mitigate

this problem.

In MaxCompiler, the easiest way to mitigate this is by making sure that every Kernel can fully

reside within a single SLR and only the connections between different Kernels or Kernels and

I/O cross SLRs. There are two straight-forward ways to achieve this. First, it is possible to

split a design into multiple Kernels, where each individual Kernel is small enough to fit within
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one SLR (BP8.1). A second option is to create a copy of the design for each SLR (BP8.2).

In the first case it is often challenging to ensure that all individual Kernels can be scalable in

terms of size at a similar rate to fill up all individual SLRs. Especially if the size or count

of SLRs might change between current or future targeted platforms this might introduce a

significant challenge to performance scalability.

However, in most cases it is possible to simply create copies of the same design for each SLR.

This is especially recommended if it is possible to split the overall computation into smaller

either completely or partial independent units, which require no or only limited intercommu-

nication and can all be completed using the same hardware functions. This practice provides

an easy way to achieve performance scalability between different FPGAs.

Usually, the size of different SLRs is similar, however, in some cases certain SLRs might have

less usable space than others, e.g., due to the need to instantiate certain IP cores close to a

physical pin out. In these cases, the different copies of the design can be instantiated with

differing degrees of parallelism. Alternatively, the first suggested approach of splitting the

design into multiple separate units might be more promising. Since the use of chiplets and

multiple die becomes more prevalent in the semiconductor industry, one can expect that future

platforms will also include multiple die.

All of the best practices described in this section fall in the category of design parameterisation.

They describe which aspects are most important to parameterise and together with the Manager

API developed by Maxeler and my usage of it as shown in section 2.3.5 they propose a way

towards performance scalability for FPGA designs. This means that if an existing design is

not already parameterised, parameterisation has to be added in order to achieve scalability.

Otherwise, it might be possible to only achieve portability and not scalability as long as the

design fits into the new device.

The more aspects of the design are configurable the higher the achievable scalability. For

example, only if the size of memories and, as a result, the resulting memory bandwidth require-

ments are scalable one can avoid being constantly memory bound. The same is true for other
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components like the usage of DSPs.

4.3.2 Evaluation

The best practices and methods proposed in section 4.3.1 and the tool support presented in

section 2.3.5 are now applied to the Asian option pricing application introduced in section

2.6.2 which was originally developed for a MAX4C DFE to evaluate their usefulness. This

application was selected due to its relevance as a typical HPC workload and my ability to use

the existing source code. This allowed a focus on applying the best practices without the need

to develop a new application from scratch.

Application porting

The Asian option pricing application is now ported from the original MAX4C DFE to the four

additional target platforms, following three individual steps:

1. Adapt the application to the new Manager API;

2. Apply the discussed best practices; and

3. Add platform Managers for all new platforms.

In order to add platform portability to the application the existing Manager code has to be

migrated to the new Manager API first. A single platform generic function can be created

which instantiates the design by creating Kernels and wiring them up with each other and

PCIe. Additionally, a platform dependent function is created which configures the Quartus

toolchain for the Intel Stratix V based MAX4C DFE. This function contains up to ten lines

of additional code, which can be shared between all platforms using the same generation of

FPGA devices. The resulting platform Manager for the MAX4C DFE is shown in listing 4.1.

Listing 4.1: The new platform specific Manager code for the MAX4C DFE.
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1 public class AsianMax4Manager extends MAX4CManager implements

AsianManager {

2 public AsianMax4Manager(AsianEngineParameters params) {

3 super(params);

4 setDefaultStreamClockFrequency(params.getFrequency ());

5 setupMax4(params , getBuildConfig ());

6 createDesign(params);

7 }

8 }

It is now possible to achieve application portability for a new platform with minimal effort. For

example, the Manager shown in listing 4.2 adds support for the Xilinx Alveo U200 card. This

only requires the addition of one new function to configure the Xilinx Vivado toolchain. In this

case no further optimisations for the specific platform are performed. As a result, the MAX4C

and U200 design will both achieve the same performance at the same design frequency. It should

be noted that apart from these few lines of Manager code and the toolchain configuration the

remaining code base is completely shared, and no further changes are required.

Listing 4.2: A Manager for the Alveo U200 which achieves performance portability.

1 public class AsianU200Manager extends XilinxAlveoU200Manager

implements AsianManager {

2 public AsianU200Manager(AsianEngineParameters params) {

3 super(params);

4 setDefaultStreamClockFrequency(params.getFrequency ());

5 setupUltrascale(params , getBuildConfig ());

6 createDesign(params);

7 }

8 }

It is now possible to build the design for both platforms. The selection between both can be

handled as a command line argument for the build script. In both cases the same number of
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loop iterations is unrolled which means the parallelism factor is set to k = 13. The results can

be seen in tab. 4.1. At the same frequency the design on the MAX4C and the Alveo U200

achieve the same performance, fulfilling the target of performance portability. Furthermore,

it is possible to increase the frequency from 200 MHz to 350 MHz which results in a 1.74x

speedup without any further changes.

Table 4.1: Comparison of the designs for the different target platforms. Speedup is provided
relative to the MAX4C implementation. The resource usage percentage is based on the available
resources of the given FPGA.

Platform
Design
Copies

Parallelism
k

Frequency Time (s) Speedup
Normalised

Speedup
Logic3(%) DSPs (%) BRAMs4(%) URAMs (%)

MAX4C 1 13 200 15.13 1x 1x 258,209 (98.40%) 1,436 (73.15%) 1,205 (46.94%) -
U200 1 13 200 15.13 1x 0.57x 214,569 (18.15%) 2,628 (38.42%) 933 (21.60%) 59 (6.15%)
U200 1 13 350 8.69 1.74x 0.57x 214,611 (18.15%) 2,628 (38.42%) 933 (21.60%) 59 (6.15%)
U200 3 10 350 3.79 3.99x 1.31x 535,374 (45.28%) 6,372 (93.16%) 2,157 (49.93%) 189 (19.69%)
U250 4 14 350 2.04 7.42x 1.35x 874,035 (50.58%) 11,184 (91.02%) 3,471 (64.56%) 323 (25.23%)

MAX5C 3 10 350 3.91 3.87x 1.27x 536,143 (45.35%) 6,372 (93.16%) 2,164 (50.09%) 189 (19.69%)
F1 3 5 250 10.48 1.44x 0.78x 544,320 (60.48%) 3,855 (66.10%) 1,967 (58.54%) 356 (44.5%)
F1 1 18 250 8.62 1.75x 0.95x 423,501 (47.06%) 3,471 (59.52%) 1,506 (44.82%) 170 (21.25%)

3In the case of the MAX4C (Intel Stratix V) I count ALM usage, while in all other cases (Xilinx Ultrascale+) I count LUT usage.
4In the case of the MAX4C (Intel Stratix V) I count M20Ks usage, while only in all other cases (Xilinx Ultrascale+) I count actual BRAM usage. There is also

no URAM equivalent for the MAX4C

As a next step the previously discussed best practices are applied to the code base to achieve a

further speedup. The first step is to adjust the performance model (Part 3) of the application

for the new platform (BP2). For the Asian option pricing application, no DDR memory access

is required. As such it is possible to fully focus on the PCIe bandwidth and area usage.

The area usage can be predicted by counting the number of operations for the design and

running micro benchmarks to get figures for the area usage for each individual operation.

Since, the old performance model already included operation counts, only the area usage for

each operation on the new platforms using micro benchmarks has to be measured. In this case

all additional platforms are based on the Xilinx Ultrascale+ technology so the area usage will

be constant across all of them. As a result of this the DSP and LUT usage can be calculated

as shown in eq. 4.2 and eq. 4.3 respectively.

dsps = 444 + k × 168 (4.2)

luts = 63,482 + k × 9,181 (4.3)
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In terms of I/O bandwidth the amount of data that has to be transmitted for each scenario

and each option has to be analysed. Per option 67B and per scenario 654KB have to be sent

from the host to the FPGA. Additionally, 8B have to be read from the accelerator per option.

Since 5,000 scenarios on 10,000 options are run in total 3.12GB of data have to be transmitted.

This can be achieved in roughly one second using PCIe Gen2 x8 or in a quarter of that time

using PCIe Gen3 x16 at slightly higher hardware costs.

The number of cycles that are required to finish the calculation can be computed as shown in

eq. 4.4. Using this equation, it is possible to derive the compute time for a given frequency.

ncycles = nscenarios ×
⌈naverage points

k

⌉
× noptions (4.4)

Using this information, it is possible to further optimise the design for the additional platforms.

As a first step one has to ensure that all data are properly aligned, if the width of the PCIe bus

changes. To accomplish this the PCIe port width is passed to the Kernels communicating with

the CPU and an automatic aspect change is added (BP1). The CPU code to allocate data has

to be changed accordingly.

The second step is to make efficient use of multiple SLRs. As discussed in section 4.3.1 there

are two fundamental strategies to deal with this problem. One can either try to split the design

into equally sized parts (BP8.1) or replicate the design multiple times (BP8.2).

In the case of the Asian option pricing application there are good arguments for the application

of both solution strategies. For many components of the design the resource usage stays constant

independent of the unrolling factor. As a result, keeping a single design and only unrolling the

loop more is more resource efficient. However, a high unrolling factor results in low hardware

utilisation, if only a limited number of average points is used. The reason for this is that each

loop iteration deals with one average point. As an example, if k is set to 29 and one calculates 30

average points one would need to make two passes where only one of the 29 hardware pipelines

is used in the second pass. Also unrolling is only applied in two out of the five Kernels. As a

result, it will not be possible to distribute the design proportionally across the bigger FPGAs,
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e.g., the FPGA used in the Xilinx Alveo U250 card which has four SLRs.

Creating multiple copies of the design can be considered as an overhead. Since DSPs are

the limiting resource in this design, each additional design instance uses hardware resources

which could otherwise be used to unroll 2.5 additional loop iterations. It was decided to create

multiple design instances (BP8.2), since the overhead is small in comparison to the expected

benefits in terms of achievable frequency and ease of development.

To implement this optimisation the Manager code is further modified. The createDesign()

function has to be called in a loop to create multiple instances of the design. Additionally, the

naming of Kernels and interfaces has to be changed accordingly, to ensure that all names are

unique. As a result, it is now possible to configure the number of copies via a simple command

line argument for the build environment. The result of these changes can be seen in listing 4.3.

Listing 4.3: The Manager for the Alveo U200 achieving performance scalability.

1 public class AsianU200Manager extends XilinxAlveoU200Manager

implements AsianManager {

2 public AsianU200Manager(AsianEngineParameters params) {

3 super(params);

4 setDefaultStreamClockFrequency(params.getFrequency ());

5 setupUltrascale(params , getBuildConfig ());

6 for (int i = 0; i < params.getDesignCount (); i++) {

7 createDesign(params , i);

8 }

9 addMaxFileConstants(params , 16);

10 }

11 }

In this case it is also necessary to modify the CPU code to split the overall workload into multiple

parts, which are equally distributed onto the different copies of the design. Using MaxCompiler

it is possible to add C/C++ preprocessor definitions to an automatically generated header file
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Figure 4.11: LUT and DSP usage predicted by the performance model for one design instance
of the Asian option application implemented on Xilinx Ultrascale+ technology.

which is needed to integrate the bitstream into the host application. This enables the automatic

synchronisation of the design count between bitstream and CPU code, by passing the number

of design instances to the CPU code which can then automatically distribute the workload

accordingly. In listing 4.3 the addMaxFileConstants() function fulfils this role. As a result,

the same CPU code base can be used for all platforms.

At this point it is possible to build performance scalable designs for the current platforms

targeted, MAX4C and Alveo U200. This can be expanded to the other targets, Alveo U250,

MAX5C and Amazon F1, by adding the Managers accordingly. No further changes to the code

base are required.

To rapidly perform design space exploration one can use the previously developed performance

model (BP2). Fig. 4.11 shows the area usage in terms of LUTs and DSPs for a single design

instance dependent on the loop unrolling factor k (BP3). This can be seen as the area usage

for a single SLR and since SLRs have approximately the same size it can be used to determine

the most reasonable values for k. It is now only necessary to try these values and figure out the

highest achievable frequency by running place and route. Even though it is still required to run

multiple place and route runs per targeted platform, overall, the possible number of required

runs is decreased significantly by using the performance model. For the valid design points of

this application and the targeted platforms the I/O bandwidth is no bottleneck, so it is not

necessary to apply further optimisations to change the compute to communication ratio.

The achieved performance and area utilisation for all designs are shown in tab. 4.1. Max-
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Compiler 2019.1, Vivado 2018.3 and Quartus 13.1 are used for building and 5,000 scenarios on

10,000 options are executed as a benchmark. In most cases it was possible to use a significant

part of the FPGA resources while still achieving timing closure at high frequencies. In the

case of the MAX4C DFE more than 98% of the logic resources are used and timing is met at

200 MHz. For the MAX5C DFE as well as the Alveo U200 card the DSP usage is the highest

at more than 93% and the design meets timing at 350 MHz achieving a speedup of nearly

4x compared to the MAX4C design. Porting from the MAX5C DFE to Alveo U200 does not

require any architecture changes and delivers almost the same performance, since the platform

architecture is similar. In the case of the Alveo U250 more than 91% of the DSPs are used at

a frequency of 350 MHz resulting in a speedup of 7.4x compared to the MAX4C baseline.

In the case of the Amazon EC2 F1 instance the resource usage and performance improvement

are smaller. This is due to the presence of the AWS shell which takes up some of the chip

resources. Hence, a lower number of resources is available to the user application as illustrated

in fig. 4.12. In the two SLRs also containing the AWS shell, the available fabric is densely

used. Especially DSPs are used to nearly one hundred percent. As a result, it is not possible to

achieve a higher frequency with the proposed architecture or increase the parallelism further,

due to resource shortage in these two SLRs. The re-optimised dataflow architecture provides a

parallelism of k = 5 and delivers a speed-up of 1.5x over the original MAX4C design.

There are two potential options to improve performance in this case. It would be possible to

increase the parallelism of the design mapped to the SLR not used by the AWS shell. However,

this would also require additional changes to the CPU code to distribute the workload onto

the different designs to address this imbalance. For this work I decided that the achievable

performance advantage would not justify the additional design complexity. The second option

is not to create multiple instances of the design, but only one with a higher parallelism. In

the cases of the other cards, it is difficult to split the five dataflow Kernels of the Asian option

pricing application across three or four SLRs of the same size. Here one can make use of

the fact that most of the area is used in two Kernels while the others remain smaller. As a

result, the tool can potentially spread the design a lot better across the three available SLRs

of which two are already partially occupied. The existing code can be utilised to create this
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Figure 4.12: Chip image of the F1 bitstream. SLR0 and SLR1 (the two SLRs at the bottom)
are highly congested since they share resources with the AWS shell.
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bitstream by instantiating only a single design instance with a parallelism factor of k = 18. The

resulting design achieves a speedup of 1.75x compared to the initial MAX4C design. The lower

frequency achieved for this design can be traced back to the fixed interconnect to the AWS

shell. In both of these cases a performance increase can again be achieved without changing

the actual implementation of the FPGA application but only its configuration.

To provide a fair comparison between the different platforms which also considers the increased

area and better timing characteristics of the newer platforms a normalisation of the speedup

is needed. To achieve this, I assume linear scaling with the achievable frequency and area.

Additionally, I only consider DSPs, since this is the resource which limits the acceleration on

the Ultrascale+ based platforms. Since the MAX4C design is actually limited by the logic

resources this choice is not perfect, but also considering logic would lead to larger errors, since

only 50% of these resources are used on the Ultrascale+ devices. For the datatype used in the

application two DSPs of the Ultrascale+ FPGAs are needed for a single multiplication while

only one DSP of the Stratix V is required for the same operation. As a result, the normalised

speedup is calculated by linearly scaling the measured time on the MAX4C with the frequency

and the number of DSPs divided by two. The normalised speedup is shown in tab. 4.1.

One can see that the unoptimised designs for the U200 card achieve a normalised speedup of

only 0.57x showing that a lot of the additional hardware capabilities are not used. In contrast

the optimised designs for the U200, U250 and MAX5C achieve a normalised speedup of around

1.3x. Since all three cards achieve a similar normalised speedup, we can conclude that they are

used similarly well. The speedup larger than one can be explained by the fact that the DSPs

of the MAX4C are not the limiting resource. In fact, nearly 30% are unused nicely matching

the normalised speedup of 1.3x. For the F1 designs it was not possible to make optimal use of

the available chip area. This can be traced back to the problems the Maxeler tools have with

meeting timing on this platform due to the static interconnect of the shell which means that

more of the chip has to remain unused to achieve timing closure. All in all, one can see that the

proposed techniques managed to make full use of the Ultrascale+ based cards and managed to

get close to achieving this also for the F1 instance.
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It should be stressed that it was not necessary to modify any Kernel code to achieve these

results and only the Manager code was changed. Furthermore, the required code size per

individual platform is in the order of tens lines of code. As such maintaining this application

for current and future platforms, e.g., other cloud providers or the Alveo U50 and U280, is

greatly simplified without degrading performance. Building for different platforms is achieved

by simply passing different command line parameters to the build system.

4.4 Summary

In the beginning of this chapter the Balanced Memory Mapping (BMM) algorithm is presented,

which maps logical to physical memories. The proposed algorithm aims at balancing allocation

between different physical memory resources in partitioned large designs, to facilitate locality in

multi-die FPGAs. The proposed algorithm is compared to three memory mapping algorithms

representing different optimisation goals and commonly used methods, including the standard

Xilinx Vivado memory mapping algorithm, using 33 different benchmarks and real applications.

Only the proposed algorithm managed to successfully produce place and route results for all

test cases while the second-best performing algorithm had a failure rate of one third for large

and complex applications.

The proposed algorithm and threshold values were shown to work well in the case of static

dataflow applications. The algorithm is used by MaxCompiler since version 2017.2.2 and was

successfully employed in multiple research and industrial projects.

In the second part of this chapter methods and best practices to achieve performance scalability

employing the methodology developed in this thesis are presented. It is shown how a real

application can be modified to migrate it to new platforms and which design decisions can be

made to easily generate efficient implementations for a wide variety of platforms. A speedup of

up to 7.4x on the newer device generation is achieved, by replicating designs and fine tuning the

used parallelism. Additionally, a speedup figure normalised to the additional device capabilities

shows that the devices are well used and the new hardware capabilities are not wasted. For
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this, only tens of code lines had to be added for each new targeted platform, while keeping the

remaining code base unchanged.

Fig. 4.13 provides an overview of the methodology as extended in this chapter. The memory

mapping algorithm is conditionally used for multi-die FPGAs containing heterogeneous memory

resources to obtain a hardware implementation. If the memory mapping algorithm is used the

performance model (Part 3) has to consider this. Additionally, the design of the architecture

(Part 4) has to consider the best practices for performance portability.

(1) Analysis

(3) Forecast System Characteristics

(2) Software Model

(4) Architecture Optimisations
considering Portability

Multi-Die? Use Memory Mapping

Hardware Implementation

(a) create hardware/software partitioning

(b) measure profiling results
(c) refine model

(e) determine bottlenecks

(d) define what to model

(f) verify architecture

(g) start implementation once
all bottlenecks are resolved

yes

no

Figure 4.13: Extended design methodology including the contributions in this chapter.



Chapter 5

Methodology Validation using a Real

Application

5.1 Introduction

To address the challenge of weak evaluations of FPGA tools and methodologies on simplistic

use cases, this chapter assesses the methodology and the tools developed in the last two chapters

on a real-world application for validation and evaluation. This application is a Monte Carlo

based simulation of dose accumulation in the context of radiotherapy.

Simple benchmarks are not sufficient to evaluate system level performance effectively or to pre-

dict application performance as is exemplified by the discussions on the widely used LINPACK

benchmark [37,38,75]. The authors of [23] show that simple synthetic benchmarks provide only

poor indications of application performance and only the combination with significant appli-

cation analysis will lead to meaningful predictions. Similarly, the authors of [123] use genetic

algorithms for predicting application performance based on memory bandwidth. However, this

requires a-priori knowledge about the specific bottleneck of the system under study, which might

be possible for von Neumann architectures, but does not map well to FPGAs with their high

degree of freedom in terms of system architecture design and their undefined machine model. As

such for this thesis I selected applications which required a significant amount of development

183
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effort to ensure sufficient complexity to draw meaningful conclusions. This for example includes

realistic, application specific data transfers between hosts and accelerators. Only in this way

it is possible to validate that forecasting the system properties correctly highlights potential

system bottlenecks which can be alleviated by developing a suitable architecture. This is a

major difference to previous work, which often focuses on a few oversimplified (predominantly

synthetic) examples. The complete methodology is evaluated using the application presented

in this chapter and additionally the applications presented in section 3.6 provide insight into

the methodology without additional portability support.

The additional contribution of this chapter in comparison to the evaluations presented in the

last two chapters is that the complete methodology including the performance scalability con-

siderations is evaluated. The previous evaluations focused on certain aspects of the overall

methodology. Additionally, the application used for evaluation in this chapter presents a worst

case due to its highly dynamic execution pattern and high reliance on random number gen-

erators to influence the execution. This enables a thorough evaluation highlighting potential

problems of the methodology and especially performance prediction.

Radiotherapy is a commonly used treatment for various cancer types. High doses of radiation

are used to kill cancer cells. Modern radiotherapy relies on an intensity modulation technique

that aims to deliver high dose gradients to cancerous tissues while sparing the surrounding

healthy organs as much as possible. This is achieved by setting up a therapy treatment plan

which takes into account the anatomy as well as the clinical case and dose delivering machine.

In order to validate and optimise such therapy plans, the expected spatial dose distribution

within the patient has to be simulated before the actual treatment. This is often implemented by

Monte Carlo methods which simulate the pathway of millions of radiation particle trajectories

as they enter the patient body. These simulations are highly accurate. On the other hand, they

require relatively long computation times.

Historically, these long computation times were not a problem. However, modern treatment

machines in addition to radiation delivery, also allow imaging of the patient during treatment

[78]. Real time dose simulation would allow patient treatment adjustments in real time. This is
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advantageous since, e.g., in the case of prostate or lung cancer target tissue might significantly

move between imaging and treatment or even within one treatment session. The usage of real

time imaging techniques will enable doctors to adapt to these changes and facilitate accurate

dose delivery. This would minimise dose accumulation in healthy tissue and therefore reduce the

damage caused. Additionally, it will be possible to significantly reduce the number of treatments

per patient by delivering a higher energy at shorter time due to more targeted radiation. While

this would decrease the overall treatment costs and improve treatment quality for the patient,

it is crucial to ensure very high accuracy to compensate for the high energy delivery. As a result

of this, the simulation has to be repeated regularly based on new measurements. According

to medical experts, the time required for the simulation of the system has to stay below one

second to facilitate real time updates [26].

To solve the computational challenge of real time dose simulation, different technologies have

been proposed which utilise CPUs or GPUs on local or cloud-based systems. However, in

the case of CPUs and GPUs the size of the machine required to meet the real time target is

prohibitive. In the case of cloud-based systems privacy concerns, bandwidth requirements and

latency issues as well as the need to guarantee service quality during treatment provide major

challenges for practical deployment.

In this chapter, the usage of FPGAs to address these problems is discussed in order to build the

first real time radiotherapy simulation system. The target is to perform the complete Monte

Carlo simulation in less than one second. There is a long history of accelerating Monte Carlo

simulations using FPGAs. The inherent parallelism of Monte Carlo simulations allows high

speed-ups on FPGAs. Additionally, FPGA implementations are highly predictable making

them especially suited for real time applications. Finally, the compute density of FPGA based

systems is typically superior, allowing for placement directly in the medical facility. As a result,

FPGAs are an excellent fit for the problem of real time dose simulation.

The main contributions of this chapter are as follows:

• A dataflow architecture for Monte Carlo based dose accumulation simulation;
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• An analytical model to estimate hardware usage and accurately assess performance;

• Evaluation of the architecture and model using implementations based on a Xilinx VU9P

FPGA and the Xilinx Alveo U250; and

• A discussion of the methodology developed in this thesis based on its usage for multiple

real and complex applications.

The remainder of the chapter is organised as follows. Section 5.2 will present the architecture

used for the FPGA implementation. The performance will be modelled in section 5.3. Sec-

tion 5.4 will present and evaluate implementations of the proposed architecture. In section

5.5 I discuss the methodology presented in this thesis based on the lessons learned from the

applications it was applied to. Finally, section 5.6 will conclude the chapter with a summary.

5.2 Architecture

For simplicity the full capability of DPM as described in section 2.6.3 is not completely imple-

mented. For example, this work focuses only on the simulation of electrons, does not consider

Bremsstrahlung and only uses water as material within the patient cube. However, these

simplifications have no impact on the feasibility of the architecture and adding the actual im-

plementation will add only minimal overhead. More importantly it does not impact the ability

to evaluate the proposed methodology using this application. For the full feature set the fol-

lowing changes are required. Bremsstrahlung is an additional form of particle interaction and

as a result only needs more area. Different materials can be implemented as added on-chip

memory initialised from DDR. Additionally, interaction equations will need to select different

material coefficients dependent on the current voxel. All in all, the simulation Kernel area will

slightly increase and a bit more on-chip memory as well as DDR bandwidth will be required.

One of the major challenges involved in implementing the dose accumulation simulation is the

memory access into the patient cube. This is due to the stochastic paths an electron takes

through the patient cube. As a result, the position of the memory access into the patient cube
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to accumulate the dose is also stochastic. The performance model (Part 3) helps to determine

the impact on the runtime. For each voxel in the patient cube 36 bit have to be accessed. Eq.

5.1 calculates the fraction of useful data one can expect to get by reading a single burst from

one DDR DIMM. Using one DIMM already represents the best case, since more DIMMs would

increase the burst size. The efficiency factor for reading a single burst is determined using fig.

3.4. The resulting achievable memory bandwidth is calculated as shown in eq. 5.2.

efficiency =
useddata

burstsize
=

36bit

512bit
= 0.07 = 7% (5.1)

BWact = BW × efficiency = 45GB/s× 0.07 × 0.171 = 0.54GB/s (5.2)

It hast to be considered that it is not only necessary to read the voxel but also to write it back

after a dose was deposited at the position of the voxel. It is possible to calculate how many

voxel positions can be accessed per second as shown in eq. 5.3. Since to achieve statistically

significant results 100 million electrons have to be generated and a runtime of less than a second

is targeted this speed is not sufficient. This is even more the case if one considers that for each

electron multiple voxels have to be accessed before the electron gets fully absorbed. For this

reason, the patient cube has to be buffered on-chip.

V oxelPerSecond =
BWact

2 × Svoxel

=
0.54GB/s

2 × 36bit
= 64, 550, 339

1

s
(5.3)

As such the performance model (Part 3) has successfully discovered an initial bottleneck (Step

e) and it is now possible to perform a design iteration to adjust the architecture. The next

consideration concerns the storage of the patient cube in on-chip memory. Eq. 5.4 calculates

the required on-chip memory if one considers a patient cube with a resolution of 256 voxels in

all three dimensions. Comparing this result to the available on-chip capacity of the available

devices as shown in tab. 2.1 shows that implementing the patient cube in on-chip memory is

also not possible. As such the architecture has to be adjusted further (Step e).
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Spatient cube = x× y × z × Svoxel = 256 × 256 × 256 × 36bit = 576Mbit (5.4)

To avoid the limitation of the patient cube resolution, it was decided to decompose the patient

cube into multiple subdomains, where each subdomain fits into on-chip memory. Since only

water is considered as a material, the on-chip patient cube buffer only needs to store the dose.

If other materials are also used one would need to also store the material type which can be

encoded in usually two bits. Due to on-chip buffering of the patient cube, fully random memory

access can be performed without impacting performance.

The buffer containing the patient cube is implemented in a Kernel. Additionally, this Kernel

contains the arithmetic to perform the actual simulation of the electrons and the calculation of

the emitted dose. As described above, the simulation of the electron decides which interaction

occurs. Based on this, the emitted dose is calculated, and the values of the electron can be

updated. The updated electron moves into a new direction and has updated energy and fuel

values. The energy and fuel values determine which interaction occurs and when an electron gets

absorbed. In the CPU implementation, a while loop is executed for each externally generated

electron, which repeats these steps until the energy of the electron is depleted. This is shown

in fig. 5.1, which depicts the loopflow graph of the original application and summarises the

results of the analysis of the original application (Part 1).

Generate Particles
100,000,000 per simulation

Process until absorbed
random number of iterations (usually 20-30)

(82 Mults, 15 Divs, 45 Adds, 8 Interpolation, 11 RNGs, 8 Sin/Cos/Sqrt)

Patient Cube
(e.g., 256x256x256)

16,777,216 elements

Figure 5.1: Loopflow Graph of the CPU implementation.

However, in the presented case, the Kernel accepts new electrons, evaluates the interaction

and outputs the updated electrons on every cycle. Since the Kernel is deeply pipelined, a loop



5.2. Architecture 189

implementation is not feasible. To circumvent this, the processing order of electrons differs

between CPU and FPGA. This is a valid transformation, since all electron interactions are

fully independent due to the embarrassingly parallel nature of this Monte Carlo simulation. As

a result, the data arbitration and loop logic are handed off to a different component, which also

handles the transport of electrons between subdomains.

Fig. 5.2 shows the simplified architecture (Part 4) of the application. An External Particle

Generator Kernel generates new electrons and sends them to the Particle Distributor Man-

agerStateMachine. The particle distributor has three inputs, one from the External Particle

Generator, one from DDR and another from the Kernel containing the subdomain buffer and

interaction simulation. Additionally, it has outputs to DDR and to the particle simulation Ker-

nel. This Kernel sends the patient cube back to the host via PCIe once the dose is calculated

and forwards the updated electrons to the particle distributor.
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Figure 5.2: The simplified architecture of the dose accumulation simulation.

The particle distributor handles the arbitration of the electrons and controls the simulation

Kernel. It decides when the simulation Kernel is going to switch to the next subdomain.

Additionally, it makes sure that only electrons which are in the current subdomain are sent to

the Kernel. If they belong to a different subdomain, they are buffered in DDR and read as

soon as the Kernel switches to the correct subdomain.

The amount of data that has to be stored for each electron approximates the DDR4 burst size.

To simplify the memory layout, it was decided to pad the electron data structure to 512 bits.

For each subdomain the same memory capacity is reserved. However, this decision reduces

the number of electrons that can be buffered in the DDR memory. Since around 100 million



190 Chapter 5. Methodology Validation using a Real Application

electrons need to be generated for statistically significant results and each of those electrons

can create multiple additional electrons, this has to be considered.

In the worst case we need to allocate enough memory for each subdomain to buffer the complete

100 million electrons. Eq. 5.5 calculates the capacity of memory required per subdomain. This

means in a single DIMM, which has a capacity of 16 GB we could only allocate enough memory

for two subdomains. Even if the complete on-board memory capacity of the Xilinx Alveo U250

is considered the number of subdomains is limited to ten subdomains as shown in eq. 5.6. This

limitation has to be addressed through further changes to the architecture (Step e, Part 4).

Selectron buffer = nelectrons × Selectrons = 100, 000, 000 ∗ 512bit = 5.96GB (5.5)

nsub domains U250 =
SU250 on board

Selectron buffer

=
64GB

5.96GB
= 10.7 (5.6)

Since it is not possible to buffer all electrons for a specific subdomain in the allocated on-board

memory block if the complete simulation is run the overall simulation is split into multiple

batches. Within each batch the simulation runs through all subdomains, which means that

each subdomain of the patient cube is processed multiple times. However, it was decided that

the architecture could be further simplified by sending the current part of the patient cube back

to the CPU once processing of the current batch is finished. As a result, it is not required to

accumulate the dose of multiple batches on the FPGA, which removes the requirement to buffer

the results of the simulation on-card once processing for the current subdomain is finished. As

such, the patient cube is implemented in a double buffered fashion. Therefore, when processing

of a subdomain finishes the buffers can be switched and the now inactive half can be streamed

out and set to zero in preparation for the next subdomain.

As a result of splitting the patient cube into subdomains, a problem occurs if an electron

updated by an interaction moves into an already processed subdomain. Since multiple batches

are used, it is possible to buffer these electrons in DDR for the next batch. However, on the last
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batch this is not possible. To address this problem, another output to the particle distributor is

added which sends those electrons back to the CPU when the last batch is currently processed.

Since the number of electrons sent back is orders of magnitude smaller than the total, it is

possible to simulate those electrons on the CPU. Additionally, the simulation of the electrons

sent back is started as soon as they arrive to overlap the execution on the CPU and on the

FPGA as described in section 3.5.3.

In the proposed architecture, DDR memory is used only to buffer electrons. Potentially, the

number of electrons which have to be buffered in DDR is very large. Eq. 5.7 calculates how

many electrons can be written to the buffer per second if three DIMMs are used1. The efficiency

factor is selected for the worst case where each individual electron might move to a different

subdomain. Additionally, it would also be necessary to read the electrons again reducing this

number further. Even though one can expect that not all electrons have to be buffered the

number of electrons which can be buffered would be limited significantly. Furthermore, this

equation assumes that all three DIMMs are used. This limits architecture options later on to

handle the presence of SLRs. As such, the access patterns need to be considered to optimise

the achievable bandwidth. By using long continuous memory access one can get closest to the

theoretical peak memory bandwidth.

ElectronsToBufferPerSec =
BW ∗ efficiency

Selectron

=
45GB/s× 0.171

512bit
= 129, 100, 677

1

s
(5.7)

Reading electrons from DDR is inherently linear, since one can simply read all electrons buffered

for a specific subdomain sequentially. However, the access pattern on the write side is not

linear. Since the direction of electrons after interaction is based on random number generators,

it is likely that each electron is written to different parts of the memory. To alleviate this

problem an additional ManagerStateMachine is added, which has small on-chip buffers for each

subdomain. Multiple electrons are accumulated in these on-chip buffers and only when they

1Note that this is double the figure as calculated in eq. 5.3 since in both cases one burst gets accessed at a
time
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are full the complete buffer is written to DDR. Additionally, they can be flushed by the particle

distributor to make sure that all electrons for the current subdomains are written to memory,

so that they can be read again for processing. It was decided to make these buffers hold sixteen

electrons, which limits the required on-chip memory capacity but already manages to achieve

up to 90% of the peak bandwidth (see fig. 3.4). By packing all individual buffers into a single

on-chip memory one can also increase the on-chip memory utilisation. Each individual buffer

has a unique address range in the bigger on-chip memory and since only one particle can be

received per cycle there is no possibility for write port conflicts. By ensuring that read and

write patterns are linear the on-board memory bandwidth is improved significantly.

The area required for the simulation of a single electron is small compared to the area available

on modern FPGAs (see section 5.3 for the detailed calculations). As such, one cannot only

rely on the pipeline parallelism but also needs to exploit algorithm level parallelism to use all

available chip resources. In this work the inherent parallelism of the Monte Carlo simulation is

exploited on two levels.

The first additional level of parallelism creates multiple instances of the entire design. The

motivation for this can be found in the targeted platform (see section 5.4), which are FPGA

accelerator cards based on the Xilinx Ultrascale+ architecture. The big devices used in this

work consist of multiple individual die and interconnectivity between these die is limited. As

such it is often a good idea to treat those die like separate FPGAs (see BP8.2 in section

4.3.1). On the platforms used here, each die is connected to one DDR4 DIMM and as a result

implementing one design on each die is straight forward. The individual designs only share the

PCIe controller and are otherwise completely independent.

The second additional level of parallelism enables the processing of multiple electrons in par-

allel within the same simulation Kernel. Parallelising the computation in the Kernel itself is

accomplished by simply duplicating the dataflow graph. However, the patient cube buffer has

to be shared to save on-chip memory resources. As a result, one needs to consider potential

memory access conflicts. To decrease the likelihood of such events, each xy plane of the cube

is implemented as a separate memory instance. Thus, z individual memories holding the data
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of one xy plane are created. This will also help with timing closure, since big on-chip memory

structures often have problems routing control signals between memory columns.

Another ManagerStateMachine is introduced which checks the electrons coming from the par-

ticle distributor for memory access conflicts. Only if the z position of the electrons is different,

meaning different physical memories are used, or they access the same memory position, all

electrons are sent to the simulation Kernel. Otherwise, only a conflict free subset is forwarded.

To avoid starving one input, a round robin scheme is used to prioritise all inputs fairly. Since it

is non-trivial to parallelise the particle distributor, it was decided to instead create one instance

of the particle distributor for each electron processed in parallel. This also means that the on-

board memory space has to be equally split between each particle distributor. The overhead

introduced by this is negligible, but the implementation complexity is significantly reduced.

The final architecture for a single die where the Kernel processes two electrons per cycle is

shown in figure 5.3. All arrows, apart from the Kernel output sending the dose cube to the

host, represent electrons. These connections use FIFOs.
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Figure 5.3: The architecture of the dose accumulation simulation for a single FPGA die if the
Kernel processes two electrons on every cycle.

Fig. 5.4 shows the loopflow graph of the application after all the proposed changes for a patient
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cube size of 256 in all dimensions, split into subdomains of size 128 in x dimension and 64 in

all others. Additionally, the execution is done in two batches. In comparison to fig. 5.2, one

can see, that the algorithm structure is more complicated, but enables further parallelisation

and more optimal usage of the hardware.

Iterate over batches
e.g., 2

Generate Particles
50,000,000 per batch

Patient Cube
(e.g., 256x256x256)

100,000,000 elements

Process until absorbed
random number of iterations (usually 20-30)

(82 Mults, 15 Divs, 45 Adds, 8 Interpolation, 11 RNGs, 8 Sin/Cos/Sqrt)

Iterate over subdomains
e.g., 32

Iterate over batches
e.g., 2 + 1

1,610,612,736 elements

Process until absorbed of unprocessed particles
random number of iterations

(82 Mults, 15 Divs, 45 Adds, 8 Interpolation, 11 RNGs, 8 Sin/Cos/Sqrt)

Figure 5.4: Loopflow Graph of the FPGA implementation.

To summarise, the main technical challenges are to support big voxel cubes and the processing

of multiple electrons within the same Kernel using the same on-chip dose memory. The first

challenge is addressed by splitting the voxel cube into multiple subdomains and adding particle

distribution logic to deal with electrons transitioning between subdomains. Additionally, one

needs to add logic to improve memory efficiency and maximise the usable memory bandwidth.

The second challenge is addressed by adding a unit for resolving potential memory conflicts at

the input of the Kernel.
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5.3 Performance Model

The architecture described above was developed using an iterative process of performance

modelling and refinement based on the analysis of the initial code base (Steps c, d and e). Only

the final results are presented in this chapter. The performance model (Part 3) will be used to

verify if the proposed implementation meets the expectations in section 5.4.

One of the major challenges in modelling the performance of this application is the extensive use

of random number generators. For example, after how many iterations an electron is absorbed,

and the number of electrons stored in DDR are both variable. As such, the performance model

is built on estimations based on measurements using the CPU code (Step b).

The number of electrons updated by interactions before they are absorbed is denoted as ninter.

The percentage of electrons which move between subdomains, and therefore require DDR buffer-

ing, is noted as psub. Finally, the percentage of cases in which there is a memory access conflict

in the patient cube buffer of the simulation Kernel is represented by pmem. These factors are

also highly dependent on the way in which the external electrons are generated and as a result

section 5.4 will discuss these factors in more detail while all equations are kept generic here.

In this section, equations for area usage, the achievable electron processing speed, memory

bandwidth and finally PCIe bandwidth requirements are provided.

5.3.1 Area Usage

To forecast the area usage of the implementation the number of operations in the CPU code

needs to be counted. The simulation of the electrons does include multiple trigonometric

functions and square roots. Some of those are available in MaxCompiler and the remaining

ones are implemented as a linear interpolation between values in a ROM lookup table.

Tab. 5.1 shows the operation count and the predicted area usage for one simulation Kernel

which processes one electron per cycle. The area usage for each operation is determined using

micro benchmarks and then simply multiplying these with the number of operations needed



196 Chapter 5. Methodology Validation using a Real Application

and calculating the sum over all operations. The area usage will scale linearly with the number

of processed electrons per cycle. It should be noted that additional memories and FFs are

needed for scheduling of the dataflow graph.

Table 5.1: Overview of operation count and predicted area usage for the simulation of one
electron per cycle.

Multiplications Divisions Additions Interpolation RNG Sin/Cos/Sqrt LUT FF DSP BRAM
82 15 45 8 11 8 85,000 120,000 408 54

The simulation Kernel also contains the memory to buffer the patient cube. The size of this

memory depends on the dimensions of the subdomain, xsub, ysub and zsub in voxels. Additionally,

the depth and width of the physical memories has to be considered, which is called memd and

memw respectively. Eq. 5.8 calculates the number of physical on-chip memories required for

a single xy plane. The parameter accWidth represents the number of bits required for the

datatype used for the dose accumulation. In total zsub of these memories are needed. However,

they might use different memory resources, since MaxCompiler will automatically use either

BRAMs or URAMs using the algorithm described in section 4.2.

#memcube =

⌈
accWidth

memw

⌉
∗
⌈
xsub ∗ ysub
memd

⌉
(5.8)

In addition to the Kernel resources, one also has to consider the ManagerStateMachines and

other Manager blocks. The ManagerStateMachines predominantly use LUTs, FFs and on-chip

memory. Based on the complexity of the ManagerStateMachines and previous experiences

one can make the worst-case estimation, that the number of LUTs and FFs required per

ManagerStateMachine is less than 5,000 and 10,000 respectively. The particle distributor does

not need any additional memory resources, while the write cache to improve memory efficiency

mainly consists of a single buffer. The size of this buffer can be estimated using eq. 5.9 with

elecw representing the width of the electron data structure in bits without padding, 417 bits in

the presented case. The depth is determined by the total number of subdomains necessary. d

represents the depth of the memory per subdomain, which in this case is 16.
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#memcache =

⌈
elecw
memw

⌉
∗

⌈
xcube

xsub
∗ ycube

ysub
∗ zcube

zsub
∗ d

memd

⌉
(5.9)

Lastly, the remaining Manager blocks need to be considered. The memory requirements for

each FIFO can be estimated using eq. 5.10. Usually, the depth of a FIFO is 512 and since most

FIFOs buffer electrons the width is usually either 417 or 512 bits. Each memory controller

requires 3 DSPs, roughly 20,000 LUTs and 30,000 FFs and around 50 BRAMs. Per design

instance one memory controller is required. Finally, the resource requirements for the PCIe

controller can be estimated as 8,000 LUTs, 12,000 FFs and 35 BRAMs. The PCIe controller

is shared between all instances of the design.

#memFIFO =

⌈
FIFOw

memw

⌉
∗
⌈
FIFOd

memd

⌉
(5.10)

5.3.2 Electron Processing Speed

To calculate the electron processing speed, the number of electrons that can be processed by

the Kernel at a given frequency has to be estimated. Eq. 5.11 shows how to calculate this. nelec

represents the number of electrons processed per second, while ndesign and npipes represent the

parallelism in terms of number of instances of the design and electrons processed in parallel.

Finally, f represents the estimated frequency the implementation will be running at.

nelec = ndesign ∗ (pmem + npipes ∗ (1 − pmem)) ∗ f (5.11)

Additionally, it has to be considered that for each subdomain the on-chip buffer has to be

written back to the host. Normally, this can be overlapped with the compute latency using

double buffering. However, if only a very small number of electrons belong to a given subdomain

the time required for the computation might not be sufficient to flush the previous buffer. As

a result, the design needs to wait for the previous buffer to be fully written back before it

can switch to the next subdomain. The number of cycles required for that per subdomain can
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be calculated as shown in equation 5.12. In this case, readoutwidth represents the number of

voxel values read from the patient cube buffer per cycle. The size of the overlap between the

flushing of the patient cube buffer and the electron calculation heavily depends on the electron

generation pattern.

cyclesflush =
xsub ∗ ysub ∗ zsub
readoutwidth

(5.12)

5.3.3 Memory Bandwidth Requirements

The total amount of data that need to be transferred to and from DDR memory, SDDR, is

calculated in equation 5.13. Each electron requires 64 bytes and needs to be written and

read only once. Additionally, the data volume depends on the number of electrons created by

the external particle generator nelec,total. The required bandwidth can then be calculated as a

function of the execution time ttotal as shown in equation 5.14, where DDReff is the average

memory efficiency.

SDDR = 2 ∗ 64 ∗ nelec,total ∗ ninter ∗ psub (5.13)

BWDDR =
SDDR

ttotal
∗ 1

DDReff

(5.14)

5.3.4 PCIe Bandwidth Requirements

The PCIe bandwidth requirements are determined by two factors. The patient cube has to be

streamed back to the host and in addition the electrons, which cannot be processed within the

last batch, have to be sent to the CPU as well. Eq. 5.15 estimates the amount of data that

has to be transmitted for the patient cube. It can be assumed, that all values sent back from

the FPGA are converted to single precision floating-point, to ease usage on the CPU side of

the system. As such, the total amount of data is simply the product of the cube dimensions,
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the number of batches that are processed and four, the size of single precision floating-point

number in bytes.

SPCIe,PatientCube = xcube ∗ ycube ∗ zcube ∗ batches ∗ 4 (5.15)

Additionally, the amount of data transferred for the electrons that have to be sent back to the

CPU is calculated in eq. 5.16 based on the number of electrons sent back nelectron,PCIe. This

factor again depends on the external particle generation.

SPCIe,Electron = nelectron,PCIe ∗ 64 (5.16)

The required bandwidth can be obtained by adding both equations and dividing by the execu-

tion time.

5.3.5 Lessons Learned from the Performance Model

As stated above, the performance model and architecture were iteratively developed together,

problems identified by the performance model led to changes to the architecture. I tried to

highlight during the architecture explanation how some of its properties are a direct result of

these design iterations but focus on only the final iteration of this pairing to avoid confusion.

It has to be stressed that the detailed performance model was crucial to derive the proposed

architecture. In this section a few examples are presented to show the impact the performance

model had on the architecture development and how it was used for design space exploration.

It was determined that it would be infeasible to store the complete voxel cube on-chip and

it would have to be stored in DDR memory (see eq. 5.4). Afterwards the required memory

bandwidth to access the memory regions along the trajectories of the particles were modelled

(see eq. 5.3). Due to the random nature of these trajectories, it was quickly discovered that an

architecture which fully simulates one particle at a time would be heavily limited by off-chip
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memory bandwidth. To mitigate this issue, it was decided to instead focus on sub-regions of

the memory cube which are simulated one at a time. This decision leads to most other design

decisions in the proposed architecture.

By modelling the memory bandwidth requirements more accurately, it was noticed that the

process of writing particles which cross subdomains back into the memory might lead to high

bandwidth requirements as well (see eq. 5.7). This is caused by the random-access pattern. To

circumvent this issue the write caches were added.

The performance model was also used to determine what could be sent back over PCIe to the

host computer at what time. The model showed that the overhead of accumulating the dosage

cube on the FPGA would be relatively big and instead it is possible to send each individually

processed subdomain to the host where the partial results can be combined. The model sug-

gested that in most cases it would be faster to send particles which cannot be processed in the

last batch to the CPU rather than making another iteration.

The hardware builds generated in section 5.4 are a direct result of the design space exploration

using the performance model. The evaluation of the equations for area usage enabled a quick

determination of the possible sizes for the subdomains stored on the chip. Additionally, it was

possible to calculated how much parallelism was feasible while not requiring too much area or

too much I/O bandwidth.

5.4 Evaluation

To evaluate the architecture, it was implemented using Maxeler MaxCompiler version 2019.1

and Vivado 2018.3. The target platforms are the MAX5C DFE and the Xilinx Alveo U250.

The MAX5C based implementation was evaluated with different degrees of parallelism and cube

sizes. Up to three MAX5C cards in a 2U server powered by two six-core Intel Xeon E5-2643

v4 CPUs running at 3.4 GHz were used. The U250 design was tested on only one card, which

was hosted in a server powered by two 18-core Intel Xeon Gold 6154 CPUs running at 3.0 GHz.
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Even though servers are used, building a workstation with a similar configuration is possible.

5.4.1 Area Results

Eight different configurations were implemented, four for the MAX5C and another four for the

Alveo U250. In the case of the MAX5C all configurations use three design instances to make

optimal use of the three die of the VU9P. For builds 1 and 3, the simulation Kernel processes

only one electron per cycle, while builds 2 and 4 process two. In the case of builds 1 and 2,

the patient cube size is set to 128 voxels in each dimension and the subdomain size is 64 voxels

accordingly. For builds 3 and 4, the resolution is increased and the cube size is set to 256 in

each dimension. The subdomain in these cases consists of 128 voxels in x dimension and 64 in

y and z.

The four builds targeting the Alveo U250 all consist of four design instances to make optimal

use of the four SLRs and DIMMs available. Builds 5 and 7 process one electron per cycle while

6 and 8 process two. Again, the patient cube size is set to 128 voxels in all dimensions and the

subdomain size to 64 voxels for builds 5 and 6. Builds 7 and 8 have a patient cube size of 256

in each dimension and the subdomain size is set to 128 in x dimension and 64 in y and z. All

designs achieve the same frequency due to the systolic array property of the Maxeler Kernels

and their general similarity in terms of architecture when it comes to the memory controller

usage and the spread across SLRs. An overview of all design points is provided in tab. 5.2 and

the area usage for these designs is depicted in tab. 5.3.

Table 5.2: Design points evaluated for the proposed architecture.

Num Card Frequency
Design
Count

Kernel
Parallelism

Cube
Size

Subdomain
Size

1 MAX5C 250 MHz 3 1 128 64
2 MAX5C 250 MHz 3 2 128 64
3 MAX5C 250 MHz 3 1 256 128
4 MAX5C 250 MHz 3 2 256 128
5 U250 250 MHz 4 1 128 64
6 U250 250 MHz 4 2 128 64
7 U250 250 MHz 4 1 256 128
8 U250 250 MHz 4 2 256 128
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Table 5.3: Area usage for the different design points.

Num LUT FF DSP BRAM URAM
1 339,030 (28.68%) 641,249 (27.12%) 1,233 (18.03%) 1,209 (27.99%) 414 (43.13%)
2 547,980 (46.35%) 1,071,404 (45.31%) 2,457 (35.92%) 2,535 (58.68%) 468 (48.75%)
3 346,363 (29.30%) 669,903 (28.33%) 1,233 (18.03%) 2,469 (57.15%) 708 (73.75%)
4 558,875 (47.27%) 1,108,486 (46.88%) 2,457 (35.92%) 3,471 (80,35%) 804 (83.75%)
5 431,572 (24.98%) 830,041 (24.02%) 1,644 (13.38%) 1,482 (27,57%) 548 (42.81%)
6 704,282 (40.76%) 1,395,707 (40.39%) 3,276 (26.66%) 3,198 (59,49%) 596 (46.56%)
7 441,146 (25.53%) 868,371 (25.13%) 1,644 (13.38%) 3,066 (57,03%) 948 (74.06%)
8 719,487 (41.64%) 1,445,042 (41.81%) 3,276 (26.66%) 4,350 (80,92%) 1,052 (82.19%)

The area usage predicted using the equations presented in section 5.3.1 as well as the error com-

pared to the actual usage are shown in tab. 5.4. The prediction for DSPs is highly accurate and

has no error. The LUT prediction is also close to the actual usage with errors ranging from an

underestimation of 3% to an overestimation of 14.9% compared to the actual usage. In the case

of a higher Kernel parallelism the LUT prediction is slightly too high, which can be explained

by an overly pessimistic estimation of the area required by the ManagerStateMachines.

Table 5.4: Predicted area usage results for the proposed design points and prediction error.

Num LUT FF DSP BRAM URAM
1 338,000 (-3%) 492,000 (-30.4%) 1,233 (0%) 1,888 (36%) 420 (1.4%)
2 623,000 (12%) 912,000 (-17.4%) 2,457 (0%) 2,043 (-24.1%) 455 (-2.9%)
3 338,000 (-2.5%) 492,000 (-36.2%) 1,233 (0%) 3,547 (30.4%) 789 (10.3%)
4 623,000 (10.3%) 912,000 (-21.5%) 2,457 (0%) 3,702 (6,2%) 824 (2.4%)
5 448,000 (3.7%) 652,000 (-27.3%) 1,644 (0%) 2,391 (38%) 570 (3.9%)
6 828,000 (14.9%) 1,212,000 (-15.2%) 3,276 (0%) 2,574 (-24.2%) 614 (2.9%)
7 448,000 (1.5%) 652,000 (-33.2%) 1,644 (0%) 4,506 (32%) 1,073 (11.6%)
8 828,000 (13.1%) 1,212,000 (-19.2%) 3,276 (0%) 4,689 (7.3%) 1,117 (5.8%)

As a result of the memory mapping algorithm developed in chapter 4 predicting the precise

memory requirements is more complicated, since URAM and BRAM allocation is handled

automatically. In order to provide predictions for the URAM as well as BRAM usage I decided

to use the following approach. First, the memory usage using only BRAMs is predicted. Then

it is assumed that the same memories can be implemented using URAMs with an efficiency

of 50%, since this leads to a balanced mapping between URAMs and BRAMs as targeted by

the memory mapping algorithm used. This means that eight BRAM18 can be replaced by

one URAM. Using this assumption, one can calculate how many URAMs would be needed

to implement all on-chip memories. Based on this translation between URAM and BRAM
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memory capacity one can also calculate the percentage of the overall memory which is available

as URAMs and BRAMs respectively. The final resource usage is predicted by multiplying these

percentages with the worst-case mapping assumptions calculated above.

Applying this method to the design leads to a URAM prediction which is overall close to the

actual usage with an error ranging from -2.9% to 11.6%. The error for the BRAM prediction is

significantly larger and in the worst case the BRAM usage is overestimated by up to 38% and

underestimated by up to 24.2%. In all cases where the BRAMs usage is overestimated by more

than 10% the kernel parallelism is one, meaning that the overall design is less filled. We can

trace these errors back to pessimistic estimations for the amount of memory required, e.g., in

the case of IP cores and large safety margins. The only cases where an underestimation occurs

is in the cases where the kernel parallelism is set to two, but the subdomain size is still limited

to 64. The reason for this is that the scheduling of the dataflow graph, which requires FIFOs

that are often implemented using BRAMs, is not considered. As a result, especially in cases

where the degree of parallelism is higher and the dataflow graph is larger, the error is bigger

as well. This means that in general the memory footprint of the application is underestimated,

which is especially noticeable in the case of these larger designs. However, the URAMs are

mostly used by MaxCompiler to implement the voxel cube buffers, which can be implemented

with a URAM efficiency of 75%, which somewhat mitigates this underestimation. This can be

seen by the fact that in both cases where the kernel parallelism is two and the subdomain size

in x dimension is 128 the memory usage is again overestimated, by 6.2% and 7.3%. This means

that the efficient memory usage for the larger voxel cube buffers mitigates this issue. As such

the performance model tends to overestimate memory usage for design points with less kernel

parallelism while underestimating it for design points with a higher degree of parallelism.

It should be noted that the performance model is usually only used for DSE. There is little

benefit of accurately predicting the resource usage for smaller design points if a bigger device

is targeted anyway. As such the model developed in the last section made some worst-case

estimations that would need to be revised to also model smaller designs more accurately. If

there would be a desire to target a smaller device this would be recommended. However, the

prediction error for the two designs which fill up the chip most (build four and eight) is lower
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than for most other designs, especially if memory usage is considered. More importantly, apart

from FFs, which are not a limiting resource, the resource estimates overestimate the usage of

resource in these two cases and does not underestimate them. While an overestimation might

lead to a suboptimal design since resources are left unused and potentially more promising

design points are discarded an underestimation might lead to no working design at all. In this

case the most limiting resources of DSPs, BRAMs and URAMs are overestimated by only up

to 7.3% for these two largest design points and as a result the number of resources wasted is

very limited. As a result, the area predictions are sufficiently accurate and enable fast DSE.

5.4.2 Performance Results

The results of processing 100 million externally generated electrons are shown in tab. 5.5.

The particles are generated as a single beam, where all electrons enter the voxel cube at the

same point with an energy of 6MeV. The offset column indicates whether this voxel is within a

subdomain or at the centre of the cube. No offset means that the beam is pointed at the centre

of the patient cube. In this case, the cube is entered at the intersection of four subdomains,

significantly increasing the number of electrons needing DDR buffering.

FPGA and total runtime are shown separately. The total runtime includes the time required to

finish simulation for all electrons sent back to the CPU as well as the time required to combine

all partial results into one single patient cube. In the case of the Alveo U250, no particles are

sent back to the CPU due to limitations of the PCIe controller and as such only the combination

of partial results has to be carried out. To measure the runtime five independent measurements

are made and the mean over these five runs is reported. The min and max values as well

as the standard deviation are provided for the FPGA runtime. Additionally, the error of the

prediction for the compute time compared to both the mean time used only by the FPGA and

the whole application is reported.

The FPGA runtime and the time required to perform memory transfers is predicted using the

equations in section 5.3. For each combination of offset and build a smaller run on the CPU

is simulated to derive the factors determined by random number generators like the number



5.4. Evaluation 205

Table 5.5: Actual and Predicted Runtime.

Run
Num

Build
Num

Cards Offset

Mean
FPGA
Time
[ms]

Max
FPGA
Time
[ms]

Min
FPGA
Time
[ms]

Stdev
FPGA
Time
[ms]

Mean
Total
Time
[ms]

Predicted
Compute

Time
[ms]

Predicted
DDR
Time
[ms]

Error
Predicted
Compute
Time to
FPGA
Time

Error
Predicted
Compute
Time to

Total
Time

1 1 1 yes 2,869.80 2,881 2,877 1.9 2,968.60 2,667 110 7.60% 11.31%
2 1 2 yes 1,452.60 1,454 1,452 0.9 1,546.60 1,333 55 8.97% 16.02%
3 1 3 yes 980.4 982 978 1.67 1,088 889 37 10.28% 22.38%
4 2 1 yes 2,294.20 2,299 2,291 2.9 2,443 1,901 69 20.68% 28.51%
5 2 2 yes 1,167.80 1,173 1,165 3.1 1,325.20 950 34 22.93% 39.49%
6 2 3 yes 813.2 815 819 2.2 967.8 634 23 28.26% 52.65%
7 3 1 yes 3,956.20 3,962 3,951 4.7 4,572.20 3,333 378 18.70% 37.18%
8 3 2 yes 2,151.20 2,182 2,130 20.2 2,832.40 1,667 189 29.05% 69.91%
9 3 3 yes 1,652.80 1,739 1,597 55.8 2,358 1,111 126 48.77% 112.24%
10 4 1 yes 3,128.20 3,138 3,110 12 4,264.60 2,427 351 28.89% 75.71%
11 4 2 yes 1,702.80 1,738 1,689 20 2,814.40 1,214 176 40.26% 131.83%
12 4 3 yes 1,460.40 1,530 1,396 57.6 2,610.60 810 117 80.30% 222.30%
13 1 1 no 5,431.20 5,575 5,300 103.7 7,075 2,800 1.364 93.97% 152.68%
14 1 2 no 3,539.80 3,609 3,478 60.2 4,585.80 1,400 682 152.84% 227.56%
15 1 3 no 3,134.80 3,552 2,888 252.9 3,575.60 933 455 235.99% 283.24%
16 2 1 no 5,774.00 6,921 4,858 1,119.90 6,386.00 2,011 1.404 187.12% 217.55%
17 2 2 no 3,136.20 3,471 2,635 378.7 3,522.80 1,005 702 212.06% 250.53%
18 2 3 no 2,655 2,807 2,488 128.7 3,079.80 670 468 296.27% 359.67%
19 5 1 yes 2,171.40 2,173 2,167 2.5 2,182.40 2,000 83 8.57% 9.12%
20 6 1 yes 1,735.80 1,751 1,730 9 1,742.40 1,425 52 21.81% 22.27%
22 7 1 yes 3,113.20 3,169 3,084 34.6 3,179.40 3,333 283 -6.59% -4.61%
23 8 1 yes 2,989.20 3,163 2,878 107.8 3,216.40 1,821 264 64.15% 76.63%
25 5 1 no 1,986.40 2,008 1,963 16 2,010.20 2,100 1.023 -5.41% -4.28%
26 6 1 no 1,869.40 1,818 1,259 242,78 1,702.00 1,508 1.053 23.97% 12.86%

of iterations for each initial electron and the rate of electrons which require buffering in DDR

(Step b).

The target of sub one second runtime for the complete simulation including CPU execution is

reached for run 6. This run uses three MAX5C cards simulating a patient cube of 128 voxels

in all directions and processing two pixels in parallel in each of the three design instances. It

stands to reason that the same target could be reached by two Alveo U250 cards using build

6. However, I did not have access to the hardware required to verify this.

Since the execution time is dependent on the random numbers generated, one can expect a

certain amount of deviation between the predicted runtime and the actual runtime. In most

cases the standard deviation between executions is low and stays below 10 ms and in some

cases even below 1 ms. However, e.g., in the case of run 16, the standard deviation increases

significantly and, in this case, reaches more than 1,000 ms.

In general, there are three common patterns for runs with increased standard deviation of
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execution times. The first is that multiple electrons are processed in parallel. This can, for

example, be observed by comparing runs 1 and 4 or 19 and 20. In these cases the deviation

increases slightly for builds which have the same parameters apart from this additional degree of

parallelism. The reason for this is that a random chance of conflicts for patient cube memory

accesses is introduced. The resolution of these conflicts results in changes to the degree of

parallelism possible and as a result impacts the execution time. This deviation can be expected

even though the impact is small.

The second factor is the size of the patient cube. If the patient cube is large as in the cases of

builds 3, 4, 7 and 8 the discrepancy between runs is also larger. This has two reasons: Firstly,

each voxel represents a smaller portion of the actual patient, since the resolution is increased. As

a result, particles can travel across more voxels leading to an increase in subdomain changes.

Secondly, more data have to be sent back to the CPU leading to stalls if the PCIe bus is

currently congested. This congestion can be caused by multiple designs flushing their patient

cube at the same time. Overall, the introduced deviation is still limited.

The third factor is the position of entry of the particle beam into the patient cube. If the beam

enters in the centre of the cube, which is also the boundary of four subdomains, the standard

deviation of execution times increases significantly. By comparing the deviation that occurs in

runs 13 to 18 with runs 25 and 26, one can see that only for the first two cases the deviation is

high while for the others it is not. The only major difference between both designs, apart from

the additional design copy, is that in the case of the U250 based design particles are not sent

back to the CPU if they cannot be processed on the card itself. Indeed, closer examination of

the run shows that a significant portion of the particles is sent back to the CPU. Since this

data transfer is not based on DMA but on active polling, it seems like the CPU execution and

the order in which threads get access to the data mostly cause this high deviation.

The prediction accuracy also needs to be evaluated. For runs 1 to 6 the prediction is accurate

even though it is a bit too optimistic. In general, the prediction is roughly 100 to 200 ms faster

than the real system is. The reason for this prediction error is twofold: Firstly, the system

initialisation time is ignored, which can be in the order of hundreds of milliseconds for Maxeler
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systems. Secondly, there is a high likelihood that multiple designs are sending their patient

cube data back to the CPU at the same time leading to an additional small delay.

Fig. 5.5 shows the activity of the compute Kernel as well as of the output, which is used to

send the patient cube back to the CPU for run 7. For these runs (7-12) the difference between

predicted and actual runtime starts to grow but is still limited to an error of 80%. There are

two interesting observations that can be made from it. First it takes roughly 200 ms until

the Kernel becomes active. This verifies that the unexpectedly high initialisation overhead

is partly causing the discrepancy between actual and predicted runtime. The reason for the

higher-than-expected initialisation time can potentially be traced back to the seed initialisation

of the random number generators. It is possible to remove this overhead by sharing the seed

between multiple initialisations and not resetting the random number generator in between

runs to not generate the same numbers on every run.

The second observation is that the Kernel execution sometimes has to pause for patient cube

data to be sent over PCIe back to the CPU. This is caused by subdomains for which no

or only very small numbers of calculations have to be performed. It seems like particles do

not travel through the complete patient cube but are mostly absorbed close to the impact

point. In the performance model it is assumed that it is possible to overlap data transfer

and calculation, which is only possible if for each subdomain a sufficiently high number of

calculations is performed. The missing overlap between data transfer and compute adds an

additional overhead in the order of a few hundred milliseconds.

To mitigate this effect one could, for example, skip subdomains which have nothing to compute

or increase the PCIe bandwidth by switching to PCIe Gen. 3, for which driver support is in

development. Additionally, it is possible that the addition of Bremsstrahlung will change the

distribution of particles across subdomains removing this problem altogether.

The error between the predicted compute time and the runtime of the complete application is

also a lot bigger than the error between the prediction and the FPGA runtime. The error for

the complete application reaches more than 200% for run 12. This is probably a combination

of the need to accumulate significantly more data on the CPU and a need to process more
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particles on the CPU as well. The CPU code is not very optimised and cache optimisations to

help with the accumulation of these larger patient cubes might mitigate this issue.
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Figure 5.5: Visualisation of the Kernel and PCIe activity for run 7.

For runs 13 to 18 the difference between the actual and predicted runtime is the biggest and

reaches up to 300% if only the FPGA execution is considered and 360% for the complete

application. Again, by comparing to runs 25 and 26 one can conclude that this is caused by

the transmission of particles back to the CPU. While it might be possible that this problem

could also be partly mitigated by higher PCIe bandwidth, it seems more promising to perform

more batches without the generation of new particles on the FPGA. Additionally, it should be

possible to further optimise the CPU code and to avoid this worst case in the actual deployment

of the system altogether by shifting the position of the subdomains accordingly.

For the designs using the U250 the same patterns can be seen as for the builds using the MAX5C

card as discussed in detail above. To summarise, the model seems to be highly accurate for

the most straightforward cases as represented by runs 1 to 6 as well as 19 and 20 but has some

significant errors for more complicated cases. If the cube size is increased or the particle beam

enters the patient cube at the boundary of subdomains effects that were not included in the

model have significant impact on the runtime leading to bigger prediction errors.

There seem to be three major factors leading to these large errors which need to be discussed

in more detail in relation to the performance model of the proposed methodology:

1. Initialisation: One of the discrepancies between the predicted and actual runtime was

shown to be related to the long initialisation time. Following eq. 3.1 this initialisation

time is included in the performance model in general. In the case of this application, I

estimated the initialisation time to not be of any significance which was an error. The
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avoidance of this simplification and more initial testing using a micro benchmark with

the random number generators would have shown that the initialisation time cannot be

ignored and as a result a more rigours application of the methodology would have led to

more accurate results.

2. PCIe bus congestion: A second large problem is the congestion on the PCIe bus when

multiple subdomains are written back to the host at the same time. Again, this case is

handled in the methodology, since it states one should consider data transmissions with

a burst behaviour. The error here was to not sufficiently consider that multiple designs

might write their buffer back at the same time. I estimated that this would be very

unlikely and as such did not model it in detail. However, it would be possible to model it

accurately which would lead to a change of the architecture to avoid the issue altogether.

This can be achieved by increasing the PCIe bandwidth or including an arbitration to

delay selected designs more so that not all designs transmit their data at the same time.

For example, the usage of a round-robin arbitration would reduce the likelihood that

designs conflict again and ensure that at least one design can start its calculations again

as fast as possible.

3. CPU inefficiencies: The third and last large problem seems to be related to an inefficient

aggregation of subdomains on the CPU and the need to wait for particles to be actively

pooled by the CPU. The aggregation of subdomains is less of a problem for the evaluation,

since it does not delay the FPGA implementation. However, the impact of the CPU

execution order on the FPGA runtime through active pooling is more complicated and

currently not addressed within the methodology. Further research would be needed to

investigate how these kinds of interactions could be modelled accurately. It should be

mentioned that data transfer between host and FPGA not using DMA is fairly uncommon

in the context of HPC, so this lack of predictability does not impede the application of

the methodology in many HPC use cases.

This Monte Carlo based simulation was selected to stress test the behaviour of the methodology

for more dynamic execution patterns. Furthermore, some of the runs used to evaluate the
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application further exacerbated this dynamic behaviour. For example, it should be possible to

avoid the need to direct the particle beam at the subdomain boundary in all real use cases.

The methodology managed to deal well with the more basic forms of this dynamic execution

patterns, however struggled with the more extreme cases. There are two major lessons which

can be learned from this. First, for highly dynamic execution patterns the modelling has to

be performed with a high level of detail. Two common simplifications that I decided to make

caused large errors to the overall runtime later on. As such, especially to predict the execution

time more attention to detail is necessary for these classes of applications in the future. Second,

it was discovered that close interaction between CPU and FPGA is not modelled accurately

enough in the current performance model. While rare for HPC applications further research is

needed to further expand the applicability of the methodology.

5.4.3 Comparison to Traditional Systems

The comparison to related work for this application is not easy, since the precise test case

is often not reproducible. In [168] the authors report execution times of 10.8 seconds for

a patient cube of size 256x256x234 on a two socket Intel Xeon system. Additionally, they

report a speed-up of 1.95x compared to the GPU implementation presented in [55], which

is based on a single GPU card. A similar test case on the proposed system (Run 12) takes

2.6 seconds including the not fully optimised CPU code. Since the test case presented in

this chapter is slightly larger the comparison should be slightly biased towards the CPU and

GPU based technologies. On the other side the other two systems might not use the same

simplifications as the implementation proposed here. A speed-up of 4.1x compared to the CPU

and 8x compared to the GPU implementation was achieved. It is not expected that this speedup

will be completely invalidated once the simplifications in the implementation are removed.

The FPGA as well as the CPU and GPU systems can be realised as a single workstation system.

For this application the space efficiency of the solution is the most important metric, since the

simulation system should be placed close to the treatment machine to reduce latencies and

minimise potential network issues. As such the simulation system has to fit into the existing
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rooms available for the treatment which are often in dedicated underground buildings due to

radiation shielding requirements. The price of the simulation system is negligible compared to

the costs of the complete installation.

5.5 Discussion

This chapter shows how the proposed methodology can be applied to a highly complex, real

application in the field of radiotherapy and how it provides meaningful insight which aids in

the creation of a successful design. Additionally, the methodology was applied to VGG-16 and

BQCD in section 3.6.

In this section I discuss how the individual steps of the methodology were applied to the

different applications and then draw some conclusions on its application to future designs.

Tab. 5.6 shows an overview of the individual parts and steps of the methodology and how they

were applied to the different applications.

One of the major lessons of applying the methodology is that all stages are tightly coupled and

cannot be viewed in isolation. Instead, they have to be constantly co-developed. For example,

a bottleneck discovered in the performance model determines the focus of the analysis. In most

cases it is possible to discover early on which property of the algorithm is most problematic

and therefore has to be analysed in the most detailed fashion.

On the other side it is possible to save time on parts which have been shown to be less relevant

or problematic. For example, if one knows that in the worst case a few megabytes have to be

transferred between CPU and FPGA over a longer time span, a detailed analysis of the com-

munication pattern is not required. For the same reason a completely accurate performance

model is often not important, since it is possible to quickly make a worst-case calculation, which

includes large safety margins. The designer can then focus on modelling the resource usage

for only the scarcest resources in greater detail with high accuracy. However, the radiotherapy

application also showed that some simplifications can cause significant prediction errors if ap-

plied incorrectly. Especially the execution time in dynamic execution environments has to be
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modelled with great accuracy.

One example of this is the CNN acceleration as described in section 3.6.1 where the focus was

fully on multipliers, on-chip memory capacity and bandwidths. In the creation of the radio-

therapy simulation application described above the focus was more on accurate prediction of all

resources, but even in this case the error for logic is rather high since worst-case assumptions

were used and no detailed modelling was performed. Since it was possible to decide early on

that logic usage would not be a bottleneck this focus on what is important saves time and helps

to concentrate on the properties which could actually be design obstacles.

Additionally, the obtainable accuracy for different hardware resources is different. For example,

the usage of DSPs can be usually calculated without any error with low effort, but the usage of

memory resources is harder to accurately model due to automated scheduling and tool decisions.

However, in order to aid timing closure designs should usually not use more than 80% of each

resource. This means that for all resources which are not going to introduce bottlenecks rough

calculations and worst case assumptions are sufficient and only for the scarcest resources more

attention to detail is required.

In many cases it is also possible to significantly accelerate the analysis and software model

steps based on the original application. BQCD contains integrated profiling and analysis code

which was successfully used. For the CNN acceleration it was possible to use existing machine

learning libraries, in this specific case caffe [56].

In the case of VGG-16 and the Monte Carlo based dose simulation it was possible to verify the

changes made to the algorithm without moving them to the software model. This was possible

since only the execution order was changed, and it was easy to show that these changes were

legal and have no impact on the result from the equations implemented.

This means that in the case of VGG-16 the software model was not strictly required for either

the analysis or the verification of the architecture. On top of this, it is well known that

neural networks can utilise fixed-point precision, which even removed the need to perform a

fixed-point analysis in the software model. However, skipping the software model altogether is



214 Chapter 5. Methodology Validation using a Real Application

still not a good idea, since it was heavily utilised for debugging and validation of the hardware

implementation. To fulfil this target, it was sufficient to create a heavily modified and simplified

version of caffe which can be run as a drop-in replacement for the FPGA design enabling detailed

comparisons between results.

In all cases the software model was absolutely crucial in the final stages of debugging. While

it might seem tempting to skip this step and save development time and effort as a result, this

experience shows that it is not beneficial to leave out the software model altogether. Instead,

it might be possible to reuse existing code bases and change the time at which the software

model is created. However, depending on the application to implement it might be absolutely

crucial to use the software model to verify the architecture and assist the code analysis as it

was the case for BQCD.

In all applications provided in this thesis the methodology helped to quickly discover bottle-

necks and design an architecture which achieved the design goals. This enabled us to only

implement the hardware design once and avoid time consuming and risky design iterations

on the hardware design. Measuring the advantages of one development process compared to

another in great detail is always a difficult undertaking, since developer experience has a great

impact. Additionally, the same developer cannot implement the same application using differ-

ent methodologies, since lessons learned in earlier designs will automatically influence design

iterations in subsequent implementations. As such, I cannot measure the time savings using

the proposed methodology but need to argue based on my experience. Some of the projects

discussed above required significant development effort and, e.g., BQCD was developed by

Maxeler over multiple years. Discovering major issues late can result in a complete redesign

causing unmanageable financial and operational risks. If one manages to directly implement

a hardware design which is not bottlenecked without using the methodology, there is a time

saving which can be estimated to roughly 10%. But this also means that if any design itera-

tion in hardware which changes more than 10% of the design is required the methodology will

have reduced the overall workload compared to a direct implementation. In all applications

presented here the final results were obtained after tens of iterations between the performance

model and the architecture. While early iterations were usually impactful, later ones only op-
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timised architectural details. As such, the ability to perform design iterations in days instead

of weeks, months or even years greatly reduced the risks associated with hardware design.

5.5.1 Thoughts on Automation

Full automation is not aimed at by the methodology proposed in this thesis, it is overall human-

centric. This is done intentionally and is not the result of limited time or resources. The main

motivation for automation of certain parts of the development methodology would be to shorten

design times and to reduce the knowledge and experience required from the engineers imple-

menting the design. While these are both definitely worthwhile targets, I believe they do not

fit well into the main goal of the proposed methodology. The methodology aims at complex

applications targeting highly demanding industrial and scientific environments. This requires

transformation of the unique application properties within tight performance targets. Auto-

mated exploration based on heuristics, machine learning and automatically created analytical

models in combination with a limited set of possible architectures and optimisations will typi-

cally not manage to find the best performing implementation in such a highly complex design

space. In many cases certain performance needs to be reached within tight space, time, power

and cost limits. For example, weather forecasting for the next day has to be ready, before

the start of the next day to be of any practical use. For such systems the overall costs and

all additional performance benefits resulting in slightly better results or reduced running costs

justify the additional investment into the application engineering. Additionally, knowledge and

experience shortcomings can be partly mitigated by better technical documentation as well as

relevant examples and libraries.

Current automated solutions often fall short of achieving high performance targets comparable

to handcrafted code and at that point the designers often have limited options for improvement.

For example, the fully automated development flow presented in [70] implemented single pre-

cision General Matrix Multiply (GEMM) on a Maxeler MAX4C DFE and achieved a speedup

of 0.1x over a six-core CPU. In comparison, Maxeler demonstrated more than 20x speedup for

double precision GEMM targeting the same FPGA hardware [58]. In Maxeler’s case only one
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core of a roughly 10% slower CPU is used, however double precision arithmetic also uses signif-

icantly more space on the FPGA. This nearly two orders of magnitude performance difference

shows the potential of the manual approach proposed in this thesis when compared to a fully

automated solution even on such a simple use case.

Many problems in the design of complex FPGA applications require human insights and as

such the main goal is to expose the most relevant information to the designers performing the

task and to facilitate them in making the best decisions. As such the methodology aims at

providing relevant insights and does not attempt to reduce the amount of work.

It can be argued that full automation of hardware design will never be able to match the results

achievable through human intervention. There are two main arguments in this direction that I

want to present here:

1. An automated tool can only support a finite set of optimisation patterns. This prevents

the employment of novel custom optimisations tailored to a specific problem. While the

requirement for these novel optimisations might be rare in general one can expect that

especially for highly complex applications novel approaches to communication and related

problems are required;

2. Even for CPUs manual performance optimisations are still required despite the fact that

the target architecture is well known and fixed. For example, manual reordering of for

loops can result in significant performance differences. Similarly, parallelisation of CPU

applications is also still a highly manual process especially once multiple nodes are used.

These tools have received major funding and research interest over decades, but still have

significant limitations. The freedoms inherent to hardware design will only exacerbate

these problems.

The above is no formal proof that fully automated hardware design systems are impossible to

construct or that HLS systems will always provide inferior performance. However, it stands to

assume, that there will always be specific cases in which automated solutions fall short behind

an architecture crafted by a human designer. This is especially true for the close future in which
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no major jumps in tool quality or computational capabilities, e.g., by quantum computers, are

foreseeable.

One has to consider that FPGA based accelerators have strong competition in the form of

modern CPUs and GPUs. It is not expected that the programmability of FPGAs can ever

become better than these competing technologies for two simple reasons. More precisely, the

time required to perform place and route and the limitation to only physical and not virtual

resources, which results in many possible designs which simply do not compile due to the limited

available area. However, when an automated tool trades too much performance for improved

programmability there is simply no incentive to use an FPGA over for example a GPU. As such

every programming tool or methodology has to first ensure that the performance advantage of

FPGAs is maintained to motivate their usage in the first place.

This however means in no way that automation and tool assistance have no practical use. Quite

the contrary, the need for better FPGA programming languages is definitely present and HLS

systems have their real use cases, for example, for non-performance critical parts of applications

or for applications which for other reasons, e.g., transceiver capabilities, have no alternatives

but using FPGAs.

There are many examples for fully automated solutions for certain application domains. Espe-

cially in recent years many tools were developed which map machine learning problems onto

FPGAs with good performance. However, these domain specific tools are limited to narrow

classes of applications, which will always use very specific architectures and optimisations.

Additionally, different parts of the methodology as presented in this thesis can benefit from

further automation and tool support. The following list provides some examples for automation

and tool support opportunities:

• As discussed in section 3.4.4, the way in which on-board DDR memory is accessed is

crucial to maximise the utilisation of the available memory bandwidth. However, writing

address generators in hardware description languages or MaxJ is often difficult. Since

address generators can run slow in comparison to the remaining design and only occupy
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a very small amount of area, they are a good target for synthesis from a higher level,

e.g., from C or Java for loops. This could also help with detecting errors in the address

generation, which are often hard to track down.

• In a similar fashion it might be possible to at least partially synthesize data paths from

an available HLS description. The major performance critical blocks which are hard to

generate for high level tools are buffers for data reordering and efficient communication

schemes between components. If the input and output of a block are well defined an

HLS tool could generate the computational datapath in between including loop unrolling

based on a parameter defining the number of iterations to unroll.

• The main motivation for a manual creation of a performance model is mainly the insight

provided by it. It should be possible to develop a tool which takes a model of the

FPGA platform as well as the planned implementation of the application as inputs and

automatically creates a performance model to then perform design space exploration

using this automatically created analytical model. However, it is crucial to fully expose

the performance model and trade-offs as well as discovered bottlenecks to the user to

enable changes to the architecture.

• Moving from floating-point to fixed-point arithmetic is often done manually and is time

consuming and error prone. Deep integration between a fixed-point simulator, which can

be merged into the software model and the FPGA toolchain could help with accelerating

this process significantly. For example, a user might automatically explore accuracy based

on multiple golden input and output datasets and the chosen types for different parts of

the algorithm could be propagated into the FPGA design. It is again crucial that the user

maintains full control over precision vs. area trade-offs and knows the used datatypes.

• In the context of multi-die FPGA automated pre-floor planning might be helpful to

reduce inter-die crossings and optimally use the resources present on a complete device.

As discussed in section 4.2, MaxCompiler designs contain multiple design units, e.g.,

Kernels and ManagerStateMachines. It is possible to predict the area usage for these

components at compile time. Since the resources available on the different SLRs is also
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known it should be possible to map the individual design units to specific SLRs. Since

the number of design units and possible mappings is limited the complexity compared

to general floor planning should be highly reduced. Such a floor plan could drastically

reduce the number of SLR crossings, ensure that no single SLR is overused and as a

result improve timing characteristics. Additionally, it should improve the efficiency of the

memory mapping algorithm described in section 4.2.

For all the opportunities mentioned above it is crucial to integrate these new tools deeply into

the proposed methodology and provide full control and insight to the designer in order to enable

well informed decision making. There are many further opportunities for automation and for

improving FPGA design productivity, however, based on the experience I have built during my

research study the tools mentioned above are the most important areas of improvement right

now. In general, I believe that the significant amount of research spent on HLS tools might

be better focussed on topics like the mentioned above to advance the adoption of FPGAs by

improving design productivity while maintaining the performance advantage over competing

technologies. In order to reach widespread FPGA adoption, it will be necessary to spend

significant resources similar to the investments made by Nvidia to develop CUDA. Due to the

flexible architecture of FPGAs one can expect that this effort will be even greater. It will be

crucial to set realistic targets for this development and not to try to automatically solve every

problem, which brings the risk of losing the performance advantage of FPGAs while still not

achieving higher designer productivity compared to CPUs or GPUs. Instead, custom solution

for specific application domains and tools to assist manual design should deliver the best results.

5.5.2 Comparison to other Methodologies

To conclude the discussion and evaluation of the methodology a comparison to three other

approaches is presented. The selection of those approaches is based on their level of abstraction

with one representing classical HDL design, another the usage of current vendor HLS tools and

the third a fully automated approach.
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HDL based design methodologies

In general, the methodology presented in this thesis is fully compatible with HDLs. In fact, it

stands to assume that many parts of the methodology as presented in this thesis are already

widely applied to HDL designs in the industrial context but were never formalised or published.

However, especially the extensions made in chapter 4 to assist portability will not map well to

RTL based hardware design due to the missing abstractions from tool versions and devices on

the language level.

In [111] a VHDL based design methodology is presented. It does not mention how an architec-

ture for a hardware design can be developed but assumes that the developer works towards a

known architecture. Instead, it fully focuses on the problems arising from the usage of VHDL

and how specification, documentation and simulators can facilitate the design process. This

shows the general problem with HDL languages, where a programmer can easily be lost in the

many details and as a result the focus on the general system architecture or even larger algo-

rithmic optimisations is lost. In contrast, this thesis used MaxJ to boost designer productivity

and enable a focus on the system level optimisations as well as quickly enable large changes to

the implementation in general. Additionally, it enables device independent programming and

fast numeric changes.

If no methodology comparable to the proposed one is used to develop a promising system

architecture there is a real danger to end up in a prohibitively lengthy iterative design process of

incremental improvement, which might require multiple fundamental redesigns. In the context

of RTL this is especially problematic, since even small changes might require a change to the

pipelining and a manual rebalancing of the complete computational pipeline. This may result

in unacceptable design times.

A lot of these problems can be easily mitigated or ignored in the case of designs with trivial sizes,

consisting of only a few functional units. Alternatively, huge design teams can be employed

where detailed specifications as described in [111] are used and a design is split into many

independent blocks. Again, in those cases the first system architecture has to be good enough,
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otherwise redesigns of these blocks throughout the design process might be necessary.

HLS based design methodologies

The main idea behind most HLS solutions is to provide a development flow closer to traditional

software design. This also influences the development methodologies used. They usually try

to emulate the classical software approach where an initial implementation is made and then

repeatedly profiled and improved to maximise its performance. To assist in this process the

tools provide detailed reports with optimisation advice and profiling results for hardware runs.

An example of this is the Intel OpenCL compiler, to which development methodologies are

described in [5] and [140].

As explained before, these iterative designs face significant challenges in the context of hardware

design. Most notable it might be necessary to fundamentally restructure the implementation

to mitigate issues discovered late in the design process. Additionally, hour or even day long

place and route times significantly delay the development process. On top of this it is easily

possible to get stuck in local minima of the design space and hence never reach the best design.

As such the application of a process as described above might lead to an initial hardware

implementation faster than the proposed methodology (assuming that the initial design fits on

the target device). However, in most cases it will take significantly longer or might even be

impossible to arrive at the same performance point that will be reached if the methodology in

this thesis is followed.

While in theory the proposed methodology can be also applied to existing HLS tools, they might

be missing the required fine-grained control allowing the mapping of the envisioned architecture

to the targeted hardware.

Fully automated design methodologies

An example of a fully automated design methodology is provided in [70]. The main target

of fully automated approaches is to provide a single push button solution from an algorithm
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description to a complete hardware implementation, including mapping to different devices,

architecture selection and design space exploration. Obviously, it is difficult to beat such a

solution in terms of designer productivity. However, as discussed in more detail in section

5.5.1 current solutions still deliver designs with inferior performance as compared to more

human driven approaches. Additionally, it stands to assume that even in the future such fully

automated approaches will often not come close to the performance of applications based on

human decision making and original thinking.

5.6 Summary

In this chapter, an FPGA based implementation for real time Monte Carlo dose simulation

for application in adaptive radiotherapy was presented. An architecture which decomposes the

voxel cube representing the patient into multiple sub cubes to reduce on-chip memory space

requirements was proposed. The performance and area usage for this architecture were modelled

using a simple analytical model to predict the hardware implementation characteristics. Finally,

eight implementations of the architecture were created. The real time goal of simulating 100

million electrons in less than a second using three FPGA cards was fulfilled for a representative

voxel cube with a size of 128 in all dimensions.

This chapter showed how the techniques developed in chapter 4 can be used for an application

which is newly developed. It was possible to predict the memory usage accurately enough for

DSE even though the mapping to URAMs and BRAMs is handled automatically. Additionally,

multiple platforms were targeted using a single code base. Finally, a simple performance model

was used to make predictions for the overall runtime. For this application with a highly dynamic

execution pattern based on random number generators it managed to make area predictions

accurate enough for DSE as well as accurate performance prediction for simpler cases while

the error increased significantly for the most complex execution patterns. The latter could

be traced back to oversimplifications in the design phase and a missing accurate model for

FPGA to CPU communication which is not DMA based. The performance model enabled the
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identification of the most promising architecture and a quick DSE.

Finally, this chapter discussed the lessons learned from applying the proposed methodology to

multiple real-life problems as described in this chapter as well as section 3.6. This led into a

discussion on computer aided automation, which argued that the human driven approach of

the proposed methodology is able to deliver better performance then fully automatic solutions.

Opportunities for automation supporting the methodology and additionally improving designer

productivity were presented. Finally, a comparison to HDL and HLS driven development

processes as well as fully automated tools was made, showing that the proposed methodology

provides a good trade-off between achievable performance and designer productivity.

In summary, the methodology developed in chapters 3 and 4 enabled the rapid design of an

FPGA based implementation of the real time Monte Carlo dose simulation application. It

was possible to outperform previous work through novel changes to the architecture. These

improvements were motivated by concrete bottlenecks highlighted by the performance model.

Even though the application is complex and performance prediction is especially difficult due

to the random number generation, it was possible to provide an implementation which achieved

predicted speeds on the first design iteration for the most common configurations.



Chapter 6

Conclusion

In this thesis three novel contributions towards constructing a methodology for the development

of complex applications for reconfigurable systems have been made. This chapter will recap the

key research questions as well as the contributions made to answer these questions. Possible

future work directions are described, to address current shortcomings of the methodology and

to resolve additional challenges. Finally, a personal outlook on the application of FPGAs to

the field of HPC is provided.

6.1 Summary of Achievements

In the context of ever-growing computational demands and the end of Moore’s law, computer

architects are in need of novel approaches to build the next generation of HPC systems. Het-

erogeneous computing has been identified as a promising approach. This means that the classic

CPU based systems are extended with additional computing devices like ASICs, GPUs and

FPGAs. Especially FPGAs provide a good fit to emerging problems, since they combine the

efficiency of custom hardware circuits with reprogrammability. Many research studies have

shown that FPGAs can outperform GPUs in terms of computational performance and energy

efficiency, while at the same time being more flexible and cheaper to design compared to ASICs.

However, adoption of FPGAs is still quite limited which is often attributed to the non-trivial

224
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challenges inherent to the development process. This thesis aimed at alleviating some of these

problems by proposing and refining a development methodology for modern FPGAs.

This research was driven by the following research questions:

Q1. Does a structured approach for accelerating HPC applications with reconfigurable plat-

forms exist?

Q2. Is there an accurate method able to predict reconfigurable systems’ performance prior to

the creation of a synthesisable implementation of the reconfigurable sub-system?

Q3. Are there techniques to achieve state-of-the-art performance for a given application and

reconfigurable platform?

Q4. If such techniques exist, can a single implementation target different reconfigurable plat-

forms while delivering maximum performance on each?

Q5. What are the issues when the techniques mentioned above are applied to multi-die de-

vices?

In order to develop a structured approach for the acceleration of HPC applications using re-

configurable platforms an initial methodology was presented in chapter 3 (Q1). It consists of

the following four main steps. First, the existing application is carefully analysed. Second,

the portion of the code that is intended for hardware acceleration is reimplemented in a sim-

ple software model. Third, using the knowledge gained the performance of the final system

is modelled using simple equations. Fourth, the architecture is then iteratively refined until

all system bottlenecks are removed. This enables the implementation on the FPGA avoiding

time consuming design iterations in hardware. Using the methodology two applications were

developed. The first was a CNN implemented by the author of this thesis and the second a

quantum chromodynamics simulation developed by Maxeler engineers. The presented perfor-

mance model based on analytical equations was shown to accurately predict the performance of

the reconfigurable system before a synthesisiable implementation of the reconfigurable system

existed (Q2). Both applications are based on a static execution pattern and the ability of the
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performance model to predict performance accurately for more dynamic execution patterns was

discussed later in the thesis. In both cases the initial implementations fulfilled the requirements

of the system and achieved state-of-the-art performance (Q3).

To enable portability and performance scalability between different, including modern, FPGA

devices the methodology had to be extended and additional tool support had to be provided.

Chapter 4 successfully tackled this challenge. First, a novel memory mapping algorithm was

developed. This algorithm addresses the problem of heterogeneous memory resources in the

context of multi-die FPGAs. A greedy algorithm tries to balance the allocation of different

memory resources to allocate them at the same rate. The resulting algorithm managed to

successfully place and route all designs, while the second-best performing algorithm failed on

one third of the large applications. Second, the methodology was extended by best practices for

design portability. To verify these best practices an existing financial pricing application was

ported to four additional different FPGA devices and achieved a performance improvement

of up to 7.4x compared to the initial implementation on these larger devices. The speedup

normalised to the available FPGA capabilities showed that the new devices were used efficiently.

This shows that using the proposed methodology the same implementation, using a single code

base, was able to target different reconfigurable platforms efficiently (Q4). Furthermore, this

chapter identified SLRs as one of the major challenges to the porting effort especially if code

is moved between different scales of the same device generation. As such the above memory

mapping algorithm was specifically designed to address this challenge and best practices for

the usage of SLRs in the context of portability were discussed (Q5).

To verify the extended methodology, it was applied to a medical application in chapter 5.

This application was a Monte-Carlo based simulation of the dose accumulation in human tissue

during radiotherapy treatment, which, according to medical experts, has to run in less than one

second to use it in real time, improving treatment quality and reducing costs. It is of special

interest due to its dynamic execution pattern, making the prediction of performance more

difficult (Q2). The methodology was applied to implement the simulation without multiple

design iterations in hardware. The performance model was shown to predict the allocation of

different memory resources, as performed by the modified memory allocation algorithm, and
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the overall area usage accurate enough to perform DSE. Additionally, it managed to accurately

predict the execution time for the more common configurations of the application having a less

dynamic execution pattern. For configurations with a highly dynamic execution pattern the

error increased, and the lessons learned from this were discussed. Using the best practices for

performance portability it was possible to target two different platforms with minimal code

divergence. The resulting implementation managed to achieve the real time target using three

MAX5C accelerator cards. Additionally, the lessons learned from the usage of the methodology

on all applications presented in this thesis were discussed. A comparison of the proposed

approach to other development paradigms, including highly automatic ones, was presented.

To summarise, the answers to my research questions are as follows:

Q1. Yes, I presented a structured process consisting of four individual steps in chapter 3.

Q2. For static execution patterns yes, as shown throughout this thesis, e.g., for the CNN and

BQCD implementations in chapter 3 and for the Monte Carlo based dose accumulation

simulation presented in chapter 5. For dynamic execution patterns further research is

required.

Q3. Yes, as shown for the CNN application presented in chapter 3 which achieved state-of-

the-art performance on the first design iteration.

Q4. Yes, as shown for an Asian option pricing application in chapter 4 which was efficiently

ported to multiple different devices.

Q5. Memory mapping for multi-die FPGAs was identified as one of the major challenges. A

possible solution was presented in chapter 4.

To conclude, fig. 6.1 highlights again the main contributions of this thesis as well as their

connections as originally introduced in chapter 1. The development methodology introduced

in chapter 3 and extended for multi-die FPGAs and portability in chapter 4 was applied to a

real-world medical application in chapter 5 proving the usability of the developed methodology.

It helps to understand the compute and communication patterns as well as numeric properties
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of even highly complicated applications and assists in the development of a suitable architecture

which addresses these properties. As such, it is helpful for application development in the HPC

context. While no large-scale experiments were performed in this thesis it stands to assume

that especially in the case of very large deployments, even going up to exascale, a methodology

like the one proposed in this thesis will be crucial to minimise data movements at all system

levels and maximise the number of operations which can be executed within a single chip and

per memory access. Both are very critical to limit the system power usage to affordable levels.

Based on the initial experience gained by sharing the methodology with both experienced

and novice designers of dataflow-based applications it proves its value in guiding developers

quickly to promising architectures and eliminating unnecessary, time wasting design iterations.

Maxeler decided to include the extended design methodology in their toolchain documentation

and training workshops to educate internal and external users. As such I strongly believe that

the proposed development methodology will facilitate the adoption of reconfigurable dataflow

technology and help developers with designing highly efficient applications. Additionally, the

memory mapping algorithm has been integrated into the commercial MaxCompiler toolchain

and is currently used in dozens of ongoing academic and industrial projects. Finally, the

radiotherapy simulation could improve cancer treatment significantly, by reducing costs and

risk for the patients. While this thesis provides only a proof-of-concept further research based

on these initial results has already started.

Complete Methodology
General Methodology

(Chapter 3)
Portability and Multi-Die

(Chapter 4)

Validation with a Real Application
(Chapter 5)

Figure 6.1: Thesis contributions.
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6.2 Future Work

In this section current limitations of the contributions are highlighted together with possibilities

to further extend on this work.

6.2.1 General Methodology

Chapter 3 introduces a development methodology for the acceleration of complex applications

using FPGAs. While it has already proved its usefulness within the industrial and academic

environment there exist many possibilities for additional improvement. These include improve-

ments to the accuracy of the prediction of hardware usage as well as further automatisation.

The following seven directions seem to promise the biggest improvement:

1. At the moment, accurate prediction of the resources used for the scheduling of the dataflow

graph does not exist. Instead, a simple estimate based on experience and the expected size

of the dataflow graph has to be made. Only for big, manually created delays an accurate

estimation is achievable. Since the scheduling often has a non-trivial contribution to the

overall memory usage a more accurate prediction would be very useful. The fundamental

problem with such a model is, that one needs to have a very detailed description of the

final dataflow graph before making any assumptions about the final graph scheduling.

This requirement breaks the fundamental need to provide accurate predictions before the

first line of code is written. It should be possible to develop a machine learning based

approach to mitigate this issue and provide more accurate predictions than currently

available. This method would improve the accuracy of the performance model.

2. Currently, the creation of the performance model and the design space exploration based

on it are fully manual. A reason for this is that it is crucial to present the bottlenecks of the

system to the designer and not hide them within an automated tool. However, it should

be possible to develop a tool, which automates this step of the design process and exposes

the current design bottlenecks to the user. The tool should be based on two input files.
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The first contains a description of the target system, while the second contains equations

describing the performance model of the algorithm that is intended for acceleration. The

tool can then automatically optimise the different degrees of parallelism to find the best

performing design point within the described system characteristics. Additionally, this

tool should report which parts of the design significantly contribute to the resource usage

and which resources are limiting further acceleration. By exposing the equations used in

the calculation and the most limiting characteristics to the designer it would be possible

to develop an improved architecture based on the knowledge gained. Such a tool would

be helpful to guide the designer into the correct direction and additionally accelerate the

design process.

3. The biggest problem in accelerating complex algorithms using hardware is always the

selection of datatypes. Since floating-point introduces a significant overhead in terms of

area and power usage a fixed-point representation is typically desired. However, finding

a fixed-point representation which maintains correct results for all possible input data

values is highly problematic. Within this thesis a value profiling library was used, and

a fixed-point simulation library was developed. However, both of these still require sig-

nificant manual labour to derive working datatypes. It should be possible to further

automate this and for example automatically suggest possible block floating-point for-

mats, which sometimes can fill the gap between fixed- and floating-point types. Since

there is a multitude of existing research on this problem it would first be necessary to

gain an overview of the state-of-the-art methods and then integrate a selection into the

methodology. Any automation for this datatype transformation would solve one of the

most complicated steps in the acceleration process.

4. Especially if fixed-point representations are used it is possible that based on numeric

problems wrong results are computed. In most cases it is possible to detect these errors,

e.g., overflows, on the hardware level. It is possible to create a second dataflow graph

which collects these status bits and checks if any results of the hardware accelerator are

based on erroneous partial results. The output of this verification circuit could be used

to improve trust in the calculations of an accelerator using a highly reduced fixed-point
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data format. If errors occur it would for example be possible to recalculate the required

step on the CPU. Providing such a tool would extend the methodology with basic error

correction possibilities.

5. It might be possible to further automate the generation of specific hardware structures

from a higher abstraction level. For example, data paths are often less performance

critical, compared to buffers and data reordering circuits. In those cases, a language

closer to HLS can be used if the communication behaviour on the input and output can

be easily configured. Additionally, it should be possible to generate address generation

units from, e.g., for loops in C. Address generators can usually be very slow, since a single

output usually moves large chunks of data which require many cycles to be processed. The

automatic generation of such modules would ease the design and especially the verification

process significantly.

6. The methodology proposed in this thesis is based around Maxeler’s MaxCompiler toolchain

and the machine and programming model used by it. It would be of high interest how

well the methodology maps to other tools and which changes have to be made. Especially

the accurate prediction of the frequency deserves special attention.

7. As discovered using the radiotherapy simulation application the non-DMA based com-

munication between CPU and FPGA is not modelled accurately. This is especially the

case if the CPU has to actively load data from multiple data streams. In this case mul-

tithreading effects can have a significant impact on the expected performance. It would

be beneficial if models could be developed to also predict the runtime behaviour of these

communications accurately.

6.2.2 Portability Extension and Support for Modern FPGAs

In chapter 4 the methodology was extended to provide portability between different devices in-

cluding modern multi-die FPGAs. To achieve this target best practices for the portability and

performance scalability between different FPGA devices were presented and a memory map-
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ping algorithm for multi-die FPGAs was proposed. Three possible extensions to the proposed

memory mapping algorithm are of special interest. More precisely:

1. The current algorithm maps each logical memory only to a single physical memory. How-

ever, it would be possible to implement a logical memory using multiple different physical

memories. If one for example considers a 72 bit wide and 4,650 deep memory currently the

algorithm would map this logical memory either to URAM or BRAM blocks. However,

it would be most efficient to map it up to the depth of 4,096 to a single URAM, then use

BRAMs for the next 512 elements and map the remaining memory to logic. As such this

extension would dramatically reduce the number of allocated but not used memory bits

and therefore minimise the area of the implemented circuit.

2. The current algorithm focuses on SLR locality. It might be promising to consider locality

within a single SLR to enable design units to reside in a specific subset of the SLR. This

would minimise the routing delay and reduce the overall routing congestion. Developing

such an algorithm will require more accurate prediction of the resource usage for all FPGA

resources and not only a prediction limited to memories. Additionally, an integration with

the FPGA vendor placement algorithm might be required.

3. To fully deal with the challenges introduced by multi-die FPGAs automated, device aware,

floor planning is required. In general, automatic floor planning is a hard problem to solve.

However, in the context of MaxCompiler the difficulty of this problem can be reduced

considerably. Each design consists only of a few high-level components. At the moment,

the memory mapping algorithm performs its allocation independently for each of these

design units. However, it is also possible to predict the resource usage of the entire design

and as such perform high level floor planning, mapping the different design units to the

separate dies available on the targeted device. If floor planning happens with respect

to the required inter-die connections, it would improve the timing characteristics of the

design. Additionally, the memory mapping algorithm could operate on die instead of

design unit basis, potentially reducing the required area.
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6.2.3 Dose Accumulation Simulation for Radiotherapy

An FPGA based accelerator for the simulation of dose accumulation in human tissue in the

context of radiotherapy is introduced in chapter 5. While the main objective within this thesis

was to use this example to evaluate the extended methodology this implementation can be

used as the base for further research leading towards the goal of real time radiotherapy. To

accomplish this goal the following shortcomings will need to be addressed.

1. The current simulator only supports water as a material. To extend the simulator with

other materials one would need to make two main modifications. A data structure is

needed to hold the material type for each voxel of the patient cube. The same splitting

into multiple subdomains can be used with on-chip buffers to store the material types

for the current subdomain. The complete cube data can be stored in DDR memory and

the on-chip buffer can be initialised while the dose cube is streamed out. Additionally,

some of the equations used to simulate the particle behaviour have to be adjusted to use

different constants based on the specific material that is simulated.

2. Additionally, to the limitations in terms of materials also the support for different high-

energy particles is limited. At the moment only electrons are simulated. However, at least

photon models have to be also included to achieve a meaningful simulation. For this, the

required equations have to be added to the design and the data structures holding particle

data have to be upgraded.

3. Since the current implementation of the simulation is mostly a proof of concept even

all interactions for electrons were not implemented. For example, the Bremsstrahlung

interaction is currently missing. To provide an accurate implementation one would need

to add this by introducing the corresponding computations to the dataflow graph.

4. During the evaluation of the implementation, it was noticed that in multiple cases the

PCIe speed proves to be the bottleneck. This problem could be partially mitigated by

using PCIe Gen3 instead of Gen2. Once the compiler and driver support for this feature is

added it should be straight forward to upgrade the design. This could reduce the runtime
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of the simulation further. Additionally, one could try to schedule the transmission of

patient cube buffers, e.g., using a round robin arbitration to reduce PCIe bus congestion

and ensure that individual designs can start executing as fast as possible. This would

avoid the current problem where all designs try to transmit their patient cube at the same

time and as a result start and finish their transmission roughly at the same time, mostly

stalling while waiting for PCIe bandwidth.

5. Another delay to the execution time was caused by the longer than expected initialisation

time of the random number generators. It should be possible to optimise this by sharing

the seed between runs and therefore reduce the runtime by up to 100ms. If the random

number generators are not reset in between runs, they will still produce different numbers

for each.

6. At the moment the sub domains are tiled automatically based on the overall cube di-

mensions. However, as noted during the evaluation, it would be advantageous to ensure

that the particle beam enters the patient cube within a subdomain and not at subdomain

boundaries. Multiple strategies seem possible to ensure this. For example, it could be

possible to change the subdomain size accordingly and add support for subdomains of

different sizes. Additionally, it might be possible to change the overall size of the pa-

tient cube to move the boundaries accordingly. This change would need to be performed

in close collaboration with the medical experts to ensure that no deviation in the final

result is introduced. By ensuring that the particle beam does not enter at subdomain

boundaries the reliability of the simulation will be greatly improved.

6.3 Outlook

During the years of my research the FPGA landscape has changed significantly. While adop-

tion of FPGAs for HPC is still very limited there is a more concentrated push by the wider

industry towards the large-scale deployment of FPGAs. This seems to be mostly driven by

the availability of servers with pre-installed FPGAs from major server vendors, the availability
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of cloud instances using FPGAs and the acquisition of Altera by Intel. Very recently AMD

announced the decision to buy the second big FPGA vendor Xilinx. As a result, the two biggest

CPU vendors in the HPC space now also control the two biggest FPGA vendors. In both cases

the publicly stated main motivation behind the acquisitions was the employment of FPGAs in

the data centre.

However, it seems that all these investments and efforts are not fully paying off. The availability

of AWS EC2 F1 instances is still limited to a few regions even though they were announced

more than three years ago. There were also no new versions of the instances which could have

used a larger FPGA like the VU13P or one containing HBM. Altera was bought more than

five years ago from the point of writing and similarly very little new products have surfaced.

There was also no significant change in market adoption or growth which Intel seemed to have

hoped for at the time of the acquisition. The future will tell if AMD is more successful with

the acquisition of Xilinx.

In my personal opinion the main reason for this lack of success is the lack of programmability.

When Amazon introduced the F1 instance one of the main tutorials showed how to implement

an 8-bit counter in Verilog on the F1 instance. The employment of this completely useless

example (especially if one considers that running this counter would cost more than one dollar

per hour) shows the complexity required for anything really impressive and useful. To avoid this

problem Intel and Xilinx have fully embraced HLS tools. While Intel focuses more on OpenCL,

Xilinx initially focused more on Vivado HLS, but seems to have moved more towards OpenCL

in recent years as well. Additionally, both companies strive to provide libraries containing

completely engineered solutions which can be used through a simple API. However, as discussed

in this thesis I believe that OpenCL sacrifices too much performance to justify the inherent

complexity in working with FPGAs. On top of this GPUs and CPUs have the advantage of

high-volume production which enable them to reduce unit prices compared to FPGAs. As

such FPGAs have to be able to provide a significant improvement in terms of performance

and energy efficiency to provide a competitive position on the market. While customised

libraries for specific functions might enable this on some use cases the integration into the actual

application and the required data transfer to achieve this is of major concern. Additionally,
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large organisations will require the ability to customise solutions for their specific use case in

order to differentiate themselves from competitors. These major challenges seem to not be

addressed by the strategies of Xilinx or Intel.

In my personal opinion a refocus of efforts will be required to enable the adoption of FPGAs in

the data centre. This thesis attempted to outline one possible approach towards this target. I

believe that the usage of a programming model tailored together with a design process tailored

to this programming model and FPGAs will significantly reduce the complexity of FPGA pro-

gramming. Within that framework it is also possible to address other long-term concerns with

regards to FPGAs like portability. This reduction of complexity is crucial to make the large-

scale adoption of FPGAs worthwhile. This believe has been strengthened by the experience I

made with academic partners during my research. Especially in my first years of working with

FPGAs I have seen many researchers with varying degrees of experience struggle and fail with

their FPGAs focused projects. Over the last few years, I have tried to direct many of them

towards the usage of the methodology proposed in this thesis and have made mostly positive

experiences. In all cases the final result was a successful and well-designed FPGA application

and multiple master thesis and research papers have been written as a result.

In addition to this positive result of my research the initial work on the radiotherapy has led

to follow on research which is undertaken by researchers at the Joint Department of Physics

at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust and the

Custom Computing Group of Imperial College London. I hope that this research leads to a

viable solution for real time radiotherapy which could result in a significant positive impact on

cancer treatment quality.
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