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Belvédère, Campus Universitaire, 91405 Orsay, France

(Received xx; revised xx; accepted xx)

We study the effect of surfactant on the dynamics of a bubble bursting through an
interface. We perform fully three-dimensional direct numerical simulations using a hy-
brid interface-tracking/level-set method accounting for surfactant-induced Marangoni
stresses, sorption kinetics, and diffusive effects. We select an initial bubble shape corre-
sponding to a large Laplace number and a vanishingly small Bond number in order to
neglect gravity, and isolate the effects of surfactant on the flow. Our results demonstrate
that the presence of surfactant affects the dynamics of the system through Marangoni-
induced flow, driving motion from high to low concentration regions, which is responsible
for the onset of a recirculation zone close to the free surface. These Marangoni stresses
rigidify the interface, delay the cavity collapse, and influence the jet breakup process.

1. Introduction

When a bubble is resting close to a liquid-gas interface, its rupture gives rise to the
formation of a central jet. This jet breaks up into small droplets, which could transport
biological material, toxins, salts, surfactants or dissolved gases (Woodcock et al. 1953;
MacIntyre 1972; Veron 2015; Zenit & Rodŕıguez-Rodŕıguez 2018; Séon & Liger-Belair
2017; Poulain & Bourouiba 2018). It is unsurprising therefore that the bursting bubble
phenomena have received significant interest due to their occurrence in a multitude
of natural and industrial applications. In the absence of contaminants, the physical
mechanisms of surfactant-free bursting bubbles on the ejection of droplets have been
widely studied experimentally (Woodcock et al. 1953; Ghabache et al. 2014; Ghabache
& Séon 2016; Séon & Liger-Belair 2017), numerically (Deike et al. 2018; Gordillo &
Rodŕıguez-Rodŕıguez 2019; Singh & Das 2019), and through theoretical approaches (Zeff
et al. 2000; Gañán-Calvo 2017; Lai et al. 2018; Blanco-Rodr̀ıguez & Gordillo 2020).

This previous work has shown that when a nucleated bubble rises through the liquid
and then rests close to a free surface, its static resting shape results from a balance
between gravitational and surface tension forces. The bubble shape may be characterised
by a submerged interface, a liquid layer/cap above the bubble, and an interface, which
extends away from the bubble cap (Toba 1959; Ghabache 2015). The cap is characterised
by a length scale δ/Ro ∼ O(10−6), where δ and Ro refer to the liquid layer thickness and
the initial bubble radius, respectively. The layer curvature creates over-pressure relative
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to the liquid bulk below it. The fluid within the layer drains over time enabling van der
Waals forces to rupture the interface when δ → 0 forming a hole (Lhuissier & Villermaux
2012). The hole leaves an open, unstable cavity that collapses to form a vertical jet whose
dynamics are governed by inertial, viscous, and capillary forces.

Surfactants can affect the dynamics of surface-tension driven flows by the reduction
of the local surface tension and capillary pressure, and by the formation of Marangoni
stresses brought about by gradients in interfacial surfactant concentration. In a recent
study, Constante-Amores et al. (2020) reviewed the state-of-the-art of the effect of
surfactant in the dynamics of capillary singularities due to topological change. Craster
et al. (2002) have shown that the presence of insoluble surfactant during the thinning
of threads does not alter the well known breakup scalings predicted by Eggers (1993)
as the capillary singularity is such a violent event which convects surfactant away from
the pinchoff point. Both McGough & Basaran (2006) and Kamat et al. (2018) have
reported that the presence of surfactant changes the fate of the thinning of threads as
surfactant enhances the formation of micro-threads, whose thinning dynamics also follow
Eggers (1993). Constante-Amores et al. (2020) showed that the presence of surfactant can
suppress the ‘end-pinching’ mechanism in the retracting dynamics of ligament threads
due to the suppression of stagnation points, and subsequent flow reversal. Most of
chemical surfactants are soluble in the bulk liquid, adding a layer of complexity to the
phenomena as Marangoni stress can also be regulated by the surfactant sorption kinetics
between the bulk and interface. Liao et al. (2004) observed experimentally that high
concentrations of soluble surfactant favour an asymmetric breakup of a liquid bridge. Jin
et al. (2006), and Jin & Stebe (2007) showed that solubility affects the dynamics of drop
formation in terms of thinning. Craster et al. (2009) have shown that similar to their
previous work (Craster et al. 2002), the addition of solubility does not affect the scaling
predicted by Eggers (1993), but it does lead to the formation of larger satellite droplets,
which was confirmed experimentally by Kovalchuk et al. (2016, 2018).

As revealed by the foregoing review, studies involving surfactant effects on interfacial
flows have received considerable attention, however, to the best of our knowledge, the in-
fluence of surfactants on the dynamics of bursting bubbles has not been explored, and this
is the subject of the present article. Here, we use three-dimensional numerical simulations
to account for surfactant solubility, diffusion, sorption kinetics, and Marangoni stresses
on the bursting phenomena. The rest of this paper is structured as follows: in Section 2,
the numerical method, governing dimensionless parameters, problem configuration, and
validation, are introduced. Section 3 presents the results, and concluding remarks are
given in Section 4.

2. Problem formulation and numerical method

The numerical simulations were performed by solving the two-phase Navier-Stokes
equations in a three-dimensional Cartesian domain x = (x, y, z) (see figure 1). A hybrid
front-tracking/level-set method was used to treat the interface, where surfactant trans-
port was resolved both in the bulk and on the interface (Shin et al. 2018). Here, and in
what follows, all variables will be made dimensionless (represented by tildes) using

x̃ =
x

Ro
, t̃ =

t

T
, ũ =

u

U
, p̃ =

p

ρU2
, σ̃ =

σ

σs
, Γ̃ =

Γ

Γ∞
, C̃ =

C

C∞
, C̃s =

Cs
C∞

,

(2.1)
where, t, u, and p stand for time, velocity, and pressure, respectively. The physical
parameters correspond to the liquid density ρ, viscosity, µ, surface tension, σ, surfactant-
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(a) (b)

Figure 1. (a) Initial shape of the bubble resting close to the interface, highlighting the
computational domain of size (15Ro)

3 (not-to-scale) in a three-dimensional Cartesian domain
x = (x, y, z), where Cartesian resolution is 7683; (b) comparison of surfactant-free simulations
from the current study (squares) with scaling argument of the length of the jet (solid line) and
numerical simulations (dots) proposed by Lai et al. (2018).

free surface tension, σs, and gravitational acceleration, g; T =
√
ρR3

o/σs is the capil-

lary time scale, hence the velocity scale is U = Ro/T =
√
σs/(ρRo). The interfacial

surfactant concentration, Γ , is scaled on the saturation interfacial concentration, Γ∞,
whereas the bulk and bulk sub-phase (immediately adjacent to the interface) surfactant
concentrations given by C and Cs, respectively, are scaled on the initial bulk surfactant
concentration, C∞. As a result of this scaling, the dimensionless equations read

∇ · ũ = 0, (2.2)

ρ̃(
∂ũ

∂t̃
+ ũ ·∇ũ)+∇p̃ = −Boiz +Oh ∇·

[
µ̃(∇ũ +∇ũT )

]
+

∫
Ã(̃t)

(σ̃κ̃n+∇sσ̃)δ
(
x̃− x̃

f

)
dÃ,

(2.3)

∂C̃

∂t̃
+ ũ · ∇C̃ =

1

Peb
∇2C̃, (2.4)

∂Γ̃

∂t̃
+∇s · (Γ̃ ũt) =

1

Pes
∇2
sΓ̃ +Bi

(
kC̃s(1− Γ̃ )− Γ̃

)
, (2.5)

σ̃ = 1 + βs ln
(

1− Γ̃
)
, (2.6)

where the density and viscosity are given by ρ̃ = ρg/ρ + (1− ρg/ρ)H
(
x̃, t̃
)

and µ̃ =

µg/µ + (1− µg/µ)H
(
x̃, t̃
)

wherein H
(
x̃, t̃
)

represents a smoothed Heaviside function,
which is zero in the gas phase and unity in the liquid phase, while the subscript g
designates the gas phase; ũt = (ũs · t) t is the tangential velocity at the interface in
which ũs represents the interfacial velocity; κ is the curvature; ∇s = (I− nn) · ∇ is the
interfacial gradient wherein I is the identity tensor and n is the outward-pointing unit
normal; δ is the Dirac delta function, which is equal to unity at the interface, located at
x̃ = x̃f , and zero otherwise; Ã(t̃) is the time-dependent interface area.
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The dimensionless groups that appear in the above equations are defined as

Bo =
ρgR2

o

σs
, La =

1

Oh2
=
ρσsRo
µ2

, (2.7)

Bi =
kdRo
U

, k =
kaC∞
kd

, P es =
URo
Ds

, P eb =
URo
Db

, βs =
<TΓ∞
σs

, (2.8)

where Bo stands for the Bond number and represents the ratio of gravitational to
capillary forces; Oh = µ/

√
ρσsRo is the Ohnesorge number that measures the relative

importance of viscous to surface tension forces, and La is the Laplace number; Bi
denotes the Biot number representing the ratio of characteristic desorptive to convective
time-scales; k is the ratio of adsorption to desorption time scales; Pes and Peb are the
interfacial and bulk Peclet numbers, respectively, and represent the ratio of convective
to diffusive time-scales in the plane of the interface and the bulk, respectively; and βs
is the surfactant elasticity number, which measures the sensitivity of the surface tension
to the surfactant concentration. The parameter R refers to the thermodynamic ideal gas
constant value 8.314 J K−1 mol−1. In addition to the above parameters, we assume an
initially uniform surfactant concentration at the interface so that Γ (x, t = 0) = Γo =
Γ∞/4. The chosen density and viscosity ratios, ρg/ρ = 1.2 × 10−3 and µg/µ = 0.018,
respectively, are representative of an air-water system.

The Marangoni stress, τ̃ , is expressed as a function of Γ̃ :

τ̃ ≡ ∇sσ̃ · t = − βs

1− Γ̃
∇sΓ̃ · t, (2.9)

where t is the unit tangent to the interface; tildes are dropped henceforth. From equation
2.9, the variation of τ can be achieved by altering the elasticity parameter, the magnitude
of the interfacial concentration or the interfacial concentration gradients. In the current
study, the weakening or strengthening of the Marangoni stresses have been analysed
by studying the variation of βs. The Marangoni time-scale, µRo/∆σ = O(10−5) s, as
compared to the capillary and sorptive time-scales, which are of order O(10−4) s and
O(10−3 − 10−5) s, respectively ; thus Marangoni stresses will play a key role in the
dynamics.

The numerical procedure to solve equations (2.2)-(2.6) has been presented in detail
by Shin et al. (2017, 2018); only a brief summary is provided here. The Navier-Stokes
equations are solved by using a finite-volume method over a staggered grid (Harlow &
Welch 1965). The computational domain comprises of a fixed regular grid (i.e. Eulerian
grid) in which the spatial derivatives are approximated by standard centred-difference
discretisation, except for the non-linear term, which is discretised using a second-order
essentially non-oscillatory (ENO) scheme (Shu & Osher 1989). The projection method
presented by Chorin (1968) is used to enforce the incompressibility behaviour.

The interface is tracked by an additional Lagrangian grid by using the front-tracking
method and regularly reconstructed by a level-set method. The immersed boundary
method of Peskin (1977) is used for communication between both grids. The temporal
integration scheme is based on a second-order Gear method. Thus, even though our
method as described in Shin & Juric (2002, 2009) follows a hybrid level-set/front-tracking
approach, incorporating some features of level-sets, it is important to note that it fully
retains the well-established Immersed Boundary formulation for surface forces used in
the front-tracking method, which requires the surface integral representation in Eq.
(2.3). The mathematical apparatus is detailed in the pioneering work of Peskin (1977).
Finally, surfactant transport is solved on the interface, where the interfacial surfactant
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concentration is located on the centre of the triangular front elements. More information
can be found in Shin et al. (2017, 2018).

2.1. Numerical setup, validation, and parameters

The dimensionless computational domain size is chosen as (15Ro)
3, which is found to

be sufficiently large to render boundary effects negligible. Hence a radial component is

defined as r =

√
(x− xo)2 + (y − yo)2 where xo and yo are the abscissa and ordinate

bubble position, respectively. Solutions are sought subject to Neumann boundary condi-
tions on all variables at the lateral boundaries, p = 0 at the top boundary z = 15Ro, and

no-slip at z = 0. At the free surface, we impose n · ∇C̃ = −BiPeb
(
kC̃s(1− Γ̃ )− Γ̃

)
as

a condition on C̃ (more information can be found in Shin et al. (2018)). Simulations are
initialised as a bubble resting immediately beneath the free surface before its rupture.
Its initial shape is determined by solving the Young-Laplace equation for Bo = 10−3,
which is sufficiently small to avoid the effect of gravity on the bubble bursting process.
To initialise bursting, the top spherical cap of the bubble is removed, leaving only a
bubble cavity (see figure 1a). The relevant time scale associated with the cap-retraction
, tCR = Ro/

√
2σ/ρδ = O(10−6)s, is too short to affect the dynamics. A similar approach

has been used by Boulton-Stone & Blake (1993), Garcia-Briones et al. (1994), Duchemin
et al. (2002) and Deike et al. (2018). Our numerical simulations have been validated
against the work of Eggers (1993) and Lai et al. (2018) in terms of liquid thread breakup,
and the scaling of the ejected jet length, Ld, with La (see figure 1b), respectively. Solving
the small-scales of the bursting dynamics is a challenging process. We have assessed the
grid dependence of our results ensuring their convergence for grids larger than 7683.

In the current study, the Laplace number has been fixed to La = 2× 104 following the
works of Lai et al. (2018) and Gordillo & Rodŕıguez-Rodŕıguez (2019). Additionally, we
have set the Bond number Bo to be of O(10−3) to ensure that the shape of the bubble
prior to its rupture is spherical even in the presence of surfactants. Operating in this
parameter space allows for the elimination of gravitational effects and the isolation of
Marangoni-induced dynamics during jet-drop formation. As mentioned earlier, to study
the effect of Marangoni stresses on the flow, we have varied the elasticity parameter in the
range of 0.7 < βs < 0.9. In the context of this work, both the superficial and bulk Peclet
numbers are set to unity, making neither the diffusion nor the convective terms dominant.
With respect to the solubility, we have studied the range 10−2 < Bi < 100, where for
the lower end of the parameter scale the sorptive timescales are much larger than those
associated with interfacial effects, and the dynamics are expected to be similar to those
observed for an insoluble surfactant case, whereas for the upper end, surfactants tend
to desorb from the interface and the dynamics begin to resemble those of a surfactant-
free case. In summary, we have chosen the values of the surfactant-related parameters
to ensure that all of the relevant physical processes associated with surfactant transport
such as Marangoni stresses, surface/bulk diffusion, and sorption kinetics are represented
in the present study.

3. Results

3.1. Bursting bubble dynamics of the surfactant-laden base case

The spatio-temporal evolution of the interfacial dynamics, shown in figure 2, is con-
sidered for the case characterised by La = 2 × 104, Bo = 10−3, Pes = 1, βs = 0.9,
Bi = 0.01, k = 1, and Γo = k/4. At early times, a large capillary pressure is generated
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t = 0.199 t = 0.360 t = 0.500 t = 0.539 t = 0.560

t = 1.140 t = 1.239 t = 1.380 t = 1.680 t = 1.760

Figure 2. Spatio-temporal evolution of the dynamics of the interface and of the interfacial
surfactant concentration, Γ , with La = 2 × 104, Bo = 10−3, Pes = 1, βs = 0.9, Bi = 0.01,
k = 1, and Γo = k/4. The colour bars indicate the magnitude of Γ . Top row: top-view of the
interface; middle row: side-view of cavity collapse; bottom row: Worthington jet (entrapped
bubble is not shown).

near the nucleated hole due to the high curvature of the interface joining the spherical
bubble and the horizontal free surface. This capillary pressure leads to rapid expansion
of the hole and the creation of a toroidal capillary wave, which travels toward the bottom
of the bubble. The convergence of this wave on the bubble rear leads to the formation
of a cusp-like region, which is relieved via the detachment of downward-moving conical
bubbles, and the formation of a vertical, upward-directed, high-speed, Worthington jet.
Small droplets are subsequently ejected from the tip of the jet, triggered by a Rayleigh-
Plateau instability. A pinchoff event is also seen to occur at the base of the Worthington
jet that leads to retraction of the emitted ligament into a spheroidally-shaped drop.

In figure 3, we show snapshots of the interface, the interfacial concentration, Γ , the
Marangoni stress, τ , the interfacial tangent velocity component, ut, that provides a
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 3. Interface location, Γ and τ , ut, and ωθ are shown in columns one to four, respectively.
In columns 1,4 and 2,3, the variation is with respect to the dimensionless radial coordinate, r,
and arc length, s, respectively. Panels (a)-(d), and (e)-(h) show the cavity collapse dynamics
t = 0.360 and t = 0.539, respectively, (i)-(l) the Worthington jet at t = 1.239, and (m)-(h) the
retracting ligament at t = 1.760. The insets in (e) and (i) respectively focus on the bottom of
the collapsing cavity, and the oscillations at tip of the Worthington jet that will eventually lead
to its breakup. A description of regions ‘A’-‘D’ in (b) is provided in the text. The parameter
values are the same as in figure 2.
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measure of mobility, and the azimuthal component of the vorticity, ωθ. These snapshots,
which are taken at t = 0.360, 0.539, 1.239, and 1.760, corresponding to the framed
panels in figure 2, reflect the strong coupling between these flow variables. Figure 3a,b
illustrates that the collapsing cavity, and the accompanying capillary wave, transport
surfactant towards the bottom of the bubble giving rise to a local decrease in surface
tension. It is also instructive to separate figure 3b into four regions due to the existence
of stagnation points. In region ‘A’, τ < 0 and ut < 0, indicating that the direction
of the Marangoni flow is towards the bottom of the bubble, which aids cavity collapse
and surfactant transport in this direction. In region ‘B’, τ > 0 and ut > 0, thus the
Marangoni flow is directed away from the origin, which retards the collapse process. A
similar behaviour is seen in regions ‘C’ and ‘D’ in which the trailing edge of the capillary
wave has a similar Γ distribution, albeit with a smaller magnitude, to its leading edge. As
a result, τ < 0 and τ > 0, and ut < 0 and ut > 0 in regions ‘C’ and ‘D’, which drives flow
towards the bottom of the bubble and its tail, respectively. Figure 3b,c also shows the
existence of an interfacial stagnation point (s ∼ 1.4), where surfactant accumulates, Γ is
highest, and the magnitude of τ is largest. This occurs in the region where ωθ changes
sign as the stagnation point is created (see figure 3d) corresponding to the capillary wave
moving towards the bottom of the bubble.

Figure 3e-h shows the dynamics at t = 0.539 prior to the cavity collapse. The stagnation
point where the surfactant accumulates has moved downward to the bottom of the cavity
and the magnitude of ωθ has increased in comparison to that in figure 3d. The interfacial
surfactant concentration reaches its maximum value as the surfactant-laden capillary
wave converges on the flow origin. The Marangoni stresses drive motion from high to low
Γ regions and therefore act to oppose the flow, as indicated by the fact that both τ > 0
and ut > 0 over the majority of the spatial domain except in the close vicinity of the
bottom of the cavity.

Figure 3i shows a snapshot of the jet for t = 1.239 in a situation of pinch-off ‘escape’
with a bulbous region formed at its tip. From figure 3j, we observe that Γ has two
peaks: one at the jet tip, and a lower one far upstream. Figure 3l also shows that the
change in the sign of ωθ is linked to the Γ distribution in the bulbous region. The
associated τ distribution is such that τ < 0 between the bottom of the jet and close
to the bulbous region at the jet tip (that is for 0.4 < s < 1.9), and τ > 0 elsewhere
including in the bulbous region. Flow is driven by capillarity from this region towards
the quasi-cylindrical jet body and, from figure 3k, it is seen that ut > 0 over the whole
domain. This suggests that Marangoni stresses oppose this capillary-induced motion
driving flow from the bottom of the jet towards the bulbous region. When these stresses
are not sufficiently strong to overcome the Rayleigh-Plateau instability, an ejection of a
droplet occurs after the pinch-off of the jet tip. The first drops detached from the tip
are characterised by high interfacial concentration while successive droplet detachments
have lower Γ , as demonstrated in figure 2 for t > 1.114.

At t = 1.680 (see figure 2), the Worthington jet pinches off from its base forming an
elongated ligament thread. Capillary waves develop on the ligament surface, leading to
interfacial oscillations as the detached ligament transitions to a spherical drop. In figure
3m-p, we have isolated the retracting ligament shown at t = 1.760 from the rest of the
flow. In figure 3o, we observe the formation of four stagnation points at s = 0 0.55, 0.7,
and 0.84, which are connected to the change in the distributions of Γ and τ . From figure
3n,o, it is also seen that the Marangoni stresses oppose ligament pinchoff since τ > 0
and ut < 0 (τ < 0 and ut > 0) for 0 6 s 6 0.55 (0.55 6 s 6 0.7). For 0.7 6 s 6 0.84
(s > 0.84), the Marangoni stresses oppose (aid) the stretching of the ligament as τ < 0
and ut > 0 (τ > 0 and ut > 0). Close inspection of ωθ (see figure 3p) reveals that high
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vorticity production is observed close to the first stagnation point, which corresponds to
the ligament ‘neck’. As shown by Constante-Amores et al. (2020), the presence of such
high vorticiy regions near the neck is a requirement for the Marangoni-driven inhibition
of capillary-induced ‘end-pinching’ of retracting surfactant-laden ligaments.

Figure 4a shows the temporal evolution of the jet-tip from the moment after the
ejection of a jet-droplet to its next capillary singularity. The formation of a bulbous edge
on the jet-tip is driven by capillarity (at t = 1.120). The estimated Oh number for the
tip, using the jet radius as a reference, is Oh ≈ 0.02. Therefore, we are still in the region
of low Oh number, and consequently, the inhibition of the ‘end-pinching’ mechanism,
identified by Constante-Amores et al. (2020) can be invoked in order to rationalise the
flow behaviour in this case. By close inspection of τ and utr (the radial component of the
tangential velocity ut), it is possible to identify that Marangoni-induced flow prevents
the capillary breakup and reopens the neck of the jet-tip (t = 1.140). The reason behind
the reopening of the neck is the suppression of the stagnation point close to the neck due
to the Marangoni-induced flow brought about by the surfactants (see figure 4d). As was
shown by Constante-Amores et al. (2020), two stagnation points close to the neck are
necessary for capillary breakup to occur (see figure 4e).

In order to isolate the surface tension-reducing effects of surfactants from those asso-
ciated with Marangoni stress-formation, we show in figure 5a snapshots of the interface
at t = 0.44, 0.496, and 0.500 for the surfactant-free, surfactant-laden but Marangoni-
suppressed, and full-Marangoni cases, respectively, prior to cavity-collapse for the same
parameters as in figure 3. These times were chosen at identical spatial locations of the
bubble rear in the axis of symmetry (z ∼ 3.28). For the Marangoni-suppressed case, the
reduced surface tension value is calculated via replacing Γ by Γo in equation 2.6. The
presence of surfactant has been shown to enhance capillary wave-damping by Asaki et al.
(1995) due to the interfacial rigidification brought about by τ , and this is seen clearly in
figure 5a: the size of the cavity is largest for the full-Marangoni case, at the same stage
of the dynamics for the three cases considered.

The capillary pressure field shown in figure 5b,c for the surfactant-free and full-
Marangoni cases is influenced heavily by the capillary pressure and, therefore, the local
interfacial curvature and surface tension. From panels (b) and (c) of figure 5, it is seen
that the pressure is highest immediately upstream of the capillary wave peak and this
pressure gradient drives flow towards the lower-pressure region located at bottom of the
cavity that coincides with the axis of symmetry. Furthermore, Marangoni stresses induce
a recirculation zone close to the free surface as shown in figure 5c. In figure 5d, we also
show the axial distribution of the pressure at the axis of symmetry and this displays a
peak at the interface due to capillarity. Owing to the presence of surfactant, the surface
tension is reduced, which leads to a concomitant fall in the pressure, as illustrated via
comparison of figure 5b,c. The pronounced reduction in capillary pressure, due primarily
to the accumulation of surfactant at the bottom of the cavity, is shown in figure 5d.

As mentioned above, the convergence of the capillary wave on the bottom of the
cavity leads to the formation of a Worthington jet (Gordillo & Rodŕıguez-Rodŕıguez
2019), which is shown in figure 5e for the surfactant-free, Marangoni-suppressed, and
full-Marangoni cases for t = 0.507, t = 5.94, and t = 0.619, respectively; again, these
times are chosen at nearly identical spatial locations of the jet tip in the axis of symmetry.
The larger pressure gradient associated with the surfactant-free case, discussed above,
leads to longer jets, with more pronounced bulbous regions at their tips, in comparison
to the full-Marangoni case where the retarding Marangoni stresses induce a recirculation
zone close to the jet-base. Close inspection of figure 4e also reveals that the longest jets
are associated with the τ = 0 (rather than the surfactant-free) case wherein there is no
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t = 1.079 1.099 1.120 1.140 1.159 1.179 1.219 1.299 1.339

(a)

(b) (c)

(d) (e)

Figure 4. (a) Spatio-temporal evolution of the jet-tip and its escape from pinchoff for the
surfactant-laden base case. Panels (b) and (c) represent Γ and τ on the arc length s for time
t = 1.140 and 1.339, respectively; (d) and (e) represent the radial component of the tangential
velocity utr as a function of the arc length s, respectively. The red arrows in (b) and (c) represent
the direction of Marangoni-induced flow, and the blue arrows in (d) and (e) highlight the
direction of the flow driven by capillarity. The value s = 0 corresponds to the tip of the jet
at r = 0. The parameter values are the same as in figure 2.

Marangoni-induced retardation and for which La is lowest. As shown previously (Lai
et al. 2018), decreasing La leads to faster, and thinner jets, with a greater propensity for
breakup. As a result, a reduction in the number of ejected droplets is observed for the
shorter, and slower, full-Marangoni jets: four (see figure 2), seven, and nine droplets (the
latter two not shown) for the full-Marangoni, surfactant-free, and Marangoni-suppressed
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Interface location, pressure field together with a representation of the streamlines for
the surfactant-free and full-Marangoni (|τ | > 0) cases, and pressure on the axis of symmetry,
are shown in columns one to four, respectively. Panels (a-d) and (e-h) show the cavity collapse
dynamics (at t = 0.440, 0.496, and 0.500, for the surfactant-free, no-Marangoni [τ = 0],
and full-Marangoni cases) and the Worthington jet (at t = 0.507, 0.594, and 0.619, for the
surfactant-free, τ = 0, |τ | > 0 cases), respectively. The parameter values are the same as those
used to generate figure 2.

cases, respectively. The droplet numbers for surfactant free and Marangoni-suppressed
cases agree with Berny et al. (2020). Finally, as shown in figure 5h, there is an adverse
pressure gradient in all cases, since capillarity drives flow from the bulbous region towards
the jet base, which is largest for the surfactant-free case.

The immobilising effect of the Marangoni stresses can be seen in figure 6a in which
we plot the kinetic energy, defined as Ek =

∫
V

(ρu2/2)dV , where Marangoni stresses
reduce the maximal and asymptotic values of Ek in comparison to the surfactant-free
and no-Marangoni cases. In figure 6b, we observe further that the motion of the interface
is retarded maximally when Marangoni stresses are enabled fully. Inspection of figure 6c
also reveals that the interfacial area A, normalised by its initial value, Ao, reduces over
time leading to large Γ at the moment of interfacial vertical collapse at t ∼ 0.550.
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(a) (b) (c)

Figure 6. Temporal evolution of kinetic energy, the maximal vertical interface location, and
interfacial area (normalised by its initial value), (a)-(c), respectively, for the surfactant-free,
full-Marangoni, and no-Marangoni cases, for the same parameters as in figure 2.

Table 1. Droplet characteristics of surfactant-laden case

Droplet Number V/Vo Γ
1 2.374× 10−4 0.406
2 6.643× 10−4 0.307
3 2.279× 10−3 0.285
4 8.875× 10−3 0.247

We have measured the droplet characteristics, in terms of their volume and their
average interfacial surfactant concentration, at time t = 1.76, as shown in figure 2, and
summarised the results in the table 1. The droplets are numbered depending on the order
of ejection from the tip of the jet (i.e. the highest droplet in the computational domain
corresponds to the first ejected droplet). The volume of each droplet is normalised
with the initial volume of the spherical bubble. This shows the multi-scale nature of
the phenomenon. Moreover, the size of the first droplet, rd/Ro ∼ 6%, which agrees
with the experimental observations of Blanchard & Woodcock (1957) and Tedesco &
Blanchard (1979), the empirical power law-dependence of Lewis & Schwartz (2004),
and the theoretical scaling relationship proposed by Gañán-Calvo (2017). The predicted
surfactant concentration of the ejected droplets is higher in value than the concentration
of the liquid reservoir. This agrees with the experimental studies of Blanchard & Syzdek
(1972) which were carried out within the context of examining bacterial concentrations
in bursting bubbles.

3.2. Parametric study

Here, we investigate the effect of system parameters on the dynamics of the bursting
phenomenon beginning with the influence of βs which controls the relative strength of
Marangoni stresses. As shown previously, the presence of surfactant tends to rigidify
the interface and delays the cavity collapse (see figure 7a). By increasing βs, Marangoni
stresses are strengthened leading to greater rigidification of the interface, and conse-
quently, higher retardation of the cavity collapse (see figure 7a). This collapse-retardation
is also accompanied by a lower surfactant convection towards the point of singularity (see
figure 7c). Moreover, the strengthening of Marangoni stresses via increase in βs leads to
dampening of the tangential velocity along the interface (see figure 7e), o thinner jets,
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and fewer ejected droplets (e.g. seven and four droplets for the lower and upper ends of
the elasticity parameter βs).

We also analyse the effect of surfactant solubility on the bursting dynamics by varying
the value of the Biot number, Bi. For the lower Bi values, the sorptive time-scales are
larger than those associated with the interfacial dynamics and the Marangoni stresses,
and consequently, the system behaves as if the surfactant were effectively insoluble. From
the representation of the interfacial location of the cavity, we see that the desorptive
time-scales dominate the system and, consequently, a reduction of Γ is observed as Bi
increases (see figure 8a) with a concomitant weakening of the Marangoni stresses which
oppose cavity collapse. The increase in interfacial mobility, characterised by a rise in the
magnitude of ut is also seen in figure 8e.

We also examine the effect of solubility on the jet dynamics whereupon we observe that
at the lower end of the Biot number, the jet is slowest due to interfacial rigidification
brought about by τ , as can be seen via the damping of ut, shown in figure 8f. Higher
gradients in Γ are observed for weakly-soluble case (see figure 8d), which leads to the
highest strength of τ . With increasing Bi more interfacial surfactants migrate to the
bulk and as a result gradients in Γ are reduced, leading to an overall weakening of the
Marangoni stresses. Finally, we study the effect of solubility on the number of ejected
droplets. As before, the desorption of surfactant from the interface as Bi increases yields
weakening of τ and, subsequently, the surfactant does not prevent ‘end-pinching’ of the
jet-tip from which a larger number of droplets are ejected than in the low Bi case; for
Bi = 1, seven droplets are ejected in comparison with the four droplets produced by the
weakly-soluble case characterised by Bi = 0.01.

4. Concluding remarks

The effect of Marangoni-induced flow, brought about by the presence of surfactant,
on the dynamics of a bubble bursting through an interface was studied using a hybrid
front-tracking/level-set method. Our results indicate that a surfactant-covered toroidal
capillary wave forms, following the collapse of the cavity, whose motion is retarded by
the surfactant-induced Marangoni stresses; these stresses drive flow from regions of high
surfactant concentration (low surface tension) to low concentration (high tension) regions.
The immobilising effect of the surfactants due to the Marangoni stresses is also observed
via the marked reduction in the system kinetic energy and the generation of shorter, and
slower, Worthington jets. The breakup of these jets is accompanied by the formation of
fewer droplets in comparison to the surfactant-free case. This behaviour is associated
with the ‘end-pinching’ mechanism of the jet-tip and the presence of surfactant promotes
the neck re-opening through Marangoni-flow, induced by the formation of surfactant
concentration gradients, and not only via lowering of the mean surface tension value.
Finally, we have examined the role of the elasticity number βs which is an important
parameter that controls the strengthening or weakening of Marangoni stresses along the
interface. An increase in βs leads to a reduction in tangential velocity, and consequently
a retardation in interfacial motion. In a similar way, the surfactant solubility, via the
variation of Biot number Bi, was also examined in this study. An increase in this
parameter leads to a rise in the rate of mass transfer from the bulk to the interface
resulting in the overall weakening of Marangoni stresses, and consequently, a larger
number of droplets as Marangoni stresses cannot prevent the ‘end-pinching’ mechanism
from the jet-tip.

Future research avenues for study are to perform numerical simulations featuring
three dimensional behaviours occurring for large Bond numbers (Bo > 0.5). It has been
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t = 0.500 t = 0.800

(a) (b)

(c) (d)

(e) (f)

Figure 7. Effect of the elasticity number, βs, on the bursting dynamics for La = 2 × 104,
Bo = 10−3, Pes = 1, Bi = 0.01, k = 1 and Γo = 1/4. Panels (a) and (b) represent the
interfacial shape, (c) and (d) the interfacial surfactant concentration Γ along the arc length s,
and (e) and (f) the tangential velocity ut along s, during the cavity collapse at t = 0.500 and
the Worthington jet at t = 0.800, respectively.
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t = 0.500 t = 0.800

(a) (b)

(c) (d)

(e) (f)

Figure 8. Effect of the Biot number, Bi, on the bursting dynamics for La = 2×104, Bo = 10−3,
Pes = 1, βs = 0.9, k = 1 and Γo = 1/4. Panels (a) and (b) represent the interfacial shape, (c)
and (d) the interfacial surfactant concentration Γ along the arc length s, and (e) and (f) the
tangential velocity ut along s, during the cavity collapse at t = 0.500 and the Worthington jet
at t = 0.800, respectively.
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shown by Ghabache (2015) that at large values of Bo, the bursting outcome can be
either axisymmetric or purely three-dimensional producing an oblique Worthington jet.
Both surfactant-free and surfactant-laden bubbles should be examined with a similar
formulation to that described in Section 2. Thus, the bubble initialisation will require
taking into account the entirety of the same: the immersed cavity, the cap, and the
meniscus. If the hole formation is located anywhere else on the cap, a three-dimensional
cap retraction will certainly affect the behaviour of the collapsing cavity to finally
culminate in an inclined Worthington jet, and complex droplet detachment.
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Berny, A., Deike, L., Séon, T. & Popinet, S. 2020 Role of all jet drops in mass transfer
from bursting bubbles. Phys. Rev. Fluids 5, 033605.

Blanchard, D. C. & Syzdek, L. D. 1972 Concentration of bacteria in jet drops from bursting
bubbles. Journal of Geophysical Research (1896-1977) 77 (27), 5087–5099.

Blanchard, D. C. & Woodcock, A. H. 1957 Bubble formation and modification in the sea
and its meteorological significance. Tellus 9 (2), 145–158.

Blanco-Rodr̀ıguez, F. J. & Gordillo, J. M. 2020 On the sea spray aerosol originated from
bubble bursting jets. J. Fluid Mech. 886, R2.

Boulton-Stone, J. M. & Blake, J. R. 1993 Gas bubbles bursting at a free surface. J. Fluid
Mech. 254, 437–466.

Chorin, A. J. 1968 Numerical solution of the Navier-Stokes equations. Mathematics of
Computation 22 (104), 745–745.

Constante-Amores, C. R., Kahouadji, L., Batchvarov, A., S., Seungwon, Chergui, J.,
Juric, D. & Matar, O. K. 2020 Dynamics of retracting surfactant-laden ligaments at
intermediate ohnesorge number. Phys. Rev. Fluids 5, 084007.

Craster, R. V., Matar, O. K. & Papageorgiou, D. T. 2002 Pinchoff and satellite formation
in surfactant covered viscous threads. Physics of Fluids 14 (4), 1364–1376.

Craster, R. V., Matar, O. K. & Papageorgiou, D. T. 2009 Breakup of surfactant-laden
jets above the critical micelle concentration. Journal of Fluid Mechanics 629, 195–219.



Surfactant-Laden Bursting Bubbles 17

Deike, L., Ghabache, E., Liger-Belair, G., Das, A. K., Zaleski, S., Popinet, S. & Séon,
T. 2018 Dynamics of jets produced by bursting bubbles. Phys. Rev. Fluids 3, 013603.

Duchemin, L., Popinet, S., Josserand, C. & Zaleski, S. 2002 Jet formation in bubbles
bursting at a free surface. Phys. Fluids 14, 3000.

Eggers, J. 1993 Universal pinching of 3d axisymmetric free-surface. Phys. Rev. Lett. 71, 3458.
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