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Abstract

The context of the present thesis is to assess the potential of Reduced Order Models

(ROMs) for nuclear reactor thermal hydraulics applications. ROMs constitute ad-

vanced modelling techniques aiming at fast high fidelity simulations.

For the purposes of this research, two approaches have been selected and are in-

vestigated in depth: the Proper Orthogonal Decomposition (POD) with Galerkin

projection (POD-Galerkin) and the hybrid method of Proper Orthogonal Decom-

position with Interpolation using Radial Basis Functions, PODI - Galerkin, in the

context of parametric model order reduction. Additionally, in terms of the POD

method, two sampling techniques are presented and compared: the standard and the

nested POD.

The aforementioned methods are applied to a parametric case of non-isothermal mix-

ing in a T-junction pipe for laminar and turbulent flow regimes. The flow is governed

by the 3D, unsteady Navier - Stokes equations coupled with the energy equation.

Furthermore, a ROM for modelling buoyancy driven flows with the Boussinesq ap-

proximation is discussed. Two cases are considered: a closed flow, where the method

is applied to a benchmark case of a di↵erentially heated square cavity, and an open

flow, where a case of a “cold-trap” formation in a U-bend pipe is investigated.

The suitability of the above techniques is assessed based on a comparison between

the reduced order results and those obtained using high fidelity OpenFOAM solvers.
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D
R

Reynolds-averaged strain rate tensor

Ar Reduced matrix of the LTI system

b Reduced vector of unknowns for pressure

br Reduced matrix of the LTI system

c Reduced vector of unknowns for temperature

Cr Reduced matrix of the LTI system

f Dirichlet boundary condition for velocity

G ROM convection matrix for the heat equation

gr Mapping function

h Initial condition for velocity

HM Hankel Matrix

I Identity matrix

K ROM mass matrix for the heat equation

l Reduced vector of unknowns for eddy viscosity

M ROM mass matrix

N ROM di↵usion matrix for the heat equation

n Outward normal vector

P ROM pressure gradient matrix

Q ROM convection tensor

QT1 ROM turbulent tensor

QT2 ROM turbulent tensor

S� Surface vector

u Velocity field

u
0 Fluctuating velocity component

u
0 Fluctuating velocity field

Us Velocity snapshot matrix

us Velocity snapshots

U
i
nested I-th nested snapshot matrix

Usn Global snapshot matrix resulted from nested POD

V Spatial basis function

W Eigenvector matrix

w Vector of weights
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Wc Constrollability Gramian

Wo Observability Gramian

x(t) State vector

xo(t) Initial condition

y(t) Output

Greek Symbols

✓̄ Time-averaged temperature component

�
⇤ Proportionality constant

✏ Dissipation rate

✏L2 Relative error

⌘i I-th POD basis function for mass flux

� Spread of a kernel

�� Di↵usion Coe�cient

� Langrange multiplier/ eigenvalues

µ Dynamic viscosity

! Specific dissipation rate

� Transported quantity

�E Flux over the East neighbouring control volume

�E Flux over the West neighbouring control volume

�f Flux over the control volume

⇢ Density

⇢k Kinematic density

⌧ Viscous tensor

⌧
R Reynolds stress tensor

✓ Partial derivative

✓
0 Fluctuating temperature component

⇣ Control functions

↵dift Turbulent thermal di↵usivity

↵dif Thermal di↵usivity

�i I-th POD basis function for temperature

✏L2 L
2 norm error

� Boundary of ⌦

⌫t Eddy viscosity

⌫ Dimensionless kinematic viscosity

⌦ Bounded domain

 i I-th POD basis function for pressure
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✓ Temperature field

⇠i I-th POD basis function for eddy viscosity

Bold Greek Symbols

↵ Reduced vector of unknowns for velocity

⌃ Diagonal matrix

⇥ Radial Basis Function kernels

⌥ Non-linear term

'i I-th POD basis function for velocity

Roman Symbols

p̄ Time-averaged pressure component

ż(t) Adjoint system state

ṁ Mass flux

Ĥs Reduced transfer function

M̂n Moment matching

k Thermal conductivity

G Dynamical system - FOM

Gr Lower order dynamical system

K Training set space

k Thermal Conductivity

P Parameter space

Q Space-time domain

C Correlation matrix

S Subspace

cp Specific capacity

dt Time-step

e Initial condition for temperature

f Face of the control volume

g Dirichlet boundary condition for temperature

Gr Grashof number

H
R Heat flux term

Hs Transfer function

k Turbulent kinetic energy

Nt Number of time instances

p
0 Fluctuating pressure component

Pr Prandtl number

Re Reynolds number
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S� Source term

T Final time of the simulation

uD Scaling coe�cients

Vp Control Volume

N
s
p Number of unknowns for pressure at reduced order level before the truncation

N
h
u Number of degrees of freedom for velocity at full-order level

N
r
u Number of unknowns for velocity at reduced order level after the truncation

N
s
u Number of uknowns for velocity at reduced level before the truncation

Nµ Number of parameters in the training set K

N
s
✓ Number of unknowns for temperature at reduced order level before the truncation

Prt Turbulent Prandtl number

p Pressure field

Mathematical Symbols

R+ Positive real numbers

Rd d-dimensional space

r Gradient operator

r· Divergence operator

r⇥ Curl operator

rs Symmetric gradient operator

u All vectors are denoted by bold italic symbols

� All scalars are denoted by italic symbols

� Laplacian operator

ẋ Dotted symobls denote derivative with respect to time

h·, ·i Inner product in L
2(⌦)

k·k Norm in L
2(⌦)

⌦ Tensor product
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Chapter 1

Introduction

The content of this chapter has been partially published in:

GEORGAKA, S., STABILE, G., ROZZA, G., and BLUCK, M.J. 2020. Parametric

POD-Galerkin Model Order Reduction for Unsteady-State Heat Transfer Problems.

Communications in Computational Physics, Vol 27, No. 1, pp. 1-32.

This chapter begins with the context of the present thesis, followed by an overview of

Model Order Reduction applications in nuclear engineering. The scope of the present

thesis is also discussed.

1.1 Context

Partial di↵erential equations (PDEs) describe a variety of physical systems occur-

ring in nature and in engineering. PDEs are complex and generally non-linear and

their numerical solution requires considerable computational e↵ort. For example,

fluid flow, a phenomenon very common in many engineering fields, is governed by the

Navier-Stokes equations and accurate numerical solutions provide vital insight into

complex physical processes. Analytical solutions of these equations are impossible

in most circumstances. For this reason, computational fluid dynamics (CFD) has

seen progressive development since the 1970s and is now capable of solving many

practical problems in fluid flow and heat transfer. With the continued development

of improved algorithms and increasing computational power, CFD is now used in
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various engineering fields such as aerospace, nuclear, civil, mechanical as well as non-

engineering fields such us neuroscience, meteorology etc.

Despite its popularity and applicability, the computational burden for simulating

realistic large scale and many-query systems is still very high, even with the use of

supercomputers. A good example of the challenges involved can be found in nuclear

applications, where turbulence, multiphase flow and heat transfer phenomena occur

in complex geometries; a fairly accurate CFD simulation of a single instance of an

accident case scenario could take months or more to be performed. To address these

challenges, System Codes (SC), such as RELAP, CATHARE, etc and sub-channel

codes (COBRA, etc), constitute phenomenological reduced order methods based on

considerable limiting physical assumptions. These codes, that were developed in the

1950s, rely on major physical and geometrical simplifications, such as averaging over

the flow cross section leading to essentially 1D simulations.

These simplifications can save great amounts of computational time. However, the

compromise is that they rely exclusively on experimental and phenomenological cor-

relations to take account of heat transfer and turbulence and the like. In particular,

these assumptions are particularly inadequate for 3D flows. In the recent years al-

though these codes have been improved allowing some limited 3D capability, the

accuracy is still inadequate and their application is very limited. The same applies in

the field of neutronics for the study of reactor dynamics. Geometrical and physical

simplifications are made to the governing equations in order to obtain a computation-

ally a↵ordable model. These simplifications include 1D geometries, homogenous core

dynamics, uniform axial fluxes, etc. The challenge then, is to bridge the considerable

gap between high fidelity full order models (FOMs) (e.g. CFD and its variants) and

these over-simplistic surrogate models (system and sub-channel codes).

Surrogate models are derived from high fidelity models (HFM) usually using Data-fit

(DF), Hierarchical or Reduced Order Model (ROM) methods. Data-fit models treat

the Full Order Model (FOM) as a “black-box” method to obtain the data, the in-

terpolation or regression of which evaluates the reduced order input-output mapping

function. This non-intrusive procedure is advantageous, because it entirely bypasses
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system matrices and state vector calculations, hence it does not require access to

legacy codes. However, it is a non physics-based method and, therefore, the sur-

rogate model does not inherit the underlying physics of the problem. Moreover,

DF models can not model conditions other than those that were used during the

derivation of the DF surrogate model. On the contrary, Hierarchical surrogates, are

physics-based models usually obtained by making various simplifications or consid-

ering coarser grids. However, Hierarchical models are low fidelity models. ROMs

are usually formed by projection of the original system of equations onto a subspace.

They are considered the most advantageous, because they preserve the structure of

the problem, are physics-based and, most importantly, they retain the fidelity of the

FOM.

Modern ROMs have been proposed as an alternative way of approximating systems

like those mentioned above in a more sophisticated and reliable way. Unlike Hierar-

chical methods, such as SC, ROMs retain the fidelity of the FOM, while considerably

reducing the computational burden. Compared to DF models, parametric ROMs

can model well problems with di↵erent initial conditions to those used during their

construction. Reduced order modelling is a highly promising area, which is cur-

rently flourishing in the science and engineering community. However, the biggest

challenge is the construction of stable ROMs that are able to accurately predict the

behaviour of the examined system. This requires careful consideration of strong non-

linearities, long term transient flows, turbulence and other multi-physics phenomena,

which should be taken into account during the projection process.

1.2 Reduced Order Modelling in Nuclear Engineering

Complex transient phenomena, such as heat transfer, neutron fluxes, power instabil-

ities and two phase flows are present in nuclear power plants. The high complexity

and the non-linear behaviour of the nuclear power reactor systems make high fidelity

modelling challenging. To accelerate the modelling process, various geometrical and

physical simplifications have been proposed, but the loss in accuracy is considerable.

Simplified models, which usually model only the most dominant phenomena have been

developed. For example, instead of the Navier-Stokes equations, Euler equations are
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applied in 1D geometries. In addition, in neutronics, the system is described by the

so-called point kinetics equations, where the reactor is taken as a point and the spatial

flux profile is neglected.

These models can be partially seen as surrogate models, but the actual aim of the

modern model order reduction is to develop a low-cost and high fidelity model. High

fidelity nuclear reactor modelling usually requires large parametric spaces for the so-

lution of the coupled PDEs. SC like RAMONA can model well parts of the system,

but a complete analysis is prohibitive in terms of computational time and resources.

A ’compact’ model with fewer degrees of freedom is, therefore, necessary.

There has been a lot of simplified modelling research, mainly in the field of Boil-

ing Water Reactor (BWR) stability analysis, which, triggered by some instability

events, occurred in the 1980s. Under stable operating conditions, BWRs show linear

behaviour. Two-phase flow, which is found in BWR heated channels, can trigger

power in-phase or out-of-phase instabilities, mainly caused by density-wave oscilla-

tions. Density waves are formed, for example, by propagation of travelling voids,

which are created at the bottom part of a BWR due to inlet flow reduction under

stable power conditions. Understanding these instabilities is crucial, because they

can lead to non-linear behaviour and serious mechanical and material damages.

In real environments, stability experiments are di�cult due to the application of low

flow and high power conditions. Instead, a high fidelity simulation would be much

more favourable where complete solution manifolds could be investigated. Towards

simplified models, Hopf bifurcation theory has attracted many researchers. Clausse

and Lahey were the first to attempt modelling this behaviour 1991. The authors con-

sidered a 1D homogeneous equilibrium simplified model where the enthalpy is linearly

dependent and in single phase and two phase regions, discretisation is performed by

Galerkin nodal method (Clausse and Lahey 1991). In (Munoz-Cobo and Verdú 1991),

a simplified model is derived for describing the limit cycles in BWRs using Hopf bi-

furcation. The authors applied the center manifold method to reduce the system’s

dimension from five to just two, showing that the reduced system preserves the key

dynamics and thus bifurcation can be applied. Both models, when describing dense
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wave oscillations, take into account only two nodal regions, a single phase and a two

phase, where there is thermodynamic equilibrium. However, there is a third region,

the sub-cooled, which has to be taken into account, because it can a↵ect the void

feedback reactivity. The sub-cooled region, was taken into account in (Munoz-Cobo,

Chiva, and Sekhri 2004), where a ROM was developed, considering a model with

three nodes per channel. In (Dokhane 2004) and (Dokhane, Hennig, Rizwan-uddin,

and Chawla 2007), Dokhane proposed a novel ROM for application in density wave

oscillations and in-phase/out-of-phase instabilities, as well as in bifurcation analysis,

in a complete two channel coupled system.

In neutronics, an equivalent to POD modes, known as lambda modes, was used

for reduction of the two-group di↵usion equations. As in the flow analysis a state

vector can be written as a linear combination of POD modes, this theory suggests

that the neutron flux can be approximated as a linear combination of basis functions,

the lambda modes. Therefore, lambda modes can help us understand the formation

of in-phase and out-of-phase instabilities. The theory of lambda modes was proposed

by Miro in an attempt to integrate the transient neutron di↵usion equation, using

only a few dominant modes (lambda modes) (Miró, Ginestar, Verdú, and Hennig

2002). In (Ginestar, Miro, Verdu, and Hennig 2002), the authors performed a modal

instability analysis of a BWR reactor using lambda modes. The analysis showed that

the in-phase instabilities oscillate in the fundamental mode, whereas the out-of-phase

instabilities are linked to the first and second sub-critical modes. The results were

compared to those of RAMONA code and they match each other.

In the field of Pressurized Water Reactors (PWRs), ROMs have been developed

in the context of control applications design, using Balanced Truncation (BT). The

control systems of PWRs, need rectifications throughout their operation lifetime, due

to the variation of reactivity and power. Optimal single controller linear designs are

being considered for meeting these changes. In (Bendotti, Codrons, Falinower, and

Gevers 1998), the authors derived and tested three di↵erent ROMs for simplifying

the PWR controller design. In the case of open loop, the system contains unstable

nodes and, therefore, the BT method cannot be directly applied. For this reason, a

factorization of the transfer function has to be performed prior to BT. This process is
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called “output frequency weighted balanced truncation”. A second ROM for closed

loop has been derived via direct BT and a third method via loop identification tech-

nique. Amongst the three techniques, the closed loop exhibits the best performance.

In controller design, Bendotti used balanced realisation and BT, considering a model,

where, in a PWR, slowly transient uncertain parameters exist due to changes in re-

activity and power (Bendotti and Beck 1999).

Coolant flow plays a crucial role in the design and safe operation of nuclear reac-

tors. Accurate modelling can be performed via CFD codes, such as Direct Numerical

Solution (DNS) or Large Eddy Simulation (LES). These methods are time consuming,

because refined meshes are required for modelling phenomena like turbulence near the

wall region in rod bundles, or other instabilities. POD-ROMs are ideal candidates

for modelling such phenomena, giving fairly accurate and rapid results. Even though

large research has been carried out in other industries, the application of POD-ROMs

in the field of nuclear engineering flow modelling is limited. For example, snapshot

POD has been widely used for studying the coherent structures of turbulent flows in

case of pipes, cavities, airfoils, cylinders etc. In more complex geometries, such as

those found in nuclear reactors, due to the presence of a large number of rods, the

counter rotating vortices in the narrow gaps can interact, giving rise to 3D vortex

structures. In (Merzari and Ninokata 2011), Merzari and Ninokata applied snapshot

POD for studying turbulent flow in the interior of a tightly packed rod bundle (pitch

to diameter = 1.05) using LES snapshots. In comparison with single channel flow, the

results showed a more complicated flow structure in rod bundles, mainly due to the

presence of modes with multiple wavelengths and wavenumbers inherited by periodic

boundary conditions.

The POD method is also present in reactor physics. In (Buchan, Pain, Fang, and

Navon 2013a) an alternative snapshot technique for constructing POD based ROMs

has been proposed for the calculation of the criticality factor. The classical eigen-

value problem is time independent but the snapshots should present time evolution,

thus the authors proposed and developed a time-dependent eigenvalue problem. The

resulting ROM is able to give reliable and fast results even when a di↵erent geometry

is being applied. In (Banyay, Ahmadpoor, and Brigham 2014), the authors obtained
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a ROM for use in Very High Temperature Reactor (VHTR) lower plenum, using the

POD-Galerkin method.

Reduced Basis (RB) methods have been applied to model the neutronic behaviour in

nuclear reactors, o↵ering reliable and rapid calculations. In (Sartori, Baroli, Cammi,

Luzzi, and Rozza 2014), the authors applied the RB greedy algorithm to derive a

ROM, considering the parametrised 2D multi-group di↵usion equation, for studying

the movement of the control rods. The ROM can be accurately predict the neutron

flux profile, accounting also spatial e↵ects due to the rod movements. Most impor-

tantly, the computational savings are considerable. The same authors, in (Sartori,

Cammi, Luzzi, and Rozza 2016b), suggested a di↵erent hybrid sampling method for

the generation of the RB. This hybrid method uses Centroidal Voronoi Tesselation

(CVT) and POD for further reducing the dimension of the basis. Unlike the greedy

algorithm, which relies on a posteriori error estimates, CVT leads to an even faster

o✏ine phase.

More recently, a ROM which couples neutronics and heat transfer e↵ects was in-

troduced in (Sartori, Cammi, Luzzi, and Rozza 2016a). The authors proposed a

methodology for obtaining a RB multi-physics model using POD snapshots from

Lead Fast Reactor (LFS) single channel. The ROM was able to accurately predict

the neutron flux and temperature distribution while achieving considerable speed-ups

when compared to the FOM Finite Element (FE) method.

1.3 Scope and contributions of the present thesis

The aim of the present thesis focuses on proposing ROMs that could be potentially

used in the modelling of nuclear reactor thermal hydraulics. These systems usually

contain a network of T-junction, straight or bend pipes, which allow the flow of liquid

or gas coolant around the plant. The role of the coolant is to carry away the heat

generated inside the nuclear reactor core and transport it to the turbines for electri-

cal power generation. It also serves as a mean of keeping the temperature inside the

core within safe limits, prohibiting the overheating of materials and fuel elements. It

therefore plays a crucial role in the safety of nuclear power reactors.
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This thesis is influenced by some challenging flow regimes and configurations that

arise in nuclear reactor thermal hydraulic systems:

• Laminar and turbulent thermal mixing of two di↵erent temperature streams in

T-junction pipes. This phenomenon leads to high transient temperature fluctu-

ations in the pipe wall regions, which could potentially lead to thermal fatigue

and subsequent failure of the piping material (cracks formation, breakage etc).

Turbulent thermal mixing has been studied both experimentaly and computa-

tionally in (Ayhan and Sokmen 2012; Frank, Lifante, Prasser, and Menter 2010;

Kuczaj, Komen, and Loginov 2010; Naik-Nimbalkar, Patwardhan, Banerjee,

Padmakumar, and Vaidyanathan 2010; Tunstall, Laurence, Prosser, and Skillen

2016b; Walker, Simiano, Zboray, and Prasser 2009). In the computational case,

various turbulent modelling techniques have been studied, inluding the Large

Eddy Simulation (LES) and the Unsteady Reynolds Averaged Navier Stokes

(URANS) or the combination of the two methods. These methods, given the

high Reynolds numbers and the nature of the problem, require fine 3D meshes,

leading to high computational costs. The laminar case is also considered in this

work, since, from model reduction point of view, it entails challenges related to

the coupling between the Navier-Stokes and the energy equations.

• Modern nuclear power plants benefit from the mechanism of natural convection

to drive the coolant in case of accident (natural circulation). These so-called

passive systems are found, for instance, in PWR reactors, where a natural cir-

culation loop is formed due to the di↵erence in temperature between the core

(heat source) and the steam generator (sink). The flowrate is maintainted due

to gravity, by placing the core at a lower elevation than the steam generator.

This, therefore guarantees the removal of the decay heat without the need of

backup diesel generators, which could fail as happened in the Fukushima Daiici

accident (Hollnagel and Fujita 2013).

Considering the above, for the purposes of this thesis, the following flow configurations

and ROMs have been selected and assessed:

• Parametric POD - Galerkin for laminar flow problems with heat transfer, applied

in T-junction pipes.
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• Parametric Hybrid Proper Orthogonal Decomposition with Interpolation (PODI)

- Galerkin for turbulent flow problems with heat transfer. The proposed ROM

is validated on thermal mixing in a T-junction pipe.

• Parametric POD - Galerkin for laminar buoyancy driven flows in enclosed ge-

ometries, tested in a di↵erentially heated square cavity.

• POD - Galerkin for laminar buoyancy driven flows in open geometries, tested

in a U-bend pipe.

The contributions of this thesis, which, to the best of the author’s knowledge, are

presented for the first time in the field of model order reduction and modelling of

nuclear thermal hydraulics are the following:

• Proposing a ROM derived from laminar problems that involve thermal mixing

and heat transfer phenomena, such as those occurring in T-junction pipes. The

proposed parametric POD-Galerkin method takes into account the parametrised,

unsteady, 3D Navier-Stokes equations one-way coupled with the parametrised

unsteady energy equation.

• A ROM for applications in turbulent heat transfer/thermal mixing problems. A

hybrid parametric Proper Orthogonal Decomposition with Interpolation (PODI)-

Galerkin is proposed, where the PODI method is used for the treatment of the

eddy viscosity term. Two di↵erent types of POD are studied, the standard POD

and the nested POD methods.

• Development of a parametric POD-Galerkin method for enclosed buoyancy

driven flows in a di↵erentially heated square cavity.

• Development of a POD-Galerkin ROM for modelling open buoyancy driven

flows. The ability of the proposed ROM to predict complex phenomena such as

the “cold-trap” formation in a U-bend pipe is studied. A Pressure-Poisson Equa-

tion (PPE) method, adjusted to accomodate the buoyancy term, is proposed for

the treatment of the pressure term.

1.4 Outline

The rest of the thesis is organized as follows:
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• Chapter 2 gives a general overview and literature review of the most popular

projection based model order reduction methods, indicating their suitability

for applications in fluid dynamics. A short mathematical description of each

method is provided along with some applications.

• Chapter 3 presents the mathematical background for the Full Order Model.

This includes the Navier-Stokes equations of fluids, the energy equation as well

as turbulence modelling. The turbulence modelling techniques that are discussed

are the Large Eddy Simulation (LES) and Unsteady Reynolds Averaged Navier-

Stokes (URANS). In the last section, the Finite Volume method is discussed in

detail.

• Chapter 4 provides the mathematical framework for the Reduced Order Model.

The method presented in this chapter is the Proper Orthogonal Decomposition-

Galerkin for parametric problems, which is the main method that is followed

in this thesis. For the stabilization of the equations, the supremizer enrichment

method and a Pressure Poisson Equation methods are also presented.

• Chapter 5 deals with model order reduction for laminar heat transfer prob-

lems, using the parametric POD-Galerkin method. A mathematical formulation

for both the FOM and the ROM is provided as well as a method for treating

parametric boundary conditions. This chapter contains a numerical application

of the suggested method applied in a T-junction pipe. Two cases are considered,

one where the parameters of interest are the time and the two temperature inlet

boundary conditions, and one where the parameteric dependence is on the time

and the kinematic viscosity.

• Chapter 6 introduces a hybrid model order reduction method for modelling

turbulent heat transfer problems. The hybrid method suggested in this chapter

treats the reduction of the eddy viscosity term in a non-intrusive way, using the

Proper Orthogonal Decomposition with Interpolation (PODI). The interpola-

tion is performed with Radial Basis Functions (RBF). In this way, the turbu-

lence treatment in the Reduced Order Model is transparent to the turbulence

modelling method that used in the Full Order Model. This makes the ROM

faster and independent of the turbulence treatment of the FOM. The reduc-

tion of the velocity, temperature and pressure are performed using the intrusive
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POD-Galerkin method. For the assembly of the POD snapshot matrix, a Nested

POD method is introduced and compared against the standard POD method.

The former method tends to be faster where problems with a large number of

parameter values are considered. The hybrid model order reduction method

is validated on a T-junction thermal mixing problem with parametric velocity

inlet boundary conditions. The robustness of the ROM is tested on several sets

of inlet velocity boundary values which belong in the range of the training space

but they are not overalapped by the training points. Nested and standard POD

methods are also compared for this test case.

• Chapter 7 suggests a model order reduction method for buoyancy driven flows

where the FOM equations are formulated using the Boussinesq approximation.

Therefore, a strong coupling between the velocity and temperature is implied.

The ROM is derived with the POD-Galerkin method. Two cases are studied:

an enclosed flow in a parametric di↵erentially heated square cavity, where the

pressure term is neglected, and an open flow in a U-bend pipe with a “cold-

trap” formation, where the pressure is reconstructed by exploiting the Pressure

Poisson Equation.

• Chapter 8 draws conclusions of the present work and suggests ideas for further

development.

1.5 Summary of the Chapter

The present chapter introduced the context and the scope of the present thesis as

well as discussed the status of model order reduction methods that have been applied

in nuclear engineering.

16



Chapter 2

Projection Based Model Order

Reduction Methods

The scope of this chapter is to discuss the aspects of the most popular projection based

model order reduction methods and assess their suitability for applications in nuclear

thermal hydraulics. For the computation of the reduced basis, methods including BT,

POD, Balanced Proper Orthogonal Decomposition (BPOD) and parametric methods

are discussed. Model order reduction methods have originally been developed for

Linear Time-Invariant (LTI) systems, which are discussed in this chapter. Although

CFD mostly deals with non-linear equations (Navier-Stokes), the following methods

can be extended to non-linear cases. To demonstrate the idea of model order reduc-

tion, the mathematical framework in this chapter is presented for LTI systems, but

also non-linear examples are given in the literature review.

2.1 General Overview

Considering a dynamical system, G, of the order of m, which is usually very large

(m > O(105)), the general idea of model order reduction is to approximate G with a

lower order model, Gr, of the order of r, where r << m. For example, let’s consider the

following LTI system in the form of ẋ(t) = f(x(t),u(t)) with output y(t) = l(x(t), t),

inputs u, and initial condition x(0) = x0. The f() and l() represent vector functions.

The vector x 2 Rm represents the state variables, the order of which, m, indicates

the order or the degrees of freedom of the FOM. The output has only been considered

as a function of x(t) since, for many physical applications, the matrix that weights
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the system’s inputs is null.

Assuming that the evolution of the state vector, x, is given by the following LTI

system:

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),
(2.1.1)

where x 2 Rm, A 2 Rmxm, B 2 Rmxk, C 2 Rqxm are given matrices, u 2 Rk and

y 2 Rq. Assume also the initial condition x(0) = x0 2 Rm. The general approach of

model order reduction is:

• Sampling and approximation of the state vector x in a reduced basis of dimen-

sion n < m

• Truncation of the reduced basis, obtaining a new dimension r << n

• Reduction of the order of the FOM equations by projection onto the reduced

basis

The state variable is usually approximated as the following linear combination:

x(t) ⇡ V xr, (2.1.2)

where V is a matrix of spatial basis vectors with columns spanning an n << m

dimensional subspace S and xr the reduced state vector. The dimension of the basis

and, hence of the system, is usually further reduced to r << n by applying a basis

truncation. A projection is then employed in order to force equations (2.1.1) in the

reduced space S . The reduced order system can be written as:

ẋr(t) = Arxr(t) + Bru(t),

yr(t) = Crxr(t),
(2.1.3)

where Ar 2 Rrxr, Br 2 Rrxk, Cr 2 Rqxr are the reduced matrices, figure (2.1).
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Figure 2.1: System matrices in FOM and ROM

In case of non-linear systems, the LTI system (2.1.1) is modified in order to accomo-

date the non-linear term, ⌥(x), as follows:

ẋ(t) = ⌥(x) + Bu(t),

y(t) = Cx(t).
(2.1.4)

The previous system, (2.1.4), is reduced to

ẋr(t) = ⌥r(xr) + Bru(t),

yr(t) = Crxr(t),
(2.1.5)

where ⌥r is the reduced non-linear term and r << n. For simplicity, the discusion

is continued for LTI systems, but the same principles can be applied to non-linear

systems as well. Non-linear model order reduction will be discussed in depth later,

with the introduction of the Navier-Stokes equations.

During the projection, the residual of the approximation, r = V Axr +Bu�V ẋr, is

forced to be orthogonal (Petrov-Galerkin condition) to the reduced basis V , so that
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V Tr = 0. Thus, the projected reduced matrices (figure (2.1)) can be written as:

Ar = V TAV ,

Br = V TB,

Cr = CV .

(2.1.6)

This method is known as Galerkin projection. A figure, showing a projection based

model order reduction method is presented in (2.2). The temporal coe�cients, ↵i(t)

(this is the same as xr but in the following chapters will be re↵ered as ↵i(t)), can be

calculated by the projection of the basis functions onto the snapshots or using the

ROM via the Galerkin projection as we will discuss in chapter 4. Calculating the

temporal coe�cients directly using the basis projection onto the snapshots generally

restricts the applicability of the ’ROM’ to temporal or physical parametrization. For

such cases, the dynamic ROM can be used to simulate other non-observed parameter

values within the training range or to evolve in time. On figure (2.2), the bottom

temporal coe�cients represent the reduced ODEs derived using Galerkin projection.
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Figure 2.2: Projection Based Model Order Reduction Procedure.
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2.2 Balanced Truncation

Balanced Truncation (BT) was originally developed in control theory for input-output

LTI systems and is based on the singular value decomposition (SVD) of the Hankel

matrix for the calculation of the Hankel singular values. Considering the LTI sys-

tem given by the equations (2.1.1), the positive-definite 1 controllability (Wc) and

observability (Wo) Gramians are computed using the Lyapunov equations,

AWc + WcA⇤ + BB⇤ = 0,

A⇤Wo + WoA + C⇤C = 0,
(2.2.1)

where the ⇤ denotes conjugate transpose and the Gramians (m⇥m matrices) Wc and

Wo are defined as:

Wc =
´1

0 e
AtBB⇤

e
A⇤

t
dt,

Wo =
´1

0 e
A⇤

tCC⇤
e
At

dt.

(2.2.2)

Moore (Moore 1981) introduced the Balanced Realization approach, where, using a

coordinate state transformation x = Txr, “balanced” the Gramians by making them

equal. The matrix T is non-singular of the order of m. The transformed system

matrices are obtained by projection, as follows:

A0 = T�1AT ,

B0 = T�1B,

C 0 = CT ,

W 0
c

= T�1WcT�1⇤
,

W 0
o

= T ⇤WoT .

(2.2.3)

The balancing matrices T and T�1 can be computed using Cholesky factorization and

eigenvalue decomposition. This results to the diagonal Hankel matrix, HM , which is

defined as:

HM = T�1WcT�1⇤ = T ⇤WoT = diag(�1, �2, ....�m) = ⌃. (2.2.4)

Further to this, Moore introduced the BT method, where the idea is to keep only

1A symmetric matrix M = [mij ] is positive-definite if �T
M� > 0 8 column vectors p
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the most energetic Hankel singular values. The Hankel singular values are ordered

in descenting order as �1 � �2 � · · · � �n � 0 and contain the contribution of each

mode to the input-output system. The diagonal matrix, ⌃, can be partitioned as:

⌃ =

2

4⌃1 0

0 ⌃2,

3

5

where the largest Hankel singular values are contained in ⌃1, while the smallest in

⌃2. The system matrices A0, B0 and C 0 can also be partitioned in a similar way as

A0 =

2

4A11 A12

A21 A22,

3

5

B0 =

2

4B1

B2

3

5

and

C 0 = [C1C2]. (2.2.5)

A11, B1 and C1 can be seen as the reduced system matrices (Ar, Br and Cr) of the

reduced system (2.1.3) and thus the ROM can be written as:

ẋr(t) = A11xr(t) + B1u(t),

yr(t) = C1xr(t).
(2.2.6)

The reduced bases V and W are equivalent to the first rows of T�1.

Pernebo and Silverman in (Pernebo and Silverman 1982) further investigated the

BT method in both time continuous and discrete problems, showing asymptotic sta-

bility. Therefore, in terms of stability, this method yields a well behaved ROM. As

Glover suggested in (Glover 1984),for LTI continuous systems, BT possesses a priori

error bounds which, for LTI systems, are the lowest possible. Beyond first order lin-

ear systems, Reis and Styker (Reis and Stykel 2008) introduced BT for second order

systems, where, unlike first-order systems, the ROM does not possess a guaranteed

stability.
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BT has been widely applied in the study of control systems with approximately

O(104) dimensions. However, for large-scale systems, in the order of O(105) and

above, such as fluid dynamics problems, BT becomes computationally intractable

due to the dense Gramian matrices. In addition, the classical BT is only appliaca-

ble to LTI systems. In (Dones, Skogestad, and Preisig 2011), the authors extended

the BT to non-linear systems, where a linearisation process, referred to as empirical

Gramians, is performed in advance. Empirical balanced truncation for non-linear

systems has also been employed in (Condon and Ivanov 2004) and in (Lall, Marsden,

and Glavaški 2002), where, in the latter, a Galerkin projection is performed.

2.3 Proper Orthogonal Decomposition

An essential tool in the development of ROMs is the POD or Karhunen - Loève de-

composition. POD was originally conceived as a data analysis method for finding an

optimal lower-dimensional orthonormal basis in a least-squares sense. It works for

multidimensional dynamical systems, using data from high fidelity simulations (such

as CFD) or from experiments. POD can be seen as a modal decomposition technique,

which provides modes ranked according to their energy.

For the calculation of the POD basis, consider the state vector x 2 Rm, given by

equations (2.1.1) and its approximation (2.1.3). Using the theory of snapshots, intro-

duced by Sirovich in (Sirovich 1987b), the discretized state variable, which is sampled

as X = {x1(t),x2(t), ....xl(t)}, X 2 Rm⇥l, is given by the trajectories xi(t)l

i=1, which

are taken in the discrete time instances t 2 [0, tl]. The aim of the POD is to find

a subspace Rr ⇢ Rm, r << m, which optimally approximates X in a least-squares

sense. If Xr 2 Rr is the state in the reduced basis space, then the POD seeks for a

subspace which minimises the projection error:

min ||X � ⇧rX||2 :=
´

tl

0 ||xi(t) � ⇧rxi(t)||2dt, (2.3.1)

where ⇧r is an orthogonal projection operator.

In fluid dynamics, POD has been successfully applied in two main areas: the search

for an optimal basis in a lower dimensional space and the identification of hidden

23



patterns (in terms of size, shape, location) in complex datasets. Amongst other re-

lated methods, POD is usually considered the most e�cient method for capturing

the dominant structures of large scale systems. Lumley (Lumley 1967) was the first

to apply POD in the study of turbulent flow, using spatial velocity correlations.

Classical statistical methods, which rely on averaging quantities, consider turbulence

as a complex chaotic phenomenon with little or no underlying structure. On the

contrary, coherent structures exist and turbulent flow is composed of organised mo-

tions. It is the superposition of these that presents the apparent complexity. To

identify large eddy structures, Bakewell and Lumley (Bakewell 1967) applied POD

to experimental data taken from the boundary layer of homogeneous turbulent pipe

flow. The authors came to an important conclusion regarding the formation of shear

turbulent flow: it is created and sustained not only in the wall region, but also in the

viscous sub-layer. They also showed that in the wall region, the creation and evolu-

tion of counter-rotating eddy pairs is governed by the non-linear mechanism of vortex

stretching. Payne and Lumley (Payne and Lumley 1967) studied cylinder wake flows

using POD. A counter-rotating eddy pair serves as the dominant mode. However,

they mentioned that for more accurate results, more data and grid points are needed.

A detailed review on identification of coherent structures in turbulent flows can be

found in (Berkooz, Holmes, and Lumley 1993).

The theory of Lumley has been proven very successful for relatively small datasets.

However, it is limited for processing large datasets of experimental and numerical

data. To overcome this, Sirovich (Sirovich 1987a) introduced the snapshot POD (as

opposed to the direct POD) method as an e�cient way of identifying the dominant

modes of large scale systems, when the spatial dimension is larger than the temporal

dimension. Snapshots are instantaneous solutions obtained by a high-fidelity solver

(e.g., CFD) or by experimental data on which POD is performed. The snapshot POD

can be seen as the discrete version of the continuous POD method and therefore it is

an approximation of the ’full’ POD. This fact limits the accuracy of the ROM to the

quality (information contained) and the number of snapshots selected. Therefore, the

choise of the snapshots is very important and the snapshots should contain the impor-

tant physical properties of the FOM, such us flow periodicity, reversal, bifurcation etc.
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Rempfer and Fasel in (Rempfer and Fasel 1994) performed simulations on a flat plate

boundary layer to prove that, in the case of flow fields, which present symmetry along

a coordinate, POD can describe spatially evolving structures. In (Baltzer, Adrian,

and Wu 2010) the snapshot POD was used for identification of coherent structures

in a turbulent boundary layer, where the evolution of large-scale motions appears.

Bernero and Fiedler (Bernero and Fiedler 2000) applied snapshot POD to Particle

Image Velocimetry (PIV) data obtained from a jet in a counterflow, to show that,

even in such chaotic structures, a combination of PIV and snapshot POD could re-

veal a few dominant patterns. Another related application of POD methods is in data

reconstruction. In (Bui-Thanh, Damodaran, and Willcox 2004) the authors showed

that POD is an e�cient method for reconstructing flow fields in aerodynamics when

data is missing.

The use of POD in the construction of ROMs is a more recent development. In (Hall,

Thomas, and Dowell 2000) snapshot POD was applied to transonic and subsonic un-

steady aerodynamic flows. The authors obtained accurate ROMs with meaningful

results, suggesting also that ROMs could be suitable for active control applications.

So-called POD-Galerkin ROMs have been widely used in optimal control problems,

design optimisation, data reconstruction and many-query systems. Ravindran (Ravin-

dran 2000) developed a POD-Galerkin ROM for optimal control of channel flow. The

results showed accurate short-time ROM behaviour and high computational savings.

These two characteristics are essential for real-time control applications. Bourguet

and Braza (Bourguet, Braza, and Dervieux 2007)used a POD-Gelerkin ROM in the

study of 2D transonic, compressible, unsteady flows around a NACA0012 airfoil,

where two dominant flow structures were identified: the von Karman instability and

bu↵eting. The resulting ROM is in an excellent agreement with the dynamics of the

high fidelity model. An observation from this work is that the non-linear terms arising

in the calculation of the ROM are relatively expensive. Examples of ROMs based on

finite volume FOMs of the Navier-Stokes equations are demonstrated in the work of

(Haasdonk and Ohlberger 2008; Lorenzi, Cammi, Luzzi, and Rozza 2016; Stabile and

Rozza 2018).
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In regard to non-isothermal problems, a first attempt to develop a POD-Galerkin

ROM for modelling the temperature field in a rapid thermal processing chamber is de-

scribed in (Aling, Banerjee, Bangia, Cole, Ebert, Emami-Naeini, Jensen, Kevrekidis,

and Shvartsman 1997), where the authors considered a 2D steady-state problem. In

(Alonso, Velazquez, and Vega 2009) a ROM for studying heat transfer in a backwards

facing step flow, using a combination of POD and a genetic algorithm was presented.

A heat transfer POD-Galerkin ROM is presented in (Raghupathy, Ghia, Ghia, and

Maltz 2009), where the 1D conduction heat equation is considered. A POD study

for the heat conduction equation is also presented in (Wang, Yu, Cao, Zou, and Yu

2012) and in (Han, Yu, and Zhang 2014). The problem of natural circulation is stud-

ied in (Li, Su, Chu, and Xu 2013) where a FOM of the coupled Navier-Stokes and

energy equations is used to develop a ROM. However, the resulting POD-Galerkin

ROM only considers perturbations of the (two-dimensional) temperature field, and

assumes that the flow field remains fixed. These assumptions restrict the study to

small perturbation temperature control applications.

A POD-Galerkin methodology for groundwater flow problems driven by spatially

distributed stochastic forcing terms is presented in (Pasetto, Guadagnini, and Putti

2011), where the authors considered collecting the POD snapshots in the probability

space. Their proposed method results in a Reduced Order Monte Carlo framework

(ROMC). Another reduced order modelling technique, other than the POD-Galerkin,

can be found in the study of uncertainty propagation in porous media (Müller, Jenny,

and Meyer 2011), where the authors applied the Karhunen - Loève (KL) decompo-

sition (or POD) and polynomial chaos with sparse Smolyak quadrature for the flow

problem. In (Li, Luo, and Chen 2011), the POD method was applied to 2D solute

transport problems. In (Busto, Stabile, Rozza, and Vazquez-Cendon 2019), the au-

thors proposed a POD-Galerkin ROM for the Navier-Stokes one-way coupled heat

transport equations based on a hybrid finite element - finite volume method.
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2.4 Balanced Proper Orthogonal Decomposition

A hybrid of the BT and POD methods, the Balanced POD (BPOD), is considered an

e↵ective method for capturing the dynamical features of a field, due to its dependence

on the BT Hankel matrix. While POD spans an orthogonal basis, BPOD spans a

bi-orthogonal set which is ranked based on the Hankel singular values, containing

both spatial and temporal features. Hence, BPOD can capture the low energetic but

highly observable modes. Unlike BT, BPOD is applicable to large systems as the

observability and controllability Gramians are empirically computed, using the POD

method of snapshots.

To form the snapshot matrices X and Y, impulse state response snapshots are taken

from the system (2.1.1) and its conjugate ż(t) = A⇤z(t) + B⇤
�, respectively. Thus,

the controllability and observability empirical Gramians can be factored as:

Wc ⇡ XX⇤
,

Wo ⇡ YY⇤
.

(2.4.1)

This can be seen as the equivalence to Cholesky factorization, which is applied to

BT. For finding the balancing transformation matrices, the same procedure as in the

case of BT is followed, where the eigenvalue decomposition is applied to the matrix

Y⇤X.

The study of BPOD based ROMs has attracted many researchers, mainly for its

applications in flow response and control problems. In (Ilak and Rowley 2008), the

authors applied the BPOD method to data obtained by DNS simulation of a lin-

earised transitional channel flow, showing that, unlike POD, BPOD captures the

transient growth very well. The authors used a di↵erent projection approach, the

non-orthogonal Petrov-Galerkin projection with adjoint modes. A non-intrusive,

projection-free BPOD approach has been suggested by Flinois and Morgans (Fli-

nois, Morgans, and Schmid 2015) for applications to unstable systems. The authors

proved that the expensive projection step is superfluous and the BPOD can be di-

rectly performed onto the unstable system. However, this method is only valid for

LTI systems. In (Dergham, Sipp, Robinet, and Barbagallo 2011), the authors con-

27



structed a BPOD ROM using snapshots computed in the frequency domain. The

authors considered two cases: a stable flow over a backward step and a transient flow

over a square cavity. In both cases, they obtained accurate and well-behaved ROMs.

As long as snapshots from adjoint system response are needed, BPOD is usually

inapplicable on experimental data. In addition, the classical BPOD method applies

to linearised systems, although, extensions to non-linear systems are possible.

2.5 Parametric Model Order Reduction

Many problems in engineering, such as control applications, optimisation, design,

real-time applications, require the knowledge of some output quantities of interest,

such as pressure drop, flow rates, strains, etc. These quantities are often linear,

low dimensional outputs of high dimensional state vectors, such as velocity, pressure

or temperature. Unlike non-parametric model order reduction, parametric ROMs are

parameter dependent. For this kind of problems, the LTI system of (2.1.1) is modified

as follows:

ẋ(µ, t) = A(µ)x(t) + B(µ)u(t),

y(µ, t) = C(µ)x(µ, t),
(2.5.1)

where x 2 Rm and µ 2 RNp denote parameter dependent system matrices. As

in the case of non-parametric systems, the ROM is usually obtained by projecting

the equations (2.5.1) onto the reduced basis, using Galerkin (or Petrov-Galerkin)

projection. In this method, the state x(t), is approximated as linear combination of

basis vectors:

x(µ, t) ⇡ V xr(µ, t), (2.5.2)

where n << m and V 2 Rmxn represents the basis, which spans the parametric

subspace SV . Combining equations (2.5.2) and (2.5.1), leads to

r = V ẋr(µ, t) � A(µ)V xr(µ, t) � B(µ)u(t),

yr(µ, t) = C(µ)V xr(µ, t),
(2.5.3)

where r is the residual of the approximation. The system (2.5.3) is over-determined
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since it has n unknowns but m equations. For this reason, a well-determined system

is obtained by multiplying the state with the reduced basis and inserting into (2.5.3).

The basis V is orthogonal to the residual, i.e. V Tr(µ, t) = 0. The parametric ROM

is obtained by substituting the new state onto (2.5.3), which can be written as follows:

ẋr(µ, t) = Ar(µ)xr(µ, t) + Br(µ)u(µ, t),

yr(µ, t) = Cr(µ)xr(µ, t),
(2.5.4)

where

Ar(µ) = V TA(µ)V ,

Br(µ) = V TB(µ),

Cr(µ) = C(µ)V .

(2.5.5)

The reduced basis V is computed using one of the methods mentiond in the previous

sections (POD, BT, BPOD etc) using either global or local bases strategies.

In (Ballarin and Rozza 2016) the authors proposed a monolithic model order reduc-

tion approach based on POD-Galerkin for parametrised fluid-structure interaction

problems. Also in (Ballarin, Manzoni, Quarteroni, and Rozza 2014), stable POD-

Galerkin for the parametrised, incompressible, steady Navier-Stokes equations was

presented. POD-Galerkin model order reduction for parametric PDEs also applied

for haemodynamics studies in (Ballarin, Faggiano, Ippolito, Manzoni, Quarteroni,

Rozza, and Scrofani 2016).

An interpolation method of the local POD bases was proposed by Lieu and Lesoinne in

(Lieu and Lesoinne 2004), where, to evaluate POD bases for di↵erent Mach numbers

in transonic flows, two di↵erent interpolation techniques were applied and compared.

Lagrange interpolation and subspace angle interpolation were utilised, where the for-

mer was found to be inaccurate, as the interpolation of local orthogonal bases does

not always result to orthogonal bases. On the contrary, subspace angle interpolation

had been proven more accurate. The reason is that the interpolation is applied to

subspace angles and not to the basis vectors. Subspace angle interpolation has also

been studied in (Lieu, Farhat, and Lesoinne 2005). The authors interpolated POD

bases from two di↵erent Mach numbers to construct ROMs able to predict for Mach
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numbers which lie in the range between the two original Mach numbers. However, this

method is limited to interpolation of only two reduced bases. An alternative method

based on interpolation on spaces tangent to Grassmann manifolds was proposed in

(Amsallem and Farhat 2008). This method preserves orthonormality of the new ba-

sis and, therefore, is applicable to the interpolation of more than two orthonormal

bases. In (Degroote, Vierendeels, and Willcox 2010) the authors were proposed a

novel interpolation method among precomputed projection-based ROMs to evaluate

new ROMs for di↵erent parameter values. The authors proposed a heuristic algo-

rithm for selecting the space in which the interpolation can be performed.

The computational cost of solutions that cover the whole domain is prohibitive for

high dimensional parameter spaces. Greedy POD algorithm is an approach for op-

timally sampling high dimensional parametric spaces. The combination of advanced

algorithms and rigorous error bounds assure, in a way, that the reduced basis will be

represented by the best snapshots. The greedy algorithm, which is based on Noor’s

and Peters’s algorithm (Noor and Peters 1980), was proposed in (Veroy, Prud’Homme,

Rovas, and Patera 2003) and provided globally optimal reduced basis with a posteriori

error estimators. These qualities promise high computational savings for applications

to a�ne parametric problems. In (Veroy and Patera 2005), the authors applied the

greedy algorithm in real-time applications governed by the incompressible Navier-

Stokes equations, where they derived a rapidly converged reduced basis. In thermo-

fluid dynamics, Deparis and Rozza (Deparis and Rozza 2009) applied the greedy al-

gorithm for studying convection in a cavity, governed by the multi-parametric, steady

Navier-Stokes equations. Their study includes both physical, Grashof and Prandtl,

and geometrical aspect ratio, dependence. The authors showed that the online stage

remains una↵ected in terms of computational time while the o✏ine stage is still com-

putationally e�cient. A detailed description of reduced basis methods with various

applications to elliptic problems can be found in (Nguyen, Rozza, Huynh, and Patera

2010).

30



2.6 Summary of the Chapter

This chapter gave an overview of projection based model order reduction techniques,

as well as discussed some popular methods for the calculation of the reduced basis

space. Parametric model order reduction, a method this thesis is mostly dealing with,

was also discussed.
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Chapter 3

Mathematical Framework - Full

Order Model

In this chapter the mathematical framework for the FOM is presented. This includes

the governing equations of fluids, a review of the Unsteady Reynolds-Averaged Navier-

Stokes (URANS) turbulence modelling method as well as a description of the finite

volume method.

3.1 Governing Equations of Fluids

The first step towards modelling a system is to derive a set of governing equations,

defining the physics of the problem. In fluid dynamics, these are the Navier - Stokes

equations and are derived using three fundamental conservation laws of mass, mo-

mentum and energy. The transient Navier - Stokes equations are formulated, in

conservative form, as:

@(⇢u)

@t
+ r · (⇢u) = 0, (3.1.1)

@(⇢u)

@t
+ r · (⇢u ⌦ u) = �rp + r · ⌧ , (3.1.2)

where p is the pressure and the viscous tensor, ⌧ , is:
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⌧ =

2

6664

⌧xx ⌧xy ⌧xz

⌧yx ⌧yy ⌧yz

⌧zx ⌧zy ⌧zz

3

7775

For an incompressible, Newtonian fluid and in the absence of any external forces, the

stress tensor is proportional to the rate of deformation. This can be writen as:

⌧ij = µ(
@ui

@xj

+
@uj

@xi

), (3.1.3)

where the proportionality constant, µ, is called dynamic viscosity.

It can be shown that the stress divergence is:

r · ⌧ = µ�u. (3.1.4)

Hence, substituting equation (3.1.4) into the momentum equation (3.1.1) and dev-

iding by the density, ⇢, one obtains the following set of equations for a Newtonian,

incompressible fluid:

r · u = 0, (3.1.5)
@u

@t
+ r · (u ⌦ u) � ⌫�u = �rp, (3.1.6)

where ⌫ denotes the kinematic viscosity, which is µ/⇢ and now p is the normalized

pressure, p/⇢. The energy equation is also considered in this research, in the form of

a convection-di↵usion equation. This can be expressed as :

@✓

@t
+ r · (u✓) � ↵diff�✓ = 0, (3.1.7)

where ↵diff is the thermal di↵usivity and ✓ is the fluid temperature. The thermal

di↵usivity is defined as ↵diff = k/⇢cp, where k is the thermal conductivity and cp is

the specific heat capacity.
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3.2 Turbulence Modelling

Turbulence is described by chaotic and random motion in which the transported quan-

tities (pressure, velocity etc) exhibit spatial and temporal fluctuations. Unlike laminar

flows, which can be numerically solved by any standard discretisation technique (e.g.

finite volume), turbulent flows need some additional approximations. For ducts, a

flow is considered turbulent if the non-dimensional Reynolds number (Re = UL/⌫)

is greater than 4000, laminar if Re<2300 and transient when 2300< Re <4000. The

Reynolds number indicates the significance of the inertia forces to viscous forces. Tur-

bulent motion is di↵usive, leading to enhanced mixing and, therefore, to greater heat

and momentum transfer.

In the modelling of turbulent flows, the instantaneous velocity component u(x, t)

is decomposed into a time-averaged component, u(x, t), superimposed by a fluctuat-

ing component, u0(x, t). This can be expressed as follows:

u(x, t) = u(x) + u0(x, t). (3.2.1)

The fluctuating component, u0(x, t), is known as turbulent fluctuation and is always

three dimensional (in space), even for flows with mean values changing only in two di-

mensions. This decomposition is known as Reynolds decomposition. Turbulent flows

contain rotational flow structures, called turbulent eddies, which vary in size. Larger

eddies acquire energy from the mean flow by a process called vortex stretching. The

smaller in size eddies derive energy from the larger eddies through an energy cascade

process. Viscous dissipation converts turbulent energy from the smallest eddies into

thermal internal energy leading to energy losses.

Regarding turbulence predictions, there are various computational approaches avail-

able which involve modelling or simulation. The former include the Reynolds-Averaged

Navier-Stokes equations (RANS or URANS for the Unsteady) method and the Large

Eddy Simulation (LES) while the latter, the CPU expensive Direct Numerical Simu-

lation (DNS). In RANS/URANS, which nowadays, is widely applied in industry, due

to its lower computational cost, compared to the other methods, the Navier-Stokes

equations are solved in an averaged manner (enseble or time). On the other hand, in
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LES approach, the Navier-Stokes equations are spatially averaged. In this approach,

the larger eddies are directly resolved whereas the smaller eddies (smaller than the

mesh size) are modelled. LES comes a with much greater computational cost than

RANS and, sometimes, is almost impractical for industrial applications. DNS numer-

ically solves the Navier-Stokes equations and resolves the whole spectrum of eddies

but this results in a vast computational cost.

Amongst the various methods available (Spalart-Almaras, k � ✏, k � !, Reynolds

Stresses etc) in RANS/URANS, in this research, the k � ! has been chosen due to

its accuracy in the near wall region. There are two variations of the k � ! model,

the standard k � ! and the Shear Stress Transport (SST) k � !. The former is desr-

cribed by a two-transport-equation model for k and ! and the specific dissipation

rate (✏/k) is based on Wilcox (Wilcox 1998) method. The latter is a combination of

the standard k � ! model in proximity of the walls and the standard k � ✏ model in

the bulk of the flow. To ensure smooth transition between the two di↵erent models,

a blending function is used.

To derive the full-order equations, which also include turbulence modelling, we start

with the incompressible, transien Navier-Stokes equations which are one-way coupled

with the transient energy equation. According to equations (3.1.5, 3.1.6 and 3.1.7)

and considering a Eulerian framework and domain Q = ⌦ ⇥ [0, Ts] ⇢ Rd ⇥ R+ with

d = 2, 3, the equations are formulated as follows:

8
>>>><

>>>>:

@u
@t

+ r · (u ⌦ u) � r · ⌫ru = �rp in Q,

r · u = 0 in Q,

@✓

@t
+ r · (u✓) � ↵dif�✓ = 0 in Q.

(3.2.2)
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3.3 URANS

Similar to equation (3.2.1), the instantaneous velocity, pressure and temperature are

decomposed into an averaged and a fluctuating component as follows:

u(x, t) = u(x) + u0(x, t) (3.3.1)

p(x, t) = p(x) + p
0(x, t), (3.3.2)

✓(x, t) = ✓(x) + ✓
0(x, t). (3.3.3)

In RANS modelling, the mean components are zero. Taking this into account and

substituting equations (3.3.1) into equations (3.2.2), the URANS and energy equa-

tions are:

8
>>>><

>>>>:

r · u = 0,

@u
@t

+ r · (u ⌦ u) � ⌫�u = �rp � r · ⌧R
,

@✓

@t
+ r · (u✓) � (↵dif�✓) � HR = 0,

(3.3.4)

where the extra terms ⌧R = �(u0u0) and HR = (✓0u0) are the Reynolds stress

tensor and the heat flux term, respectively. Therefore, these two new terms must be

modelled in order to close the system of the equations. One possible solution, which

is followed in this work, is the eddy viscosity models with the Boussinesq hypothesis.

The Reynolds stress is modelled using the eddy viscosity ⌫t and the heat flux using a

gradient di↵usion hypothesis, as follows:

⌧R = �(u0u0) = 2⌫tD
R � 2/3kI = ⌫t[ru + (ru)T ] � 2/3kI, (3.3.5)

H = �↵dif t
r✓, (3.3.6)

where ↵dif t
is the turbulent thermal di↵usivity, modelled as ⌫t/Prt, and Prt the tur-

bulent Prandtl. D
R

is the mean strain-rate tensor and I is the identity matrix.

Combining all the above and denoting from now on u, p and ✓ as u, p and ✓, re-

spectively, equations (3.2.2) including also the turbulence modelling, are as follows
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:

8
>>>>>>>>>>><

>>>>>>>>>>>:

@u
@t

+ r · (u ⌦ u) = r ·
⇥
� pI + (⌫ + ⌫t)

�
ru + (ru)T

�

�2
3kI

⇤
in Q,

r · u = 0 in Q,

@✓

@t
+ r · (u✓) � (↵dif + ↵dift)�✓ = 0 in Q,

⌫t = j(k,!),

(3.3.7)

where k is the turbulent kinetic energy, k = 1
2u

0 · u0 and ! = ✏

k�⇤ the specific dis-

sipation rate with �
⇤ being a constant of proportionality and ✏ / @k

@t
the specific

dissipation rate. A variation of the standard k � !, the k � ! � SST (k � ! Shear

Stress Transport) (Menter 1994) is selected for the scope of this research. The for-

mulation that OpenFOAM uses can be found in (OpenFOAM user guide 2016-2017).

The k�!�SST model is a hybrid of the standard Wilcox k�! and the k� ✏, where

a blending function activates the former in the near-wall region while the latter, is

switched in the free-stream. Therefore, it combines the benefits of the two models.

3.4 Poisson Equation for Pressure

For the numerical solution of the Navier - Stokes equations (3.2.2), described in the

previous section, several di�culties arise and special treatment is required. These in-

clude the non-linearity of the convective term and the coupling between velocity and

pressure fields in the momentum equation, as well as the lack of an explicit equation

for the pressure field.

The di�culty associated with the non-linearity is usually dealt with the use of iterative

solvers. For compressible flows, the continuity equation, (3.1.3), serves as a transport

equation for density and, in conjunction with the energy equation (3.1.7), the pres-

sure can be obtained by exploiting the equation of state, p = p(⇢, ✓). However, for

incompressible flows, since the density is constant, such approach is not possible. One

possible way of handling both problems associated with the Navier-Stokes equations

is the implementation of the Semi-Implicit Method for Pressure Linked Equations

(SIMPLE) (Patankar and Spalding 1972) solver. The SIMPLE algorithm, which is
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based on a guess-and-correct method, is summarized in the following algorithm (3.1):

SIMPLE ALGORITHM

START
Initial guess p, u

STOP

YES

SOLVE DISCRETISED MOMENTUM
EQUATIONS FOR u*

SOLVE PRESSURE CORRECTION
EQUATION (PPE) , p'

UPDATE CORRECT PRESSURE AND
VELOCITY VALUES TO OBTAIN p* AND u**

SOLVE ALL OTHER TRANSPORT
EQUATIONS

CONVERGED?NO

p, u*

p'

p*, u**

SET
p = p*
u = u**

Figure 3.1: SIMPLE Algorithm.

The above SIMPLE algorithm had originally been developed for steady-state prob-

lems but it can be extended to transient problems by starting with a guessed solution

at time t to obtain converged values for velocity and pressure fields, as shown in

algorithm (3.1). Then, the converged values are used as initial guess at time t +�t.

The same procedure is repeated until the maximum time of the simulation is reached.

Other methods for dealing with the velocity/pressure coupling include the Pressure

Implicit with Splitting of Operators (PISO) algorithm (Issa 1986) (3.2) or the PIM-

PLE algorithm (Barton 1998) which is a hybrid of SIMPLE and PISO. SIMPLE,

PISO and PIMPLE are segregated solvers. This means that they are more memory-

e�cient than coupled solvers but, as the equations are solved one at a time, leads to

a slower convergence.
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PISO ALGORITHM
START

p*, u**

STOP

YES

CONVERGED?

NO

SET
p = p**

u = u****

SET
p* = p**

u** = u***

NO

YES

NUMBER OF CORRECTION
STEPS EXCEEDED?

SIMPLE ITERATION

SOLVE THE MOMENTUM EQUATION EXPLICITLY
TO OBTAIN u***

SOLVE A SECOND CORRECTION EQUATION FOR
PRESSURE FOR p''

CORRECT PRESSURE AND VELOCITIES TO
OBTAIN p** AND u****

p'', u***

SOLVE ALL OTHER TRANSPORT EQUATIONS

Initial guess p, u

Figure 3.2: PISO Algorithm.

The correction equation for pressure is derived by taking the divergence of the mo-

mentum equation (3.1.6) (or the equivalent one when turbulence modelling is consid-

ered) and enforcing the incompressibility condition, leading to the following Poisson

equation for pressure:

�p = �r · (u · ru). (3.4.1)

3.5 The Finite Volume Approximation

The full order system, which is represented by the partial di↵erential equations (3.2.2),

is transformed into a system of discrete algrebraic equations. It can then be solved

with any iterative or direct numerical method. The system is discretized in a finite

volume method using the open source C++ library OpenFOAM (OpenFOAM website

2011-2012). The equations (3.2.2) include temporal derivatives, as well as conventive

and di↵usive terms, and each of these terms is treated in a di↵erent way. The first
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step towards discretisation of the spatial terms is the division of the computational

domain into arbitrarily small control volumes (cells) such the one depicted in figure

(3.3). The transient term is discretized in time by splitting the total time interval of

the simulation into a number of discrete time steps. In the finite volume method, the

integral form of the equations is discretized over a control volume and, therefore, the

quantities of interest are conserved (mass, momentum etc).

Figure 3.3: Example of a polyhedral control volume around a centroid W (Guerrero 2015).

Considering a general transported quantity �, the transport equation can be written

as:

ˆ
VP

@�

@t
dV +

ˆ
VP

r · (u�)dV �
ˆ

VP

r · (��r�)dV = 0, (3.5.1)

where the source term has been set to zero. Therefore external sources are not

considered. The first term in equation (3.5.1) represents the temporal derivative, the

second the convective and the third the di↵usive term. Using Gauss theorem, the

volume integrals in equation (3.5.1) are transformed into surface integrals:

@

@t

ˆ
Vp

�dV +

‹
@VP

dS · (u�) �
‹

@VP

dS · (��r�) = 0, (3.5.2)

where @VP represents a closed surface, which bounds the control volume VP and

ndS = dS.

Taking each term in equation (3.5.2) separately and starting with the approxima-
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tion of the convective term which is as follows:

‹
@VP

dS · (u�) =
X

f

ˆ
f

dS · (u�) ⇡
X

f

Sf · (u�)f , (3.5.3)

where the integral has been replaced with a summation of fluxes over the faces of the

control volumes. The su�x, f , represents the integration point at the face’ centroid

and Sf is the face area vector normal to the interface, as shown in figure (3.3).

It is obvious from equation (3.5.3), that the value of the transported quantity over

the faces of the control volume, �f , is necessary. This value is computed using val-

ues from neighbouring control volumes usually with central di↵erencing or upwind

schemes. The central di↵erencing scheme, according to figure (3.4), is in fact the

following linear interpolation:

�f = �E +
|xf � xE|

|d| (�W � �E), (3.5.4)

where the su�xes W and E refer to quantities in the West and East neighbouring

cells. This scheme is second order accurate, because it is derived from the Taylor’s

expansion, where the second and higher order derivatives are neglected. In case of

uniform grids, where f is midway (as in figure (3.4)), equation (3.5.4) is reduced to

�f = (�E + �W )/2.

Figure 3.4: Central di↵erencing discretisation scheme.

For problems where the e↵ect of the convective term is important (high Pèclet num-

ber - Pe = advection/diffusion), this scheme is inadequate, as it can cause an

unbounded numerical solution, which defers from the analytical one. For such prob-

lems, the upwind scheme is preferable, o↵ering boundness of the solution (Moukalled,
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Mangani, and Darwish 2015). According to figure (3.5), the face flux �f depends on

the flow direction as follows :

�f =

8
><

>:

�W , for ṁ � 0

�E, for ṁ  0,

where ṁ = Sf · (⇢u) is the mass flux through the face f .

Despite the good stability of the upwind scheme, even for high Pèclet numbers, its first

order accuracy makes it less accurate than the central di↵erencing scheme. To tackle

with this behaviour, variations of the two schemes, including bounded central di↵er-

encing and second order accurate upwind schemes have been developed (Moukalled,

Mangani, and Darwish 2015).

Figure 3.5: Upwind discretisation scheme.

The di↵usive term is discretized as:

‹
@VP

dS · (��r�) =
X

f

ˆ
f

dS · (��r�) ⇡
X

f

Sf · (��r�)f , (3.5.5)

where �� is the di↵usion coe�cient and is calculated by the harmonic mean between

the neighbouring control volumes, E and W as:

(��)f =
(��)E(��)W

(��)E + |xf�xE |
|d| ((��)W � (��)E)

. (3.5.6)

The calculation of the face gradient is not very straightforward as it depends on the

mesh. For orthogonal meshes, where the surface vector Sf is parallel to the distance
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d, the flux gradient is:

Sf · r(�f ) = |Sf |
�W � �E

|d| , (3.5.7)

where the face gradient can be calculated from the values of the neighbouring control

volumes. For non-orthogonal meshes, the value of the gradient, r(�f ), is calculated

by weighted interpolation of the gradient values at the cell centres W and E, as

follows:

r(�f ) = fxr(�f )W + (1 � fx)r(�f )E, (3.5.8)

where fx is the interpolation factor and the value of r(�f )W and r(�f )E at the cell

centres, W and E is obtained as:

r(�W,E) =

P
f
Sf�f

VW,E

. (3.5.9)

In the case of non-orthogonal meshes (vectors Sf and |d| are not parallel), such as the

one shown in figure (3.6), a non-orthogonal correction is introduced. In this approach,

the surface vector is written as the sum of an orthogonal vector and a non-orthogonal

vector Of and Nf respectively:

Sf = Of + Nf . (3.5.10)

Figure 3.6: Control volume in a non-orthogonal mesh.

Therefore, the flux gradient is written as:

Sf · (r�f ) = Of · (r�f ) + Nf · (r�f ) = |Of |
�W � �E

|d| + Nf · (r�f ), (3.5.11)

where the orthogonal contribution is calculated in the same way as in the orthogonal

43



mesh, case (3.5.7), while the non-orthogonal contribution is calculated implicitly and

special treatment is necessary (Moukalled, Mangani, and Darwish 2015).

Replacing the terms in equation (3.5.2) with the approximated ones, (3.5.3) and

(3.5.5), we obtain the following equation:

ˆ
t+�t

t

[(
@⇢�

@t
)VP VP +

X

f

Sf · (⇢u�)f �
X

f

Sf · (⇢��r�)f ]dt = 0. (3.5.12)

The temporal discretisation can be performed using any temporal discretisation scheme

such as Crank-Nicolson, backward di↵erencing, Euler etc. For more information the

reader is referred to (Jasak 1996; Moukalled, Mangani, and Darwish 2015).

3.6 Summary of the Chapter

The scope of the present chapter was to provide the mathematical background for

the full order model. This includes the governing equations of fluids, treatment of

the turbulence as well as ways of tackling with the coupled Navier-Stokes equations

in the computational level. The finite volume discretisation method, by which the

FOM is discretized in the present thesis, was also presented.
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Chapter 4

Mathematical Framework -

Reduced Order Model

This chapter provides the mathematical background for the ROM. It starts with

the mathematical formulation of the Proper Orthogonal Decomposition method for

parametric problems followed by a modified POD approach, the Nested-POD. A

description of two methods, the supremizer enrichment and the Pressure Poisson

Equations, for stabilising the governing equations and including the pressure term is

also discussed. Finally, the mathematical formulation of the Galerkin projection is

provided.

4.1 Proper Orthogonal Decomposition for Parametric Model

Reduction

The POD method for non-parametric model order reduction has been discussed in

section (2.3). This section aims to provide a more detailed overview of the POD for

parametric problems. Let us consider for example a set of velocity snapshots (ob-

servations) us which belong to the L
2 Hilbert space. The space is equipped with

an L
2 inner product, which, for arbitrary functions f(x) and g(x), is defined as

hf, giL2(⌦) =
´

⌦ f(x)g⇤(x)dx, and with an L
2 norm, ||f(x)|| =

p
hf, fiL2(⌦). The star

denotes complex conjugate. The L
2 space is a natural choise when incompressible

fluid mechanics problems are considered since, based on the definition of the norm,

the kinetic energy is described as k = 1/2⇢||u|| (Berkooz, Holmes, and Lumley 1993).

The idea is to write the state vector as a linear combination of temporal coe�cients
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↵(µ, t) and basis functions �(x): u(x,µ, t) ⇡ us =
P

N
s
u

i=1 ↵i(µ, t)�i(x).

The first step is the training phase, where snapshots are collected using a high fi-

delity solver or experimental results. For the purposes of this work, only numerical

simulations using the high fidelity OpenFOAM (Jasak 1996) solver have been consid-

ered. The snapshots, which belong to a finite Hilbert space H = RN
h
u , are placed

into an N
h

u
⇥ N

s

u
snapshot matrix, Us,

Us =

2

6664

u
1
1(µ

1) . . . u
N

s
u

1 (µ1) . . . u
N

s
u

1 (µNp)
... . . .

... . . .
...

u
1
Nh

u
(µ1) . . . u

N
s
u

Nh
u
(µ1) . . . u

N
s
u

Nh
u
(µNp),

3

7775

where N
h

u
is the number of degrees of freedom (grid points ⇥ number of components)

and N
s

u
is the number of snapshots. Since we are dealing with parametric model order

reduction, the total number of snapshots is not equal to the number of time instances

only. The size of the parameter space should also be taken into account. The FOM

is solved for each µk 2 K = {µ
1
, . . . , µ

Np} ⇢ P, where K is a finite dimensional

training set of samples chosen inside the parameter space P and for each time in-

stance t
k 2 {t

1
, . . . , t

Nt} ⇢ [0, T ]. Therefore, the total number of snapshots, N
s

utot, is

equal to Np · N
s

u
but for simplicity it will be referred to as N

s

u
.

Let us define an enseble V , which consists of the total number snapshots {ui(x,µ, t)}N
s
u

i=1

and let {�j}N
s
u

j=1 be an orthonormal basis of V with N
s

u
= dim{V }. We can write

each element of V as the following linear combination:

u(x,µ, t) =
N

s
uX

j=1

huj(x,µ),�j(x)iL2(⌦)�j(x). (4.1.1)

One of the attributes of the POD method is the minimisation of the error between

the velocity snapshots and their projection onto the POD basis. The POD seeks an

orthonormal basis �, such that 8 ! 2 {1, .., N s

u
}:

min
1

N s
u

N
s
uX

i=1

||ui(x,µ) �
!X

j=1

hui(x,µ),�j(x)iL2(⌦)

||�(x)||2 �j(x)||2
L2 , (4.1.2)
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subject to h�i(x),�j(x)iL2(⌦) = �ij.

The above minimisation problem is equivalent to maximising the following averaged

quantity:

max
|hu(x,µ),�(x)iL2(⌦)|2

||�(x)||2 , (4.1.3)

where | · | denotes the absolute value.

Since multiple local maximum values can result from the maximization problem

(4.1.3), we maximize the quantity |hu(x,µ),�(x)iL2(⌦)|2 subject to the constrain

||�(x)||2 = 1 (Berkooz, Holmes, and Lumley 1993). To achieve this, for the first basis

function, we create a function according to Lagrange method for constrained problem

optimization:

L(�(x)) = |hu(x,µ),�(x)iL2(⌦)|2 � �
u(||�(x)||2 � 1), (4.1.4)

where �u is a Lagrange multiplier for velocity. We required that the derivative of the

Lagrange function, L, to be zero for all variations �(x) + �⇠(x):

d

d�
L(�(x) + �⇠(x))|�=0 =

d

d�
[|hu(x,µ),�(x) + �⇠(x)iL2(⌦)|�

��u(h�(x) + �⇠(x),�(x) + �⇠(x)iL2(⌦))]|�=0 =

= 2[|hu(x,µ), ⇠(x)iL2(⌦)h�(x),u(x,µ)iL2(⌦)|�

��uh�(x), ⇠(x)iL2(⌦)] = 0

where it has been implied that the vectors u, � and ⇠ are real. Using the conjugate

symmetry property of the inner product, we can write:

|hu(x,µ), ⇠(x)iL2(⌦)h�(x),u(x,µ)iL2(⌦)| � �
uh�(x), ⇠(x)iL2(⌦)] =

= |hu(x,µ)hu(x,µ),�(x)iL2(⌦), ⇠(x)iL2(⌦)| � �h�(x), ⇠(x)iL2(⌦)

= hC�(x) � �
u�(x), ⇠(x)iL2(⌦) = 0,

where C is the correlation matrix defined as C = hu(x,µ),u(x,µ)iL2(⌦).
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The previous equation can be reduced to the eigenvalue problem:

C�(x) = �
u�(x), (4.1.5)

as ⇠(x) has been arbitrarily chosen. Therefore, the eigenfunctions of equation (4.1.5)

compose the optimal POD basis, �(x), with the real, summetric correlation matrix,

C, being its kernel (Berkooz, Holmes, and Lumley 1993):

Cij = hui,ujiL2(⌦) for i, j = 1, . . . , N s

u
. (4.1.6)

Written in matrix form,

C� = �u�, (4.1.7)

where the dimensions of the matrices, C 2 RN
s
u⇥N

s
u , � 2 RN

s
u⇥N

s
u (the matrix with

the eigenvectors) and �u 2 RN
s
u⇥N

s
u (the diagonal matrix containing the eigenvalues

for the velocity field). Since the correlation matrix is positive and semi-definite 1 ,

it has non-negative, real eigenvalues. The POD basis functions, �(x), are calculated

and normalized as:

�i(x) =
1p
�

u

i
N s

u

N
s
uX

j=1

uj(x)�i,j, (4.1.8)

h�i,�jiL2(⌦) = �ij 8 i, j = 1, . . . , N s

u
, (4.1.9)

where �i,j is the i
th element of eigenvector � corresponding to the eigenvalue �u

j
.

The same approximation is applied for the pressure and temperature fields. How-

ever, as pressure and temperature are scalar fields, the basis functions, denoted as

 (x) 2 RN
h
p and �(x) 2 RN

h
✓ respectively, are now scalar functions. For each field,

di↵erent temporal coe�cients are considered, denoted as b(t,µ) and c(t,µ) respec-

tively. Therefore, the POD decomposition of the velocity, pressure and temperature

1A symmetric matrix M = [mij ] is positive-semidefinite if �T
M� � 0 8 column vectors p
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is:

u(x,µ, t) ⇡ us =
N

s
uX

i=1

↵i(µ, t)�i(x), (4.1.10)

p(x,µ, t) ⇡ ps =

N
s
pX

i=1

bi(µ, t) i(x), (4.1.11)

✓(x,µ, t) ⇡ ✓s =

N
s
✓X

i=1

ci(µ, t)�i(x), (4.1.12)

where us, ps and ✓s are the decomposed original fields in the reduced space.

The associated basis functions for pressure and temperature are calculated and nor-

malized according to equation (4.1.8) as follows:

 i(x) =
1p
�

p

i
N s

p

N
s
pX

j=1

pj(x) i,j, (4.1.13)

h i, jiL2(⌦) = �ij 8 i, j = 1, . . . , N s

p
, (4.1.14)

�i(x) =
1

p
�

✓

i
N

s

✓

N
s
✓X

j=1

✓j(x)Xi,j, (4.1.15)

h�i,�jiL2(⌦) = �ij 8 i, j = 1, . . . , N s

✓
, (4.1.16)

where �p

i
and �

✓

i
are the ith eigenvalues for pressure and temperature field, respec-

tively.

To take into advantage the L
2-norm optimality of the POD method, the ’most-

energetic’ modes should be retained. Therefore, the original spatial POD basis,

V =span[�1,�2, ...�Ns
u
], is truncated using the following energy retain quantity:

ENr
u

=

P
N

r
u

i=1 �
u

iP
Ns

u
j=1 �

u

j

, (4.1.17)

where N
r

u
is the number of the most energetic modes, which are retained. Therefore,

the truncated POD space, V̂ =span[�1,�2, ...�Nr
u
] ⇢ V , has a new cardinality N

r

u
,

which is smaller than the original cardinality, N
r

s
. A summary of the POD method
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is shown in algorithm (1).

The reduced fields are:

u(x,µ, t) ⇡ ur =
N

r
uX

i=1

↵i(µ, t)�i(x), (4.1.18)

p(x,µ, t) ⇡ pr =

N
r
pX

i=1

bi(µ, t) i(x), (4.1.19)

✓(x,µ, t) ⇡ ✓r =

N
r
✓X

i=1

ci(µ, t)�i(x), (4.1.20)

where the coe�cients ↵i, bi and ci can be computed by projecting the snapshots onto

the POD basis:

↵i(µ, t) = hui(x,µ),�j(x)iL2(⌦), (4.1.21)

bi(µ, t) = hpi(x,µ), j(x)iL2(⌦), (4.1.22)

ci(µ, t) = h✓i(x,µ),�j(x)iL2(⌦). (4.1.23)

The snapshot POD projection error corresponds to the eigenvalues of the truncated

modes (Quarteroni, Manzoni, and Negri 2016) and is given by the following expres-

sion:

N
s
uX

i=1

||ui(x,µ, t) �
!X

j=1

hui(x,µ),�j(x)iL2(⌦)�j(x)||2
L2 =

N
s
uX

i=!+1

�i. (4.1.24)

Algorithm 1 The algorithm for the generation of the POD basis functions

Input: snapshots {ui(x,µ)}N
s
u

i=1, correlation matrix C 2 RN
s
u⇥N

s
u

Output: POD basis, �(x).

1:Set Us = [u1
1(µ

1), ..., uN
s
u

1 (µNp)] 2 Nh
u ⇥ N s

u;
2:Calculate the correlation matrix Cij = 1

Nu
s
uT

i
uj 2 RN

s
u⇥N

s
u ;

3:Solve the eigenvalue problem: C� = ��;

4:Define energy quantity: ENr
u

=
PNr

u
i=1 �i

PNs
u

j=1 �j

;

5:Truncate the basis �(x) with cardinality N s
u to a basis �(x) with cardinality N r

u;
6:Return POD basis �(x) 2 N r

u;
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4.2 Nested POD

The global POD method becomes too expensive when it comes to training spaces with

many training points, leading to dense matrix eigenproblems. Considering for exam-

ple the velocity snapshots, the computational e↵ort to the solution of the quadratic

eigenvalue problem, (4.1.5), scales as O([N s

u
]3). The nested POD method approxi-

mates the global POD space by solving one “small” eigenvalue problem for each local

parameter space. The local POD bases are then weighted by the eigenvalues and a

global snapshot matrix is created by appending the local weighted POD bases.

A standard POD is then performed to the snapshot matrix and the basis is calu-

lating according to the method described in (6.2). The advantage of the nested POD

over the global POD method is the numerical e�ciency, since the computational e↵ort

for the former scales as O([
PNp

i=1 N
3
t

+ [Nnested

u
]3), where N

nested

u
is the the dimension

of the snaphot matrix resulted from the nested POD.

The nested POD acts to the following Np local matrices:

Unested =

2

6664

u
1
1(µ

i) u
2
1(µ

i) . . . u
N

s
u

1 (µi)
...

... . . .
...

u
1
Nh

u
(µi) u

2
Nh

u
(µi) . . . u

N
s
u

Nh
u
(µi)

3

7775

where i runs from 1 to Np.

The global POD matrix is then formed by selecting the first N
rn

u
modes, accord-

ing to the energy quantity (4.1.17), weighted by their eigenvalues. The concatenation

of the weighted modes results to the following global POD matrix:

Usn =
⇥ �

1
1�

1
1(µ1) ... �

Nrn
u

1 �
Nrn
u

1 (µ1) �
1
1�

1
1(µ2) ... �

1
1�

Nrn
u

1 (µNp )

... ...

...
... ...

...
�
1
1�

1
Nh
u

(µ1) ... �
Nrn
u

1 �
2
Nh
u

(µ1) �
2
1�

1
Nh
u

(µ2) ... �
Nurn
1 �

Nrn
u

Nh
u

(µNp )
⇤

As soon as the snapshot matrix Usn is formed, the procedure is the same as the one

described in section (6.2).
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4.3 Galerkin Projection

In the previous section, a POD approach for the calculation of the reduced spaces

has been discussed. The next step is the projection of the full order Navier - Stokes

equations coupled with the energy equation (one-way coupling), shown below, onto

the reduced space.

8
>>>><

>>>>:

@u
@t

+ r · (u ⌦ u) � r · ⌫ru = �rp in Q,

r · u = 0 in Q,

@✓

@t
+ r · (u✓) � ↵dif�✓ = 0 in Q.

(4.3.1)

For the projection, the Galerkin approach is used, where the full order momentum

equation is projected onto the velocity basis �(x), the continuity onto the pressure

modes,  (x), and the energy equation onto the temperature basis �(x), according to

the following equations:

8
>>>><

>>>>:

h(@u
@t

+ r · (u ⌦ u) � r · ⌫ru + rp),�)iL2(⌦) = 0,

hr · u, iL2(⌦) = 0,

h(@✓

@t
+ r · (u✓) � ↵dif�✓),�iL2(⌦) = 0.

(4.3.2)

There is yet the continuity equation, which, has not been exploited yet but a detailed

discussion follows in the next section.

Expanding the inner products in the above set of equations and exploiting the or-

thogonality condition, the following set of ODEs is obtained:

N
r
uX

j=1

Mij

@↵j

@t
=

N
r
uX

j=1

N
r
uX

k=1

Qijk↵j↵k + ⌫

N
r
uX

i=1

Lij↵i �
N

r
pX

i=1

Pijbi, (4.3.3)

N
r
pX

j=1

Rij↵j = 0, (4.3.4)

N
r
✓X

j=1

Kij

@cj

@t
=

N
r
uX

j=1

N
r
✓X

k=1

Gijk↵jck + ↵dif

N
r
✓X

j=1

Nijcj, (4.3.5)

where the reduced quadratic and linear terms, Qijk, Pij, Rij, Lij, Gijk, Kij and Nij
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are represented by the following matrices:

(Mij) = h�i,�jiL2(⌦), (4.3.6)

(Qijk) = hr · (�i ⌦ �j),�kiL2(⌦), (4.3.7)

(Lij) = h⌫��i,�jiL2(⌦), (4.3.8)

(Pij) = hr i,�jiL2(⌦), (4.3.9)

(Rij) = hr · �i, jiL2(⌦), (4.3.10)

(Kij) = h�i,�jiL2(⌦), (4.3.11)

(Gijk) = hr · (�i�j),�kiL2(⌦), (4.3.12)

(Nij) = h↵dif��i,�jiL2(⌦). (4.3.13)

For computational e�ciency reasons, the non-linear convective term is stored as a

third order tensor and at each Newton iteration the i � th component is evaluated as

(Q(↵)↵)i = ↵TQi••↵. The same approach is followed for Gijk, which is evaluated as

(G(↵)c)i = ↵TGi••c.

The projected initial conditions read:

↵i(0) = (u(x,µ, 0),�i), ci(0) = (✓(x,µ, 0),�i). (4.3.14)

To summarize all the above, the ROM is governed by the following system of ODEs:

8
>>>><

>>>>:

M ↵̇ = �↵TQ↵ + ⌫L↵ � Pb,

Kċ = �↵TGc + ↵difNc,

R↵ = 0,

(4.3.15)

which are then solved by any temporal discretisation scheme. The ROM is imple-

mented in ITHACA-FV, a C++ library based on OpenFOAM (Stabile and Rozza no

date). This library contains reduced solvers for a variety of problems such as steady

laminar and turbulent, unsteady laminar and unsteady turbulent via the non-intrusive

RBF method as well as unsteady turbulent via Galerkin projection. My contribution

was to develop the following solvers for the purpose of the current thesis:

• unsteady laminar with addition of the energy equation (re↵ered to as Unstea-
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dyNST and ReducedUnsteadyNST )

• unsteady turbulent using RBF with addition of the energy equation (re↵ered to

as UnsteadyNSTTurb and ReducedUnsteadyNSTTurb)

• unsteady buoyant Boussinesq which is re↵ered to as UnsteadyBB and Reduce-

dUnsteadyBB (in collaboration with K.S Star (Star, Stabile, Georgaka, Belloni,

Rozza, and Degroot 2019)).

The UnsteadyNST, UnsteadyNSTTurb and UnsteadyBB classes handle the ’O✏ine’

phase (4.1) which contains the FOM solution via OpenFOAM solvers, the snapshot

acquisition and the calculation of the basis functions via the POD. The calculation

of the reduced matrices is also part of those classes as well as the computation of any

lifting functions (more details on chapter 5) or supremizers.

The corresponding reduced classes (ReducedUnsteadyNST, ReducedUnsteadyNSTTurb

and ReducedUnsteadyBB) manage the ’Online’ phase which contains the solution of

the projected equations (ROM - 4.3.15) using the Powell’s hybrid method (“dogleg”)

via the Eigen::HybridNonLinearSolver module, which is part of the third party li-

brary Eigen (Guennebaud, Jacob, et al. 2010). The Eigen::HybridNonLinearSolver

solver follows a modified Newton-Raphson procedure. The eigen library is also used

for all the linear and non-linear algebra operations in ITHACA-FV. Since an iterative

method is used for the solution of the non-linear ROM equations, the tolerance of the

convergence of the residuals is set to 1 ⇥ 10�5. In this work, the temporal discretiza-

tion is performed by the backward Euler method. The reconstruction of the fields via

the equations (4.1.19, 4.1.20 and 4.1.20) is also part of the reduced class.
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Figure 4.1: Flow diagram of the POD-Galerkin ROM procedure.

4.4 Pressure Term

The projection of the pressure gradient, (rp), onto the POD basis can be derived

using Green’s theorem as follows:

h�, rpiL2(⌦) =

ˆ
⌦

� ·rpd⌦ = �
ˆ

⌦

r ·�pd⌦+

ˆ
@⌦

p� ·ndS =

ˆ
@⌦

p� ·ndS. (4.4.1)

Depending on the flow configuration, the contribution of the pressure field is either

negligible or zero and therefore is not always taken into account. In some ROMs,

the volume integral term is taken equal to zero since, for incompressible flows, the

velocity basis functions are computed from linear combinations of divergence free

snapshots. Therefore, the pressure term depends only on the boundary �. However,

this requires that each individual POD mode is divergence free, which is true up to

a numerical point (subject to machine precision error) (Lee and Dowell 2020). What

is more, in the case where enclosed flows (� ·n = 0 on @⌦) or flows with inlet-outlet

conditions with the outlet being far away from the obstacle are modelled, the pressure
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term vanishes completely (Deane, Kevrekidis, Karniadakis, and Orszag 1991; Ma and

Karniadakis 2002). However, as indicated in (Noack, Papas, and Monkewitz 2005a),

the pressure term can not always be neglected, especially when unstable shear layers

are studied or when pressure drop calculations are important, such as pressure drop

in pipes.

If the pressure term is considered in the reduced level as having separate modes

and temporal coe�cients to those of velocity, the system of equations (4.3.15) has Nu

equations but Nu +Np unknowns. Therefore, a saddle point problem is arising for the

temporal coe�cients a and b. To tackle with this issue, many di↵erent approaches

have been proposed. A possible approach, is presented in (Stabile and Rozza 2018)

in finite volume and in (Ballarin, Manzoni, Quarteroni, and Rozza 2014; Rozza and

Veroy 2007) in finite element context, where a supremizer enrichment method is pro-

posed, which also ensures that the inf-sup stability holds in the ROM level as well.

In this way, a unique solution is achieved for the saddle-point problem.

A second approach relies on the pressure poisson equation, which circumvents the

saddle-point problem. The continuity equation can not be directly exploited as the

snapshots are in fact already divergence free and so the velocity modes are. However,

instead of the incompressibility constraint, a continuity equation for pressure can be

employed, which is the known Pressure Poisson equation. This method is proposed

in (Akhtar, Nayfeh, and Ribbens 2009b) where the PPE is projected onto a pressure

POD basis. In (Bergmann, Bruneau, and Iollo 2009) a global POD basis for both

pressure and velocity fields was proposed, where the fields were decomposed using the

same temporal coe�cients. In such approach, in the ROM level, only the momentum

equation is exploited.

4.5 Supremizer Enrichment

In this work, since the ROM is derived from a FOM which is descritized by the finite

volume method, the resulting POD spaces do not automatically fulfill the inf-sup

(Ladyzhenskaya-Brezzi-Babuska) condition (Bo�, Brezzi, and Fortin 2013; Brezzi and

Bathe 1990). If a finite element method had been chosen, this condition would have
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been met by, for instance, selecting Taylor-Hood P2 � P1 finite element spaces. The

inf-sup or Ladyzhenskaya-Brezzi-Babuska (LBB) condition is formulated as follows:

inf
p2Q

sup
�2V

hr · �, pi
||r�|| ||p|| � � > 0. (4.5.1)

where � is a constant and p 2 Q = L
2(⌦) and � 2 V = H

1
0 (⌦) are test functions

of the velocity and pressure’s function space which comes from the weak formulation

of the Navier-Stokes equations and multiplies the continuity equation. The space

V = H
1
0 (⌦) has norm |�|1 = ||r�||.

In the supremizer enrichment approach, the idea is that the velocity POD space

is enriched with supremizer modes so that the LBB condition is fulfilled in the re-

duced order level. There are two ways of calculating the supremizer modes, the exact

and the approximated (Ballarin, Manzoni, Quarteroni, and Rozza 2014; Stabile and

Rozza 2018). In both ways, since the finite volume method is used for the solution,

the supremizer problem is epxressed in the strong form. In the exact method, this

problem is solved for each pressure mode,  i, as follows:

8
><

>:

�si = �r i in ⌦

si = 0 on @⌦,

(4.5.2)

where si denotes the supremizer solution. The velocity space is then enriched with

the resulting supremizer modes, which form a supremizer space S = {S( i)}
N

r
p

i=1. The

resulting dimension of the enriched velocity space is N
r

u
+ N

r

sup
, where N

r

sup
is the

cardinality of the space of the supremizer modes. In this way, a supremizer mode is

added for every pressure mode and the inf-sup condition is met (Ballarin, Manzoni,

Quarteroni, and Rozza 2014).

In the approximated approach, the supremizer enrichment is given by solving the

supremizer problem for each pressure snapshot as follows:

8
><

>:

�si = �rpi in ⌦

si = 0 on @⌦.

(4.5.3)
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The supremizer snapshot matrix, S = [s(p1), ..., s(pNs
p
)] 2 RN

h
sup⇥N

s
sup , is formed and

the POD approach similar to one described in the previous section, as well as an en-

ergy quantity (4.1.17) is applied to truncate the supremizer’s reduced space, keeping

only the most energetic, N
r

sup
, modes. Therefore, the resulting enriched velocity space

has a new cardinality of N
r

u
+ N

r

sup
. A benefit of the approximated against the exact

method is the reduced computational cost it entails.

It is worth mentioning that, the basis functions of the enriched velocity space are

not all orthogonal. The addition of the extra, non-divergence free, supremizer modes

into the velocity space provides a closure to the saddle problem, by allowing for the

exploitation of the continuity equation in (4.3.15).

4.6 Pressure Poisson Equation in the Reduced Level

In the PPE approach, the momentum equation (3.1.6) is projected onto the pressure

modes,  i. The projection is written as follows:

h�p, iL2(⌦) = h�r · (uru), iL2(⌦). (4.6.1)

Integrating by parts the LHS:

hrp, r iL2(⌦) = hr · ((u · r)u), iL2(⌦) (4.6.2)

where the basis functions  are considered smooth and zero on the boundary ( � = 0),

therefore the boundary term generated by the integration by parts is zero.

The Galerkin projection of the Navier - Stokes and energy equations, 4.3.2, is now:

8
>>>><

>>>>:

h(@u
@t

+ r · (u ⌦ u) � r · ⌫ru + rp),�)iL2(⌦) = 0,

hrp, r iL2(⌦) � hr · (u · ru), iL2(⌦) = 0,

h(@✓

@t
+ r · (u✓) � ↵dif�✓),�iL2(⌦) = 0.

(4.6.3)
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The modified ROM equations are:

8
>>>><

>>>>:

M ↵̇ = �↵TQ↵ + ⌫L↵ � Pb,

Kċ = �↵TGc + ↵difNc,

Db = ↵TU↵,

(4.6.4)

where the new matrices are defined as:

(Dij) = hr i, r jiL2(⌦), (4.6.5)

(Uijk) = hr · (r · (�j ⌦ �k)), r kiL2(⌦), (4.6.6)

(4.6.7)

where the matrix Uijk is treated in the same way as the Qijk and Gijk matrices. In

the ROM, the coupled velocity-PPE equations are treated in a monolithic way.

4.7 Summary of the Chapter

In this chapter, the mathematical background for the ROM was provided. This

included a detailed mathematical formulation of the POD-Galerkin method, as well

as methods for the treatment of the pressure term in the reduced level. A variation

of the classical POD method, the Nested POD was also dicussed.
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Chapter 5

Model Order Reduction for

Laminar Heat Transfer

In this chapter a POD-Galerkin method is derived for the parametric, 3D, unsteady

Navier-Stokes equations one-way coupled with the energy equation. The method is

tested on a T-junction, a set-up. Two parametric cases are considered: first the

parametrisation on the two temperature inlet boundary conditions, and in the second

case, on a physical parameter, the kinematic viscosity. The open-source finite volume

solver OpenFOAM is used to generate the FOM solutions, which are then used as an

input training space for the ROM.

The content of this chapter has been published in:

GEORGAKA, S., STABILE, G., ROZZA, G., and BLUCK, M.J. 2020. Parametric

POD-Galerkin Model Order Reduction for Unsteady-State Heat Transfer Problems.

Communications in Computational Physics, Vol 27, No. 1, pp. 1-32.

5.1 Mathematical Framework for the Full Order Model

The FOM is described by the incompressible, transient, parametrised Navier-Stokes

equations, coupled with the energy equation (one-way coupling). In an Eulerian

framework and domain Q = ⌦⇥ [0, Ts] ⇢ Rd ⇥R+ with d = 2, 3, these equations can
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be expressed as follows:

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

@u(x,µ,t)
@t

+ r · (u(x,µ, t) ⌦ u(x,µ, t)) � r · ⌫(µ)ru(x,µ, t) = �rp(x,µ, t) in Q,

r · u(x,µ, t) = 0 in Q,

@✓(x,µ,t)
@t

+ r · (u(x,µ, t)✓(x,µ, t)) � ↵dif�✓(x,µ, t) = 0 in Q,

u(x,µ, t) = f(x) on �In ⇥ [0, Ts],

✓(x,µ, t) = g(x,µ) on �In ⇥ [0, Ts],

u(x,µ, t) = 0 on �w ⇥ [0, Ts],

(⌫(µ))ru � pI)n = 0 on �o ⇥ [0, Ts],

(5.1.1)

where u is the fluid velocity, p the normalized pressure (devided by the fluid density), ✓

is the fluid temperature, ↵dif is the thermal di↵usivity, ⌫(µ) is the kinematic viscosity

and µ is the vector of parameters. Ts represents the time of the simulation, � =

�In [ �w [ �o is the boundary of ⌦ and it consists of three di↵erent parts �In,

�o and �w that indicate, respectively, inlet, outlet and physical wall boundaries.

The functions f(x,µ) and g(x,µ) represent the boundary conditions for the non-

homogeneous Dirichlet boundaries. Time independence of the boundary conditions f

and g is also assumed. Two cases are considered: one with parametric dependency on

the temperature inlet boundary conditions and a second with parametric dependency

on the kinematic viscosity.

5.2 Boundary Conditions and Snapshot Homogenization

One of the key aspects of the present work is the development of reduced order meth-

ods with parametrised boundary conditions. For this reason particular attention is

paid to this aspect. To enforce Dirichlet boundary conditions in the reduced order

model we employ a similar approach as the one in (Stabile and Rozza 2018). This

method was firstly proposed in (Graham, Peraire, and Tang 1999) for boundary condi-

tions that can be parametrised by a single multiplicative coe�cient, as in the present

case, and generalized for every type of function in (Gunzburger, Peterson, and Shadid

2007).

A lifting function is used to homogenize the snapshots so that they become indepen-
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dent of the boundary conditions. At the reduced order level, it is possible to specify

the new boundary values and these values are then added back. The homogenized

velocity value is written as:

u0(x,µ, t) = u(x,µ, t) �
NBCX

j=1

uDj(µ)�cj , (5.2.1)

where �cj are divergence free control functions, which are equal to the number of the

parametrised boundaries, and NBC is the number of parametrised boundary condi-

tions.

The coe�cients uDj are determined is such a way to make the snapshots homogeneous

after the subtraction of the chosen control function multiplied by the coe�cient itself.

Since we chose to have a number of control functions, which is equal to the number

of parametrised boundaries and that each control function assumes a uniform and

unitary value at the boundary to which it refers and uniform null values on the other

parametrised boundaries, the coe�cient uDj will assume the value that the snapshots

have at the boundary. This process is described in algorithm (2).

The POD is applied to the homogeneous snapshots and the boundary value is added

back so that:

u(x,µ, t) =
NBCX

j=1

uDj(µ)�cj +
N

s
uX

i=1

↵i(t,µ)�i(x). (5.2.2)

The values of the lifting functions are obtained by deviding the Dirichlet boundary in

di↵erent parts �D =
S

NBC

i=1 �Di , one for each parametrised boundary condition. Then

a full order problem is solved for each boundary condition following algorithm 3. In

the case of a problem with a non-linear dependency with respect to the boundary

conditions, the full order problem should be solved with values of the boundaries as

close as possible to those that one would like to test during the online stage. Also,

in case of a non-zero forcing term, the forcing term should also be considered in the

evaluation of the lifting functions.

For the energy equation a similar approach is followed. Unlike with the velocity

case, where a ’no-slip’ condition is specified on the walls, in heat transfer problems,
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Algorithm 2 The algorithm for the generation of the velocity lifting functions

Input: NBC , �D =
S

NBC
i=1 �Di , N s

u=Total number of snapshots

Output: {�ci}
NBC
i=1

1: for i = 1 to NBC do

2: for j = 1 to NBC do

3: if i = j then u|�Dj
= 1; else u|�Dj

= 0

4: end for

5: for l = 1 to N s
u do

6: Solve the full order problem and store the solution ! uil

7: end for

8: �ci = 1
Ns

u

PN
s
u

l=1 uil

9: end for

a homogeneous Neumann boundary condition is usually assigned (adiabatic walls).

Usually, together with the boundary conditions, an initial condition for the internal

field (IF ) is also prescribed. A modification of the algorithm (2) is proposed here

where also the initial value of the internal field is removed from the snapshots. In this

way, one could parametrize the internal field initial condition as well. Therefore, apart

from the lifting functions that are obtained for every Dirichlet boundary condition,

the domain is now devided into NBC +1 di↵erent parts ⌦R =
S

NBC

i=1 �Di

S
⇥IF where

the extra lifting function accounts for the initial internal field. The algorithm (3) is

modified as follows:

Algorithm 3 The algorithm for the generation of the temperature lifting functions

Input: NBC + 1, ⌦R =
S

NBC
i=1 �Di

S
⇥IF , N s

✓
= Total number of snapshots

Output: {�ci}
NBC+1
i=1

1: for i = 1 to NBC + 1 do

2: for j = 1 to NBC + 1 do

3: if i = j then ✓|�Rj
= 1; else ✓|�Rj

= 0

4: end for

5: for l = 1 to N s

✓
do

6: Solve the full order problem and store the solution ! ✓il

7: end for

8: �ci = 1
Ns

✓

PN
s
✓

l=1 ✓il

9: end for

During the calculation of the lifting functions, the adiabatic walls and the outlet

still have homogeneous Neumann conditions as in the FOM. The boundary condition

independent temperature is written as:

✓
0(x,µ, t) = ✓(x,µ, t) �

NBC+1X

j=1

✓Rj(µ)�cj(x). (5.2.3)
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The POD is then applied to the homogenised temperature snapshots and, at the

reduced order level, the boundary values, as well as the internal field initial value, are

added back to the temperature equation:

✓(x,µ, t) =
NBC+1X

j=1

✓Rj(µ)�cj(x) +

N
s
✓X

i=1

ci(t,µ)�i(x). (5.2.4)

5.3 Non-isothermal Mixing in T-junction - Parametrisation

of the Temperature Inlet Boundary Conditions

The first test case consists of a 3D T-junction shaped pipe with main pipe hydraulic

diameter Dm = 140mm, branch pipe hydraulic diameter Db = 80mm and lengths of

Lm = 3m and Lb = 0.44m respectively. The branch pipe is placed at the position of

0.33 ⇤ Lm. Streams of cold and hot water enter the system from the main and the

branch pipe and mix together in the T-junction region. The thermal di↵usivity is

taken as 0.160 ⇥ 10�6m2s�1 under atmospheric pressure. A summary of the physical

parameters is demonstrated in table (5.1). The computational domain consists of

34490 elements, is devided into three boundary parts plus one part for the initial

condition of the internal field, ⌦R = �m

S
�b

S
�o

S
⇥IF , as shown in figure (5.1).

The initial conditions are as shown in table(5.2).

Table 5.1: Summary of the physical parameters.

Main Pipe Branch Pipe

u (ms�1) 0.01 0.02
✓ (K) 323.15 343.15
D (mm) 140 80
Re 140 240

Figure 5.1: Sketch of the T-junction 3D mesh.

The FOM simulation is performed in OpenFOAM using a modified icoFoam solver,

which accounts also for the temperature transport equation. IcoFoam (Jasak 1996)
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is a transient solver, which uses the PISO algorithm (3.2) to solve the incompress-

ible Navier-Stokes equations. The spatial discretisation of the convenctive terms

is achieved using a combination of a second order central-di↵erencing and upwind

schemes. The di↵usive terms are discretized using second order central-di↵erencing

corrected schemes. For the temporal discretisation, a first order Euler backward im-

plicit scheme is used. The ROM computations are performed in the ITHACA-FV.

The FOM simulation is performed for T = 45s with time-step dt = 5 ⇥ 10�3s and

snapshots are collected every 0.2s using an equispaced grid method in time. There-

fore, the dimension of the correlation matrix is 225 ⇥ 225 and N
s

u
= N

s

✓
= N

s

p
= 225.

A convergence test as the number of snapshots increases has been performed. The

frequency with which the snapshots are collected has been doubled, thus the snap-

shots are now collected every 0.1s. This make the dimension of the correlation matrix

to be 450 ⇥ 450 and N
s

u
= N

s

✓
= N

s

p
= 450. To assess the quality of the ROM, the

relative ✏L2 error is calculated. This, for velocity and pressure is defined as follows:

✏L2(t) =
||XFOM(t) � XROM(t)||L2(⌦)

||XFOM(t)||L2(⌦)
%, (5.3.1)

where XFOM is the value of a particular field in the FOM model and XROM the one

that is calculated using the ROM. For temperature, the error is normalized by the

temperature change (�✓), according to the following equation:

✏L2(t) =
||✓FOM(t) � ✓ROM(t)||L2(⌦)

||�✓(t)||L2(⌦)
%, (5.3.2)

Figure (5.2) shows the comparison between the two di↵erent sampling frequencies,

showing that the relative error between the FOM and the ROM slightly improves

with the enrichment of the training space.

Table 5.2: Table with the boundary conditions where �m refers to the
main pipe inlet, �b to the branch pipe and �0 is the outlet.

�m �b �w �o ⇥IF

u (0.01, 0, 0) (0, 0, �0.02) (0, 0, 0) ru · n = 0 (0, 0, 0)
p rp · n = 0 rp · n = 0 rp · n = 0 0 0
✓ 323.15 343.15 r✓ · n = 0 r✓ · n = 0 323.15
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Figure 5.2: %✏L2(t) error for two sampling frequencies for the snapshot collection, per 0.2s
where N s

u = N s

✓
= N s

p = 225 and per 0.1s where N s
u = N s

✓
= N s

p = 450s. The ROM is
tested on ✓m = 323.15K and ✓b = 343.15K.

Table (5.3) demonstrates the minimum, maximum and average %✏L2 error for each

sampling frequency. The statistics also show that the average reconstruction error

slightly improves with snapshot addition. The biggest improvement throughout the

simulation is seen for the velocity field. This could be attributed to the non-linear

term in the momentum equation. However, since the di↵erence in the convergence is

small, for computational saving reasons, the first sampling frequency (per 0.2s) will

be used for the generation of the results.

To determine the number of retained POD modes, the cumulative energy of the

eigenvalues for velocity, temperature, pressure and supremizer fields is plotted in Fig-

ure (5.6). Table (5.4) depicts the cumulative energy of the first 5 and the 10th POD

mode for velocity, temperature, pressure and supremizer. It is clear that the first

mode captures most of the system’s energy (principal mode). In order to retain ap-

proximately 99.9% of the system’s energy, 5 modes for velocity, 5 for temperature and

3 for the pressure and supremizer are selected. The truncation reduces the original

POD space from N
s

u
= N

s

p
= N

s

✓
= N

s

sup
= 225 to N

r

u
= 5, N

r

✓
= 5, N

r

p
= 3 and
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N
r

sup
= 3. Figures (5.3),(5.4) and (5.5) show the first 4 POD modes for velocity,

temperature and pressure respectively.

Table 5.3: Statistics of the relative ✏L2(t) error for velocity, temperature and pressure fields
for two sampling frequencies, per 0.2s and per 0.1s.

u per 0.2s p per 0.2s ✓ per 0.2s u per 0.1s p per 0.1s ✓ per 0.1s

Minimum ✏L2(t)% 2.268 1.307 0.005 1.862 1.021 0.005
Maximum ✏L2(t)% 9.854 11.286 3.361 9.692 9.984 3.351
Average ✏L2(t)% 3.089 3.969 2.294 2.672 3.850 2.267

Table 5.4: Cumulative Energy of the POD modes (1-5 and 10) for velocity, temperature,
pressure and supremizer.

N Modes u ✓ p s
1 0.977065 0.909840 0.999999 0.997702
2 0.992858 0.976271 0.999999 0.999957
3 0.996520 0.991552 0.999999 0.999981
4 0.997990 0.996845 1.000000 0.999999
5 0.998780 0.998688 1.000000 0.999999
10 0.999864 0.999960 1.000000 0.999999
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Figure 5.3: First four basis functions for velocity corresponding to testing points ✓m =
333.15Kand ✓b = 353.15K. The figure is a vertical slice through the pipe’s centreline.
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Figure 5.4: First four basis functions for temperature corresponding to testing points ✓m =
333.15K and ✓b = 353.15K. The figure is a vertical slice through the pipe’s centreline.

69



Figure 5.5: First four basis functions for pressure corresponding to testing points ✓m =
333.15K and ✓b = 353.15K. The figure is a vertical slice through the pipe’s centreline.
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Figure 5.6: Cumulative energy of the eigenvalues for temperature, velocity, pressure and
supremizer fields.

The resulting velocity, temperature and pressure fields are reconstructed with the

%✏L2 error plotted in figure (5.7). The error seems to be larger for the velocity

during the first time-steps. This could be happening because in the beggining of the

simulation the flow exhibits a more transient behaviour than later, where it eventually

reaches the steady-state. Sampling in a non equispaced manner and including more

snapshots during the first time-steps, could reduce the error. Perhaps, to enhance the

results, one could also consider using a weighted-POD method (Chen, Navon, and

Fang 2011).
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Figure 5.7: %✏L2(t) error plots for temperature, velocity and pressure fields obtained on the
test case for temperature inlet boundary conditions ✓m = 333.15K and ✓b = 353.15K.

As in this case the temperature inlets are parametrised, the ROM, which is trained

only on inlets ✓m = 323.15K and ✓b = 343.15, has been tested on a set of di↵erent

values of the temperature inlets. For each case, the ✏L2 error between the FOM

and the ROM is plotted and shown in figure (5.8). The minimum, maximum and

average relative errors are also summarized in table (5.5). The maximum ✏L2 for the

reconstructed temperature field is less than 3.5% (5.5) for all cases.
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Figure 5.8: %✏L2(t) error for di↵erent temperature inlet conditions.

Table 5.5: Statistics of the relative for the temperature field for five di↵erent sets of tem-
perature inlet boundary conditions. The sets are A : 323.15, 333.15K, B : 313.15, 333.15K,
C : 333.15, 353.15K, D : 293.15, 313.15K and E : 328.15, 348.15K.

A B C D E

Minimum ✏L2(t)% 0.005 0.005 0.005 0.005 0.005
Maximum ✏L2(t)% 3.361 3.274 3.451 3.097 3.401
Average ✏L2(t)% 2.294 2.232 2.357 2.108 2.326

Due to the linearity of the energy equation, for di↵erent tested temperature inlet val-

ues than the trained values, the ROM can reproduce the fields with similar accuracy,

as shown in figure (5.8), without having to sample and enrich the POD space with

additional points. To compare the FOM and ROM results, a test for temperature

inlet values of ✓m = 333.15K and ✓b = 353.15K has been performed and the results

are shown in figures (5.9),(5.10) and (5.11), for velocity, temperature and pressure

respectively. One could observe that the biggest error is found in the area of the

branch pipe, figure (5.12). This error could be caused by the fact that the length of

the branch pipe is not long enough, so the flow is not fully developed by the time it

reaches the mixing region. Therefore, this region is characterized by large gradients.
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Figure 5.9: Comparison of the velocity field for the full order (odd rows) and reduced order
model (even rows). The fields are depicted for time instances equal to t = 3s, 10s and 45s
respectively. The figure is a vertical slice through the pipe’s centreline.
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Figure 5.10: Comparison of the temperature field for the full order (odd rows) and reduced
order model (even rows). The fields are depicted for time instances equal to t = 3s, 10s
and 45s respectively. The figure is a vertical slice through the pipe’s centreline. The black
square refers to the area zoomed in Figure 5.12.
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Figure 5.11: Comparison of the pressure field for the full order (odd rows) and reduced
order model (even rows). The fields are depicted for time instances equal to t = 3s, 10s and
45s respectively. The figure is a vertical slice through the pipe’s centreline.
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Figure 5.12: Zoom of the area with the biggest relative error between the FOM (first row)
and the ROM (second row) for temperature field. The figure is a vertical slice through the
pipe’s centreline.

A comparison also for case D is illustrated in figure (5.13), where the ROM is tested for

temperature inlets ✓m = 293.15K and ✓b = 313.15K. The reduced model reproduces

the main flow with a good accuracy, also for this case. The velocity and pressure

fields are omitted in figure (5.13), as the change in temperature boundary conditions

does not a↵ect the velocity and the pressure fields. Thus, they remain as in figures

(5.9) and (5.11). The simulations were performed on a computer with 4 cores, Intel

Xeon with 3, 07GHz processor. The CPU time of the FOM is 856.71s whereas, for

the ROM, is 2.29s. This corresponds to a computational speed-up factor of ⇡ 374.
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Figure 5.13: Comparison of the temperature field for the full order (odd rows) and reduced
order model (even rows) for the testing case of temperature inlets ✓m = 293.15K and
✓b = 313.15K. The fields are depicted for time instances equal to t = 3s, 10s and 45s. The
figure is a vertical slice through the pipe’s centreline.
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5.4 Non-isothermal Mixing in T-junction - Parametrisation

of the Kinematic Viscosity

The second case aims to parametrize the kinematic viscosity in the unsteady Navier-

Stokes equations. Due to the non-linearity of the convective term, this case needs

enrichment of the POD space with additional snapshots, which are solutions of a par-

ticular range of values of the parametrised quantity. For this purpose, the same model

as described in section (5.3) is used and the POD space is enriched with additional

sampling points for the parameter of interest.

Two sampling cases are considered. In the first case, 10 sampling points for the

kinematic viscosity, corresponding to ⌫ = [1 ⇥ 10�6
, 2.55 ⇥ 10�6

, 4.11 ⇥ 10�6
, 5.66 ⇥

10�6
, 7.22 ⇥ 10�6

, 8.77 ⇥ 10�6
, 1.03 ⇥ 10�5

, 1.18 ⇥ 10�5
, 1.34 ⇥ 10�5

, 1.5 ⇥ 10�5] and

a second one with 5 sampling points corresponding to ⌫ = [5 ⇥ 10�6
, 7.5 ⇥ 10�6

, 1 ⇥

10�5
, 1.25 ⇥ 10�5

, 1.5 ⇥ 10�5]. A convergence comparison between the two sampling

spaces and the FOM is provided in figure (5.14) where one could observe that the dif-

ferences between the two spaces are minimal. Therefore, for computational e�ciency

reasons, the test case will be performed on the space with the 5 sampling points.

These sampling values correspond to Reynolds numbers Rem = [280, 187, 140, 112, 93]

for the main pipe and Reb = [320, 213, 160, 128, 107] for the branch. Thus, the flow

remains laminar in the total pipe length.
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Figure 5.14: %✏L2(t) error for two sampling spaces for the parameter (kinematic viscosity).
These correspond to one with 5 sampling points for viscosity, where N s

u = N s

✓
= N s

p = 2250
and one with 10 sampling points where, N s

u = N s

✓
= N s

p = 4500s. The ROM is simulated
for ⌫ = 1.1 ⇥ 10�5.

The FOM simulation is performed for each value of the kinematic viscosity in the

above range, for 45s with time-step of dt = 5 ⇥ 10�3s. Snapshots are collected using

the enhanced temporal sampling frequency according to the convergence study from

the test case 1, figure (5.2). Therefore the snapshots are acquired every 0.1s, using

an equispace grid method in time and parameter, which gives a total number of 2250

snapshots (450/case). A new value of the kinematic viscosity in which the ROM has

not been trained but which belongs to the range of the training space, ⌫ = 1.1⇥ 10�5

(Rem=127, Reb = 160), is used to evaluate the capabilities of the parametrised ROM.

To retain around 99.9% of the system’s energy, as shown in table (5.6) and figure

(5.15), 10 modes for velocity, 5 for temperature, 2 for pressure and 3 for the suprem-

izer are kept. The %✏L2 error between the FOM and ROM is plotted in figure (5.14),

which indicates that the ROM is capable of reproducing the main characteristics of

the flow. Error statistics are summarized in table (5.7). A comparison between the

flow of the FOM and ROM models is illustrated in figures (5.16), (5.17) and (5.18),

which indicates that the ROM is performing well in the reconstruction of the velocity,

temperature and pressure fields.
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Table 5.6: Cumulative Energy of the POD modes (1-5 and 10) for velocity, temperature,
pressure and supremizer.

N Modes u ✓ p s
1 0.980889 0.908891 0.999999 0.997682
2 0.993338 0.976040 0.999999 0.999946
3 0.997342 0.991480 0.999999 0.999998
4 0.997521 0.996881 1.000000 0.999999
5 0.998132 0.998692 1.000000 0.999999
10 0.999964 0.999917 1.000000 0.999999
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Figure 5.15: Cumulative energy of the eigenvalues for temperature, velocity, pressure and
supremizer fields respectively.

Concerning the temperature field, the area of the branch pipe, where the biggest

di↵erences were found, has been improved, figure (5.19), compared to the first test

case (5.12). The improved results could be a consequence of the enhanced sampling

space, which used in this test case. The error on temperature is growing as the time

progresses and the two di↵erent temperature fluids start to mix in the mixing region.

Taking more snapshots during the mixing period could reduce the error. In addition,

to enhance the accuracy of the results, one could perform a denser sampling of the

parameter space, as discussed earlier, but this increases the overall time of the o✏ine

phase and, for laminar cases, like this one, the overall improvement would be minimal.

However, for more complicated cases, such as those in the turbulent range or in
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the transition range, enriching the POD space with additional sampling points of the

kinematic viscosity would be essential. The CPU time of the FOM model is 969.23s

and the one of the ROM is 4.23s. This corresponds to a speed-up of ⇡ 211.

Table 5.7: Relative ✏L2(t)% error for velocity, temperature and pressure fields.

u per 0.1s ✓ per 0.1s p per 0.1s

Minimum ✏L2(t)% 1.502 0.005 1.399
Maximum ✏L2(t)% 8.089 3.098 10.483
Average ✏L2(t)% 1.916 2.120 2.2311
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Figure 5.16: Comparison of the velocity field for the full order (odd rows) and reduced
order model (even rows). The fields are depicted for time instances equal to t = 3s, 10s and
45s. The viscosity is set to ⌫ = 1.1 ⇥ 10�5. The figure is a vertical slice through the pipe’s
centreline.
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Figure 5.17: Comparison of the temperature field for the full order (odd rows) and reduced
order model (even rows). The fields are depicted for time instances equal to t = 3s, 10s and
45s. The viscosity is set to ⌫ = 1.1 ⇥ 10�5. The figure is a vertical slice through the pipe’s
centreline.
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Figure 5.18: Comparison of the pressure field for the full order (odd rows) and reduced
order model (even rows). The fields are depicted for time instances equal to t = 3s, 10s and
45s. The viscosity is set to ⌫ = 1.1 ⇥ 10�5. The figure is a vertical slice through the pipe’s
centreline.
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Figure 5.19: Zoom of the area with the biggest relative error between the FOM (left) and
the ROM (right) for temperature field, ⌫ = 1.1⇥10�5. The figure is a vertical slice through
the pipe’s centreline.

5.5 Summary of the Chapter

In this chapter a parametrised ROM using POD-Galerkin method is presented for

applications in the study of thermal mixing in pipes. Apart from the 3D incompress-

ible Navier-Stokes equations, a third transport equation corresponding to energy has
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also been considered. The energy equation contains both convective and di↵usive

terms. The interest is on the reconstruction of velocity, pressure and temperature

fields. The proposed ROM has been validated on a case of thermal mixing in a

T-junction pipe, a common set-up found in nuclear power reactor cooling systems.

Two di↵erent parametric cases have been considered, one where the parametrisation

is on the temperature inlets and one where the parametrisation is on the kinematic

viscosity. In both cases, the ROM is capable of reproducing the results when tested

under the same boundary and initial conditions as in the FOM model, as well as, to

predict the fields on di↵erent parameters, given a suitable training. In both cases a

considerable computational speed up has been achieved, corresponding to a factor of

approximately 374 and 211 respectively.
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Chapter 6

Model Order Reduction for

Turbulent Heat Transfer

In this chapter, the 3D parametric transient Navier-Stokes equations, coupled with

the energy equation (one-way coupling) are considered. In particular, the method

presented in this work is applied to the modelling of turbulent thermal mixing in a T-

junction pipe. This configuration is commonly found in nuclear power reactor cooling

systems and plays a crucial role in the safety of reactors. The mixing of two di↵er-

ent temperature streams leads to high transient temperature fluctuations in the pipe

wall regions, which can potentially lead to thermal fatigue and subsequent failure of

the piping material (cracks formation, breakage etc). Turbulent thermal mixing has

been studied both experimentally and computationally in (Ayhan and Sokmen 2012;

Frank, Lifante, Prasser, and Menter 2010; Kuczaj, Komen, and Loginov 2010; Naik-

Nimbalkar, Patwardhan, Banerjee, Padmakumar, and Vaidyanathan 2010; Tunstall,

Laurence, Prosser, and Skillen 2016b; Walker, Simiano, Zboray, and Prasser 2009).

In the computational case, various turbulent modelling techniques have been studied,

including Large Eddy Simulation (LES) and Unsteady Reynolds Averaged Navier-

Stokes (URANS). These methods, given the high Reynolds numbers and the nature

of the problem, require fine 3D meshes, which lead to very high CPU and memory

costs. A ROM could therefore play a key role in such studies, giving the ability to

obtain fast and realiable simulations. Model order reduction for nuclear applications

has been previously applied in (Sartori, Cammi, Luzzi, and Rozza 2016c) for mod-

elling the movement of the control rods in a nuclear reactor and in (Buchan, Pain,
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Fang, and Navon 2013b) for reactor critically problems.

This work extends the previous work of (Georgaka, Stabile, Rozza, and Bluck 2019)

from laminar to turbulent heat transfer case. To the author’s knowledge, a ROM

for modelling the parametric 3D Navier-Stokes equations, coupled with the energy

equation (one-way coupling), including turbulence modelling is presented here for the

first time. The reduced basis is computed with two di↵erent approaches: a standard

POD and a nested POD method. It is known that, in the turbulent case, the POD-

Galerkin method su↵ers stability issues due to the trancation of the less energetic

but highly dissipative modes. Several solutions have been proposed, including closure

methods (Wang, Akhtar, Borggaard, and Iliescu 2012) or artificial viscosity methods

(Borggaard, Iliescu, and Wang 2011).

In this work, the ROM is stabilised with the incorporation of the eddy viscosity

term in the ROM momentum equation. For this, an approach similar to the one de-

veloped in (Hijazi, Ali, Stabile, Ballarin, and Rozza 2018; Hijazi, Stabile, Mola, and

Rozza 2019) is followed. This approach is data-driven and based on the use of PODI

with Radial Basis Function (RBF) interpolation for the calculation of the temporal

coe�cients of the eddy viscosity field. The POD-RBF method has been previously

applied in the model order reduction context in (Dehghan and Abbaszadeh 2016) as

a non-intrusive model order reduction method as well as in (Xiao, Fang, Pain, Navon,

Salinas, and Muggeridge 2015) for multiphase flow in porous media. In (Ostrowski,

Bialecki, and Kassab 2008), a POD-RBF network for inverse heat conduction prob-

lems is presented.

The content of this chapter has been submitted in:

GEORGAKA, S., STABILE, G., STAR, K., ROZZA, G., and BLUCK, M.J. A Hy-

brid Reduced Order Method for Modelling Turbulent Heat Transfer Problems. Com-

puters and Fluids, 2019
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6.1 Mathematical Framework for the Full Order Model

In this section, the mathematical formulation of the FOM is presented which is de-

scribed by the 3D, incompressible, transient, parametric Navier-Stokes equations one-

way coupled with the 3D transient, parametric energy equation. Considering a Eu-

lerian framework and domain Q = ⌦ ⇥ [0, Ts] ⇢ Rd ⇥ R+ with d = 2, 3, the FOM

equations are formulated as follow:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

@u(x,µ,t)
@t

+ r · (u(x,µ, t) ⌦ u(x,µ, t)) =

= r ·
⇥
(⌫ + ⌫t) · 1

2

�
ru(x,µ, t)+

+(ruT (x,µ, t))
�

� p(x,µ, t)I
⇤
,

r · u(x,µ, t) = 0 in Q,

@✓(x,µ,t)
@t

+ r · (u(x,µ, t)✓(x,µ, t))�

�↵dif�✓(x,µ, t) = 0 in Q,

u(x,µ, t) = f(x,µ) on BIn,

✓(x,µ, t) = g(x) on BIn,

r✓ · n = 0 on Bw,

u(x,µ, t) = 0 on Bw,

(⌫ru � pI)n = 0 on Bo.

(6.1.1)

The vector of parameters is represented by the greek letter µ. BIn = �In ⇥ [0, Ts],

Bw = �w⇥[0, Ts] and Bo = �o⇥[0, Ts], Ts represents the time-period of the simulation,

� = �In [ �w [ �o is the boundary of Q and consists of three di↵erent parts �In, �o

and �w that indicate, respectively, inlet(s), outlet and physical wall boundaries (6.1.

The functions f(x,µ) and g(x) represent Dirichlet boundary conditions for the non-

homogeneous boundaries. Time independence of the boundary conditions f and g is

also assumed. Since we are dealing with the incompressible equations, the density ⇢

has been omitted and is assumed to have the value of 1. In this work, the parametric

dependency is on the velocity inlet boundary conditions.
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6.2 Reduced Order Model Formulation

For the calculation of the temporal coe�cients, a Galerkin approach is followed for the

velocity, pressure and temperature fields, where the original equations are projected

onto the reduced basis. The momentum equation is projected onto the spatial POD

basis, �(x) , while the continuity equation is projected onto the pressure spatial basis,

 (x), using the supremizer method (4.5.3). The energy equation is projected onto the

temperature spatial basis, �(x). The projection results in a set of ordinary di↵erential

equations for the evolution of the temporal coe�cients for velocity, pressure and

temperature fields:

M ↵̇ + (B + BT )↵ � ↵TQ↵ + lT
�
QT1 + QT2

�
↵ � Pb = 0, (6.2.1)

R↵ = 0, (6.2.2)

Kċ � ↵TGc � ↵diftNc = 0, (6.2.3)

where the dotted terms ↵̇ and ċ represent time derivatives and the reduced matrices

are:

(M )ij = h�i,�jiL2(⌦), (6.2.4)

(B)ij = h��i,�jiL2(⌦) (6.2.5)

(BT )ij = hr · (r(�T

i
),�jiL2(⌦) (6.2.6)

(Q)ijk = hr · (�i ⌦ �j),�kiL2(⌦), (6.2.7)

(Q)T1ijkh⇠i��j,�kiL2(⌦), (6.2.8)

(Q)T2ijkhr · ⇠i(r�T

j
),�kiL2(⌦), (6.2.9)

(P )ij = hr i,�jiL2(⌦), (6.2.10)

(R)ij = hr · �i, jiL2(⌦), (6.2.11)

(K)ij = h�i,�jiL2(⌦), (6.2.12)

(G)ijk = hr · (�i�j),�kiL2(⌦), (6.2.13)

(N )ij = h��i,�jiL2(⌦). (6.2.14)

Considering the eddy viscosity field, the vector of temporal coe�cients, l(t), is com-

puted using the non-intrusive method of Radial Basis Function (RBF) interpolation.
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In this way, since there is no projection of the eddy viscosity modes onto the turbu-

lence modelling equations, the ROM is independent of the turbulent method used in

the FOM.

The temporal coe�cients, l(µ, t), for a new value of the parameter, are calculated

during the online stage as a linear combination of N
s

⌫t
(j = 1, 2, . . . , N s

⌫t
) chosen radial

basis functions kernels ⇥:

li(µ, t) =

N
s
⌫tX

j=1

wi,j⇥i,j(||µ � µj||L2), for i = 1, 2, . . . , Nt, (6.2.15)

where, w represents the vector of the linear weights, µ are the sampling points (cen-

ters) corresponding to eddy viscosity snapshots ⌫t and µ is the value of the new input

parameter, which does not coincide with any of the training points. For the RBFs,

various kernels, ⇥, can be used. In this work, Gaussian kernels are considered, defined

as follows:

⇥(||µ � µj||L2) = exp(��||µ � µj||2L2), (6.2.16)

where � is a parameter, which determines the spread of the kernel. The RBF mono-

tonically decreases as we move away from the centre. Gaussian RBFs response is

local, meaning that their response is the best in the area near to the centre, in con-

trast to multiquadratic RBFs, which are global. The unknowns are computed in the

o✏ine stage.

The vector of the weights is calculated by solving the following linear system:

N
s
⌫tX

j=1

wi,j⇥i,j(||µk � µj||L2) = l(µ, t)i,k, for k = 1, 2, . . . , Nt. (6.2.17)

The above equation can be written in matrix form and solved for the unknown weights

as:

⇥w = l , w = ⇥�1l, (6.2.18)

provided that the matrix ⇥ is non-singular, therefore invertible and the temporal

coe�cients, l(µ, t)i,j, are calculated by projecting the eddy viscosity snapshots onto
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the spatial eddy viscosity modes, for each timestep, as:

li,j(µ, t) = h⇠i, ⌫tjiL2(⌦), for j = 1, 2, . . . , N s

⌫t
. (6.2.19)

Once the unknown weights are calculated in the o✏ine phase, the system of equations

(6.2.1), is ready to be solved.

6.3 Applications

The mathematical framework described in the previous sections is tested on a 3D T-

junction pipe, where di↵erent temperature water streams are mixing in the tee area

at high Reynolds numbers. The boundary of the domain ⌦, denoted with �, consists

of four parts � = �m [�b [�w [�o as shown in figure 6.1. The geometrical properties

of the pipe are shown in table 6.1 while the total length of the pipe is L = 3.0m. In

section 6.4 the ROM is trained on ten di↵erent sets of inlet velocity values (table 6.2)

and then is tested on four sets of values within the range of the training space (table

6.3). Then, in section 6.5, the set D is selected and a comparative study between

standard and nested POD methods is performed.

Γ_w

16.1 cm

L

Γ
b

Γ
w

Γ
m

Γ
o

Figure 6.1: Computational mesh of the T-junction pipe.

Figure 6.2: Mesh in T-junction region.
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Main Pipe Branch Pipe

u (ms�1) values in table (6.3) values in table (6.3)
✓ (K) 292.15 309.5
D (m) 0.14 0.08
Re values in table (6.3) values in table (6.3)

Table 6.1: Summary of the physical parameters for the reduced order model.

6.4 Numerical Study: Thermal mixing in T-junction pipe

A parametric turbulent case is studied, where the velocity inlet boundary conditions

on both inlets are parametrised. This test case has been chosen as the parametric

response is non-linear and a training is needed. The training space is constructed

using ten sets of sampling points for the two velocity inlets, as shown in table (6.2).

The reduced order model is evaluated on four sets of values (table (6.3)), which

belong to the training range but they do not coincide with the samples used to train

the ROM. It is known from the literature, (Feng, Frahi, and Baglietto 2018; Frank,

Lifante, Prasser, and Menter 2010; Tunstall, Laurence, Prosser, and Skillen 2016a)

that the modelling of turbulent non isothermal mixing in T-junctions appears to be a

challenging test case and the LES method is usually required for the simulation of the

transient velocity and temperature fields. However, since the intention of this work

is to compare two di↵erent numerical approaches, the FOM simulation performed in

OpenFOAM and the ROM simulation performed in ITHACA-FV C++ library, the

URANS k-! SST turbulence model has been considered for CPU and memory saving

reasons. As the hybrid PODI-Galerkin method is non-intrusive with respect to the

eddy viscosity field, any type of RANS turbulence modelling could be in principle

used for the construction of the ROM.

Um (ms�1) Ub (ms�1)

(0.535,0,0) (0,0,-0.715)
(0.545,0,0) (0,0,-0.725)
(0.555,0,0) (0,0,-0.735)
(0.565,0,0) (0,0,-0.745)
(0.575,0,0) (0,0,-0.755)
(0.585,0,0) (0,0,-0.765)
(0.595,0,0) (0,0,-0.775)
(0.605,0,0) (0,0,-0.785)
(0.615,0,0) (0,0,-0.795)
(0.625,0,0) (0,0,-0.805)

Table 6.2: Sampling points for the parameters.
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set Um (ms�1) Ub (ms�1) Rem Reb

A (0.550,0,0) (0,0,-0.730) 77000 58400
B (0.570,0,0) (0,0,-0.750) 79800 60000
C (0.580,0,0) (0,0,-0.760) 81200 60800
D (0.590,0,0) (0,0,-0.770) 82600 61600

Table 6.3: Testing points for the parameters.

In the o✏ine phase, the FOM is modelled using the transient pisoFoam solver. The

simulation time is set to 3s with time-step dt = 0.0025s, to allow the flow to reach the

outlet. The computational mesh, shown in figures (6.1) and (6.2), consists of 291816

cells (hexahedral). The y
+ value of the mesh is 126 and for this reason wall functions

have been used (kqRWallFunction for k and omegaWallFunction for ! (Liu 2016)).

The spatial and temporal discretisation schemes are summarised in table (6.4). The

FOM is run 10 times (one for each sampling pair) with snapshots being collected

every 0.1s. This makes a total of 30 · 10 = 300 snapshots (30 snapshots per sampling

pair) for each field. Therefore, N
s

u
= N

s

p
= N

s

sup
= N

s

✓
= N

s

⌫t
= 300. The reduced

basis is computed with the POD method. The POD is applied directly to the global

snapshots matrices, which contain both parameter and time information in an equi-

spaced grid, according to (4.2) and the reduced spaces are then chosen according to

the decay of the eigenvalues, as shown in figure (6.7). The retained modes are 6 for

velocity, 10 for pressure and supremizer, 10 for the eddy viscosity and 11 modes for

temperature.

The ROM is tested on four di↵erent sets of velocity inlet values that belong to the

training space (table 6.3). Figures (6.3), (6.4), (6.5) and (6.6) show the relative

%✏L2(t) error of the velocity, pressure, eddy viscosity and temperature fields for the

four test sets. According to these figures, for the velocity field, the ROM performs

best on set D, while for pressure, temperature and eddy viscosity fields, the approxi-

mation results to almost similar relative errors. According to figure (6.3), the relative

error on the non-linear velocity field grows for sets that lie closer to the lower limit

of the training space. As the training space is enriched with new training points, the

ROM appears to perform better, in terms of the velocity field, and therefore set D

exhibits the lowest relative error, amongst the four sets.
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FOM ROM

@/@t Backward Backward
r· Upwind, Central Upwind, Central
� Central Central

Table 6.4: Numerical Schemes for FOM and ROM.
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Figure 6.3: %✏L2(t) error of velocity field for the four
test sets (6.3).
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Figure 6.4: %✏L2(t) error of pressure field for the four
test sets (6.3).
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Figure 6.5: %✏L2(t) error of eddy viscosity field for the
four test sets (6.3).
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Figure 6.6: %✏L2(t) error of teperature field for the four
test sets (6.3).

6.5 Nested and Standard POD methods

In this section, a comparison between nested POD and standard POD methods for the

test set D (table (6.3)) is presented. The boundary conditions for the FOM are shown

in table (6.5). In the standard POD method, the POD is applied directly onto the

global snapshots matrices, as explained in section 6.4. In the nested POD method, 10

local snapshot matrices are constructed, one for each sampling pair, and the POD is
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applied on each of them individually. The resulting basis functions are then truncated

using the energy quantity (4.1.17), in order to retain approximately 99.9% of the total

energy. The chosen POD basis are then weighted by their eigenvalues and a global

weighted snapshot matrix is constructed for each field. For each sampling point,

out of the 30 basis functions, only 10 are retained and weighted, giving a reduced

dimension for the final global matrix of N
rn

u
= 10 · 10 = 100.

�m �b �w �o

u (0.59, 0, 0) (0, 0, �0.77) (0, 0, 0) ru · n = 0
p rp · n = 0 rp · n = 0 rp · n = 0 0
✓ 292.15 309.5 r✓ · n = 0 r✓ · n = 0

Table 6.5: Summary of boundary conditions where �m is the main pipe inlet, �b is the
branch pipe and �o is the outlet.
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Figure 6.7: Cumulative energy of the eigenvalues for temperature, velocity, pressure and
eddy viscosity fields for nested and standard POD methods, respectively.

The POD is applied on the weighted global matrix and the same procedure as in

the standard POD is followed. The final decay of the eigenvalues is provided in fig-

ure (6.7). For the purposes of the comparison, the same number of modes for both

the standard POD and the nested POD have been retained. This makes N
r

u
= 6,

N
r

p
= N

r

sup
= 10, N

r

✓
= 11 and N

r

⌫t
= 10. The numerical e↵ort of the nested POD can

be calculated as O([N3
t

· Np + [N nested
u

]3) = O(303 · 10 + [10 · 10]3) ⇡ 2 · 106, while
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for the standard POD O([N3
t
·Np + [N nested

u
]3) = O([30 · 10]3) ⇡ 2 · 107. Therefore,

the nested POD is one order of magnitude faster. For cases with a higher number

of snapshots and sampling points, the smaller numerical e↵ort of the nested POD is

more apparent (Brands, Mergheim, and Steinmann 2016).

In the online phase, the ROM is evaluated on a new set of velocity inlet values,

Um = 0.59 ms�1 and Ub = 0.77 ms�1 (test set D). The ROM is tested for 3s with

time-step dt = 0.0025s. The total execution time of the FOM, on a single Intel Xeon

3.07GHz processor, is 13782.1s, while of the ROM is 11.02s. This makes the ROM

approximately 1259 times faster than the FOM (table 6.6).

FOM ROM

CPU Time(s) 13782.1 11.02

Table 6.6: Computational time for the full order (running on a single processor) and reduced
order models.

A ROM simulation without the use of RBF for the eddy viscosity field is initially

applied. In this case, the ROM from the laminar case has been used which does

not contain the term associated with the eddy viscosity field (eq. 4.3.15). Figures

(6.9) and (6.8) show the FOM and ROM velocity and temperature fields at time

instance t = 3s, in the absence of RBF, as well as a comparison of the L
2 relative

error for the velocity field, with and without RBF interpolation. It is clear from

the aforementioned figures that the error between the FOM and ROM velocity fields

is much higher in the latter case. The inconsistency between the FOM and ROM

fields is also apparent in figure (6.9). The error also a↵ects the temperature field,

since there is an one-way coupling between those fields. Therefore, employing RBF

interpolation during the ROM is essential. Similar behaviour is reported in (Hijazi,

Ali, Stabile, Ballarin, and Rozza 2018) for a steady-state case and without taking the

energy equation into account.
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Figure 6.8: %✏L2(t) error for velocity field with and without RBF eddy viscosity.

Figure 6.9: Comparison of the velocity and temperature fields of the full order (row 1
and 3, respectively) and reduced order model without use of RBF viscosity (row 2 and 4,
respectively). The fields are depicted for time instances equal to t = 3s. The figure is a
vertical slice through the pipe’s centreline.

In the presence of RBF interpolation for the eddy viscosity field, figure (6.10) il-

lustrates the relative %✏L2 error between the FOM and the ROM constructed using

standard POD and nested POD methods.
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Figure 6.10: %✏L2(t) error for temperature, velocity, pressure and eddy viscosity fields for
the nested and standard POD methods, respectively.

According to this figure, the relative error for the standard POD method is slightly

lower during the first 2 seconds of the simulation followed by similar or slightly better

performance of the nested POD for the rest of the simulation. Tables (6.7) and (6.8)

summarise a few statistics, showing minimum, maximum and average error for nested

and standard POD methods, where, the average error appears to be very close for

both cases. The pressure and eddy viscosity fields appear to have the largest relative

error according to figure (6.10). For pressure, this can be attributed to the lack of

an explicit equation, as in the ROM, the pressure basis functions are projected onto

the continuity equation using the supremizer method (Ballarin, Manzoni, Quarteroni,

and Rozza 2014; Rozza and Veroy 2007). An exploitation of a Poisson equation for

pressure would probably improve the error (Caiazzo, Iliescu, John, and Schyschlowa

2014; Noack, Papas, and Monkewitz 2005b; Stabile, Hijazi, Mola, Lorenzi, and Rozza

2017). As for the eddy viscosity field, the use of a non-intrusive, pure data-driven

method could cause the slighlty higher relative error, compared to the velocity and

temperature fields, where the exact equations are projected onto the reduced ba-

sis. For the temperature field, the energy equation is still one-way coupled with the

momentum equation, therefore the error appears to be smaller.
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Nested u ✓ p ⌫t

Minimum 1.410 0.447 3.097 1.472
Maximum 4.856 0.909 7.299 9.826
Average 2.252 0.642 5.584 6.002

Table 6.7: % Relative ✏L2(t) error for velocity, temperature and pressure and eddy viscosity
fields for the nested POD method.

Standard u ✓ p ⌫t

Minimum 1.411 0.409 3.324 1.248
Maximum 2.012 0.990 7.996 9.293
Average 1.642 0.624 5.563 5.297

Table 6.8: % Relative ✏L2(t) error for velocity, temperature and pressure and eddy viscosity
fields for two the standard POD method.

A visualisation of the instantaneous fields is displayed in figures (6.11, 6.12, 6.13)

and (6.14), for time instances t = 0.5s, 1.5s and 3s, where both methods show similar

qualitative performance. The relative di↵erence between the FOM and ROM fields is

visualised in figures (6.17) and (6.18). The largest di↵erence is found in the mixing

area of the pipe. This behaviour is expected, as in the mixing region, the flow is

complex and highly transient. This behaviour is also apparent in figure (6.19) and

(6.20), where the radial velocity is plotted against the arc length of the pipe, for

t = 0.5s and t = 3s, in three regions: before the mixing, in the mixing and after

the mixing region, close to the outlet. The mixing region is where the radial velocity

diverges the most.
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Figure 6.11: Comparison of the velocity field of the full order (row 1,4,7) and reduced order
model using standard POD (row 2,5,8) and nested POD method (row 3,6,9) for test case
D. The fields are depicted for time instances equal to t = 0.5s, 1.5s and 3s. The figure is a
vertical slice through the pipe’s centreline.
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Figure 6.12: Comparison of the temperature field of the full order (row 1,4,7) and reduced
order model using standard POD (row 2,5,8) and nested POD method (row 3,6,9) for test
case D. The fields are depicted for time instances equal to t = 0.5s, 1.5s and 3s. The figure
is a vertical slice through the pipe’s centreline.
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Figure 6.13: Comparison of the pressure field of the full order (row 1,4,7) and reduced order
model using standard POD (row 2,5,8) and nested POD method (row 3,6,9) for test case
D. The fields are depicted for time instances equal to t = 0.5s, 1.5s and 3s. The figure is a
vertical slice through the pipe’s centreline.
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Figure 6.14: Comparison of the eddy viscosity field of the full order (row 1,4,7) and reduced
order model using standard POD (row 2,5,8) and nested POD method (row 3,6,9) for test
case D. The fields are depicted for time instances equal to t = 0.5s, 1.5s and 3s. The figure
is a vertical slice through the pipe’s centreline.
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Figure 6.15: Di↵erence between the velocity full order and reduced order standard POD
(odd rows) and nested POD (even rows). The fields are depicted for time instances equal
to t = 0.5s, 1.5s and 3s. The figure is a vertical slice through the pipe’s centreline.

107



Figure 6.16: Di↵erence between the temperature full order and reduced order standard
POD (odd rows) and nested POD (even rows). The fields are depicted for time instances
equal to t = 0.5s, 1.5s and 3s and increasing from left to right. The figure is a vertical slice
through the pipe’s centreline.
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Figure 6.17: Di↵erence between the pressure full order and reduced order standard POD
(odd rows) and nested POD (even rows). The fields are depicted for time instances equal to
t = 0.5s, 1.5s and 3s and increasing from left to right. The figure is a vertical slice through
the pipe’s centreline.
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Figure 6.18: Di↵erence between the full order and reduced order standard POD (first row)
and nested POD (second row) for the eddy viscosity field. The fields are depicted for time
instances equal to t = 0.5s, 1.5s and 3s. The figure is a vertical slice through the pipe’s
centreline.
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Figure 6.19: Comparison of the radial velocity between the FOM, ROM-Global and ROM-
Nested for three di↵erent locations, before the mixing, in the mixing region and near the
outlet for t = 0.5s.
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Figure 6.20: Comparison of the radial velocity between the FOM, ROM-Global and ROM-
Nested for three di↵erent locations, before the mixing, in the mixing region and near the
outlet for t = 3s.

To further assess the performance of the ROM against the FOM, the relative error

of the total energy (kinetic and thermal) is plotted in figure (6.21), where it shows a

small (less than 0.25%) relative error. Overall, both the ROM derived using standard
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and the ROM derived using nested POD methods are performing well throughout

the simulation.
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Figure 6.21: Relative error on total energy (kinetic and thermal)
between the FOM and the ROM for standard and nested POD
methods.

6.6 Summary of the Chapter

In this chapter a hybrid reduced order model for modelling turbulent heat trans-

fer problems has been studied. The hybrid method consists of the POD-Galerkin

approach for the velocity, temperature and pressure fields and PODI with RBF inter-

polation for the eddy viscosity field. From the discussion it is clear that the traditional

POD-Galerkin approach alone is not su�cient for turbulent flows. Two variations of

POD, standard and nested, have been studied and compared. The proposed method

is tested on a T-junction pipe where turbulent thermal mixing takes place. Accord-

ing to the results, the ROM constructed using standard or nested POD is capable

of reproducing the FOM results with good accuracy in both cases, while the nested

POD method requires less numerical e↵ort. A speed-up factor of approximately 1259

has been obtained, meaning that the ROM is three orders of magnitude faster than

the FOM.
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Chapter 7

Model Order Reduction for

Buoyancy Driven Flows

In the present chapter model order reduction for buoyancy driven flows is discussed.

Natural convection is a mechanism in which fluid motion is generated solely by den-

sity gradients induced by temperature gradients. The benefits of this mechanism

have been recently recognised by the nuclear industry for the establishment of pas-

sive cooling systems in modern nuclear reactor designs, as no other artificial means

of heat transfer, such as pumps, fans etc, are required for the removal of the decay

heat. However, due to the complex physics of buoyancy driven flows arising from

the strong coupling between the velocity and temperature fields, phenomena such as

thermal stratification could a↵ect the e�ciency of the passive systems to remove heat.

This chapter deals with the modelling of the aforementioned flows from a model or-

der reduction point of view. The e↵ect of buoyancy is modelled using the Boussinesq

approximation. In the first section, a parametric POD-Galerkin approach is followed

for modelling enclosed buoyancy driven flows. Since enclosed flows are considered,

the pressure field can be neglected. The method is tested on a di↵erentially heated

square cavity. This geometry, while simple, encompasses well the complex physics of

natural convention and, therefore, is widely applied in many industrial applications.

In the second part of this chapter, open flows are studied and the pressure field

is added in the ROM by implementing a PPE method. The ROM is tested on nat-

ural circulation in a U-bend pipe geometry, where a constant uniform cold heat flux
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is applied on a wall part. The introduction of the heat flux can cause the circulating

flow to stall. The ability of the ROM to predict such behaviour is assessed and com-

pared with the FOM, simulated in OpenFOAM.

The content of this chapter has been partially published in:

STAR, K., STABILE, G., GEORGAKA, S., BELLONI, F., ROZZA, G., and DE-

GROOTE, J. 2019. POD-Galerkin Reduced Order Model of the Boussinesq Approx-

imation for Buoyancy - Driven Enclosed Flows. Building theory and applications :

proceedings of M&C 2019. p.2452-2461.

My contribution to the above proceedings paper is on the development of the ROM

mathematical framework for enclosed flows presented in the following chapter, as well

as on the development of some parts of the ROM solver. All of the results presented

in the subsequent chapter constitute my own work and are not part of the paper.

7.1 Mathematical Framework for the Full Order Model

In the presence of gravity body force, g, the incompressible Navier-Stokes equations

(3.1.5,3.1.6,3.1.7) are modified to accommodate for the extra term as follows:

8
>>>><

>>>>:

⇢
@u
@t

+ r · (⇢u ⌦ u) � µ�u = �rp + g⇢ in Q,

r · u = 0 in Q,

@✓

@t
+ (r · u)✓ � ↵dif�✓ = 0 in Q,

(7.1.1)

where ⇢ is the density.

In the case where the density and graviational acceleration are constant, the gravita-

tional force can be written as:

⇢g = r(⇢g · r), (7.1.2)

where r is the position vector. Thus,

rp � ⇢g = r(p � ⇢g · r). (7.1.3)
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7.2 The Boussinesq Approximation

The Boussinesq approximation states that the density in intertia terms (unsteady

convection terms) can be treated as constant (⇢0), while the density in the gravita-

tional term should be treated as variable (⇢). This approximation is valid only when

�⇢ << ⇢0. Hence, the momentum and continuity equations are expressed as:

8
><

>:

@u
@t

+ r · (u ⌦ u) � ⌫�u = �rp̃ + g ⇢

⇢0
in Q,

r · u = 0 in Q,

(7.2.1)

where p̃ = p/⇢0 is the normalised pressure and all the terms in the momentum equa-

tion have been devided by the constant density ⇢0. The non-constant density, ⇢, is

defined from the following Taylor expansion:

⇢ = ⇢0 + �(✓ � ✓0) +O(((✓ � ✓0)
2) ⇡ ⇢0[1 � �(✓ � ✓0)], (7.2.2)

where only the first order terms from the Taylor’s expansion are retained. In the

above expression, ✓0 is the reference temperature and � is the thermal expansion

coe�cient, defined as:

� = � 1

⇢0

@⇢

@✓
⇡ � 1

⇢0

⇢� ⇢0

✓ � ✓0
. (7.2.3)

In terms of implementation of the buoyant solvers in OpenFOAM, the pressure and

buoyancy terms are treated as one term, prgh, for numerical convenience. The prgh

pressure is defined as:

prgh = p � ⇢g · r, (7.2.4)

where the term ⇢g · r is the hydrostatic pressure and r is the position vector. The

prgh pressure is sometimes called “pseudo-dynamic” pressure and has no physical

meaning. It is just used for numerical convenience. In OpenFOAM, the family of

buoyantBoussinesq solvers is only using the prgh pressure in the solution and therefore

this is the pressure field of interest. However, for post-processing pressure calculations,

the static pressure p has to be used. This can be achieved by substituting the prgh
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and rearranging the equation 7.2.4, such that:

p = prgh + ⇢g · r. (7.2.5)

In this chapter, all the pressure results report the prgh field. In the momentum

equation, the pressure and gravity terms are rearranged with the help of the equations

(7.1.3) and (7.2.4) as follows:

�rp+⇢g = �r(prgh+⇢g·r)+⇢g = �rprgh�(g·r)r⇢�⇢g+⇢g = �rprgh�(g·r)r⇢.

(7.2.6)

Regarding the energy equation, the heat capacity is assumed constant. The incom-

pressible Navier-Stokes equations strongly coupled with energy equations are:

8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

@u(x,µ,t)
@t

+ r · (u(x,µ, t) ⌦ u(x,µ, t))

�⌫(µ)�u(x,µ, t) = �rprgh(x,µ, t) � (g · r)r⇢(x,µ, t) in Q,

@✓(x,µ,t)
@t

+ (r · u(x,µ, t))✓(x,µ, t) � ↵dif�✓(x,µ, t) = 0 in Q,

r · u(x,µ, t) = 0 in Q,

u(x,µ, t) = 0 on �,

✓(x,µ, t) = g(x) on �,

u(x,µ, t, 0) = u0(x, µ) on �,

✓(x,µ, t, 0) = ✓0(x, µ) on �,

(7.2.7)

where ⇢ = 1 � �(✓ � ✓0) is the e↵ective kinematic density.

7.3 Reduced Order Model Formulation - Closed Flows

This section deals with enclosed flows where, according to section (4.4), the pressure

term in the reduced order model vanishes. Therefore, an approximation and recovery

of the pressure field will not be considered. The POD-Galerkin method is applied only

on the velocity, u(x,µ, t) and temperature ✓(x,µ, t) fields, which are approximated
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similarly to the previous sections as follows:

u(x,µ, t) ⇡ ur =
N

r
uX

i=1

↵i(µ, t)�i(x), (7.3.1)

✓(x,µ, t) ⇡ ✓r =

N
r
✓X

i=1

ci(µ, t)�i(x). (7.3.2)

The new term in the Navier-Stokes equations, (g · r)r⇢, depends only on temper-

ature field and, therefore, there is no need for additional basis functions. It can be

approximated using the already calculated temperature basis functions, �(x). The

Galerkin projection of equations (7.2.7) onto the basis functions �(x) and �(x) leads

to the following reduced set of ODEs:

8
><

>:

M ↵̇ = �↵TQ↵ + ⌫L↵ � Bb,

Kċ = �↵TGc + ↵difNc,
(7.3.3)

where the new matrix, Bij, corresponds to the buoyant term and is defined as:

Bij = h(g · r)r(1 � �(�i � ✓0)),�jiL2(⌦). (7.3.4)

7.4 Numerical Study: Natural Convection in a Square Cav-

ity

In this section, a benchmark case of natural convection in the well-studied 2D dif-

ferentially heated square cavity filled with air is presented. A sketch of the cavity

is demonstrated in figure (7.1), where the two vertical walls are maintainted un-

der constant temperatures of ✓h = 302.5K and ✓c = 297.5K, respectively, while the

horizontal walls are kept insulated. The initial temperature of the internal field is

set at ✓IF = 300K corresponding to the reference temperature, ✓ref . The length of

the square domain is D = 0.1m, where a uniform mesh of 100x100 is constructed

as shown in figure (7.1). A summary of the boundary conditions is shown in table

(7.1) and the physical properties in table (7.2). For the Prgh, the boundary condition

“fixedF luxPressure” sets the pressure gradient to a value provided, such that the

flux on the boundary is specified by the velocity boundary condition.
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Figure 7.1: Square cavity geometry and computational mesh

�h �c �w �IF

u (0, 0, 0) (0, 0, 0) (0, 0, 0) (1 ⇥ 10�4, 0, 0)
prgh fixedF luxPressure fixedF luxPressure fixedF luxPressure 0
✓ 302.5 297.5 r✓ · n = 0 300

Table 7.1: Summary of the boundary conditions for the square cavity.
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The FOM is solved in OpenFOAM using the buoyantBoussinesqPimpleFoam solver,

which implements the PIMPLE alogorithm and the Boussinesq approximation for the

buoyancy term, while the ROM is solved in ITHACA-FV. For the discretisation of the

convective terms in both the FOM and the ROM, upwind schemes have been selected,

while the di↵usive terms have been discretised by central di↵erencing schemes. The

temporal discretisation is handled by the Euler backward scheme, in both models.

The simulation time is set to 10s with time-step of dt = 0.005s.

Quantity Value

Pr 0.71
� (K�1) 0.003
D (m) 0.1
g (ms�2) 9.81
⌫ (m2s�2) *see table 7.3
Ra (m2s�2) *see table 7.3

Table 7.2: Summary of the FOM physical parameters for the square cavity.

The kinematic viscosity, ⌫, has been chosen as the varied parameter. This variation

a↵ect also the Rayleigh number, Ra, which is defined as the product of the dimen-

sionless Grashof and Prandtl numbers, according to the following relation:

Ra = Gr ⇥ Pr =
g��✓L3

⌫↵dif

, (7.4.1)

where �✓ is the temperature di↵erence and the thermal di↵usivity is taken as ↵dif =

⌫/Pr. The Prandtl number, Pr= ⌫/↵dif , measures the momentum to heat di↵usiv-

ity ratio, while the Grashof number, Gr = g��✓L3
/⌫

2, represents the buoyancy to

viscous forces ratio. In natural convection, the Grashof number can be seen as the

equivalent to Reynolds number, in forced convection. The sampling of the parame-

ter space for the kinematic viscosity is handled by an equispaced grid method. The

sampling points are shown in table (7.3), corresponding to Rayleigh numbers in the

order of 105. Velocity and temperature snapshots are collected every 0.05s resulting

to a total of 200 snapshots for each field per parameter value. This makes a total

of 2200 snapshots for each field and, therefore, the dimension of the POD space is

N
s

u
= N

s

✓
= 2200. Since we are dealing with enclosed flow, the pressure term has

been neglected.
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⌫ (m2s�1)

1.0 ⇥ 10�5

1.1 ⇥ 10�5

1.2 ⇥ 10�5

1.3 ⇥ 10�5

1.4 ⇥ 10�5

1.5 ⇥ 10�5

1.6 ⇥ 10�5

1.7 ⇥ 10�5

1.8 ⇥ 10�5

1.9 ⇥ 10�5

2.0 ⇥ 10�5

Table 7.3: Sampling points for the kinematic viscosity.

The ROM simulations are performed in ITHACA-FV library, where the ROM equa-

tions (7.3.3) are handled in a coupled manner. The ROM is tested on a non-trained

value of the kinematic viscosity, ⌫ = 1.65 ⇥ 10�5, within the range of the training

space, while all the other physical parameters, as well as the boundary conditions, are

kept the same (table 7.4). The POD method is applied on the correlation matrices

for velocity and temperature and the cumulative energy of the corresponding eigen-

values is illustrated in figure (7.2), where a decaying trend is observed. According

to the energy quantity (4.1.17), 18 modes for velocity and 10 for temperature are

retained. This reduces the original POD space from N
s

u
= N

s

✓
= 2200 to N

r

u
= 18.

and N
r

✓
= 10.
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Figure 7.2: Cumulative energy of the eigenvalues for temperature, velocity, pressure and
nut fields for nested and global pod methods, respectively.
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Quantity Value

Pr 0.71
� (K�1) 0.003
D (m) 0.1
g (ms�2) 9.81
⌫ (m2s�2) 1.65⇥10�5

Ra (m2s�2) 272463

Table 7.4: Summary of the ROM physical parameters for the square cavity.

The first 6 POD basis for velocity and temperature are shown in figure (7.3), where,

for velocity, a symmetry pattern is observed and the first POD mode resembling

the steady-state. For temperature, the modes have been homogenised using lifting

functions according to algorithm (3), where the control function has been obtained

by solving the steady-state Laplace problem. Therefore, the first POD mode for

temperature appears to be a fluctuation around the mean field.
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Figure 7.3: First six basis functions for velocity (first two rows) and temperature (last two
rows).

The relative L
2 error between the FOM and ROM solutions, for the testing value

of the kinematic viscosity (⌫ = 1.65 ⇥ 10�5), is plotted in figure (7.4). As the flow
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starts at rest, the error on both velocity and temperature fields is higher during the

first iterations of the simulation. After a few seconds, it drops to approximately 4%

for velocity, while, for temperature, it remains low (less than 0.009%) throughout the

simulation. Statistics of the relative L
2 error are shown in table (7.5). In the work

of (Star, Stabile, Georgaka, Belloni, Rozza, and Degroot 2019), the same numerical

experiment is discussed, while the parametrisation is applied on the temperature

inlet boundary conditions. A non-trained ROM was studied and, for temperature

di↵erence of �✓ = 4K, the ROM exhibits some instabilities and the L
2 error grows to

rather large values. In contrast, the trained ROM presented in this chapter appears

to be more stable, even for a larger temperature di↵erence (�✓ = 5K).

0 2 4 6 8 10

Time(s)

10�3

10�2

10�1

100

101

102

%
R

el
at

iv
e

E
rr

or

Temperature

Velocity

Figure 7.4: %✏L2(t) error for velocity and temperature fields for ⌫ = 1.65 ⇥ 10�5.

Table 7.5: Relative ✏L2(t)% error for velocity and temperature fields.

u ✓

Minimum ✏L2(t)% 3.64 0.0015
Maximum ✏L2(t)% 15.53 0.009
Average ✏L2(t)% 5.50 0.006

The FOM and ROM velocity and temperature fields, as well as their absolute di↵er-

ence, are visualised for time instances t = 5s and t = 10s in figures (7.5), (7.6) and

(7.7) where the reconstructed fields appear to be in good agreement.
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Figure 7.5: Comparison of the velocity field for the full order (first column) and reduced
order model (second column). The fields are depicted for time instances equal to t = 5s
(first row) and 10s (second row).

125



Figure 7.6: Comparison of the temperature field for the full order (first column) and reduced
order model (second column). The fields are depicted for time instances equal to t = 5s
(first row) and 10s (second row).
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Figure 7.7: Di↵erence between the FOM and ROM for velocity (first row) and temperature
(second row) fields. The fields are depicted for time instances equal to t = 5s (first row)
and 10s (second row).

A comparison between the velocity streamlines and temperature isotherms is illus-

trated in figures (7.8) and (7.9). For the streamlines, which are in good agreement,

two clockwise rotating vortices approaching the corners can be observed. This pat-

tern is characteristic of Rayleigh numbers in the order of 105 (Garoosi, Garoosi, and

Hooman 2014). The FOM and ROM isotherms are also in good agreement, show-

ing almost horizontal lines in the central region, indicating that the heat is mainly

transfered by convection.
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Figure 7.8: Comparison of the velocity streamlines for the full order (left) and reduced order
model (right) corresponding to Rayleigh number in the order of 105.

Figure 7.9: Comparison of the temperature isotherms for the full order (left) and reduced
order model (right) corresponding to Rayleigh number in the order of 105.

The vertical velocity and temperature profiles in the horizontal mid-plane at t = 2.5s

and t = 10s are plotted in figure (7.10). From the plot, it can be oberved that the

ROM approximates the FOM profile very well. Table (7.6) shows the CPU time for

the FOM, POD, projection and ROM solution, where a computational speed-up of

⇡ 75 has been achieved.
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Figure 7.10: Comparison of the FOM and ROM vertical velocity and temperature profiles
in the horizontal mid plane y = D/2, for t = 2.5s and t = 10s.

ROM FOM

POD (s) 89.83 N/A
Projection (s) 11.02 N/A
Solution (s) 7.52 563

Table 7.6: Computational time for the full order (running on a single processor) and reduced
order models.

7.5 Reduced Order Framework - Open Flows

In the previous section, an enclosed flow configuration had been considered and the

gradient of pressure term, as well as the recovery of it, had been neglected. However,

this is not always the case. For instance, when open flows are studied, this assump-

tion is invalid and can lead to erroneous ROM results, as discussed in chapter 4. In

this section, the PPE method has been chosen as a way of including the pressure in

the ROM level. Since the buoyantBoussinesqPimpleFoam solver exploits a PPE for

tackling the velocity-pressure coupling, a similar method employed in the reduced
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level, could result to a more consistent approximation.

The implementation of the PPE method presented in section (4.6) is adapted to

account for the buoyancy force. The momentum and PPE equations are modified to

accomodate for the extra body force term, as follows:

8
>>>><

>>>>:

@u
@t

+ r · (u ⌦ u) � r · ⌫ru = �rprgh � (g · r)r⇢ in Q,

�prgh = �r · (u · ru) � (g · r)�⇢, in Q,

@✓

@t
+ (r · u)✓ � ↵dif�✓ = 0 in Q,

(7.5.1)

where, instead of the static pressure p, the shifted prgh pressure is now considered,

so that there is a consistency between the OpenFOAM and the ROM solvers. The

Galerkin projection of the above equations is according to the equations derived in

4.3:

8
>>>><

>>>>:

h(@u
@t

+ r · (u ⌦ u) � r · ⌫ru + rprgh + (g · r)r⇢),�)iL2(⌦) = 0,

hrprgh, r iL2(⌦) + hr · (u · ru), iL2(⌦) + h(g · r)�⇢, iL2(⌦) = 0,

h(@✓

@t
+ r · (u✓) � ↵dif�✓),�iL2(⌦) = 0.

(7.5.2)

The modified ROM equations are:

8
>>>><

>>>>:

M ↵̇ = �Pb � ↵TQ↵ + ⌫L↵ � Bb,

Kċ = �↵TGc + ↵difNc,

Db = �↵TU↵ � Xc,

(7.5.3)

where the new matrix, X is defined as:

(Xij) = h(g · r)�⇢ki
, jiL2(⌦). (7.5.4)
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7.6 Numerical Study: “Cold-trap” formation in a U-bend

Pipe

To test the proposed ROM, presented in 7.5, a more applied and challenging geometri-

cal configuration is considered. Passive safety systems, such as the natural circulation

loop in the primary circuit, are found in modern nuclear power plants. In PWRs the

design of the natural circulation loop is such that the steam generator is in a higher

elevation with respect to the core. Under normal opearational conditions, the removal

of the decay heat, produced in the core, is removed by forced circulation, using cen-

trifugal pumps. In an accident case, should the pumps fail, the decay heat is removed

by the natural circulation loop. In a gravity environment, the su�cient tempera-

ture di↵erence between the steam generators and the core can generate a flow rate,

which removes the decay heat without the need of “artificial” external energy sources.

There are some reactor designs, which use natural circulation during normal op-

eration, for example the VK-50 Russian reactor, or in the emergency heat removal

systems, as in the BN-type reactors (sodium cooled fast breader type). For power

levels lower than 40% of the full power, BWRs can also operate under natural circula-

tion. The simplified design of the natural circulation loop, resulted by the reduction

in components needed, can reduce costs and, most importantly, enhance the safety

of nuclear power plants. It is therefore of highly importance to understand the un-

derlying physics and mechanics of natural circulation as well as to predict occasions

where the natural circulation could fail to drive the necessary flow rate for cooling.

One of the drawbacks of natural circulation is the lower driving force with respect

to the forced circulation systems (eg. pumps). Phenomena such as heat losses due

to un-insulated components or pressure drop due to vertical bends could significantly

a↵ect the potential of the natural circulation to drive the flow. One particular sce-

nario of such behaviour is called the “cold-trap”. Formed in the loop seal, cold-traps

can result from flow reversal which is caused by heat losses at the surface of upward

flowing pipes. In addition, the lower driving forces that characterise the natural circu-

lation could give rise to 3D phenomena. Therefore, the thermal-hydraulic behaviour

of such systems should be carefully examined.
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The study of the “cold-trap” in a U-bend pipe has been selected in order to as-

sess the ability of ROMs to model such complex behavior and potentially predict the

formation of such phenomena. This study does not aim to replace current established

computational methods, such as the coupled systems codes and CFD but to suggest

an alternative, modern computational approach, which could lead to much faster high

fidelity simulations.

7.6.1 Steady-State

The configuration, which is representative of reactor primary loop seal (figure 7.11),

consists of a 3D U-bend pipe as shown in figure 7.12. A detailed study of “cold-trap”

formation in such geometry has been studied in (Sebilleau 2016). The geometrical

parameters of the pipe domain are also summarized on table 7.7. To achieve an

established natural circulation prior to appling the cooling, a steady-state simulation

is performed, using the simpleFoam solver. At this stage, the energy equation as well

as buoyancy e↵ects are not taken into account and only the hydrodynamic profiles are

of interest. Therefore, the blue area in figure 7.12 is neglected. The initial Reynolds

number is Re= 1900 and, therefore, the flow is considered laminar. Atmospheric

pressure is taken as reference for all the computations and the initial temperature of

the inlet water is at 363.15K (this temperature applies for the unsteady simulation

only). Under these conditions, the properties of the water are summarized in table

7.8.
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Figure 7.11: Nuclear reactor primary loop schematic.
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Figure 7.12: U-bend pipe configuration and region of sampling positions for the plots.

Quantity Value

D (m) 0.2
Lleg (m) 1.5
Lcool (m) 0.16
Lhoriz (m) 1.0

Table 7.7: Summary of the geometrical parameters of the U-bend pipe configuration.
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Quantity Value

Kinematic Viscosity ⌫ (m2s�1) 3.14 ⇥ 10�7

Density ⇢0 (kgm�3) 961.65
Thermal expansion coe�cient � (K�1) 6.95 ⇥ 10�7

Thermal conductivity k (Wm�1k�1) 0.677
Gravity magnitude (ms�2) 9.81

Table 7.8: Summary of water properties at 368.15K and atmospheric pressure.

The computational mesh, consisting of 85050 hexahedral cells, is illustrated in fig-

ure (7.13). In order to achieve a pressure driven flow, a pressureInletOutletVelocity

(PIOV) is prescribed on the velocity inlet and outlet. This boundary condition assigns

a zeroGradient condition for outflow, while for the inflow, the velocity is calculated

from the flux in the normal direction. A noSlip condition is applied on the pipe

walls. For pressure, a totalPressure is assigned on the inlet and outlet of the pipe

with a kinematic pressure (p/⇢) di↵erence �p = 0.000007m2
s

�2. This corresponds to

about �p = 0.007Pa. This condition assigns a user-specified reference pressure, p0,

for outflow and for inflow, the pressure is calculated as p0 � 1/2|u|2. The boundary

conditions are summarized in table (7.9).

Figure 7.13: Mesh layout of the U pipe.
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�i �o �w �cw �IF

u PIOV PIOV (0, 0, 0) (0, 0, 0) (0, 0, 0)
p 1 0.999993 rp · n rp · n 0.999993

Table 7.9: Summary of the boundary conditions for the U pipe - steady-state case.

The convergence criteria (tolerance) for the SIMPLE algorithm set to 1 ⇥ 10�10 for

both velocity and pressure. Figure (7.14) depicts the behaviour of the velocity com-

ponents and pressure residuals with respect to the number of iterations. To ensure

that the solution converges, the flow rate at the inlet patch is monitored, as shown

in figure (7.15). According to this figure, the flow rate reaches a steady value after

about 1400 iterations, and therefore, the simulation was manually stopped, before the

residuals reach the prescribed convergence criteria. At this point, the velocity and

pressure profiles are shown in figure (7.16).

Figure 7.14: Convergence of the residuals in the steady-state case.

Figure 7.15: Convergence of the flow-rate in the steady-state case.

135



Figure 7.16: Steady-state velocity and pressure profiles.

7.6.2 Unsteady-State Case

For the unsteady-state simulation, local heat losses on the left leg of the U-bend ge-

ometry are represented by a uniform constant heat flux applied on the blue patch, as

shown in figure (7.12). The heat losses are, for example, a consequence of the unin-

sulated pump shown in figure (7.11), which is colder than the coolant temperature.

Three arbitrary cooling heat flux cases are studied, where the heat flux values are

shown in table (7.10). B and C cases have been selected a posteriori, after assessing

the behaviour of the ROM for the case A. The transient buoyantBoussinesqPimple-

Foam solver is selected for the FOM, with a time-step of dt = 1s and total time of

simulation equal to 710s. The total duration of the simulation has been selected so

that to allow the flow rate to drop very close to zero, as shown in figure (7.17), for

the case A.

Case Cooling heat flux (Wm�2)

A 10
B 5
C 2

Table 7.10: Cooling cases.

The boundary conditions used for the FOM are shown in table (7.11). In the �i,

the fully developed velocity profile obtained from the steady-state simulation of the

previous subsection is used as inlet condition for velocity. For the hydrostatic pressure,

prgh, the pressure profile from the steady-state case is prescribed as initial boundary

condition. The value of the internal field, �IF , is set to a constant temperature of

363.15K, while the boundary �cw, which represents the cooling patch, is assigned
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a uniform cooling heat flux. The rest of the pipe walls are under the adiabatic

condition. The boundaries are shown in figure (7.12) and �IF represents the initial

internal field value. Regarding the discretisation schemes, the second-order implicit

backward scheme is used for the transient term, upwind (first-order accurate) for

the divergence and central di↵erencing (second-order accurate) for the di↵usion term

(table 7.12).

�i �o �w �cw �IF

u profile from steady-state case
prgh profile from steady-state case
✓ 363.15 r✓ · n = 0 r✓ · n = 0 heatF lux -10 363.15

Table 7.11: Summary of the boundary conditions for the U pipe - unsteady case.

With the above settings, and considering scenario A (-10Wm
�2), a reduction in the

flow rate and a resulting downflow are observed, as shown in figure (7.17). According

to this figure, the flow rate drops to zero after about 700s. This phenomenon is termed

as “cold-trap”, and is formed due to the ability of the buoyant force to oppose the flow.

Of course, the formation of the “cold-trap” is geometry and condition dependent. In

this geometry, due to the large pipe diameter, tiny cooling is su�cient to suppress

the flow. The interest in this work is to assess the ability of the ROM to predict this

phenomenon.

FOM ROM

@/@t Backward Backward
r· Upwind Upwind
� Central Central

Table 7.12: Numerical Schemes for FOM and ROM.

The ROM (ITHACA-FV) is tested on the same boundary and physical conditions as

those defined for the FOM. Therefore, this is a non-parametric case. For the pressure,

the PPE method is used. During the training, a sampling frequency of 1Hz was

initially selected. For the total duration of the simulation this makes 700 snapshots for

each field, hence the initial dimension of the POD spaces is N
s

u
= N

s

✓
= N

s

prgh
= 700.

Applying truncation based on the cumulative energy (retain approximately 99.9%

of the energy) of the eigenvalues, figure (7.18), the dimension of the resulting POD

spaces is reduced to N
r

u
= 8, N

r

✓
= 2 and N

r

prgh
= 1. The comparison between the

ROM and FOM flow rates in terms of their %L
2 relative error is shown in figure
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(7.19). For the case A, both models follow a decreasing trend. However, there are

some discrepancies in the rate of reduction. At t = 700s, the ROM flow rate reaches

the very small value 2.15 ⇥ 10�6 while the FOM flow rate is 2.40 ⇥ 10�6. This leads

to a relative error of 10.7%.
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Figure 7.17: Comparison between the FOM and ROM flow rate for the various cooling
scenarios and sampling frequencies. The data is acquired in the outlet patch.

Figure 7.18: Cumulative energy of the velocity, temperature and pressure eigenvalues.

The relative ✏L2(t)% for velocity, temperature and prgh pressure fields is depicted

in figures (7.20), where the average error for velocity is 14.37%, for temperature is

6.52% and for pressure is 3.75%. Figures (7.21) show the average truncation ✏L2(t)

error for velocity, temperature and pressure fields, with respect to the number of

modes retained in the projection phase. In this case, the fields are obtained from
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Figure 7.19: % Relative error between the FOM and ROM flow rates for various cooling
scenarios and sampling frequencies.

their approximations (following equations 4.1.10) with the temporal coe�cients cal-

culated from the basis projection (4.1.21).

The figures suggest that, the higher the number of retained modes are, the smaller

the truncation error is. Furthermore, according to these figures, for the number of

modes that have been selected prior to the Galerkin projection, 8 for velocity, 2 for

temperature and 1 for pressure, the average ✏L2(t)% for velocity is close to 8%, for

temperature 0.5% and for pressure around 5⇥10�4%. Although this is almost true for

the velocity relative error resulted from the ROM, for temperature field the average

relative error is one order of magnitude larger and for pressure the average error is

much higher (3.75%).
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Figure 7.20: Relative ✏L2(t)% errors for velocity, temperature and pressure fields for various
cooling fluxes and sampling frequencies.

To investigate possible sources of the error in the velocity field, two strategies have
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been followed. The first one is to check the response of the ROM to lower cooling

heat fluxes and the second one is to follow a denser sampling strategy. Regarding

the first one, two more cooling heat fluxes have been studied, shown in table (7.10).

The ROM is trained on these values with sampling frequency of 1Hz, resulting in

700 snapshots. All the other conditions remain the same, including same number of

retained modes with the previous case. Figures (7.17) and (7.19) plot the flow rate

and the relative percentage errors for these two new cases. The ROM and FOM flow

rates for cases B and C look to deviate much less than in case A. Of course, the

flow rate in cases B and C have not dropped to or near zero but, for the duration of

the 700s, the error between the FOM and the ROM appears to be lower than in the

case A (figure 7.19). Comparing for the same flow rate values (horizontally in figure

(7.17), again, cases B and C deviate less. The relative ✏L2(t)% errors for velocity,

temperature and pressure fields are shown in figure (7.20) where the lowest cooling

heat flux (case C) exhibits the lowest error.
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Figure 7.21: Time averaged ✏L2(t) projection error per number of modes for velocity, tem-
perature and pressure (prgh) fields, respectively.

Regarding the second strategy, fixing the cooling heat flux to the most challenging

case A, two sampling frequencies have been tested: 5Hz and 10Hz. The time-step

of the FOM and ROM was decreased to dt = 0.01s. However, due to memory lim-

itations, this study is limited to 400s and 220s, respectively. The first sampling

frequency (5Hz for 400s) corresponds to a total of 2000 snapshots, while the second

to 2200 snapshots. Retaining the same number of modes as in case A and monitoring

only the velocity field (which is the one that deviates the most), figure (7.17) shows

a much better aggreement between the FOM and the ROM for the two denser sam-
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pling rates. According to this figure, for a given simulation duration (220s), sampling

frequency 10Hz results to the most accurate ROM, compared to other two sampling

frequencies, while the least accurate is the one derived from 1Hz sampling frequency.

The complexity of the studied case and the sudden change of the velocity sign, could

justify such behaviour. Therefore, adding more snapshots for a given training dura-

tion, will result to a more accurate ROM. This fact was not apparent in the laminar

T-junction case of chapter 5 (figure 5.14), where, the enhanced training space did not

make much di↵erence, since the flow was not as complex as the one that this chapter

deals with.

For the rest of the chapter, the discussion focuses on the most challeging case A,

for two sampling frequencies: 5Hz and 1Hz. A comparison between the velociy,

temperature and pressure (prgh) ROM derived with sampling frequency 5Hz and the

FOM is depicted in figures (7.22), (7.23) and (7.24), respectively. The first row of

these figures corresponds to time instance t = 120s where the FOM, ROM and their

absolute di↵erence is illustrated. Row two corresponds to time instance t = 400s.

The PPE method has been selected for the pressure field. In all cases, the area with

the largest error is around the cooling patch. The maximum error is located mostly

on the left wall near the cooling patch.
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Figure 7.22: Comparison between the FOM and ROM for velocity field for sampling fre-
quency f = 5Hz (first two columns). The fields are depicted for time instances equal to
t = 120s (first row) and 400s (second row). The third column depicts the absolute di↵erence
between the FOM and ROM velocity fields.

The maximum error for the velocity field is lower at t = 120s, while for temperature,

the opposite behaviour is observed. The energy equation is linear and, in regards to

the temperature field, the changes are relatively small. However, as cold water accu-

mulates in the vertical position, the buoyant force term in the momentum equation

becomes stonger with time and therefore opposes the flow in an increasing way. This

fact could partially explain the relative percentage and absolute errors of velocity in

figures (7.20) and (7.22). The error of the prgh pressure field exhibits an oscillatory

behaviour but, overall remains less than 8%. Same oscillatory behaviour for pressure
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is observed in (Hijazi, Stabile, Mola, and Rozza 2019).

Figure 7.23: Comparison between the FOM and ROM for temperature field for sampling
frequency f = 5Hz (first two columns). The fields are depicted for time instances equal to
t = 120s (first row) and 400s (second row). The third column depicts the absolute di↵erence
between the FOM and ROM velocity fields.
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Figure 7.24: Comparison between the FOM and ROM for pressure field (prgh) for sampling
frequency f = 5Hz (first two columns). The fields are depicted for time instances equal to
t = 120s (first row) and 400s (second row). The third column depicts the absolute di↵erence
between the FOM and ROM velocity fields.

Figure (7.25) plots the y�component velocity radial profiles at the two sampling

locations shown in figure (7.12). The profiles follow the same trend, while the largest

di↵erence is observed in pos 2 in the region close to the left wall, where the y�velocity

takes negative values. The same area is also confirmed in figure (7.22) to exhibit the

highest error.
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Figure 7.25: Comparison between the FOM and ROM radial velocity profiles at t = 400s.
Pos 1 and Pos 2 correspond to the p1 and p2 locations shown in figure (7.12)

The final case considered in this work is a comparison between the PPE and the

SUP methods. For the comparison, the ROM of the case A, with sampling frequency

1Hz has been selected. A case where the pressure gradient and the reconstruction of

pressure field are neglected has also been also studied (“No Pressure”). Unlike the

previous cases, two pressure modes are retained, therefore N
r

prgh
= 2. The rest of the

conditions remain the same. Figure (7.26) plots the relative ✏L2(t)% errors for velocity,

temperature and pressure fields, for PPE, SUP and no-pressure cases. A velocity

field with high relative error is resulted, when the pressure gradient is neglected. The

average error in this case is 102%, indicating than the pressure gradient can not be

neglected. The temperature field follows the same behaviour, much higher error for

the no-pressure case (maximum relative error is 25.5%) which is mainly triggered by

the coupling between the momentum and energy equations.
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Figure 7.26: Relative ✏L2(t)% errors for velocity, temperature and pressure fields for cooling
flux 10Wm�2 and sampling frequency 1Hz. The errors are shown for the PPE, SUP and
no pressure gradient cases.

Further to this, both PPE and SUP methods result to similar results. The PPE
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method exhibits better perfomance for the velocity during the final time-steps, while

the SUP method is performing slighlty better for the temperature field. Regarding

pressure, clearly, the PPE method results to a better approximation for the given

number of modes. Adding one more pressure mode to the approximation, the av-

erage error for pressure dropped to 0.016% compared to 3.75% of the single mode

approximation. The error also looks smoother than the cases where only one prgh

mode were retained. A comparison for the ROM-PPE, ROM-SUP and FOM flow

rates and their corresponding relative percentage error is plotted in figures (7.27) and

(7.28), where similar accuracy of both methods is achieved.
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Figure 7.27: Comparison between the FOM, PPE-ROM and SUP-ROM flow rate for cooling
flux 10Wm�2 and sampling frequency 1Hz. The data is acquired in the outlet patch.
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Figure 7.28: Relative ✏L2(t)% errors of the flow rate for between the FOM and PPE-ROM
and SUP-ROM, for cooling flux 10Wm�2 and sampling frequency 1Hz.

Figures (7.29), (7.30) and (7.31) show snapshots of velocity, temperature and pressure

of the FOM, PPE-ROM, SUP-ROM and no-pressure-ROM, respectively. The first row

corresponds to the FOM, PPE-ROM, SUP-ROM and no-pressure-ROM at t = 700s

while the second row depicts the absolute di↵erence between the FOM and the PPE-

ROM, SUP-ROM and no-pressure-ROM, respectively. The maximum error is in

agreement with the error plots (7.26) and is located close to the left wall region.
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Figure 7.29: Comparison between the FOM, PPE-ROM, SUP-ROM and no-pressure gra-
dient ROM for velocity fields for sampling frequency f = 1Hz. The fields are depicted for
time instances equal to t = 700s. The second row depicts the absolute di↵erence between
the FOM and each-ROM velocity fields.
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Figure 7.30: Comparison between the FOM, PPE-ROM, SUP-ROM and no-pressure gra-
dient ROM for temperature fields for sampling frequency f = 1Hz. The fields are depicted
for time instances equal to t = 700s. The second row depicts the absolute di↵erence between
the FOM and each-ROM temperature fields.
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Figure 7.31: Comparison between the FOM, PPE-ROM and SUP-ROM for pressure fields
for sampling frequency f = 1Hz. The fields are depicted for time instances equal to
t = 700s. The second row depicts the absolute di↵erence between the FOM and each-ROM
pressure fields.

Plots of radial y�component velocity profiles at sampling locations p1 and p2 (7.12

of the u pipe are plotted in figures (7.32) and (7.33), respectively. In both positions,

the PPE-ROM and SUP-ROM deviate the most in the region where the velocity field

is negative, close to the walls - right wall of the cold leg in p1 and left wall in p2.

153



0.00 0.05 0.10 0.15 0.20

Length (m)

�0.004

�0.003

�0.002

�0.001

0.000

0.001

0.002

0.003

0.004

0.005

V
el

oc
it
y

(m
/s

)

Pos 1-FOM

Pos 1-ROM-PPE

Pos 1-FOM-SUP

Figure 7.32: Comparison between the FOM and ROM radial velocity profiles at t = 700s.
Pos 1 corresponds to p1 location shown in figure (7.12)
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Figure 7.33: Comparison between the FOM and ROM radial velocity profiles at t = 700s.
Pos 2 corresponds to p2 locations shown in figure (7.12)

PPE-ROM SUP-ROM FOM

POD(s) 83.20 214.91 N/A
Projection(s) 51.07 33.45 N/A
Solution(s) 4.77 4.82 717

Table 7.13: Computational time for the full order (running on a single processor) and
reduced order models (700 snapshots.

Table (7.13) shows the computational time for the FOM, POD, Projection and ROM
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solution. Comparing the solution times between the FOM and the ROM, a speed-up

factor of ⇡ 150 in the PPE case and of ⇡ 149 in the SUP case is obtained. The

SUP method is slightly slower because the supremizer modes need to be taken into

account. The POD phase in the latter case is also slower. However, in both cases, a

considerable speed-up factor has been obtained.

Overall, even in the most ’coarse’ sampling case, the PPE-ROM and SUP-ROM

can predict the reversal of the flow and the subsequent formation of the “cold-trap”,

while the former method gives a better approximation of the FOM. As demonstrated,

to enhance the accuracy of the ROM, a denser sampling is essential. However, this

increases the computational resources required for the o✏ine phase. Hence, there is

always a trade-o↵ between accuracy and computational cost.

7.7 Summary of the Chapter

In the above chapter, model order reduction techniques for buoyancy driven flows

with the Boussinesq approximation were presented. The parametric POD-Galerkin

method fistly applied to enclosed flows, where the pressure term was neglected. A

second non-parametric case of the POD-Galerkin was applied to open flows, where,

as demonstrated, the pressure gradient should be taken into account. In the former

case, the suggested method was applied to a parametric di↵erentially heated square

cavity, with parametrized kinematic viscosity. The ROM was tested on a new value of

the parameter within the training range and a good approximation of the FOM was

achieved. In the latter case, a PPE method was suggested for the coupling between

the pressure and velocity fields. To the best of the author’s knowledge, a reduced

level PPE method accounting also for the gravity term, is, for the first time, applied

in this work. This method tested on a U-bend pipe, where, after application of local

wall cooling, complex phenomena occur. As demonstrated, given the complexity of

the flow, both PPE-ROM and SUP-ROM methods lead to good approximations. In

both cases, considerable amount of computational savings have been achieved.
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Chapter 8

Synopsis

In this chapter conclusions about this thesis are drawn. A synopsis of the methods

and findings of this thesis as well as suggestions for further research are discussed.

8.1 Conclusions

The central scope of this thesis revolved around the research of state-of-the-art model

order reduction techniques for applications in the modelling of nuclear reactor ther-

mal hydraulics. As mentioned in the introduction, complex phenomena, such as heat

transfer, thermal mixing, natural convection and multiphase flow occur in such sys-

tems. Therefore, a high fidelity CFD simulation of these phenomena in complex

geometries (e.g. entire power plant) would be computationally intractable. To ad-

dress this issue, one dimensional system codes, which rely on simplifications, have

been extensively used in the nuclear industry for many years. The aim of this work

is not to replace these established system codes but to suggest and assess an alterna-

tive modelling method, which couples the benefits of the abovementioned methods.

Having said this, ROMs would be ideal candidates as they inherit the fidelity of the

FOM (CFD), while keeping the computational time low (system codes).

Taking into consideration the nature of the aforementioned systems and some key

phenomena that occur, the study focused on the ROM approximation of the in-

compressible 3D Navier-Stokes coupled with the energy equation. To that extend,

amongst various methods for the development of the ROM, the POD-Galerkin method

had been selected as the most appropriate method to model such incompressible flows.
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The well-known success of the POD method in the calculation of the reduced basis

of incompressible flows lies in the property of the POD to optimally describe the

kinematic information included in the FOM snapshot realisations. To integrate the

dynamics of the FOM into the reduced basis, the POD modes are projected onto the

original set of the FOM equations, resulting to a dynamical ROM, which accurately

describes the dynamics of the FOM system. The choice of the Galerkin L
2�norm

projection method is supported by the definition of the L
2 norm of the velocity so-

lution vector, huiL2(⌦), to represent a measure of the global kinetic energy of the

system in ⌦. Therefore, this norm is physically rational for model order reduction of

incompressible flows. Considering this method, the following cases along with their

key findings are summarised below:

• In chapter 5, a parametric model order reduction method for laminar flows

governed by the parametric, transient, 3D Navier-Stokes equations one-way cou-

pled with the energy equation was developed. To the author’s knowledge, such

setting is presented for the first time in (Georgaka, Stabile, Rozza, and Bluck

2019) and hence in this thesis. The parametric POD-Galerkin method used for

the construction of the ROM and tested on thermal-mixing in a 3D T-junction

pipe. In particular, two parametric cases were considered: parametrisation of

the temperature inlet boundary conditions and parametrisation of the kinematic

viscosity. The drive for the parametrisation cases was to demonstrate that, the

ROM is able to approximate well a full order solution with di↵erent tempera-

ture inlet boundary conditions, even without prior training. This fact lies on the

one hand in the linearity of the energy equation and on the other hand in the

one-way coupling between the momentum and energy equations (no buoyancy

is taken into account in this case). However, in the second case, the parametri-

sation of the kinematic viscosity found in the non-linear convective term, entails

a-priori enrichment of the POD space with snapshots from di↵erent values of

the parameter. Regarding the treatment of the parametrised boundary condi-

tions for temperature, a lifting function method for the energy equation was

presented in this work for the first time. For both cases, accurate reduced order

approximations of the FOM were achieved with a considerable computational

speed-up of 374 and 211, respectively.

157



• In chapter 6, a turbulent version of the previous laminar case was consid-

ered. The parametric, transient, 3D Navier-Stokes equations are still one-way

coupled with the energy equation, while the URANS k�! SST is used for mod-

elling the turbulence. The hybrid PODI-Galerkin with Radial Basis Function

interpolation method was developed, where the classical POD-Galerkin method

was implemented for the velocity, temperature and pressure fields, while, the

eddy viscosity field coe�cients were computed with the non-intrusive POD-

RBF method. The reason behind choosing an interpolation method and not

a projection was to circumvent the projection of the k and ! equations onto

the POD basis. This method sets the ROM transparent to each turbulence

modelling method used in the FOM (i.e k � !, k � ✏, LES etc). A variation of

the POD method, the Nested POD was developed and compared against the

standard POD, in an attempt to reduce the computational time of the stan-

dard POD method for problems with large parametric spaces. The aforemen-

tioned methods were applied to the modelling of thermal mixing in T-junction.

Parametrisation introduced on the velocity inlet boundary conditions and ten

sets of training points were considered. The ROM was tested on four sets of new

parameter values within the training range achieving good accuracy with errors

of less than 3% for the velocity field in all cases. The comparison between the

nested and standard POD methods implemented on the best approximated set

of boundary conditions, showed almost similar accuracy in the approximation

of the fields, while the nested POD results to a faster computation of the POD

phase.

• In chapter 7, strong coupling between the momentum and energy equations

was studied, where, for the FOM, the Boussinesq approximation was applied.

Two POD-Galerkin ROM cases were considered: an enclosed flow, where the

pressure term is neglected and, an open flow case, where the pressure is in-

corporated in the ROM with the PPE method. In both cases, the Rayleigh

numbers correspond to laminar flow and hence no turbulence modelling is con-

sidered. The enclosed ROM was tested on natural convection in a parametric

di↵erentially heated square cavity, where the kinematic viscosity, was chosen

as the varied parameter. The pressure-free POD-Galerkin ROM, tested on a

non-trained value of the kinematic viscosity was in a good agreement with the
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FOM. However, the average relative L
2 error for the velocity field appears to be

a bit larger (6%) than in the one-way coupled cases of the previous chapters.

This is expected since buoyancy driven flows, and hence the strong coupling

between the equations, leads to more complex phenomena. The open flow case,

with the implentation of a PPE in the reduced level, was tested on a more ap-

plied and realistic flow configuration. Influenced by passive safety systems in

modern nuclear reactors, the application of interest consisted of a U bend pipe,

where a uniform cooling heat flux was suddenly introduced on a part of the wall,

during an enstablished natural circulation. Depending on the geometry and con-

ditions of the pipe and hence on the value of the heat flux, a phenomenon of

flow reversal and stalling of the flow could occur. The ROM, derived from such

configuration, was assessed on the same boundary and physical conditions as

those in the FOM. The ROM was able to predict the formation of the so-called

“cold-trap” and the subsequent reduction of the flow rate to zero. However, the

average relative L
2velocity error was found to be around 14%, higher than all

the previous test cases. From the radial velocity plots, it seems that the ROM is

struggling with the sudden change of the velocity sign, due to the reversal of the

flow. Due to the high complexity of the flow, this error, as demonstrated, could

be reduced with a denser training strategy. However, such an approach could be

computationally expensive for realistic, industrial cases. A comparison between

the PPE and SUP methods showed that the PPE method is able to approximate

the velocity and pressure fields better. Indeed, an implementation of the PPE

method in the reduced level leads to a ROM, which is more consistent with the

solution approach (PISO/PIMPLE algorithm) of the FOM.

General Observations: All the test cases used in this thesis led to high computa-

tional speed-ups, while keeping the L
2 error between the FOM and the ROM within

reasonable levels. Of course, the threshold of the accuracy between the two models is

usually case/application dependend and each user should define the levels of accepted

error accordingly. The same is happening in CFD, where, depending on the applica-

tion, the level of accuracy of a particular simulation is a multiparametric function:

depends on the resolution of the mesh, the boundary conditions, the tolerance of the

residuals, the turbulence modelling, etc.
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The accuracy of the ROM is also a multiparametric function. A first inshight in

the accuracy of the POD-Galerkin ROM starts during the training phase - the qual-

ity and the number of the snapshots can have a strong influence on the accuracy of

the ROM, as observed in chapter 7, as well as in the work of (Sirisup and Karniadakis

2004) and (Akhtar, Nayfeh, and Ribbens 2009a). If a specific information (such as

bifurcation) is missing from the snapshots, it will be missing from the ROM too. This

is crucial especially for flows that undergo strong changes. The laminar case of chap-

ter 5 did not show much improvement when a denser POD basis was constructed.

However, in chapter 7, the coarser training space led to a less accurate ROM. The

number of retained POD modes also a↵ects the accuracy of the ROM. In theory,

as the munber of modes in the approximation expansion of the fields increases, the

approximation should be closer to the real value of the field.

For turbulent flows, it is known that the POD-Galerkin method exhibits some in-

stabillities, which are more apparent for long-time intergrations. Despite the success

of the POD method to rank the modes according to their kinetic energy, instabillities

occur, for turbulent flows, due to the truncation of the low-energetic POD modes.

The reason is that the turbulent small scales are the most dessipative ones. Exclud-

ing these modes from the POD basis leads to a less dissipative ROM. As addressed

in chapter 6, several methods have been proposed to tackle this issue. The need of

incorporation of these dissipative modes into the ROM is apparent in figure (6.8),

where the L
2 error grows in time. The approach followed in this thesis, influenced

by the approach used in one or two equation turbulence models, was to stabilise the

ROM momentum equation by incorporating the eddy viscosity field into the ROM

equations. Snapshots for eddy viscosity field were taken and a POD method was ap-

plied to extract the most energetic modes. However, unlike the Galerkin projection

used for the velocity, temperature and pressure fields, the eddy viscosity coe�cients

were calculated with a data-driven RBF interpolation method.

Limitations and di�culties of the POD-Galerkin method became apparent in two

occasions during this thesis. Firstly, during the computation of the reduced matrix

associated with the non-linear convective term, Qijk, which proved to be computa-

tionally expensive both CPU and memory wise. This is due to the dimension of this
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matrix, which increases with the cube of the number of retained POD basis functions.

The second limitation arose in chapter 7, where denser sampling of the POD space

was essential. Although the first di�culty did not cause any mojor issues since the

retained modes were relatively low, the storage and manipulation of dense data files

resulting from more realistic industrial cases was a major obstacle in obtaining an

accurate ROM. Nevertheless, the second issue can be easily solved with the use of a

computer cluster or computers with a better RAM memory. For problems where a

large number of POD modes needs to be retained, e�cient computation of the non-

linear convective term can be achieved by employing, for instance, a GNAT method

based on the gappy-POD as suggested in (Carlberg, Farhat, Cortial, and Amsallem

2013) or the Discrete Empirical Interpolation Method (DEIM) (Chaturantabut and

Sorensen 2010).

Overall, although this study could not by any mean be exhaustive in terms of the

various exhisting model order reduction techniques, the proposed POD-Galerkin and

the hybrid PODI-Galerkin ROMs studied in this thesis proved to be a promising al-

ternative to tackle current di�culties associated with the modelling of nuclear reactor

thermal hydraulics. A few future suggestions on improving the proposed method are

discussed in the following section.

8.2 Outlook

Based on the findings of this thesis, further investigation is suggested below:

• The proposed ROM in chapter 6 was based on URANS modelling of the FOM.

It is known that, for the studied T-junction application, predictions made by

URANS models are not very accurate. It would be interesting to test and

compare the behaviour of a ROM constructed from LES or DNS data. A com-

parison with experimental results would add even more value to the accuracy

of the POD-Galerkin method. In addition, the assumption that the T-junction

velocity inlets are under a fixed value could be replaced with a fully developed

profile in order to be compliant with current studies in litterature.

• In the solution of the ROM, a monolithic approach for the coupling between the

momentum and pressure equations was followed. However, the family of PISO
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and PIMPLE solvers are based on a segregated approach. This causes some

incosistencies between the ROM and the FOM. A segregated approach could

improve even more the ROM accuracy.

• In chapter 7, the study of the U-bend pipe was not parametric. A parametri-

sation of such problem entails some di�culties: expensive training as well as

incorporation of a parametrised heat flux boundary condition (Neumann bound-

ary condition) in the ROM. For the latter, a penalty approach, which explicitly

imposes the heat flux in the ROM, suggested in (Vergari, Cammi, and Lorenzi

2020) could be followed. A turbulent version of this problem would also be of

interest.

• This study accounted only one-phase flows. However, two-phase flow heat trans-

fer is also encounter in nuclear reactor thermal hydraulics and therefore it would

be an interesting extension to the current research.
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Appendix A

Glossary

BuoyantBoussinesqPimpleFoam: OpenFOAM transient solver for incompressible

buoyant turbulent flow, based on the PIMPLE algorithm.

fixedFluxPressure: Boundary condition in OpenFOAM where the pressure gradi-

ent is adjusted so that the flux on the boundary is specified by the velocity boundary

condition.

fixedValue: Boundary condition in OpenFOAM where a constant value at the

boundary is applied.

icoFoam: OpenFOAM transient solver for incompressible laminar flow, based on the

PISO algorithm.

noSlip Boundary condition in OpenFOAM where the velocity is set to zero.

pisoFoam: OpenFOAM transient solver for incompressible turbulent flow, based on

the PISO algorithm.

pressureInletOutletVelocity: Boundary condition in OpenFOAM where, for out-

flow, a zero-gradient condition is applied while, for inflow, the velocity is calculated

from the patch-face normal component of the internal-cell value (OpenFOAM website

2011-2012).

totalPressure: Boundary condition in OpenFOAM where, for incompressible flu-

ids, the value of the patch pressure, pp, is calculated as pp = p0 � 0.5U2. The total

pressure, p0, is specified by the user.

zeroGradient: Boundary condition in OpenFOAM where a zero-gradient is applied

from the internal field patch onto the face patch.
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