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Abstract

The context of the present thesis is to assess the potential of Reduced Order Models
(ROMs) for nuclear reactor thermal hydraulics applications. ROMs constitute ad-

vanced modelling techniques aiming at fast high fidelity simulations.

For the purposes of this research, two approaches have been selected and are in-
vestigated in depth: the Proper Orthogonal Decomposition (POD) with Galerkin
projection (POD-Galerkin) and the hybrid method of Proper Orthogonal Decom-
position with Interpolation using Radial Basis Functions, PODI - Galerkin, in the
context of parametric model order reduction. Additionally, in terms of the POD
method, two sampling techniques are presented and compared: the standard and the

nested POD.

The aforementioned methods are applied to a parametric case of non-isothermal mix-
ing in a T-junction pipe for laminar and turbulent flow regimes. The flow is governed
by the 3D, unsteady Navier - Stokes equations coupled with the energy equation.
Furthermore, a ROM for modelling buoyancy driven flows with the Boussinesq ap-
proximation is discussed. Two cases are considered: a closed flow, where the method
is applied to a benchmark case of a differentially heated square cavity, and an open

flow, where a case of a “cold-trap” formation in a U-bend pipe is investigated.

The suitability of the above techniques is assessed based on a comparison between

the reduced order results and those obtained using high fidelity OpenFOAM solvers.



Declaration of Originality

I hereby declare that the work in the present thesis is entirely my own, unless ex-
plicitly referenced and acknowledged. This work has not previously submitted in any

form for a degree in any other university or institution.

Copyright Declaration

The copyright of this thesis rests with the author. Unless otherwise indicated, its
contents are licensed under a Creative Commons Attribution-Non Commercial-No
Derivatives 4.0 International Licence (CC BY-NC-ND). Under this licence, you may
copy and redistribute the material in any medium or format on the condition that;
you credit the author, do not use it for commercial purposes and do not distribute
modified versions of the work. When reusing or sharing this work, ensure you make
the licence terms clear to others by naming the licence and linking to the licence text.
Please seek permission from the copyright holder for uses of this work that are not

included in this licence or permitted under UK Copyright Law.

Sokratia Georgaka
October 2020



To Haris & Foannts ,



Acknowledgments

First and foremost, I would like to express my sincere gratidute to my supervisor, Dr
Mike Bluck, for providing me with the opportunity to conduct this research and for
his continuous support, guidance and encouragement throughout these PhD years. I
would also like to thank my industrial supervisor, Dr Sam Treasure, for his suggestions
and inputs.

I am greatful to all people in the mathLab group in SISSA and especially to Prof
Gianluigi Rozza, a pioneer in the field of model order reduction, and to Dr Giovanni
Stabile, with whom I had the pleasure to work with during the time I spent in SISSA
and beyond. Giovanni developed the ITHACA-FV library, on which the reduced order
model implementation of this work has been developed on. His expertise and fruitful
discussions we had, have been proven of outmost importance. I am also thankful
to Kelbij Star for her insights and expertize on the implementation of buoyancy in
the reduced order model and to all other ITHACA-FV developers for our useful
fortnightly discussions on various aspects of the code.

I would like to thank my colleagues with whom I shared the office for the past three
years and especially to Dr Giovanni Guistini for his useful suggestions and insights
on computational fluid dynamics aspects. I am also grateful for the coffee breaks I
had with my colleague and friend Aliki, which were a joyful escape from the office
routine. I am also thankful to the people in the ICO Nuclear Energy Futures CDT
and in particular to my friends Yadu and Sushi (Dhan-Sham Rana) for the great time
we had in the USA.

The list would be incomplete without saying a big thanks to my friend Kyriakos for
the extensive conversations we had each time I needed. Also, I would like to thank

Dr Mourad Kara for the life-saving advices he gave me when I started this research.



My warmest thanks go to my partner, loannis, for riding this emotional doctorate
rollercoaster together and for his endless patience and unconditional support during
all the ups and downs, and to my family who supported me and raised me to never
give up.

Last, but not least, Haris, thank you for making me stronger and more fulfilled than
I had ever imagined.

I would like to acknowledge the financial support of Engineering and Physical Sciences

Research Council (EPSRC) and Rolls-Royce.



Contents

[Acknowledgments|

(1 Introduction]

[2° Projection Based Model Order Reduction|
[2.1 General Overview| . . . .
[2.3  Proper Orthogonal Decomposition|. . . . . .. . ... ... ... ...
[2.4 Balanced Proper Orthogonal Decomposition| . . . . . . . .. ... ..
[2.5 Parametric Model Order Reduction| . . . . . . .. ... ... ... ..
[2.6 Summary of the Chapter|

3 _Mathematical Framework - Full Order Model

[3.1 Governing Equations of Fluids|. . . . . ... ... ... ... ....

[3.2  Turbulence Modelling|. .
3.3 URANS ... ......

[3.4 Poisson Equation for Pressure| . . . . . . ... ..o

[3.5 The Finite Volume Approximation| . . . . . . ... ... ... ....

[3.6 Summary of the Chapter|

12
14
16

17
17
21
23
27
28
31

32
32
34
36
37
39
44



[4 _Mathematical Framework - Reduced Order Model 45
[4.1  Proper Orthogonal Decomposition for Parametric Model Reduction| . 45
[4.2 Nested POD|. . . . . . . . . 51
[4.3  Galerkin Projection|. . . . . . . ... ... ... ... ... ... 52
[4.4 Pressure Terml. . . . . . . . . ... 55
[4.5  Supremizer Enrichment|. . . . . ... ... ... ... ... 56
[4.6  Pressure Poisson Equation in the Reduced Level| . . . . . .. ... .. 58
(4.7 Summary of the Chapter|. . . . . .. ... ... .. ... . ...... 59

[5 Model Order Reduction for Laminar Heat Transfer| 60

.1 Mathematical Framework for the Full Order Modell . . . . . . . . .. 60
[5.2  Boundary Conditions and Snapshot Homogenization|. . . . . . . . .. 61
[5.3  Non-isothermal Mixing in T-junction - Parametrisation of the Temper-

| ature Inlet Boundary Conditions|. . . . . ... ... ... ... ... .. 64
[5.4 Non-isothermal Mixing in T-junction - Parametrisation of the Kine-

| matic Viscosity| . . . . . ... o 79
[5.5 Summary of the Chapter|. . . . . .. .. ... ... ... ... .. 86

[6_Model Order Reduction for Turbulent Heat Transfer| 88

.1 __Mathematical Framework for the Full Order Modell . . . . . . . . .. 90
[6.2 Reduced Order Model Formulation| . . . . . .. ... ... ... ... 91
[6.3 Applications|. . . . . . . . ... 93
[6.4 Numerical Study: Thermal mixing in T-junction pipe| . . . . . . . .. 94
[6.5 Nested and Standard POD methods|. . . . . . . ... ... ... ... 97
[6.6 Summary of the Chapter|. . . . . . ... ... ... .00 113

[7 Model Order Reduction for Buoyancy Driven Flows| 114
[7.1 Mathematical Framework for the Full Order Model] . . . . . . . . .. 115
[7.2  The Boussinesq Approximation| . . . . . . . . .. ... ... ..... 116
[7.3 Reduced Order Model Formulation - Closed Flows|. . . . . . ... .. 117
[7.4 Numerical Study: Natural Convection in a Square Cavity|. . . . . . . 118
[7.5 Reduced Order Framework - Open Flows|. . . . . ... ... ... .. 129




[7.6 Numerical Study: “Cold-trap” formation in a U-bend Pipe| . . . . . . 131

[7.6.1 Steady-State|. . . . . . . ... ... ... 132

[7.6.2  Unsteady-State Case| . . . . . ... ... ... ... . ..... 136

[7.7  Summary of the Chapter|. . . . . .. ... .. ... ... . ...... 155
156
1 nclusions| . . . . .. L. 156

8.2 Outlook| . . . . . . . 161
176
(B Copyright Authorisations| 177




List of Tables

[5.1 Summary of the physical parameters.| . . . . . .. ... .. ... ... 64
[5.2  Table with the boundary conditions where I',, refers to the main pipe |
| inlet, I', to the branch pipe and I'y is the outlet.| . . . . . . . . .. .. 65
[5.3 Statistics of the relative €2 (¢) error for velocity, temperature and pres- |
| sure fields for two sampling frequencies, per 0.2s and per 0.1s.| . . . . 67
[5.4 Cumulative Energy of the POD modes (1-5 and 10) for velocity, tem- |
| perature, pressure and supremizer.| . . . . . . . ... ... L. .. 67
[0.5 Statistics of the relative for the temperature field for five different sets |
| of temperature inlet boundary conditions. The sets are A : 323.15,333.15K, |
[ B . 313.15,333.15K, C' : 333.15,353.15K, D : 293.15,313.15K and |
| F :328.15,348.15K. . . . . .. 73
[5.6 Cumulative Energy of the POD modes (1-5 and 10) for velocity, tem- |
| perature, pressure and supremizer.| . . . . . . .. ... ... L. L. 81
[5.7  Relative €;2(t)% error for velocity, temperature and pressure fields.| . 82
[6.1 Summary of the physical parameters for the reduced order model.| . . 94
[6.2  Sampling points for the parameters.|. . . . . .. ... ... L. 94
[6.3 Testing points for the parameters.|. . . . . . . .. .. ... ... ... 95
[6.4 Numerical Schemes for FOM and ROM.| . . ... .. ... ... ... 96
[6.5 Summary of boundary conditions where I',, is the main pipe inlet, I'; |
| is the branch pipe and I', is the outlet.| . . . . . . ... ... ... .. 98
[6.6 Computational time for the full order (running on a single processor) |
| and reduced order models.] . . . . ... ..o 99

10



|6.7 % Relative €r2(t) error for velocity, temperature and pressure and eddy |

| viscosity fields for the nested POD method.| . . . ... .. ... ... 102

[6.8 % Relative e;2(t) error for velocity, temperature and pressure and eddy |

| viscosity fields for two the standard POD method.|. . . . . . . .. .. 102
[7.1 Summary of the boundary conditions for the square cavity.| . . . . . . 119
[7.2  Summary of the FOM physical parameters for the square cavity.| . . . 120
[7.3  Sampling points for the kinematic viscosity.| . . . ... ... ... .. 121
[7.4  Summary of the ROM physical parameters for the square cavity.|. . . 122
[7.5 Relative €;2(t)% error for velocity and temperature fields.|. . . . . . . 124

[7.6 Computational time for the full order (running on a single processor) |

| and reduced order models.| . . . . . ... 129

[7.7  Summary of the geometrical parameters of the U-bend pipe configuration.[l33

[7.8  Summary of water properties at 368.15/K and atmospheric pressure.| . 134

[7.9  Summary of the boundary conditions for the U pipe - steady-state case.|135

[7.10 Cooling cases.| . . . . . . . . .. ... 136

[7.11 Summary of the boundary conditions for the U pipe - unsteady case.| 137
[7.12 Numerical Schemes for FOM and ROM.| . . ... ... ... ..... 137

[7.13 Computational time for the full order (running on a single processor) |

| and reduced order models (700 snapshots.| . . . ... ... ... ... 154

11



List of Figures

[2.1 System matrices in FOM and ROM| . . . .. ... ... ... ..... 19
[2.2  Projection Based Model Order Reduction Procedure.| . . . . . . . .. 20
(3.1 SIMPLE Algorithm. . . .. ... ... ... ... ... .. ...... 38
(3.2 PISO Algorithm.| . . .. .. ... ... ... .. ... ... ... . 39
[3.3 Example of a polyhedral control volume around a centroid W (Guerrero |

2015).| ..o 40
[3.4  Central differencing discretisation scheme.| . . . . ... ... ... .. 41
[3.5  Upwind discretisation scheme.| . . . . . .. ... ... 0000 42
[3.6  Control volume in a non-orthogonal mesh.| . . . . ... ... ... .. 43
[4.1 Flow diagram of the POD-Galerkin ROM procedure.| . . . . ... .. 55
[5.1 Sketch of the T-junction 3D mesh.| . . . .. ... ... ... .. ... 64

[5.2 %eg2(t) error for two sampling frequencies for the snapshot collection.| 66

[5.3  First four basis functions for velocity corresponding to testing points |

0, =333.15Kand 6, =353.15K]| . . . . . ... ... 68

[5.4 First four basis functions for temperature corresponding to testing |

points 6,, = 333.15Kand 6, = 353.16K| . . . . . .. ... ... ... 69

[5.5 First four basis functions for pressure corresponding to testing points |

0, =333.15Kand 6, =353.15K]| . . . . . ... ... 70

[5.6 Cumulative energy of the eigenvalues.|. . . . . . . ... ... .. ... 71

(5.7 %er2(t) error plots on the test case for temperature inlet boundary |

conditions #,, = 333.15K and 6, =353.15K.| . . . . .. ... ... .. 72

[5.8  %e;2(t) error for different temperature inlet conditions.| . . . . . . . . 73

12



[5.9  Comparison of the velocity field for the full order and reduced order |
model . . . .. 74
[5.10 Comparison of the temperature field for the full order and reduced |
order model.l. . . . . .. 75
[5.11 Comparison of the pressure field for the full order and reduced order |
model . . . .. 76
[5.12 Zoom of the area with the biggest relative error| . . . . . . . ... .. 7
[5.13 Comparison of the temperature field for the full order and reduced |
order model for the testing case of temperature inlets 6,, = 293.15 K |
and 0, =313.15K]| . . . . . ... 78
[5.14 %ez2(t) error for two sampling spaces for the parameter (kinematic |
viscosity).| . ... 80
[5.15 Cumulative energy of the eigenvalues.|. . . . . .. ... ... ... .. 81
[5.16 Comparison of the velocity field for the full order and reduced order |
modell . . .. 83
[5.17 [Comparison of the temperature field for the full order and reduced |
order model.l. . . . . . ..o 84
[5.18 [Comparison of the pressure field for the full order and reduced order |
modell . . .. 85
[5.19 Zoom of the area with the biggest relative error.|. . . . . . . . .. .. 86
[6.1 Computational mesh of the T-junction pipe.| . . . . . . .. ... ... 93
[6.2 Mesh in T-junction region.|. . . . . . .. ... ... ... ... ... 93
(6.3  Yoerz2(t) error of velocity field for the four test sets (6.3). . . . .. .. 96
(6.4 %er2(t) error of pressure field for the four test sets (6.3).| . . . . . .. 96
(6.5 oer2(t) error of eddy viscosity field for the four test sets (6.3).| . . . . 97
[6.6 %er2(t) error of teperature field for the four test sets (6.3). . . . . . . 97
[6.7  Cumulative energy of the eigenvalues for nested and standard POD |
methods.|. . . . ... 98
(6.8 %er2(t) error for velocity field with and without RBF eddy viscosity.| 100

13



[6.9 Comparison of the velocity and temperature fields of the full order and |
reduced order model without use of RBF viscosity.| . . . .. ... .. 100
[6.10 %er2(t) error for temperature, velocity, pressure and eddy viscosity |
fields for the nested and standard POD methods, respectively.| . . . . 101
[6.11 Comparison of the velocity field using standard POD and nested POD |
method for test case D.f. . . . . .. ... o 103
[6.12 Comparison of the temperature field using standard POD and nested |
POD method for test case D| . . . . . . .. ... 104
[6.13 Comparison of the pressure field using standard POD and nested POD |
method for test case D . . . . . . ... oL 105
[6.14 Comparison of the eddy viscosity field using standard POD and nested |
POD method for test case DI. . . . . . . ... ... .. 106
[6.15 Difference between the velocity full order and reduced order standard |
POD and nested POD.| . . . . . ... ... ... .. 107
[6.16 Difference between the temperature full order and reduced order stan- |
dard POD and nested POD.|. . . . . ... ... .. ... ... ... . 108
[6.17 Difference between the pressure full order and reduced order standard |
POD and nested POD.| . . . . . . .. ... ... .. 109
[6.18 Difference between the eddy viscosity tull order and reduced order stan- |
dard POD and nested POD.|. . . . . ... ... .. ... ... .... 110
[6.19 Comparison of the radial velocity between the FOM, ROM-Global and |
ROM-Nested-0.5s.|. . . . . . . ... . . 111
[6.20 Comparison of the radial velocity between the FOM, ROM-Global and |
ROM-Nested-3s.|. . . . . . . .. .. . . 112
[6.21 Relative error on total energy (kinetic and thermal) between the FOM |
and the ROM for standard and nested POD methods.|. . . . . . . .. 113
[7.1 Square cavity geometry and computational mesh|. . . . . . .. .. .. 119
[7.2  Cumulative energy of the eigenvalues for temperature, velocity, pres- |
sure and nut fields for nested and global pod methods, respectively.| . 121

14



(7.3 First six basis functions for velocity (first two rows) and temperature |
(last tworows).| . . . . . ... L 123
[7.4  %er2(t) error for velocity and temperature fields for v = 1.65 x 107°.| 124
[7.5  Comparison of the velocity field for the full order and reduced order |
model] . . ... 125
[7.6 Comparison of the temperature field for the full order and reduced |
order model.|. . . . . . ..o 126
[7.7  Difference between the FOM and ROM for velocity and temperature |
fields.]. . . . . 127
[7.8  Comparison of the velocity streamlines.|. . . . . ... ... ... ... 128
[7.9  Comparison of the temperature isotherms.| . . . . . . ... ... ... 128
[7.10 Comparison of the FOM and ROM vertical velocity and temperature |
profiles.| . . ... 129
[7.11 Nuclear reactor primary loop schematic.| . . . . .. .. ... ... .. 133
[7.12 U-bend pipe configuration and region of sampling positions for the plots.|[L133
[7.13 Mesh layout of the U pipe.|. . . . . . .. ... ... ... .. ..... 134
[7.14 Convergence of the residuals in the steady-state case.| . . . . . . . .. 135
[7.15 Convergence of the flow-rate in the steady-state case.| . . . . . . . .. 135
[7.16 Steady-state velocity and pressure profiles.| . . . . . .. .. ... ... 136
[7.17 Comparison between the FOM and ROM flow rate for the various |
cooling scenarios and sampling frequencies.|. . . . . . . . .. ... .. 138
[7.18 Cumulative energy of the velocity, temperature and pressure eigenvalues.|[138
[7.19 % Relative error between the FOM and ROM flow rates for various |
cooling scenarios and sampling frequencies.| . . . . . . . ... ... .. 139
[7.20 Relative er2(t)% errors for velocity, temperature and pressure fields for |
various cooling fluxes and sampling frequencies.| . . . . . . . ... .. 140
[7.21 Time averaged €;2(t) projection error per number of modes for velocity, |
temperature and pressure (p,g) fields, respectively| . . . . .. .. .. 142
[7.22 Comparison between the FOM and ROM for velocity field for sampling |
frequency f=05Hz.|. . . . . . 144

15



[7.23 Comparison between the FOM and ROM for temperature field for |
| sampling frequency f =5Hz|. . . . . . . . ... 145
[7.24 Comparison between the FOM and ROM for pressure field for sampling |
| frequency f=5Hz| . . .. . . ... 146
[7.25 Comparison between the FOM and ROM radial velocity profiles at |
[ t=400s]. . . . .. 147
[7.26 Relative €2 ()% errors for velocity, temperature and pressure fields for |
| cooling flux 10Wm 2 and sampling frequency 1Hz| . . . . . . . . .. 148
[7.27 Comparison between the FOM, PPE-ROM and SUP-ROM flow rate |
| for cooling flux 10Wm~2 and sampling frequency 1Hz.| . . . . . . .. 150
[7.28 Relative e72(t)% errors of the flow rate for between the FOM and PPE- |
| ROM and SUP-ROM, for cooling flux 10Wm 2 and sampling frequency |
L THzZL . . 150
[7.29 Comparison between the FOM, PPE-ROM, SUP-ROM and no-pressure |
| gradient ROM for velocity fields for sampling frequency f = 1Hz.| . . 151
[7.30 Comparison between the FOM, PPE-ROM, SUP-ROM and no-pressure |
| gradient ROM for temperature fields for sampling frequency f = 1Hz.| 152
[7.31 Comparison between the FOM, PPE-ROM and SUP-ROM for pressure |
| fields for sampling frequency f=1Hz| . . . ... ... ... ... .. 153
[7.32 Comparison between the FOM and ROM radial velocity profiles at |
[ t=700s.]. . . . e 154
[7.33 Comparison between the FOM and ROM radial velocity profiles at |
[ t=700s. 1 . . . e 154

16



Nomenclature

Abbreviations

BPOD Balanced Proper Othogonal Decomposition
BT Balanced Truncation

BWR Boiling Water Reactor

CFD Computational Fluid Dynamics
CPU Central Processing Unit

DEIM Discrete Empirical Interpolation
DMD Dynamical Mode Decomposition
DNS Direct Numerical Simulation
FOM Full Order Model

HFM High Fidelity Model

LES Large Eddy Simulation

LFS Lead Fast Reactor

LTI Linear Time Invariant

PDE Partial Differential Equation
PODI Proper Orthogonal Decomposition with Interpolation
POD Proper Orthogonal Decomposition
PPE Pressure Poisson Equation

PWR Pressurized Water Reactor

RANS Reynolds-Averaged Navier-Stokes
RBF Radial Basis Functions

RB Reduced Basis

ROM Reduced Order Model

SC System Codes

SGS Subgrid-Scale Model

SST Shear-Stress Transport

SUP Supremizer Enrichment Pressure
SVD Singular Value Decomposition



URANS

VHTR

Unsteady Reynolds-Averaged Navier-Stokes

Very High Temperature Reactor

Bold Roman Symbols

(7

(¢

Q

N =

Sz g TR

N

Q

Qr1
Qr2

U

nested

d

sn

I <

Time-averaged velocity component
Reynolds-averaged strain rate tensor
Reduced matrix of the LTI system

Reduced vector of unknowns for pressure
Reduced matrix of the LTT system

Reduced vector of unknowns for temperature
Reduced matrix of the LTI system

Dirichlet boundary condition for velocity
ROM convection matrix for the heat equation
Mapping function

Initial condition for velocity

Hankel Matrix

Identity matrix

ROM mass matrix for the heat equation
Reduced vector of unknowns for eddy viscosity
ROM mass matrix

ROM diffusion matrix for the heat equation
Outward normal vector

ROM pressure gradient matrix

ROM convection tensor

ROM turbulent tensor

ROM turbulent tensor

Surface vector

Velocity field

Fluctuating velocity component

Fluctuating velocity field

Velocity snapshot matrix

Velocity snapshots

I-th nested snapshot matrix

Global snapshot matrix resulted from nested POD
Spatial basis function

FEigenvector matrix

Vector of weights



W. Constrollability Gramian

W, Observability Gramian
x(t) State vector

xo(t) Initial condition

y(t) Output

Greek Symbols

0 Time-averaged temperature component
B* Proportionality constant

€ Dissipation rate

€12 Relative error

i I-th POD basis function for mass flux

¥ Spread of a kernel

'y Diffusion Coefficient

A Langrange multiplier/ eigenvalues

m Dynamic viscosity

w Specific dissipation rate

) Transported quantity

03D Flux over the East neighbouring control volume
03D Flux over the West neighbouring control volume
o Flux over the control volume

P Density

Pk Kinematic density

T Viscous tensor

B Reynolds stress tensor

0 Partial derivative

0 Fluctuating temperature component

¢ Control functions

Qdif, Turbulent thermal diffusivity

Qdif Thermal diffusivity

Xi I-th POD basis function for temperature
€12 L? norm error

r Boundary of Q

12 Eddy viscosity

v Dimensionless kinematic viscosity

Q Bounded domain

i I-th POD basis function for pressure



0 Temperature field
& I-th POD basis function for eddy viscosity

Bold Greek Symbols

o Reduced vector of unknowns for velocity
3 Diagonal matrix

() Radial Basis Function kernels

Y Non-linear term

®i I-th POD basis function for velocity

Roman Symbols

D Time-averaged pressure component
z(t) Adjoint system state

m Mass flux

H s Reduced transfer function

Mn Moment matching

V2 Thermal conductivity

g Dynamical system - FOM

G Lower order dynamical system
K Training set space

% Thermal Conductivity

P Parameter space

Q@ Space-time domain

¢ Correlation matrix

S Subspace

Cp Specific capacity

dt Time-step

e Initial condition for temperature
f Face of the control volume

g Dirichlet boundary condition for temperature
Gr Grashof number

HE Heat flux term

H Transfer function

k Turbulent kinetic energy

N Number of time instances

p’ Fluctuating pressure component
Pr Prandtl number

Re Reynolds number



Source term

Final time of the simulation

Scaling coefficients

Control Volume

Number of unknowns for pressure at reduced order level before the truncation
Number of degrees of freedom for velocity at full-order level

Number of unknowns for velocity at reduced order level after the truncation
Number of uknowns for velocity at reduced level before the truncation
Number of parameters in the training set &

Number of unknowns for temperature at reduced order level before the truncation
Turbulent Prandtl number

Pressure field

Mathematical Symbols

]R+
]Rd
v
V.
V x

Vs

<'7'>
[

Positive real numbers

d-dimensional space

Gradient operator

Divergence operator

Curl operator

Symmetric gradient operator

All vectors are denoted by bold italic symbols
All scalars are denoted by italic symbols
Laplacian operator

Dotted symobls denote derivative with respect to time
Inner product in L*(Q)

Norm in L*(Q)

Tensor product



Chapter 1

Introduction

The content of this chapter has been partially published in:

GEORGAKA, S., STABILE, G., ROZZA, G., and BLUCK, M.J. 2020. Parametric
POD-Galerkin Model Order Reduction for Unsteady-State Heat Transfer Problems.

Communications in Computational Physics, Vol 27, No. 1, pp. 1-32.

This chapter begins with the context of the present thesis, followed by an overview of
Model Order Reduction applications in nuclear engineering. The scope of the present

thesis is also discussed.

1.1 Context

Partial differential equations (PDEs) describe a variety of physical systems occur-
ring in nature and in engineering. PDEs are complex and generally non-linear and
their numerical solution requires considerable computational effort. For example,
fluid flow, a phenomenon very common in many engineering fields, is governed by the
Navier-Stokes equations and accurate numerical solutions provide vital insight into
complex physical processes. Analytical solutions of these equations are impossible
in most circumstances. For this reason, computational fluid dynamics (CFD) has
seen progressive development since the 1970s and is now capable of solving many
practical problems in fluid flow and heat transfer. With the continued development

of improved algorithms and increasing computational power, CFD is now used in



various engineering fields such as aerospace, nuclear, civil, mechanical as well as non-

engineering fields such us neuroscience, meteorology etc.

Despite its popularity and applicability, the computational burden for simulating
realistic large scale and many-query systems is still very high, even with the use of
supercomputers. A good example of the challenges involved can be found in nuclear
applications, where turbulence, multiphase flow and heat transfer phenomena occur
in complex geometries; a fairly accurate CFD simulation of a single instance of an
accident case scenario could take months or more to be performed. To address these
challenges, System Codes (SC), such as RELAP, CATHARE, etc and sub-channel
codes (COBRA, etc), constitute phenomenological reduced order methods based on
considerable limiting physical assumptions. These codes, that were developed in the
1950s, rely on major physical and geometrical simplifications, such as averaging over

the flow cross section leading to essentially 1D simulations.

These simplifications can save great amounts of computational time. However, the
compromise is that they rely exclusively on experimental and phenomenological cor-
relations to take account of heat transfer and turbulence and the like. In particular,
these assumptions are particularly inadequate for 3D flows. In the recent years al-
though these codes have been improved allowing some limited 3D capability, the
accuracy is still inadequate and their application is very limited. The same applies in
the field of neutronics for the study of reactor dynamics. Geometrical and physical
simplifications are made to the governing equations in order to obtain a computation-
ally affordable model. These simplifications include 1D geometries, homogenous core
dynamics, uniform axial fluxes, etc. The challenge then, is to bridge the considerable
gap between high fidelity full order models (FOMs) (e.g. CFD and its variants) and

these over-simplistic surrogate models (system and sub-channel codes).

Surrogate models are derived from high fidelity models (HEM) usually using Data-fit
(DF), Hierarchical or Reduced Order Model (ROM) methods. Data-fit models treat
the Full Order Model (FOM) as a “black-box” method to obtain the data, the in-
terpolation or regression of which evaluates the reduced order input-output mapping

function. This non-intrusive procedure is advantageous, because it entirely bypasses



system matrices and state vector calculations, hence it does not require access to
legacy codes. However, it is a non physics-based method and, therefore, the sur-
rogate model does not inherit the underlying physics of the problem. Moreover,
DF models can not model conditions other than those that were used during the
derivation of the DF surrogate model. On the contrary, Hierarchical surrogates, are
physics-based models usually obtained by making various simplifications or consid-
ering coarser grids. However, Hierarchical models are low fidelity models. ROMs
are usually formed by projection of the original system of equations onto a subspace.
They are considered the most advantageous, because they preserve the structure of
the problem, are physics-based and, most importantly, they retain the fidelity of the
FOM.

Modern ROMs have been proposed as an alternative way of approximating systems
like those mentioned above in a more sophisticated and reliable way. Unlike Hierar-
chical methods, such as SC, ROMs retain the fidelity of the FOM, while considerably
reducing the computational burden. Compared to DF models, parametric ROMs
can model well problems with different initial conditions to those used during their
construction. Reduced order modelling is a highly promising area, which is cur-
rently flourishing in the science and engineering community. However, the biggest
challenge is the construction of stable ROMs that are able to accurately predict the
behaviour of the examined system. This requires careful consideration of strong non-
linearities, long term transient flows, turbulence and other multi-physics phenomena,

which should be taken into account during the projection process.

1.2 Reduced Order Modelling in Nuclear Engineering

Complex transient phenomena, such as heat transfer, neutron fluxes, power instabil-
ities and two phase flows are present in nuclear power plants. The high complexity
and the non-linear behaviour of the nuclear power reactor systems make high fidelity
modelling challenging. To accelerate the modelling process, various geometrical and
physical simplifications have been proposed, but the loss in accuracy is considerable.
Simplified models, which usually model only the most dominant phenomena have been

developed. For example, instead of the Navier-Stokes equations, Euler equations are



applied in 1D geometries. In addition, in neutronics, the system is described by the
so-called point kinetics equations, where the reactor is taken as a point and the spatial

flux profile is neglected.

These models can be partially seen as surrogate models, but the actual aim of the
modern model order reduction is to develop a low-cost and high fidelity model. High
fidelity nuclear reactor modelling usually requires large parametric spaces for the so-
lution of the coupled PDEs. SC like RAMONA can model well parts of the system,
but a complete analysis is prohibitive in terms of computational time and resources.

A ’compact’ model with fewer degrees of freedom is, therefore, necessary.

There has been a lot of simplified modelling research, mainly in the field of Boil-
ing Water Reactor (BWR) stability analysis, which, triggered by some instability
events, occurred in the 1980s. Under stable operating conditions, BWRs show linear
behaviour. Two-phase flow, which is found in BWR heated channels, can trigger
power in-phase or out-of-phase instabilities, mainly caused by density-wave oscilla-
tions. Density waves are formed, for example, by propagation of travelling voids,
which are created at the bottom part of a BWR due to inlet flow reduction under
stable power conditions. Understanding these instabilities is crucial, because they

can lead to non-linear behaviour and serious mechanical and material damages.

In real environments, stability experiments are difficult due to the application of low
flow and high power conditions. Instead, a high fidelity simulation would be much
more favourable where complete solution manifolds could be investigated. Towards
simplified models, Hopf bifurcation theory has attracted many researchers. Clausse
and Lahey were the first to attempt modelling this behaviour 1991. The authors con-
sidered a 1D homogeneous equilibrium simplified model where the enthalpy is linearly
dependent and in single phase and two phase regions, discretisation is performed by
Galerkin nodal method (Clausse and Lahey|1991)). In (Munoz-Cobo and Verdi 1991)),
a simplified model is derived for describing the limit cycles in BWRs using Hopf bi-
furcation. The authors applied the center manifold method to reduce the system’s
dimension from five to just two, showing that the reduced system preserves the key

dynamics and thus bifurcation can be applied. Both models, when describing dense



wave oscillations, take into account only two nodal regions, a single phase and a two
phase, where there is thermodynamic equilibrium. However, there is a third region,
the sub-cooled, which has to be taken into account, because it can affect the void
feedback reactivity. The sub-cooled region, was taken into account in (Munoz-Cobo,
Chiva, and Sekhri 2004), where a ROM was developed, considering a model with
three nodes per channel. In (Dokhane |2004) and (Dokhane, Hennig, Rizwan-uddin,
and Chawla 2007)), Dokhane proposed a novel ROM for application in density wave
oscillations and in-phase/out-of-phase instabilities, as well as in bifurcation analysis,

in a complete two channel coupled system.

In neutronics, an equivalent to POD modes, known as lambda modes, was used
for reduction of the two-group diffusion equations. As in the flow analysis a state
vector can be written as a linear combination of POD modes, this theory suggests
that the neutron flux can be approximated as a linear combination of basis functions,
the lambda modes. Therefore, lambda modes can help us understand the formation
of in-phase and out-of-phase instabilities. The theory of lambda modes was proposed
by Miro in an attempt to integrate the transient neutron diffusion equation, using
only a few dominant modes (lambda modes) (Miré, Ginestar, Verdd, and Hennig
2002). In (Ginestar, Miro, Verdu, and Hennig 2002), the authors performed a modal
instability analysis of a BWR reactor using lambda modes. The analysis showed that
the in-phase instabilities oscillate in the fundamental mode, whereas the out-of-phase
instabilities are linked to the first and second sub-critical modes. The results were

compared to those of RAMONA code and they match each other.

In the field of Pressurized Water Reactors (PWRs), ROMs have been developed
in the context of control applications design, using Balanced Truncation (BT). The
control systems of PWRs, need rectifications throughout their operation lifetime, due
to the variation of reactivity and power. Optimal single controller linear designs are
being considered for meeting these changes. In (Bendotti, Codrons, Falinower, and
Gevers [1998), the authors derived and tested three different ROMs for simplifying
the PWR controller design. In the case of open loop, the system contains unstable
nodes and, therefore, the BT method cannot be directly applied. For this reason, a

factorization of the transfer function has to be performed prior to BT. This process is
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called “output frequency weighted balanced truncation”. A second ROM for closed
loop has been derived via direct BT and a third method via loop identification tech-
nique. Amongst the three techniques, the closed loop exhibits the best performance.
In controller design, Bendotti used balanced realisation and BT, considering a model,
where, in a PWR, slowly transient uncertain parameters exist due to changes in re-

activity and power (Bendotti and Beck [1999).

Coolant flow plays a crucial role in the design and safe operation of nuclear reac-
tors. Accurate modelling can be performed via CFD codes, such as Direct Numerical
Solution (DNS) or Large Eddy Simulation (LES). These methods are time consuming,
because refined meshes are required for modelling phenomena like turbulence near the
wall region in rod bundles, or other instabilities. POD-ROMs are ideal candidates
for modelling such phenomena, giving fairly accurate and rapid results. Even though
large research has been carried out in other industries, the application of POD-ROMs
in the field of nuclear engineering flow modelling is limited. For example, snapshot
POD has been widely used for studying the coherent structures of turbulent flows in
case of pipes, cavities, airfoils, cylinders etc. In more complex geometries, such as
those found in nuclear reactors, due to the presence of a large number of rods, the
counter rotating vortices in the narrow gaps can interact, giving rise to 3D vortex
structures. In (Merzari and Ninokata |2011), Merzari and Ninokata applied snapshot
POD for studying turbulent flow in the interior of a tightly packed rod bundle (pitch
to diameter = 1.05) using LES snapshots. In comparison with single channel flow, the
results showed a more complicated flow structure in rod bundles, mainly due to the
presence of modes with multiple wavelengths and wavenumbers inherited by periodic

boundary conditions.

The POD method is also present in reactor physics. In (Buchan, Pain, Fang, and
Navon |2013a)) an alternative snapshot technique for constructing POD based ROMs
has been proposed for the calculation of the criticality factor. The classical eigen-
value problem is time independent but the snapshots should present time evolution,
thus the authors proposed and developed a time-dependent eigenvalue problem. The
resulting ROM is able to give reliable and fast results even when a different geometry

is being applied. In (Banyay, Ahmadpoor, and Brigham |2014), the authors obtained
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a ROM for use in Very High Temperature Reactor (VHTR) lower plenum, using the
POD-Galerkin method.

Reduced Basis (RB) methods have been applied to model the neutronic behaviour in
nuclear reactors, offering reliable and rapid calculations. In (Sartori, Baroli, Cammi,
Luzzi, and Rozza |2014)), the authors applied the RB greedy algorithm to derive a
ROM, considering the parametrised 2D multi-group diffusion equation, for studying
the movement of the control rods. The ROM can be accurately predict the neutron
flux profile, accounting also spatial effects due to the rod movements. Most impor-
tantly, the computational savings are considerable. The same authors, in (Sartori,
Cammi, Luzzi, and Rozza |2016b), suggested a different hybrid sampling method for
the generation of the RB. This hybrid method uses Centroidal Voronoi Tesselation
(CVT) and POD for further reducing the dimension of the basis. Unlike the greedy
algorithm, which relies on a posteriori error estimates, CVT leads to an even faster

offline phase.

More recently, a ROM which couples neutronics and heat transfer effects was in-
troduced in (Sartori, Cammi, Luzzi, and Rozza 2016a)). The authors proposed a
methodology for obtaining a RB multi-physics model using POD snapshots from
Lead Fast Reactor (LFS) single channel. The ROM was able to accurately predict
the neutron flux and temperature distribution while achieving considerable speed-ups

when compared to the FOM Finite Element (FE) method.

1.3 Scope and contributions of the present thesis

The aim of the present thesis focuses on proposing ROMs that could be potentially
used in the modelling of nuclear reactor thermal hydraulics. These systems usually
contain a network of T-junction, straight or bend pipes, which allow the flow of liquid
or gas coolant around the plant. The role of the coolant is to carry away the heat
generated inside the nuclear reactor core and transport it to the turbines for electri-
cal power generation. It also serves as a mean of keeping the temperature inside the
core within safe limits, prohibiting the overheating of materials and fuel elements. It

therefore plays a crucial role in the safety of nuclear power reactors.
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This thesis is influenced by some challenging flow regimes and configurations that

arise in nuclear reactor thermal hydraulic systems:

e Laminar and turbulent thermal mixing of two different temperature streams in
T-junction pipes. This phenomenon leads to high transient temperature fluctu-
ations in the pipe wall regions, which could potentially lead to thermal fatigue
and subsequent failure of the piping material (cracks formation, breakage etc).
Turbulent thermal mixing has been studied both experimentaly and computa-
tionally in (Ayhan and Sokmen 2012} Frank, Lifante, Prasser, and Menter [2010}
Kuczaj, Komen, and Loginov [2010; Naik-Nimbalkar, Patwardhan, Banerjee,
Padmakumar, and Vaidyanathan|2010; Tunstall, Laurence, Prosser, and Skillen
2016b; Walker, Simiano, Zboray, and Prasser|2009). In the computational case,
various turbulent modelling techniques have been studied, inluding the Large
Eddy Simulation (LES) and the Unsteady Reynolds Averaged Navier Stokes
(URANS) or the combination of the two methods. These methods, given the
high Reynolds numbers and the nature of the problem, require fine 3D meshes,
leading to high computational costs. The laminar case is also considered in this
work, since, from model reduction point of view, it entails challenges related to

the coupling between the Navier-Stokes and the energy equations.

e Modern nuclear power plants benefit from the mechanism of natural convection
to drive the coolant in case of accident (natural circulation). These so-called
passive systems are found, for instance, in PWR reactors, where a natural cir-
culation loop is formed due to the difference in temperature between the core
(heat source) and the steam generator (sink). The flowrate is maintainted due
to gravity, by placing the core at a lower elevation than the steam generator.
This, therefore guarantees the removal of the decay heat without the need of
backup diesel generators, which could fail as happened in the Fukushima Daiici

accident (Hollnagel and Fujita|2013).

Considering the above, for the purposes of this thesis, the following flow configurations

and ROMs have been selected and assessed:

e Parametric POD - Galerkin for laminar flow problems with heat transfer, applied

in T-junction pipes.
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e Parametric Hybrid Proper Orthogonal Decomposition with Interpolation (PODI)
- Galerkin for turbulent flow problems with heat transfer. The proposed ROM

is validated on thermal mixing in a T-junction pipe.

e Parametric POD - Galerkin for laminar buoyancy driven flows in enclosed ge-

ometries, tested in a differentially heated square cavity.

e POD - Galerkin for laminar buoyancy driven flows in open geometries, tested

in a U-bend pipe.

The contributions of this thesis, which, to the best of the author’s knowledge, are
presented for the first time in the field of model order reduction and modelling of

nuclear thermal hydraulics are the following:

e Proposing a ROM derived from laminar problems that involve thermal mixing
and heat transfer phenomena, such as those occurring in T-junction pipes. The
proposed parametric POD-Galerkin method takes into account the parametrised,
unsteady, 3D Navier-Stokes equations one-way coupled with the parametrised

unsteady energy equation.

e A ROM for applications in turbulent heat transfer/thermal mixing problems. A
hybrid parametric Proper Orthogonal Decomposition with Interpolation (PODI)-
Galerkin is proposed, where the PODI method is used for the treatment of the
eddy viscosity term. Two different types of POD are studied, the standard POD
and the nested POD methods.

e Development of a parametric POD-Galerkin method for enclosed buoyancy

driven flows in a differentially heated square cavity.

e Development of a POD-Galerkin ROM for modelling open buoyancy driven
flows. The ability of the proposed ROM to predict complex phenomena such as
the “cold-trap” formation in a U-bend pipe is studied. A Pressure-Poisson Equa-
tion (PPE) method, adjusted to accomodate the buoyancy term, is proposed for

the treatment of the pressure term.

1.4 Outline

The rest of the thesis is organized as follows:
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e Chapter 2 gives a general overview and literature review of the most popular
projection based model order reduction methods, indicating their suitability
for applications in fluid dynamics. A short mathematical description of each

method is provided along with some applications.

e Chapter 3 presents the mathematical background for the Full Order Model.
This includes the Navier-Stokes equations of fluids, the energy equation as well
as turbulence modelling. The turbulence modelling techniques that are discussed
are the Large Eddy Simulation (LES) and Unsteady Reynolds Averaged Navier-
Stokes (URANS). In the last section, the Finite Volume method is discussed in
detail.

e Chapter 4 provides the mathematical framework for the Reduced Order Model.
The method presented in this chapter is the Proper Orthogonal Decomposition-
Galerkin for parametric problems, which is the main method that is followed
in this thesis. For the stabilization of the equations, the supremizer enrichment

method and a Pressure Poisson Equation methods are also presented.

e Chapter 5 deals with model order reduction for laminar heat transfer prob-
lems, using the parametric POD-Galerkin method. A mathematical formulation
for both the FOM and the ROM is provided as well as a method for treating
parametric boundary conditions. This chapter contains a numerical application
of the suggested method applied in a T-junction pipe. Two cases are considered,
one where the parameters of interest are the time and the two temperature inlet
boundary conditions, and one where the parameteric dependence is on the time

and the kinematic viscosity.

e Chapter 6 introduces a hybrid model order reduction method for modelling
turbulent heat transfer problems. The hybrid method suggested in this chapter
treats the reduction of the eddy viscosity term in a non-intrusive way, using the
Proper Orthogonal Decomposition with Interpolation (PODI). The interpola-
tion is performed with Radial Basis Functions (RBF). In this way, the turbu-
lence treatment in the Reduced Order Model is transparent to the turbulence
modelling method that used in the Full Order Model. This makes the ROM
faster and independent of the turbulence treatment of the FOM. The reduc-

tion of the velocity, temperature and pressure are performed using the intrusive
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POD-Galerkin method. For the assembly of the POD snapshot matrix, a Nested
POD method is introduced and compared against the standard POD method.
The former method tends to be faster where problems with a large number of
parameter values are considered. The hybrid model order reduction method
is validated on a T-junction thermal mixing problem with parametric velocity
inlet boundary conditions. The robustness of the ROM is tested on several sets
of inlet velocity boundary values which belong in the range of the training space
but they are not overalapped by the training points. Nested and standard POD

methods are also compared for this test case.

e Chapter 7 suggests a model order reduction method for buoyancy driven flows
where the FOM equations are formulated using the Boussinesq approximation.
Therefore, a strong coupling between the velocity and temperature is implied.
The ROM is derived with the POD-Galerkin method. Two cases are studied:
an enclosed flow in a parametric differentially heated square cavity, where the
pressure term is neglected, and an open flow in a U-bend pipe with a “cold-
trap” formation, where the pressure is reconstructed by exploiting the Pressure

Poisson Equation.
e Chapter 8 draws conclusions of the present work and suggests ideas for further
development.
1.5 Summary of the Chapter

The present chapter introduced the context and the scope of the present thesis as
well as discussed the status of model order reduction methods that have been applied

in nuclear engineering.
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Chapter 2

Projection Based Model Order
Reduction Methods

The scope of this chapter is to discuss the aspects of the most popular projection based
model order reduction methods and assess their suitability for applications in nuclear
thermal hydraulics. For the computation of the reduced basis, methods including BT,
POD, Balanced Proper Orthogonal Decomposition (BPOD) and parametric methods
are discussed. Model order reduction methods have originally been developed for
Linear Time-Invarian