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Abstract

Evolving boundaries are an intrinsic part of many physical processes and numerical methods. Most efforts

to model evolving boundaries rely on implicit schemes, such as the level-set method (LSM). LSM provides

the means to efficiently model the evolution of a boundary, but lacks the ability to transmit information or

provide information directly at the boundary. Explicit alternatives based on remeshing or partial-remeshing

are often computationally expensive and inherently complex to implement. This work proposes a solution

to this dichotomy: a novel finite element method (FEM) based formulation capable of explicitly discretizing

moving boundaries in an accurate and numerically-efficient way. It couples the floating node method (FNM)

with LSM for the first time, which yield a methodology suitable for implementation as user-element in a

generic FEM package. The explicitly discretized boundary allows for a new velocity-extension methodology,

and a new LSM-reinitialization procedure, which show benefits in accuracy and efficiency. The potential

of this formulation is showcased within topology optimisation, showing greater geometrical accuracy and

improvements in the optimum solution attained when compared to implicit methods.

Keywords: evolving boundary, explicit discretization, conforming mesh, floating node method, level set

method, topology optimization

1. Introduction1

1.1. Background2

An evolving boundary is an interface between two materials, or two phases of the same material, which is3

moving through space. These moving boundaries can exist in two dimensions (2D) (e.g. a circle increasing4

in diameter over time) or in three dimensions (3D) (e.g. a balloon inflating). Evolving boundaries are5

ubiquitous; some of the most relevant areas of study featuring evolving boundaries include: fluid-structure6

interaction [1]; multi-phase flow and multi-material deformable bodies [2]; additive manufacturing [3, 4];7

solidification and phase change [5]; fracture mechanics [6, 7]; and topology optimisation [8, 9].8

∗Corresponding author
Email address: r.costa18@imperial.ac.uk (R.O.S.S. da Costa)

Preprint submitted to Computer Methods in Applied Mechanics and Engineering March 29, 2020



Studying physical processes which involve evolving boundaries is challenging. The strategies to model9

evolving boundaries can be grossly categorized into: (i) explict — if the method captures the boundary10

explicitly and retains points/nodes in the moving boundary [10–12]; or (ii) implicit — if the method, in11

contrast, resorts to some alternative and virtual way of capturing the position of the boundary without12

placing any points directly on it [8, 13, 14].13

The level-set method (LSM) is a method used to implicitly represent a moving boundary. It uses a14

level-set (LS) function from which one can extract all the necessary information to locate and evolve the15

boundary through time, without the need for explicit definition. LSM has been implemented extensively16

in the literature; some examples include multi-phase flow and multi-material problems [2, 15], topology17

optimisation [16–21], and solidification studies [5]. Traditionally, LSM uses a finite-difference scheme on a18

structured grid to model the LS field [8, 15, 22]. However, there are several implementations in the literature19

of LSM within the finite element method (FEM) [2, 5, 17, 23, 24].20

LSM has the ability to very efficiently and simply model processes which involve moving boundaries,21

by manipulating the LS field. However, when there is a need to transmit information across the boundary22

(such as in fluid-structure interaction [1]) or to obtain information from the boundary (such as in topology23

optimisation [8]), LSM does not provide any ready and accurate way to achieve this. In fact, implicit24

methods lack these features by design in order to be more efficient.25

Explicit tracking of an evolving boundary in a FEM mesh is often achieved with remeshing [1, 25,26

26]. Remeshing is a method which consists of deleting and creating a new mesh after every geometrical27

evolution. While this method provides an explicit discretization of the boundary at every time-step, it28

becomes inefficient, as the geometry gets larger and more complex, to recreate the mesh at every time-step29

[1, 10]. With remeshing, complex data-structure handling schemes are often required to handle the mesh30

changes [27]. From the point of view of implementation in a typical FEM package, this approach requires31

changing the input file of the analysis at every iteration. Essentially, at every iteration, a different input32

file is generated and a new analysis is started as if it were a different numerical study. Remeshing therefore33

typically requires an external piece of software specifically to handle these changes in geometry (e.g. Abaqus34

uses iSight to sequentially generate new input files [28]). For these reasons, and given that the explicit35

representation of evolving boundaries within FEM is an active area of research, it is often the case that the36

added complexity and computational cost to feature the boundary explicitly in the FE model outweigh the37

advantages that such a feature provides.38

To alleviate some of the computational cost of remeshing, some work has been done on partial remeshing39

[10, 11, 29]. This work consists of creating algorithms capable of retaining the conformal mesh representation40

of the boundary while forsaking the need to do a complete mesh overhaul at every evolution. This can be41

achieved by remeshing parts of the domain [10], or simply by translating nodes close to the boundary such42

that their new position is at the boundary [11, 29]. Partial remeshing potentially maintains the explicit-43
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tracking advantages of remeshing at a lower computational cost, but can lead to unfeasible meshes or highly44

distorted elements [10, 11, 29]. Partial remeshing requires smoothing after the mesh modification, which45

can be a costly operation on the entire mesh.46

An alternative strategy to represent explicitly an evolving boundary, presented by Nguyen and Kim [27],47

consists of trimming hexahedral meshes. This element-trimming approach relies on a background mesh of48

regular hexahedral elements, and on the information provided by the zero-level isosurface of the LS function,49

to break the hexahedral elements into multiple polyhedral elements. The polyhedral elements provide good50

accuracy for complex-geometry parts, but they also require complex schemes to obtain the shape functions,51

often requiring the division into simpler (tetrahedral) sub-domains [27]. Furthermore, the marching cubes52

algorithm used requires changing element connectivities — and, consequently, the analysis input file [27].53

Topology optimisation is one of the areas of research where modelling evolving boundaries is paramount.54

By nature, topology optimisation is a numerical problem with the remit of finding the optimum distribution55

of mass within a domain [30, 31]. Density-based methods for topology optimisation consider the material56

densities of cells as the design variables for the optimisation algorithm. These methods do not yield a clear57

boundary between void and solid and are characterized by pixelated contours resulting from the ‘ersatz’58

material definition [8, 31, 32]. An alternative, is to rely on LSM to overcome the pixelated-boundary59

limitation of the density-based methods. With LSM, there is a well-defined, clear boundary in the LS field60

[31]. However, if one uses a similar ‘ersatz’ approach to translate the LS field into the mechanical analysis61

model, the boundary representation retains the pixelated contours [8, 32].62

To the best knowledge of the authors, there is no methodology in the literature capable of modelling63

evolving boundaries explicitly whose implementation can be readily carried out in typical FEM packages.64

This is the main motivation to the present work.65

1.2. Floating node method66

The floating node method (FNM) is a method developed by Chen et al. [6] to overcome the limitations of67

the technologies available, at the time, to model crack propagation. It uses floating (extra) nodes which are68

not necessarily tied to a coordinate position (thus the designation ‘floating’), see Figure 1. When modelling69

cracks, the edges and surfaces of elements get partitioned at specific positions. Floating degrees-of-freedom70

(DoF) can be assigned to these positions to create multiple sub-elements, defining the crack through the71

partitioning of the original element.72

The solution to the FE problem requires computing the stiffness matrix of each sub-element separately73

and assembling them into the stiffness matrix of the parent element. In this way, FNM represents discon-74

tinuities locally and internally to an element, thereby allowing the method to be easily implemented in a75

typical FE software through user-element functionality. Furthermore, the need for floating nodes is specified76

a priori, therefore the elements connectivity do not change during the analysis — nor does the input file [6].77
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Figure 1: Floating node method for crack representation

FNM has proven to be a very powerful tool to model fracture [6, 7, 33, 34] and to realise polymorphic78

elements [35]. One can think of a crack as an example of an evolving boundary. Thus, the partitioning79

concept used for fracture mechanics can, potentially, be applied to model any evolving boundary. When80

modelling evolving boundaries, one can imagine that edges and surfaces also intersect the boundary, and81

consequently, can be partitioned to retain the boundary. Furthermore, floating nodes can be assigned to the82

different intersections, hence providing an explicit discretization of the interface.83

1.3. Objective84

The main objective of this work is to develop a new formulation that combines LSM and FNM for accurate85

and efficient representation of evolving boundaries within FEM, with the following original features:86

• explicit discretization of the boundary without using remeshing (nor partial-remeshing) techniques or87

non-standard element formulations;88

• simple element-partitioning scheme that leaves the initial input file unchanged during analysis, and89

makes the methodology suitable for implementation as user-element in a typical FEM package;90

• a new heuristic approach to extend the boundary velocity that benefits from the explicit boundary91

discretization and is therefore more accurate; and92

• a more efficient reinitialization procedure for the signed distance function that makes use of the explicit93

boundary discretization.94

In this paper, we will also show how the proposed methodology can be readily used to solve a topology95

optimisation problem, with the following original features:96

• a more streamlined optimisation workflow that does not require specific software to modify the input97

file of the model after every design change (as is the case with leading approaches in the literature,98

namely with the Abaqus and iSight workflow [28]); and99
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• an optimisation process that intends to bridge the gap between numerical and CAD design by accu-100

rately capturing every topological iteration — from initial to final design — more accurately and more101

efficiently.102

1.4. Structure of the paper103

Section 2 outlines the methodology implemented in this work. The LSM (Section 2.1) is briefly exposed,104

alongside the corresponding FEM discretization. The implementation of FNM as a means to explicitly105

discretize the implicit LSM-representation of the moving boundary in the numerical model is laid out in106

Section 2.2. Finally, the baseline and proposed methodologies are summarized in Section 2.3.107

Section 4 contains the analysis of the reinitialization procedure using a simple test case (Section 4.1).108

The main findings in terms of accuracy and efficiency are reported (Section 4.2) and analysed (Section 4.3).109

Section 5 contains the analysis of the stress field reproduction using a classic test case (Section 5.1). The110

main findings in terms of variable and geometrical accuracy are reported (Section 5.2) and analysed (Section111

5.3).112

In Section 6, the formulation presented in this work is applied to a topology optimisation problem113

(Section 6.1). The optimisation results and some data regarding accuracy and computational efficiency are114

presented (Section 6.2) and analysed (Section 6.3).115

The main findings and conclusions of this work are laid out in Section 8.116

2. Method117

2.1. Level set method118

2.1.1. Introduction119

The level-set method (LSM) is used to implicitly represent boundaries in space, and to enable their120

evolution in time when affected by some velocity field v(x). Figure 2a shows, schematically, the LSM121

representation of a boundary, Γ, in 2D space. Within the LSM, the boundary Γ is defined as122

Γ = {x : φ(x) = 0, x ∈ D }, (1)

where D represents the entire domain ‘box’. The effective domain, Ω, depends on the sign of the level-set123

(LS) function, φ, such that,124

φ(x) > 0 =⇒ x ∈ Ω ,

φ(x) < 0 =⇒ x ∈ D \ (Ω ∪ Γ) .
(2)
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Figure 2: The LSM representation of an arbitrary geometry through the signed distance function

In this work, we follow the common practice of adopting the signed distance function as the LS function125

[8, 22, 23]. Therefore, at any point, the LS function value represents the minimum distance of that point to126

Γ and its sign indicates whether the point is within Ω or not. In Figure 2b, the signed distance function, or127

the LS function, is overlaid as a 3D surface on a structured grid where Γ is implicitly represented.128

The LSM uses an advection equation of the form129

∂φ

∂t
+ v · ∇φ = 0 , (3)

to evolve and propagate the LS function, and inherently to move boundary Γ.130

If we consider that only the normal component exists in the velocity field, such that v = vnn, and given131

that the outward unit normal is n = − ∇φ
‖∇φ‖ , one can write that132

∂φ

∂t
− vn ‖∇φ‖ = 0 , (4)

in which the normal-velocity field (represented by vn) can be any function, depending on the intended133

movement for the boundary.134

2.1.2. Reinitialization135

The gradient of the LS function has the tendency to become either too flat or too steep, as time marches;136

thus, it is usually accepted in the literature that a reinitialization procedure is needed from time to time137

to maintain the quality of the LS function [8, 23]. The most common procedure reported in the literature138
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involves the solution of a modified advection equation [8, 23], such as139

∂φ

∂t
+ S(φ) ‖∇φ‖ = S(φ) , (5)

where S(φ) is the sign function approximated by S(φ) = φ
φ2+h2‖∇φ‖2 ; and h is the mesh size parameter.140

Equation 5 in steady state (∂φ∂t ≈ 0) leads to ‖∇φ‖ = 1, indicating the recovery of the signed distance141

property [8, 23]. On the same note, one can define an error measure to quantify the deviation of the LS142

field to the signed distance function as [23]143

εφ =

√√√√ 1
np

np∑
i=1

(‖∇φ‖ − 1)2
. (6)

where np represents the number of nodes.144

During reinitialization, we want the boundary to remain in the same position while the LS field gets145

updated. In the literature, this is often achieved using a penalty constraint [23].146

2.1.3. Velocity extension147

There are problems in which the velocity field is defined at the boundary [8, 22]. However, the LS field148

is defined over the entire domain box, D. Consequently, the LSM velocity field for the boundary evolution149

must be defined in D. There are, in the literature, several methodologies to achieve the extension of the150

velocity field from the boundary to the entire domain [22]. In this work, the methodology chosen involves151

the solution of a modified advection equation [15], given by152

∂vn

∂t
+ S(φ) ∇φ

‖∇φ‖
∇vn = 0 , (7)

which extends the velocity field vn to the entire domain box D.153

The starting point of Equation 7 is a velocity field containing only the boundary velocity. In the literature,154

this is often achieved by using an approximation of the Dirac delta function, such as δ ≈ 1
2 ‖S(φ)‖ [8], which155

obtains an approximation of the velocity at the boundary from a set of points.156

2.1.4. FEM discretization157

LSM is normally implemented using finite differences [8, 15, 22]. However, the method we present in158

this work is based on FEM and is intended to be used within generic FE packages through user-element159

functionality. Consequently, the discretization of Equation 4 follows closely the one presented in [23] where160

the streamline diffusion method is used to stabilize the FEM solution and prevent spurious oscillations in161
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the advection field. Therefore, consider the discretization of φ and a test function, ψ, as follows:162

φ = Nφφ ,

ψ = Nφψ ,
(8)

where Nφ is the vector of FEM linear shape functions; φ and ψ are DoF vectors for the LS and test functions,163

respectively.164

The weak form of Equation 4, when applying the streamlined diffusion method, can be written as165

∫
D

(
φi+1 − φi

)
ψ dΩ + ∆t

∫
D

(v · ∇φ) (ψ + βv · ∇ψ) dΩ = 0 , (9)

which after some manipulation leads to the following FEM equations:166 (∫
ξ

∫
η

NT
φNφ dξ dη

)
φi+1 =

∫
ξ

∫
η

(
NT
φφ

i + ∆tWTvn
∥∥∇φi∥∥) dξ dη ,

Kφφ
i+1 = fφ,

(10)

where W = Nφ + βv∇Nφ, and β is defined as [23]167

β = 1

2
√

(∆t)−2 +
∥∥J−1v

∥∥2
. (11)

In Equation 10, the scalar value of the velocity at the integration points is given by vn = Nφvn.168

In the reinitialization procedure, the weak form of Equation 5 is:169

∫
D

(
φ̃i+1 − φ̃i

)
ψ dΩ + c h2

∫
D

(
∇φ̃i+1∇ψ

)
dΩ = −∆t

∫
D

[
ṽ · ∇φ̃i

(
ψ + β̃ṽ · ∇ψ

)] [
S
(
ψ + β̃ṽ · ∇ψ

)]
dΩ ,

(12)

where the ·̃ indicates a reinitialization quantity; the reinitialization velocity is ṽ = S(φ)n.170

The FEM equations for the reinitialization procedure are171 [∫
ξ

∫
η

(
NT
φNφ + c h2∇NT

φ∇Nφ

)
dξ dη

]
φ̃
i+1 =

∫
ξ

∫
η

[
NT
φNφφ̃

i + ∆tW̃T (
S − ṽT∇φ̃i

)]
dξ dη ,

K̃φφ̃
i+1 = f̃φ ,

(13)

where c is a parameter controlling the effect of the diffusion term; W̃T = Nφ + β̃ṽ∇Nφ; and, β̃ is defined172

as173

β̃ = 1

2
√

(∆t)−2 +
∥∥J−1ṽ

∥∥2
. (14)
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The FEM equations for the reinitialization procedure are only complete with a penalty constraint174

(
K̃φ + ω ×GTG

)
φ̃
i+1 = f̃φ , (15)

where ω is a constant that represents the weight of the constraint; and G is a penalty matrix defined as:175

Gij = Nφ(ξ∗i , η∗i )j , j = 1, . . . , nnode , (16)

where i represents the ith intersection between the boundary and an element; ξ∗i and η∗i constitute the pair176

of coordinates of the ith intersection point in the natural coordinate system.177

Equation 7 for the velocity extension is discretized following a similar procedure to the LS equation,178

yielding179 (∫
ξ

∫
η

NT
φNφ dξ dη

)
vi+1

n =
∫
ξ

∫
η

(
NT
φNφvin + ∆tWTS

∇φ
‖∇φ‖

∇vn

)
dξ dη ,

Kvvi+1
n = fv .

(17)

2.2. FNM for explicit boundary discretization180

2.2.1. Proposed element181

There are physical problems in which some quantities are exclusively defined at the boundary [1, 8].182

Section 2.1 outlines the LSM which is used to implicitly capture the geometry of the moving boundary, and183

therefore not providing neither direct access to boundary information or an accurate geometric representation184

in the numerical model (e.g. for a mechanical analysis). In order to capture the zero-level set in the numerical185

model accurately, we propose for the first time to use FNM [6] to partition elements in the original mesh.186

In the elements intersecting the moving boundary, there are real nodes with positive LS values and others187

with negative LS values. An edge in which the nodes have different LS signs has been intersected by Γ. In188

this work, we consider that the element size is small in comparison to the curvature of the LS field, which189

means that only one intersection will occur per edge. This assumption allows us to build the proposed190

element (Figure 3) with one floating node per edge; additionally, the assumption leads to three intersection191

scenarios (Figure 4) when considering a linear approximation of Γ.192

From the LS values at each real node, the position of the zero-level set within the edge is given by linear193

interpolation. This position is then assigned to the corresponding floating node on that edge. Essentially, a194

floating node is activated whenever an intersection between an edge and the boundary occurs. But, since the195

existence of these floating nodes is enabled by design of the FNM, the activation of a floating node requires196

no changes to the elements connectivity, thus the initial input file of the analysis remains unchanged.197

The floating nodes, representing the intersections, are topologically associated with a boundary. Thus,198
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Figure 3: The finite element adopted for the FNM implementation with pre-allocated floating nodes

during the numerical analysis steps, they can provide information directly from the boundary. In order199

to include these nodes in the numerical model (e.g. for a mechanical analysis), the original element is200

partitioned into sub-elements. The floating nodes assigned to the area of the element (represented in Figure201

3 at the centre of the proposed element) are needed to facilitate the element partitioning, and increase the202

overall sub-element quality.203

After the partitioning, each sub-element is treated as its own element contributing to the stiffness ma-204

trix of the parent element (during assembly). As an example, focusing on the first case in Figure 4 (the205

intersection of opposing edges) outlined in detail in Figure 5, the partitioning leads to the creation of two206

quadrilateral sub-elements with coordinates xT
A =

[
xT

1 , xT
5 , xT

7 , xT
4
]

and xT
B =

[
xT

5 , xT
2 , xT

3 , xT
7
]
. The more207

complex partitions use triangular sub-elements, though the methodology is the same. Figure 5 outlines208

the relationship between the global connectivity matrix and the local partition scheme. It is possible to209

observe that the global connectivity matrix already accounts for all the parition schemes defined in Figure210

4. This way, creating a local partition is just a matter of selectively activating the right combination of real211

and floating nodes without the need to change the initial input file and the global elemental connectivities.212

The local sub-element connectivities are, therefore, needed when calculating the local stiffness matrices,213

assembling the global stiffness matrix and for post-processing.214

Having the boundary as part of the numerical model allows us to more efficiently select the active DoF215

for analysis at each iteration. Essentially, the mesh of domain Ω is now a subset of the mesh of D, thus216

reducing the overall number of DoF at each step.217

2.2.2. Proposed reinitialization scheme218

With the newly-gained direct access to boundary nodes, it is possible to implement a new reinitialization219

procedure (Figure 6). This will be outlined herein for the case of the signed distance function. Since220

the boundary is now populated with floating nodes, one way to approximate the minimum distance to221

the boundary is to evaluate the distance to the closest floating node. Despite this approach being an222
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Figure 4: The three intersection cases considered in this work, and the element partitioning schemes chosen with the corre-
sponding sub-element connectivities

approximation, it is, conceptually, a simple and efficient way to obtain a near signed-distance property223

throughout the entire process.224

With this new reinitialization scheme, we abandon the need to iterate through the modified advection225

equation for the reinitialization (Equation 13). Conversely, this new scheme allows us to achieve the best226

quality possible of the LS field, in one single step.227

2.2.3. Modified velocity extension228

In addition to the increased geometrical accuracy, the floating nodes on the boundary provide increased229

physical accuracy since one can, for example, probe displacements or stresses directly at the boundary.230

As it is referred in Section 2.1.3, there are scenarios in which the velocity field is defined originally at231

the boundary, but needs to be extended to the entirety of D. Traditionally, the extension would be achieved232

by capturing a numerical approximation of the boundary velocity (e.g. through approximated Delta dirac233

functions) and then extending it by solving the appropriate advection equation. Alternatively, since in the234
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Figure 5: Schematic outlining the process to obtain local element partitions from an unchanging global connectivity matrix

proposed methodology the velocity can be calculated directly at the floating nodes on the boundary, the235

extension can be modified to benefit from the more accurate data of the floating nodes.236

A more in-depth analysis of Equation 7 allows us to observe that in steady state (∂vn
∂t ≈ 0) we obtain237

the following:238

∇φ · ∇vn = 0 , (18)

which indicates that the normal of the LS field and the normal of the velocity field are perpendicular to239

each other. Thus, it is reasonable to consider that, in the close vicinity of the boundary, the velocity field240

is constant in the normal direction to the boundary [15]. Following this insight, we calculate the projected241

velocities of each node on the boundary, and thus obtain an approximation of the velocity field for the real242

nodes closest to the boundary. This methodology is graphically represented in Figure 7, for the case in243

which a node is shared by two elements intersected by the boundary. In this case, the final approximated244

velocity is the average of the individual projections.245
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Figure 7: Interpolation of the boundary velocities (v) to the neighbouring real nodes in preparation for the step of velocity
extension

2.3. Baseline and proposed methods246

For the purpose of benchmarking, we implement in this work a baseline method alongside the proposed247

method. The baseline method aims at being representative of the state-of-the-art on implicit representa-248

tion of evolving boundaries using FEM and LSM. Thus, this work will show how the proposed explicit-249

discretization method built upon an implicit LSM model compares, in performance, to a fully implicit250

methodology using an ersatz material approach. Figure 8 contains the flowchart representation of both251

methods, side-by-side.252

The formulations described here were implemented in a Matlab code (available at this link). Furthermore,253

the results presented and discussed in this work (available at this link) were obtained with a standard desktop254

computer, and all timed runs were obtained under equivalent conditions of computer use.255

The differences between the baseline and proposed methodologies are observable when comparing Figures256

8a and 8b. Namely, in the proposed method, the reinitialization procedure is achieved in a single step, while257

13

https://github.com/ImperialCollegeLondon/EvolvingBoundariesFNMandLSM
https://github.com/ImperialCollegeLondon/EvolvingBoundariesFNMandLSM/tree/master/results


the baseline method requires a loop to solve the FEM reinitialization equations, and a penalty constraint.258

Note that n, in Figure 8a, is the number of times the loop is meant to repeated; the choice of n impacts greatly259

the runtime and accuracy and no common practice can be found in literature (alternatively a convergence260

criterion could be devised, although the accuracy improvements do not appear to justify the much greater261

increase in runtime). Additionaly, the proposed method introduces mesh partitioning steps and the need to262

update the set of active DoF at every iteration, which does not happen in the baseline. The baseline method263

employs the ersatz material approach in which two phases (void and solid) are defined by a pseudo-density264

that multiplies with the material properties. This pseudo-density is based on the average of the nodal LS265

values: if negative, the pseudo-density is set to 0.001; if positive or zero the pseudo-density is set to 1.266

Highlighted in Figures 8a and 8b are the two boxes referring to the computation of the velocity field for267

the LSM. This is because the velocity calculation is problem-specific. In this work, we choose to apply the268

proposed methodology within topology optimisation. In the topology optimisation problem, the LS velocity269

field corresponds to the sensitivities calculated in the optimisation problem. Therefore, the nodal velocities270

(Appendix A) are given, at node j, by271

vn(j) = 1
ne

ne∑
i=1

veni
Aei
− λ̄ (implicit) ,

vn(j) = εT(j)σ(j)− λ̄ (explicit) .

(19)

where the superscript e indicates an elemental quantity; ne is the number of elements intersecting the272

boundary to which the node j belongs; Aei is the area of an element; λ̄ is a modified Lagrange multiplier;273

and, ven is the elemental velocity given by ven = qT
uKe

uqu (see Appendix A); qu is the vector of displacement274

DoF; and Ku is the stiffness matrix of the elasticity problem. The displacements are computed through the275

FEM equations (Appendix A) as follows:276

Kuqu = fu , (20)

in which277

Ku = ρ

∫
ξ

∫
η

BTDB det(J) dξ dη ,

fu = f ,
(21)

where B = LξJ−1 and J the Jacobian matrix; D is the elastic plane-stress constitutive matrix, and ρ is the278

pseudo-density of the ersatz material in the baseline methodology; fu is the force vector; and f corresponds279
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to the vector of applied loads. Strain and stress tensors are computed as280

ε = Bqu ,

σ = Dε .
(22)

It is important to note that, the proposed method has, theoretically, no barriers on the extension to281

other FEM formulations dealing with different physics or on the extension to a three-dimensional variant.282

For the implementation in three-dimensions the main areas requiring extension are:283

• the partitioning cases - these would need to be defined in order to account for surface and face284

intersections and the 3D-elements topologies;285

• the local sub-element connectivities - these would need to be modified to account for different element286

geometries and the new partitioning cases;287

• the partitioning algorithm - the concept of comparing nodal values to check edge intersection would288

need to be extended to check for surface intersection; and289

• the velocity field extension - the proposed scheme relies on a 2D interpretation of the equations and290

would need to be expanded to account for the third dimension.291
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Figure 8: Flowchart representation of both methodologies implemented
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3. Comparison with different discretization methodologies292

From Section 2 it is possible to conclude that the proposed methodology is based on the implicit LSM and293

discretizes the boundary explicitly in the mechanical model after every topology change. The quantitative294

analysis of the proposed methodology, its features and applications will follow in the next sections; in295

this section, we will focus on its qualitative analysis and comparison to other analogous discretization296

methodologies.297

Numerical methodologies such as the one we propose and others alike in literature can be assessed and298

compared on a set of characteristics or criteria. These are:299

• accuracy - not in general terms but regarding information at the boundary. Methodologies which are300

able to provide information at the boundary without interpolation/extrapolation or other numerical301

approximations, apart from the ones inherent to FEM, will generally lead to more accurate information302

at the boundary;303

• computational load - measures how the methodology-specific algorithms affect overall performance304

(e.g. requiring more memory, accessing memory more often, performing more calculations, and so on);305

and306

• implementation difficulty - a measure of both theoretical and practical difficulty of implementation.307

More theoretically-involved methods often lead to a steeper learning curve and harder implementation.308

Also, measures the ability to implement the method on more closed, generic FE packages.309

For this comparison exercise let us assume that all methodologies are implemented on FEM, and that310

apart from the methodology-specific algorithms all of the methodologies are on equal footing regarding the311

comparison criteria above (e.g. they use the same type of element and integration scheme so that any312

accuracy difference is due to the specific methodology; they use the same general algorithmic and solution313

approach so that any computational load difference is due to the specific methodology).314

Comparison with remeshing and partial-remeshing315

In terms of accuracy of solution fields at the boundary, remeshing has, theoretically, the potential to be316

the most accurate methodology. Remeshing always retains the boundary explicitly in the numerical model317

[18, 26]; furthermore, assuming that for a particular topology the mesh obtained through remeshing is the318

best posssible mesh for that shape, then the solution accuracy should follow as being the best possible for319

the particular domain and mesh characteristics (density, element type, and so on).320

The main differences of using the proposed methodology instead of remeshing are:321
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• conceptually FNM can be thought of as a methodology realising local remeshing at the element level.322

However, computationally, FNM is different to remeshing in that the original mesh remains unchanged,323

as do the elemental connectivities; in remeshing the the problem is ’reset’ after every evolution as if324

an entirely new and disconnected domain is being analysed at each time step [18, 26];325

• in the proposed method the partition operations are localised to each element independently which326

provides a framework for parallelisation of the algorithm; in remeshing the process if often global and327

not readily localisable [18, 26]; and328

• in the proposed methodology the element geometry and quality is dependent on the initial mesh and329

the current topology which can lead to distorted sub-elements; remeshing gives complete control over330

the mesh generation allowing, in theory, to obtain the best quality mesh possible for the given topology331

[18, 26].332

Apart from the extent of the mesh modification, partial remeshing is equal to remeshing in every way.333

In fact, some partial remeshing techniques rely on operations over the entire mesh to maintain the mesh334

quality [11]. Thus, the points made for remeshing are also valid in the case of partial remeshing. Additionally,335

partial remeshing is closer to the proposed methodology in the sense that a compromise between quality336

and computational cost is made in relation to remeshing.337

When it comes a remeshing-based approach, the proposed methodology is expected to provide the fol-338

lowing advantages:339

• better computational efficiency, both in terms of wall time and in terms of use of resources; and340

• ability to parallelise algorithms and to implement the methodology inside a generic FE-package through341

user-element functionality;342

The expected disadvantages in regards to remeshing are:343

• some compromise in accuracy due to possibly distorted sub-elements;344

Comparison with XFEM approaches345

XFEM is a methodology that uses enrichment functions at the element level in order to account for346

discontinuities in the solution field [5, 36]. A XFEM approach of particular interest in the scope of this347

paper is the phantom node method (PNM) [37]. PNM has been shown to be equivalent to XFEM with348

Heaviside enrichments when it comes to displacement approximation [6].349

When comparing to general XFEM approaches, the main differences to the proposed methodology are:350
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• The proposed methodology introduces floating nodes at the boundary to partition the element into351

sub-elements therefore creating an explicit boundary in the model. While with XFEM the number of352

nodes is kept constant and the boundary is implicitly captured within the element through the use of353

modified shape functions [5, 36];354

• in the proposed methodology only displacement DoF are considered, whilst with XFEM assigns extra355

DoF at each node of an enriched element [5, 36];356

• in the proposed methodology each sub-element, in a partitioned element, is transformed into natural357

coordinates separately and its unique-full domain is used for integration; in XFEM each enriched358

element is integrated multiple times for partial domains [5, 36]; and359

• numerically, the proposed methodology leads to standard FEM equations for the given topology,360

and apart from uncertainties due to element distortion the solution of both should match; XFEM361

approaches are known to introduce an error representing discontinuities in natural coordinates [6].362

In addition to the above, the main difference between the proposed methodology based on FNM and one363

based on PNM lies in the fact that in the proposed methodology the floating nodes rest at the boundary.364

While in a PNM-based approach, the phantom nodes rest atop the real element nodes, thus no explicit365

boundary discretization is attained [6, 37].366

When it comes a XFEM-based approach, the proposed methodology is expected to provide the following367

advantages:368

• better accuracy of information at the boundary due to the floating nodes allowing for an explicitly369

discretized numerical model; and370

• easier to understand concept and implementation, both theoretically and practically;371

4. Reinitialization procedure372

4.1. Test Case373

A simple case study was devised to test the efficiency and accuracy of the proposed reinitialization374

procedure; it consists of a simple square with a hole in the centre (Figure 9). A uniform unit velocity375

is imposed over the entire domain, such that the hole increases in diameter over time. The test consists376

of modelling the evolution of the boundary, by considering both methodologies (baseline and proposed)377

and different reinitialization strategies: (i) reinitializing after every iteration; (ii) reinitializing after every378

five iterations; and (iii) reinitializing after every ten iterations. The parameters chosen are L = 1 mm,379

D = 0.2 mm, ‖v‖ = 1 mms−1, α = 0.5, c = 0.1, ω = 105, and a mesh of 150×150 isoparametric quadrilateral380
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and triangular elements with standard Gauss integration (4 integration points for the quadrilaterals, 3381

integration points for the triangles).382

L

L

v

Dϕ

Figure 9: Schematic of the reinitialization case test

4.2. Results383

Figure 10a shows the evolution of the error measure (Equation 6) over time for each strategy and method.384

(a) Quality of the LS field over time (b) Time taken for the reinitialization test

Figure 10: Effect of how often the LS field is reinitialised on the accuracy and runtime of the standard and proposed methods.

The baseline methodology, with strategy (i), yields good accuracy over the iteration range without385

any noticeable variability. The same methodology, with strategies (ii) and (iii), shows several ‘drops’ that386
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get smaller as the iterations increase, and also leads to a significant and increasing deviation from the387

signed distance function. In comparison, the proposed methodology, with strategy (i), produced the best388

accuracy, though the curves show more variability in the error; furthermore, the accuracy of the proposed389

methodology, with strategy (i), shows an increasing trend surpassing the corresponding baseline results at390

the 100th iteration. The proposed methodology, using strategies (ii) and (iii), yields oscillatory error levels391

with no error escalation over time, and with the ‘drops’ matching closely the error level of the proposed392

method with strategy (i).393

Figure 10b shows the time it took each method, with all three strategies, to run 100 iterations. In394

both methods, strategy (i) ran the slowest and (iii) the fastest. Also, it can be observed that the proposed395

methodology exhibits a much smaller difference between strategies.396

4.3. Analysis397

Figure 10a shows that several of the curves exhibit periodic ‘valleys’ or ‘drops’, which mark the iteration398

of the reinitialization procedure (notice that the period for strategy (iii) is double that for strategy(ii)).399

Hence, these ‘drops’ convey a gain in accuracy resulting from the reinitialization procedure. Furthermore,400

using the baseline methodology, with strategies (ii) and (iii), it is possible to observe a decaying impact401

of the reinitialization procedure, i.e., the accuracy gain decreases as iterations increase. In contrast, the402

reinitialization procedure in the proposed methodology always appears to yield the lowest possible error403

attainable by the method (that of strategy (i)) regardless of the strategy.404

The increasing error of the proposed methodology, with strategy (i), and the presence of variability,405

conveys that the proposed reinitialization procedure is topology-dependent, i.e., its accuracy is not constant406

but changes with the evolving geometry. This feature stems from the fact that the method approximates407

the minimum distance to the boundary to the position of the closest floating node. Therefore, the level408

of accuracy of the method is dependent on how well this approximation holds for the geometry and mesh409

partition at a particular iteration. In this benchmark a single boundary is considered, which is increasing410

in length over the iteration range. This length increase means that the approximation in the proposed411

reinitialization is worse and will, eventually, lead to higher errors than those of the corresponding baseline412

strategy. However, in a real example (such as the ones in Section 7) there are more boundary segments each413

of smaller length which will, in theory, give the advantage to the proposed reinitialization scheme.414

Overall, the proposed methodology performs the fastest regardless of strategy. Also, depending on the415

boundary topology and strategy employed the proposed methodology can yield better accuracy. Hence, the416

proposed methodology can be advantageous in both error (Figure 10a) and computational cost (Figure 10b)417

of the reinitialization procedure.418
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5. Stress field accuracy419

5.1. Test Case420

A test is conducted to verify the capability of the proposed method to accurately represent physical421

fields (such as stress fields) around the boundary. This is expected to provide important insights into the422

importance of explicitly discretizing the boundary with respect to implicit discretization.423

For this, the standard calculation of the stress concentration factor (SCF) for an infinite elastic square424

plate with a central hole under remote stress σ∞ is chosen as test case (Figure 11), for which the analytical425

solution is SCF = σmax

σ∞ = 3. The dimensions and loads considered are L = 3 mm, D = 0.2 mm, and426

σ∞ = 1 Nmm−1. Various tests are performed on uniform meshes with element sizes ranging from 0.075 mm427

to 0.0075 mm following the series { 0.075
1 , 0.075

2 , 0.075
3 , . . . , 0.075

10 }. We employ, in this test case, the same428

isoparametric elements as in section 4.1.429

L

σ∞

ϕD

Figure 11: Schematic of the quarter plate with the central hole used as test case to study the stress field accuracy

5.2. Results430

In Figure 12, the relative error in the SCF prediction is plotted for the proposed and baseline methods431

over the different mesh densities. It can be seen that the proposed method is consistently more accurate432

than the baseline method, with the exception of one point. The proposed method converges to a small error433

as the mesh is refined, while the baseline method shows larger error variability which does not appear to434

reduce as the mesh is refined.435

Figure 13 shows a detail of the geometry of the hole with the respective stress field. Qualitatively, it436

can be observed that the two methods reproduce the geometry very differently. While the baseline method437
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Figure 12: Relative error of the resulting stress concentration factor for different mesh densities when compared to the analytical
solution

presents a ‘pixelated’ hole boundary, the proposed method conveys an accurate geometric representation438

with a smooth boundary. In terms of the stress field, the baseline method produces stress concentrations on439

every ‘pixel’ while the proposed method produces an artefact-free stress field.440

5.3. Analysis441

The variability in the relative error shown by the baseline method (Figure 12) is due to the lack of geo-442

metrical accuracy in the mechanical model. The domain represented in the mechanical model is, effectively,443

different to the domain represented in the LS field. For this reason, there will be mesh sizes for which the444

stress values are closer to the analytical solution and other mesh sizes for which the stress values are very445

different, leading to the observed variability.446

In comparison, in the proposed method, some points show a slight increase in error despite the increase447

in mesh density. This characteristic stems from the fact that, for each mesh density, the mesh partition is448

different, and consequently so is the shape and quality of the sub-elements. While the proposed method449

may ocasionally generate a partitioning configuration leading to a lower quality sub-element, it still yields450

SCF predictions which are consistently more accurate than the baseline method.451

Figure 13 shows that the proposed methodology can capture the geometry represented in the LS field452

and accurately compute the mechanical response to a load.453
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Figure 13: Details of the hole geometries and stress fields for different mesh densities

6. Benchmark: topology optimisation of a 2D cantilever beam454

6.1. Problem definition455

Structural topology optimization is an ideal possible field where the proposed method can be applied456

with expected benefits. In this work, the proposed methodology will be showcased in the solution of the457

classic 2D cantilever beam problem [8], in which the topology of a rectangular domain (Figure 14), L×H,458

is optimised in order to achieve a configuration of minimum mean compliance within the limits of a volume459

constraint.460

A unit point load is applied in the middle of the right edge pointing in the downwards direction, and the461

beam is clamped in the left edge. The optimisation algorithm is initiated with a grid of circular holes such462

that the initial volume is close to the desired final volume (Figure 15a). The parameters used are L = 2 mm,463

H = 1 mm, F = 1 N, E = 1 MPa, ν = 0.3, α = 1, τ = 0.9, λ0 = γ0 = 1 (parameters in the optimisation464

process as detailed in Appendix A), c = 0.1, ω = 105, desired volume fraction 0.5, and a mesh of 100 × 50465

(unless stated otherwise) isoparametric elements as in section 4.1.466

6.2. Results467

Representative zero-level set curves from the proposed method are shown in Figures 15a to 15d. The468

topology of the converged solution is in accordance with the results reported in literature, under the same469

conditions of domain initialization and loading [8, 23].470
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Figure 14: Schematic of the cantilever beam

(a) Initialization (b) Iteration 26 (c) Iteration 50 (d) Iteration 200

Figure 15: LS curves from selected time iterations of the proposed methodology

The results of the optimisation algorithms can be seen in the form of the objective and volume constraint471

curves in Figures 16a and 16b. Both methods stabilize both constraint and objective functions around the472

same point (circa the 75th iteration). The converged compliance value of the proposed method is lower,473

while retaining the same volume.474

This improvement in compliance, J (see Appendix A), is quantified in Figure 17 for different mesh475

densities — from 100×50 to 300×150 elements. It can be seen that the converged compliance obtained with476

the proposed method is ≈ 6% to ≈ 1.5% lower than that obtained with the baseline method. Furthermore,477

the proposed method is particularly more effective for coarser meshes.478

Figure 18 shows side-by-side the zero-level set curves and numerical (mechanical) models from the baseline479

and proposed methods, in the exact same conditions. The numerical model for the baseline method is480

characterized by pixelated edges, while the same for the proposed method shows a nearly exact geometric481

translation between the LS field and the numerical model.482

The average number of active DoFs over the iteration range is shown in Figure 19a. It can be observed483

that the proposed method uses fewer DoFs at any one iteration, when compared to the baseline method.484

The average computational time (out of 10 runs) for the example considered here is displayed in Figure485

19. It is possible to observe that when considering a more efficient scenario — reinitializing after every 5486

iterations — the proposed methodology runtime is slightly higher, being within 5% of the baseline method;487

when considering a more accurate scenario, i.e.reinitializing every iteration, the proposed methodology is488

around 25% faster in average.489
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(a) Objective functions (b) Volume constraint curves

Figure 16: Comparison of the results from the baseline and proposed optimisation methods

6.3. Analysis490

Due to the differences in the baseline and proposed methods, it is expected that the optimisation results491

are different, despite both starting in the same conditions. Essentially, both methods capture the geometry492

of the domain differently. This leads to the computation of different displacement fields, and consequently493

different velocities for the LS field evolution. This may explain the difference in behaviour and final solutions494

observed from both methodologies.495

The accurate geometric representation of the LS field in the numerical (mechanical) model has a direct496

impact on the accuracy of the mechanical analysis, as reported in Section 5.2. The static mechanical analysis497

is the basis for the velocity computation (see Appendix A), thus playing an important role in the quality498

and accuracy of the optimisation process. Consequently, increasing the accuracy of the displacement field499

by accurately retaining the topology in the model at every iteration leads to an increase in accuracy of500

the velocity field for the LSM. Furthermore, having the boundary explicitly discretized allows for the direct501

access to the boundary velocities which is more accurate than using approximated versions of the Dirac delta502

and Heaviside functions. Ultimately, the increase in accuracy of the physical model and the direct access503

to the boundary leads to an improvement of the converged optimum solution of the optimisation algorithm,504

when using the proposed methodology.505

It is in coarser meshes that the differences between the methods are most evident, and the proposed506

method proves more advantageous. Firstly, there is an improvement in the converged optimum solution by507

using the proposed method; Secondly, the proposed method allows for smaller geometrical features in the508

topology. By allowing the partitioning of the elements, the method is able to accurately represent features509
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Figure 17: Improvement of the converged optimum solution by using the proposed methodology

smaller than the initial element size.510

Floating nodes are used by the proposed methodology to partition elements and effectively populate the511

boundary with DoFs. Therefore, the initial mesh and element connectivities of the proposed method account512

for this extra set of nodes and DoFs. Despite this, at any one iteration, since there is a clear boundary and,513

therefore, a clear separation between void and domain, one can choose a subset of the initial mesh as the514

active set of DoFs for the analysis. Consequently, the combination of an optimised choice of active DoFs with515

a more efficient reinitialization scheme allows the proposed methodology to balance the extra computational516

time associated with the element partitioning and the velocity calculation in the sub-elements; ultimately,517

this achieves a similar average computation time for the strategy with reinitialization every 5 iterations, and518

a 25% reduction in computational time for the strategy with reinitialization at every iteration.519

The proposed method can therefore be applied to topology optimisation problems, and successfully520

capture the solution reported from literature while improving on the solution attainable by the baseline521

methodology.522
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Figure 18: Comparison of the relationship between the numerical models and zero-level set curves of the baseline and the
proposed methods

(a) Comparison of number of active DOFs
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(b) Comparison of average runtime

Figure 19: Impact on resource efficiency (number of active DOFs) and time efficiency (runtime) of the proposed method when
using a 100×50 grid and 200 iterations
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7. Application: 2D topology optimisation examples523

7.1. MBB beam524

In this section we introduce a classic topology optimisation problem — the Messerschmitt-Bölkow-Blohm525

(MBB) beam — for application [30, 38]. This beam is represented in its half-model form in Figure 20.526

Symmetry boundary conditions are applied in the left edge, a rolling support is introduced in the lower527

right corner, and a point load is also applied in the top left corner. The parameters used are L = 3 mm,528

H = 2 mm, F = 1 N, E = 1 MPa, ν = 0.3, α = 1, τ = 0.9, λ0 = γ0 = 1 (parameters in the optimisation529

process as detailed in Appendix A), c = 0.1, desired volume fraction 0.5, and a mesh of 60×40 isoparametric530

elements as in section 4.1.531

L

H

F

Figure 20: Schematic of the MBB beam (using half-model symmetry)

7.2. L-bracket532

One other classic topology optimisation example is the L-bracket [38, 39]. This application example533

consists of a L-shaped domain (Figure 21) in which a load is applied in the middle of the lower vertical right534

edge.535

For this example, the L-shaped domain is obtained by subtracting a small square domain (0.6L× 0.6H)536

from the full square domain (L×H) using the FNM capabilities of the method. For the full square domain,537

the parameters used are L = 2 mm, H = 2 mm, F = 1 N, E = 1 MPa, ν = 0.3, α = 1, τ = 0.9, λ0 = γ0 = 1538

(parameters in the optimisation process as detailed in Appendix A), c = 0.1, desired volume fraction 0.25,539

and a mesh of 80× 80 isoparametric elements as in section 4.1.540

7.3. Bracket with two holes541

The final application example is based on Nguyen-Xuan et al. [38, 40], and aims at showing the full542

capabilities of the explicitly discretized boundary. This example is the bracket with two holes, in which the543
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Figure 21: Schematic of the L-bracket

irregular hole boundaries are used for boundary conditions. The bracket is fixed on the left hole and two544

point loads are applied in the right hole.545

The geometry of this example is obtained, as the L-bracket in Section 7.2, using the FNM capabilities.546

For this case in particular given the more complex geometry a modelling technique based on the R-function547

disjunction and conjunction is employed [41, 42]. This modelling technique allows us to easily capture the548

curved geometry and impose non-designable domains (such as the ring around the circles). For this example,549

the parameters used are L = 3 mm, H = 1 mm, F = 1 N, E = 1 MPa, ν = 0.3, α = 1, τ = 0.9, λ0 = γ0 = 1550

(parameters in the optimisation process as detailed in Appendix A), c = 0.1, desired volume fraction 0.2,551

and a mesh of 300× 100 isoparametric elements as in section 4.1.552

L

F

F

Non-designable domain

L/5
L/3

ϕ
ϕ

Figure 22: Schematic of the bracket with two holes
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7.4. Results553

The results of the optimisation algorithm can be seen in the form of compliance and volume constraint554

curves in Figures 23, 26 and 29, for the MBB beam, L-bracket and bracket with two holes examples,555

respectively.556

Furthermore, selected LS curves are presented in Figures 24, 27 and 30 for the MBB beam, L-bracket557

and bracket with two holes examples, respectively.558

he numerical models corresponding to the converged solution (250th iteration) can be seen side-by-side to559

the respective zero-level set curves in Figure 25 for the MBB beam, Figure 28 for the L-bracket and Figure560

31 for the bracket with two holes.561

Figure 23: Compliance and volume fraction over the iterations for the MBB example.

(a) Initialization (b) Iteration 25 (c) Iteration 50 (d) Iteration 250

Figure 24: LS curves from selected time iterations of the MBB beam example

7.5. Analysis562

Figures 23, 26 and 29 show that the three application examples converged without complications; fur-563

thermore, Figures 24, 27 and 30 show that the obtained converged topology is in accordance with results564

reported in the literature for the same problems [30, 38].565
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(a) LS curve (b) Numerical model

Figure 25: Comparison of the converged LS curve and numerical model for the MBB beam example

Figure 26: Compliance and volume fraction over the iterations for the L-bracket example

It is important to note that the bracket with two holes application example reports a slower topology566

evolution in comparison to the other two examples, which is due to the finer mesh used. A finer mesh is567

used in this example so as to be able to limit the non-designable domain (rings around the two holes) to a568

relatively small size, which is defined as being the length of two elements.569

As mentioned in Sections 7.2 and 7.3, the domains for the L-bracket and bracket with two holes examples570

were obtained using the FNM capabilities. The numerical model is defined as a square or rectangular domain571

from which sections are subtracted. This, technically, allows for any domain to be represented (so long as the572

user implements the required domain subtractions or additions) with the proposed method using a starting573

uniform quadrilateral mesh; and also, for the imposition of boundary conditions on curvilinear and irregular574

boundaries using the floating nodes (as is the case with the bracket with two holes example).575

32



(a) Initialization (b) Iteration 25 (c) Iteration 50 (d) Iteration 250

Figure 27: LS curves from selected time iterations of the L-bracket example

(a) LS curve (b) Numerical model

Figure 28: Comparison of the converged LS curve and numerical model for the L-bracket example

33



Figure 29: Compliance and volume fraction over the iterations for the bracket with two holes example.

(a) Initialization (b) Iteration 50 (c) Iteration 100 (d) Iteration 250

Figure 30: LS curves from selected time iterations of the bracket with two holes example
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(a) LS curve

(b) Numerical model

Figure 31: Comparison of the converged LS curve and numerical model for the bracket with two holes example
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8. Conclusion576

This paper proposes the first methodology in the literature that couples the level set method and the577

floating node method to seamlessly integrate the implicit boundary tracking and movement with an explicitly578

discretized numerical model.579

The explicit boundary representation achieved in our formulation gives direct access to boundary nodes as580

the boundary evolves, and therefore leads to the following advantages over methods employing fully-implicit581

boundary representation:582

• direct calculation of physical quantities at the boundary of the domain (such as displacement, strain/stress583

and velocities). Also, the accuracy of these quantities is consistently higher over a wide range of mesh584

densities (Figure 12 demonstrates this);585

• geometrically-accurate translation of the level-set field into the numerical model without any error-586

inducing sharp edges or blurred regions (as shown in Figures 13 and 18);587

• ability to impose boundary conditions directly on the evolving boundary;588

• simpler and more efficient level-set reinitialization (as can be seen in Figure 10); and589

• reduction of the number of elements required at each iteration, thus resulting in a more efficient590

computation in terms of use of resources, and comparable in terms of total computation time (as591

reported in Figure 19).592

The methodology proposed relies on the floating node method for the boundary discretization. Therefore,593

when compared with literature on explicit boundary representation, our method stands out as providing:594

• easier and more streamlined implementation in generic FE packages through user-element functionality,595

since the original mesh and element connectivities are not altered; and596

• a mesh partitioning scheme that does not require remeshing or other standard meshing operations;597

thus, in principle, it is a more efficient methodology.598

In the current work, we chose to showcase the technology with an application to structural topology599

optimisation where the following features are advantageous over current methods:600

• retaining an accurate numerical model of the domain in every iteration (as depicted in Figure 18);601

• directly computing sensitivities at the boundary, resulting in an improvement of the optimum solution602

attained, specially for coarser meshes (as can be seen in Figure 17); and603
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• performing the optimisation iterations without the need to modify the initial mesh, thus leaving the604

input file unchanged.605

In summary, the proposed formulation constitutes a new, more accurate and more efficient approach for606

modelling evolving boundaries. It has the potential to create a step change in areas including structural607

design and optimisation, fluid-structure interaction, additive manufacturing and multi-phase flow.608
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A. Topology optimisation612

A.1. Introduction613

This section provides a brief review in topology optimisation. The readers are referred to [8, 31, 32] for614

more comprehensive expositions of this topic, as this section will contain only the necessary theory for the615

application of the proposed method to topology optimisation in Section 2.2 and Section 6.616

The topology optimisation method described herein is only capable of determining what is the best design617

evolution given the current boundary topology; the ability of generating new voids was not considered for618

simplicity.619

Topology optimisation relies on the static mechanic analysis for the computation of the design evolution.620

The method computes sensitivities in order to determine what is the best direction for the boundary to621

move, in order to improve some objective function.622

For a static analysis, consider box D as a general domain from which one can obtain a sub-domain with623

volume Ω and a void region accounting for the remaining volume (Figure 32). The static equilibrium of the624

body with volume Ω contained in box D, with tractions t acting on Γt, and with displacements imposed as625

supports along Γu, leads to the displacement vector u. The body is considered elastic and in the plane-stress626

domain. The strain tensor ε is related to the displacements through the cartesian differential operator Lx.627

The stress tensor σ is related to the strains through a constitutive relation of the form σ = Dε, where D is628

the elastic constitutive tensor.629

x

y

D

ΩΓu

Γt

Γ t

Figure 32: Elastic domain Ω as part of D with the corresponding boundary conditions
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A.2. Sensitivity630

The optimisation process consists of minimising the mean compliance functional when subjected to a631

volume constraint. Thus, it is possible to write the following:632

minimise J(u,Ω) =
∫

Ω
εT(u)σ(u) dΩ ,

subject to
∫

Ω
dΩ ≤ Ωmax .

(23)

To implement the constrained optimisation problem, an augmented Lagrangian approach was chosen,633

similar to Xing et al. [23]. Therefore, the Lagrangian of the problem can be written as634

L = J + λ

(∫
Ω

dΩ− Ωmax

)
+ γ

2

(∫
Ω

dΩ− Ωmax

)2
, (24)

where λ is a Lagrange multiplier, and γ is a penalty term; both are updated every iteration i according to:635

γi = τγi−1 ,

λi = λi−1 + γi

2

(∫
Ω

dΩ− Ωmax

)
,

(25)

with τ a real number in ]0, 1[. The movement of the boundary can be simplified to consider only the normal636

direction [8, 23]. Hence, the sensitivity (often called shape derivative in this context) of the Lagrangian to637

a change in the moving boundary Γ in the arbitrary normal direction θ is638

L̇ =
∫

Γ

(
λ̄− εTDε

)
θ · n dΓ , (26)

where λ̄ is a modified Lagrange multiplier defined as639

λ̄ = max
(
0, λi

)
, (27)

to satisfy the Karush-Kuhn-Tucker conditions.640

One direction that guarantees the descent of L is along −L̇; hence we can set641

θ = −
(
λ̄− εTDε

)
n . (28)

A.3. FEM discretization642

The displacement vector u is related to the displacement DoF vector qu using the matrix of linear shape643

functions for the displacements Nu:644

u = Nuqu . (29)
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The strain and stress tensor are defined respectively as645

ε = Lxu = LξJ−1qu = Bqu ,

σ = Dε = DBqu ,
(30)

where B = LξJ−1; J is Jacobian matrix; and Lξ is the differential operator in natural coordinates.646

The FEM equations for the static mechanical analysis are written in matrix form as647

Kuqu = fu , (31)

in which the stiffness matrix and force vector are given respectively by648

Ku =
∫
ξ

∫
η

BTDB det(J) dξ dη ,

fu = f ,
(32)

where f is the force vector corresponding to the applied load.649

The sensitivities for the optimisation can also be discretized. Thus, combining Equations 26 and 28650

yields the elemental sensitivity651

ven = qT
uKe

uqu , (33)

in which the superscript e indicates an elemental quantity. Equation 33 is then averaged at every node and652

normalized taking into account the area of each element. This leads to the nodal sensitivity vector, which653

for the jth node yields:654

vn(j) = 1
ne

ne∑
i=1

veni
Aei
− λ̄ . (34)

Alternatively, for the case in which the boundary is explicitly discretized in the numerical model, the655

nodal sensitivity vector at the boundary is given by656

vn(j) = εT(j)σ(j)− λ̄ . (35)
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